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Abstract 

In the new era of Digital Age, many daily life applications have been digitized — 

—signature scheme is not an exception. Signature forgery is of great concern for 

all signature schemes, regardless of whether they are paper signature schemes or 

digital signature schemes. Therefore, researchers are always finding new means 

to enhance the security of digital signature schemes. 

Recently, to enhance security, W. He proposed a new digital signature scheme 

whose security is claimed to be based on the difficulty of solving two hard prob-

lems, factoring and discrete logarithm. There are two remarkable merits in the 

W. He signature scheme: First, users in the system can share a common modu-

lus. Second, a user in the system needs to store only one number for her public 

key and only one number for her private key. As a result, the W. He signature 

scheme has an improvement in storage efficiency over the Brickell-McCurley 

signature scheme and the Okamoto signature scheme. 

In this thesis, we present a cryptanalysis of the digital signature scheme of 

W. He, and prove that the digital signature scheme of W. He is not based on 

both the factoring and discrete logarithm problems. 
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摘要 

踏入電子的世代，許多生活上的應用都被數碼化一簽章法也不例外。不論 

是對於人手簽章還是數位簽章，簽章的僞造都是必須關注的。因此，硏究 

學者仍在不斷尋找加強數位簽章安全機制的新方法。 

最近，W. He提出了一個新的數位簽章算法來加強數位簽章的安全機制； 

並聲稱他的新數位簽章算法的安全機制是建基於同時求取兩個艱深的問題 

的解，分別是因數分解和離散對數。他的簽章法有兩個優越的地方。第一， 

系統的使用者可以共用同一個系統參數。第二，系統的使用者只雖分別記 

存一個數字作爲私諭、一個數字作爲公鑰0因此，若與Brickdl-McCurley 
的簽章法和Okamoto的簽章法相比，W. He的簽章法在記存的效率上有明 

顯的改善。 

這篇論文將展示W. He簽章法的密碼分析、提出破解W. He簽章法的方 

法、並證明W. He簽章法的安全機制並不是同時建基於因數分解和離散 

對數問題。 
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Chapter 1 

Introduction 

Handwritten signature has long been widely used to provide authentication of 

messages, which is of fundamental importance in both the military and com-

mercial arenas. Since it is believed that handwritten signature is unique for 

each person, signing on a document represents one's approval of its content. 

Moreover, that handwritten signature is easy to produce, easy to recognize, and 

difficult to forge makes it a practical and reliable form of authentication. 

However, handwritten signature has some drawbacks, one of which is that a 

signer's handwritten signatures are the same for all documents. In other words, 

handwritten signature is independent of the document being signed. Thus, an 

adversary may be able to learn from studying examples of a signer's signatures 

and then successfully forge signatures for new desired documents. Although 

this attack may be a difficult task, it is not impossible. Another drawback of 

handwritten signature is that it is by its very nature not suitable for electronic 

commerce, in which everything is digital and can be processed quickly and effi-

ciently to facilitate transactions. 
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Chapter 1 Introduction 

In the new era of Digital Age, many daily life applications have been digi-

tized signature scheme is not an exception. Digital signature, the digital 

counterpart of handwritten signature, is superior to handwritten signature in 

that it can eliminate the drawbacks of handwritten signature mentioned previ-

ously. The working principle and security of digital signature will be discussed 

in the next sections. 

1.1 Origin of The First Digital Signature Scheme 

The concept of “digital signature” was first proposed by Diffie and Hellman 

in their classic paper “New Directions in Cryptograph^ [1]. After that, the 

first practical realization of the concept was proposed by Rivest, Shamir and 

Adleman in [2]. This section gives an overview of the RSA signature scheme, 

which illustrates the general working principle of digital signature. 

In the RSA signature scheme, each user (Alice) has a public key and a private 

key. The public key of Alice is known to all users in the system. On the other 

hand, the private key of Alice is kept secret and is known to Alice only. To sign 

a message, Alice uses her private key to produce a signature, which depends on 

both the message and Alice's private key. Then given the message and Alice's 

public key, any user in the system can use the public key of Alice to verify the 

correctness of the signature. The detail mathematical description of the RSA 

signature scheme is discussed in Chapter 3. Not only does the RSA be the 

first practical digital signature scheme, but it also has become the most popular 

digital signature scheme today. 

While the above paragraph gives an overview of the RSA signature scheme, it 
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Chapter 1 Introduction 

at the same time illustrates the general working principle of digital signature. As 

only the public key of a signer (say, Alice) is needed for signature verification, 

any user in the system can verify Alice's signatures. Moreover, since no one 

except Alice knows the value of her private key, signature proved to be valid for 

Alice's public key must have been signed by Alice. Furthermore, signatures of 

Alice are different for distinct messages since a signature depends on not only 

Alice's private key but also the message being signed. Therefore, even though 

a digital signature for a message can be duplicated easily, the replica cannot 

be used for other messages. Therefore, if in signature verification procedures a 

signature is proved to be Alice's signature for a message, then one can conclude 

that the signature for the message is indeed generated by Alice. As a result, 

authentication is achieved by the use of digital signature. 

1.2 On the security of digital signature schemes 

As the primary goal of signature is to provide authentication, signature forgery 

is of great concern. 

While the security of handwritten signature lies in the difficulty of producing 

undetectable forged signatures, the security of digital signature depends on the 

intractability of mathematical hard problems. All digital signature schemes 

prevent signature forgery by making use of some well-known hard problems. 

For example, the security of the prevalent RSA digital signature scheme is based 

on the factoring problem. In the RSA signature scheme, if an attacker is able 

to factor a big composite integer, then he can achieve a total break of the 

system and forge signatures. (More specifically, if an attacker can solve the 
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Chapter 1 Introduction 

factoring problem, then given the public key of a user the attacker is able to 

compute the corresponding private key of the user.) Known hard problems 

applicable to digital signature schemes include the factoring problem and the 

discrete logarithm problem. 

Prom the previous discussion, we know that if one can solve the hard problem 

on which the security of a digital signature scheme is based, then he can break 

that digital signature scheme and forge signatures whenever he wants to. There-

fore, in order to enhance the security of a digital signature scheme, the security 

of the digital signature scheme can be designed to be based on multiple (instead 

of single) hard problems. For example, Brickell, et al. [3] and Okamoto [4] have 

designed digital signature schemes whose security is based on both the factoring 

and discrete logarithm problems. Recently, W. He [5] proposed a new digital sig-

nature schemes whose security is claimed to be based on both the factoring and 

discrete logarithm problems. In this thesis, we present a cryptanalysis on the 

digital signature scheme of W. He, and prove that the digital signature scheme 

of W. He is not based on both the factoring and discrete logarithm problems. 

