
SOLVING FINITE DOMAIN CONSTRAINT
HIERARCHIES BY LOCAL CONSISTENCY AND

T R E E SEARCH

B Y

H u i KAU CHEUNG HENRY

A THESIS SUBMITTED IN PARITAL FULFILMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF PHILOSOPHY

IN

COMPUTER SCIENCE k ENGINEERING
© T H E CHINESE UNIVERSITY OF HONG KONG

JUNE 2 0 0 2

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a

proposed publication must seek copyright release from the Dean of the Graduate

School.

4

X
T
,

 s
 -

多

f
f
l
z

1

 .
參

摘要

現在我們要解決的是有限域的等級限制性問題。在論文中，我們提出以誤差指標

的槪念再形成等級限制性架構〔CH〕。我們模仿SCSP架構裏對局部的一致性的

槪括看法爲等級限制k 一致性�CH-1-C�下定義及提供等級限制弧一致性〔CH-2-

C又稱爲CHAC�的演算法。等級限制性問題也是最佳化問題。我們說明了如何

結合等級限制弧一致性的演算法與通常的支及吏的演算法成爲一個有限域

的等級限制性解答者〔又稱爲等級限制弧一致性的分支及約束解答者、0我們討

論了現有的有限域的等級限制性解答者之局限。實驗證明我們提出了有效率及穩

定的解答者模範。我們提出的方法在局部的比較與及總體的比較也起了作用，

在這方面的比較之下我們所提出的方法和其他的有限域的等級限制性解答者是有

所不同。另外，我們的解答者能夠支援任何的誤差函數。

Abstract

The task at hand is to tackle constraint hierarchy problems in the finite domain.

In this thesis, we provide a reformulation of the constraint hierarchies (CHs)

framework based on the notion of error indicators. Adapting the generalized

view of local consistency in semiring-based constraint satisfaction problems (SC-

SPs), we define constraint hierarchy k-consistency (CH-A:-C) and give a CH-2-C,

namely constraint hierarchy arc-consistency (CHAC), enforcement algorithm.

CH problems are optimization problems. We demonstrate how the CHAC al-

gorithm can be seamlessly integrated into the ordinary Branch-and-Bound algo-

rithm to make it a finite domain CH solver (Branch-and-Bound CHAC solver).

We discuss the limitation of existing finite domain CH solvers. Experimentation

confirms the efficiency and robustness of our proposed solver prototype. Unlike

other finite domain CH solvers, our proposed method works for both local and

global comparators. In addition, our solver can support arbitrary error func-

tions.

ii

Acknowledgments

I am deeply indebted to my supervisor, Prof. Jimmy Ho-man Lee, for his continu-

ous guidance, support, and encouragement throughout the period of my master's

degree program. I am very grateful for his invaluable advice, which helps me to

finish the work.

My gratefulness further goes to Prof. Lauren Lai-wan Chan for her belief in

my ability to be a researcher. This work could not have been done without her

encouragement.

I would like to express my thanks and appreciation to my external exam-

iner, Prof. Phillippe Codognet, for his thoughtful questions at my defense. His

questions focused on the absence of my own voice in this thesis.

I would like to thank Prof. Ho-fung Leung and Prof. Kwong-sak Leung, who

provided many helpful comments on this research.

I would also like to thank Prof. Armin Wolf, Dr. Bjorn Freeman-Benson, Prof.

Martin Henz, Prof. Roman Bartak, and Dr. Yan Georget for e-mail discussions.

They provided many constructive comments and suggestions on this research.

I cannot thank my mother enough for her support, patience, and love during

the period of my master's degree program and especially during writing of this

thesis.

Last but not the least, I would like to give a special thank you to Terry Sze-

hang Chui for his continuous help and numerous suggestions. I would also like

to thank Bernard Boon-lub Loo, Clotho Wing-yee Tsang, Grace Chi-fun Yuen,

Peter Chun-kit Pang, and Tony Chun-yin Mak. This thesis could not have been

written without their support and encouragement.

iii

Contents

• •

Abstract u

• • •

Acknowledgments ui

1 Introduction 1

1.1 Motivation 1

1.2 Organizations of the Thesis 2

2 Background 4

2.1 Constraint Satisfaction Problems 4

2.1.1 Local Consistency Algorithm 5

2.1.2 Backtracking Solver 8

2.1.3 The Branch-and-Bound Algorithm 10

2.2 Over-constrained Problems 14

2.2.1 Weighted Constraint Satisfaction Problems 15

2.2.2 Possibilistic Constraint Satisfaction Problems 15

2.2.3 Fuzzy Constraint Satisfaction Problems 16

iv

2.2.4 Partial Constraint Satisfaction Problems 17

2.2.5 Semiring-Based Constraint Satisfaction Problems 18

2.2.6 Valued Constraint Satisfaction Problems 22

2.3 The Theory of Constraint Hierarchies 23

2.4 Related Work 26

2.4.1 An Incremental Hierarchical Constraint Solver 28

2.4.2 Transforming Constraint Hierarchies into Ordinary Con-

straint System 29

2.4.3 The SCSP Framework 30

2.4.4 The DeltaStar Algorithm 32

2.4.5 A Plug-In Architecture of Constraint Hierarchy

Solvers

3 Local Consistency in Constraint Hierarchies 36

3.1 A Reformulation of Constraint Hierarchies 37

3.1.1 Error Indicators 37

3.1.2 A Reformulation of Comparators 38

3.1.3 A Reformulation of Solution Set 40

3.2 Local Consistency in Classical CSPs 41

3.3 Local Consistency in SCSPs 42

3.4 Local Consistency in CHs 46

3.4.1 The Operations of Error Indicator 47

V

3.4.2 Constraint Hierarchy /c-Consistency 49

3.4.3 A Comparsion between CHAC and PAC 50

3.4.4 The CHAC Algorithm 52

3.4.5 Time and Space Complexities of the CHAC Algorithm . . 53

3.4.6 Correctness of the CHAC Algorithm 56

4 A Consistency-Based Finite Domain Constraint Hierarchy Solver

59

4.1 The Branch-and-Bound CHAC Solver 59

4.2 Correctness of the Branch-and-Bound CHAC Solver 61

4.3 An Example Execution Trace 64

4.4 Experiments and Results 66

4.4.1 Experimental Setup 68

4.4.2 The First Experiment 71

4.4.3 The Second Experiment 94

5 Concluding Remarks 103

5.1 Summary and Contributions 103

5.2 Future Work 104

Bibliography 107

vi

List of Tables

3.1 A constraint combination 44

3.2 Constraint projections 44

3.3 A table of error indicators 50

4.1 A comparison between Sg and Sc by varying the size of variable

domains for l-b 74

4.2 A comparison between Sb and Sc by varying the size of variable

domains for l-b 74

4.3 A comparison between Sg and Sc by varying the number of vari-

ables for l-b 75

4.4 A comparison between Sb and Sc by varying the number of vari-

ables for l-b 75

4.5 A comparison between Sg and Sc by varying the number of hier-

archies for l-b 76

4.6 A comparison between Sb and Sc by varying the number of hier-

archies for l-b 76

4.7 A comparison between Sg and Sc by varying the size of variable

domains for w-s-b 78

vii

4.8 A comparison between Sb and Sc by varying the size of variable

domains for w-s-b 78

4.9 A comparison between Sr and Sc by varying the size of variable

domains for w-s-b 79

4.10 A comparison between Sg and S � b y varying the number of vari-

ables for w-s-b 79

4.11 A comparison between Sb and Sc by varying the number of vari-

ables for w-s-b 80

4.12 A comparison between Sr and Sc by varying the number of vari-

ables for w-s-b 80

4.13 A comparison between Sg and Sc by varying the number of hier-

archies for w-s-b 81

4.14 A comparison between Sb and Sc by varying the number of hier-

archies for w-s-b 81

4.15 A comparison between Sr and Sc by varying the number of hier-

archies for w-s-b 82

4.16 A comparison between Sg and Sc by varying the size of variable

domains for w-c-b 83

4.17 A comparison between Sb and Sc by varying the size of variable

domains for w-c-b 83

4.18 A comparison between Sr and Sc by varying the size of variable

domains for w-c-b 84

4.19 A comparison between Sg and Sc by varying the number of vari-

ables for w-c-b 84

viii

4.20 A comparison between Sb and Sc by varying the number of vari-

ables for w-c-b 85

4.21 A comparison between Sr and Sc by varying the number of vari-

ables for w-c-b

4.22 A comparison between Sg and Sc by varying the number of hier-

archies for w-c-b

4.23 A comparison between Sb and Sc by varying the number of hier-

archies for w-c-b 86

4.24 A comparison between Sr and Sc by varying the number of hier-

archies for w-c-b

4.25 A comparison between Sg and Sc by varying the size of variable

domains for l-s-b 88

4.26 A comparison between Sb and Sc by varying the size of variable

domains for l-s-b 89

4.27 A comparison between Sr and Sc by varying the size of variable

domains for l-s-b 89

4.28 A comparison between Sg and Sc by varying the number of vari-

ables for l-s-b 90

4.29 A comparison between Sb and Sc by varying the number of vari-

ables for l-s-b 90

4.30 A comparison between Sr and Sc by varying the number of vari-

ables for l-s-b 91

4.31 A comparison between Sg and Sc by varying the number of hier-

archies for l-s-b 91

ix

4.32 A comparison between Sb and Sc by varying the number of hier-

archies for l-s-b 92

4.33 A comparison between Sr and Sc by varying the number of hier-

archies for l-s-b

4.34 A summary of the performance of Sc 94

4.35 A summary of the mean performance of Sc 95

4.36 A summary of the median performance of Sc 96

4.37 A comparison between Sg and Sc by varying the size of variable

domains 97

4.38 A comparison between Sb and Sc by varying the size of variable

domains 98

4.39 A comparison between Sr and Sc by varying the size of variable

domains 98

4.40 A comparison between Sg and Sc by varying the number of variables. 99

4.41 A comparison between Sb and Sc by varying the number of variables. 99

4.42 A comparison between Sr and Sc by varying the number of variables. 100

4.43 A comparison between Sg and Sc by varying the number of hier-

archies 100

4.44 A comparison between Sb and Sc by varying the number of hier-

archies 101

4.45 A comparison between Sr and Sc by varying the number of hier-

archies 101

V

List of Figures

2.1 A subroutine to remove node-inconsistent values 6

2.2 A node-consistency algorithm 7

2.3 A subroutine to remove arc-inconsistent values 7

2.4 An arc-consistency algorithm 8

2.5 A subroutine to test the satisfaction of constraints 9

2.6 A backtracking solver 10

2.7 An enhanced backtracking solver 11

2.8 A complete search tree 11

2.9 A search tree with pruning 12

2.10 A branch-and-bound search tree 14

2.11 An example of constraint hierarchy 23

2.12 Valuations and error values 25

2.13 The DeltaStar algorithm for SR construction 33

2.14 The DeltaStar algorithm for Tr construction 34

3.1 A constraint graph of a CSP 43

xi

3.2 A constraint graph of a SAC CSP 45

3.3 A subroutine to update error indicators 53

3.4 A subroutine to check unary constraints 54

3.5 A subroutine to check binary constraints 54

3.6 The CHAC algorithm 55

4.1 A subroutine to calculate error values 62

4.2 A subroutine to check bound 62

4.3 The Branch-and-Bound CHAC solver 63

4.4 A search tree example 64

4.5 Backtracking of Lua's solver 71

4.6 Backtracking of the Branch-and-Bound CHAC solver 71

xii

Chapter 1

Introduction

1.1 Motivation

The Constraint Hierarchy (CH) framework [13] is a general framework for the

specification and solutions of over-constrained problems, which have no solution

in the classical sense, caused by some of the constraints contradicting others.

