
Implementation of an FPGA Based Accelerator
for Virtual Private Networks

CHEUNG Yu Hoi Ocean (B. Eng.)

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

July, 2002

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis in a

proposed publication must seek copyright release from the Dean of the Graduate

S c h o o l . ‘

P 0 1 職 观 j h l
�j

Vi-v——正I
繁Ŝ vUBHARY SYSTCj//分

Abstract

Virtual Private Networks (VPN) are becoming increasingly popular network archi-

tectures for corporate networks. They enable corporations to connect Local Area

Networks (LAN) in main and branch offices as if they were in the same network.

As VPNs are built on the Internet infrastructure, the data exchange among different

local area network will be passed through the Internet and thus can be easily eaves-

dropped, masqueraded, etc. Therefore, certain security measures must be used to

deal with these privacy issues.

The Internet Protocol Security (IPSec) by the Internet Engineering Task Force

(IETF) addresses the above mentioned security issues. A project called the Free

Secure Wide Area Network (FreeS/WAN) was developed to provide an open source

IPSec based VPN solution. This application use Triple-DES as default encryption

mode for IPSec. Results show that the bottleneck in FreeS/WAN comes from en-

cryption and decryption of the data.

As shown in this dissertation, the performance of FreeS/WAN with IPSec is 50%

of that without FreeS/WAN. In order to improve performance of encryption, field

programmable gate array (FPGA) based accelerators were built on a reconfigurable

� computing development platform called Pilchard. An implementation of Triple-

DES on Pilchard was built to replace the current Triple-DES software based library

(LibDES) used in FreeS/WAN. To compare performance of Triple-DES with that of

another cipher, a Pilchard based accelerator for the International Data Encryption

Algorithm (IDEA) was developed.

The resulting implementations achieved 120 Mb/sec for Triple-DES in CBC

i

mode and 248 Mb/sec for IDEA in ECB mode. These ciphers were used as a new

cryptographic library for FreeSAVAN. Measurements show that this FPGA-based

FreeSAVAN offers a 30% speedup on Triple-DES CBC mode over the original soft-

ware library.

ii

現場可編程門陣虛擬私有網路的加速器

作者張如海

摘要

虛擬私有網路(VPN)正成為商業機構愈來愈普遍採用的網路結構。商業機構可以利

用虛擬私有網路將在總部和分部的局域網(LAN)連成一體。因為虛擬私有網路架設

在互聯網上，不同的局域網之間需要通過互聯網來進行資料交換。所以必須使用某

些安全措施來處理這些保密性問題。

為解決上述安全問題，由互聯網工程小組(IETF)提出了互聯網安全協定(IPSec) 。

FreeS/WAN 的開發提供了一種在使用互聯網安全協定和開放來源碼的 VPN 應用程

式。這應用程式使用三重數據加密標準(Triple-DES) 作為 IPSec 的主要加密方式。

其結果顯示在 FreeS/WAN 的瓶頸來自於資料的加密和解密 。

在這份學術論文中， FreeS/WAN 的性能表現為沒有 FreeS/WAN 50% 。為了改進加密

的性能，在可重構的發展平臺-Pilch叫上發展了現場可編程門陣 (FPGA) 的加速器。

三重數據加密標準在 Pilchard 上實施以取代在 FreeS/WAN 的三重數據加密標準的軟

體庫(LibDES) 。

三章數據加密標準的加速器在 CBC 方式下性能可達 120 Mb/sec 。而國際數據加密

演算法(IDEA) 的加速器在 ECB 方式下可達 248 Mb/sec 。 這些加速器成為

FreeS/WAN 的一個新的加密庫。測量結果顯示使用 FPGA 加速器的 FreeS/WAN 應

用程式在三重數據加密標準下的性能比原來使用的軟體庫提升 30% 。

.....

Acknowledgments

This thesis would not be possible to completed without help of many people. I

would like to take this opportunity to thank them.

Firstly, I would like to thank my final year project and Master Degree supervisor,

Prof. Leong Heng Wai Philip, for his guidance and encouragement in the past two

years. He show his generosity and gave me numerous ideas for my research work.

I would like to thank Prof. Lee Kin Hong and Prof. Wei Keh Wei Victor for

suggestions and comments for improving this work.

I would like to specially thank Mr. K.H. Tsoi and Mr. M.P. Leong. They gave

me a lot of advices in completing this thesis.

I would like to thank my colleagues, Mr. C.K. Fung, Mr. C.H. Ho, Mr. Y.M.

Lam, Ms. Ng Anny, Mr. C.W. Ng, Mr. C.W. Sham and Mr. W.C. Wong for their

help in my research and bring me a pleasant working atmosphere.

I would like to thank my family for their endless support. This thesis is dedicated

to my family.

IV

Contents

1 Introduction 1

1.1 Motivation 1

1.2 Aims 2

1.3 Contributions 3

1.4 Thesis Outline 3

2 Virtual Private Network and FreeS/WAN 4

2.1 Introduction 4

2.2 Internet Protocol Security (IPSec) 4

2.3 Secure Virtual Private Network 6

2.4 LibDES 9

2.5 FreeS/WAN 9

2.6 Commercial VPN solutions 9

2.7 Summary 11

3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 12

‘ 3 . 1 Introduction 12

3.2 The Data Encryption Standard Algorithm (DES) 12

3.2.1 The Triple-DES Algorithm (3DES) 14

3.2.2 Previous work on DES and Triple-DES 16

3.3 The IDEA Algorithm 17

3.3.1 Multiplication Modulo 2" + 1 20

V

3.3.2 Previous work on IDEA 21

3.4 Block Cipher Modes of operation 23

3.4.1 Electronic Code Book (ECB) mode 23

3.4.2 Cipher-block Chaining (CBC) mode 25

3.5 Field-Programmable Gate Arrays 27

3.5.1 Xilinx Virtex-E™ FPGA 27

3.6 Pilchard 30

3.6.1 Memory Cache Control Mode 31

3.7 Electronic Design Automation Tools 32

3.8 Summary 33

4 Implementation 26

4.1 Introduction 36

4.1.1 Hardware Platform 36

4.1.2 Reconfigurable Hardware Computing Environment 36

4.1.3 Pilchard Software 38

4.2 DES in ECB mode 39

4.2.1 Hardware 39

4.2.2 Software Interface 40

4.3 DES in CBC mode 42

4.3.1 Hardware 42

4.3.2 Software Interface 42

4.4 Triple-DES in CBC mode 45

4.4.1 Hardware 45

� 4.4.2 Software Interface 45

4.5 IDEA in ECB mode 48

4.5.1 Multiplication Modulo + 1 48

4.5.2 Hardware 48

4.5.3 Software Interface 50

vi

4.6 Triple-DES accelerator in LibDES 51

4.7 Triple-DES accelerator in FreeSAVAN 52

4.8 IDEA accelerator in FreeSAVAN 53

4.9 Summary 54

5 Results 然

5.1 Introduction 55

5.2 Benchmarking environment 55

5.3 Performance of Triple-DES and IDEA accelerator 56

5.3.1 Performance of Triple-DES core 55

5.3.2 Performance of IDEA core 58

5.4 Benchmark of FreeSAVAN 59

5.4.1 Triple-DES 59

5.4.2 IDEA 60

5.5 Summary 6i

6 Conclusion 62

6.1 Future development 63

Bibliography 65

vii

List of Figures

2.1 Virtual Private Network g

3.1 Data Encryption Standard algorithm 15

3.2 Triple-DES algorithm 16

3.3 Block diagram of the IDEA algorithm 18

3.4 Electronic Codebook mode 24

3.5 Cipher Block Chaining mode 26

3.6 Architecture of FPGAs 28

3.7 Virtex-E CLB (2-Slice) 29

3.8 Dual-Port Block SelectRAM 30

3.9 Picture of Pilchard 32

3.10 Development cycles for FPGA design using VHDL 34

4.1 Block diagram of the Pilchard board 37

4.2 System architecture of DES accelerator in ECB mode 40

4.3 System architecture of DES accelerator in CBC mode 44

4.4 System architecture of Triple-DES accelerator 46

'4.5 Architecture of the IDEA core 49

5.1 Architecture of the DES core with different number of combina-

tional rounds 57

5.2 Performance of Triple-DES accelerator with different encryption size 58

viii

List of Tables

2.1 Comparison of VPN solutions using software encryption 10

2.2 Comparison of VPN solutions using hardware encryption 10

3.1 Initial bit permutation (IP) 14

3.2 Inverse of initial bit permutation (/ p - i) 14

3.3 Comparison of DES implementations 口

3.4 IDEA decryption subkeys Z f derived from encryption subkeys

Z r � .- Z i and Z � i denote additive inverse modulo and multi-

plicative inverse + 1 of Z, respectively 20

3-5 Comparison of IDEA implementations 22

5.1 Configuration of machine for benchmark 55

5.2 Area and Speed Tradeoff among DES core with different rounds . . 56

5.3 Benchmark of ttcp with/without FreeS/WAN 59

5.4 Benchmark of ttcp with FreeS/WAN using Pilchard based accelerator 60

ix

Chapter 1

Introduction

1.1 Motivation

In a private network of a business, information and resource are shared. Information

flow is very important nowadays, for example, the operational costs of a business

can be cut down if a better supply chain model is employed. The business can

improve its services by sharing information internally and with its business partners.

Also due to the globalization of business environments, corporations have offices

all over the world. The different geographical locations make connections among

different private networks difficult.

The Virtual Private Network is an architecture to realize the connections among

different private networks over a public network. For example, the Internet can be

used as a convenient and low cost channel for a virtual private network. Internet is

a public channel and is not secure. Cryptographic algorithms can provide a way to

secure channel between private networks over Internet.

Field-Programmable Gate Arrays (FPGAs) are hardware devices which are re­

configurable, i.e. programming an FPGA can change its functionally. Implementa­

tions of cryptographic hardware using FPGAs offer higher performance than soft­

ware implementations. Software implementations of cryptographic algorithms are

sequential in nature. However, in cryptographic hardware, algorithms can execute

in parallel, offering a more efficient implementation. There are several advantages

1

Chapter 1 Introduction 2

to use FPGAs as the choice of hardware device for a virtual private network accel-

erator:

• most network applications offer various encryption standards as options. With

FPGAs, it is possible to reconfigure the chip for different encryption stan-

dards.

• FPGAS offer lower costs for small volumes, shorter development times and

faster time to market over application specific integrated circuit (ASIC) tech-

nology.

• the technology and capacity of FPGAs continue to improve over previous

years. The performance of FPGA accelerator can be improved once a faster

device is available without any further engineering.

1.2 Aims

The main aim of this work was to develop an FPGA based accelerator for Virtual

Private Networks. The following features were desired.

• develop a hardware accelerator which is integrated into a real network appli-

cation.

• design various cryptographic hardware accelerators to widen the choice of

algorithm.

• devise a hardware interface which is fully compatible with an existing soft-

ware cryptographic library for usage in other applications.

• provide a high performance hardware accelerator for Triple Data Encryption

Standard m Cipher-Block Chaining mode and the International Data Encryp-

tion Algorithm (IDEA) in Electronic Code Book (ECB) mode by using a new

reconfigurable hardware environment - Pilchard.

Chapter 1 Introduction 3

1.3 Contributions

This thesis presents a FPGA based cryptographic accelerator for virtual private net-

work. The work presented in this thesis has the following features that distinguishes

it over all previous designs:

• a study of tradeoffs in parallel and serial implementations of the International

Data Encryption Algorithm was made [CTLLOl]. In this work, the bit-serial

implementation of IDEA was implemented by M.P. Leong [LCTLOO]. In the

bit-parallel implementation of IDEA, the pipelined IDEA core was my work

and the control section was implemented by K.H. Tsoi.

• improvements to the device driver for the the Pilchard reconfigurable hard-

ware environment were made in order to improve the bandwidth between the

PC and the FPGA.

• a high performance cryptographic accelerator was integrated in a real VPN

application and its performance measured. Although hardware based crypto-

graphic accelerators (summized in Section 2.6) exist in commercial products,

� to the best of my knowledge, detailed reports of their design and performance

have not been published.

