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Abstract 

In the thesis, we formally define the concepts related to constraint satisfaction 
problems (CSPs). They range from CSP viewpoints to models, and model 
redundancy. Based on these definition, we introduce model induction, a sys-
tematic transformation of constraints in an existing model to constraints in 
another viewpoint. Meant to be a general CSP model operator, model induc-
tion is useful in generating redundant models, which can be further combined 
with the original model or other mutually redundant models. We further 
present two operators, namely model intersection and channeling, as two ways 
of combining models. Model intersection allows combining two models in the 
same viewpoint, while model channeling allows combining two models in dif-
ferent viewpoints. We identify three new forms of redundancy so as to utilize 
the operators to construct combined models. These combined models contain 
extra redundant information and hence have improved solving efficiency. We 
show in our benchmark results that the combined models are more robust and 
efficient than the original single models. 
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摘要 

在這篇論文中，我們正式地定義了多種關於約束滿足問題 ( C S P )的概念，包 

括C S P觀點、模型及模型重複等。建基於這些定義上，我們介紹了模型感應。 

模型感應能夠有系統地將一個現有模型中的約束轉變到另一個觀點中。作為 

一個一般性的C S P模型算子，模型感應能夠製造出重複的模型。我們可以將 

這重複的模型與原有的或其他互相重複的模型結合。我們另外介紹了模型交 

集及導向，兩個用於合併模型的C S P算子。模型交集能夠將兩個同一觀點的 

模型結合，模型導向則能夠將兩個不同觀點的模型結合。此外，我們亦應用 

這些算子提供了三種用以發掘模型重複資訊的方式。這些方式結合同一問題 

上的數個模型來獲取更多的重複資訊以增加模型的解決效率。實驗結果顯示 

出我們結合了的模型比起個別的模型更為強健及有效率。 
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Chapter 1 

Introduction 

Many problems found in artificial intelligence and computer science, such as 
resource allocation, scheduling, timetabling, configuration, and satisfiability 
problems, can be modeled as Constraint Satisfaction Problems (CSPs). The 
definition of CSP, in the sense of Mackworth [23], can be stated briefly as 
follows: 

We are given a set of variables, a domain of possible values for 
each variable, and a conjunction of constraints. Each constraint 
is a relation defined over a subset of the variables, limiting the 
combination of values that the variables in this subset can take. The 
goal is to find a consistent assignment of values to the variables so 
that all the constraints are satisfied simultaneously. 

Much CSP research effort focuses on designing general efficient (systematic 
or local) search algorithms for solving CSPs, and exploiting domain-specific in-
formation to solve particular applications efficiently. A recent important line of 
research in the community investigates how problem formulation and reformu-
lation affect execution efficiency of constraint-solving algorithms. Freuder [11 
lists first problem modeling among the seven most important future directions 
of constraint research. 
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Chapter 1 Introduction 2 

Selecting the most appropriate formulation or model for a problem is dif-
ficult in general. In fact, no objective and general notions of the “best” for-
mulation exist to date. Different formulations of a problem do not compete. 
Cheng et al. [8] introduce channeling constraints and present how these con-
straints can be used to connect mutually redundant CSP models to enhance 
constraint propagation in tree search. In the thesis, we formally define the 
concepts from CSP viewpoints to models, and model redundancy. Based on 
these definitions, we give another use of channeling constraints, namely to use 
them in generating additional model of a CSP through a process called model 
induction [22]. We give its syntactic construction rule, detailed examples, and 
examine its properties. 

We propose the application of model induction to exploit redundant in-
formation from different models of the same problem. We introduce model 
intersection and channeling as two different ways to combine mutually redun-
dant models. Model intersection [21] allows combining two models in the same 
viewpoint, while model channeling [8, 21] allows combining two models in dif-
ferent viewpoints. The latter generalizes the idea of redundant modeling [8] by 
combining the constraints and defining a relationship between the two view-
points of the constituent models with the use of channeling constraints. By 
making use of intersection and channeling, we identify three new forms of 
redundancy that can enhance constraint propagation for solving CSPs. In 
particular, model induction generates a new model that is mutually redundant 
to a given one. The induced model can be combined with other models us-
ing model intersection and/or channeling to form a model that contains more 
redundant information. Thus, it is more plausible for the combined model 
to obtain enhanced constraint propagation and pruning during the search for 
solutions. We show in our benchmark results that the combined models are 
more robust and efficient. 
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The thesis is organized as follows. In Chapter 2, we present a brief review of 
the related work. These include the work related to CSP models and reformula-
tions, and combining models. Chapter 3 provides the background to the thesis. 
We formally define the concepts ranging from CSP viewpoints to CSP models. 
We also introduce the concept of model redundancy. Besides, we present some 
constraint satisfaction techniques. This includes a brief overview of system-
atic and local search techniques for solving CSPs. In particular, we present 
how consistency techniques can be incorporated into backtracking search to 
increase CSP solving efficiency. Chapter 4 formally introduces model induc-
tion, a method for systematically generating a new model from an existing 
one using another viewpoint and channeling constraints. We give its syntactic 
construction rule, detailed examples, and examine its properties. We present 
three new forms of model redundancy based on model induction in Chapter 5. 
We introduce model intersection and channeling as two ways for combining 
models. Our proposal utilizes model intersection, channeling, and induction 
to combine models to form mutually redundant ones that contain more redun-
dant information for enhancing constraint propagation during search. We also 
present experimental results on combining mutually redundant models using 
our proposed scheme. Finally, we conclude the thesis in Chapter 6 by giving 
our contributions and possible directions of future research. 



Chapter 2 

Related Work 

In this chapter, we present the research conducted that is related to our work 
on combining and transforming models. The related work can be classified 
as two types: CSP models and reformulations, and combining models. The 
following three sections correspond to CSP models and reformulations, and 
the next four sections correspond to combining models. 

2.1 E q u i v a l e n c e o f C S P s 

Rossi et al. [31] propose a new definition of equivalence of CSPs, based on the 
concept of mutual reducibility. They believe that it is reasonable to consider 
two CSPs equivalent if it is possible to obtain the solution of one CSP from 
that of another, and vice versa. Based on their definition of equivalence of 
CSPs, they formally address the issue of the equivalence of binary and non-
binary CSPs. Their definition makes a fundamental contribution in that it is 
an appropriate tool to identify redundant information in CSPs. 

2.2 D u a l V i e w p o i n t 

Geelen [13] introduces two improved problem-independent value and variable 
ordering heuristics for solving CSPs. He also introduces a "dual-viewpoint" 
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Chapter 2 Related Work 5 

approach for a special but broad class of CSPs, namely Permutation CSPs. 
This approach allows suitable extensions to many heuristics including those 
introduced in his paper. We can consider a Permutation CSP from two dif-
ferent perspectives. In one perspective, we solve the problem by finding a 
value for every variable, while in another perspective, we solve the problem by 
finding a variable for each value. Geelen improves the most-constrained-first 
variable ordering heuristic by calculating and incorporating the constrained-
ness information from both viewpoints. Hence, the number of backtracks can 
be reduced. 

2.3 C S P R e f o r m u l a t i o n 

Weigel and Bliek [40] introduces an algorithm to transform a CSP into its 
boolean form which is then used to find its reformulations. Reformulations 
differ with each other only in redundant constraints, and one can allow prun-
ing in some situations which is not possible in other. They identify a new 
class of tractable CSPs and sufficient conditions for deciding solvability and 
皿solvability of a CSP in linear time. They also introduce the notion of fault 
tolerance of solutions, and show how the boolean form can be used to find 
them. 

2.4 M u l t i p l e M o d e l i n g 

Jourdan [19, 20] works on multiple modeling, in which models representing 
different but redundant views of the same problem are synchronized using the 
communication mechanisms of constraint logic programming and concurrent 
constraint languages. Besides redundant models, Jourdan also explores the 
notions of cooperating and hierarchical models. 
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2.5 R e d u n d a n t M o d e l i n g 

Cheng et al. [5, 6, 7, 8] formally introduces redundant modeling. Two mod-
els of the same problem are combined together using channeling constraints. 
The combined model contains the mutually redundant models as sub-models. 
Channeling constraints allow the sub-models to cooperate during constraint 
solving by allowing constraint propagation to take place among the sub-models. 
They show increased constraint propagation and efficiency by using this ap-
proach to a real life nurse rostering problem. Besides, redundant modeling can 
be incorporated with Jourdan's new value ordering heuristic [20] to open up 
new horizon for the definition of new value ordering heuristics. 

2.6 M i n i m a l C o m b i n e d M o d e l 

Smith [37, 38] introduces the idea of minimal combined models for Permutation 
CSPs. It is similar to redundant modeling but the constraints in the second 
model are dropped. She shows that for the Langford's problem, the amount 
of constraint propagation of the minimal combined model is equal to that of 
redundant modeling. Since the constraints of the second model are dropped, 
the time required for constraint propagation is shorter than that in redundant 
modeling. Therefore, the execution time for a minimal combined model would 
be shorter than that for using redundant modeling. However, it is not clear 
whether the same result can be transferred to Permutation CSPs in general. 

2.7 P e r m u t a t i o n CSPs a n d C h a n n e l i n g Con -

s t r a i n t s 

Walsh [39] conducts an extensive theoretical and empirical study on using dif-
ferent models and combined models using channeling constraints. He compares 
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models by defining a measure of constraint tightness by the level of consistency 
being enforced for the constraints in a model. His results aid human CSP mod-
elers to choose a viewpoint for Permutation CSPs. He also illustrates a general 
methodology for comparing different CSP models. Smith and Walsh's works 
concentrate on the effect of different levels of constraint propagation on the 
constraints in a model to ensure a permutation in Perinutation CSPs. 



Chapter 3 

Background 

This chapter provides background to the thesis. We provide the basic defini-
tions relating from viewpoints to CSP models. Furthermore, a description of 
constraint satisfaction techniques is presented. This includes a brief overview 
of systematic and local search techniques for solving CSPs. In particular, 
we present how consistency techniques can be incorporated into backtracking 
search to increase CSP solving efficiency. 

3.1 F r o m V i e w p o i n t s t o C S P M o d e l s 

There are usually more than one way of formulating a problem P into a CSP. 
Central to the formulation process is to determine the variables and the do-
mains (associated sets of possible values) of the variables. Different choices 
of variables and domains are results of viewing the problem P from differ-
ent angles/perspectives. We define a viewpoint^ to be a pair [X, Dx), where 
X — {a：!,... , Xn} is a set of variables, and Dx is a set containing, for every 
X G X, an associated domain Dx(j^) giving the set of possible values for x. 

A viewpoint V' = (.Y, Dx) defines the possible assignments for variables 
in A . An assignment in V (or in U C A") is a pair {x, a), which means that 

^Geelan [13] used the not ion of viewpoint loosely w i t h o u t ac tua l ly def in ing it. 

s 
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variable x ^ X (or U) is assigned the value a € Dx{x). A compound as-
signment in V (or in t / C X) is a set of assignments . . . , (xi^^a/,)}, 
where . . . , x,-^} C X (or U) and aj G Bx(xij) for each j G { 1 , . . . , k}. 
Note the requirement that no variables may be assigned more than one value 
in a compound assignment. Given a set of assignments we use the predi-
cate cmpd{0, V) to ensure that 6> is a compound assignment in V. A complete 
assignment in V is a compound assignment {(a^i, a i ) , . . . , (a;^, a^)} for all vari-
ables in X. 

When formulating a problem P into a CSP, the choice of viewpoints is not 
arbitrary. Suppose sol[P) is the set of all solutions of P (in whatever notations 
and formalism). We say that viewpoint V is proper for P if and only if we 
can find a subset S of the set of all possible complete assignments in V so 
that there is a one-one mapping between S and sol{P). In other words, each 
solution of P must correspond to a distinct complete assignment in V. We note 
also that according to our definition, any viewpoint is proper with respect to a 
problem that has no solutions. The definition of equivalence of CSPs by Rossi 
et al. [31] produce a similar effect on problems with no solutions. According 
to their definition, any CSPs with no solutions are equivalent. 

A constraint can be considered a predicate that maps to true or false. The 
signature sig[c) C X^ which is the set of variables involved in c, defines the 
scope of c. We abuse terminology by saying that the compound assignment 

...人Xik,ak)} also has a signature: sig{{{xi^,ai),. . . , {x i^ ,ak)})= 
,a;“}. Given a compound assignment 9 such that sig(c) C sig(0), 

the application of 0 to c, cQ, is obtained by replacing all variables in c by the 
corresponding values in 6. If cO is true, we say 0 satisfies c, and 0 violates 
c otherwise. In addition, the negation -^c of a constraint c is defined by the 
fact that {-"0)0 = -i(c^) for all compound assignments 0 in X D sig{c). We 
overload the operator so that it operates on both constraints and boolean 
expressions. A constraint c is said to be unary if and only if \sig[c)\ = 1, and 
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binary if and only if it is unary or \sig{c)\ — 2. 
A CSP model M (or simply model hereafter) of a problem P is a pair (V, (7), 

where V is a proper viewpoint of P and C is a set of constraints in V for P. 
Note that , in our definition, we allow two constraints to be on the same set of 
variables: q , Cj G C and sig[ci) = sig[Cj). A CSP model is said to be binary if 
and only if all its constraints are binary. A solution of M 二（T/，(7) is a complete 
assignment ^ in V so that cO = true for every c E C. Since M is a model of 
P, the constraints C must be defined in such a way that there is a one-one 
correspondence between sol{M) and sol{P). Thus, the viewpoint V essentially 
dictates how the constraints of P are formulated [modulo solution equivalence). 
A model M is satisfiable or soluble if sol{M) + 0，and unsatisfiahle or insoluble 
otherwise. 

Suppose Ml and M2 are two different models of the same problem P. By 
definition, there exists a one-one mapping between 50/(Mi) and so/(M2). We 
say that Mi and M) are mutually redundant. As we shall see, it is possible for 
mutually redundant models Mi and M2 to share the same viewpoint. In that 
special case, it is easy to verify that 50/(Mi) = solQM)). 