1.3 Organization of the Thesis 

The thesis is organized as follows. In Chapter 2, mathematical background 

that is involved in the thesis is introduced, including the Euler totient function, 

Fermat's little theorem, Euler's theorem, quadratic residue, Legendre symbol, 

Jacobi symbol, Blum integer, the factoring problem and the discrete logarithm 

problem. 

Chapter 3 gives a survey on some remarkable digital signature schemes. This 
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Chapter 1 Introduction 

includes the RSA signature scheme [2], ElGamal signature scheme [6], Schnorr 

signature scheme [7], Brickell-McCurley signature scheme [3], Okamoto signa-

ture scheme [4], Harn signature scheme [8], Shao signature scheme [9], and W. 

He signature scheme [5]. Throughout the chapter we will examine the merits, 

demerits and security of each digital signature scheme. 

In Chapter 4 we present our cryptanalysis result on the digital signature 

scheme of W. He. It consists of two parts. In the first part, we introduce the W. 

He digital signature scheme, whose security is claimed to be based on both the 

factoring and discrete logarithm problems, and which has a remarkable merit : 

not only does it permit users in the system to share a common modulus, but 

it also allows a user in the system to store only one number for her public key 

and only one number for her private key. In the second part, we present a 

cryptanalysis of the W. He digital signature scheme and prove that its security 

is not based on both the factoring and discrete logarithm problem. 

Finally, we conclude the thesis in Chapter 5. 
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Chapter 2 

Mathematical Background 

This chapter is a preliminary of the next chapters. In order to understand the 

cryptanalysis result presented in this thesis, a small amount of mathematical 

background and some notation are necessary, and they are presented in this 

chapter. 

In the following discussion, each section will introduce a concept in number 

theory or cryptology by giving definitions, theorems and important properties. 

Since sections are interdependent, readers should start from the beginning to the 

last subsection. However, experts may choose to skip this chapter and proceed 

directly to the next chapter. 

Proofs of theorems on number theory stated below can be found in [10 . 

2.1 Divisibility 

Definition Let a, b be integers. If there exists an integer m such that b = am, 

then a divides b, which is denoted by a\b. The integer a is called the divisor of 
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Chapter 2 Mathematical Background 

b. 

2.2 Prime 

Definition Let p be an integer. If the only positive divisors of p are 1 and p, 

then p is a prime number (alternatively, p is prime). Otherwise, p is composite. 

2.3 Modular arithmetic 

Definition Let a, b be integers and b > 1. Then, there exists unique integers 

q, r such that a = qb + r and 0 < r < b. The remainder of the division of a by 

b, r, is denoted a mod b, 

2.4 Congruence 

Definition Let a, b, n be integers. If n|(a-6) , then a is congruent to b modulo 

n, denoted a 三 b (mod n). The integer n is called the modulus of the congru-

ence. 

2.5 Greatest Common Divisor 

Definition Let a, b be integers. Then, the greatest common divisor of a and b, 

gcd{a, b) is the largest positive integer that divides both a and b. 

7 



Chapter 2 Mathematical Background 

2.6 Integers modulo n 

Definition Z^ denotes the set of integers {0,1,2, ...，n 一 1}. Addition, subtrac-

tion and multiplication in Zn are done modulo n. 

Definition Z^ = {a e Zn\gcd{a,n) = 1} denotes the multiplicative group of 

2.7 Inverse 

Definition Let a G Zn- If there exists an integer x e Zn such that arc 三 1 

(mod n), then x is called the multiplicative inverse of a modulo n, denoted by 

a—i. Otherwise, a does not have a multiplicative inverse. 

Theorem 2.7.1 If gcd{a, n) = 1，then modulo n exists. 

2.8 Division in Zn 

Definition Let a,b G Zn- Then, division of a by 6 modulo n is defined iff 

exists. Moreover, the division of a by 6 is defined as the product of a and 

modulo n. 

2.9 Order of element 

Definition Let a G Z^. Then, the order of a is the smallest positive integer 

A; such that 三 1 (mod n). 
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Chapter 2 Mathematical Background 

2.10 Euclidean Algorithm 

Theorem 2.10.1 Let a, b be positive integers. Without loss of generality, as-

sume a>b. Then，gcd{a, b) = gcdifi, a mod b). 

Algorithm 2.10.1 (Euclidean Algorithm) 

INPUT: positive integers a, b with a > b. 

OUTPUT: gcd[a,b). 

1. Compute r = a mod b, 

2. Set a 二& and then b = r. 

3. Repeat steps 1 and 2 until 6 = 0. 

4. Output the value of a. 

2.11 Extended Euclidean Algorithm 

The Euclidean Algorithm can be extended to find two integers {x, y) such that 

ax by = gcd{a, b), given integers a and b. 

If gcd{a, b) = 1，then in Zb, a—i exists. By using the extended Euclidean 

algorithm, one can find (x, y) such that ax + hy = 1. Thus, one can find x such 

that ax 三 1 (mod h). Note that x is equal to a—i in Z； by the definition 

of inverse. Therefore, given n，a G Z^, one can use the extended Euclidean 

algorithm to find the multiplicative inverse in Z*. 

Algorithm 2.11.1 (Extended Euclidean Algorithm) 

INPUT: positive integers a, b with a >b. 

OUTPUT: d = gcd{a, b) and integers x,y satisfying ax + by = d. 
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Chapter 2 Mathematical Background 

1. Set xi = 0,X2 = 1，yi = 1,^2 = 0. 

2. Compute q = |_fj, r = a mod h, x = X2 - qxi, y = y2 _ qyi, where 

denotes the largest integer that is smaller than or equal to x. 

3. Set a = 6,6 = r, X2 = xi.xi = x, y2 = yi,yi = y. 

4. Repeat steps 2 and 3 until 6 二 0. 

5. Set d = a, X = X2, y 二 y2 and output (d, x, y). 

2.12 Chinese Remainder Theorem 

Theorem 2.12.1 Let a i , a 2 , a ^ be integers. Let ni, n?，r ik be integers such 

that gcd(jii, nj) = 1 for all i ^ j. Then, the system of simultaneous congruences: 
‘ 

X = ai (mod ni) 

三 a2 (mod n ) � 
< 

X = ak (mod Uk) 
\ 

has a unique solution x = E L i ckNiMi mod n in Zn where n 二 rhn<2“.nk，Ni = 

—and Mi = N广 mod rii. 
Tli 

2.13 Relatively Prime 

Definition Let a, b be integers. Then, a, b are relatively prime if gcd�a, b) = 1. 