Originating from research in interactive user-interface applications [19, 45], the

CH framework attracts much effort in the design of efficient solvers in the real

number domain [22, 46, 34，11，33, 12, 2]. To extend the benefit of the CH

framework to also discrete domain applications, such as timetabling and re-

source allocation, some finite domain CH solving techniques [23, 39, 3, 8, 36

have been proposed. Incremental Hierarchical Constraint Solver (IHCS) [39] is a

finite domain CH solver, but it can only find locally-predicate-better solution [13 •

DeltaStar [23] is also a CH solver, it does not restrict to finite domain and it can

find solution for arbitrary comparators [13, 51]. It is built upon a flat constraint

solver to filter “worse’，valuations recursively from the highest level of the hierar-

chy. However, DeltaStar requires too many memories to store possible valuations

in practice. Lua [36] has proposed a reified constraint approach to solve finite

domain CH for global comparators. This idea is realized by combining reified

1

Chapter 1 Introduction f.

constraint propagation and the ordinary Branch-and-Bound algorithm [42]. This

approach is based on existing technique, which is clever and clean, but reified

constraint propagation is in fact a relatively weak propagation.

Our work is motivated by the demand of a general and efficient finite domain

CH solver. The main idea is to combine consistency techniques and tree search.

Central to the thesis is the notion of constraint hierarchy k-consistency (CH-A;-C),

defined using error indicators which are structures isomorphic to the structure of

a given CH used for storing the error information of the CH problem. We give also

an algorithm for enforcing CH-2-C, namely constraint hierarchy arc-consistency

(CHAC), of a CH problem. While classical consistency algorithms [37] aims to

reduce the size of constraint problems, our CHAC algorithm works by expli-

cating error information that is originally implicit in CH problems. Such error

information is used to represent the "goodness" of a value in the corresponding

variable domain. We also suggest ways of utilizing such extracted information

to help prune non-fruitful computation in the ordinary Branch-and-Bound algo-

rithm, which forms the basis of our finite domain CH solver. Unlike other finite

domain CH solvers, our proposed solver is applicable to arbitrary comparators.

We have constructed a prototype of the solver, and performed experiments on a

set of randomly generated CH problems. Our experiments confirm the efficiency

and robustness of our proposal. In addition, experiments show that our solver

can produce more pruning than Lua's solver in most of the time.

1.2 Organizations of the Thesis

The thesis is organized as follows. In Chapter 2, we gives necessary background

and related work. Since our work is directly related to consistency technique

and tree search, we outline the concepts of the classical notion of arc-consistency

(AC) [37] and the general notion of semiring-based arc-consistent (SAC) [10],

Chapter 1 Introduction L

as well as the ordinary backtracking tree search [41, 27] and the Branch-and-

Bound algorithm [42]. We give a detailed discussion of the over-constrained

problems [25, 47, 44] and in particular CH [13]. We also present the existing

techniques in solving finite domain CH [39, 23, 8，36, 3]. In Chapter 3, we

present an equivalent redefinition of the CH framework using the notion of er-

ror indicators, which is central in the definition of CH-A;-C and the associated

enforcement algorithm in particular for CH-2-C (or CHAC). The correctness of

the CHAC algorithm is established. In Chapter 4, we show how to combine the

CHAC algorithm and the ordinary Branch-and-Bound algorithm into our pro-

posed finite domain CH solver, which is called Branch-and-Bound CHAC solver.

The correctness of our solver is established. We randomly generate problem in-

stances as the benchmark problems for our solver. We provide detail discussion

of our experimental results. In Chapter 5, we summarize our contributions and

discuss some directions for further research.

Chapter 2

Background

This chapter provides the theoretical background to the thesis. The basic defini-

tions of Constraint Satisfaction Problems (CSPs) [38], Over-Constrained Con-

straint Satisfaction Problems [25, 47, 44, 9, 48], and Constraint Hierarchies

(CHs) [13] are presented. We also present the existing techniques [39, 36, 8, 23, 3

for solving CHs.

2.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a framework. Some real-life applica-

tions, such as the N-Queens Problem [1] and the Map Coloring Problem, can be

modeled as instances of CSP. We present the basic definition of CSP based on

Marriott and Stuckey [38]. A constraint domain is a t u p l e � D ， w h e r e V

is a set of values, is a set of operators on D, and is a set of relations on V.

For example, let V be the set of all integers. The usual operators on V are + ,

—,X, and and the usual relations on V are 二 ， > , >, <，and < . A CSP is

a tuple (y, D, C), where V is a set of variables, a domain Z) is a set of variable

domains, and (7 is a set of constraints. A variable is an unknown. Each variable

X eV can be assigned a value from its variable domain D{x), where D{x) C V.

4

Chapter 2 Background ^^

A constraint is a relation among the variables. The constraint domain defines

the syntax of a constraint, because it specifies the operators and relations on V.

An n-ary constraint is a relation among n variables. Hence, an n-ary constraint

c G C is a relation over V . For example, the arithmetic constraint “a; + y 二 2” is

a relation between two variables {x and y). A finite domain CSP is a CSP such

that D is a finite set. We mainly focus on finite domain constraint satisfaction

throughout the thesis.

A valuation for a set of variables V, denoted by 0, is an assignment of val-

ues from the corresponding variable domains to the variables in V. If V 二

{ ” 1 , V n } , then 0 can be written as {vi ^ 心} which means each

variable G V is assigned with a value di G D{vi). A boolean value {true or

false) is returned by applying a valuation 6> to a constraint c, denoted by c6.

When applying a valuation 6> to a constraint c and true is returned, this means

the constraint c is satisfied by the valuation 0. We say that c(9 holds. When

applying a valuation 6* to a constraint c and false is returned, this means the

constraint c is violated by the valuation 0. We say that cO does not hold. Let

vars{c) denotes the set of variables occurring in the constraint c. If is a val-

uation for V {vars{c) C V) and for each c e C such that cO holds, then the

valuation 0 is the solution to the CSP.

A constraint solver (or solver) is an algorithm to find the solution to a CSP.

Since we limit our scope to finite domain (the set P is a finite set), we mainly

present the finite domain constraint satisfaction techniques, finite domain solvers,

in this thesis.

2.1.1 Local Consistency Algorithm

The notion of local consistency [37, 24] deals with the situation when a CSP

contains inconsistency information. Mackworth [37] defines node-consistency,

Chapter 2 Background ^^

arc-consistency, and path-consistency that characterize local consistency of a

CSP. Since maintaining node-consistency and arc-consistency during search is

proven to be worthwhile technique [6，30], we mainly focus on node-consistency

and arc-consistency in this thesis.

The formal definition of node-consistent can be defined as “4 primitive con-

straint c is node consistent with domain D if either \vars{c)\ • 1 or，ifvars(c) 二

{x}, then for each d G D{x), {x ^ d} is a solution of c. A CSP with constraint

ci 八..•八 Cn and domain D is node consistent if each primitive constraint Ci is

node consistent with D for 1 < i < n'' [38]. In other words, a CSP is node-

inconsistent if there exists a value d G D{x) such that the valuation {x d}

violates any unary constraint c {\vars{c)\ = 1). When the node-inconsistent

values are detected, these values should be removed. A node-consistency algo-

rithm [38] is shown in Figure 2.2. The subroutine nc_primitive (in Figure 2.1)

removes the node-inconsistent values from the variable domains by determining

all the unary constraints.

nc_primitive(c, D)
begin

1 if |i;ar«s(c)| 二 1 then
2 let {a::} = vars{c)]
3 — D{x) ^ {d e D{x) I {x G?} is a solution to c};
4 return D]

end

Figure 2.1: A subroutine to remove node-inconsistent values.

The formal definition of arc-consistent can be defined as ''A primitive con-

straint c is arc consistent with domain D if either \vars{c)\ + 2 or，ifvars(c) 二

{x,y}, then for each 4 G D{x), there is some dy G D{y) such that {x 4 4

dy} is a solution of c and for each dy € D{y), there is some 4 G D{x) such that

Chapter 2 Background ^^

nc_algorithm((7, D)
begin

1 let C be a set of constraints { c i , . . . , c^}；

2 for i f - 1 to n do
3 ! _ £) < - nc_primitive(c“ D);

4 return D\
end

Figure 2.2: A node-consistency algorithm.

{x h^ dy} is a solution of c. A CSP with constraint Ci 八 . . .八 c^ and

domain D is arc consistent if each primitive constraint Ci is arc consistent with

D fori <i < n'' [38]. An arc-consistency algorithm [38] shown in Figure 2.4 is

a simple algorithm for illustrating the idea, ac.primitive shown in Figure 2.3 is

the subroutine to remove the arc-inconsistent values from the variable domains.

There exists some sophisticated arc-consistency algorithms such as AC-3 [37],

AC-4 [40], AC-5 [32], AC-6 [5], and AC-7 [6；.

ac_primitive(c, D)
begin

1 if |?;ar<s(c)| = 2 then
2 let {x, y} = vars{c);
3 D{x) f - { 4 e D{x) I 3dy e D{y), {x dy} is a solution to c};
4 |_ D{y) f - {dy e D{y) | 3 4 G D(x), {x 4 d工,y H dy} is a solution to c};
5 return D;

end

Figure 2.3: A subroutine to remove arc-inconsistent values.

Chapter 2 Background ^^

ac_algorithm((7, D)
begin

1 let C be a set of constraints { c i , . . . , c^}；

2 let D' be a domain;
3 repeat
4 D' ^D;
5 for i ^ 1 to n do
6 L D 卜 ac_primitive(Q, D)]

until 二 D.,
7 return D;

end

Figure 2.4: An arc-consistency algorithm.

2.1.2 Backtracking Solver

To determine the satisfaction of a finite domain CSP, we can search through all

the combinations of valuations, because the number of combinations is finite.