1.4 Thesis Outline

Background information concerning virtual private network are presented in Chap-

ter 2. Chapter 3 provides a description of previous work on the IDEA and DES

algorithms as well as their implementation in hardware. Also the tools and recon-

figurable hardware that were used in this research are introduced. Chapter 5 intro-

duce the architectural details of an FPGA based Virtual Private Network. Chapter

6 contains the results and benchmarks for this research. In Chapter 7’ conclusions

• and further directions for work are given.

Chapter 2

Virtual Private Network and

FreeS/WAN

2.1 Introduction

In this chapter, background knowledge about virtual private networks and a VPN

solution - FreeS/WAN are given. This chapter begins with a brief introduction to

Virtual Private Networks using IPSec. A section discussing the Internet Protocol

Security protocol (IPSec) is included, followed by information about LibDES which

is a popular software cryptographic library. Finally, the details about FreeS/WAN

is given.

2.2 Internet Protocol Security (IPSec)

IP packets are not secure over the Internet. It is trivial to fake the identity of an

� IP address, modify the content of packets, replay packets and intercept packets. In

addition, we cannot guarantee that IP packets received are either coming from the

original source or that the content is the original content.

Therefore, the IPSec protocol [KA98c] was introduced to solve the following

problems:

4

Chapter 2 Virtual Private Network and FreeS/WAN 5

1. Eavesdropping : an adversary eavesdrops on the Internet, capturing data pack-

ets, e.g. credit card numbers, login names and passwords, etc. can be obtained

by eavesdropping. Using the IPSec protocol, data traffic is encrypted so that

it is difficult to obtain useful information by eavesdropping.

2. Masquerading : an adversary fakes his IP address to masquerade as a trusted

host when address-based authentication is used. The IPSec protocol pro-

vides a cryptographic authentication method to protect against masquerading.

With the IPSec Authentication Header Protocol, a receiver can make sure the

source of data is as claimed.

3. Session hijacking : an adversary takes over a connection after the source has

been authenticated. This scenario will not occur with IPSec protocol since the

adversary have no knowledge about the session keys, which is negotiated in

the IPSec Internet Key Exchange protocol, so they cannot encrypt or decrypt

the data packets.

4. Denial-of-service : An adversary sends a huge sequence of connection re-

quests to the target in order to make the target system overflow the buffer

� space. For example, email bombing, TCP SYN flooding, etc. Although this

kind of attack is still possible with the use of IPSec protocol, the adversary

will expose his real IP address due to the fact that all data packets should be

properly authenticated.

The IPSec protocol provides three functionalities using three different protocols:

• • the Authentication Header (AH) protocol

• the Encapsulating Security Payload (ESP) protocol

• the Internet Key Exchange (IKE) protocol

The Authentication Header (AH) protocol [KA98a] can authenticate the source

of data packets, protect the completeness of the data packets and protect against

Chapter 2 Virtual Private Network and FreeS/WAN 6

replay attacks. ESP (Encapsulation Security Payload) protocol [KA98b] shares all

properties that AH has and it can also protect data from unauthorized disclosure

and provide protection against traffic flow analysis. The security provided by IPSec

needs to use shared keys in order to authenticate and encrypt the data streams. The

Internet Key Exchange (IKE) protocol [HC98] is used to dynamically authenticate

parties involved in IPSec, negotiate the encryption method used, and produce shared

keys.

2.3 Secure Virtual Private Network

In this work, the term Virtual Private Network (VPN) [DH99] is use to refer to

the architecture that a private network constructed within a public network infras-

tructure. The connection of this network architecture can be either encrypted or

unencrypted. Also it is possible to implement Virtual Private Networks on other

networks, in this project, the Internet is assumed. IPSec is one of the protocol that

may use in VPN architecture that provide security and privacy by cryptographic al-

gorithms and hash functions. Another term, Secure Virtual Private Network (S VPN)

„ refers to a VPN with IPSec.

The key concept of Virtual Private Network is tunneling. With tunneling, VPNs

provide connection and protocol transparency among different Intranets of same

organization or even different parties. For connection transparency, different parties

are connected together as if they were on the same network. They do not need

to know the mechanism and the details of connections. For protocol transparency,

different parties using different protocol can be connected together as if they were

using the same protocol. This is achieved by encapsulation of data packets at the

end-points of a tunnel with a different protocol.

Although there are many advantages associated with using a VPN over the In-

ternet, the data would be transmitted in plaintext over an insecure channel. The

Intranet of a party is exposed to attacks from Internet which violates the major aim

Chapter 2 Virtual Private Network and FreeS/WAN 7

of VPN to be a private network.

There are two major in common protocols for VPNs.

1. IPSec

2. PPTP

PPTP is the protocol used in Microsoft's VPN product and is proprietary. Thus,

this work will focus on IPSec which will documented by the IETF in RFCs [iet].

Internet Protocol Security (IPSec) is a protocol proposed to solve the concerns

about security and privacy. IPSec provide mechanisms to authenticate different

parties and data packets are protected by encryptions.

To summarize here are some VPN characteristics:

1. The VPN uses the Internet as the underlying public network infrastructure.

2. The VPN uses the IPSec as protocol to ensure privacy at the network layer.

This means encryption is done as per every packet.

3. Private addressing schemes can be used in Intranets and IP address is only

used on communication of end-points of tunnel.

As suggested by most vendors of VPN solutions [vpnc], there are three scenarios

that should be deal with in order to meet the requirements of a business. Three

different types of users should be able to grant access to the VPN of a corporation.

They are remote users, branch offices and business partners.

•1. Remote access network - A remote user at home or on road needs access

to his/her company's resources. The VPN should enable the remote users

to work as if (s)he was at a workstation in the office. Different connections

method�should be provided in order to achieve the remote access into the

network, e.g. dialup, ISDN, mobile IP, etc.

Chapter 2 Virtual Private Network and FreeS/WAN 8

Branch offices
• • • network ��

A i ^ r m c l ^ c e _ Office Q \

riM m^
I dTT VPNServeiĵ � - j

Remote access J
network j

\ ‘ Business paitoers network
\ 仔 ） I n t 一 / A ™ < 1 ® /

Remote user j 晷 ！

x d S e r S
Business partner 广

Figure 2.1: Virtual Private Network

2. Branch offices network - Two or more trusted Intranets, which represent dif-

ferent branch and remote offices of a corporation, are interconnected together

by a VPN. Very often, Intranets are protected by firewalls which can act as

� secure gateway connect to the Internet. Client workstations do not have to

worry about the security between Intranets since this is ensured by the VPN.

3. Business partners network - This is referred to as an Extranet by many VPN

solution vendors. It should be the most recent trend for VPN usage; however,

it is the scenario with least knowledge. Corporations can grant their busi-

• ness partner temporal and limited access to their Intranet. Electronic business

� applications among business partners include online quotations, order fulfill-

ment, etc.

Chapter 2 Virtual Private Network and FreeS/WAN 9

2.4 LibDES

LibDES is a publicity available software library for DES and Triple-DES, written

by Eric Young [lib]. It offers a large variety of highly optimized DES and Triple-

DES functions in different modes. For example, DES in Electronic Codebook Mode

(ECB)，DES in Cipher Block Chaining Mode (CBC), 3DES in ECB mode, 3DES

in CBC mode, etc. LibDES is a common standard library which is used in various

application such as openSSL.

2.5 FreeS/WAN

In this work, the baseline software used for the implementation of the VPN accel-

erator was FreeS/WAN. FreeS/WAN [NapOO, FreOO] stand for Free Secure Wide

Area Network. FreeS/WAN is currently the most complete open source VPN solu-

tion available on Linux. In here, the version of FreeS/WAN used in this project is

1.5. It is currently built for Linux IPv4 network stack and work has commenced to

integrate into the IPv6 network stack.

FreeS/WAN supports both remote access network and branch office network,

,’ however, it does not support business partner networks because the software does

not have any mechanism for temporal and limited access to network.

LibDES is used in FreeS/WAN as the DES and Triple-DES library. In LibDES,

DES and triple-DES in different modes are performed in software. Replacing the

software DES with a hardware based implementation is the main focus of this work.

The version of LibDES used in FreeS/WAN vl.5 is version 4.04.

2.6 Commercial VPN solutions

There are commercial VPN solut i麵 using either software or hardware implemen-

tations for different cryptographic algorithms. Although different solutions may

Chapter 2 Virtual Private Network and FreeS/WAN 10

have different build-in cryptographic algorithm options, Triple-DES is available for

all VPN solutions. Performance of VPN solutions using Triple-DES from different

vendors is compared in Table 2.1 and Table 2.2.

Cisco Systems Inc. has a wide range of VPN solutions with different specifi-

cations. Cisco 3015 uses software encryption method and hence a relatively low

throughput of 4 Mb/sec is obtained. In Cisco 5000 series VPN solutions, different

numbers of encryption processors can be used. For the highest throughput VPN

solution in this series, 760 Mb/sec is achieved by using eight encryption processors.

Intel provides two VPN solutions using software encryption with throughputs of

8 Mb/sec and 20 Mb/sec. They also have a VPN solution using a PCI encryption

processor with a throughput of 85 Mb/sec.

Vendor VPN Solution Maximum throughputs Reference
(Mb/sec)

Cisco Cisco 3015 4 [vpna]
Intel I n t e l 3110 VPN gateway 8 [vpne]
Intel Intel 3105 VPN gateway ~ 20 [vpnd]

Table 2.1: Comparison of VPN solutions using software encryption

Vendor VPN Solution Maximum throughputs Scalability Reference
(Mb/sec)

Cisco "Cisco VPN 5001 45 1 [v ^]
Cisco VPN 5002 190 2 — [vpnb]
Cisco VPN 5008 760 8 _ [vpnb]

Intel Intel 3125 VPN gateway 85 1 ^ ^ ^

� Table 2.2: Comparison of VPN solutions using hardware encryption

Chapter 2 Virtual Private Network and FreeS/WAN 11

2.7 Summary

In this chapter, virtual private networks and the details about FreeSAVAN were dis-

cussed. The Virtual Private Network is an architecture to connect two separate

LANs over a public network. The Internet is the most popular choice as the channel

due to its accessibility and cost. Since the Internet is insecure, IPSec is used to deal

with privacy issues. FreeSAVAN is an open source VPN solution using IPSec on

Linux.

�

Chapter 3

Cryptography and

Field-Programmable Gate Arrays

(FPGAs)

3.1 Introduction

This chapter introduces the basic concepts of cryptography and Field-Programmable

Gate Arrays. Firstly, DES, Triple-DES and IDEA algorithms and previous imple-

“ mentations are introduced. This is followed by description of different block cipher

modes of operation. The architecture of FPGAs is discussed, in particular, informa-

tion on the architecture of Xilinx Virtex-E FPGAs are given. The details concern-

ing the reconfigurable computing environment, Pilchard, is then presented. Finally,

Electronic Design Automation Tools and the FPGAs design flow is detailed.

3.2 The Data Encryption Standard Algorithm (DES)

The Data Encryption Standard (DES) [Nat94, Uni77] algorithm has been a popu-

lar secret key encryption algorithm and is used in many commercial and financial

applications. Also, it was the first commercial cryptographic algorithm with fully

12

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 13

specified implementation details. It is defined by ANSI FIPS46-2. Although in-

troduced in 1976, it has proved resistant to all forms of cryptanalysis. However,

its 56-bit key is not large enough by today's standards. A DES key search engine

called "Deep Crack" could search 88 billion keys per second and this machine solve

RSA laboratories DES-III challenge [RSA99] on January 1999 in 22 hours.

DES is a block cipher as shown in Figure 3.1 which processes 64-bit plaintext

blocks and produces 64-bit ciphertext blocks. The effective portion of the secret

key is 56-bit out of 64-bit since although the key is 64-bit, 8-bits are used as parity

bits.

Encryption of DES proceeds in 16 identical rounds. From the input key, sixteen

48-bit subkey A； are generated, one for each round. Within each round, 8 fixed 6 to

4-bit substitution mappings known as S-Boxes are used.