3.2 C o n s t r a i n t S a t i s f a c t i o n T e c h n i q u e s 

Since CSPs are NP-complete [9] in general, any algorithms for solving CSPs is 
likely to require exponential time in problem size in the worst case. There are 
two general classes of algorithms for solving CSPs. The first class of algorithms 
is systematic search, which enumerates through the possible assignments of 
the variables. This class of algorithms is guaranteed to find a solution, if 
there is any, or prove no solutions exist. Therefore, it is sound and complete. 
Another class of algorithms is local search. A local search algorithm typically 
starts with a complete assignment of the CSP. It then incrementally alters the 
assignments until a solution is found. These algorithms use the hill-climbing 
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or repair heuristics to move towards the solutions. Local search algorithms 
can be trapped in local optima, in which no altering of assignments can be 
made to move towards the solutions. Therefore, local search algorithms must 
have some mechanisms to escape from such situations. A random restart or 
modification of the landscape of the search surface can be useful. Local search 
algorithms are usually incomplete. In other words, they may fail to return a 
solution even if one exists in the CSP. Furthermore, they cannot prove that 
a CSP has no solutions in general. The work reported in this thesis concerns 
systematic search algorithms. 

The most common algorithm for performing systematic search is back-
tracking [15, 10, 3，12, 28]. To improve the efficiency of backtracking search, 
consistency and propagation techniques are used to remove inconsistent do-
main values, aiming at detecting failures earlier in the search. In the following 
subsections, we describe briefly backtracking search, consistency and propa-
gation techniques, and incorporation of backtracking search and constraint 
propagation for solving CSPs. 

3.2.1 Backtracking Search 
Backtracking search [15, 10, 3, 12, 28] is a common algorithm for performing 
systematic search to solve a CSP. It starts with an empty compound assign-
ment. It incrementally extends the compound assignment by choosing an uns-
elected variable and making an assignment to this variable from the variable's 
domain. If the new compound assignment violates some of the constraints of 
the CSP, the search backtracks and tries another assignment of the variable. 
If there are no more assignments to try for this variable, the search further 
backtracks to the previously chosen variable and tries another assignment of 
that variable. This process is repeated until either a solution is found, or there 
are no more variables to backtrack to. In the latter case, backtracking search 
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backtracking sear ch{{{X^ D), C), 0) 
if sig{0) = X v a - 0 then 

return true 
choose X e X \ sig{0) 
for each a G D[x) 

0 :=eu{{x,a)} 
C := {c\c e C A sig{c) C sig{0)} 
if \/ceC'' [cO] = true then 

if backtracking sear ch{{{X, D), C \ C'�, 0) = true then 
return true 

0:=0\{{x,a)} 
return false 

Figure 3.1: Backtracking Search Algorithm 

proves that no solutions exist for this CSP. Figure 3.1 shows the algorithm 
for backtracking search [24]. The call backtracking一search[M,Q�with 6' = 0 
would start searching a solution for the model M, If a solution is found, the 
search returns true, and false otherwise. 

3.2.2 Consistency Techniques and Constraint Propaga-
tion 

Consistency techniques are algorithms that remove values from the domains 
of variables without removing any solution to a CSP. The idea behind these 
techniques is based on the observation that if a value in a variable domain 
cannot satisfy a constraint in a model, then the value must not be in any 
solution of the model. There are several kinds of consistency techniques, which 
behave differently upon different kinds of constraints. Removal of a variable's 
domain value by maintaining consistency of one constraint may affect the 
consistency of another in a CSP, and make other values be removed from other 
variables. Constraint propagation is the spreading of pruning information 
from one constraint to another. In the following, we briefly describe node 
consistency, arc consistency, and bounds consistency, consistency algorithms 
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node—consistent[[[X, D), C)) 
for each c G C with \sig{c)\ = 1 

let sig{c) = {x} 
D{x) := {a\a G D{x)八 c { � a ; , a � } = true} 

return D 
Figure 3.2: Node Consistency Algorithm 

on constraints, and constraint propagation which maintains these consistencies 
in a model level. 

N o d e Consistency 
A constraint c is node consistent [24] with respect to viewpoint V = (X, D) if 
either |«sz'"(c)| 1 or if sig{c) 二 {a:}, then for each j G D(x), c{{x,j)} is true. 
A CSP (y, C) is node consistent if each constraint c G C is node consistent 
with respect to V. 

Example 3.1 Suppose we have D{x) = {0,1,2,3,4}. Then the constraint 
X < 3 is not node consistent, or node inconsistent, because the assignments 
{x, 3) and {x, 4) do not satisfy the constraint. If we remove values 3 and 4 from 

i.e., D[x) = {0,1, 2}, then the constraint becomes node consistent. • 

The algorithm that transforms a CSP into its node consistent counterpart 
is straightforward. For each unary constraint with signature {x}, if a value 
in the domain of x violates the constraint, we remove the value from the 
variable domain. Figure 3.2 shows the algorithm that makes a CSP model 
node consistent [24]. The algorithm returns the new domains of the variables. 

Node consistency can be achieved as a preprocessing step before starting 
the search. Once it is achieved, all unary constraints are always satisfied 
because the inconsistent values are already removed. Therefore, these unary 
constraints can be discarded/ignored. 
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acjrevise({X^ D), c) 
if |5z^(c)| = 2 then 

let sig{c) 二 {x,y] 
D[x) {a\a e D{x) A 36 G D{y) . [c{{x, a), (y, b)}]} 
Diy) ：二 {b\b e D{y) A 3a e D{x) • [c{(x, a), (y, b)}]} 

return D 

Figure 3.3: Algorithm Making a Constraint Arc Consistent 

Arc Consis tency 
A constraint c is arc consistent [24] with respect to viewpoint V = (X, D) if 
either |5z^(c)| 2 or if sig{c) = {x^ y}, then for each j G D{x) there exists 
k G D{y) such that c{(x, j ) , (y, k)} is true, and for each k G D(y) there exists 
j G D{x) such that c{(x, j ) , (y, /c)} is true. A CSP (V, (7) is arc consistent if 
each constraint c G C is arc consistent with respect to V. 
Example 3.2 Suppose we have B(x) = D(y) = {0,1,2,3,4}. The constraint 
X < y IS not arc consistent, or arc inconsistent, because for 4 G D(x) there 
does not exist a value in D(y) such that the constraint is satisfied. Similarly, 
for 0 G D{y) there does not exist a value in D(x) such that the constraint is 
satisfied. If we remove 4 and 0 from D{x) and D{y) respectively, i.e., D{x)= 
{0,1,2,3} and D{y) = {1,2,3,4}, then the constraint becomes arc consistent. • 

To make a constraint c arc consistent, we can simply delete all values from 
the domain of the variables in the constraint that cannot satisfy c. Figure 3.3 
shows the algorithm that removes values from the variable domains to make a 
constraint arc consistent [24 . 

To make a CSP arc consistent, it is not enough to revise each constraint 
in the CSP only once. When the revise algorithm removes a value from the 
domain of a variable, other previously revised constraints may become arc 
inconsistent again. The spreading of pruning information from one constraint 
to another is called constraint propagation. The AC—1 algorithm [24], shown in 
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ac 一 1 ( 刚 ） 
repeat 

VV := D 
for each c G C 

D ：— acjrevise{V^ c) 
until W = D 
return D 

Figure 3.4: Arc Consistency Algorithm AC-1 
ac_3((V,C)) 

while g 0 
delete a constraint c 6 Q 
W := D 
D := acjrevise{V^ c) 
if W ^D then 

Q QU {c'\c' e C 八 n sig{c') + 0} 
return D 

Figure 3.5: Arc Consistency Algorithm AC-3 

Figure 3.4, performs constraint propagation and makes a CSP arc consistent 
by revising all the constraints again and again until there are no changes to 
the variable domains. 

The AC-1 algorithm is quite inefficient because domain reduction of one 
variable makes all constraints in the model be revised again. It is clear that this 
is not necessary since when a variable has its domain reduced, only constraints 
with this variable are affected. The AC-3 algorithm [23] in Figure 3.5 is an 
improved version of AC-1. It only re-revises those constraints that can possibly 
be affected rather than re-revising all of them. 

There are more sophisticated arc consistency algorithms such as AC-4 [26], 
AC-5 [29], AC-6 [1], and AC-7 [2] but their basic ideas are the same: to remove 
values from domains of variables that cannot contribute solutions to the CSP. 
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Bounds Consis tency 
Node consistency and arc consistency handles unary and binary constraints 
in a CSP only. When we have constraints in a model with more than two 
variables, these consistency algorithms cannot reduce the variable domains. 
Generalized arc consistency (GAG) [27] is the generalization of arc consistency 
to non-binary constraints. A constraint c is generalized arc consistent [27 
with respect to viewpoint V = (X, D) if for each x G sig(c) and j G 
there are assignments (x̂ -, di) to the variables Xi G sig{c) \ {x} such that 
c{{{x,j)}[j{{xi,d,)\x^ e \ 八 G D{x^)}) is true. A CSP (V, (7) is 
generalized arc consistent if each constraint c G C is generalized arc consistent 
with respect to V. 

There are algorithms that can maintain generalized arc consistency for non-
binary constraints. However, the complexities of these algorithms are usually 
high for general constraints that they are not practical to be incorporated in a 
CSP solver. Therefore, algorithms that maintain weaker levels of consistency 
arise. They may reduce fewer values from the variable domains than those gen-
eralized arc consistency algorithms, but they have a relatively low complexity 
to execute. Bounds consistency [24] is a weaker level of consistency but it 
works for integer variable domains and non-binary arithmetic constraints at a 
low cost. 

Suppose we have a viewpoint V = (X, D). We define min]j{x) and maxD{x) 
to be the minimum and maximum element in D{x) respectively. An arithmetic 
constraint c is hounds consistent [24] with respect to V if for each x G sig(c), 
the followings are true: 

• There are assignments of real numbers (a;̂ , di) to the variables Xi G 
sig{c) \ {rc} such that c({(x, mmn(x))} U {(x^, di)\xi G sig[c) \ {x} A 
miriD^Xi) < di < max]j[xi)}) is true. 

• There are assignments of real numbers (x̂ -, d'^ to the variables Xi G 



Chapter 3 Background 17 

sig(c) \ {x} such that c({(a;, max]j{x))} U {(.Tj, d'-)\xi G sig{c) \ {.t} A 
minD(Xi) < d'- < maxD^Xi)]) is true. 

Note that we relax the definition of assignments here by allowing the value 
of an assignment not in the domain of the variable. A CSP ( V\ C) is bounds 
consistent if each constraint c G C is bounds consistent with respect to V. 

E x a m p l e 3.3 Suppose we have D{x) 二 D{y) = D(z) = {0,1,2,3}. The 
arithmetic constraint x — 1 = y + z is not bounds consistent, or bounds hi-
consistent. Consider the value minD{x) = 0 G D(x). We cannot find values 
within [0 . . . 3] for y and z such that ^ + ： 二 0—1 = —1. If we remove 0 from 
D(x), the cloniaiii becomes D(x) — {1,2, 3} and mino{x) = 1. The constraint 
now becomes bounds consistent. • 

Bounds consistency of a constraint is maintained using propagation rules. 
Consider t he simple constraint .z, + ij = z. We can easily derive I lie following 
iiiecjualities: 

• .r > nniii)(z)—川(u])[y), j. < / / / " . / , ) — in in /；(//) 

• y ^ """/)(:) — nui.vj)(.r). y < — ///////；(./•) 

• c > 川"//)(‘r) + mill d(//). -：' < //"/.;•/)(./.) + tnd.rpitj) 
These im�(iualiri(�s imxlurr propagal nil(�s r"r inaiiil aiiiiiig l>()ui“ls (•(川sis-
tfiicy of t h(�CDiist raiiit x + “ = ；. }• igurc shows 1 he alg(>!-it lim 1 lial rc-
movrs valu(�s fVuin th(�variable domains 1 o makrtliis const raiiit Ixjiiiuls roiisis-
UMit [‘�Ij. Tlu�proi)agal ion nil(�s for const raiiit s oil"”- t liaii ./• + // : :: can be (1�-
ri\.(�(J si mi la rly. ll(�iir(、，hounds consisl ciicn' jm>v'"l('s an rfliciciil way t o r�mov(. 
v a l m � f r o m vai.i‘‘山l(”l�maiiis (�\vii t he cdiisI raiiil has many \ ai-ial山、s. 11(Avcscr. 
wluMi a const raiiU ha�s only t wo \ ai ial»l«'s. inaiiit ainiiiiz arc consisl ciiry iiiji v po-
tent ially i.cmmv moi��valu<� .� than niaini ainiim ixjiiiuls consist ciiry. j-or exam-
ple. supjioso / ) ( , ) = /)( </) = {0 in}. Maintaiiiinfj; arc r(川si…�m y on i Ik* 
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bcjreviseMdd{D) 
D{x) := {a\a G D{x) A minD{y) + minD(z) < a < maxoiy) + maxz){z)} 
D[y) := {a\a G D{y)八 minD^x) — maxu^z) < a < maxoix) + mini:){y)} 
D{z) := {a\a G D{z) A minD{x) — maxoiy) < a < maccD(x) + minniy)} 
return D 
Figure 3.6: Bounds Consistency Algorithm for the Constraint x y — z 

constraint 2x = 3y+ l makes D{x) — {2，5,8} and D{y) = {1, 3,5}, while main-
taining bounds consistency on the same constraint makes D[x) = {2 , . . . ,8} 
and D(y) = {1,...，5} [33]. Therefore, bounds consistency is a weaker level of 
consistency than arc consistency when handling binary constraints. 

3.2.3 Incorporating Consistency Techniques into Back-
tracking Search 

Although backtracking search is more efficient than pure "generate and test" 
for solving CSPs, its performance is still not good enough to tackle CSPs. To 
improve efficiency, consistency techniques are incorporated into backtracking 
search [17, 32, 16, 2]. The idea is that in backtracking search, after choosing a 
variable and making assignment to a value for this variable from the variable's 
domain, constraint propagation is performed to reduce the domains of the 
unassigned variables. If the domain of a variables becomes empty after prop-
agation, the current assignment must not lead to a solution and backtracking 
occurs. The removal of domain values is undone upon backtracking, and the 
search makes another assignment for the variable. This process is continued 
until either a solution is found, or there are no more variables to backtrack to. 