2.14 Euler Totient Function 

Definition The Euler totient function, (/)(n), is defined as the number of integers 

in the interval [1, n) which are relatively prime to n, 

10 



Chapter 2 Mathematical Background 

Properties: 

1. If p is a prime number, then (j){p) = p — 1. 

2. If gcd{m, n) = 1, then (/)(mn) = 0(m)0(n). 

3. If n = where Pi，P2’.",Pa； are distinct prime numbers, then 

0(n) = n( l - 1 M ) ( 1 - 1/P2)...(1 - I M ) . 

2.15 Fermat's Little Theorem 

Theorem 2.15.1 (Fermat's little Theorem) Let a be an integer, p be a prime 

number. If gcd{a,p) = 1，then a”—丄三 1 (mod p). 

Remarks: 

1. Given an integer a and a prime number p, may not be congruent to 

1 modulo p. Nevertheless, a^ is congruent to a modulo p for all integers a. 

2. By Fermat's little theorem, if r 三 s (mod p - 1), then cf 三 a ' (mod p) 

for all integers a given that p is prime. Therefore, when working modulo 

a prime number p, exponents can be reduced modulo {p — 1). 

2.16 Euler's Theorem 

Theorem 2.16.1 (Euler's Theorem) Let n be an integer and n > 2. If a e 

then a於(…三 1 (mod n). 

Remarks: 

1. A special case of the Euler's theorem is the Fermat's little theorem. 

11 



Chapter 2 Mathematical Background 

2.17 Square root 

Definition Let b e Zn. If x G Z* satisfies a;?三 6 (mod n), then x is a square 

root of b modulo n. 

2.18 Quadratic residue 

Definition Let b e Z*. If there exists x e Z* such that 三& (mod n), then 

6 is a quadratic residue modulo n. If no such x exists, then 6 is a quadratic 

non-residue modulo n. 

Definition Qn denotes the set of all quadratic residues modulo n. Q^ denotes 

the set of all quadratic non-residues modulo n. 

Remarks: 

1. 0 is not a member of Qn nor Q几,since 0 ^ Z*. 

Properties: 

1. Let p be an odd prime. Then, there are exactly ( p - l ) / 2 quadratic residues 

modulo p and (p - l ) / 2 quadratic non-residues modulo p. In other words, 

IQpl = 早 and lOpI 二 宇 . 

2. Let n = pq where p, q are distinct odd primes. Then, there are exactly 

( p - l ) ( ^ - l ) / 4 quadratic residues modulop, and 3 ( p - l ) ( ^ - l ) / 4 quadratic 

non-residues modulo p. 

3. Let b e Qp where p is an odd prime. Then, b has exactly two square roots 

modulo p, one of which is also in Qp. 

12 



Chapter 2 Mathematical Background 

2.19 Legendre Symbol 

The Legendre symbol is a useful tool for testing quadratic residuosity. 

Definition Let p be an odd prime and a be an integer. The Legendre symbol, 

(^), is defined as: 
f 

0 if p\a 

( � = < 1 if a e Q p 

- 1 if a e Q p 

Properties: Let p be an odd prime and a, b be integers. Then,(尝）has the 

following properties: 

1. ( p = a(广i)/2 mod p. This formula is a useful tool for checking whether 

or not an integer a is a quadratic residue modulo a prime p. 

2 .(营）=( , ) (� ) .There fore , if a G Z；, then (f)=(含）since (*)=(芸）（芸）二 

(芸)2 = 1. 

3. If a 三 6 (mod p), then (^) = Q)-

4. 二 1 — 

5. (•) = (—i)(p2-i)/8 Thus, 2 G Qp if p 三 1 or 7 (mod 8), and 2 G if 

p 三 3 or 5 (mod 8) 

6. If q is an odd prime distinct from p, then ( ^ ) = ( 》 ） （ — T h i s 

is called the law of quadratic reciprocity. Hence, if p 三 3 (mod 4) and 

q 三 3 (mod 4)，then ( ^ ) = - � . O t h e r w i s e , ( f ) - ( � ) . 

13 



Chapter 2 Mathematical Background 

2.20 Jacobi Symbol 

Jacobi symbol is the generalization of Legendre symbol in that n is not neces-

sarily prime. 

Definition Let n > 1 be an odd integer. Suppose n = where 

Pi，P2,...,Pfc are distinct prime numbers and ei, 6 2 , e ^ are positive integers. 

Then, the Jacobi symbol,(尝)，is defined as: 

n/ >1 >2 Pk 

Properties: Let n > l , m > 1 be odd integers and a, b be integers. Then,(尝) 

has the following properties: 

1. Since a Jacobi symbol is a product of Legendre symbols,(尝）=0’ 1，or - 1 . 

Moreover,(尝）=0 iff gcd{a, n) + 1. 

2. Since ( 营 ） = ( 芸 ) ( 含 ） ( w h e r e p is prime) for Legendre symbols, we have a 

similar property for Jacobi symbol :(尝）二 ⑶ ( 告 ） 

3. 二（m)(n). 

4. Since for Legendre symbol (芸)二 (含)if a 三& (mod p) where p is an odd 

prime, we have a similar property for Jacobi symbol : if a 三& (mod n), 

then (尝)=(吾). 

5. Since ( - ) = 1, it is obvious that (^) = 1. 

6. ( ^ ) = (_1)(几-i)/2. Thus, if n 三 1 (mod 4), ( ^ ) 二 1. Otherwise, 

( ^ ) = - 1 
7. 二 (―1)(几2-i)/8 Thus, if n 三 1 or 7 (mod 8), ( f ) 二 1. Otherwise, 

m = —1 

14 



Chapter 2 Mathematical Background 

8. (^)=(盒）（-i)(爪-i)(几-i)/4. Hence, if m 三 3 (mod 4) and n 三 3 (mod 4), 

then ( � = - ( 盒 ) . O t h e r w i s e , ( f ) = (^) . 

Remarks: 

1. It is easy to see that if the Jacobi symbol (^) = — 1, then a is a quadratic 

non-residue modulo n. The interesting case is (尝)=1，whence no con-

clusion can be drawn regarding whether or not a is a quadratic residue 

modulo n. Obviously, if a is a quadratic residue modulo n, then (^) = 1. 

However, if (^) = 1, it does not imply that a is a quadratic residue modulo 

n. For example, observe that = 1 but 7 0 Qus 

2.21 Blum Integer 

Definition Let n be an integer. U n = pq where p, q are distinct prime num-

bers, each of which is congruent to 3 modulo 4，then n is called a Blum integer. 