Backtracking solver [41, 27] is such an algorithm to find the solution of a given

CSP based on tree search.

A backtracking solver [38] as shown in Figure 2.6 is a depth-first traversal of

a search tree. When a leaf node of the search tree is traversed, a valuation is

generated and the satisfaction of the valuation is tested, true is returned if all

the constraints can be satisfied by this valuation. Otherwise, another valuation

is generated and tested again. Until all the possible combinations are generated

and tested, false will be returned meaning that no solution to the problem.

A backtracking solver is expensive in terms of the running time. Since it

is a complete solver, it has exponential time complexity in the worst case. A

common approach to speedup search is to combine local consistency algorithm

(arc-consistency algorithm) and backtracking tree search. The local consistency

Chapter 2 Background ^^

algorithm is used to refine the domain. Whenever a value is chosen from a

variable domain during tree search, the local consistency algorithm is invoked.

Such an algorithm [38] is given in Figure 2.7. There are many existing systems,

such as clp(FD) [17], SICStus Prolog [49], and CHIP [31]’ provide the efficient

finite domain solver. Besides, there is a C + + library for solving CSP called ILOG

Solver [35]. All of them facilitate backtracking tree search by local consistency

algorithm.

satisfiable((7)
begin

1 let C be a set of constraints { c i , . . . , c ” } ;
2 for i I 1 to n do
3 if vars(ci) = 0 then
4 if a is unsatisiable then
5 |_ return false]

6 return true\
end

Figure 2.5: A subroutine to test the satisfaction of constraints.

We give an example here to illustrate the idea of combining arc-consistency

algorithm and backtracking tree search. For example, given a CSP P, where

y 二 {:r，y,4, D{x) 二 {1 ,2 ,3} , D{y) 二 {1，2}，D{z) = {1 } , and C 二 {o; 口’:r g

y，工 + y + 么 g 3}. It is possible to construct a complete search tree as shown

in Figure 2.8. All the possible valuations {6>i, 6>2,6>3,6>5,6>6} are generated.

The solution to P is {6^2,沒4}. If an arc-consistency algorithm is invoked before

each variable assignment as described in enhanced_backtracking_solver (in

Figure 2.7), then it is possible to find the solution to P by traversing part of a

complete search tree as shown in Figure 2.9. Before each variable assignment

to take place, nc—algorithm and ac—algorithm are invoked (in Figure 2.7) in

order to remove inconsistent values. Before variable x is assigned to a value, node-

Chapter 2 Background ^^

backtracking一solver(C, D)
begin

vars{C) is a set of variables occurring in C
1 if vars{C) 二 0 then
2 [_ return satisfiable((7);

3 else
4 choose X G vars{C)]
5 for each d G D{x) do
6 let C, be obtained from C by assigning d to x]
7 if satisfiable(C') = true then
8 if backtracking_solver(C^ D) 二 true then
9 [_ return true]

10 return false;

end

Figure 2.6: A backtracking solver.

consistency and arc-consistency algorithms are invoked. The value 3 G D{x) will

be removed when applying nc_algorithm to P, because {x 3} violates the

constraint < 2." Therefore, the branch to node x 3 and its subtree are

pruned as shown in Figure 2.9. Similarly, the left subtree of node x ^ 2 is

pruned, because {y i-)̂ 1} cannot find any support from variable domain D{x) to

satisfy constraint < y” when ac_algorithm is invoked.

2.1.3 The Branch-and-Bound Algorithm

We have presented the definition of CSP. Given a CSP, it is possible to determine

whether there exists a valuation that satisfies all the constraints or not. The

solution to the CSP is then the set of valuations that satisfies all the constraints.

It is possible to define the “best” (or optimal) solution to the CSP. Finding the

"best" solution to the CSP is called an optimization problem [38]. This requires

Chapter 2 Background ^^

enhanced一backtracking一solver((7, D)
begin

1 D ^ nc_algorithm((7, D)]
2 D — ac_algorithm((7, D)]
3 if D contains an empty variable domain then
4 [_ return false;

5 else if D contains all singleton variable domain then
6 let 0 be the valuation corresponding to Z);
7 if CO holds then
8 |_ return D\

9 else
10 |_ return false;

11 choose X such that \D{x)\ > 2;
12 for each d G D{x) do
13 let D' be a domain;
14 D' — enhanced_backtracking_solver(CA (a: 二 d), D)]
15 if D' + false then
16 return D';

17 return false;
end

—

Figure 2.7: An enhanced backtracking solver.

T 1 :.T 2 X J-̂ 3

y ̂ I y 2 1/ i-4 I 1/ 2 1/ 1 1/ 2

g 1 2： ^ I .S Ht̂ 1. .SJ ! S Ĥ 1 S； 1

• • 04 ^B h

Figure 2.8: A complete search tree.

Chapter 2 Background ^^

… � ^ — i
it 1 2 B !

； 7 K . • ^ id …：

1/ ； 1 2 I i 1 I 2 I I I ¥ ^ 2 i
2 S •••••• :

n r n z ! i z i
I •:. ^ I J :

JJ ^ 1 I 2、1 I JG ^ 1 I ^ 1 I 2 ̂ 1 I J 2 ̂ 1 I
I I i ！ I j

it h h h h

Figure 2.9: A search tree with pruning.

defining some ways to compare valuations in the given CSP. For example, given a

CSP，where V = {x, y}, D{x) = {1,2,3}, D{y) = {1,2,3}, ^nd C = {x > y,y ^

2}. It is possible to define the “best” solution such that the value of "a： +

should be the minimum. There are two valuations, 6>i 二 2 , " 1} and

—3, y 4 1}，satisfy all the constraints. Hence, {6>i, 6̂ 2} is the solution to

the CSP, but the “best” solution should be {Oi} (the minimum value of "a: + y,,

should be "2 + 1” instead of "3 + 1”).

The Branch-and-Bound algorithm [42] was originally proposed for feature

subset selection or combinatorial optimization. “The problem of feature subset

selection is to select a subset of (m) features from a larger set of (n) features

or measurements to optimize the value of a criterion over all subsets of the size

m” [42]. However, it is also possible to apply the Branch-and-Bound algorithm

for constraint optimization problem. The Branch-and-Bound algorithm is based

on backtracking tree search. It focuses on finding an optimal solution and it

guarantees global optirnality under the assumption of monotonicity [42]. To

apply the Branch-and-Bound algorithm in constraint optimization problem, it is

necessary to define a function f to evaluate a valuation such that the input of f

is a valuation and the output of / is a real number over < . Given a CSP, where

V = {xi,.. for all € D(Xi), the function f should be monotonic such

that

Chapter 2 Background

f{{xi 4 i }) < f{{xi / ({ ^ i 4 " …，Z n

Let B be a lower bound which is the current minimum evaluation of a val-

uation. If f{{xi ^ (k”...，Xk 4 4 J) > where A; < n, then f{{xi ^

...，a^n dxn}) > B. The bound B will be updated if a leaf node is reached

and the evaluation returned by f to the valuation for this leaf node is less than

B.

When an evaluation returned by / to a valuation for any node (in the search

tree) is larger than the bound B, then each evaluation returned by f to all val-

uations for nodes that are successors of that node is also larger than B (/ is

monotonic). Hence, it is not possible to find an optimal solution in the subtree

under that node. This comparison is called a check hound operation. By apply-

ing the Branch-and-Bound algorithm, it is possible to find an optimal solution

without exhaustive search.

To illustrate the idea of the Branch-and-Bound algorithm, we use the same

example in Section 2.1.2. In addition, the function f is + y.” The bound B

is initialized to oo. At each step of traversing the search tree as shown in Fig-

ure 2.10, the function f is applied to a valuation corresponding to the traversed

node. The returned evaluation is compared to the bound B. Since B 二 oo,

no pruning occurs before node is traversed. When node X is traversed, the

corresponding valuation Oi violates the constraint + y + ^ + 3.” Therefore,

Oi is not a solution to the problem. The bound B remains unchanged {B = oo).

No pruning occurs before node Y is traversed. When node Y is traversed, the

corresponding valuation O2 satisfies all the constraints. Hence, 62 becomes the

current “best” solution to the problem. The bound B is updated to 3, because

二 3. No pruning occurs before node Z is traversed. However, when node

Z is traversed, the corresponding valuation is {x 2,y ^ 2}. The evaluation

returned by f{{x i-> 2,y Ĥ 2}) is 4. It is larger than the current bound B 二 3.

Chapter 2 Background H.

Therefore, the successors of node Z is pruned.

z 气.、.
j/^ Ŝ̂ ^ ••…二…•…� � ：“ .IS......

Y 1 I 1 y ^ 1 I F 2 I y ^ 1 | | ：^ 2 |
s ‘

；T y 丨 序 i i
^ 、 - :•• ! : ： ：

g 1 g 1 i s 1 i 1 g 11 h容；巧 11 I ̂ ^ � I
I I ： ''

&2 移 4 4 %

Figure 2.10: A branch-and-bound search tree.

2.2 Over-constrained Problems

Classical CSPs are sometimes inadequate in modeling certain real-life applica-

tions [25, 44]. If the real problem to be modeled is over-constrained, then it is

impossible to find a solution to satisfy all the constraints if modeled as classi-

cal CSP. Such problems are called over-constrained problems. Given an over-

constrained problem, we can get an answer for the problem if we are willing to

"weaken" some of the constraints [25]. Therefore, it is more suitable to use alter-

native approaches to model over-constrained problems instead of using classical

CSP. Some alternatives have been proposed to model over-constrained prob-

lems. They are weighted constraint satisfaction problem (weighted CSP) [25],

possibilistic constraint satisfaction problem (possibilistic CSP) [47], fuzzy con-

straint satisfaction problem (FCSP) [44], partial constraint satisfaction problem

(PCSP) [25], and constraint hierarchy (CH) [13]. Since we mainly work on CH

in the research, we will present CH in more detail in Section 2.3. We also present

two meta-frameworks: semiring-based constraint satisfaction problem (SCSP) [9

and valued constraint satisfaction problem (VCSP) [48] that generalize classical

CSP and over-constrained CSPs into a generic framework.

Chapter 2 Background ^

2.2.1 Weighted Constraint Satisfaction Problems

Weighted CSP is a framework in which the constraints are not equally important.

“Preferences can be reflected in the branch and bound metric by assigning weights

to constraints” [25]. In this framework, a weighted constraint c is a constraint

associated with a weight w � w h i c h is an element of a totally ordered set W such

that each element Wc e W is ordered by a relation <. If the weight of another

weighted constraint c' is Wc> such that Wc < w�', then d is more "important" than

c. A weighted CSP is a tuple (V, D, C^), where V i s a set of variables, D is a set of

variable domains, and C ĵ is a set of weighted constraints. The satisfaction degree

of a valuation to a weighted CSP is given by the sum of weights of all violated

constraints. A solution to a weighted CSP is defined as the set of valuations such

that their satisfaction degrees are the minimum. Maximal constraint satisfaction

(MAX CSP) [25] is a special instance of weighted CSP, in which all the weights

of the weighted constraints are equal to one. We seek a solution that satisfies as

many constraints as possible.