The plaintext have an initial bit permutation (IP) as shown in Table 3.1 and are

then divided into left Lq and right halves Ro, each 32-bit. Each round takes 32-bit

inputs L,一 1 and Ri一i from previous rounds and produces 32-bit outputs Li and Ri

for 1 < 2 < 16, as follows:

Li = Ri-i

L, = = P{S{E{Ri_,) ® A；))

E is a fixed expansion permutation mapping Ri一丄 from 32-bit to 48-bit. P is an-

other fixed permutation on 32-bits. The equation shows the right half of each round

go through an expansion permutation from 32-bits to 48-bits and is then exclusive-

ored with the subkey of that round. The temporary result is passed through the

� S-Box and forms the new 32-bit product of the right half. For each round, right

half and left half are exchanged. Finally both halves are combined together in the

16th round and permutated by the inverse of the initial bit permutation shown in

Table 3.2 to form the ciphertext. Decryption uses the same key and algorithm, how-

ever, the subkeys in internal rounds are applied in reverse order. For encryption,

the key schedule order is K 仏 , K ^ , . . . , For decryption, the decryption key

Chapter 3 Cryptography and Field-Programmable Gate Arrays {FPGAs) 14

schedule is A'le, /(15, / i � 4 ,. . . , / (i .

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Table 3.1: Initial bit permutation (IP)

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 157 25

Table 3.2: Inverse of initial bit permutation (/尸一 1)

3.2.1 The Triple-DES Algorithm (3DES)

Triple-DES algorithm [Nat99] was introduced to increase the the key size of DES

� and maintaining compatibility with legacy DES software and hardware systems.

For encryption, the plaintext is processed by three cascaded DES cores as shown in

Figure 3.2，the first and the last DES cores are in encryption mode and the middle

one is in decryption mode. If the same key is used for Ki and K2, Triple-DES is

the same as DES with key K3. For decryption of Triple-DES, the modes of three

cascaded DES cores are inverted so that the first and the last DES cores are in

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 15

Plaintext Data Encryption

Standard
\ f

^ \
IP

I ^ i
Lo Ro

r t — — i \
I 1 Round I

1 c ^ d D — I
i b x ^ I
I LI=RO Ri=LoXORf(RoKi) j

L -J" Kj ！

b x i
LjsRi R2=L, XOR f(Ri,K2)

I I

L J

•一::::一::::、、‘
LI6=RI4 Ri5=Li4XORf(Ri4KJ

Ki6

(m I D —
” ”

l _ _ I
\ r

f \

Ciphertext

Figure 3.1: Data Encryption Standard algorithm

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 16

Encryption

Ki K, K3

W ” > f
• DES ~ • DES-1 j ~ • PES j

Plaintext Kg Kj K, Ciphertext

> k

w ” ”

DES-1 ~ • DES ~ • [DES-1 <
^ J V ^ � J

Decryption

Figure 3.2: Triple-DES algorithm

decryption mode and the middle one is in encryption mode. Triple-DES algorithm

increase the key size three times compared to DES, which is from 56-bit to 168-bit.

However, the processing time of Triple-DES increase three times as well.

3.2.2 Previous work on DES and Triple-DES

A software implementation of DES and Triple-DES by Biham in 1997 in ECB mode

achieved 46 Mb/second 22 Mb/sec respectively on an 300 MHz Alpha, which is a

64-bit processor . The most common DES software LibDES [lib] achieves 121.5

Mb/sec for DES ECB mode on an Intel Pentium III 866 MHz machine. LibDES

also achieves 42.9 Mb/sec for Triple-DES CBC mode on the same machine.
�

Hardware implementations offer much higher performance than DES software

implementation. In 1999, Free-DES [fre], a 3656 Mb/sec implementation of DES

algorithm on Xilinx Virtex XCV400-6 with 60 MHz clock rate was reported. A

1280 Mb/sec implementation of IDEA was reported in 1999 [WPR+99] by Wilcox et. al.

The Sandia National Laboratories developed an ASIC implementation of DES [WPR+99]

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 17

which achieves 6700 Mb/sec. The fastest hardware DES hardware implementa-

tion [PatOO] is proposed by Patterson which achieves 10752 Mb/sec. This imple-

mentation fully unrolls and pipeline the DES rounds and operates at a 168 MHz

clock rate. It employs dynamic circuit specialization in an FPGA to achieve high

performance.

Previous high performance implementation of DES in hardware fully maximize

their throughput by unrolling and pipelining the design in Electronic Code Book

mode (see Section 3.6). Due to the data dependencies, pipelined DES implementa-

tions cannot have the same performance.

Year Implementation Throughput (Mb/sec) Reference “
1997 software 121.5 [fre]
1999 Xilinx Virtex XCV4"00^ 3656 [f t ^
1999 “ 4 X Altera IQKIOO “ 1280 [WPR+99]
1999 — ASIC 0.6 fim CMOS — 9280 [WPR+99]
2000 Xilinx Virtex XCVI50-6 10752 [PatOOT"

Table 3.3: Comparison of DES implementations

3.3 The IDEA Algorithm

IDEA takes 64-bit plaintext inputs and produces 64-bit ciphertext outputs using a

128-bit key.

The design philosophy behind IDEA is mixing operations from different alge-

braic groups including XOR, addition modulo and multiplication modulo the

� Fermat prime + 1. All these operations work on 16-bit sub-blocks.

The IDEA block cipher [Sch96] (depicted in Figure 3.3) consists of a cascade

of eight identical blocks known as rounds, followed by a half-round or output trans-

formation. In each round, XOR, addition and modular multiplication operations are

applied. IDEA is believed to possess strong cryptographic strength because

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 18

\r yr ^ r \r
�� Z 3 � “C h ~ Z 4 (”

X . 丫
one round �乂 / r \

；; ”

Z5 � " ^ ^

seven more ^ ^ Y ”
I « • I

rounds

output ^ ^
transformation r ‘ ‘

^ f yr ” �r

” ” ” ”

㊉ bitwise XOR of 16-bit sub-blocks

: : a d d i t i o n modulo of 16-bit integers

multiplication modulo of 16-bit integers with the
• zero sub-block corresponding to

Figure 3.3: Block diagram of the IDEA algorithm.

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 19

• its primitive operations are of three distinct algebraic groups of elements

• multiplication modulo + 1 provides desirable statistical independence be-

tween plaintext and ciphertext

• its property of having iterative rounds made differential attacks difficult.

The encryption process is as follows. The 64-bit plaintext is divided into four

16-bit plaintext sub-blocks, Xi to X4. The algorithm converts the plaintext blocks

into ciphertext blocks of the same bit-length, similarly divided into four 16-bit sub-

blocks, Yi to I4. 52 16-bit subkeys,才)，where i and r are the subkey number and

round number respectively, are computed from the 128-bit secret key. Each round

uses six subkeys and the remaining four subkeys are used in the output transfor-

mation. The decryption process is essentially the same as the encryption process

except that the subkeys are derived using a different algorithm [Sch96].

The algorithm for computing the encryption subkeys (called the key-schedule)

involves only logical rotations. Order the 52 subkeys as . . . , 劝) ’ Zp)，...，

. . . ’ Zi(8)’ . . • ’ 2^8)，zf\ . . .， z f \ The procedure begins by partitioning the

128-key secret key Z into eight 16-bit blocks and assigning them directly to the

first eight subkeys. Z is then rotated left by 25 bit, partitioned into eight 16-bit

blocks and again assigned to the next eight subkeys. The process continues until all

52 subkeys are assigned. The decryption subkeys z f ^ can be computed from the

encryption subkeys with reference to Table 3.4.

In Electronic Codebook (ECB) mode [Sch96], the data dependencies of the

IDEA algorithm have no feedback paths. Additionally, in practice, latencies of

� order of microseconds are acceptable. These features make deeply pipelined imple-

mentations possible.

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 20

r = 1 2 < r < 8 r = 9

对)~ ~ (Z i (i � - r)) - i (Z i (i � - ’ - i (Zi(i�-r))- i
力 (r) _ ^ (1 0 - r) _ ^ (1 0 - r) _ ^ (1 0 - r)

2 2 3 2
_ ^ (1 0 - r) _ ^ (1 0 - r)

Z F) ZF-”） Z 严「） N/A

z t) z广） N/A

Table 3.4: IDEA decryption subkeys 对）derived from encryption subkeys z P .
—Zi and Z � i denote additive inverse modulo and multiplicative inverse + 1
of Zi respectively.

3.3.1 Multiplication Modulo 2几 + 1

Of the basic operations used in the IDEA algorithm, multiplication modulo + 1

is the most complicated and occupies most of the hardware. Curiger et. al. [CBK91]

described and compared several VLSI architectures for multiplication modulo + 1

and found that an architecture proposed by Meier and Zimmerman [MZ91], using

modulo 2" adders with bit-pair recoding offers the best performance.

The C code for the multiplication modulo operation by modulo adders

using bit-pair recoding is as follows.

1 uintl6 mulmod{uintl6 x, uintl6 y)

2 {

3 uintl6 xd, yd, th, tl;

4 ‘ uint32 t;

5 xd = (x - 1) 5c OxFFFF ;

6 yd = (y - 1) & OxFFFF;

7 t = (uint32) xd * yd + xd + yd + 1;

8 tl = t & OxFFFF;

„ 9 th = t » 16;

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 21

10 return (tl - th) + (tl <= th)；

11 }

This algorithm requires a total of six additions and subtractions, one 16-bit mul-

tiplication and one comparison. However, in IDEA one of the operands of a mod-

ular multiplication operation is always a subkey, so the second subtraction can be

eliminated if the associated subkeys are pre-decremented.

3.3.2 Previous work on IDEA

The holder of the patent on the IDEA algorithm, Ascom implemented the IDEA ci-

pher in software which achieves 0.37 x 10® encryption per seconds, or an equivalent

encryption rate of 23.53 Mb/sec on an Intel Pentium I I450 MHz machine. Another

software implementation is proposed by Helger [Lip98] involve Intel MMX multi-

media instructions set. This implementation offer 0.51 x 10® encryption per seconds

or an equivalent encryption rate 32.9 Mb/sec on an Intel Pentium 233 MHz machine.

In 2000，Helger developed his software implementation in parallel architecture. His

4-way IDEA implementation achieves 440 Mb/sec on an Intel Pentium III 800 MHz

machine. The term 4-way means that there are 4 independent IDEA encryptions or

decryptions done in parallel. Our optimized software implementation running on a

Sun Enterprise E4500 machine with twelve 400 MHz Ultra-IIi processor, performs

2.30 X 10^ encryptions per second or a equivalent encryption rate of 147.13 Mb/sec.

Hardware implementations offer significant speed improvements over software

implementations by exploiting parallelism among operators. In addition, they are

likely to be cheaper, having lower power consumption and smaller footprint than

a high speed software implementation. The first VLSI implementation of IDEA

was developed and verified by Bonnenberg et. al. in 1992 using a 1.5 fim CMOS

technology [BCF令91]. This implementation had an encryption rate of 44 Mb/sec.

In 1994，VINCI, a 177 Mb/sec VLSI implementation of the IDEA algorithm in

.丨 1.2 fim CMOS technology, was reported by Curiger et. al. [CBZ+93, ZCB+94]. A

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 22

355 Mb/sec implementation in 0.8 fim technology of IDEA was reported in 1995

by Wolter et. al. [WMSL95], followed by a 424 Mb/sec single chip implementation

of 0.7 fim technology by Salomao et. al. [SAF98] was reported. A paper design

of an IDEA processor which achieves 528 Mb/sec on four XC4020XL devices was

proposed by Mencer et. al. [MMF98]. In 2000，Leong et. al. proposed a 500 Mb/sec

bit-serial implementation of IDEA on an Xilinx Virtex XCV300-6 FPGA which is

scalable on larger devices [LCTLOO]. Later, Goldstein et. al reported an imple-

mentation on the PipeRench FPGA which achieves 1013 Mb/sec [GSB+00]. A

commercial implementation of IDEA called the IDEACrypt Kernel developed by

Ascom achieves 720 Mb/sec [Asc99b] in 0.25 " m technology. Another implemen-

tation derived from the IDEACrypt Kernel, called the IDEACrypt Coprocessor, has

a throughput of 300 Mb/sec [Asc99a].