Properties: Let n = be a Blum integer. Let a be an integer. Then the 

following properties hold: 

1- = = 1 ) ( -1 ) = 1. 

2. Since ( f )=—(芸）and ( f ) = —(f), we have (〒）=(仏 

3. If x,y e Z* such that x^ 三 y] (mod n) and neither o ; 三 ( m o d n) nor 

工三一y (mod n), then (尝）二 - (尝) . 

4. If a G Qn, then a has four square roots modulo n, exactly one of which is 

also in Qn. 
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Chapter 2 Mathematical Background 

2.22 The Factoring Problem 

Definition Given a positive integer n, find its prime factorization; that is, find 

distinct prime numbers "',Pk and positive integers ei,e2, ...,ek such that 

The factoring problem is one of the oldest problems in number theory. If an 

integer n has less than 10 bits (i.e. n < 1024), then it is easy to solve the factor-

ing problem of n by simple trial division. However, if an integer n is large and has 

2048 bits, then the factoring problem of n is so computationally intractable that 

the trial division approach would take millions of years to complete. Of course, 

integer factorization has advanced significantly in the last decades, and there are 

advanced methods for solving the factoring problem much superior than the trial 

division approach. Well-known factoring algorithms include Pollard's rho algo-

rithm, Pollard's p - 1 algorithm, quadratic sieve, and number field sieve. Among 

these advanced factoring algorithm, number field sieve is the fastest and has a 

heuristic asymptotic time estimate of e(i-923+o(i))(inn)V3(ininn)V3 [叫 Neverthe-

less, the factoring problem of a 1024-bit-integer still remains a “hard，，problem 

today, and the security of many cryptographic techniques depends upon the in-

tractability of the factoring problem. In particular, the security of the RSA [2 

signature scheme is based on the factoring problem, and in practice, 1024-bit 

integers are commonly used. 
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Chapter 2 Mathematical Background 

2.23 The Discrete Logarithm Problem 

Definition Given a prime number p, integers a,/3 G Z*, find an integer x, 

1 < X < p - 1, such that 三卢 ( m o d p). 

Remarks: The discrete logarithm problem can be generalized to any finite 

cyclic group [10]. 

The discrete logarithm, like the factoring problem discussed in the last sub-

section, is a hard problem in number theory. So far, three remarkable algorithms 

for solving the discrete logarithm problem have been proposed: the linear sieve, 

the Guassian integer scheme, and the number field sieve. Despite that there 

have been significant advancement in algorithms for solving the discrete loga-

rithm problem, discrete logarithm in Zp where p is a large prime still remains a 

“hard” problem today. 

The security of many cryptographic techniques depends upon the intractabil-

ity of the discrete logarithm problem. The ElGamal signature scheme [6] is a 

well-known example, and in practice 1024-bit prime numbers are commonly 

used. 

2.24 One-way Hash Function 

Definition A one-way hash function h maps an input x of arbitrary finite 

length to an output h{x) of fixed bitlength n, with the following properties: 

1. For any given y, it is computationally infeasible to find x with h{x) 二 y. 

2. For any given x, it is computationally infeasible to find x x such that 

h{x) = h{x). 
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Chapter 2 Mathematical Background 

In general, h{x) is much smaller than x\ for example, x might be one megabyte, 

whereas h{x) might be only 128 bits. Thus, in practice, hash functions are used 

in conjunction with digital signature schemes : a message m is hashed first, and 

then the hash value h{m) is signed in place of the original message. This use 

of hash functions will reduce both the computation time of signing process and 

the size of the signature. However, the use of hash function in digital signature 

creates a problem: on one hand, to avoid signature forgery, signatures for dif-

ferent messages should be distinct, but on the other hand, for all one-way hash 

functions there must exist at least two distinct messages that have the same 

hash value, since a one-way hash function is mapping a message of arbitrary 

length into a fixed bitlength output. Thus, collision cannot be avoided entirely, 

since in general the number of possible messages exceeds the number of possible 

outputs of the hash function. Therefore, in property 2 of the definition of a 

one-way hash function, "computationally infeasible" is the best that a one-way 

hash function can do to avoid collision of hash values. 

The design of a one-way function is by no means easy. Moreover, it turns 

out that many one-way hash functions are insecure and have been broken. For 

example, in [12]，Schnorr proposed a one-way hash function based on the discrete 

Fourier transform. However, it was broken by [13, 14]. After that, Schnorr 

proposed a revised version called FFT-Hashllin [15], which was then broken in 

16]. Tillich proposed another one-way hash function called SL2 in [17], however, 

it is insecure and broken by [18 . 
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Chapter 3 

Survey of digital signature 

schemes 

Before presenting our cryptanalysis of the digital signature scheme in the next 

chapter, we in this chapter review some notable digital signature schemes related 

to our cryptanalysis result. This chapter gives a survey of some remarkable 

digital signature schemes, including the RSA signature scheme [2], ElGamal 

signature scheme [6], Schnorr signature scheme [7], Brickell-McCurley signature 

scheme [3], Okamoto signature scheme [4], Harn signature scheme [8]，Shao 

signature scheme [9]，and W. He signature scheme. The merits, demerits and 

security of these digital signature schemes are discussed. 

3.1 The RSA signature scheme 

Since the advent of public key cryptography by Diffie and Hellman [1], the first 

digital signature scheme invented was the RSA digital signature scheme [2]. This 
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section introduces the RSA digital signature scheme and discusses the security 

of the RSA digital signature scheme. 

3.1.1 Key generation in the RSA signature scheme 

A user in the system generates her private key d and public key (e, N) as follows: 

1. Randomly choose two distinct prime numbers p and q. 

2. Compute N 二 pq and cj) = {p - l){q - 1). 

3. Randomly select an integer e such that 1 < e < 0 and gcd(e, (j)) = 1. 

4. Use the extended Euclidean algorithm to find d such that 1 < d < • and 

ed=l (mod 0). 

5. Finally, the private key is d, and the public key is (e, N). 

Remark: In the RSA digital signature scheme, N is called the public modulus, 

and e is called the public exponent. 

3.1.2 Signature generation in the RSA signature scheme 

Using her private key d, a user (Alice) in the system can generate her signature 

on message m as follows: 

1. Compute s = m^ mod N. 

2. Finally, the signature of Alice for message m is s. 

3.1.3 Signature verification in the RSA signature scheme 

Given a user (Alice)'s signature s for message m, another user (Bob) can use 

Alice's public key (e，N) to verify Alice's signature s for message m as follows: 
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1. Compute m = s^ mod N. 