2.2.2 Possibilistic Constraint Satisfaction Problems

In possibilistic CSP, a possibility distribution TT over labelings (or valuations) is

used to represent the preferences among labelings [47]. Two measures over con-

straints, possibility measure U^ and necessity measure N沉,are defined in terms

of possibility distribution TT. The possibility (or necessity) measure represents

the bound on possibility (or necessity) measure of constraints. If the necessity

bound on a constraint c is less than the necessity bound on another constraint c'

(iV^(c) < then the satisfaction of c' is preferred to the satisfaction of c.

By applying the measures, it is possible to define a set of “most possible" valua-

tions satisfying the bounds. Possibilistic CSP is a tuple�V, D, Cnv), where V is a

set of variables, D is a set of variable domains, and Cnv is a set of necessity-valued

Chapter 2 Background ^^

constraints. Each necessity-valued constraint is a pair (c, a) , where c is a classical

constraint and a G [0,1]. The necessity-valued constraint (c ,a) represents that

the necessity bound of c is at least a. Therefore, a necessity-valued constraint

(c, 1) represents that c must be absolutely satisfied and a necessity-valued con-

straint (c, 0) represents that c is always satisfied. A necessity-valued constraint

(c, a) is satisfied by a possibility distribution TT if and only if N^ induced by TT

such that N^{c) > a. The possibilistic CSP is satisfied by a possibility distribu-

tion TT if and only if N沉 induced by tt verifies V(c, a) G Cnc, N^{c) > a. “Thus a

possibilistic CSP has not a set of consistent labelings, but a set of possibility dis-

tributions on the set of all labelings，，[47]. Solution to possibilistic CSP does not

require an optimal satisfaction of all the necessity-valued constraints, but it re-

quires finding a possibility distribution in order to satisfy all the necessity-valued

constraints.

2.2.3 Fuzzy Constraint Satisfaction Problems

“In the case of a fuzzy constraint，different tuples satisfy the given constraint

to a different degree” [44]. When a valuation, denoted by v, applies to a fuzzy

constraint c, a satisfaction degree (from an interval [0, 1]) is returned, denoted

by c{v) e [0,1]. We say that a valuation fully satisfies a fuzzy constraint if

the satisfaction degree is 1. A valuation fully violates a fuzzy constraint if the

satisfaction degree is 0. A FCSP is a tuple where V is a set of

variables, is a set of variable domains, and Cj is a set of fuzzy constraints.

The solution to a FCSP is defined by a degree of joint satisfaction in terms

of the satisfaction degree of each individual fuzzy constraint. The degree of

joint satisfaction indicates the goodness of a valuation in satisfying the fuzzy

constraints globally. There are three different ways in defining the degree of

joint satisfaction. The first definition is based on the conjunctive combination

principle. Given a list of fuzzy constraints (c i , . . . , cn) and a valuation v, Cmin is

Chapter 2 Background ^

a degree of joint satisfaction indicating the minimum of the satisfaction of each

individual fuzzy constraint as

Cmin{{ci,...,CN),v) - min{ci{v^ I i e {l，...，iV}}.

The second definition is based on the productive combination principle. Given

a list of fuzzy constraints (c i , . . . , cn) and a valuation v, Cpro is a degree of joint

satisfaction indicating the product of the satisfaction of each individual fuzzy

constraint as

The third definition is based on the average combination principle. Given a

list of fuzzy constraints (Ci , . . . , cn) and a valuation v, Cave is a degree of joint

satisfaction indicating the average of the satisfaction of each individual fuzzy

constraint as

Based on the three types of the degree of joint satisfaction: Cmin, Cpro, and

Cave, the best solution to a FCSP can be defined as if the degree of joint satisfac-

tion of all the fuzzy constraints is the maximal possible. By applying different

types of the degree of joint satisfaction {Cmin, Cpro, and Cave), we can obtain

different types of best solution.

2.2.4 Partial Constraint Satisfaction Problems

“Partial constraint satisfaction involves finding values for a subset of the variables

that satisfy a subset of the constraints” [25]. Therefore, it is possible to "weaken"

Chapter 2 Background ^^

some of the constraints to permit additional acceptable valuations. A problem

space is a partially ordered set {PS,<). PS is a set of classical CSPs with a

partial order < over PS, Given two classical CSPs P and P\ P < P' holds if

and only if the solutions to P' is a subset of the solutions to P. In addition, if the

solutions to P' is a subset of the solutions to P and the two solution sets are not

equal, then we say that P is “weaker” than denoted by P < P丨.There are four

operations to weaken a classical CSP: enlarging a variable domain, enlarging the

domain of constraint, removing a variable, and removing a constraint. Weakening

constraints mean creating a different problem. The solution to a PCSP should be

close to the original in the sense of having a solution set similar to the original.

PCSP can be defined in a more formal way. A PCSP is a tuple (P, {PS, <

)，M人N, S)), where P is an initial over-constrained CSP, {PS, <) is pair of the

problem space and the partial order over PS respectively, M is a metric on PS

(a distance function over PS), and {N, S) is a pair of the necessary solution

distance and the sufficient solution distance respectively. Different metrics are

possible, but the obvious one is derived from the problems space. One possible

metric M on two problems P and P' is that M[P, P') returns the number of

solutions not shared by P and P'. When P' < P then M measures how many

solutions have been added by weakening P to P'. A solution to a PCSP is

defined as the solution to a weaken problem P'�P' is the relaxation of initial

over-constrained problem P from the problems space) where M(P, P') < N. A

solution is sufficient if M(P, < S. When the distance between P and P is

the minimal over PS, then the solution is an optimal solution.

2.2.5 Semiring-Based Constraint Satisfaction Problems

SCSP is a general framework for constraint satisfaction and optimization [9 .

This framework is based on a semiring structure. It is possible to define dif-

ferent semirings in order to provide different instances of SCSP. Some of the

Chapter 2 Background ^

previous discussed frameworks, such as classical CSP, weighted CSP, and FCSP,

are possible instances. In SCSP, a set of semiring values specifies the values

to be associated with each tuple of values of the variable domain. In addi-

tion, there are two semiring operations, additive operation + and multiplicative

operation X, to model constraint projection and constraint combination respec-

tively. A c-semiring (it is a semiring and "c" stands for "constraint") is a tuple

(A, + , X , 0 , 1 � . A is a set of elements (or semiring values) such that 0,1 e A. 0

is the minimum element in A meaning that it is the “worst，，element in A. 1 is

the maximum element in A meaning that it is the "best" element in A.

An additive operation + is an operation over A with the following properties:

• + is a closed operation over A 分 Va, beA-^a-\-beA

• + is a commutative operation over A Va,6 G A,a-\-b = b-\-a

• + is an associative operation over A O Va, 6 G A, a + (6 + c) 二 (a + 6) + c

• + is an idempotent operation over A^^ae A, a-\-a=^a

• 0 is an unit element V a e A , a + 0 二 a二 0 + a

• 1 is an absorbing element a + 1 二 l = l + a

In the original formulation, a partial ordering over A, denoted by <5, is

defined by the additive operation. Such a partial ordering is defined as Va, & G

A, a g s 6 a + 6 二 6. In other words, a <s b means b is "better" than a. This

partial ordering is used for determining the "best" solution in this framework.

A multiplicative operation x is an operation over A with the following prop-

erties:

• X is a closed operation over A Va, beA-^axbeA

Chapter 2 Background 洲

• X is a commutative operation over A Va, b6A,(ixb 二 bxa

• X is an associative operation over A Va, b e A^a x {b x c) = {a x b) x c

• X is an intensive operation over A \/a e A^a x b <s a

• 1 is an unit element 分•aeA,axl = a 二 I x a

• 0 is an absorbing element A, ax0 = 0 = 0xa

• X distributes over + Va，6, c 6 A, a X (6 + c) 二 (a X 6) + (a X c)

A constraint system is a tuple CS = where is a c-semiring, D

is a set of variable domains, and V is a set of variables. A constraint over CS

is a tuple {def, con), where con is called the type of the constraint such that

con C y , and def is called the value of the constraint and it is a mapping such

that def A, where k is the cardinality of con. A constraint problem P

over CS is a tuple (C, con'), where C is a set of constraints over CS and con'

is called the type of the problem such that con' C V. X is used to combine the

semiring values of the tuples of each constraint in order to get the semiring value

of a tuple for all variables. + is used to obtain a semiring value of the tuples of

a constraint in the type of con丨(the type of the problem).

Two operations, combination (g) and projection Jj- over constraints, are used

to model constraint combination and constraint projection respectively. Given a

constraint system CS = (5, D, V), where V is totally ordered via an o r d e r i n g � .

Consider any A:-tuple t 二 {h,...,tk) of values of D, two sets of variables W =

{u/ i , . . .，u;: } and W = { w i , . . . , Wk} such that C VK C V, where w � < Wj

and w'-�w,j if i < j. Then the projection of t from W to denoted by t is

defined as a m-tuple t丨={t'” … , t ' J with = tj if 二 WJ, Then, combination

is defined as follows. Given a constraint system CS = {S, D, V) , where S =

� A , + , x,0，l〉，and two constraints Ci = {defi.corii) and C2 = {def2,con2) over

CS, their combination, denoted by Ci (g) C2, is the constraint c 二 {def, con)

Chapter 2 Background ^^

with con = com U 00712, and def{t) = defi{t i^Zj x deh�t Since x

is commutative and associative, (g) is also commutative and associative. Hence,

we can extend it to more than two arguments. For example, if C is a set of

constraints where C 二 { c i , . . . , c n } , we can combine all the constraints by (g),

written as Ci (g) .. • � cv This can be denoted by a notation (g) C. On the other

hand, projection is defined as follows. Given a constraint system CS 二�S, D, V),

a constraint c 二�c/e/, con) over CS, and a set of variables W such that W CV,

the projection of c over W, denoted by c is the constraint {def'.con') over

CS, where con/ = W H con and def{f) 二 以c仏。。„="}而/⑴.

It is possible to define the solution to a SCSP by combination and projection.

In order to find the solution to SCSP, the first step is to combine all the con-

straints into a single constraint. Then, the combined constraint is projected over

the variables in the type of the problem. Since def can be used to determine the

satisfaction degree of a constraint over con, we can compare the semiring value

of each tuple of the combined constraint, by partial ordering <5, in order to get

the best solution to the problem. Formally, the solution to SCSP is defined as

follows. Given a SCSP problem P 二 (C, con') over a constraint system CS, the

solution to P is a constraint defined as Sol{P) 二（0 C) Jjcon'.