Year — Implementation Throughput (Mb/sec) Reference
~1998 software 23.53 [Lip98]

2000 software 440 [Hel]
1992 ASIC 1.5 / jm C M O ^ 44 [BCF+91]

—1994 ASIC 1.2 fim CMO^ 177 [CBZ+93，ZCB+94]
1995 ASIC 0.8 iim C M O ^ 355 [WMSL95]

. 1998 ASIC 0.7 fim C M O ^ 424 [SAF98]
1998 4 X XC4020XL 528 [MMF98]
1999 ASIC 0.25 評 CMOS 720 [Asc99b]
2000 Xilinx Virtex XCVSOO^ 424 [LCTLOO]

] 0 0 0 I ASIC 0.25 " m CMOS 1013 [GSB+00]

Table 3.5: Comparison of IDEA implementations

� Most of the previous hardware are known to use a precomputed key schedule or

only the encryption process was implemented, due to the fact that if is more difficult

to implement decryption for IDEA. For encryption, the whole key schedule (52 x

16 bits) can be'derived from the first six subkeys (16 bits each) by shifting, while the

decryption key schedule is derived from the whole encryption key schedule. Also

the decryption subkey K ' ^ is the multiplicative inverse mod + 1) of /(，where

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 23

Ki is the corresponding encryption subkey. It can be simplified to be ® A; 二

1. The conversion of decryption subkey require an iterative process based on the

encryption subkey and is more difficult to implement in hardware and hardware

implementations can get around this difficulty by computing all subkeys in software

and making them an input to the hardware [WMSL95].

3.4 Block Cipher Modes of operation

A block cipher is a mathematical function which maps n-bit plaintext blocks to li-

bit ciphertext blocks, where n is the blocklength. In order to perform decryption

uniquely, the encryption function is one-to-one mapping which is invertible. The

inverse mapping is defined as the decryption function. In most block ciphers, the

encryption and decryption process is similar so that the same hardware can be used.

A block cipher encrypts plainext in fixed-size n-bit blocks. However, if mes-

sages exceeds n-bit, there are different modes of operation can be used, namely:

There are four common modes :

1. Electronic Code Book (ECB) mode

2. Cipher-block Chaining (CBC) mode

3. Cipher feedback (CFB) mode

4. Output feedback (OFB) mode

•These modes will be explained in the following sections.

3.4.1 Electronic Code Book (ECB) mode

Electronic Code Book mode (Figure 3.4) is the simplest approach for employing

block ciphers. For messages exceeding n-bits, the message is partitioned into li-

bit blocks and each of these blocks are encrypted independently. In ECB mode,

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 24

f — — f — ―̂ mmm _
I Pj I decryption

I I I Cj •
I n • I ‘

• / ^ N I I , + � I
K — E I n I El K

I V I I ^

• I 雇 n I

: c 丨 丨 各 I
encryption • • n i

！ J ！ — — 二 - 」

Figure 3.4: Electronic Codebook mode

encryption is independent of the sequence of blocks, e.g. the last block can be en-

crypted first and followed by first block and this will not affect the ciphertext. Also,

identical plaintext blocks with the same key always result in identical ciphertext.

The ECB mode of operation is rather weak in security. For 8-bit blocks, once

we know that，e，is encrypted to ’z，，we know whenever the ciphertext is 'z ' if the

plaintext was ,e，. Thus ECB mode allows simple frequency analysis to be applied.

The algorithm of the ECB mode of operation can be described as:

� Encrpytion : for l < j < t, Cj — Ek{Pj)

Decrpytion : for l < j < t, pj — Ef(Cj)

where K is^a k-bit Key, pu . . . , pt are the plaintext blocks and ci, q are

ciphertext blocks. Ek and E^^ denotes encryption and decryption process with key

K respectively.

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 25

3.4.2 Cipher-block Chaining (CBC) mode

In the CBC mode of operation (Figure 3.5), every plaintext block is exclusive-ored

with the previous ciphertext block before being encrypted. For example, the first

plaintext block pi is enciphered to produce ci before it is encrypted to produce

C2. The next plaintext block p2 is exclusive-ored with ciphertext block ci. The

procedure is repeated until the end of message. In CBC mode, It is obvious that

every ciphertext block depends on previous ciphertext blocks.

For the first encryption, there is no previous ciphertext. An initialization vector

(IV) is introduced for initialization of the feedback value. The IV need not be secret.

For CBC mode, identical ciphertext blocks are obtained if the same plaintext

is enciphered using the same key and IV. If either IV, key, or first plaintext block

is changed, a different ciphertext is obtained. Since ciphertext Cj is depends on pj

and all preceding plaintext blocks, the decryption order of ciphertext blocks needs

to be maintained. Correct decryption requires all preceding ciphertext blocks to be

correctly decrypted.

Since there are data dependencies of all plaintext and ciphertext blocks, if a

plaintext block pj is modified during encryption, it affects all following ciphertext

blocks. Thus it is not possible to encrypt multiple blocks in parallel (like in ECB

mode).

The algorithm of the CBC mode of operation is described as:

Encrpytion : cq — IV. for I <j <t, Cj — ExiVj ® Cj-i)

� Decrpytion : Cq 卜 IV. for] <j <t, pj Cj—i � Ef(Cj)

k-bit Key K, n-bit IV, n-bit plaintext blocks p i , . . . , p t are inputs and ci, . . . , q

is n-bit ciphertext blocks as output. Ek and _£；厂i denotes encryption and decryption

process with key K respectively.

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 26

I -I
I Co=IV I I Cj I

I p i - , 丨 | i 人 I i
I Cji I I E-1 - ^ ― K •

p 丨 十 " ^ � [|丨 I ~ ~ I
I 丁 丨 _ C丨1 I
I n I ‘ i — j — ^ j 書

I , t � I I W I
K — r ^ E _ I / V^ 推

• L _ _ J I I
I T j i _ | J I T i
I encryption | p! decryption !

Figure 3.5: Cipher Block Chaining mode

*.

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 27

3.5 Field-Programmable Gate Arrays

FPGAs are hardware devices that can change their functionality by programming

the chips after fabrication. The programming process of FPGAs usually is less than

a minute and can be done in the field, therefore they are very suitable for use as a

reconfigurable platform. FPGAs consists of an array of configurable logic blocks

(CLBs) surrounded by input/output blocks (lOBs) which provide an interlace be-

tween configurable logic block and package pins, and a network of routing resources

called the general routing matrix (GRM) which interconnect the configurable logic

blocks.

In most commercial devices, such as the Xilinx Virtex and Virtex-E family, con-

figurable logic blocks are implemented as 4-input lookup tables together with an op-

tional output register or latch. The array of CLBs in FPGA are arranged in columns

and rows. Between CLBs, there are routing channels aligned horizontally and verti-

cally. CLBs are interconnected by routing channels and general routing matrix. The

GRM consists of an array of routing switches located at the conjunction of horizon-

tal and vertical routing channels. Since every CLB has a Lookup table and registers

. .， t h e y maintain a high ratio of storage elements to computational elements. Also,

since these computational and storage elements are coupled together in CLBs, these

architectures are very suitable for the implementation of deeply pipelined designs.

3.5.1 Xilinx Virtex-E™ FPGA

The Triple-DES accelerator are built on the Xilinx Virtex-E™ FPGA. It is manu-

� factured in a 6-layer-metal 0.18 " m CMOS process. The maximum synchronous

clock rates for Virtex-E™ FPGA is 240MHz.

The Logic cell (LC) is the basic building block for Virtex-E CLB. A logic cell

consists of a 4-input function generator, carry logic, and a storage element. In fact,

every Virtex-E CLB consists of four logic cells, which are organized in two similar

slices as shown in Figure 3.7. Function generators in Virtex-E are implemented as

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 28

CLBs jjjj nil nil

-h!"!"!", -i-i-i-i-, .ukui.,
二二二二二妇拍]q: 二二二二二二二二=：^±[±口 二二二二二：
二二二二二: :1:1:!±! 二二: 二二： 二二 ：二二 :±J±tE 二二

T-LLLJ.1 CLLII? l u l L l .

ffflT-i 隙；
二二二二二：： qqqq̂：：：：：：：：：： 口口！二二二二：当̂ !̂：̂:二：二二二：

:ttttt itrrrr
！ ！!! r——^―I • I 11 I——————I 1111 r — — — •

J J I • _ _ 1111
! 1 1 • • • • 唯 • • ! ! ! ! • • _ _ 111 I ！ ！!! • • • • 111 I ' ! ' ! I I I ! 1111
I' ！ ！!! 111 I

j j [j j j j j j j j j
：：：：：：：：：：]：："I £ EEE三三三f _ _ 三三三 E 三「三三三三三三三

L r r | r - r r r f - . ^ T t t t '

' • ! ! _ _ _ • _ I • _

GMR

Figure 3.6: Architecture of FPGAs

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 29

COUT COUT

I |slî i j jslî o I •
I , L-yb L.YB I

G 4 - H ~ h f - Y G a M ~ n | - Y I

I G 3 - I - Carry 6 3 - 4 - Carry •
‘ ^ T LUT 一 and d Q +.YQ ^ T LUT 一 and -J- D Q -|-YQ I
I G2-r Control Ê T G2-y Control CE T |
‘ G 1 - H | _ _ J I G1 " H I I
I � I I >RC I I I >RC _ ,
I BY-j 1 I BY-j 1 I I

, I l-XB I f-XB I
I G4-(-| I Q4^J I pX
I G 3 - r Carry I G 3 - r Carry I |

T LUT 一 and 丄 D Q -i-XQ LUT — and 丄 d Q -|-XQ •
,G2-A- Control CE J Control CE J
I G1-f| I G1 -H I
I I I >RC I I >RC ‘

BY I一 一 一 • 一 BY I I 一 _ I
! - 1 J

CIN CIN

Figure 3.7: Virtex-E CLB (2-Slice)

4-input look-up tables (LUTs). Besides function generation, each LUT can serve as

. . a 16 X 1-bit synchronous RAM. Combining two LUTs that within a slice, a 16 x

2-bit or 32 x 1-bit synchronous RAM, or a 16 x 1-bit dual-port synchronous RAM

can be created. Besides synchronous RAM, 16-bit shift register can be implemented

from LUTs but limited to a specific LC in every slices.

Also, Virtex-E FPGAs provide large block Select RAM memories. Each Block

Select RAM component is a synchronous dual-ported 4096-bit RAM with indepen-

dent control signals for each port as shown in Figure 3.8. Block SelectRAM is
�

fully customized and data-widths of the two ports can be configured independently.

The selection of data-width of a Block Select RAM range from 1 to 16 bits with

depth 4096 to 256 correspondingly. These RAM provide a relatively large buffer

for storing plaintext and ciphertext in Triple-DES and IDEA cipher. Also its fully

customized feature enable the I/O interface operate in different clock rate as the

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 30

RAMB4 一 S#—S#
— W E A
— E N A
— R S T A
— > CLKA DOA[#:0] 一

一 ADDRA[#:0]
一 DIA[#:0]

— W E B
— E N B
— R S T B
一 �C L K B DOB[#:0] 一

一 ADDRB[#:0]
一 D 旧[#:0]

Figure 3.8: Dual-Port Block SelectRAM

clock rate for cipher.

3.6 Pilchard

Pilchard is a reconfigurable computing development environment, which employs a

field programmable gate array. It was designed mainly to reduce the bottleneck of

bus interface transfers between FPGA and personal computer by using the memory

interface instead of the PCI bus interface. Nowadays FPGA systems can operate

at clock frequencies over lOOMHz with microprocessors operate at IGHz. The

speed of coprocessor systems are often limited by the bus interface, for example,

the author's 496 Mb/sec implementation of IDEA cipher achieves only 39.2 Mb/sec

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 31

through a cardbus interface [LLC+01].