2. Accept the signature iff m = m (mod N). 

3.1.4 On the security of the RSA signature scheme 

This subsection considers several attacks on the RSA signature scheme, each of 

which has various requirements and effectiveness. 

A. Total break (Integer Factorization Attack) 

Suppose an adversary is able to factor the public modulus AT of a user (Alice), 

i.e. the adversary can find distinct prime numbers p,q such that N = pq, 

given N is the RSA public modulus of user Alice. Then, the adversary can 

compute 0 二（p — - 1)，and uses the extended Euclidean algorithm to 

determine the private key of user Alice by solving ed 三 1 (mod 0). Thus, 

Integer Factorization Attack leads to a total break of the system. 

Remark: As discussed in section 2.22, factoring a large composite number is a 

hard problem. Therefore, this attack can be prevented by using a large public 

modulus N. In practice, a 1024-bit public modulus is hard to factor. 

B. Existential Forgery 

The existential forgery proceeds as follows. First, an adversary chooses a value 

for s. Next, given the public key (e，N) of user Alice, the adversary compute 

m = s^ mod N. Then, s is Alice's signature for the message m. 

Remark: One way to counteract existential forgery in the RSA signature scheme 
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is to limit the set of messages that can be signed by the system users. For ex-

ample, all message which are allowed to be signed must have their last several 

bits conform to a specific pattern. 

C. Multiplicative Attack 

Suppose that Alice is a user in the system and an adversary possesses Alice's 

signatures Si for message rrii and S2 for message Then, the adversary can 

compute S3 = S1S2 mod N where N is the RSA public modulus of Alice. Note 

that S3 is a valid signature of Alice for the message ms = mim2 mod N, since 

S3 三 三 mfmg 三(mim2)e (mod N), where e is the RSA public exponent 

of Alice. 

Remark: The above attack can be prevented by applying a one-way hash func-

tion (say, h) to the message before signature generation. Then, even though an 

adversary can compute S3, he still has to invert the one-way hash function h in 

order to compute the new message ms 二 / i - i ( / i (mi)"(m2)). 

3.2 The ElGamal signature scheme 

In the previous section, we see that the security of the RSA signature scheme 

is based on the factoring problem. In this section, we introduce the ElGamal 

signature scheme [6], a classical digital signature scheme whose security is based 

on the discrete logarithm problem. 
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3.2.1 Key generation in the ElGamal signature scheme 

A user in the system proceeds as follows to generate her private key a and public 

key (j) ,a,y): 

1. Choose a random, large prime number p. 

2. Randomly choose a primitive element a in Z*, i.e. the order of a in the 

multiplicative group Z* is (p - 1). 

3. Select a random integer a, 1 < a < p - 2. 

4. Compute y = a�mod p. 

5. Finally, the private key is a, and the public key is (p, a, y). 

Remark: In the ElGamal digital signature scheme, p is called the modulus, and 

a is called the base. 

3.2.2 Signature generation in the ElGamal signature scheme 

To generate her signature on a message m, user Alice in the system can use her 

private key a to perform the following operations: 

1. Randomly choose an integer <k such that gcd{k,p- 1) = 1. 

2. Compute r = a^ mod p. 

3. Use the extended Euclidean algorithm to compute k-1. 

4. Compute s = k_\m - ar) mod (p - 1). 

5. Finally, the signature of Alice for message m is (r, s). 

3.2.3 Signature verification in the ElGamal signature scheme 

Given a user (Alice)，s signature (r, s) for message m, another user (Bob) can 

use Alice's public key (p, a, y) to verify Alice's signature (r，s) for message m as 
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follows: 

1. Compute vi = y V mod p. 

2. Compute V2 — ol^ mod p. 

3. Accept the signature iff vi = V2, 

3.2.4 On the security of the ElGamal signature scheme 

Several attacks on the ElGamal signature scheme, each of which has various 

requirements and effectiveness, are discussed in this subsection. 

A. Total break (Discrete Logarithm Attack) 

Given user Alice's public key (p, a, y), if an adversary is able to compute discrete 

logarithm of the modulus y with respect to the base a in Zp, then the adversary 

can compute a such that y 三 a® (mod p). Since a is the private key of user 

Alice, the adversary can then forge signatures on behalf of Alice. Thus, the 

Discrete Logarithm Attack constitutes a total break of the system. 

Remark: As discussed in section 2.23, discrete logarithm is a hard problem. 

Therefore, this attack can be prevented by using a large modulus p. In practice, 

for a 1024-bit public modulus, it is hard to compute discrete logarithm. 

B. Existential Forgery 

An existential forgery attack proceeds as follows. Given the public key (p, a, y) of 

user Alice, an adversary randomly selects integers {u, v) such that gcd{v,'p-l) 二 

1. Next, the adversary computes r 二 modp and s 二 -rv-! mod (p 一 1). 

Then, (r, s) is Alice's signature for the message m = su mod (p — 1). 
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Remark: The above attack can be prevented by applying a one-way hash func-

tion (say, h) to the message before signature generation. Then, even though 

an adversary can compute (r, s) as mentioned above, he still has to invert the 

one-way hash function h in order to compute the new message m = h~^{su). 

C. Attack on signatures having the same k 

Suppose that an adversary possesses two signatures of a signer and the value of k 

of the two signatures are the same. Then, we have si = k~'^{mi-ar) mod ( p - 1 ) 

and S2 = /c-i(肌2 — ar) mod (p - 1), where r = a^ mod p, (p, a, y) is the public 

key of a user (say, Alice) and a is the private key of Alice. Therefore, the 

adversary can easily determine the private key of the signer by computing a = 

(m - 1 mod (p — 1). 

Remark: The use of a one-way hash function still cannot prevent this attack. 

Thus, it is important for the signer to use a different value of k for each signature 

generation. 

D. Acceptable range of r 

Consider the following attack: Suppose that an adversary has one valid signature 

s of a user (Alice) on a message m. Then, the adversary selects a new message 

m of its choices, computes u = mod ( p - 1 ) and s = su mod ( p - 1 ) . Next, 

by using Chinese Remainder Theorem discussed in section 2.12 , the adversary 

computes f such that f 三 ru (mod p - 1) and f 三 r (mod p). Thus, the 

adversary has computed a signature (f, s) for the desired message m. 
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Remark: The above attack cannot be prevented by using one-way hash func-

tions. To obviate the above attack, a constraint on r, 1 < r < p - 1, must be 

incorporated into the signature verification procedure. 

3.3 The Schnorr signature scheme 

This section introduces the Schnorr signature scheme [7], which is a well-known 

variant of the ElGamal signature scheme. 