Given an SCSP P = (C, con'). Assume there is only one unary constraint

c^ for each variable x G con'. Also, assume there is only one binary constraint

c^y for variables x,y G con'. P is semiring-based arc-consistent (SAC) [10] if

\/x G con,八 Vy G con' — {x} t\ c工二 { c 工 � c 巧 ® c j J；工.The intuitive meaning

is that the semiring values of constraint c工 is given by the semiring values of

constraints c^, ĉ ŷ and Cy.

Chapter 2 Background ^^

2.2.6 Valued Constraint Satisfaction Problems

VCSP is a general framework to encompass most existing CSP extensions [48 •

The frameworks such as classical CSP, weighted CSP, and possibilistic CSP can

be casted to VCSP. Each constraint in this framework is annotated with an el-

ement called valuation to represent the degree of its violation. The meaning

of valuation in VCSP is different from our previous definition (we define a val-

uation to be an assignment of values from variable domains to corresponding

variables). Hence, we will simply use assignment to represent an assignment of

values from variable domains to corresponding variables. Based on an algebraic

framework called valuation structure [48], it is possible to define VCSP. A valu-

ation structure is a tuple {E, where is a set such that the elements in

the set are called valuations. Valuations are totally ordered by >• with a max-

imum valuation, denoted by T, and a minimum valuation, denoted by 丄 . ®

is a commutative, associative, and closed binary operation on E, A VCSP V

is a tuple�X,D,C,S ,Lp) , where X is a set of variables, D is a set of variable

domains, C is a set of constraints, S 二、E, >-) is a valuation structure, and (F

is a mapping such that ip : C E and (p{c) is called the valuation of constraint

c. An assignment A of values from variable domains to corresponding variables

Y C X IS evaluated by combining the valuations of all the violated constraints

using Given a VCSP V =�X，D,C,S,中、and an assignment A of the vari-

ables ofYcX, the valuation of an assignment is denoted by V r (A) such that

V-p(A) = ®{(/:>(c) I c G C 八 CV A A violates c}. The solution to VCSP

is an assignment A with minimum valuation.

Chapter 2 Background ^^

2.3 The Theory of Constraint Hierarchies

We have presented some existing frameworks to model over-constrained con-

straint satisfaction problem. In this section, we present a framework called con-

straint hierarchy (CH) [13] which is also used to model over-constrained con-

straint satisfaction problem. Let P be a constraint domain. A variable a: is an

unknown that has an associated variable domain B(x) C D, which defines the

set of possible values for x. An n-ary constraint c is a relation over V . A labeled

constraint is a constraint c with a strength 5 G { 0 , . . . , A;}. The strengths are

totally ordered. Constraints with strength s = 0 are required constraints (or

hard constraints) and those with strength 1 < 5 < A; are non-required constraints

(or soft constraints). The larger the strength, the weaker the constraint is. In

addition, each labeled constraint is associated with a weight w. A constraint

hierarchy ^ is a multiset of labeled constraints. The symbol Hi denotes a set of

labeled constraints with strength s = i. Hq, the required level, denotes the set of

required constraints which must be satisfied. the non-required level,

denote the sets of non-required constraints which can be violated but should be

satisfied as much as possible.

We use an example in Figure 2.11 to explain CHs in more detail. There are

three levels in the constraint hierarchy H. There is no required constraint in the

required level Hq. However, there are two strong constraints cj and c] in HI and

three weak constraints cj, eg, and c赢 in H2.

丨 Variable V

[D ^ a i n n D{x) = {1 ,2 } , D{y) = {1 ,2 } , Djz) = {1 ,2 }
Hierarchy H | 丑o 二 0,

Hi = {c\:z = l{wl = 0.3), c\:y^z = 3{wl = 0.5)}，

- {c? ： X + y ^ 2{wl = 0.8), 4： y = 2{wl 二 0.5),
4： xi-y^z < 5{wl = 0 .6)}

Figure 2.11: An example of constraint hierarchy.

Chapter 2 Background ^^

A valuation = { ” i i"̂ t/i, •.., ”n 4 ^̂(几} for a set of variables {”i，...，Vn}

means that each Vi is assigned the value di where di G D{vi). Let c be a constraint

and 0 a valuation. The expression cO is the boolean result of applying 0 to c.

We say that cO holds if the value of cO is true. An error function e(c没)measures

how well a constraint c is satisfied by valuation 0. In classical CSP, an error

function is also useful for local search, such as the Tabu Search algorithm [26

and the Adaptive Search algorithm [18]. The error function returns non-negative

real numbers and must satisfy the property: e{cO) 二 0 c6> holds. A trivial

error function is an error function such that e{cO) 二 0 if holds; otherwise,

e[c9) = 1. A metric error function is an error function such that e{c6) = 0 if

cO holds; otherwise e{cO) > 0. The value e{cO) returned by an error function ic

an error xmlue, indicating how nearly a constraint c is satisfied by a valuation 0.

We use vars{c) (or vars{0)) to denote the set of all variables in constraint c (or

valuation 0).

The possible valuations for the variables {x,y,z} are 6 ’̂ 6*2，O3, O4, 6*5, 0q,没7，

and Og. Figure 2.12 gives the error values of all valuations in the complete search

tree using the trivial error function. The error values of valuation Oi can be

grouped into a tuple〈〈〉，�e(ci<9i), e(46>i)� ’�e(cMi), e(c_(9i)，e(c计 1) � � . Since, for

example, Oi satisfies c| but violates cj, e(c}6'i) == 0 and e{clOi) = 1 respectively.

We can obtain the error values of other valuations similarly.

A solution set 5 to a CH is a set of valuations. Each valuation in S must

satisfy all the required constraints in HQ. In addition, each valuation should

satisfy the non-required constraints as much as possible with respect to their

strengths. To formalize this, we need to obtain a valuation set Sq in which each

valuation satisfies all the constraints in HQ. Then, we compare every valuation in

Sq and eliminate all potential valuations that are worse than some other potential

valuations using comparator predicate better as following.

Chapter 2 Background ^

^ ^ ^ ^ ^ ^ ^

TTTTI s 2 « i i| p^21 卜 i |
&� 4 h h 4 h h

Valuation Trival error values || Valuation Trival error values
� � � � , � 0 , 1 � , � 1 , 1 , 0 � � I I h � � � , � 0 , 1 � , � 0 ’ 1 , 0 � �

以 2 〈〈〉,〈1,0〉，〈1，1，0〉〉 ^ 〈〈〉,〈1,0〉，〈0，1，1〉〉

一 〈〈〉,〈0，0〉,〈0,0,0)) — 07 〈0,〈0,0〉,〈0’ 0，1))
~ ~ � (0,(1,1),(0,0,1)) II 知 〈〈〉，〈1,1�’�0,0,1��

Figure 2.12: Valuations and error values.

5̂ 0 二 Vc G Ho cO holds}, and

S = {0 \ 0 e So A'^cr e So ^better{a, 6>, H)}.

In the original formulation of CH, two kinds of comparator are defined. The

first comparator is locally-better {l-b), each constraint is considered in H indi-

vidually. We can determine whether a valuation 0 is locally-better than another

valuation a. 0 is locally-better than cr if the error after applying 6 is equal to the

error after applying a for each constraint through some level k - 1, and there

exists at least one constraint the error after applying 0 is strictly less than and

less than or equal for the rest. To formalize this, locally-better can be defined as

follows.

locally-better a,丑)三 3 A ; � 0 such that

V i G { l , . . . , A : - l } , V j 9 G Hi, e{pO) = e{pa)

h3q G Hk,e{qe) < e{q(T)

AVr eHk,e{re) < e(rcr).

The rest of the comparators are global comparators. A schema called globally-

better {g-b) can be defined for global comparators which are parameterized by

I

j

i
Chapter 2 Background ^

I a function g that combines the errors of all the constraints Hi at level i. The

intuitive meaning of globally-better is to compare valuations by level. A valuation
i
i 0 is globally-better than a valuation cr if the combined errors of the constraints

after applying 0 is the same as the combined errors of the constraints after

applying a for each level through some level k - I, and it is strictly less at level

k. It is possible to define globally-better in a more formal way as follows.

globally-better {0, cr, H,g)三 3k�Q such that

/\g{0,Hk) < g[cr,Hk).

Three global comparators can be defined using globally-better and different

… combining functions g: weighted-sum-better (w-s-b)，worst-case-better {w-c-b),

and least-squares-better (l-s-b). The weight for constraint p is denoted by Wp

where the weight is a positive real number.

weighted-sum-

better a, H)三 globally-better�0,cr,

where g{r, Hi) = 舰 Wpe(pT),

worst-case-better {0, cr，H)三 globally-better, cr,

where g[丁, Hi)三 max{u;pe(pT) | p G Hi}, and

least-squares-better [Q, a, H)三 globally-better {0, a,

where g{T, Hi)三 J^peH,切

2.4 Related Work

Many efficient algorithms designed for real domain CHs have been proposed [22,

46, 34，11, 33, 12, 2]. Since real domain CH solvers have been successfully

I
Chapter 2 Background ^

applied to problems in computer graphics such as geometric design and user-

interface construction [19, 45]. Local propagation [50] is a widely used technique

to solve real domain constraint hierarchies [34，33]. “Local Propagation is an

\ efficient constraint satisfaction algorithm that takes advantage of potential locality

of constraint systems. It is often used in graphical user-interfaces (GUIs) to solve

constrain systems that describe structures and layouts of figures，，[34]. It is a

linear process to detect the values of variables by determining the constraints [50 .

For example, given two constraints “y : 1” and “a; = y + 2," it is possible to

detect the value of variable y by determining the constraint “y = 1.” The variable

y can be eliminated and replaced by 1 in the constraint “:r 二 y + 2." Hence, we

can repeat the process to determine the value of variable x by determining the

constraint ''x 二 (1) + 2.” Finally, it is easy to detect that the value of variable x

is 3. Therefore, a core step in local propagation is to determine the fixed value of

a variable by a constraint. Variable y has a fixed value of 1 when determining the

constraint “y 二 1" and variable x also has a fixed value of 3 when determining

the constraint "x 二 y + 2.” Many real domain CH solvers, such as DeltaBlue [22],

SkyBlue [46], DETAIL [34], Indigo [11], Generalized Local Propagation [33], and

Ultraviolet [12], apply local propagation.