The Pilchard board was designed to be compatible with the 168 pin 3.3 Volt, 133

MHz, 72-bit, registered synchronous DRAM in-line memory modules (SDRAM

DIMMs) PC 133 standard. As SDRAM DIMMs PC66/100 standard shared the same

pinouts as SDRAM DIMMs PC 133 standard, therefore, Pilchard board can be oper-

ated under PC66/100 standard as well. The Pilchard board can populated with any

Virtex or Virtex-E device in a PQ240 or HQ240 package.

The system interface of Pilchard board is developed using Linux. In order to

access registers of Pilchard board, UNIX mmap() system call is used to map virtual

addresses in user space to physical address of the Pilchard board. Data transfer

between PC and Pilchard use the 64-bit MMX instruction "movq" embedded in

inline assembly.

In benchmark of Pilchard board, write operation was reported to be 1063.04

Mb/sec using uncacheable mode [LLC+01]. Uncacheable mode guarantees that all

reads and writes appear on the system bus as the same order in program. For read

operations, Pilchard board achieves 422.40 Mb/sec. In a read/write benchmark, the

transfer rate is 595.92 Mb/sec. Compared to the measured transfer rate of the PCI

interface, which is 96.08 Mb/sec, Pilchard was 4 times faster.

3.6.1 Memory Cache Control Mode

Central processing unit (CPU) caching of reads and writes to Pilchard registers

could lead to incorrect results. The Intel Pentium Pro, Pentium II and Pentium III

has a Memory Type Range Register (MTRR), accessible from Linux, which allows
%

different memory regions to be of different types [penOO].

The "Uncacheable" memory type guarantees that all reads and writes will ap-

pear on the system bus in the same order as the program. Furthermore, no specu-

lative memory accesses, page-table talks or prefetches of speculated branch targets

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 32

B B d i i H l i r ^ l i S B W H

I H H H H B H H K

Figure 3.9: Picture of Pilchard

will occur [penOO]. Although the most conservative, it also leads to the lowest per-

formance.

3.7 Electronic Design Automation Tools

The VPN accelerator was developed using the Very High Speed Integrated Circuit

Hardware Description Language (VHDL). Hardware architectures can be described

using VHDL. Besides as a descriptive language for hardware, it represent a design

methodology.

• The target hardware platform were Field Programmable Gate Arrays (FPGAs).

FPGAs can be reconfigurable by downloading a software bitstream. The software

bitstream is created from the VHDL description using the synthesis and implemen-

tation tools. The synthesis and implementation tools used was Synopsys FPGA Express™

3.4 and Xilinx Xilinx Foundation™ 3.2i respectively.

Using FPGAs and VHDL offers a short turnaround time as shown in Figure 3.10.

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 33

Since VHDL designs offer a higher level of abstraction over say schematic capture,

the design and debug time associated with this methodology is reduced. Once the

VHDL description has been verified via simulation, a synthesis tool is used to gen-

erate a netlist. The implementation tool takes the netlist and maps the component

to the target FPGA device. Then the place and route tools place the components

and route the interconnections in the FPGA. In the implementation stage, timing

constraints can be given and the tools will try to meet the constraint. Finally, the

bitstream file of the circuit design is generated by the implementation tools for a

specific FPGA. Downloading the specific bitstream to corresponding FPGA will

make it work as per the description in VHDL.

In the development cycle, the target FPGA device is given after the simulation

stage. Therefore, the same VHDL description can be used to synthesise netlists for

different devices. This features offer portability in that different FPGA vendors,

families and application specific integrated circuits (ASICs) can be targetted from

the same VHDL description.

3.8 Summary

In this chapter, background on cryptography and some of cryptographic algorithm

were given. Also FPGAs and the Pilchard environment were presented.

Most of the previous implementation of DES, Triple-DES and IDEA achieves

high performance by using pipelining in ECB mode. However, most of applications

recently suggest CBC mode which is more secure.

� The decryption process in IDEA involve iterative calculation of subkeys, there-

fore, most IDEA hardware [WMSL95] uses precomputed keys or required the whole

key schedule (832 bits) to be an input. This creates a large overhead on data transfer

of key material in IDEA cipher.

FPGAs are hardware devices very suitable for rapid prototyping as its nature

to change its functionality after fabrication. Pilchard is a reconfigurable computing

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 34

Design
hardware
definition

丨 ^ ^ — —

Describe
hardware design

by VHDL

~ T ~
Simulate VHDL

code

^ SimulationVw

^Sw Correct? ^ ^

, * �

Synthesis Tools

Synthesis and
optimize

Target Device >

Netlist

V J
\

f �
Implemenatlon Tools

Mapping, Place
and Route

Timing Constraint >

Bitstream

V.

Target Device

< V e r i f i c a t i o n ? ^ >

Correct functional
FPGA design

Figure 3.10: Development cycles for FPGA design using VHDL

Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 35

development environment that employ FPGAs with a DIMM slot interface in order

to improve transfer rate between PC and FPGA systems. This environment is used

in this project as it offer a reasonable performance and easy to use interface.

Chapter 4

Implementation

4.1 Introduction

In this chapter, the implementation details for the VPN accelerator are presented.

Firstly, the hardware platform used for the implementation is introduced, followed

by the implementation details ofDES, Triple-DES and IDEA cipher in different op-

eration modes. Then the encapsulation of VPN accelerator in LibDES and FreeS/WAN

is discussed.

4.1.1 Hardware Platform

4.1.2 Reconfigurable Hardware Computing Environment

A reconfigurable hardware computing environment, called Pilchard, was used to

implement the Triple-DES accelerator. Pilchard is a DIMM RAM based FPGA sys-

tem. The Pilchard board used for Triple-DES and IDEA accelerator was populated

� with a Virtex-E XCVIOOOE device in a HQ240 package with speed grade 6. The

XCVIOOOE device contains 12288 slices aligned in a 64 x 96 CLB array, which

equivalent to 1.5 million system gates. In addition, there are 96 x 4096-bit Block

Select RAMs for storing data and eight delay-locked loops for clock multiplication

and division.

36

Chapter 4 Implementation 37

DOWNLOAD/DEBUG OUTPUT HEADER FOR
CONFIG PROM INTERFACE 1/0 and/or LOGIC

ANALYZER
^ 个 个

丨 Ji. 一山

I FPGA I

I ^ ‘

I User design i

I ^ 7 R {

] s L I

’ SDRAM controller Clock generator i

,, I ^ J ^ I
I J

PC'S SDRAM DIMM SLOT

Figure 4.1: Block diagram of the Pilchard board

Chapter 4 Implementation 38

4.1.3 Pilchard Software

There are two major components in the Pilchard software namely the device driver

and application programming interface (API). The device driver enables Pilchard

to be accessible via a DIMM slot and specifies the physical memory range for

Pilchard. The API perform memory mapping between virtual and physical ad-

dresses for Pilchard upon initialization. A series of read and write function calls

in the API enables data transfer between the PC and Pilchard as shown below.

• write32(d, a) A 32-bit word referenced by pointer d is written to physical

memory address a. This function call fails if a is not in the memory range

specified in Pilchard driver.

• read32(d, a) A 32-bit word is read from physical memory address a and trans-

ferred to memory referenced by pointer d. This function call fails if a is not

in the memory range specified in Pilchard driver.

The original Pilchard software developed by M.R Leong [LLC+01] already has

a fully functional device driver and 32-bit read and write function calls, namely

write32(d,a) and read32(d，a). The original version of Pilchard VPN accelerator had

limitations which its application to ciphers such as DES, Triple-DES and IDEA

employ a block length of 64-bit. Therefore, two write32() / read32() function calls

are needed in order to transfer every plaintext or ciphertext between the PC and

Pilchard.

As a result, two new API function, write64(d,a) and read64(d,a), were developed

based on the original read32 and write32 function calls. In order to perform 64-

bit data transfer, "movq" [mmx] (move quad word) assembly MMX instruction

was used. Both 64-bit API function calls are written in inline assembly which can

embedded into any C code.

• write64(d, a) A 64-bit double word referenced by pointer d is written to phys-

ical memory address a. This function call fails if a is not in the memory range

Chapter 4 Implementation 39

specified in Pilchard driver.

• read64(d, a) A 64-bit double word is read from physical memory address a

and transferred to memory referenced by pointer d. This function call fails if

a is not in the memory range specified in Pilchard driver.

For 64-bit write function calls, a "movl" (move long word) instruction is issued

to copy the 32-bit destination address to a 32-bit general purpose register. Then a

"movq" (move quad word) instruction is issued to transfer the 64-bit data to MMX

register. Finally, another movq instruction copied the 64-bit data from MMX regis-

ter to the memory address that referenced by 32-bit general purpose register. Also

an emms instruction was issued to clear the MMX register, otherwise, floating point

calculations will result in Not A Number (NAN) in some cases. For 64-bit read

function calls, a "movl" instruction is first issued to copy the source address. Then

"movq" instructions are used to copy data from Pilchard to an MMX register and

finally to the user program memory.

4.2 DES in ECB mode

4.2.1 Hardware

The DES algorithm is a cascade of sixteen identical rounds of operations in between

an initial permutation and final permutation. A module for one round of computa-

tion is formed using ROM32 [XilOOa] and XOR primitives.

-The DES core used in here is derived from the VHDL code written by Chris

Eilbeck. Since there are no data dependencies in ECB mode. The DES core is

pipelined into 16 stages corresponding to 16 rounds in DES shown in Figure 4.2.

The maximum clock rate achieve by the proposed DES core was 60.7 MHz.

Since the clock rate of interface is limited to 100 MHz, a clock divider was used

to divide the system clock by 2. Therefore, the DES core works at 50 MHz and

Chapter 4 Implementation 51

DIMM RAM interface

I elk Data Bus ！

匕 ： 十 二 + ----- 〜......」」
Data In Data out

i 7 - … 干 … — - 十 — … ：
I Input Block t Output Block R a F ^ I

i — I 32 — I
I — 产 addresses |

I V y 16 stages .. ^J |
I pipeline a i
！ . 人 _ I

I f 飞 _ I
I DES Core |

I • I I I I I I I I I I I I I I I I I I

I I • l i
I Pilchard |

Figure 4.2: System architecture of DES accelerator in ECB mode

the maximum encryption rate of the DES implementation on Pilchard is around 248

Mb/sec.

4.2.2 Software Interface

memp is the base address pointer to Pilchard mapped memory range. The key

� material is transferred to Pilchard at the beginning and then the control register is

reset to zero in order to reset the DES core. Then 32 plaintext blocks are transferred

to DES core. When the first plaintext block is transferred to Pilchard, the control

register is set to 1 in order to trigger the start of DES core. Finally, 32 ciphertext

blocks are received from Pilchard.

The following is the pseudocode for a block for 32 DES encryptions in ECB

Chapter 4 Implementation 41

mode:

1 des—ecb一encryption(key,data,memp)

2 {

3 /* copy key into key register */

4 write64(key,key一reg);

5

6 /* initialize control register to reset */

7 control=0;

8 write64 (control, control—reg)

9

10 /* write 32 * 64 bit plaintext */

11 for(i=0;i<32;i++){

12 write64(data[i],memp+i*8)；

13 /* early trigger DES core */

14 if(i==0){

15 /* set control register to 1

16 to trigger starting of DES encryption •/

17 control=l；

18 write64(control,control一reg)；

19 }

20 }

2 1 -

22 ” read 32 * 64 bit ciphertext */

23 for(i=0;i<32;i++)

24 reads4(&data[i],memp+i*8)；

25 }

Chapter 4 Implementation 42

Since the Pilchard interface does not offer interrupts, for the software (PC) to

know about the status in hardware (Pilchard), polling is the only option. In order to

achieve highest performance in DES ECB mode, the assumption that DES core can

output the first ciphertext in the period that the 32 blocks of plaintext are written to

Pilchard was made. Correctness of operation was extensively tested by comparison

with software.