We give an example of performing forward checking [17] during search 
using the n-queens problem. Forward checking maintains arc consistency of 
the constraints between the currently assigned variable and the unassigned 
variables in the search node. The n-queens problem is to place n queens on a 
chessboard such that no two queens can attack each other. That means there 
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can be no two queens on each row, each column, and each diagonal. We give 
a textbook model M = ((X, Dx)^ Cx) of the 4-queens problem. We use four 
variables X = {xi, 2:3, X4} and their associated domain function Dx • Each 
Xi denotes the column position of the queen on row i and Dx{xi) = {1, 2, 3,4} 
for i G {1,2,3,4}. The constraints Cx enforce that no two queens can be on 
the same: 

• column: Xi + Xj for all 1 < z < j < 4, and 

• diagonal: — Xj\ ^ j — i for all 1 < z < j < 4. 

Figure 3.7 shows the search tree of the 4-queens problem performing for-
ward checking. When the search starts, the CSP is already arc consistent. 
Therefore, no values are removed. Suppose we are trying the variables from 
xi to x^ and the values 1 to 4 in order. By trying the assignment (xi, 1), 
constraint propagation removes values that are on the same row and diagonal 
of the corresponding queen. Next, the search makes the assignment 3). 
Constraint propagation removes all the values from the domain of x^] hence 
backtracking occurs and another value in Dx{x2) is tried. Then the search 
makes the assignment (^2,4). After propagation, only one value in is 
left. Trying the assignment (a^s, 2) makes the domain of empty. Therefore, 
the search backtracks again. This time, there are no values in the domains of 
xs and X2 to be tried anymore, we have to try another value of Xi. After trying 
{xi, 2) and propagation, there is only one value left in Dx{x2)' By assigning X2 
to 4, X3 must be assigned 1 and then X4 be assigned 3. In this state, the search 
obtains a solution {(xi, 2), 4), {xs, 1〉，(0:4, 3)} of the 4-queens problem with 
two backtracks. If we want to find another solution of the problem, the search 
would also backtrack to start finding another solution. 
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_O_212L2L 21-2-iLiL 2L2L2L2. X X XXX — — XXX 2121 
2c—五_ — _ 2 1 _ 2 1 — _21 — 2L X X X X X X 

-2-2L2L2i _o_2i2L2L 21-2.2121 A2L_2.2L _x 2121-2- 2L2L2L̂  X X O X X X X o 2121 O X X X o x x X X O X X X X X 21_2121 —2L2L2L 2L2L — — x x _ ^ ^ 212121A 
X X X X X _丄 —五 X 21 — 21— 2i — 2L— —21 — 21 

f a i l f a i l 
_o_2i2L2L 21-2-2121 2121.2.21 2121-2-
2i_2_2i21 _o__x i i i i 2i2L2i_2_ x x o x 2L2L2L2L 2L2L — 21 |x | x|:>r| | x|x | x | x 

f a i l f a i l 

2i 21-2-21 2L212i-£. _o_2̂ 2L2i -2-212121 _x 2L2L_2. 
2121-2.21 21-2.2121 
success success 

Figure 3.7: Forward Checking on the n-queens Problem during Backtracking 
Search 
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Model Induction 

In this chapter, we introduce model induction [22]: a method for systematically 
generating a new model from an existing model, using another viewpoint and 
channeling constraints. The resulting model is called an induced model. The 
core of model induction is a meaning-preserving transformation for constraints, 
both implicit and explicit, from one model to constraints in another viewpoint. 
In the following, we describe channeling constraints, construction of induced 
models with detailed examples, and properties of model induction. 

4.1 C h a n n e l i n g C o n s t r a i n t s 

Given two models Mi = {{X, Dx):Cx) and M2 二 {{Y,Dy),Cy). Cheng et 
al. [8] define a channeling constraint c to be a constraint, where sig(c) ^ X, 
sig{c) g y , and sig{c) C X UY. Thus, c relates Mi and M2 by limiting the 
combination of values that their variables can take. Cheng et al. show how 
a collection of channeling constraints can be used to connect two mutually 
redundant models of the same problem to form a combined model, which 
exhibits increased constraint propagation and thus improved efficiency. 

We note in the definition that the constraints in the two models are imma-
terial. Channeling constraints relate actually the viewpoints of the models. In 

21 
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other words, channeling constraints set forth a relationship between the pos-
sible assignments of the two viewpoints. Not all arbitrary sets of channeling 
constraints can be used in model induction. Given viewpoints Vi = (X, Dx) 
and V2 二 (y, Dy)^ suppose we want to construct an induced model from a 
model in viewpoint Vi to another viewpoint V2. A necessary condition is that 
the set of channeling constraints between Vi and V2 must collectively define a 
total and injective function f from the possible assignments in Vi to those in 
V2： 

f ： {{x, a)\xeXha^ Dx{x)} 4 {{y, h)\y^Y M>e i^y(y)}. 

In other words, f maps every assignment in Vi to a unique assignment in V2. 

4.2 I n d u c e d M o d e l s 

Description of model induction assumes constraints to be represented exten-
sionally. We define re/(c) to be the relation of a constraint c, and rel{c) . 
is stored explicitly as a set of incompatible assignments in sig{c). Suppose 
sig[c) — {xi^,... , Xi^}, an incompatible assignment {{xi^, a i ) , . . . , (a;̂ ,̂ a/^)} 
for c is a compound assignment in sig{c) that violates c. Otherwise, it is a 
compatible assignment. The incompatible assignment has the logical meaning 
~>((a;‘i = ai)八 . . .A {xiĵ  = ak)). Hence, a constraint check amounts to a set 
membership check against re/(c): cO 令 • rel[c) for all valid 6. 

Given a model M = ((X, Dx), Cx)-, a viewpoint (K, Dy), and a set of chan-
neling constraints defining a total and injective function f from the possible 
assignments in (X, Dx) to those in (F, Dy)- We note that a CSP M con-
tains two types of constraints: the explicit constraints as stated in Cx and the 
implicit constraints on variable assignments. The latter type of constraints 
can be further broken down into the restriction that (1) each variable must 
be assigned a value from its associated domain and (2) each variable cannot 
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be assigned more than one value from its domain. The idea of model induc-
tion is to transform the constraints in model M, both implicit and explicit, 
using f to constraints Cy in viewpoint (F, Dy)^ yielding the induced model 

• Stated Constraints. The first type of constraints to transform is the 
constraints stated in Cx. Recall that a constraint c consists of a signature 
and a relation, which is simply a set of incompatible assignments for c. 
We apply f on the assignments in each incompatible assignments of all 
constraints in Cx, and collect the transformed incompatible assignments 
in a set Sy'-

Sy - {<9|6> = {/(�:cii，ai〉)，...，/(〈:r,,，afc�)}AceCA 

{�:c“，ai�,...八:Lij^,CLk��e re/(c)八 

It is indeed possible for 0 not being a compound assignment with, say, 
f{{xi^,au)) and being {y,hu) and where y G F and 
bu + by. Since we are transforming incompatible assignments from 
(X, Dx)^ the information conveyed in Q, including the restriction that 
the variable y cannot be assigned values bu and by simultaneously, is cor-
rect. In fact, this information is already satisfied implicitly in viewpoint 
(y, DY) so that we can ignore/discard 0. 

Example 4.1 Suppose we have a constraint c G Cx with {(xi, 1),�:C2, 2 � } G 
re/(c). If /((a；!,!)) =〈"2,1〉and f{{x2,2)) =�"i,l〉，then we have 
{/(� i i , l�) , /(〈〜2〉)} = {(yi , l ) , (y2, l )} e 知 . I f G 
rel{c) and /((x2,l))=〈約，2〉，then the set { / ( (x i , 1)),/((:C2,1))}= 
{�y2,1〉，�y2，2〉} is not a compound assignment and is not in Sy- 口 

• No-Double-Assignment Constraints. Implicit in a CSP formulation, 
each variable should be assigned exactly one value. Part of this restriction 
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can be translated to the requirement that no variables can be assigned 
two values from its domain at the same time. This corresponds to a set 
of (invalid) incompatible assignments of the form {{x^ a), (x, b)} for all 
oc 6 X, a,b e Dx[x), and a • b, which is satisfied implicitly and not 
represented in M. Their transformed counterparts, however, are needed 
in (y, Dy)' We apply f on all these assignment sets, and collect the 
transformed incompatible assignments in a set Ny' 

Ny { { / ( M ) , / ( � : c , 6 � ) } | a , 6 e i M 4 / W “ 
cmpd{{f{{x,a))J{{x,b))},{Y,Dy))} 

Example 4.2 Suppose Dx{xi) = {2,3}，with /((a^i,2)) = (yi,2) and 
f{{xu^)) = � 1 / 2 , 1 � . Then, for variable Xi, {/((a^i, 2 ) ) , / ( (x i , 3 ) ) } = 
{(yi ,2) , (y2, l )}GiVy. • 

• At-Least-One-Assignment Constraints. The other part of the im-
plicit variable constraint in M can be translated to the requirement that 
each variable must be assigned at least a value from its domain. This 
corresponds to the constraints \lbeDx�x)工 二 ^ for all x E X^ which are 
satisfied implicitly and not represented in M, The other problem is that 
this unary constraint does not have any incompatible assignments. For 
each variable x e X^ we first apply f to every possible assignment of 
X. Suppose Dx{x) 二 { 6 i , … , / ( ( x , 6 i ) ) = {yk,,vi),... J{{x,br))= 
�y/cr,”r� . These assignments form the compatible assignments of a con-
straint in {uk” . . . ,ykr}' Using the closed world assumption [30], we 



Chapter 4 Model Induction 25 

compute the incompatible assignments by collecting all compound as-
signments 6 with signature {y/c". . . , i/k^} such that every individual as-
signment in 0 is not equal to (yk^^Vj) for all j G {1, • • • , r}: 

Ay =[j.ex { … = { � , . . . ,~}八 

Vj G {1,...，r} • [f{{x,bj)) = {ykj.Vj)]八 

0 = {{Vwi^cLi),... ,�y^^s,以5�} A cmpd{0, (F, Dy))八 

sig{0) = {y/^ i ,… , ykr} N 
V̂  G { 1 , . . . ,5},Vi G { 1 , . . . , r } • + {yk^^Vj)]} 

E x a m p l e 4 .3 Suppose we have Dx{xi) — Z)y(yi) = Dy (y2) = {1, 2,3} 
with / ( ( x i , l ) ) 二�yi,l〉，/((xi,2)) = 0/1,2〉，and / ( ( x i , 3 ) ) = (^2,1). 
Then, for variable a î, applying f to the assignments (xi, 1), {xi, 2), and 

suggests that the incompatible assignments are among yi and y). 
All compound assignments {(yi, a), (^2, ^)} where a ^ ^ and b # 1 
are the incompatible assignments in Ay. Hence, we have {(yi, 3), (^2, 2)} 
and {�2/1,3〉，�2/2,3�} for inclusion in Ay. • 

We note that the incompatible assignments in a constraint c G Cx may 
be transformed to contribute to the incompatible assignments of more than 
one constraint in (F, Dy). Thus Sy U Ny U Ay consists of all the induced 
incompatible assignments with different signatures in (Y, Dy)- The next step is 
to extract incompatible assignments with the same signature from S y ^ N y U A y 
and group them into a constraint in (y, Dy). Thus, 

CY = {c\ sig{c) CY A rel{c) = a 她 U TVy U Ay) + 0}, 

where (j[/(0) = {0\0 eS A sig{0) = U}. 
We illustrate the construction of two induced models using the simple 4-

queens problem introduced in Chapter 3. The 4-queens problem is to place 
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four queens on a 4 X 4 chessboard in such a way that no two queens can attack 
each other. 

Recall our textbook model M = {{X,Dx),Cx) of the 4-queens problem. 
We use four variables X = {xux2, X3, X4} and their associated domain function 
Dx- Each Xi denotes the column position of the queen on row i and Dx{xi)= 
{1 ,2 ,3 ,4} for I e {1,2,3,4}. The constraints Cx enforce that no two queens 
can be on the same: 

• column: x̂  + Xj for all 1 < z < j < 4, and 

• diagonal: \xi - Xj\ ^ j - i for all 1 < z < j < 4. 

E x a m p l e 4 .4 We consider a 0-1 viewpoint (Z，Dz) with sixteen variables Z 二 

{ z i j \ i J e {1,2 ,3 ,4}} and associated domain function Dz- The assignment 
{zij, 1) denotes the fact that square position (z, j ) (row i and column j) contains 
a queen; and denotes otherwise. Therefore, Dz{zij) = {0,1} for all 
i j G {1,2,3,4}. The set of channeling constraints Xi = j 公 Zij = 1 for all 
i, j = 1，...，4 defines the total and inject ive function 

泰 J〉）=〈印 , 1� fo r a l l y -“1,2,3,4}. 