An existing technique, the Simplex algorithm [43], for solving real domain

CSPs is also applicable for solving real domain CHs, in particular for graphical

user interface (GUI) applications. The Simplex algorithm is applied for solving

optimization problem in classical CSPs. An objective function is used to guide

the search for the global optimal solution. However, the original Simplex al-

gorithm cannot be applied for handling GUI applications directly for two main

: reasons. First, the Simplex algorithm cannot solve similar problems efficiently,

such as moving an object with a mouse, adding a constraint, or removing a

constraint. Second, it requires all variables to be non-negative that is not the

I case in GUI applications. The Cassowary and QOCA algorithms [14] adapt the

j

Chapter 2 Background ^^

Simplex algorithm for solving real domain CHs by introducing special objective

functions for different comparators. A pair of non-negative variables, and

(̂ ―, is introduced to indicate the deviation of a desired value from a variable for

the Cassowary algorithm. For locally-better and weighted-sum-better, an objec-

tive function is formed by adding all these pairs of non-negative variables. For

least-squares-better, an objective function is formed by adding the square of the

errors of each labeled constraint. Therefore, the QOCA algorithm is designed for

solving the convex quadratic programming problem. In the following, we focus

on the techniques in solving finite domain CHs.

2.4.1 An Incremental Hierarchical Constraint Solver

All incremental hierarchical constraint solver (IHCS) is "an incremental method

to solve hierarchies of constraints over finite domains, which borrows techniques

developed in intelligent backtracking, and finds localhj-predicate-better solutions

[locally-bettcr using (riuial error function]'' [39]. Given a hierarchy / / , a config-

uration 4) of H is a triple (.45, RS,US), where .45 is an active store which is

a set of consistent constraints, RS is a relaxed store which is a set of relaxed

constraints, and US is an unexplored store which is a set of constraints "queu-

ing" for activation. In IHCS a final configuration is a configuration of a given

hierarchy II such that 1) the active store AS is consistent denoted by /1‘5'1/入丄

designates a network consistency algorithm such as arc-consistency algorithm), 2)

Vc e RS, AS U { c } h-A'丄’ and 3) US = 0. A locally-predicaie-hetter comparator

for configurations is defined such that 少 = { A S , RS, US) is locally-predicate-

better than = {AS',RS',US') if and only if there exists some level k � 0 ,

NI < k, |(.45.U[/5.)| 二 |(A?' ,U/7‘;",）| and \{ASKUUS,)\ > \{AS'KU U S ' B y

using this comparator for configurations, it is possible to define the best configu-

ration of a given hierarchy H. The best configuration is a final configuration $

if there is no other final configuration 少'which is locally-predicate-better then

Chapter 2 Background ^^

Applying IHCS, we can transform a given hierarchy H (corresponding to a

CH) into a set of best configurations (corresponding to a set of classical CSPs).

Then, it is possible to transform a CH P into a set of classical CSPs { P i , . . . , Pn}

such that S is the solution to P and SI is the solution to PI and 三 U •.. U Ŝ n.

For example, a given CH P has two non-required levels, HQ = {^1,02}, HI 二

{C3,C4}, and H2 = {c^}. The solution to is = {<9i,没2}. Valuation Oi

satisfies Ci, C2, C3, and C5, another valuation 63 satisfies ci, C2, C4, and C5. If we

can transform the hierarchy H to Ci = { c i , C2, C3, C5} and C2 = {ci，C2, C4, C5}

(best configurations), then we can find Oi and O2 simply by solving Ci and C2

respectively.

2.4.2 Transforming Constraint Hierarchies into Ordinary

Constraint System

Lua [36] proposed a method to transform constraint hierarchy into ordinary

constraint system. In this approach, an error value (a value returned by error

function) is related to a special type of constraint called reified constraint (or

error constraint) and it is used to replace the error function. A constraint c is

associated with a variable q where e � > 0. This variable represents the degree of

satisfaction of constraint c and this formulation preserves the original meaning

in the theory of CH {cO holds 分 Q = 0). For example, given a constraint c

and a variable ê - It is possible to replace the trivial error function by using

reified constraint such as Reified�c, e �) provided by many CLP systems. A value

0 will be assigned to Cc if the constraint c is satisfied, or else, a value 1 will be

assigned to Q. Since it is possible to use reified constraint and variable Cc to

represent the error function and error value respectively, it is possible to use an

error vector Ec to store all the combined error values of the constraints. The

form of error vector Ec is a tuple of variables,�Ec". . .，^Cn) where each E d

represents the combined error value of the constraints in Ci (or Hi). Intuitively,

Chapter 2 Background ^

Ec, represents the combined error values returned by combining function g in the

original formulation in CH. For example, it is possible to replace the combining

function g of weighted-sum-better by an error combining constraint such that

Ec, = � , c and Wc is the weight of constraint c. It is easy to transform

the other combining functions {g for worst-case-better and least-squares-better)

in a similar way. By using different error combining constraint, it is possible to

define globally-better as follows.

globally-better{Ec,E'c) = b{Ec, E'c, 1)

b[Ec, E'c, i) 二 false, if z > n,

b{Ec,E'c,i) 二 Ect < E'c,八[Ect = E'c, — l)[Ec,E'c,i + 1)), > n.

However, it is unclear how the locally-better comparator can be implemented

using this approach.

2.4.3 The SCSP Framework

Bistarelli et. al [8] shows how a c-semiring can be constructed to model all

instances of globally-better. In other words, this approach exploits the fact that

CH is an instance of the SCSP framework [9]. Let e denotes the largest possible

error value returned by error function e for any labeled constraint c in hierarchy

H and valuation 6>, where E E E, E = {0} U R-^ U { oo } . The error combining

function is defined as g � ,认 = ^{{wc{^p{e{cO))) \ c G Hi}), where </> is a

mapping such that 小:V{E) E and 於 is a mapping such that IJJ : E ^ E.

The error combining function for weighted-sum-better, least-squares-better, and

worst-case-better can be defined as Qt.M-x'̂ ‘ and gmax,Xx-̂ respectively.

Sg-b 二� £ ^ � 6，X 5 _ 6，0 " _ { ^ , 1 " _ 6 � i s the semiring for global comparators,

where E"" is the set A such that n is the number of non-required levels, is

Chapter 2 Background ^^

the additive operation, Xg—b is the multiplicative operation, Qg-b is the “worst”

semiring value, and 1 “ is the "best" semiring value. Suppose Qj , denoting

the j constraint in level Hi, is a fc-ary labeled constraint such that var{cij) 二

{ x i , . . . , Xk}. A tuple of values t 二 � a i , . . . , a/,) associated with constraint QJ

can construct a valuation 0 = {xi ^ ai,... ,Xk ^ a^J. If r is the error value

returned by e(c,j6'), then the semiring value associated with tuple t is defined

as:

� 0 ’ . . . , 0, 0，•.., 0 � , where w is the weight associated to constraint
i—l n—i

Given two semiring values (tuples of k real numbers) a = - • - ,CLk) and

b = {bi,...,bk). The additive operation is defined as follows:

(

(«1 I . . .，afc�-\-g-b�62, . . . , bk)) if ai � bi

a+g-b ^ = { �ai,...，aA；〉 if ai < bi
〈〜， . . .A� if > bi.

\

The multiplication operation Xg—b is defined as a S = � < ^ ({ a i ’ 61 }) , . . . ,

(l){{ak,bk})). In addition, is defined a s〈£，...，£〉a n d Ig—b is defined as

〈0，..., 0〉assuming that 二 0 and = e.

The same construction fails for the locally-better comparator since x does not

distribute over + . Only the operator (modeled using max) of the worst-

case-better is idempotent, so that it can enjoy semiring-based arc-consistency

techniques (soft constraint local consistency technique) [10] supported in clp(FD,

S) [29], while the other global comparators (x"—& modeled using D have to rely

on dynamic programming. The clp(FD,S) solver, however, limits the size of the

semiring to only 32 elements [29], making it difficult to model any reasonably

sized finite domain CH problems.

Chapter 2 Background ^^

2.4.4 The DeltaStar Algorithm

DeltaStar [23] is built upon a flat constraint solver which performs the actual

constraint solving task. There is a key routine filter which takes a set of valua-

tions and a set of constraints as input and it will return a subset of valuations

that minimize the error over the input constraints. While most of the finite

domain CH solvers are designed for specific (classes of) comparators, DeltaStar

is a generic finite domain CH solver which can find solution for arbitrary com-

parators in theory. The original definition of the solution to a CH is proved

difficult to translate into efficient implementations [23]. The major problem is

that it is required to compare all the valuations across each level in the hierarchy.

Therefore, a recursive definition for solution is defined in this approach.

The new definition for globally-better solution is defined as follows.

5̂ o = {<9|Vce^o,e(c6>) = 0}，

S, = {0\0E G S卜U，嫩。,HI)) < 9{E{0,HI)))}, and

Sr — Sn-

The intuitive meaning of the definition is that SR is defined using SI, where

Si is the set of “best，，valuations to satisfy the constraints through level i. For

each level i - 1, only the best valuations in Si—i will be passed to the next level

i, and finally Sn is the set of best valuations that satisfy the constraints in Hn-

Therefore, SR is simply the solution set to the CH.

The new definition for locally-better solution is defined as follows,

where 9 = g{e{0, Hi)), a = g{e{a, Hi)),

^9,(7 e Qj^o = a)

AV6> G 0,(6> € Qj ^flaeS.a < 0).

Chapter 2 Background ^

Tq = SQ,

Tr = \JveTn 仏

The new definition for locally-better solution is more complicated, because

locally-better comparator use a partial order instead of total order (for global

comparators). Similar to SR, TR is defined using T] which consists of the “best，，

valuations that satisfy constraints through level i. However, a function V is

introduced to partition the set of incomparable valuations in TR. Therefore, the

final solution set is an union of the sets of solutions at level n. The SR and TR

constructions can be converted into the algorithms as shown in Figure 2.13 and

Figure 2.14 respectively.

deltastar_s(solver, H)
begin

1 let n be an integer;
2 n 卜 number of levels in H]
3 let S[n] be a global array of a set of valuations;
4 S[0]卜 solver.alLsolutions{Ho)]
5 for i f - 1 to n do
6 |_ S[i] f - solver.filter{S[i — 1], Hi);

7 return S[n]]
end

Figure 2.13: The DeltaStar algorithm for SR construction.

However, DeltaStar recomputes the solution in each recursive step causing

significant overhead. In practice, it is only used as a general and theoretical

framework for solution, from which efficient algorithms, such as DeltaBlue and

Cassowary, are inspired and designed for some subset of the general problem

space [21].

Chapter 2 Background ^^

deltastar_t(solver, H)
begin

1 let n be an integer;
2 n — number of levels in H]
3 let T[n] be a global array of a set of valuations;
4 T [0]卜 solver.allsolutions(Ho)]
5 for z 1 to n do
6 let 5 be a set of valuations;
7 5 ^ 0 ；

8 for each 0 in T[i — 1] do
9 [_ 5 f - 5 U s o l v e r . H i) ;

10 |_ T[i]卜 5；

11 return union of all 0 in T[n];

end

Figure 2.14: The DeltaStar algorithm for TR construction.