4.3 DES in CBC mode

4.3.1 Hardware

The DES core was modified to be totally combinational. Since in CBC mode, the

current encryption depends on previous ciphertext, only one encryption is processed

at a time so pipelining is not effective.

4.3.2 Software Interface

The following is the pseudocode for a block for 32 DES encryptions in CBC mode:

1 de s _ c b c _ e n c ryp t i o n (k e y , d a t a , m e m p)

2 {

3 /* c o p y k e y into key r e g i s t e r */

4 write64(key ,key—reg);

5 ‘

6 /* i n i t i a l i z e c o n t r o l r e g i s t e r to r e s e t */

7 c o n t r o l = 0 ;

8 w r i t e 6 4 (control, control—reg)

9

10 /* w r i t e 32 * 64 b i t p l a i n t e x t */

Chapter 4 Implementation 43

11 for(i=0;i<32;i++) {

12 w r i t e 6 4 (d a t a [i] , m e m p + i * 8) ;

13

14 /* set c o n t r o l r e g i s t e r to 1

15 to trigger starting of DES e n c r y p t i o n */

16 control=l；

17 w r i t e 6 4 (c o n t r o l , c o n t r o l _ r e g)；

18

19 /* p o l l control r e g i s t e r for

20 the end of e n c r y p t i o n */

21 do{

22 read64 (Sccontrol, c o n t r o l _ r e g) ;

23 } w h i l e (c o n t r o l = = 0) ;

24

25 /* r e a d 32 * 64 b i t c i p h e r t e x t */

26 f o r (i = 0 ; i < 3 2 ; i + +)

27 read64 (Scdata [i] ,memp+i*8);

. . 2 8 }

The interface for DES CBC mode (Figure 4.3) first requires reset of the finite

state machine. Then 248 different 64-bit plaintext are transferred to Pilchard from

PC via DIMM RAM data bus. This is followed by setting the control register to

1 in order to trigger the finite state machine and DES core. No interrupt routine

is provided in DIMM RAM interface, therefore, polling has to be done on control

register to detect completion of all encryptions. Finally, all ciphertext are read back

from Pilchard. The buffer size was chosen to be 248 because there is an 8-bit

effective address space for Pilchard, but 8 address were reserved for control and

key registers.

Chapter 4 Implementation 44

DIMM RAM Interface
，

I Clk I Data Bus | |

LL — 一 丨 f _ t _
I p i q - — 1
• Input Output I
I Block Block I
服 RAM RAM I

I I ~ f ~
• I

I Key Register I

I " n r I
• • ^ \ I
I > DES core — ^ ― I •
• �

V — y I
I M I
I ^^^^ > r I
I w External Control •
I FSM ^ Register I

I^Pilchard I
�

Figure 4.3: System architecture of DES accelerator in CBC mode

Chapter 4 Implementation 45

4.4 Triple-DES in CBC mode

4.4.1 Hardware

The Triple-DES core (Figure 4.4) is formed by cascading three combinational DES

CBC cores. The Triple-DES core is combinational, but an external finite state ma-

chine was used to determine the readiness of input and output. The proposed Triple-

DES core operates at 2.135 MHz. The external finite state machine works at 50

MHz which is the system clock (100 MHz) divided by two. A 64-bit ciphertext is

obtained every 32 cycles. Therefore the performance of core is 50 x 64-bit / 32 =

100 Mb/sec. This theoretical result agrees with the real performance of Triple-DES

hardware functions benchmark embedded in LibDES.

In our Triple-DES core, a throughput of 96 Mb/sec was achieved. Triple-DES

consists of three cascaded DES core and thus, it require more processing time than

DES.

4.4.2 Software Interface

• The following is the pseudocode for a block of 248 Triple-DES encryptions in CBC

mode:

1 3des—cbc一encryption(keyl,key2,key3,data,memp)

2 {

3 /* copy key into key register */

、 4 write64(keyl,key_regl)；

5 write64{key2 ,key_reg2)；

6 write64(key3,key—reg3)；

7

8 /* initialize control register to reset */

9 control=0；

Chapter 4 Implementation 57

DIMM RAM Interface

I I Clk I Data Bus ‘ I

L-j- U J
I r " r 7 1
• Input Output I
I Block Block I
• RAM RAM I

I ^ - f ^ I
I ()< i I
I Key Register |

4 4 “ I
I Triple-DES core | I

DES DES-i DES

I U=LJ=^=U==U
I (— ^ ~ _ ： ： _
• w External Control
I \ FSM 1 Register

|_Pjlcjiard I

Figure 4.4: System architecture of Triple-DES accelerator

Chapter 4 Implementation 47

10 write64(control,control一reg)；

11

12 /* write 248 * 64 bit plaintext "

13 for(i = 0,.i<248,.i + +) {

14 write64(data[i],memp+i*8)；

15

16 /* set control register to 1

17 to trigger starting of DES encryption */

18 control=l；

19 write64(control,control—reg)；

20

21 /* poll control register for

22 the end of encryption */

23 do{

24 read64 (Sccontrol, control_reg)；

25 }while(control==0)；

26

27 /* read 248 * 64 bit ciphertext "

28 for (i = 0;i<248,.i + +)

29 read64 (&data[:L] ,memp+i*8)；

30 }

The Triple-DES CBC mode interface is similar to DES CBC mode, the only

difference being the key size. Also the throughput of Triple-DES CBC mode is

lower than DES CBC mode since the datapath for Triple-DES is three times longer.

Chapter 4 Implementation 48

4.5 IDEA in ECB mode

4.5.1 Multiplication Modulo + 1

Modulo multiplication is the bottleneck in the IDEA algorithm. In a single round

of the algorithm there are four modular multiplications so a well-designed mul-

tiplication modulo 216 + 1 operator is crucial since it directly affects the system

performance both in terms of area and throughput.

The modular multiplication algorithm described in Section 3.3.1 was used in our

design, but instead of taking x and y as inputs, the operator takes x and yd as inputs.

As one of the operands is a subkey which is regarded as a constant, the modification

eliminates one subtraction operator by taking the advantage of pre-decremented

subkeys (Section 3.3.1’ pseudocode line 6).

In order to implement a well-designed multiplication modulo + 1 operator,

the throughput of the operator is maximized by introducing more pipeline stages. In

our design, 16-bit multiplier used in Section 3.3.1 (pseudocode line 7) is constructed

by Xilinx CORE Generator [XilOOb] which has a latency of 4 cycles. And the

multiplication modulo + 1 operator pipeline has a latency of 7 cycles.

4.5.2 Hardware

The IDEA algorithm is a cascade of eight identical rounds of operations, followed

by a output transformation. By instantiating building blocks, that is, additions,

XORs and modular multiplications, and inserting appropriate stage latches for time-

alignment, a module for one round of computation is formed. For the best area-

efficiency, stage latches are constructed by Virtex SRL16E primitives [Xil99, GA99].

Due to limited hardware resources, each round of the algorithm shares the same

physical resource, but with different key-schedules. The output transformation also

reuses the resources. In our implementation the key-schedules are stored inside

Chapter 4 Implementation 49

X

Feedback ^
control "1

O ©
Half-round 丫 V 丫

output ^^^ 丨

A ， $ • = — —
z , Q

• —

“ Feedback

® ® O (^ 崎 p a t h

e e

J ± 1

Figure 4.5: Architecture of the IDEA core.

ROM primitives. The architecture of the bit-parallel IDEA core is shown in Fig-

ure 4.5.

As mentioned earlier, for ECB mode operations, data dependencies of the IDEA

algorithm have no feedback paths. This property enabled the round architecture to

take input values until the pipelined is filled, and output values are redirected to the

input of the pipeline subsequently. In an IDEA round, the data passes through three

multiplication modulo + 1 operators, each of which has a latency of 7 cycles.

Thus the full round pipeline has a latency of 21 cycles For an output transformation,

Chapter 4 Implementation 50

the data must pass through a single multiplication modulo + 1 operator with

pipeline latency of 7 cycles. Therefore the core has a total latency of 21x8+7 = 175

cycles. The core t a k e s 21 64-bit plaintexts per 21 x 9 = 189 cycles, equivalently

performing encryption at (21 + 189) x 64 x / Mb/sec with a system clock rate of

f MHz. For instance, at a 82 MHz clock rate, the core delivers an encryption rate

of 583 Mb/sec with a latency of 2.134 fis.

4.5.3 Software Interface

The following is the pseudocode for a block of 175 IDEA encryptions in ECB mode:

1 idea一ecb—encryption(data,memp)

2 {
3

4 /* initialize control register to reset */

5 control=0;

6 write64(control,control_reg)；

7

8 /* w r i t e 248 * 64 bit p l a i n t e x t */

9 for(i=0;i<175;i++) {

10 w r i t e 6 4 (d a t a [i] , m e m p + i * 8) ;

11

12 /* set control register to 1

13 to trigger starting of DES encryption */

、 14 control=l ;

15 write64(control,control一reg)；

16

17 /* p o l l control register for

18 the end of encryption */

“ 19 do{

Chapter 4 Implementation 51

20 read64(&control,control_reg)；

21 }while(control==0);

22

23 /* read 175 * 64 bit ciphertext */

24 for(i=0;i<175;i++)

25 read64(&data[i],memp+i*8);

26 }

The IDEA ECB mode interface is similar to DES CBC mode and Triple-DES

CBC mode interfaces. However, in the IDEA ECB mode, the key-schedule is pre-

computed and stored in FPGA. The data transfer of key-schedule is elimated.

4.6 Triple-DES accelerator in LibDES

In the above sections, the Triple-DES cipher interface for Pilchard was introduced.

Another Triple-DES functions was implemented in LibDES which uses Pilchard as

hardware accelerator. Both kernel mode version and user mode version has been

developed. Most of the cryptographic softwares operates in user mode, however,

because FreeS/WAN manipulates IPSec packet in kernel mode, a kernel version

was also required. The user mode and kernel mode functions differ from the repre-

sentation of memory address mapping for Pilchard. In user mode, a virtual address

is used in interface for Pilchard, however, a direct access to a physical address is

used in kernel mode.

As LibDES is a widely used encryption library for openSSL and other appli-
�

cations, the encapsulation of the Pilchard based accelerator interface in LibDES

enables other application to easily utilize the Pilchard board accelerator.

Chapter 4 Implementation 52

4.7 Triple-DES accelerator in FreeS/WAN

In our implementation of a Triple-DES accelerator on Pilchard, a simple software

interface was built in order to perform verification benchmark and performance.

Modifications were needed to integrate the Triple-DES hardware accelerator and

FreeS/WAN.

The architecture of VPN and IPSEC protocols was unchanged, therefore, no

major modification on FreeS/WAN was required. Modifications were made on Lib-

DES, and the software based DES functions were replaced by calls to the hardware

accelerator on Pilchard.

In FreeSAVAN, there is a data structure that stores the encryption key in the

form of a key-schedule. In Triple-DES accelerator on Pilchard, the key provided

should be a raw-key. There are two solutions to this problem.

The interface of Triple-DES accelerator on Pilchard could be modified to accept

a key schedule as input. However, this modification will have great impact on the

performance of the Triple-DES accelerator. For Triple-DES encryption, a raw-key

of 3 X 64-bit = 192-bit is needed, but if key schedule were used, 3 x 16 x 48-bit =

- 2 3 0 4 - b i t are needed to store the key schedule. This method requires 12 times more

storage and transfer, therefore, this method was not used.

On the other hand, LibDES can be modified such that it can accept a raw key.

However, problems with FreeS/WAN compatibility are encountered. In FreeSAVAN,

there is a data-structure tdb (tunnel descriptor block) storing information about VPN

connections. This includes the session key for the connection. Unfortunately, tdb

only' has entry for the key schedule. To minimize modifications on FreeSAVAN

codes, a series of functions were rewritten so that tdb data structure does not need

to be changed.