We first transform the stated constraints in Cx. The incompatible assign-
ments for the diagonal constraints in M have the form k),�a;” A;± (z — j ) � } 
for allz,i,A; G {1,2,3,4}, i <j, and 1 < k±{i - j) < 4. Hence, the induced in-
compatible assignments are {�z认，1),�Zj’fc±(hn,l�}. For example, the diagonal 
constraint |xi - X2I ^ 2 - 1 generates the following incompatible assignments: 

{(^11, 1),(^22, 1)},{(^12, 1),〈么23，1>},{(̂ 13, 1),〈224，1)}, 

{(^12, 1), {Z2U 1)},{(^13, 1〉，(̂22, 1)}, {(^14, l ) , (^23, 1〉} 

for inclusion in Sz- The incompatible assignments for the column constraints 
in M have the form k), {xj,k)} for all G {1,2,3,4} and z < j. Hence, 
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the induced incompatible assignments are {{zik, 1), {zjk, 1 � } . For example, the 
constraint ；ri + x^ generates the incompatible assignments {�2:11,1〉，〈之21,1�]•， 

{〈二 12,1 ) , ( - 2 2 , 1 ) } , 1),〈之23,1)}, and { ( 2 : 1 4 , 1 ) , (^24, l )} for inclusion in S'z-
The No-Double-Assignments constraints for (Z, Dz) include incompatible 

assignments transformed from the implicit constraints that each Xi G X cannot 
be assigned two different values. Thus: 

Nz = U {{W��"^i〉)，"(��•^2�)}|ji,j2 e { 1 , . . . ,4} 
xiEX 
A Ji < J2} 

= e { 1 , . . . ,4} Aj i < j 2 } 

For example, the implicit requirement for xi e X will generate the following in-
compatible assignments {(^n, 1〉, (2:12,1�}, {(^n, 1),〈之 13’ 1〉}，{(̂ ii, 1〉，�:i4,1�}, 
{ ( ^ 1 2 , 1 ) , {2:13,1)}, {(^12,1), (2:14,1)}, and {(^13,1), (^14,1)} to ensure that no 
more than one queen will be placed on row i of the chessboard. 

Last but not least, we need to take care of the At-Least-One-Assignment 
constraints Az, which are obtained from the implicit constraints "each Xi G X 
must be assigned at least one value" in M. Applying g to the assignments 
[xi, 1 ) , . . . , {xi, 4) for each xi G X suggests that the incompatible assignments 
in (Z, Dz) are among variables zn,... , Zi4. The incompatible assignments are 
those {{zii .qi) , . . . , {z^, ^4)} such that ^ 1 , . . . , ^ 1. Since the domain 
of all variables Zij is only { 0 , 1 } , {�2：“, 0〉,...,〈之“，0)} is the only incompatible 
assignment needed. Thus: 

Az 二 {{(̂ 11,0), (̂ 12, 0),(2：13,0), (^14,0)}, 

{〈如,0〉，〈2：32,0〉,〈之33’0〉，〈2：34,0〉}， 

{(^41,0), (^42,0), (^43, 0),(^44,0)}}. 

The intuitive meaning of these incompatible assignments is that there cannot 
be no queens in row i of the chessboard. 
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Figure 4.1: The Constraint \xq ~ Xi\ ^ 1 m M and its Induced Counterpart in 
M) with the No-Double-Assignment and At-Least-One-Assignment Con-

straints from Xq 

The induced model M) — ((Z, Dz)^ Cz) can be formed by extracting 
and grouping incompatible assignments of the same signatures to form con-
straints in Cz- By Theorem 4.1, M) and M are mutually redundant, and 
are both models of the 4-queens problem. Figure 4.2 shows the constraint 
Xq — Xi \ ^ 1 m M and its induced counterpart in i[g, M) with the No-Double-

Assignment and At-Least-One-Assignment constraints transformed from the 
variable xq. In the figure, the nodes are the assignments and the edges are the 
incompatible assignments between two nodes. In particular, the edge for the 
At-Least-One-Assignment constraint is a hyper-edge among the variables 2:00, 
之01, ̂ 02? and Zqs. • 

Example 4.5 Besides the viewpoint (Z, Dz)^ we have another viewpoint for 



Chapter 4 Model Induction 29 

the 4-queens problem for model induction. We consider another viewpoint 
(y, Dy) with four variables Y = {yi, y2, ys, "4} and associated domain function 
Dy- Each Hi denotes the row position of the queen on column i and = 
{1,2 ,3 ,4} for i G {1,2,3,4}. The set of channeling constraints Xi = j ^ yj = i 
for ain，j G { 1 , . . . ,4} defines the total and injective function 

f{{xij)) = iVj^i) for all i j G {1,2,3,4}. 

Again, we first transform the stated constraints in Cx. Recall that the 
incompatible assignments for the diagonal constraints in M have the form 
{�:r,,A:〉，〈:c”fc±(z—j)�}forallz,j，A:G{l，2,3,4}，z < j， a n d l � / c ± ( z _ j ) 
Hence, the induced incompatible assignments are {� â；，0，�yfc±(i-j), j � } . For 
example, the constraint \xi — X2\ • 2 — 1 generates the incompatible as-
signments {(yi , l ) , (y2,2)}, {�y2，l〉，〈"3，2�}, {〈"3,1〉，�"4,2〉}，{�y?，1〉，�"1，2〉}， 

{(ys, 1), (^2,2)}, and {(y4,1), (ys, 2)} for inclusion in 5V. The incompatible 
assignments for the column constraints in M have the form {(x^-, k), (xj, k)} 
for all i,j,k G {1,2, 3,4} and i < j. Hence, we collect the induced assignment 
sets {(yjb, iVkd)}- However, these assignment sets do not form incompati-
ble assignments because they contain two different assignments for the same 
variable yk. Therefore, there are no incompatible assignments for inclusion in 
Sy corresponding to the column constraints. 

The No-Double-Assignments constraints for (Y, Dy) include incompatible 
assignments transformed from the implicit constraints that each Xi ^ X cannot 
be assigned two different values. Thus: 

Ny = U ,4} 

八 jl <J2} 
= e { 1 , . . . , 4} A ji < J2} 

For example, the implicit requirement for Xi G X will generate the following 
incompatible assignments {(yi, 1), (^2,1)}, {{vi, 1), (ys, 1)}, { � " i , 1〉，�y4,1�}, 
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{(^2,1),�2/3,1〉}，{(y2,1), (y4,1)}, and {(ys, 1), (^4,1>} to ensure that no more 
than one queen will be placed on row i of the chessboard. 

Last but not least, we need to take care of the At-Least-One-Assignment 
constraints Ay, which are obtained from the implicit constraints "each Xi G X 
must be assigned at least one value" in M. Applying f to the assignments 
(x -̂, 1〉，…，{xî  4) for each Xi G X suggests that the incompatible assignments 
in (y, Dy) are among variables yi,…，2/4. The incompatible assignments are 
those {(yi, <?i),.. •，�2/4，似〉} such that qi 1 , . . . , ^ 1. Since the domain 
of all variables m is only {1,2,3,4}, we have the incompatible assignments 
{(yi, g i ) , . . . , (^4, ^4)} for all 仍，g�，qs, q4 G {2, 3,4}. The intuitive meaning of 
these incompatible assignments is that there cannot be no queens in each row 
of the chessboard. However, the No-Double-Assignment constraints ensure 
that at most one queen can be placed in each of the four rows, and we have 
to place one queen in each of the four columns. Therefore, there can never 
be no queens in a row of the chessboard, and the information from these 
incompatible assignments is implied already. Hence, we can ignore the At-
Least-One-Assignment constraints in this special case and allow Ay = 0. 

The induced model z(/, M) = ((y, DY), CY) can be formed by extract-
ing and grouping incompatible assignments of the same signatures to form 
constraints in CY- By Theorem 4 . 1 ， M ) , z(/, M), and M are mutually 
redundant, and are both models of the 4-queens problem. Figure 4.2 shows 
the constraint — rcol + 1 in M and its induced counterpart in i [ f , M) with 
the No-Double-Assignment constraints transformed from the variable â o- 口 

4.3 P r o p e r t i e s 

The following theorem and corollaries give an important consequence of model 
induction: the transformation of incompatible assignments is meaning-preserving. 
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Figure 4.2: The Constraint 卜广。—.。丨 + 1 in M and its Induced Counterpart in 
i(J\ M) with 1 lie No-Doii1)le-Assignment Constraints from . r� 
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T h e o r e m 4.1 If M = (Vi, Ci) is a model for problem P, and V2 is a proper 
viewpoint of P, then M and z(/, M) are mutually redundant models for all 
total and injective functions f (defined by channeling constraints connecting 
Vi and V2) mapping from possible assignments in Vi to those in V2. 

Proof 4.1 Suppose there is a set of channeling constraints defining a total 
and injective function f such that M and i [ f , M) are not mutually redundant. 
By definition, there is no one-one mapping between sol[M) and sol{i[f^ M)) 
and thus also between sol{P) and 5o/(z(/, M)) (since M is a model for P). 
Thus no subset S of the set of all possible complete assignments in V2 can 
have a one-one mapping with sol[i(f,M)). Consequently, V2 is not a proper 
viewpoint of P; hence a contradiction. • 

Corollary 4.2 If Mi = (VI, Ci) and M2 = {V2,Ci) are mutually redundant 
models of P , and / is a total and injective function mapping from possible 
assignments in Vi to those in then sol{M2) = 50/(z(/, Mi)). 

Proof 4.2 By Theorem 4.1, Mi and z(/, Mi) are mutually redundant. So 
are Mi, M?, and z(/, Mi). By definition, there must be a one-one mapping 
between sol[M2) and sol(i{f^ ^i))- Since M2 and i ( / , Mi) share the same 
viewpoint V25 the only possible one-one mapping is the identity mapping for 
V2 to be proper. Thus sol^M]�= sol{i{f, Mi)). • 

Corollary 4.3 K M : (Vi, Ci) is a model for problem P, V2 is a proper 
viewpoint of P, and f is a total and bijectivefunction (i.e., exists) mapping 
from possible assignments in Vi to those in V2, then z(/, M ) ) ) = 
sol{M). 

Proof 4.3 By Theorem 4.1，M and i { f , M) are mutually redundant. Simi-
larly, i(J, M) and i { f ~ \ i { f , M)) are mutually redundant. M and M)) 
share the same viewpoint. By Corollary 4.2, sol[i[f_i,i[f, M))) = sol{M). • 



Chapter 4 Model Induction 33 

Applying model induction twice on Permutation CSPs using channeling 
constraints f and its inverse where f{{xi^j)) = {yj, i) for all can be 
idempotent. In a Permutation CSP [13, 37, 38] ((X, Dx)^ C), we always have 
Dx{xi) = Dx{xj) for all Xj G X , and \Dx{xi)\ = \X\. In addition, any 
solution {(a：!, k i ) , . . . , (x^, kn)} of a Permutation CSP must have the property 
that ki ^ kj ^ i ^ j. 
T h e o r e m 4.4 If the followings are true: 

• M — ((X，D), C) is a binary Permutation CSP (a binary CSP as well as 
a Permutation CSP); 

• No two constraints in M have the same signature; 

• The all-different constraints are ensured by the incompatible assignments 
{{xi, A;), (xj^k)} for all Xj G X and k G D{xi) with i / j] and 

• We have another viewpoint connected with channeling constraints defin-
ing f { { x i j ) ) = � y ” i � f o r all 

then 

Proof 4.4 Since no two constraints in M have the same signature, we can 
consider the set of incompatible assignments of all constraints in M. Let 
0 = {0\c eC AO e rel{c)} o r 0 = 0 , U Qad w h e r e 

0, = {e\c a f\d 二 l^k, I)} e rel{c) t\i + kNi + \ � 
and 

0ad = {0\c ec AO e rel(c)八 6> = k),�x” k)}八 i + j}. 
Qad is the set of the incompatible assignments of the all-different constraints, 
while 05 is the set of other incompatible assignments of the model. Simi-
larly, let 0 ' and G)� be the sets of all incompatible assignments of i [ f , M) and 

i(/，M)) respectively. 
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e" = {f-\o)\o e & \ Ny} u Nx 
= { r \ m ) \ o e Q s } ^ N x 
= { 0 \ 0 G 0 J U {{{Xi, k), { X j , k)}\xi, x � 6 X /\k 6 D{xi) f \ i . � � 

= e . U Gad 
= 0 

Since M and z(/, M)) have the same set of incompatible assignments, 
and both of them do not have two constraints with the same signature, there-
fore, M = z ( / - S z ( / , M ) ) . • 



Chapter 5 

Exploiting Redundancy from 

Model Induction 

In this chapter, we focus our interest on induced models which are mutually re-
dundant to their original models. We introduce two operators, namely model 
intersection and channeling, as two ways of combining models. We identify 
three new forms of redundancy by using model intersection and/or channel-
ing to combine mutually redundant models. The extra redundant information 
in the combined models can enhance constraint propagation and hence solv-
ing efficiency. We also present experimental results on combining mutually 
redundant models using our proposed scheme. 

5.1 C o m b i n i n g R e d u n d a n t M o d e l s 

In this section, we introduce two operators, namely model intersection and 
channeling, to combine models. Model intersection allows combining two mod-
els in the same viewpoint, while model channeling allows combining two models 
in different viewpoints. For each of the two operators, we give its syntactic con-
struction rule and define its set-theoretic meaning. These operators are useful 
in combining models to enhance constraint propagation for solving CSPs. 

35 
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5.1.1 Model Intersection 
Model intersection [21] forms conjuncted models by essentially conjoining con-
straints from constituent models. A solution of a conjuncted model must thus 
also be a solution of all of its constituent models. 

Given two models Mi = {{Xi, Dx , ) ,Cx , ) and M] = ((X2, 
the viewpoint V 二（X, Dx) of the conjuncted model contains variables from 
both viewpoints, i.e., X — Xi U X2. If a variable x appears only in either 
Xi or X2, then the domain of x remains the same in Dx\ otherwise, /̂义⑷ 

is the intersection of Dx^ix) and D^sl^)- The constraint set Cxiux) is the 
union of Cxi and 0x2- More formally, the conjuncted model Mi fl M2 is 
((X, Dx) , Cx, U C x J , where X = U X2 and for all x € X , 

( 
Dx, (x) if G J^i 八 a;雀 X2 

Dx{x) = DxA^) if a;雀 Xi 八 G 
Dxi � n Dx2 � otherwise 

We overload the fl operator so that it operates on CSP models as well as sets. 

E x a m p l e 5.1 Suppose we have two models Mi — ((Xi, Cxi), where 
• = {3:1,0:2,^3} and Dx,(xi) = Bx,(x2) = -Dxiixs) = {1,2,3}, 

• Ox, = {xi + xs}, 

and M2 = {{X2,Dx,),Cx2)： where 

• X2 = {X2,X3,X4} and = = = {1,2}, 

• Cx2 = {X2 二 Xs}. 