2.4.5 A Plug-In Architecture of Constraint Hierarchy

Solvers

In this section, we discuss a general framework (a Plug-In Architecture) [3] of

CH solvers instead of focusing on a particular algorithm to solve constraint hi-

erarchies.

There are four standard modules in this architecture: meta-interpreter, gen-

eral hierarchy solver, flat constraint solver, and comparator code. The meta-

interpreter and general hierarchy solver form the kernel of the architecture. The

kernel is a generic part of the architecture such that it is independent of the

chosen flat constraint solver and comparator. The meta-interpreter is very simi-

lar to a traditional Prolog meta-interpreter. It interprets constraints (goals) and

then passes the constraints to other modules to perform the constraints solving

tasks. A constraint is passed to the flat constraint solver if the constraint is a

Chapter 2 Background ^^

required constraint. However, a non-required constraint is passed to the general

hierarchy solver. The general hierarchy solver can perform two tasks. It can add

a non-required constraint to a constraint hierarchy and it can solve a collected

constraint hierarchy along with the solution of the required constraints. This

general hierarchy solver will try to satisfy a stronger level, and then a weaker

level later on. They regard this method as a so-called refining method and this

is independent of a chosen comparator.

The major property of this framework is the flexibility of the plug-in mod-

ules. It is possible to construct a constraint hierarchy solver with arbitrary flat

constraint solver and comparator code. The flat constraint solver is a plug-in

module used to determine the satisfaction of a constraint. The comparator code

is another plug-in module used to define a particular comparator. Since the ker-

nel modules are generic, it is possible to define a constraint hierarchy solver over

arbitrary domain if a flat constraint solver for the domain exists. It is also pos-

sible to define a constraint hierarchy solver over arbitrary comparator, because

the comparator is defined in the plug-in module.

Chapter 3

Local Consistency in Constraint

Hierarchies

The classical notion of local consistency [37，24] deals with the situation when

variables and constraints contain inconsistent values. A CSP is locally consistent

if all the inconsistent values are removed by determining a subset of constraints

to the CSP (determining at a local level) and the solution to the CSP remains

unchanged afterward. The main purpose of detecting local inconsistency in a

classical CSP is to remove the inconsistent values from the variable domains and

constraints. Hence, the CSP becomes "simpler" to solve if the size of the CSP is

smaller. Local consistency had been proven to be an important concept in clas-

sical CSP [6，30]. However, we adopt a more general notion of local consistency

used for SCSP: “Applying a local consistency algorithm to a constraint problem

means explicitating some implicit constraints，thus possibly discovering inconsis-

tency at a local level” [9]. In particular, we borrow from the general notion of

arc-consistency, semiring-based arc-consistency (SAC), used for SCSP [10]. We

reformulate CH framework with a different notation in order to define the general

notion of constraint hierarchy k-consistency (CH-Zc-C). We design and implement

an enforcing algorithm in particular for CH-2-C namely CHAC. The correctness

of the CHAC algorithm is established.

36

Chapter 3 Local Consistency in Constraint Hierarchies ^

3.1 A Reformulation of Constraint Hierarchies

To facilitate subsequent illustration of the CH local consistency concept, we

reformulate the CH framework [13] (particular in the definition of comparators

and solution set) using a different notation.

3.1.1 Error Indicators

Let 丑 be a constraint hierarchy with n non-required levels. Then, H 二 {Hq,...,

Hn}. For each level i G { 0 , . . . , n} , Hi is a set of labeled constraints in the form

Hi 二 { 4 , . . • where ki is the number of constraints in level i. A valuation

51 ^ c/i , . . . dN} for a set of variables V = { i^i, . . . , vn} means that

each Ĵi is assigned the value di where di G D{vi). Let eg be the constraint in

Ha and 0 a valuation. An error function e{cl9) measures how well a constraint ĉ

is satisfied by valuation 0. The value e(ĉ <9) returned by an error function is an

error value, denoted by 纹’ indicating how nearly a constraint eg is satisfied by

valuation 0. We introduce a new notation called an error indicator of a valuation

to represent the error values of a valuation 0 applying to the constraint hierarchy

H. An error indicator of a valuation 0 for a set of variables V is a tuple of error

values, denoted by such that (e = � � 6 ? , . •., .. • , . •.，'̂ ^D) where

Va e { 0 , . . . ’ n } ， e { 1 , . . . , K], iel 二 e (c�…if vars{cl) C vars{e) and � = 0

if vars{cl) g vars{0). Intuitively, error indicators provide a measure of the

"goodness" of valuations with respect to the constraint hierarchy H. Therefore,

each possible valuation 9 will be associated with a corresponding error indicator

to measure the degree of satisfaction with respect to the hierarchy. We use I

to denote this set of error indicators such that / is a poset (partially ordered set),

each element G / represents the degree of satisfaction of the corresponding

valuation 0 in this reformulation.

Chapter 3 Local Consistency in Constraint Hierarchies 52

To explain the meaning of such a reformulation, we use the example in Fig-

ure 2.11 again. If a valuation 0 = {z ^ 2} is given, then the associated error

indicator of valuation ê can be obtained easily by definition. The error indica-

tor associated with valuation 0 is 6 =〈〈〉，〈1，0〉，(0,0，0)). The underlined error

values are returned by trivial error function. Since the constraint cl is z = I

and the valuation <9 二 {么 4 2}, it is clear that vars{cl) C vars{e). is an

error value returned by error function. However, this is not the case for other

constraints (4 , cj, c^, and 4). For example, the constraint cj is x y 2, it is

clear that vars{cl) % vaTs{d) {{x,y} g {z}). Therefore, Cel is simply assigned

with 0 to mean that the constraint will not be violated by this valuation. The

same operation is applied to and Suppose valuation 二 {a; 1 ’ " 2},

then Iq 二〈〈〉，〈0,0�’�a，a，0��. Similarly, if valuation B ^ {x ^ ^

then = (0 , (0 ,0) , (0,0,1)).

3.1.2 A Reformulation of Comparators

The comparator predicate better in the original CH formulation is redefined using

a partial order, denoted b y W e define < to be irreflexive and transitive over

the error indicators I with respect to a hierarchy H. Hence, it preserves the

meaning of better. Intuitively, ^ < • means i" is "better" than . In general,

� w i l l not provide a total ordering. That means we may have two error indicators

and i " such that 1'水 八《丨'̂ I'. For convenience, we define j such that

e ^ r (e � r V e = eo-
We can redefine locally-better in the original formulation as a partial order

as follows. Given any two valuations 0 and a, and the corresponding error

indicators ê and -</_{, is defined as:

Iq ^<1 一b f j 三 3 / � 0 such that

V z G { 0 , . . . , / - l } , V i G { 1 , . . . , ki}, ie) - ia)

Chapter 3 Local Consistency in Constraint Hierarchies ^

八3a G <

八 V 6 “ l , … 灿 “ 仏 I .

The intuitive meaning of ^e ^i-b I is that valuation g is locally-better than

valuation 0.

Similarly, we can define globally-better •<g—b, and its instances weighted-sum-

better ^uj-s-b, worst-case-better <nj-c-h, and least-squares-better <i-s-b respec-

tively. Given any two valuations 0 and cr, and the corresponding error indicators

ie a n d �

(q (fcr 三 3 /〉0 such that

人 , … 人 l Y) < …M乂Yh
where ^ is a combining function for error values;

—f — — —

ie -<w-s-h io 三 i e � g - b 6 7 ,

where "(〈€{,...，过》）三 E，-i 川沟，

Ce <w-c-h ia 三 ie <g-h 67，

where "(〈<^(，...，三 \j G {1，...，A;,}},

—> — — —*

ie <l-s-h ia = ie •<g-b

where " (�f i , . . .，（U)三 E ，“川沟 2.

The following lemma gives the monotonicity of the introduced comparators,

which shall be collectively denoted by -<heuer and -̂ hetter in the rest of the thesis.

Lemma 1 Given any two error indicators and . If for all < then —* —
'll^better C"•

Chapter 3 Local Consistency in Constraint Hierarchies 40

P r o o f . The above Lemma holds for locally-better •<i-b, weighted-sum-better

least-squares-better and worst-case-better -<w-c-b' For locally-

better, since for each level i and for each j G { 1 , . . . , A:,-}, the error value f ")

is less than or equal to f } . By definition, f � / — 6 holds. For weighted-

sum-better, as the combining function g is Yj%i w祐 for a particular level i

and E is monotonic, g � ” … < 似 holds for each level

i. Therefore, <w-s-b holds. The same argument can be used to ver-

ify that <i-s-h i" holds. For worst-case-better, the combining function g

is max{u;; $ I j G {1’ for a particular level i and max is monotonic,

" (� r i , . . . ’ r U) < g m , . . . ， r j) must hold for each level z. Hence, f � - “

• holds. I

3.1.3 A Reformulation of Solution Set

The solution set of a constraint hierarchy is defined to be a set of valuations that

satisfy all the required constraints and satisfy the non-required constraints as

much as possible. We can define the solution set S by using error indicators for

valuations as follows.

二 {6* I i G {1,..., ko},仏=0}, and

The original meaning of solution set is preserved. The difference of this

reformulation to the original formulation is that we use error indicators and

partial order to define solution set.

Chapter 3 Local Consistency in Constraint Hierarchies ^

3.2 Local Consistency in Classical CSPs

In this section we focus on node-consistency and arc-consistency algorithms

which are common techniques to detect local inconsistency [6, 30]. Let us il-

lustrate the concepts using an example. Given a CSP P where V =

D{x) = {1 ,2 ,3,4,5} , D{y) 二 {1 ,2 ,3 ,4 ,5} ’ and C = {3 < < y}. P is

node-inconsistent, since 4 G {1 ,2} and {x 4 } is not a solution of the unary

constraint “3 < x." It is possible to transform P into an equivalent CSP P'

which is node-consistent if the inconsistent domain values in D{x) are removed.

Hence, the equivalent CSP P' would become V = D{x) = {3 ,4,5} ,

D{y) = {1 ,2 ,3,4,5} , d^nd C = {3 < x,x < y}. Although P' is node-consistent,

it is arc-inconsistent since 4 G {5} and {x 4 } cannot find support from

D{y) to satisfy the binary constraint < y.” Also, dy G {1 ,2 ,3} and {y ^ dy]

cannot find support from D{x) to satisfy “x < ".,，Similarly, we can transform

into an equivalent CSP P� which is arc-consistent if the inconsistency do-

main values in D{x) and D{y) are removed. Hence, the equivalent CSP P" is

y = D{x) = {3,4} , D{y) 二 and C = {3 < x,x < y}. P' and

P� are equivalent to P, since the solution sets of and P" are the same as

that of P. However, the domain size of P' and P" is smaller. Hence P' and

P" have a smaller search space and are easier to solve. We can conclude that

applying consistency algorithm to a classical CSP aims to reduce the variable

domains of the CSP so that the CSP becomes node-consistent and arc-consistent

and equivalent to the original CSP.