Before the connection is ready and tdb data structure is filled, a raw-key would

be used during the process. The des_setkey() function is called to transform this raw-

key into a key schedule. Then the key schedule is filled into the tdb tdb_key_e

Chapter 4 Implementation 53

entry of the structure. For Triple-DES, tdb —tdb_key_e is an array of 3 x 16 x

64-bit for storing 3 different encryption keys with 16 rounds. For data alignment,

each 48-bit subkey is stored in a 64-bit array element. There are 3 different keys

used in Triple-DES so des_setkey () is called 3 times.

First of all, modification were made to the des_setkey() function. The 64-bit

raw key is passed to the first array element without modification. Therefore calling

des_setkey 3 times will result in raw key 1 being stored in tdb tdb_key_e[0] and

raw key 2 stored in tdb — tdb_key_e[15]. Finally, the last raw key is stored in tdb

tdb_key_e[31]. Other array elements are empty since are no longer used for key

manipulation.

Then the interface for Triple-DES accelerator was embedded in des_ede3_cbc_encrypt().

Due to the fact that they have different data structures, conversion of data structure

between inputs and outputs is necessary.

4.8 IDEA accelerator in FreeS/WAN

In FreeS/WAN, the available options for encryption are DES and Triple-DES. The

IDEA accelerator was made in order to demonstrate the possibility for adding other

encryption algorithms and as a high speed accelerator for FreeS/WAN. The IDEA

ECB mode cipher that was discussed in Section 4.5 was implemented achieving 248

Mb/sec on Pilchard board, double the performance of the Triple-DES CBC core.

The IDEA accelerator interface is similar to Triple-DES CBC interface with a

difference in key management. In IDEA, the determination of the decryption key-

� schedule was done in software. For an IDEA encryption, 16 x 52 = 832-bit is

needed. The overhead for input of key-schedule is huge and as a result, the IDEA

core has a hard-wired key-schedule for achieving high performance.

Chapter 4 Implementation 54

4.9 Summary

In this chapter details of the implementation for different cryptographic algorithms

in different modes of operation were discussed.

A Triple-DES accelerator and an IDEA accelerator were implemented on Pilchard

which employs Virtex-E™ XCVIOOOE FPGAs.

Between the Pilchard interface of the Triple-DES accelerator and LibDES, a dif-

ferent key representation was used. Since in hardware, data transfer and data storage

should be minimized, a raw-key rather than a key schedule was used. LibDES was

modified accordingly.

In the IDEA accelerator, the calculation of decryption key-schedule require it-

erations which is difficult to realize in hardware. The 832-bit key-schedule create

large overhead on data transfer. As a result, key-schedule was hard-wired in the

IDEA accelerator.

Chapter 5

Results

5.1 Introduction

In this chapter, results obtained from the Pilchard system are presented. Firstly, the

benchmarking and testing environment is introduced. This is followed by perfor-

mance measurements of the IDEA and Triple-DES accelerator. Finally, benchmarks

using FreeSAVAN are presented.

5.2 Benchmarking environment

In this work, two computers set up with identical configuration were used for bench-

marking and obtaining all results. These two computers connect to a 100Mbit net-

work via a hub running FreeSAVAN version 1.5 with Linux Kernel 2.2.16 as shown

in Figure 5.1.

‘ P-III866
� RAM 128 MB

Motherboard Asus CUSL2
(Intel 815EP chipset)

Network card 3COM 590 (100 Mbit network card)
OS Mandrake v7.2 with kernel 2.2.16

‘ Table 5.1: Configuration of machine for benchmark.

55

Chapter 5 Results 5 8

5.3 Performance of Triple-DES and IDEA accelera-

tor

The Triple-DES and IDEA processors on Pilchard were verified using the Synopsys

VHDL Simulator, and was synthesized using Synopsys FPGA Express 3.5 and Xil-

inx Foundation Series 3.3i, with Xilinx Virtex-E XCVlOOOE-6 as the target device.

Both processors were successfully implemented on Pilchard board. All imple-

mentations were tested using Pilchard card with a memory slot interface with an

Xilinx Virtex-E XCVlOOOE-6 FPGA as Processing Element (PE).

5.3.1 Performance of Triple-DES core

Triple-DES core is made of three DES cores and therefore, the throughput of the

Triple-DES core is directly proportional to throughput of DES core. A study of area

and speed tradeoffs for a DES core with different number of rounds was conducted

in order to choose an efficient Triple-DES core with high throughput. Table 5.2

show the performance of different DES cores in ECB mode.

Number of Area Clock rate Throughput
combinational rounds (slices) (Mb/sec)
1 747 58.42 233.68
2 765 51.3 410.4
4 —877 23.38 37^08
8 1121 12.32 394.24
16 1666 5.94 380.16

� Table 5.2: Area and Speed Tradeoff among DES core with different rounds

From Table 5.2, the performance is similar among the DES cores. Therefore, a

core with 16 rounds was chosen since it has a simpler control and host interface.

The Triple-DES CBC core uses three combinational DES cores with 16 combi-

. national rounds. It requires 5368 Virtex slices, which is 43.68% of the total 12288

Chapter 5 Results 5 8

C Comblnatloal) t Combinatioal ^ ，

^ round J ^ round J

f Combinatioal A
^ round J •

1 16
I 1 • > combinationial

, • � rounds
• r Combinatioal ^

f Combinatioal ^ round J •
^ round J ^ ^ ^ ^

* r Combinatioal ^ 广 Combinatioal A

Latch I V 丁) � 丁) J

, Latch Latch

Figure 5.1: Architecture of the DES core with different number of combinational
rounds

slices in a Xilinx Virtex-E XCVIOOE device, and operates at 2.135 MHz, achieving

throughput of 2.135 MHzx 64-bit = 136.64 Mb/sec.

•• The Triple-DES accelerator was tested on the machine described in Table 5.1.

Performance was taken as the time to process data using Triple-DES encryption.

The Linux kernel function do_gettimeofday() was used for timing. Including soft-

ware overhead, our Triple-DES accelerator achieves a measured throughput of 120

Mb/sec. According to figure 5.2, the performance of the Triple-DES accelerator for

small amounts of data is much lower than software. As data size increases, the per-

formance increases quickly and achieves a higher performance than software. This

figure does not reach to the 136.64 Mb/sec performance above due to handshaking

overheads.

Chapter 5 Results 5 8

1401 I 1 , , , ^

—I— Accelerator
J Software 1

120 - ^ -

1 0 0 - •

卜 / _

40- y .

20 4 .

o t I 1 1 1 I

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0
Encryption size (Bytes)

Figure 5.2: Performance of Triple-DES accelerator with different encryption size

5.3.2 Performance of IDEA core

The IDEA core is a fully-pipelined ECB implementation (8 rounds with output

transformations), which requires 9568 Virtex slices and occupies 77.86% ofaXilinx

Virtex-E XCVIOOE device. It achieves clock rate of 60.14 MHz. The expected

throughput of the IDEA core is cycles x 60 MHz x 64 bits = 1920Mb/sec.

The IDEA accelerator was tested on the same machine and same setup as the

Triple-DES accelerator. The IDEA accelerator achieves 248 Mb/sec with all over-

heads included. Compared to the expected performance of the IDEA core, it is

relatively low. However, Pilchard board can only achieve around 248 Mb/sec for

I/O access in uncachable mode.

Chapter 5 Results 5 8

5.4 Benchmark of FreeS/WAN

5.4.1 Triple-DES

In the series of tests for FreeSAVAN, the encryption standard was chosen to be

Triple-DES and authentication algorithm MD5-96, which is referred as 3des-md5-

96 in FreeSAVAN. 3des-md5-96 is the default encryption and authentication mode

suggested by FreeSAVAN.

ttcp [ttcb, ttca] was used to measure the throughput of the benchmark and the

benchmark was conducted for both TCP and UDP protocols. Different parameters

for ttcp were selected and tested. However, the ttcp parameters did not have major

effect on the benchmark. As a result, the following ttcp benchmarks were done

using the default settings of 8192 (source buffer) and 2048 (network buffer) bytes

respectively.

Another utility iperf was used to measure the throughput and similar test results

were obtained as ttcp.

Protocol S i d e T h r o u g h p u t T h r o u g h p u t Performance
•• no FreeSAVAN FreeSAVAN degradation

(in Mb/sec) (in Mb/sec) (%)
TCP — sender 67.024 一 35.448 47.72
TCP receiver 一 66.968 35.360 47.19
UDP sender 93.848 — 45.560 51.45
UDP receiver 93.536 45.536 51.32

Table 5.3: Benchmark of ttcp with/without FreeSAVAN

For every packet sent out in single way connection, an acknowledgment packet

is received. The acknowledgment packet is small in size and which not favor the use

of Triple-DES accelerator. In this work, the encryption of acknowledgment packet

is handled by LibDES which has better performance when the encryption size is

small. However, this factor limits the speed up of the use of Triple-DES accelerator

in FreeSAVAN.

Chapter 5 Results 5 8

Protocol Side Throughput Performance
Mb/sec Improvement (%)

TCP "sender 45.788 29.1
TCP "receiver 45.660 29.1

“UDP ""sender 53.021 16.4
"UDP I receiver I 52.882 16.1

Table 5.4: Benchmark of ttcp with FreeSAVAN using Pilchard based accelerator

As shown in Table 5.3, throughput using IPSec is around 50 % of throughput

without IPSEC. The performance of FreeSAVAN without IPSEC may represent the

bandwidth of a 100 Mbit network with overhead. In theory, a 100 Mbit network

offers 100 Mb/sec. This is slightly higher than the 93 Mb/sec performance without

FreeSAVAN. Thus it can be seen that the performance of VPN using IPSec is limited

by the speed of the software cryptographic library.

In Table 5.4, FreeSAVAN with the Triple-DES accelerator offers a 30 % speed

up over the original software cryptographic library.

5.4.2 IDEA

Since FreeSAVAN does not have IDEA library, no software performance can be

provided. However, as shown in Table 5.3’ the performance of FreeSAVAN with

software cryptographic functions is limited by the performance of LibDES. Accord-

ing to the IDEA library provided in openSSL written by Eric Young, the estimated

performance of FreeS/WAN using IDEA is 116.32 Mb/sec. FreeSAVAN can offer

same performance using this library as a 100Mbit network.

The IDEA accelerator was verified by using ping and tcpdump command. The

receiver side use tcpdump to monitor the incoming packet pattern, and the sender

use ping command to send out ping packet with special pattern.

Chapter 5 Results 5 8

5.5 Summary

In this chapter, the performance of Triple-DES and IDEA accelerator were pre-

sented. Also benchmarks of FreeSAVAN using the Triple-DES accelerator is dis-

cussed.

FreeSAVAN in IPSEC with LibDES achieves only 50% of performance as with-

out IPSEC, this shows that the current software cryptographic library is not capa-

ble using in network applications. FreeSAVAN using our Triple-DES accelerator

achieves 55% - 70% of the performance without FreeSAVAN, which is a 30% im-

provement over software.

Chapter 6

Conclusion

The objective of this thesis was to develop a FPGA-based accelerator for virtual pri-

vate network. A study of FreeSAVAN and LibDES was conducted, which showed

that the performance of FreeSAVAN is limited by the speed of the Triple-DES ci-

pher. Therefore, an Triple-DES FPGA-based accelerator was proposed to increase

the performance of FreeSAVAN.

Area and performance tradeoffs among different DES cores were studied. It

was shown that DES core with a different numbers of combinational rounds give

similar performance. However, the area of a DES core increases linearly with the

number of combinational rounds. To simplify the implementation, a DES core with

16 combinational rounds was implemented. Besides DES core, various of hardware

implementations of different ciphers were compared. The results concerning these

candidates and the accelerator are as follows:

• hardware implementation of IDEA in ECB mode, DES in ECB mode, DES

in CBC mode and Triple-DES in CBC mode were implemented on Pilchard,

which populated with Xilinx Virtex-E XCVIOOOE device. The estimated

throughput of the cores were 3848 Mb/sec, 1942.4 Mb/sec, 360 Mb/sec and

136.8 Mb/sec respectively.

• the cores were tested on the Pilchard platform in uncachable mode and the

performance of IDEA in ECB mode, DES in ECB mode, DES in CBC mode

62

Chapter 6 Conclusion 63

and Triple-DES in CBC mode were 248 Mb/sec, 248 Mb/sec, 248 Mb/sec,

120 Mb/sec respectively.

• a virtual private network (FreeSAVAN) was integrated with the FPGA-based

accelerator and tested. Benchmarks showed that virtual private network of-

fer 30% improvement using the hardware accelerator over a software library.