Then we have as the conjuncted model Mi H M2 = ((X, Dx) , Cx), where 

• X = { x i , . . . ,2:4} and Dx{xi) = {1，2, 3}, 二 D论 3 ) =办 ( > 4 ) = 
{1,2}, 
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• Cx = {Xl + = a^s}. 

• 

A consequence of the definition is that every solution of a conjuncted model 
must satisfy all constraints in its constituent models. 

Theorem 5.1 If V is the viewpoint of Mi fl M2, then sol{Mi n M2) = {Oi U 
02\0i G sol{Mi)八 6>2 e soI{M2)八 cmpcf(<9i U O2, V)}. 

Proof 5.1 Let Oi and O2 be complete assignments of Mi and M2 respectively. 

9i e sol{Mi)八 6*2 e soI{M2)八 U 62, V) 
V c i G Cx, . [ci(9i]八 Vc2 G Cx2 . h ^ y 八 cmpdl^ei U O2, V) 
Vci G Cx, • [ci{Oi U <92)] A Vc2 G Cx, . [C2(6>i U 62)] A cmpf/(6'i U 62, V) 
Vc e Cx • [c(6, U 62)]八 cm/x/(<9i U Q2, V) 

^ Oil) O2 e sol (Ml n M2) 
• 

Theorem 5.1 gives a construction of the solution set of Mi H M2 from those 
of Ml and M2. In particular, solutions Oi of Mi and O2 of hi2 can be combined 
to form a solution of Mi fl M2 if and only if each shared variable in Oi and 
0.2 is assigned the same value in and O.2. Otherwise, Oi U O2 cannot form a 
conipouiul assigiinieiit in the coiijuncled viewpoint. This condit ion is enforced 
by I he ('川 pd predicate. 

When two models Mi 二: ([.(、）and 12 二 (VC2) share the same view-
point . M \ n 12 = (\ .('1 U C '2). Flirt herniorr. if Mi and M2 a re niut nally 
reduiulant, then sol (Mi) = .^ol(M 2) 二�“/(-�/i H AA). This property allows us 
to combine I wo inoclels of t he same problem in t hr same \-i(�\\-point wit li t hf 
conjuncted model still having the same solution s(�t as thr imlividual ihocIpIs . 
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5.1.2 Model Channeling 
Suppose there is a set Cc of channeling constraints connecting the viewpoints 
Vi and V2. Model channeling [8, 21] combines Mi and M2 using Cc to form a 
channeled model, which is Mi Pi M2 plus the channeling constraints Cc. More 

(J 

formally, the channeled model Mi m M2 is ((X, Dx), Cxi U Cx: U Cc), where 
X = J^i U X2 and for all x e X， 

‘ D x , { x ) \ i x e X i h x i X 2 
Dx{x) = DxA^) \ixiXihxeX2 

Dxi � n Dx2 � otherwise 
\ 

Cc 

Given two models Mi and M). The channeled model Mi m M � i s more 
Q 

constrained than the conjuncted model Mi flM?. A solution of Mi m M? must 
satisfy all constraints in Mi and M2 plus the channeling constraints Cc 

Q Q 

Theorem 5.2 If V is the viewpoint of Mi m M2, then sol{Mi m M2) 二 

{6>1 U 02\0i e sol{Mi) A<92 G sol(M2)八 c m p t f ( � U O2,!/)八 Vc G Cc. [c{Oi U O2)}. 
Proof 5.2 Similar to the proof of Theorem 5.1. • 

The redundant modeling approach by Cheng et al. [8] is a special case of 
model channeling. 

Theorem 5.3 Suppose Mi and M2 are mutually redundant models. If Cc is a 
set of channeling constraints enforcing the one-one mapping between sol{Mi) 

(J 

and <so/(M2), then Mi, M2, and Mi m M2 are mutually redundant to one 
another. 
Proof 5.3 By definition, any solution 0 of Mi m M2 can be projected to Vi 
and V2 to form solutions of Mi and M2 respectively. Suppose Oi is a solution 
of Ml. Then there must be 62 that can be mapped to Oi by Cc (and vice 
versa) and is a solution of M2. In addition, cmpd{Oi U 没2，V̂), where V is the 
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Q 

viewpoint of M = Mi m M2, must hold since Oi U O2 satisfies Cc and shared 
variables in Oi and O2 must share the same assignments. Therefore, there is 
a one-one mapping between 50/(Mi) and sol{M). Similarly, we can show the 
same between sol[M2) and sol[M). • 

5.2 T h r e e N e w F o r m s o f M o d e l R e d u n d a n c y 

A viewpoint can greatly influence how a human modeler looks at a problem. 
Each viewpoint provides a distinct perspective emphasizing perhaps a specific 
aspect of the problem. Therefore, the modeler will likely express individ-
ual constraints differently under different viewpoints, although the constraints 
under each viewpoint should collectively give the same solutions to the prob-
lem being modeled. In particular, a constraint expressed for one viewpoint 
might not even have an (explicit) counterpart in the other viewpoint, and vice 
versa [25]. 

Suppose Ml = (Vi, Ci) and M2 = (14, C2) are mutually redundant models • 
with different viewpoints handcrafted by human modeler. We also have a 
set Cc of channeling constraints defining a total and injective function f from 
possible assignments of Vi to those of V2. Model induction essentially translates 
constraint information expressed in Vi to V2 via channeling constraints f . The 
transformed constraints express in V2 the constraint information of the problem 
as viewed from Vi. These transformed constraints are likely different from 
constraints expressed directly using V2 by the human modeler. Therefore, 

Afi) and M2 are redundant and yet complementary to each other. 
Model channeling and intersection give various possibilities to combine Mi, 

M2, and models induced from the two models. Model channeling is "collabo-
rative" in nature. It allows each sub-model to perform constraint propagation 
on its own, and yet communicate its results (variable instantiation and do-
main pruning) to the other sub-models to possibly initiate further constraint 
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propagation. Furthermore, model channeling allows constraint propagation 
to explore different variable spaces (viewpoints). For example, Figure 5.1(a) 
shows part of two models being channeled with the channeling constraints 
Xi — j Uj — i for all z, j pairs. Constraint propagation in Mi would 
prune the value 3 from Dx{x2) but no more. Since Mi and M: are channeled 
through the channeling constraints, the pruning of (^2, 3) would cause (ys, 2) 
to be pruned also, resulting in the state in Figure 5.1(b). Now, the pruning 
of (ys, 2) makes = 3 inconsistent with y � s o (y2, 3) in M) and hence {xs, 2) 
in Ml are pruned. Figure 5.1(c) shows the final state of propagation. It can 
be seen that the channeled model has increased propagation over Mi or M<2 
alone. 

Model intersection is “additive” in that it merges constraints to form stronger 
constraints, which is the source of increased constraint propagation. For ex-
ample, suppose we have a constraint x > 1 in Mi and another constraint x < 3 
in M), with Dx{x) = {0 , . . . ,4} in both Mi and M2. Constraint propagation 
in Ml would prune the values 0 and 1 from Dx{x). Similarly, constraint prop- • 
agation in M) would prune the values 3 and 4 from Dx{x). In the conjuncted 
model Ml fl M:, the pruning information of Mi and M2 is combined and x 
would be automatically assigned the value 2, and this assignment may initiate 
further propagation. 

The benefits of model intersection may not seem to be obvious with ex-
amples using unary constraints because they can be preprocessed by node 
consistency techniques before searching and discarded afterwards. Therefore, 
we give another example with binary constraints. Suppose we have a con-
straint X -h y < 3 in Mi and another constraint x — y > 1 in M2, with 
D{x) — D('y) = {0 , . . . ,4}. Constraint propagation in Mi would prune the 
values 3 and 4 from D{x) and D{y). Similarly, constraint propagation in M2 
would prune the values 0 and 1 from D{x) and the values 3 and 4 from D(y). 
In the conjuncted model M1 n M2, these pruning information is combined and, 
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Ml M2 
Xi X2 X3 Yi Y2 Ya 
Q̂ O O 0 0 0 

〇 〇 0 / 0 
〇 Y] 1 〇 ( > 0 

(a) Initial State 
Ml M2 

Xi Xj X3 Yi ¥2 ¥3 
Q̂ O O ^ 0 0 0 

2 o A o - o � o j ‘ o 

(b) Intermediate State 
Ml M2 

Xi X2 X3 Yi Ys Ys 
Q̂ O O 0 0 0 

o � � � 〇 o m 
3 o \ 〇、、"。、、:、…G—c/o 

(c) Final State 

Figure 5.1: Constraint Propagation on Model Channeling between Two Models 
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X would be automatically assigned the value 2. The assignment (j;, 2) would 
cause all j G D{y) with j < 1 be removed because both 2-\-y < 3 and 2 — y> 1 
imply y < I. Hence, D{y) = {0} and y would be automatically assigned the 
value 0, and the assignment (y, 0) may initiate further propagation. This 
example shows that the conjuncted model can prune more than each of the 
individual models can do, and hence model intersection is beneficial to CSP 
solving. 

Assuming exists, we propose three classes of interesting combined mod-
els. 

• z(/, Ml) n M2 and Ml fl i { f - \ M 2 ) 

• Ml S z(/, Ml) and M2 m M2) 

• n M2) M (z( /- \z( / ,Mi) n M2)) and fl Mi) m 
( z ( / , z ( / - i , M 2 ) n M i ) ) 

We note that /—1 always exists for Permutation CSPs. Therefore, we can 
always perform model induction using either Mi or M2. 

5.3 E x p e r i m e n t s 

To verify the feasibility and efficiency of our proposal, we realize and evaluate 
various models of several problems using ILOG Solver 4.4 [18] running on a 
Sun Ultra 5/400 workstation with 256M of memory. These problems include 
the Langford's problem, random Permutation CSPs, Golomb rulers and circu-
lar Golomb rulers problem, and all-interval series problem. All of them can 
be modeled as Permutation CSPs and hence we can make use of model induc-
tion to produce their induced counterparts. We use the I l cTab leCons t r a in t 
function [18] to create constraints from sets of incompatible assignments. The 
channeling constraints are enforced using the I l c l n v e r s e constraint, which is 
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essentially equivalent to the set of constraints Xi = j 分 yj 二 i for all pairs. 
Full arc consistency or generalized arc consistency are enforced in constraint 
propagation. Variables are chosen using the smallest-domain-first variable-
ordering heuristic, which is to choose the variable with the smallest domain 
size at each level of the search tree. Ties are broken with a predefined order on 
the variables. This variable ordering heuristic minimizes the branching factor 
of the search tree, and hence is a good heuristic in many situations. 

In a Permutation CSP, we have to use all-different constraints to ensure that 
a solution forms a permutation. There are efficient generalized arc consistency 
algorithms devoted to the all-different constraints which can potentially remove 
more domain values during search. However, building a set of incompatible 
assignments for the GAG all-different constraints involves all the variables in 
a model. The process is time-consuming and the size of the set is also large. 
Therefore, we simply use a set of disequality constraints between pairwise 
variables in all our models instead of enforcing GAC. 

When intersecting two models, we have the option of merging constraints 
with the same signature into one constraint by taking the union of the con-
straints' sets of incompatible assignments. For example, suppose sig[ci)= 
sig[C2), we can construct a merged constraint c' to replace Ci and c? such that 
sig[c') — sig{ci) = sig[c2) and Tel[c') = rel{ci) U r e / ( C 2 ) . The resultant con-
straint c', having a more global view on the variables in sig[c'), can potentially 
provide more constraint propagation than the individual constraints C\ and C2 
when used separately. For example, suppose D[x) 二 二 {1,2, 3}, and we 
have two constraints Ci : ,r = 2 => y = 2 and co : .r + y. Both Ci and C2 have 
signatures sig(ci) = sig(c2) = {.r, y}. Figure 5.2 shows the configurations of 
both constraints and the merged constraint c'. Although both c! and q are arc 
consistent, the merged constraint is not. We can prune the value 2 from D(x) 
since {.r, 2) has no support in D(y). The opportunity for constraint merg-
ing arises naturally for model intersection since it is quite plausible for two 
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X Y X y X y 
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Figure 5.2: Increased Propagation due to Constraint Merging 

separate models to have different constraints with the same signature. Note 
that constraint merging is applicable, not just in the context of model inter-
section, whenever we have more than one individual constraint with the same 
signature in a CSP. In our experiments, since we explicitly use incompatible 
assignments to build constraints, it is straightforward to merge them together 
using I l c T a b l e C o n s t r a i n t . Hence, we merge constraints whenever possible, 
so that every constraint in a model has a unique signature. 

5.3.1 Langford's Problem 
The Langford's problem, listed as "prob024" in CSPLib [14], can be modeled 
as a Permutation CSP having all the desired properties for experimenting with 
model induction and model channeling. In the Langford's problem, there is a 
m X n-digit sequence which includes the digits 1 to n, with each digit occurs 
m times. There is one digit between any consecutive pair of digit 1, two digits 
between any consecutive pair of digit 2 ,…， n digits between any consecutive 
pair of digit n. The Langford's problem, denoted as (m, n) problem, is to find 
such a sequence (or all sequences). 

Smith [37] suggests two ways to model the the Langford's problem a CSP. 
We use the (3,9) instance to illustrate the two models. In the first model 
Ml, we use 27 variables X = {a^o,... ,3：26}, which we can think of as l i , I2, 
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I3, 2i, 92, and 93. Here, l i represents the first digit 1 in the sequence, 
I2 represents the second digit 1, and so on. The domains of these variables 
are the values that represent the positions of a digit in the sequence. We use 
- 0 , . . . , 26} to represent the domains. Hence, we have the viewpoint Vi = 
(X, Dx), where Dx{x^) = {0，... ,26} for z G {0,... ,26}. 

Using this viewpoint, we can formulate the problem using two types of 
constraints. The all-different constraints ensure that all digits are placed in 
different positions in the sequence, whereas the separation constraints ensure 
that the spacings between consecutive pair of the same digit are correct. 