3.3.1 Key generation in the Schnorr signature scheme 

A user in the system proceeds as follows to generate her private key a and public 

key {jp,q,v,a,h)\ 

1. Choose two random, large prime numbers p and q such that q\{p - 1). 

2. Randomly select an element a in Zp, with order q. 

3. Choose a one-way hash function h : Zq x Z ^ { 0 , - 1), where t is a 

security parameter. 

4. Randomly choose an integer a G {1, 2, q} and compute v = a—“ mod p. 

5. Finally, the private key is a, and the public key is (p, q, v, a, h). 

3.3.2 Signature generation in the Schnorr signature scheme 

Using her private key a, a user (Alice) in the system can generate her signature 

on message m as follows: 

1. Randomly select r G { 1 , . . . , ^ - 1}, and compute x = a'' mod p. 

2. Compute e = h{x, m) G {0,..., — 1}. 
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3. Compute y = r + ae (mod q). 

4. Finally, the signer's signature for message m is (e,y). 

3.3.3 Signature verification in the Schnorr signature scheme 

Given a user (Alice)，s signature {e,y) for message m, another user (Bob) can 

use Alice's public key {p,q,v,a,h) to verify Alice's signature {e,y) for message 

m as follows: 

1. Compute X 二 a V mod p. 

2. Compute e = h{x, m). 

3. Accept the signature iff e = e. 

3.3.4 Discussion 

In the Schnorr signature scheme [7], we see that the use of the subgroup of 

order q does not significantly improve computational efficiency over the ElGamal 

signature scheme. Nevertheless, the use of the subgroup of the order q does 

achieve smaller signatures than those of the ElGamal signature scheme. 

3.4 Digital signature schemes based on both 

the factoring and discrete logarithm prob-

lems 

While the security of handwritten signature lies in the difficulty of producing 

undetectable forged signatures, the security of digital signature depends on the 
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intractability of mathematical hard problems. In the previous sections, we see 

that the security of RSA is based on the factoring problem, in the sense that if 

an attacker can solve the factoring problem, then he can achieve a total break 

of the system. On the other hand, in the last section we see a different approach 

for the hard problem: the security of the ElGamal signature scheme is based on 

the discrete logarithm problem. 

In order to enhance security, several digital signature schemes based on both 

the factoring and discrete logarithm problems were proposed. In the following 

subsections, we gives a survey on these "hard" signature schemes and discuss 

their merits, demerits and security. 

3.4.1 The Brickell-McCurley signature scheme 

The Brickell-McCurley signature scheme [3] was the first digital signature scheme 

whose security is based on the difficulty of solving both the factoring and discrete 

logarithm problems. 

The Brickell-McCurley signature scheme is a modification of the Schnorr sig-

nature scheme discussed in the last section. The merit of the Brickell-McCurley 

signature scheme is that while it can enhance security by basing on both the 

factoring and discrete logarithm problems, at the same time it retains nearly 

the same high level of efficiency as that of the Schnorr signature scheme. 

Nevertheless, the Brickell-McCurley signature scheme is not exactly based 

on both the discrete logarithm and factoring problems. The reason is that in 

the Brickell-McCurley signature scheme, one of the hard problem, the factoring 

problem is to factor (p - 1), where p is a prime such that there exist integers 

q,w which are prime divisors of (p - 1). However, in the Brickell-McCurley 
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signature scheme, it is publicly known that the public key of a user contains 

an element a whose order is exactly equal to the unknown factor q of {p — 

1). In other words, in the Brickell-McCurley signature scheme, a,p are public, 

moreover, it is publicly known that a^ 三 I m o d p and q\p. Therefore, the 

Brickell-McCurley signature scheme is not exactly based on both the discrete 

logarithm and factoring problems. 

3.4.2 The Okamoto signature scheme 

Okamoto [4] proposed another digital signature scheme whose security is based 

on both the factoring and discrete logarithm problems. A remarkable merit of 

the Okamoto signature scheme is that it is provably secure. However, again, 

the security of the Okamoto signature scheme is not exactly based on both 

the discrete logarithm and factoring problems. Instead, the Okamoto signature 

scheme is proved to be based on both the discrete logarithm problem and the 

finding order problem only. 

In the Okamoto signature scheme, the finding order problem is defined as: 

Given a prime p and a base element g, compute the order of g in Z*. Thus, if 

one can solve the factoring problem, then he can solve the finding order problem, 

since the finding order problem can be solved by factoring {p - 1). However, 

on the other hand, if one can solve the finding order problem, then it does not 

mean that he can solve the factoring problem. Therefore, the security of the 

Okamoto signature scheme is not exactly based on both the discrete logarithm 

and factoring problems, since the Okamoto signature scheme is proved to be 

based on both the discrete logarithm problem and the finding order problem 

only. 
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Finally, concerning efficiency, the Okamoto signature scheme is less efficient 

than the Brickell-McCurley signature scheme in that it requires more compu-

tation and a larger signature size than does the Brickell-McCurley signature 

scheme. 

3.4.3 The Harn signature scheme 

In [8]，Harn proposed a digital signature scheme whose security is claimed to 

be based on both the factoring and discrete logarithm problems. The Harn 

signature scheme has a merit that the modulus p associated with discrete loga-

rithm and the modulus n associated with factoring are of nearly the same size, 

which allows the use of similar size moduli for same security level of the discrete 

logarithm and factoring problems. 

However, in [19], Lee and Hwang show that in the Harn signature scheme, 

even if an adversary can solve the discrete logarithm only but cannot solve the 

factoring problem, the adversary still can forge signature in the Harn signature 

scheme with high probability. Therefore, the security of the Harn signature 

scheme is not based on both the discrete logarithm and factoring problems. 

3.4.4 The Shao signature scheme 

In [9], Shao proposed two digital signature schemes, both of which are claimed 

to have their security based on both the discrete logarithm and the factoring 

problems. 

However, again, in [20], Li and Xiao show that the security of the Shao 
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signature schemes are not secure and are not based on any hard problem. With-

out the ability to solve both the discrete logarithm and factoring problems, an 

adversary still can forge signature in the Shao signature schemes. 

3.4.5 The W . He signature scheme 

Recently, W. He [5] proposed a new digital signature scheme, the security of 

which is claimed to be equivalent to computing both the discrete logarithm and 

the factoring problems. 

There are two remarkable merits in the W. He signature scheme: First, users 

in the system can share a common modulus. Second, a user in the system 

needs to store only one number for her public key and only one number for her 

private key. As a result, the W. He signature scheme has an improvement in 

storage efficiency over the Brickell-McCurley signature scheme and the Okamoto 

signature scheme. 