Note that improvement of 89% is achievable for infinitely fast accelerator.

• the FPGA-based Triple-DES accelerator for VPNs offers an advantage of

high computional power only for large data sizes. According to Figure 5.2，

the hardware implementation is slower than software for small data size due

to data transfer overheads. However, if the data size is large, the hardware

implementation provides a three times speedup over software. Due to this

issue, the overall speedup of the VPN accelerator application was lower than

expected.

The bottleneck for VPN solutions was verified to be the encryption throughput.

The Triple-DES and IDEA accelerator were implemented to increase the encryption

throughput and hence the performance of VPN solutions. VPN solutions can attain

the same speed as a 100 Mbit network if a faster Triple-DES and IDEA cipher

were implemented. This work demonstrates the effect of employing cryptographic

hardware in network applications.

6.1 Future development

Rijndael is announced to be Advanced Encryption Standard (AES), the new en-

cryption standard as a replacement for DES and Triple-DES, by NIST in FIPS-197.

Rijndael offers a faster hardware implementation compared with DES as well as

- a longer keysize. Therefore, it is feasible to implement a Rijndael accelerator for

,, virtual private network.

Chapter 6 Conclusion 64

As the number of system gates of available in an FPGA increase according

to Moore's Law, it is feasible to implement several cryptographic algorithms in a

single chip. Different cryptographic algorithms can be used for a virtual private

network with different encryption options without reconfiguring the hardware.

In this work, the throughput of Triple-DES and IDEA accelerators are greatly

below the maximum throughput that Pilchard card can attain because of handshak-

ing overhead. If a network card interface and the corresponding TCP/IP and IPSec

packet handling modules are all implemented in the FPGA, many transfers between

Pilchard card and the host can be eliminated, greatly improving performance.

%

Bibliography

[Asc99a] Ascom. IDEACrypt Coprocessor Data Sheet, 1999.

http://www.ascom.ch/infosec/downloads/IDEACrypt_Coprocessor.pdf.

[Asc99b] Ascom. IDEACrypt Kernel Data Sheet, 1999.

http://www.ascom.ch/infosec/downloads/IDEACryptJCemel.pdf.

[BCF+91] H. Bonnenberg, A. Curiger, N. Felber, H. Kaeslin, and X. Lai. VLSI

implementation of a new block cipher. In Proceedings of the IEEE

International Conference on Computer Design: VLSI in Computer and

Processors, pages 501-513, 1991.

..[CBK91] A. V. Curiger, H. Bonnenberg, and H. Kaeslin. Regular VLSI archi-

tectures for multiplication modulo 2" + 1. IEEE Journal of Solid-State

Circuits, 26(7):990-994, July 1991.

[CBZ+93] A. Curiger, H. Bonnenberg, R. Zimmerman, N. Felber, H. Kaeslin, and

W. Fichtner. VINCI: VLSI implementation of the new secret-key block

cipher IDEA. In Proceedings of the IEEE Custom Integrated Circuits

� Conference, pages 15.5.1-15.5.4, 1993.

[CTLLOl] O.Y.H. Cheung, K.H. Tsoi, P.H.W. Leong, and M.R Leong. Trade-

offs in parallel and serial implementations of the international data

encryption algorithm IDEA. In Proceedings of the Cryptographic

Hardware and Embedded Systems Workshop (CHES), pages 333-347.

LNCS 2162, Springer, 2001.

65

http://www.ascom.ch/infosec/downloads/IDEACrypt_Coprocessor.pdf
http://www.ascom.ch/infosec/downloads/IDEACryptJCemel.pdf

[DH99] Naganand Doraswamy and Dan Harkins. IPSec: The New Security

Standard for the Internet, Intranets, and Virtual Private Networks. P T

R Prentice-Hall, Englewood Cliffs, NJ 07632，USA, 1999.

[fre] http://www.free-ip.com/des/index.html.

[FreOO] FreeS/WAN org. Linux FreeS/WAN 1.5 HTML Online Document,

2000.

[GA99] M. George and P. Alfke. Linear Feedback Shift Registers in Virtex De-

Wc以.Xilinx, Inc., August 1999. Application Note XAPP210, Version

1.0.

[GSB+00] S. C. Goldstein, H. Schmit, M. Budiu, M. Moe, and R. R. Taylor.

Piperench: A reconfigurable architecture and compiler. Computer,

33(4):70-77, April 2000.

[HC98] D. Harkin and D. Carrel. The Internet Key Exchange (IKE) (RFC 2409),

1998.

[Hel] http://home.cyber.ee/helger/implementations/fastidea/.

[iet] http://www.ietf.org/rfc.html.

[KA98a] S. Kent and R. Atkinson. IP Authentication Header (RFC 2402), 1998.

[KA98b] S. Kent and R. Atkinson. IP Encapsulating Security Payload (ESP)

. (RFC 2406), 1998.

[KA98c] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol

(RFC 2401), 1998.

66

http://www.free-ip.com/des/index.html
http://home.cyber.ee/helger/implementations/fastidea/
http://www.ietf.org/rfc.html

[LCTLOO] M. P. Leong, O. Y. H. Cheung, K. H. Tsoi, and P. H. W. Leong.

A bit-serial implementation of the international data encryption al-

gorithm (IDEA). In Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines, pages 122-131, April

2000.

[lib] ftp://ftp.psy.uq.oz.au:/pub/crypto/des/libdes-x.xx.tar.gz.

[Lip98] Helger Lipmaa. Idea: A cipher for multimedia architectures? In Se-

lected Areas in Cryptography '98, pages 253-268, August 1998.

[LLC+01] P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M. Kwok, M.Y.

Wong, and K.H. Lee. Pilchard - a reconfigurable computing platform

with memory slot interface. In Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines, page (to appear),

April 2001.

[MMF98] O. Mencer，M. Morf, and M. J. Flynn. Hardware software tri-design

of encryption for mobile communication units. In Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, volume 5’ pages 3045-3048, May 1998.

[mmx] http://developerjntel.com/design/archives/processors/mmx/index.htm.

[MZ91] C. Meier and R. Zimmerman. A multiplier modulo + 1). Diploma

thesis, Institut fur Integrierte Systeme, ETH, Zurich, Switzerland,

� February 1991.

[NapOO] Duncan Napier. Introducing FreeS/WAN and IPsec. Sys Admin: The

Joumalfor UNIX Systems Administrators, 9(11):63,65-69, November

2000.

67

http://developerjntel.com/design/archives/processors/mmx/index.htm

[Nat94] National Institute of Standards and Technology (U. S.). Data Encryp-

tion Standard (DES). Federal information processing standards publi-

cation 46-2, National Institute for Standards and Technology, Gaithers-

burg，MD, USA, 1994. Supersedes FIPS PUB 46-1-1988 January 22.

Category: computer security, subcategory: cryptography. Shipping list

no.: 94-0171-P. Reaffirmed December 30，1993.

[Nat99] National Institute of Standards and Technology (NIST). Data Encryp-

tion Standard (DES). Federal Information Processing Standards Publi-

cation 46-3 (FIPS PUB 46-3), October 1999.

[PatOO] C. Patterson. High performance DES encryption in Virtex FPGAs using

JBits. In Proceedings of the IEEE Symposium on Field-Programmable

Custom Computing Machines, pages 113-121, April 2000.

[penOO] lA-32 Intel Architecture Software Developer's Manual, Volume 3: Sys-

tem Programming Guide, 2000.

[RSA99] RSA Labs. DES III Challenge. 1999.

[SAF98] S. L. C. Salomao, V. C. Alves, and E. M. C. Filho. HiPCrypto: A high-

performance VLSI cryptographic chip. In Proceedings of the Eleventh

Annual IEEE ASIC Conference, pages 7-11, 1998.

[Sch96] B. Schneider. Applied Cryptography. John Wiley & Sons，second edi-

tion, 1996.

[ttca] http://www.cisco.com/warp/public/471/ttcp.html.

[ttcb] http://www.dtic.mil/ttcp/.

68

http://www.cisco.com/warp/public/471/ttcp.html
http://www.dtic.mil/ttcp/

[Uni77] United States. National Bureau of Standards. Data Encryption Stan-

dard, volume 46 of Federal Information Processing Standards publi-

cation. U.S. National Bureau of Standards, Gaithersburg, MD, USA,

1977.

[vpna] http://www.cisco.eom/univercd/cc/td/doc/pcat/3000.htm.

[vpnb] http://www.cisco.eom/univercd/cc/tcl/doc/pcat/5000.htm.

[vpnc] http://www.cisco.com/warp/public/779/largeent/desigri/vpn.html.

[vpnd] http://www.intel.com/design/network/products/security/vpn3105y.htm.

[vpne] http://www.intel.com/design/network/products/security/vpn31 lOy.htm.

[vpnf] http://www.intel.com/design/network/products/security/vpn3125y.htm.

[WMSL95] S. Wolter, H. Matz, A. Schubert, and R. Laur. On the VLSI implemen-

tation of the international data encryption algorithm IDEA. In Proceed-

of the IEEE International Symposium on Circuits and Systems,

.. volume 1，pages 397400，1995.

[WPR+99] D. C. Wilcox, L. G. Pierson, P. J. Robertson, E. L. Witzke, and K. Gass.

A DES ASIC suitable for network encryption at lOgbps and beyond. In

Proceedings of first International Workshop on Cryptographic Hard-

ware and Embedded Systems (CHES'99), pages 37-48, 1999.

[Xil99] Xilinx, Inc. Xilinx Libraries Guide, 1999.

[XilOOa] Xilinx. Xilinx Libraries Guide Version 3.1i. 2000.

[XilOOb] Xilinx, Inc. Xilinx Coregen Reference Guide, 2000. Version 3.1i.

69

http://www.cisco.eom/univercd/cc/td/doc/pcat/3000.htm
http://www.cisco.eom/univercd/cc/tcl/doc/pcat/5000.htm
http://www.cisco.com/warp/public/779/largeent/desigri/vpn.html
http://www.intel.com/design/network/products/security/vpn3105y.htm
http://www.intel.com/design/network/products/security/vpn31
http://www.intel.com/design/network/products/security/vpn3125y.htm

[ZCB+94] R. Zimmermann, A. Curiger, H. Bonnenberg, H. Kaeslin, N. Felber,

and W. Fichtner. A 177Mb/sec VLSI implementation of the Intema-

tional Data Encryption Algorithm. IEEE Journal of Solid-State Cir-

cuits, 29(3):303-307, March 1994.

70

Publications

Full Length Conference Papers

• O.Y.H. Cheung, K.H. Tsoi, P.H.W. Leong, and M R Leong. Tradeoffs in

parallel and serial implementations of the International Data Encrytion Algo-

rithm IDEA. In Proceedings of the Cryptographic Hardware and Embedded

Systems Workshop (CHES), pages 333-347. LNCS 2162, Springer, 2001.

• M.P. Leong, O.Y.H. Cheung, K.H. Tsoi, and P.H.W. Leong. A bit-serial im-

plementation of the International Data Encryption Algorithm (IDEA). In Pro-

ceedings of the IEEE Symposium on Field-Programmable Custom Comput-

ing Machines, pages 122-131，April 2000.

• P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M. Kwok, M.Y.

Wong，and K.H. Lee. Pilchard - a reconfigurable computing platform with

memory slot interface. In Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines, pages (to appear), April 2001.

Submitted Papers

• O.Y.H. Cheung, and P.H.W. Leong. Implementation of an FPGA Based Ac-

celerator for Virtual Private Networks. IEEE International Conference on

Field-Programmable Technology (FPT), December 2002.

71

• ： - iA

CUHK L i b r a r i e s

muwMii ~
Q 0 3 T 5 E f i n