• all-different constraints: Xi + Xj for all 0 < z < j < 26 

• separation constraints: Xi^i = Xi + 2, = Xi+i + 2 for all 0 < z < 8 

In the second model M), we again use 27 variables Y = {y。，. •. ,"26} to 
represent each position in the sequence. Their domains are {0，…，26}, whose 
elements correspond to the digits l i , I 2 , 1 3 , 2 i , . . . , 92, 93. Hence, we have the 
viewpoint V2 = (X, Dy), where Dy(jji) = {0,…，26} for z G {0,... , 26}. 

Using this viewpoint, we also have two types of constraints as in Vi： 

• all-different constraints: yi + yj for all 0 < z < j < 26 

• separation constraints: yj = 3z = 3z +1 , = 3i 令 yj+2(i+2)= 
3z + 2 for all valid z, j pairs, and yj Hor all 0 < i < 8 and 27 —2(z + 2) < 
^ •<26 

This time, the all-different constraints ensure that all positions are occupied 
by different digits. The constraints y] + i for all 0 < z < 8 and 27 — 2(z + 2) < 
j < 26 ensure that a digit is not the rightmost in the sequence. 

We can write the channeling constraints Cc connecting Vi and V2 as Xi 二 

j 分 yj = i for all == 0 , . . . , 26. These constraints define a total and bijective 
function f where f{{xi^j)) 二�yj,0 for all valid With Mi, M2, and / , 
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we can construct the three proposed classes of combined models. We note 
that, for the special case of binary Permutation CSPs, z(/, Mi) fl M 2 ) = 
Ml fl i [ f _ i , M2) with constraint merging. 

Corollary 5.4 If the followings are true: 

• Ml - ((X, Dx),Cx) and M) = ((F,Z)y),Cy) are Permutation CSPs 
and Ml is binary; 

• The all-different constraints in Mi are ensured by the incompatible as-
signments {{xi^ /c), {xj^ k)} for all Xi, Xj G X and k G Dx{xi) with i • j ; 
and 

• (X, Dx) and (F, Dy) are connected with channeling constraints defining 
fii^id)) =�"j，0 for all 

then 

<(/-i，《/，Ml) n M2) = Ml n 1, M2) with constraint merging. . 

Proof 5.4 With constraint merging, we have 

�/-1, z(/, Ml) n M2) = Ml)) n i { f - \ M 2 ) . 

By Theorem 4.4, i { f - \ i { f , Mi)) = Mi. Hence, 

z(/—i,z(/,Mi)nM2) = z(/-i,z(/,M"i))n�/-i,M2) 
= M i C U i J - i 具) 

• 

Since both Mi and M2 of the Langford's problem are binary Permutation 
CSPs, by Corollary 5.4，we have: 

• z(/,AfirW(/-i，M2)) 二 and 
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• z(/-V(/，Ml) n M2) 二 Ml n z ( / -1 , M2) 
It is thus only necessary to consider 

( M i n z ( r \ M 2 ) ) S ( z ( / , M i ) n M 2 ) 

for the third class of combined models. 
The ways to express the separation constraints are different in the two 

viewpoints. Suppose we want to express the requirement that the first and 
second occurrences of digit 1 are separated by one position in the (2,3) in-
stance. We use one constraint = Xq + 1 in Vi to express this information. 
Figure 5.3 shows this constraint in Mi and its counterpart in z(/, Mi). The 
same information, however, is represented differently in M2. We have to use 
the constraints = = = = = = 
y3 = 0 公 y5 = 1 , ^ 4 ^ 0 , and 0 to represent the requirement. Fig-
ure 5.4 shows these constraints in M2. We can see that although i ( f . Mi) and 
M2 share the same viewpoint, the same information is represented differently. 
Therefore, if we combined these mutually redundant information using model 
intersection, we have more redundant information to help enhance constraint 
propagation and hence speed up the solving process. Figure 5.5 shows the 
constraints in the conjuncted model i ( f . Mi)门 M). 

We evaluate the various models for the (3, 9), (3,10), (3,11), (4, 9), (4,10), 
and (4,11) instances of the Langford's problem, in which only the first two 
instances are satisfiable. Tables 5.1 and 5.2 show our comparison results of 
finding the soluble and insoluble instances respectively. Column 1 gives the 
models. In models with more than one viewpoint, it suffices to search/label 
variables of either viewpoint, although one may choose to search on both. In 
column 2, we give also the search variables. The remaining columns report 
the execution results of the instances. In Table 5.1, we report the results for 
solving only the first solution and solving for all solutions, while in Table 5.2, 
we report the results for proving that the instances have no solutions. Each 
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Ml 
Xq XI X2 X3 X4 X5 

。 C y O 0 0 0 0 

1 o | o 0 0 0 0 
2 o l o 0 0 0 0 
3 o i o 0 0 0 0 
4 c i o 0 0 0 0 
5 (Jh 0000 

i(f,Mi) 
Yo Yi Y2 Ys Y4 Ys . 

2 〇 〇 〇 〇 〇 〇 

3 〇 〇 〇 〇 〇 〇 

4 〇 〇 〇 〇 〇 〇 

= 0 0 0 0 0 0 
Figure 5.3: The Constraint xi = â o + 2 in Mi and its Induced Counterpart in 
z(/, Ml) of the (2,3) Instance 



Chapter 5 Exploiting Redundancy from, Model Induction 49 

5 q / Q \ q / \ q / \ q — 二 i-ff y： 二 1 

Figure 5.4: The Constraints for Correct Separation of l i and I2 in M2 of the 
(2, 3) Instance 

圖 
5 (VcyVyV/V) 二二 

Figure 5.5: The Constraints for Correct Separation of l i and I2 in z(/, Mi)nM2 
of the (2,3) Instance 

\ 
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cell contains both the number of fails and CPU time in sec (in bracket) of an 
execution. A cell labeled with “-” means that execution does not terminate 
within 10 minutes of CPU time. We also highlight in bold the best result of 
each column. 

Each row corresponds to a particular model. We divide the models into 
five groups, the first two of which are used as control in the experiment. The 
first group consists of individual models, while the second group consists of 
combined models constructed using the redundant modeling approach [8]. The 
remaining groups correspond to our three proposed classes of combined models. 

In analyzing the results, attention is sought not just on the CPU time, but 
also on the number of fails. In fact, the latter is more important and accurate 
as a measure of the robustness of a model. Combined models are bigger in size, 
and higher execution overhead is expected. The idea of combining redundant 
models is to spend more time in constraint propagation in the hope that the 
extra effort can result in substantial pruning of the search space. A model 
that gives more pruning has a higher possibility in solving problems that are 
otherwise computationally infeasible when expressed in weaker models. 

The first and fifth groups of models represent the two ends of a spectrum, 
which indicates the amount of model redundancy utilized in the models. The 
single models in the first group use no redundancy, and thus performs the 
worst in terms of the number of fails. Their execution times are not among the 
worst since these models are the smallest in size, incurring the least execution 
overhead in constraint propagation. Note also that model M2 is a poor model. 
Any model involving M2 as a base model is bound to perform poorly, both in 
terms of CPU time and number of fails. In the following, we focus on only 
models using Mi as a base model. 

The second group makes use of only model channeling, which helps Mi and 
M2 share pruning and variable instantiation information. Constraint propaga-
tion also takes place in both viewpoints. Another advantage of this approach 

\ 
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is that constraints in Mi and M � , c o n s t r u c t e d under different viewpoints, are 
complementary to each other. These characteristics are the source of increased 
constraint propagation, and thus drastic cut in the number of fails as compared 
to the models in the first group. 

The third group of models uses only one viewpoint, but model intersection 
combines the constraints from the two models to form stronger constraints, 
thus entailing again more constraint propagation. We note, however, that the 
reduction in the number of fails is not as substantial as the case in the second 
group of models. 

The fourth group of models employs both model induction and model chan-
neling. The models inherit the good characteristics of model channeling, except 
that the constraints in both models are essentially from Mi. These models are 
deprived of the chance to share constraint information from M). Therefore, 
the performance of the fourth group is consistently and slightly worse than 
that of the second group. 

The model in the fifth group enjoys the best of both worlds. Each of 
the sub-models is a conjuncted model, encompassing strengthened constraints 
obtained from model intersection. The conjuncted models are then connected 
via model channeling to take advantage of the sharing of pruning information 
and constraint propagation in different viewpoints. That explains why models 
in this group always give the lowest number of fails in all benchmarks. Their 
timings, although not the fastest, are also respectable compared to the fastest 
time of the respective benchmarks, although these models are the largest in 
size. 

5.3.2 Random Permutation CSPs 
A random (binary) CSP (n, m,p i ,p2) is characterized by four parameters, 
where n is the number of variables, m is the domain size of the variables. 

\ 
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Constraint density pi is the probability that there is a constraint between two 
variables. Constraint tightness p2 is the conditional probability that , given a 
constraint between two variables, a pair of values is inconsistent for the pair 
of variables. 

In a Permutation CSP, the number of variables must be equal to the domain 
size of the variables. Therefore, we have n — m and a random Permutation 
CSP (n,pi’p2) can be characterized by three parameters. It is generated in 
two steps. First, we generate a random CSP ( j i ,n ,pi ,p2) . Second, we artifi-
cially add the incompatible assignments {(x^-, k � , (xj, k)} for all i,j, k pairs with 
i ^ j which represent the all-different constraints of the random CSP. There-
fore, the actual constraint density in a random Permutation CSP is 1, due to 
the all-different constraint, but only a portion, i.e., pi, of them may have in-
compatible assignments other than those of the all-different constraints. Also, 
given a constraint between two variables in a random CSP, we note that the 
expected number of incompatible assignments in the constraint of the random 
Permutation CSP is (n^ — n)p2 + n instead of n^p2 in the random CSP. 

In a Permutation CSP, a second viewpoint always exists when we inter-
change the roles of variables and values. While in the original viewpoint, 
we assign values to variables, in the second viewpoint, we can "assign，，vari-
ables to values. The channeling constraints connecting these two viewpoint 
are the same as those in the Langford's problem, i.e., Xi = j yj = z, or 
f{{xi^j)) — {yj^ i) for all z, j pairs. Hence, we can always construct an induced 
model i [ f , M) using f for a Permutation CSP model M. Since M and i [ f , M) 
are mutually redundant, the channeled model M m z(/, M) is also mutually 
redundant to them. In our experiments, we evaluate the models M, z'(/, M), 

(J 
and M m i [ f , M) for the instances of the random Permutation CSPs. In the 
channeled model, it suffices to label the variables of one model only, or to label 
both of them. Therefore, we also distinguish the different behaviours of the 
channeled model due to different labeling strategies. 

\ 
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Cheeseman et al. [4] note that many NP-complete problems [9] can be 
summarized by at least one "order parameter" and that the hard problems 
occur at a critical value of the parameter. This critical value separates the 
problem instances into two regions. In one region, most problem instances are 
easily soluble, whereas in the other region, most problem instances are easily 
proved insoluble. The transition from one region to another is known as phase 
transition. Smith and Dyer [36] conduct an extensive study on locating the 
phase transition of random CSPs. Given a set of parameters n, m^pi^ a peak 
is observed at a critical value of p2 where the most search efforts are required 
for finding one solution or proving no solutions exist. According to Smith and 
Dyer, the expected number of solutions of a random CSP is given by 

E{N) = mil — p2)+—1)仍 

Since we are considering random Permutation CSPs, we must modify this 
formula to suit our cases. In a Permutation CSP, we have m = n. Besides, 
we artificially add the incompatible assignments of the all-different constraints 
to a random CSP to form a random Permutation CSP. The search space is 
therefore reduced from m^ to nl. Hence, the expected number of solutions of 
a random Permutation CSP is given by 

丑(AO = n ! ( l — - 1 ) 仍 

Smith and Dyer suggest that setting the expected number of solutions to 
be 1 would be a good predictor for locating the peak. Similarly in our case, 
we obtain the predictor 

P2 = 1 — (5.1) 

to locate the peak at phase transition. 
In the following, we fix pi = 0.6, 0.8,1.0 and vary p2 in steps of 0.01 up 

to 1.0. We choose n = 15 for finding all solutions and n = 20 for finding 

\ 
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n Pi P2 
15 0.6 0.358 
15 0.8 0.283 
15 1.0 0.233 
20 0.6 0.310 
20 0.8 0.243 
20 1.0 0.200 

Table 5.3: Peak Predictors of some Series of Random Permutation CSPs 

first solution or proving no solutions exist. The series of experiments with a 
particular n and pi is referred by Table 5.3 shows the corresponding 
peak predictors according to formula (5.1). We generate ten instances for each 
set of parameters and use the median values in plotting the number of fails 
and CPU time in the graphs. 

The top graphs of Figures 5.6, 5.7, and 5.8 show the amount of search in 
terms of number of fails for finding first solution or proving no solutions exist 
for the series (20,1), (20, 0.8), and (20,0.6) at different p2 levels respectively. 
There are three curves for the channeled model, corresponding to searching 
the variables in the original model, in the induced model, and in both models 
respectively. The bottom graphs of the figures show the ratio of the number of 
fails of the induced model or the channeled model to that of the original model. 
A model with ratio higher (lower) than 1 means it needs more (less) search 
than the original model does. Hence, a lower ratio is better. The vertical 
lines in the graphs indicate the region in which phase transition occurs, i.e., 
some of the instances are soluble but some are insoluble. Smith [36] referred 
such region as the mushy region. Note in the graphs for the series (20,1) that 
there is only one value of p � i n the mushy region. Therefore, there is only one 
vertical line in the graphs for this series. 

The peaks for pi = 1, 0.8, 0.6 are observed at p2 = 0.2, 0.25, 0.32 respec-
tively. They match with their corresponding predictors. Before the mushy 

\ 
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for the Series (20, 0.6), and the Ratios of Running Time to the Single Models 
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region, the amount of search increases with p2. After the mushy region, the 
instances become easier to be proved insoluble and the amount of search drops 
with increasing p2. At high constraint tightness, constraint propagation alone 
is enough to prove the instances insoluble. Therefore, the number of fails is 
equal to 1. 