The W. He signature scheme is efficient in storage and computation, however, 

the security of the W. He signature scheme is not based on both the discrete 

logarithm and factoring problems, as proved in this thesis in the next chapter. 
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Chapter 4 

Cryptanalysis of the digital 

signature scheme of W. He 

To enhance security, W. He [5] recently proposed a new digital signature scheme, 

the security of which is claimed to be based on the difficulties of simultaneously 

solving the factoring and the discrete logarithm problems. 

The digital signature scheme of W. He has a remarkable merit : not only 

does it permit users in the system to share a common modulus, but it also 

allows a user in the system to store only one number for her public key and 

only one number for her private key. Thus, the W. He signature scheme has an 

improvement in storage efficiency over the Brickell-McCurley signature scheme 

and the Okamoto signature scheme discussed in the previous chapter. 

However, in contrast to He's claim, in this chapter we present a cryptanalysis 

of the digital signature scheme of W. He, and prove that the digital signature 

scheme of W. He is not based on the difficulties of simultaneously solving the 

factoring and the discrete logarithm problems. 
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For a self-contained and clear presentation of our cryptanalysis of the digital 

signature scheme of W. He, this chapter consists of two sections: i) In the 

first section, we introduce the digital signature scheme of W. He [5], ii) In the 

second section, we present a cryptanalysis of the digital signature scheme of W. 

He, and prove that the security of He's digital signature scheme is not based on 

the difficulties of simultaneously solving the factoring and the discrete logarithm 

problems. 

4.1 The Digital Signature Scheme of W . He 

Recently, in [5], W. He proposed a new digital signature scheme, the security 

of which is claimed to be based on the difficulties of simultaneously solving the 

factoring and the discrete logarithm problems in order to enhance security. This 

section, which introduces the digital signature scheme of W. He, serves as a 

preliminary for the cryptanalysis presented in the next section. 

4.1.1 System setup in the W . He Digital Signature Scheme 

In the system setup, a trusted centre selects a large prime P = + and an 

element g with order piqi in Zp, where pi = 2p2 + l , Qi = 2̂ 2 + 1 and p i，仍，P2，仍 

are all distinct primes. A one-way hash function / ( . ) and the system parameters 

P, g are made public while pi, (h are all kept secret and discarded. 

Remark: Since P is public, piqi = {P - l ) / 4 is public. 
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4.1.2 Key generation in the W . He Digital Signature 

Scheme 

After the system setup, each user in the system randomly selects a private key 

X e Zp^q, such that gcd((a; + x-'^Y.piqi) = 1 and computes the corresponding 

public key y = g(工+厂〒 mod P. The public key y is published and the private 

key X is secretly stored. 

4.1.3 Signature generation in the W . He Digital Signa-

ture Scheme 

Having generated her private key x and public key y, a signer (Alice) can use 

her private key x to sign a message m. To generate a signature for message m, 

the signer performs the following steps: i) Randomly select an integer t G Zp^g^ 

such that gcd((t + r^ f^p iq i ) = 1，then compute ri = " ( 糾 — � mod P and 

厂2 = 乂 奸 广 m o d P. ii) Find s such that {x + x'^) = (t + r ^ ) + / ( r i , rs ,m)• 

{t + t—1)—1 (modpigi), where f is the published one-way hash function, iii) 

Send signature (ri,r2，s) to the verifier (Bob). 

4.1.4 Signature verification in the W . He Digital Signa-

ture Scheme 

Upon receiving the signature (ri,r2’s) for the message m with respect to the 

signer (Alice), using signer's public key y, the verifier (Bob) verifies the signature 

by checking the following congruent equality: 

？ /2(ri’r2’m) 2s./(ri’T"2’m) � „ {A -| \ 

y 三 7\�2 g mod F i^.ij 
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If the equality holds, then (ri，r2，s) is a valid signature of the signer Alice on 

the message m. 

4.2 Cryptanalysis of the digital signature scheme 

of W . He 

In [5], the security of the W. He signature scheme is claimed to be based on 

the difficulties of simultaneously solving the factoring and discrete logarithm 

problems. After reviewing the digital signature scheme of W. He in the previous 

section, in this section we present a cryptanalysis of the digital signature scheme 

of W. He, and prove that the security of digital signature scheme of He is not 

based on the difficulties of simultaneously solving the factoring and discrete 

logarithm problems. 

We present our cryptanalysis result in two subsections. In the first subsec-

tion, we derive two theorems on the security of the digital signature scheme 

of W. He. Then, in the second subsection, based on the two theorems in the 

first subsection, we design two algorithms for signature forgery in the digital 

signature scheme of W. He. 

4.2.1 Theorems on the security of the digital signature 

scheme of W . He 

In this subsection, we derive two theorems on the security of the digital signature 

scheme of W. He, which prove that the security of the W. He signature scheme 

is not based on both the factoring and discrete logarithm problems. 
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Theorem 4.2.1 Given a message m, system parameters (P,仏 f)，and user Al-

ice's public key y. Let (a) a, P be randomly chosen integers such that P is a 

power of g, 7 = 尸 一 ） m o d (c) X = mod P, (d) 

cr = 7—1 . y mod P, (e) : Â  三 a mod P, (f) n 二 1 + aP, r) = and 

s = S. Then, (ri,r2,s) is a valid signature of Alice for message m in He's 

digital signature scheme. 

Proof: It is sufficient to show that ( n = 1 + aP, r2 = = 5) satisfies 

the signature verification equation of the W. He signature scheme, i.e. y 三 

( 瓜 。 」 p ) ， i n Hc'S SCheHie ： 

s2 /2(ri,r2，m) 2s-/(ri ,7-2,m) 
Ti 厂2 g 

三（ 1 + aP) p g 
三 ( 1 + Q̂P) .7.(9 ) 

三(1 + a P y ' • 7 . 

三 7 . 

三 7 . CT 

三 7 . (7-1") 

三 y (modP) • 

Theorem 4.2.2 Given a message m, system parameters (P, g, f ) , and user Al-

ice's public key y. Let (a) A be an integer randomly chosen in Zp^q^, (b) 

13 二 y入2 mod P, (c) a : f(a,久 m)三 A—i mod 触，(d) (J .. 三 a mod P, 
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(e) 7 = mod piQi, (f) n = a mod P,�2 = P, and s = j. Then, 

(ri,r2，s) is a valid signature of Alice for message m in He's digital signature 

scheme. 