Q 

The channeled models M m z( / , M) generally require much less search 
than the single models M alone, and searching the variables of both models 
performs better than searching variables in one model only. Therefore, we only 
focus in the channeled model on searching variables in both models. 

The ratios generally increase with p2 regardless of the phase transitions 
and gradually converge to one because at high p2 values, both the original 
models and channeled models need no search to prove insolubility and the 
number of fails (and hence the ratio) is one at that case. Note that the ratios 
of Pi = 1 is generally lower than those of the other pi values. Also, at the 
peak levels, the ratio decreases with increasing pi. For example, the ratios 
of (20,1,0.2), (20,0.8,0.25), and (20, 0.6, 0.32) are 0.33, 0.49，and 0.61 respec-
tively. These indicate that model channeling is useful to CSPs whose variables 
are highly connected by constraints and can have substantial pruning of the 
search spaces. 

In the figures, we can also see that the induced models alone perform no 
better than the original model. Only at pi = 1，the induced models are 
competitive. At lower pi values, they perform much worse than the original 
models. This is because when pi is low in M, the induced model i [ f , M) would 
have a low p2 value, which means that a value in a variable domain can less 
likely be pruned. In particular, even at high p2 levels, we still need a certain 
amount of search to prove the instances to be insoluble. Figure 5.12 shows an 
example of such situation. Note that we skip the incompatible assignments 
of the all-different constraints for clarity. The original model is on the left of 
Figure 5.12. The constraint between xi and X2 can never be satisfied because 
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X i X2 X3 Y i Y2 Y3 

2 o | o o — c y ^ 
^ c m 〇 0 0 0 

Figure 5.12: An Insoluble CSP and its Induced Model 

it contains all the possible incompatible assignments. Besides, we still have 
the constraints X2 + x-̂  and Xi + x-̂  in the model. Before starting the search, 
constraint propagation alone will prune all the values in the domains of Xi and 
X2. Hence, insolubility is proved without search. 

The model on the right of the Figure 5.12 is the induced model after model 
induction. Clearly, the induced model is arc consistent because the values 1 
and 2 of a variable are always compatible with the value 3 in another variable. 
Hence, constraint propagation will not prune any values from the domains 
and we need to perform searching in order to prove the induced model to be 
insoluble. Only when = 1，we can have a chance of detecting arc inconsis-
tencies in the induced model at the beginning of search. Hence, the induced 
models for pi = 0.6 and 0.8 alone are not efficient to solve, but they are useful 
in combining with other models through intersection or channeling to obtain 
extra redundant information. 

Figures 5.9, 5.10, and 5.11 show the timing results of the series (20,1)， 

(20, 0.8), and (20, 0.6) respectively. Despite the drastic pruning of the search 
spaces, model channeling does not always lead to a faster running time than 
using a single model because the channeled models are larger in size and con-
straint propagation takes longer execution time at each node of the search tree. 
The amount of timing overhead depends on different pi and p2 levels and the 
ratios converge to two on high p2 values. However, in our experiments, there 
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are cases that an instance requires much longer t ime to run than its corre-
sponding channeled model, and the ratio is more than an order of magnitude. 
This shows that while a channeled model in general may not be as efficient as a 
single model, there is potential that in particular circumstances, the channeled 
model may be substantially more efficient than the single model and can tackle 
an otherwise computationally infeasible problem. Finally, since the induced 
models alone for pi < I requires more search than the original models, they 
have a comparatively longer running time, especially at high p2 values. 

Figures 5.13, 5.14, and 5.15 show the number of fails of different models for 
finding all solutions for the series (15,1), (15，0.8), and (15,0.6) respectively. 
We also show the ratio of the amount of search of the induced models or 
channeled models to that of the corresponding original models in the figures. 
Contrast to the case of finding one solution or proving no solutions exist, where 
a peak is found during phase transition, the number of fails decreases smoothly 
as p2 increases in the case of finding all solutions. Therefore, phase transition 
is interesting only when only one solution of the problems is required. The 
peak predictors for these series also lie between their corresponding mushy 
regions, showing the accuracy of formula (5.1). The pattern of the curves of 
the ratios is similar to that of the series (20,1), (20, 0.8), and (20, 0.6), i.e., the 
ratio increases with p2 and decreases with increasing pi. The timing results in 
Figures 5.16, 5.17, and 5.18 are also similar to those for finding one solution 
or proving no solutions exist in Figures 5.9, 5.10, and 5.11. This again shows 
that a channeled model may not be most competitive in general, but it has 
the potential of having a substantial pruning of the search space and drastic 
cut of running time in some circumstances. 
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Ji、、丨乂厂 
1.4 - , .. / / -A A ！： 

推 . . . . . . 

1.2 _ . . � � � � � / / _ 
l\ 

1 I I LL I I I I I I 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P2 

Figure 5.10: Median Running Time to Find One Solution or Prove Insolubility 
for the Series (20, 0.8), and the Ratios of Running Time to the Single Models 



Chapter 5 Exploiting Redundancy from Model Induction 71 

10000 1 rn 1 1 1 1 1 _ M 
Co . 导、 M X i{fy M), search X 

K search Y • search X uy 
“ 

-

• 

- -

. 
\ • 
\ � - � � -���� • 

V \ ••-.. � - � � 
. X：：、:、、、、、、--、、 -

^ — � � � . 

0.1 - — ^^^^ ^ ^ “ ^ 

0.01 1 L̂  ‘ 1 ‘ ‘ ‘ 
0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 

V2 
7 1 I 1 1 1 1 1 

C e 《八 M X /, M), search X search Y 

：：jm/f̂ ji 
I - J \l -

3- r l . A /.‘..， -/ •‘ : • a/ ：••,/ ..... •‘ • ； A .. . ....... 
2 - 7 • ••丨 … 一 … 、 ， • l,;---..-/�:./V:K：;̂ ^广、.A/�样： 

r . ••, ... ••.;• Z ���.�,,'.... ’ • . . . � . 

f • - - - - , - � " 

1 1 I I I I I I 
0 . 2 0 . 3 0 . 4 0 . 5 0 .6 0 . 7 0 . 8 0 . 9 1 P2 

Figure 5.IS: Median Running Time to Find One Solution or Prove Insolubility 
for the Series (15, 0.6), and the Ratios of Running Time to the Single Models 

\ 



Chapter 5 Exploiting Redundancy f r o m , Model Induction 72 

5.3.3 Golomb Rulers 
A Golomb ruler, listed as "probOOG" in CSPLib [14], may be defined as a set 
of m integers 0 = ai < . . . < a ^ such that the m(m — l ) / 2 differences aj — ai 
for all 1 < z < j < m are all different. Such a ruler is said to have m marks 
and is of length a^ . The objective is to find optimal (minimal length) rulers, 
but we can also specify the problem as to obtain a ruler with a given bound 
on the length. 

The Golomb ruler problem can be modeled using m variables X = { x i , . . . , Xm}^ 
representing the marks of the ruler. The domains are Dx{xi) = {0,...，/} for 
i G {1 , . . . , m}, representing the values of the ruler, and I is the upper bound 
on the length. We note that I > m — 1 since the number of values of the ruler 
must be greater than or equal to the number of marks. Using the viewpoint 
(X, Dx), we can build a model M with the following constraints: 

• Monotonicity constraints: â i = 0 and Xi < Xi^i for all 1 < z < m 

• Distinct differences constraints: Xj — xi • xi — Xk for all valid i < j,k < I 
We can have another viewpoint (y, Dy) modeling the Golomb rulers prob-

lem. Consider using I + 1 variables Y = {yo, . . . , yi} representing the values 
of the ruler. The domains of these variables contain the marks of the ruler, 
i.e., 1,…,777.. However, since / > m — 1, there can be some values of the ruler 
not used by any mark of the ruler. Therefore, we have to introduce artificial 
marks m + 1，…，/ + 1 so that every value of the ruler can be assigned marks. 
Hence, we have the domain Dyijji) = { 1 , … , / + 1} for i G { 0 , … , / } . 

A problem of the viewpoint (V, Dy) is that we cannot express the con-
straints of the problem easily. For example, to express the information —以2 + 
fi4 — (73, we have to write (y, = 2 A yj = 3 ) � y2j-i + 4 for all valid z, j pairs. 
Handcrafting a model using this viewpoint is cumbersome and results in a 
large amount of weak constraints. Therefore, we shall use this viewpoint for 
model induction only but not for handcrafting a model. 
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We need two types of channeling constraints to connect the viewpoints 
(X, Dx) and (F, Dy)- The first type is the constraints Xi = j ^ y- = i 
for i G { 1 , . . . , m } and j G { 0 , . . . , /}. The second type is the constraints 
\/x e X • [x i] ^ yi > m foT i e ... , /} for handling the artificial marks. 
The second type of channeling constraints clearly do not define a total and 
injective function. Therefore, we have to modify the original model and in-
troduce artificial variables x ^ + i , . . . , xi^i to the viewpoint (X, Dx) in order 
to be able to apply model induction on them. These variables have the same 
domain as the original variables, and they should hold values corresponding to 
the unused values of the ruler. Hence, they must be constrained to be differ-
ent from the original variables. Now, we have a modified viewpoint (Xp, Dxp) 
with Xp — { x i , … ， a n d Dxp{xi) = { 0 , . . . , /} for all i G { 1 , . . . , I + !}• 
Besides, we assign an arbitrary order to the artificial variables to maintain a 
one-one correspondence between the solutions of the original model and the 
modified model, For example, when n = 4 and / = 6, we introduce artificial 
variables x^, Xq, X7. Since a solution of a Golomb ruler consists of the assign-
ments of variables a^i,.. . , X4 only, we impose the arbitrary order x^ < Xq < x j 
for them so that a solution of the problem corresponds to an unique ordering 
of the artificial variables. Consider the Golomb ruler 0 ,2 ,5 ,6 . The artificial 
variables .T5, xq^ xj should therefore be assigned 1,3,4 respectively. If we do 
not apply such an order, any permutations of 1, 3,4 can be assigned to the ar-
tificial variables to form many solutions which are essentially the same. Below 
are the two new types of constraints in the modified model Mp constraining 
the artificial variables: 

• Xi + Xj for z G {1,. . . , m} and j G {m + 1，…，/ + 1:-

• Xi < for i G {m + 1 , . . . , /} 

By introducing these artificial variables and the corresponding constraints, 
Mp is now a Permutation CSP. The second type of channeling constraints is 
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not needed. Since we now have a total and injective function defining the 
channeling constraints connecting {Xp.Dxp) and {Y,Dy), the induced model 
z(/, Mp) can be constructed. 

When using Mp to solve the Golomb rulers problem, the artificial variables 
are not needed as the search variables. We only need to search the original 
variables X to obtain a solution of the problem. However, we still need to 
search all the variables Y in the induced model i [ f , Mp) to obtain a solution. 

Table 5.4 shows the comparison results using (m, I) = (4，6), (5,11), (6,17), 
and (7,25). The models Mp and M have the same number of fails in all 
cases, but the execution time for Mp is slightly longer than that of M because 
there are more variables and constraints in the former models. The channeled 
models, however, contradict with our conventional wisdom that they should 
be more efficient in terms of the number of fails, and also behave the same as 
their corresponding single models in all cases. We cannot come out with a clear 
explanation of the phenomenon, but this may be due to the use of only part 
of the variables as search variables in the viewpoint (Xp, Dxp)- The induced 
models cannot have extra constraint propagation due to assignments of the 
variables in X during the search, and exist solely as overhead in the channeled 
models. Since the amount of search is not reduced, and the channeled models 
are larger in size, the execution time for them is longer than that of their 
corresponding single models. 

5.3.4 Circular Golomb Rulers 
The circular Golomb rulers problem (or modular Golomb rulers problem) is a 
variant of the original Golomb rulers problem. A circular Golomb ruler with m 
marks mod k is a. set of m integers 0 = ai < . . . < a^n such that the m(m — 1) 
differences a! — cij for all i + j are all different mod k. It can be thought of 
as a Golomb ruler with the marks placed on a circle. Note that there are two 

\ 



9 

^ 
Se

arc
h 

Fir
st 

So
lut

ion
 

Mo
del

s 
Va

ria
ble

s 
(4,

6) 
(5,

11
) 

(6,
17

) 
(7，

25)
 

t:̂ 
M 

X 
1 
(0

.0
1)

 
5 
(0

.1
2)

 
2
1 

(
1
.
4
2
)
 

1
0
7 

(
1
5
.
4
2
)
 

t
. 

9
 

MP
 

X 
1 

(
0

.
0

1
) 

5
 

(
0

.1
7

) 
2

1
 

(
1

.5
9

) 
1

0
7
 

(
1

6
.5

7
) 

| 

B 
i[f,

Mp
) 

Y 
2 (

0.0
3) 

167
 (1

.11
) 

248
60 

(59
4.4

9) 
-

|.
 

X 
1
 

(
0

.0
3

) 
5
 

(
0

.4
1

) 
2

1
 

(
3

.8
2

) 
1

0
7
 

(
3

7
.4

7
) 

| 

§ 
Mp

 為
 i(f

,M
p) 

Y 
1
 

(
0

.0
3

) 
5
 

(
0

.4
) 

2
1
 

(
3

.9
1

) 
1

0
7
 

(
3

8
.0

2
) 

| 

M
p 

M 
z
(
/
,
M
p
)
 

X
U
F 

1 
(0
.0
4)
 

5 
(0
.4
)
 

2
1 

(3
.7
9)
 

1
0
7 

(3
6.
88
)
 

_ 

Orq
 

• 
^ 

Se
arc

h 
Al

l S
olu

tio
ns 

^ 
Mo

del
s 

Va
ria

ble
s 

(4,
6) 

(5,
11

) 
(6,

17
) 

(7,
25

) 
I：

 
9 

M 
X 

5 
(0
.0
1)

 
4
4 

(
0
.
1
8
)
 

2
8
3 

(
3
.
8
3
)
 

2
3
7
1 

(
1
3
2
.
9
8
) 

^ 
Mp

 
X 

5 (
0.0

1) 
44

 (0
.26

) 
28

3 (
4.8

7) 
23

71
 (

15
0.8

7) 
^ 

Y 
91 

(0.
16)

 
155

68 
(12

5.0
8) 

- 
- 

| 
昏

 
Mp

 M
 l(

J,M
p^)

 
X 

5
 (
0.
03
) 

4
4
 
(0
.7
9)

 
2
8
3
 
(1
5.
55
) 

2
3
7
1
 
(
3
9
6
.
2
1
) 

二
 

^ 
Mp

 M
 z

(/,
 M

p)
 

y 
5 

(0.
03

) 
44

 (
0.8

4)
 

28
3 

(16
.03

) 
23

71
 (4

01
.02

) 
艮

 
M

^m
 i(

J, 
Mp

) 
XU

Y 
5

 (0
.04

) 
44

 (0
.77

) 
28

3
 (1

5.4
9) 

23
71

 (3
95

.13
) 

�
 

3 

ox 



Chapter 5 Exploiting Redundancy f r o m , Model Induction 76 

differences between two marks i and j. One is the difference cii — cij mod k 
and the other is a j — ai mod k. They are equal to the distances from one 
mark to another along the two directions on the circle. Hence, the sum of the 
differences is equal to the circumference of the circle. 

There are several good constructions known for circular Golomb rulers. 
Singer [35] shows for every prime power (power of a prime number) p there 
exists a modular Golomb ruler with p-\-1 marks mod p^ ^ p -{-I. These rulers 
are known as perfect difference sets, i.e., the m(m — 1) differences ranges from 
1 to m{m — 1) inclusive. We are interested in tackling circular Golomb rulers 
with m marks mod k where = (m — 1)2 + (m — 1) + 1 = m^ — m + 1 because 
they can be modeled as Permutation CSPs also. Hence, when m — 1 is a prime 
power, there must be solutions to the problem. 

We model the problem in a different way as the original Golomb rulers 
problem. Instead of using variables to represent the marks, we use the variables 
Z = {zij\i^j G {1 , . . . , m} t\i • to represent the difference aj — a‘ mod k 
of the marks. The domains of the variables Dz{zij) = { 1 , . . . , m ( m — 1)} for 
all represent the values that the differences can take. 

By using the viewpoint (Z, Dz) , we can construct a model M using four 
types of constraints. The reflexive constraints enforce the modulo relationship 
between Zij and Zji for i < j. The transitive constraints define the intermediate 
roles of the variables Zij for 1 < z < j < m between zu and zij . The all-
different constraints ensure that the differences among the marks in the ruler 
are all distinct. The symmetry breaking constraints remove symmetries due to 
rotation and reflection of the circle. Rotation is removed by arbitrarily setting 
a2 — 1 and hence zu = 1, while reflection is removed by imposing an order 
between Z23 and Zmi- The constraints can be summarized as follows: 

• Reflexive constraints: Zij + Zji = k for 1 < i < j < m 

• Transitive constraints: zu + Zij = Zij for 1 < i < j < m 
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• All-different constraints: Zij + Zki for G { 1 , . . . , m } and i + 

• Symmetry breaking constraints :i2 二 1 and :23 < Zmi 

Again, not all variables in Z have to be search variables. Since the variables 
Zs = {2:1,2,.. • , zi^rn} define all the other variables in the viewpoint, we only 
need to search these variables to obtain solutions of the problem. 

Since the previous model is a Permutat ion CSP, we can always have an-
other viewpoint with interchanging roles of variables and values. We can 
use variables V 二 , ^m(m-i)} to represent the values of the differ-
ences of the marks. The domains of these variables Dv(vi) = {('“ j G 
{ 1 , . . . , rri}八 i ^ j} represent the pair of different marks of the ruler corre-
sponcling to the distance from mark i to j. The viewpoints (Z, Dz) and {V, Dy) 
can he coiiiiectecl using the channeling constraints Zij 二 k 分 Vk = (i, j) or 
/(〈：…人：〉)=î kAhj)) for all G { 1 , . . . ,m},/c G { 1 , . . . , m ( m — 1)} and 
I + J. 

Since 4 and 0 are prime power (2 x 2 = 4) and prime respectively, there are 
circular (loloinb rulers for m = 5 and m = 6. Table 5.5 shows the comparison 
results for finding first solution and all solutions of these circular Golomb rulers. 
\V(�choose tlu\sc rdativcly small instances because the memory rcciuirenieiii 
for holding t h ( � i 11 d need inoclol is large. There arc 197 and -I'lG const rain is in 
t lu�original nuKl(�ls rrspectivrlv, \\'hil(�t here a re 1319 ami .1.52-1 ronst raiiit s in 
t heir c d i t c s p o n d i n g i i u l u c c M l inodrls. This in(�aiis morlrl iiifluction (ransforms 
tlu�orijj,inal nii)(l(�ls to th(� induced models using more but wrakcr const raiiils, 
and thus incurs a largr ()\(Th(�a(l to t acklr t lie prol^lcm. Hence. w(�liav(> to 
uso aiioth(�r Sun l itra 5/ l()() workstation wit li o 12M mrmory to obt ain t he 
(WpcriiiUMital results. 

The iH^sulls obtained ar(�similar to t ho Langforrrs proUrm. 'I he rlianiiclod 
niociels arc always more rfiirient than t ho single mo<irls in t rrms of t lie rniin hrT 
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First Solution All Solutions 
Search m = 5, m = 6, m 二 5, m = 6, 

Models Variables k 二 21 k = 31 k = 21 k = 31 
M ^ 12 ( 1 . 1 ) 5 ( 1 0 . 5 5 ) 2 3 ( 1 . 2 9 ) 1 1 5 (18.7) 

K 綱 Y ： ： ： -

M M i(J, M) Zs 11 (4.7) 3 (26.18) 19 (6.37) 70 (95.87) 
M M z(/, M) y 10 (5.63) 3 (26.27) 13 (6.93) 101 (164.21) 
M M z(/, M) ZsUV 10 (5.52) 3 (25.82) 13 (6.76) 101 (159.05) 

Table 5.5: Comparison Results Using the Circular Golomb rulers problem 

of fails. However, since the memory overhead of the channeled models is large, 
the best timing always belongs to the original single models. The induced 
model and the channeled model for m = 7, although unsatisfiable, require 
so much memory that we fail to obtain experimental results for them within 
reasonable time. 

5.3.5 All-Interval Series Problem 
The all-interval series problem, listed as "prob007" in CSPLib [14], is another 
integer sequence problem that can be modeled as a Permutation CSP. The goal 
is to find a permutation of 0，...，n — 1 such that the absolute differences of 
any consecutive pair of numbers are all distinct. Simonis and Beldiceanu [34 
note that a first solution can be found without search using global constraints 
with the regular sequence: 

0, n — 1,1, n — 2, 2，n — 3 , . . . 

Therefore, our interest remains in finding all solutions to the problem. 
To model the problem, we use the variables X = {xq^ . . . , Xn-i] to repre-

sent the positions in the sequence. The domains of the variables are the values 
that occur in the sequence. Hence, we have the viewpoint (̂ X, Dx) , where 
D x { x i ) 二 { 0 , . . . , 72 — 1 } f o r z G { 0 , . . . , n — 1 } . 
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Using this viewpoint, we can formulate the problem into a model M using 
two types of constraints. The all-different constraints ensure that all positions 
are occupied by different numbers. The difference constraints ensure that the 
differences between any pair of consecutive numbers are all different. 

• all-different constraints: Xi + Xj for all 0 < z < j < n 

• difference constraints: \xi — Xi^i \ + \xj — Xj^i \ for all 0 < z < j < n — 2 

The reverse of any solution sequence is also a solution of the problem. We 
can remove this symmetry by imposing a third type of symmetry breaking 
constraint Xq < Xn-i to obtain the asymmetric model Mas. 

Since M and Mas are Permutation CSPs, we can again interchange the roles 
of the variables and values to obtain another viewpoint of the problem. We 
use the variables Y = {y。，...，Vn-i] to represent the numbers in the sequence. 
The domains of these variables are the position of the numbers in the sequence. 
Therefore, we have another viewpoint (F, Dy), where Dy (m) = { 0 , . . . , n — 1} 
for z G { 0 , . . . , n — 1}. 

The channeling constraints connecting (X, Dx) and (F, Dy) are Xi = j 分 

yj = z, or f{{xij)) = for i j G { 0 , . . .， 1 } . With M and Mas, we 
can construct the induced models i(J, M) and i [ f , Mas), and channeled models 

C Q 
M M z(/, M) and Mas t>5 Mas). Table 5.6 shows the comparison results for 
finding all solutions of the all-interval series problem of size n — 5 , . . . ,9. 

In this problem, model channeling is not too successful in reducing the 
amount of search. The reduction in number of fails is only 0% to 5%, but the 
time required for the channeled models is about double of that for the single 
models. This is because the size of the channeled models is about twice of 
that of the single models. This phenomenon is related to the difficulty of the 
problem. Table 5.7 shows the number of solutions of different problem sizes. 
We can see that there are numerous solutions to an instance in a relatively 
small search space. That makes the failure of the search occur mainly in 
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n With Symmetries Without Symmetries 
"5 8 4 

6 24 12 
7 32 16 
8 40 20 
9 120 60 

Table 5.7: Number of Solutions of Different Instances of the All-interval Series 
Problem 

the bot tom part of the search tree. Hence, we can hardly obtain any earlier 
failures even when model channeling allows more constraint propagation. We 
conjecture that model channeling is beneficial to problems in which solutions 
are rare or not evenly distributed in the search space, and a lot of search effort 
is required to obtain a solution. 

Symmetry breaking is more successful in reducing the amount of search, 
and the Mas-based models require the shortest time in all cases. Note that the 
amount of search reduction of the channeled models with symmetry breaking 
is generally higher than that without symmetry breaking. This conforms with 
our conjecture on the difficulty of the problem because the number of solutions 
is reduced by half with symmetry breaking. Earlier failures due to constraint 
propagation of the channeled model can occur more frequently. 

\ 



Chapter 6 

Concluding Remarks 

We conclude the thesis in this chapter by giving our contributions and possible 
directions of future works. 

6 .1 C o n t r i b u t i o n s 

The contribution of our work can be summarized as follows. First, we provide 
formal definitions on viewpoints and models of CSPs, and the notion of model 
redundancy. Second, based on these definitions, we introduce model induction, 
a systematic way of generating alternate model in a different viewpoint from 
an existing model. We give its syntactic construction rule, detailed examples, 
and also examine its properties. It allows an automatic generation of mutually 
redundant models. Third, we propose two operators for combining models, 
namely model intersection and model channeling. Model intersection allows 
combining two models of the same problem in the same viewpoint, while model 
channeling allows combining two models in different viewpoints with the use 
of channeling constraints. The latter generalizes the idea of redundant model-
ing by combining the constraints and defining a relationship between the two 
viewpoints of the constituent models with the use of channeling constraints. 
Fourth, we identify three new forms of redundancy by combining models using 

82 
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model intersection, channeling, and induction. Hence, we can utilize redun-
dant information in enhancing constraint propagation. Our benchmark results, 
especially in the Langford's problem and random Permutat ion CSPs, confirm 
that the proposed combined models are robust and efficient. Fifth, handcraft-
ing CSP model is an unamiable and costly task performed daily by human 
modelers. The t ime for model induction to generate an induced model, say, 
for the Langford's problem, takes about 2 to 17 seconds depending on the 
instances. Therefore, they should find model induction a useful tool. Since 
model redundancy is a relatively new concept, our formal study helps advanc-
ing our understanding of model redundancy, and when redundant information 
can arise and is useful. Our work is also a means to open up new possibilities 
to study, understand, and apply model redundancy in constraint satisfaction. 

6.2 F u t u r e W o r k 

Our work proposes a systematic study of model operators for transforming 
and combining CSP models. Our study arouses interest in this important new 
direction of research. There is plenty of scope for future work. First, It would 
be interesting to refine the definition of model induction. In particular, al-
though our definition of model induction is applicable to general CSPs, our 
empirical results are developed for only Permutation CSPs. It will be inter-
esting to check if the same techniques can be applied/generalized to other not 
necessarily Permutation CSPs to obtain useful redundant information. For ex-
ample, the requirement of a total and injective function defined by channeling 
constraints is quite restrictive. Further study can be conducted, perhaps, to 
refine requirement on the type of channeling constraints that model induction 
can apply. 

Second, Model induction is defined in terms of extensional representation 
of constraints. There is no reason why we have to solve the resultant CSPs 

\ 
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also in the extensional form because propagating an extensional constraint in a 
model is generally less efficient its intensional (symbolic) counterpart in many 
constraint programming systems. It would be worthwhile to study how the 
intensional representation of a constraint can be learned from its extensional 
counterpart. By writing the constraints in an induced model in symbolic forms, 
the induced model and hence the channeled model can be solved in a more 
efficient way. 

Third, Permutation CSPs are an important and interesting class of CSPs. 
In our experiments, we use binary disequality constraints to ensure that the 
variables takes all-different values. It would be interesting to study the effect 
of our three new forms of redundancy using GAC all-different constraints. Be-
sides, Smith [38] and Walsh [39] shows that the channeling constraints alone 
is sufficient to ensure that all variables takes different values in a Permuta-
tion CSP, The pruning behaviour of the channeling constraints is even better 
than that of the set of disequality constraints but worse than that of a GAC 
all-different constraint. It would be worth investigating how the pruning be-
haviour of different channeling constraints affects the efficiency of combined 
models. 

Fourth, we show that for binary Permutation CSPs, applying model induc-
tion twice is idempotent. This is not the case in general for non-binary Per-
mutation CSPs. Consider an incompatible assignment {(xi, 1〉，(̂ 2,1), (2:3, 2) 
This incompatible assignment cannot be transformed upon the first induction, 
because both rci and X2 takes the value 1. Therefore, we "lost" this incompat-
ible assignment upon the second induction. We conjecture that by applying 
model induction twice to a non-binary Permutation CSP, the resultant model 
would become final, i.e., the resultant model would be the same as that by 
applying induction for any even number of times. It would be worthwhile to 
study whether our conjecture is true. 

\ 
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