Proof: It is sufficient to show that (ri = a , � 2 二 A s = 7) satisfies the signa-
• - , TTT tt 1 . �/2(7-i,r2,m) 2s-/(T-i,r2,m) 

ture verification equation of the W. He signature scheme, i.e. y 三 r\ r? 9 

(mod P) , in He's scheme: 
s2 /2(ri,r2’m) 2s./(ri ’7"2 ,m) 

Ti ”2 9 
三 a 13 g 

CT� A2/2(a’;8,m) 2/(a,/3,m)-7 
三 g y 9 

<7)2+2/(a’卢’ 入 …卢’爪） 
三 g . y 

” 2+2 入-1.7 A2.(A-1)2 
三 g y 

/ < 7 7 + 2 入 _ 1 、 7 

三（g ) y 
, < 7 ( _ 2 入— l a —1) + 2 入 - 1、7 

三、g ) y 
( _ 2 入 - 1 + 2 入 — 1 、 7 

三、g ) y 

= y (modP) 口 

4.2.2 Signature Forgery in the digital signature scheme 

of W . He 

In this subsection, based on the two theorems in the previous subsection, we 

design two algorithms for signature forgery in the digital signature scheme of 

W. He. 
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4.2.2.1 Signature Forgery Algorithm requiring discrete logarithm only 

By using Algorithm 4.2.1 stated below, without solving any factoring problem, 

in the W. He signature scheme [5] an adversary can impersonate any user and 

forge signature for any desired message, provided that he can solve the discrete 

logarithm problem. 

Given only the public key y of a signer. Without the knowledge of any valid 

signature and the private key of the signer, an adversary proceeds as stated in 

Algorithm 4.2.1 to forge a valid signature (n, r?，s ) for any desired message m: 

Algorithm 4.2.1 (Signature Forgery requiring discrete logarithm only) 

INPUT: m，P, 9, f，y. 

OUTPUT: n, r2, s. 

1. Arbitrarily choose two integers a, /3 such that 卢关 0 mod P, then set 

ri = 1 + aP and r] = P. 

2. Compute 7 = ^fHi+o.PAm) mod P,X = mod JP and 

a 二 7—1 . y mod P. 

3. Find 6 such that X^ = a mod P. 

4. Set s 

Remarks: 

i. The above steps do not require the adversary to solve any factoring prob-

lem. 

ii. In step 3, it is assumed that the adversary can solve the discrete loga-

rithm problem, i.e. given values A, a, P, the adversary can find S within 

polynomial time such that A*̂  三 a mod P. 
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The correctness of Algorithm 4.2.1 is proved by Theorem 4.2.1. 

4.2.2.2 Signature Forgery Algorithm requiring only discrete logarithm 

and hash function inversion 

By using Algorithm 4.2.2 stated below, in the W. He signature scheme [5], 

without solving any factoring problem, an adversary can impersonate any user 

and forge signature for any desired message, provided that he can solve the 

discrete logarithm problem and invert a hash function. 

Given only the public key y of a signer. Without the knowledge of any valid 

signature and the private key of the signer, an adversary proceeds as stated in 

Algorithm 4.2.2 to forge a valid signature (n , 7*2, s) for any desired message m: 

Algorithm 4.2.2 (Signature Forgery requiring only discrete logarithm and hash 

function inversion) 

INPUT: m，P, g, f , y. 

OUTPUT: n, r2, s. 

1. Compute piqi = {P - l ) / 4 

2. Randomly choose an integer A in 他.Next, compute P = mod P. 

3. Find a such that f{a,/3,m)三 A—i mod piQi. 

4. Find a such that 三 a mod P. 

5. Compute 7 = - 2 • A"^ • c r ] mod piqi. 

6. Compute ri = a mod P, r2 = s = 7 . 

Remarks: 
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i. The above steps do not require the adversary to solve any factoring prob-

lem. 

ii. In step 3, it is assumed that the adversary is able to “ invert “ the hash 

function / ( . ) , i.e. given the adversary is able to find a 

within polynomial time such that f(a, m)三 A—i mod piQi. In addition, 

if the adversary feels that it is difficult to invert a particular value of 

A—i, then he can choose another value for A and repeats until a successful 

inversion is achieved. 

iii. In step 4，it is assumed that the adversary can solve the discrete loga-

rithm problem, i.e. given values a,g,P, the adversary can find a within 

polynomial time such that g"^ 三 a mod P. 

The correctness of Algorithm 4.2.2 is proved by Theorem 4.2.2. 

4.2.3 Remedy 

To counteract the signature forgery Algorithm 4.2.1, a remedy is to forbid the 

first entry of the signature from being equal to 1 (modulo P). However, there 

is no trivial way to obviate the signature forgery Algorithm ^.2.2. 
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Conclusions 

While handwritten signature plays an important role in traditional commerce, 

digital signature plays an important role in electronic commerce. Signature 

forgery is of great concern for all signature schemes, regardless of whether they 

are paper signature schemes or digital signature schemes. Therefore, it is de-

sirable to enhance the security of digital signature schemes, by using multiple 

(instead of a single) “hard” problems. 

After introducing the necessary definitions and theorems on number theory 

and cryptology in chapter 2, chapter 3 presents a survey on remarkable digital 

signature schemes based on a single hard problem as well as those based on 

multiple hard problems to enhance security. In chapter 3, we have discussed the 

merits, demerits and security of a variety of remarkable digital signature schemes 

related to our cryptanalysis result presented in this thesis, including the RSA 

signature scheme whose security is based on factoring, the ElGamal signature 

scheme and Schnorr signature scheme whose security is based on discrete loga-

rithm, the Brickell-McCurley signature scheme and Okamoto signature scheme 
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whose security is based on both the factoring and discrete logarithm problems, 

and the Harn signature scheme, Shao signature scheme, W. He signature scheme, 

each of which claims that its security is based on both the factoring and discrete 

logarithm problems. 

In chapter 4 we have presented our cryptanalysis of the digital signature 

scheme of W. He. The first section of chapter 4 introduces the W. He signature 

scheme whose security is claimed to be based on both factoring and discrete 

logarithm, and which has a remarkable merit that not only does it permit users 

in the system to share a common modulus, but it also allows a user in the system 

to store only one number for her public key and only one number for her private 

key. Thus, the W. He signature scheme has an improvement in storage efficiency 

over the Brickell-McCurley signature scheme and the Okamoto signature scheme. 

Then, in the second part of chapter 4, we have derived a cryptanalysis of the 

W. He digital signature scheme and proved that the security of the W. He 

digital signature scheme is not based on both the factoring and the discrete 

logarithm problems. Signature forgery algorithms that do not require solving 

the factoring problem are also derived in chapter 4. Finally, a remedy is proposed 

to counteract one of the proposed signature forgery algorithms. 
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