We can use a different point of view to present the notion of local consis-

tency in classical CSPs. Given a CSP P, we associate a constraint set Cu (“̂̂，，

stands for "unary constraint") to P. Each constraint in Cu can explicitly indi-

cate the implicit inconsistency information in P. A tuple (P, Cu) represents the

consistency status of P.

Chapter 3 Local Consistency in Constraint Hierarchies 56

We use the previous example to illustrate the idea. Given a CSP P where

y = {x,y}, D{x) = { 1 ,2 ,3 ,4 ,5 } , D{y) = { 1 ,2 ,3 ,4 ,5 } , C = {3 < < y}，

and P is associated with Cu in order to explicitly indicate the inconsistency

information in P. Initially, the consistency status of P is represented by a tuple

〈尸,0〉. CU = ^ means no explicit inconsistency information is known currently.

P is node-inconsistent, since D{x) contains inconsistency domain values 1 and 2.

This implicit node-inconsistency information in P should be explicitly indicated

by the constraint set Cu, but Cu = 0- P becomes node-consistent, because the

tuple {P,{x ^ l,x ^ 2}) is node-consistent such that the tuple expresses the

same information as P' in the previous example. Similarly, P is arc-inconsistent,

because the tuple (P, {x ^ ^ 2}) is arc-inconsistent. However, P becomes

arc-consistent as the tuple {P,{x ^ 2,x ^ ^ l,y ^ 2,y ^ 3 } � i s

arc-consistent such that the tuple expresses the same information as P" in the

previous example. The variable domains are not reduced in such a point of view,

but the equivalent local inconsistency information is recorded.

3.3 Local Consistency in SCSPs

SCSPs [9] extends classical CSPs by allowing non-crisp features. Hence, classi-

cal CSP is an instance of SCSP over the c-semiring Scsp = {{true, false), y,

A, false, true). In SCSPs, a general notion of local consistency is proposed [9

and we focus on semiring-based arc-consistency (SAC) [10 .

We use the same example in Section 3.2 to illustrate the idea of SAC. Given

a CSP P where V 二 D{x) = 4 ， D { y) = {1 ,2 ,3 ,4 ,5 } , and

C = {3 < x,x < y}. This CSP can be modeled as an instance of SCSP over the c-

semiring SCSP 二�{^rwe，/a/«se}, V,八,/a/>se，true�as shown in Figure 3.1. We use

a graph-like representation to represent a CSP. The nodes and arcs in the graph

are variables and constraints respectively. The tuples and the corresponding

Chapter 3 Local Consistency in Constraint Hierarchies 43

labels in the graph are the tuples of domain values and the corresponding semiring

values respectively. In Figure 3.1, c^ is the unary constraint “3 < and c巧 is

the binary constraint "x < y.” Since there is no unary constraint for variable y,

all the semiring values corresponding to Cy is true that means y is unconstrained.

Since the semiring values in the constraints c^ and Cy {def is the value of

constraint) do not coincide with those in the constraints {c^, (g) c工"0 Cy} Jja： and

{c^ (g) ĉ y (g) Cy} % respectively, P is not SAC. The constraint c工 0 c列 0 Cy, which

is obtained from constraint combination, is shown in Table 3.1. The constraint

projections of c^ (g) c巧(g) Cy over {x} and {y} are shown in Table 3.2. If the

semiring values in the constraints c工 and Cy are made to coincide with those in

the constraints {c怎 0 c工y 0 c J I and {ĉ ： (g) c工Y (g) c J respectively as shown

in Figure 3.2, then P is SAC.

<1> ...false <1> …true
<2> ..Jake <2> ... true
<3> ... true <3> ... true
<4> ... true <4> ... true
<5> ... true <5> ... true

X y

^

<1，1> ...false <3，1> ..Jcdse <5,1> ...false
<1,2> ... true <3,2> ...false <5,2> ...false
<1,3> ... true <3,3> ...false <5,3> ...false
<1,4> ... true <3,4> ... true <5,4> ...false
<1,5> ... true <3,5> ... true <5,5> ...false

<2,1> ...false <4,1> ...false
<2,2> ... false <4，2> .. • false
<2,3> ... true <4,3> ...false
<2,4> . •. true <4,4> ... false
<2,5> ... true <4,5> ... true

Figure 3.1: A constraint graph of a CSP.

We can also use a different point of view to present the notion of SAC. We

Chapter 3 Local Consistency in Constraint Hierarchies 44

Cg, 0 C^y ®Cy I Ĉ 0 C^y ®Cy | Ĉ 0 C^y 0 Cy
〈1，1〉... false 〈3,1). ..false (5,1)... false
(1 , . . . false (3,2)... false 〈5，2〉... false
(1,3)... false (3,3〉... false 〈5,3〉... false
j l , 4 …false (3 , 4) . . . true � 5 , 4 � … f a l s e
(1,5〉... false 〈3,5〉... true 〈5，5)... false
(2,1〉... false {A,I)... false
{2,2),.. false \a,2) ... false

…false^ .]alse
(2,4〉.…false 〈4,4〉.…false
(2, 5〉... false (4,5)... true

Table 3.1: A constraint combination.

(g) Ĉ y (8) Cy} llg; {CT (g) ĉ y (8) Cy} Ij^y
(X)…false { [) . . . false

�….false (2) . . . false
(3)... true (3)... false
〈4〉... true 〈4〉... true
〈5〉... false (5)... true

Table 3.2: Constraint projections.

Chapter 3 Local Consistency in Constraint Hierarchies 45

gx ^y
<1> ...false …
<2> ...false <2> ...false
<3> ... true <3> ...false
<4> ... true ... true
<5> ...false ... true

T 1 y

<!,!> ...false <3,1> ...false <5,1> ...false
<1,2> ... true <3,2> ...false <5,2> ...false
<1,3> ... true <3,3> ...false <5,3> ...false
<1,4> ... true <3,4> ...true <5,4> ...false
<1，5> ... true <3,5> ... true <5,5> ... false

<2，1> ...false <4’1> ...false
<2,2> ...false <4,2> ...false
<2,3> ... true <4,3> ...false
<2,4> ... true <4，4> .]alse
<2,5> ... true <4,5> ... true

Figure 3.2: A constraint graph of a SAC CSP.

Chapter 3 Local Consistency in Constraint Hierarchies 46

associate each CSP P, also an SCSP, with a constraint set Cu, which contains

constraints of the form x = d for all variables x in P and for all d G D{x). Each

constraint in Cu is associated with a semiring value either true or false. The

semiring value will explicitly indicate the implicit inconsistency information in

P. We can use a tuple {P,Cu) to represent the semiring-based arc-consistency

status in P. We use the same example to illustrate the idea.

Given a CSP P where V 二 y}，D{x) 二 {1，2,3,4,5}，D{y) = {1,2,3，4,5},

C = {3 < x,x < y}, and P is associated with Cu in order to explicitly indicate

the inconsistency information in P. The inconsistency information in P is rep-

resented by a tuple {P,{x = l{true),x = 2{true),x = 3{true),x 二 4 (斤 =

b{true),y = l(true\y = 2{true),y = 3{true),y 二 4{true),y = 5{true)})

initially. No explicit inconsistency information is known currently and P is

semiring-based arc-inconsistent. However, an SAC algorithm can transform P to

become SAC such that this tuple becomes {P,{x 二 l{false),x = 2(false),x =

3(true),x 二 = 5(false),y = l(false),y = 2(faise),y = 3(false),y =

4(true),y = 5(true)}}. It is easy to check that this tuple expresses the same

information as P" in Section 3.2.

Although the domain size of the CSP P remains unchanged after applying

the SAC algorithm, we still gain useful information since we are "explicitating

some implicit constraints" of P to Cu- Based on this inconsistency information,

a search algorithm can know not to try the domain values that are marked false.

Hence, SAC is a generalization of classical node-consistency and arc-consistency.

3.4 Local Consistency in CHs

We adapt the general notion of local consistency in SCSP for CH, and define

constraint hierarchy k-consistency (CH-Zc-C). Given a CH P associated with a

Chapter 3 Local Consistency in Constraint Hierarchies 47

constraint set Cu, which contains constraints of the form 二 c/ for all variables

X in P and for all d G D{x). Each constraint c G is associated with an error

indicator 己 which stores the (partial) inconsistency information in P. We can

use a tuple {P,Cu) to represent the constraint hierarchy ^^-consistency status of

P. Since arc-consistency algorithm is a common technique to detect local incon-

sistency in classical CSPs [6, 30], we design and implement an algorithm to en-

force CH-2-C, which we also called constraint hierarchy arc-consistency (CHAC).

Hence, CHAC is CH-2-C.

3.4.1 The Operations of Error Indicator

Before we can formally define CH-A;-C, we need two operations, MAX and

MXAf, on error indicators. Given a CH P with n non-required levels and any two

error indicators, ^q, G / such that (e = 〈 〈 < ^ 0 ? , . . . ， . . . ， . . . , '^^D) AND

e； 二 {{ial..., 6 4 〉 ， … ， • . . , UJ), for p, MA:\： and MXM are defined

as:

己）

三 (� m a x [^ , e.?),..., maxiCel，Ujh . • . , � , . . . ,讓 氣 , � Y h

MXM{ie,t)

三��mm(6?, ..., ..., ⑶,...,m端。⑷Yh

where ki is the number of constraints in level i of P.

Given two error indicators, the MXAf (or MAP(!) operation combines the

two indicators by taking the best (or the worst) of both worlds. We can easily

verify that M A ^ and M X M are commutative. Thus, it makes sense to write

. . . , i x } (or M X A f { i u . . . , f x }) which is equal to . . . , (k)

(or MXM{ii,..., 6^)), for any K > 2.

Chapter 3 Local Consistency in Constraint Hierarchies 48

L e m m a 2 If P is a CH with variables V,x eV.de D{x), Y CV - {x}, and

\Y\ = k- 1, where A; G {1 , . . . , | 乂|}. Then, MXJV{ie I vars{0) 二 T/ 八 o Q G

0} dlbeUer MXAf{Co | � = {x} U Y A {x ^ d) ^ 0}.

Proof . Given a set of variables F, where yi G F,Vz G {1, . . . ,A; - 1}, an error

indicator 乙，where cr {x d,yi dy”...，yk-i ^ } for some dy^ G

D{yi), and an error indicator G { 6 I varsiO) = V 八 cr g 6̂ }. By Lemma 1,

1’ ^tetter C- On the R .H .S . of Abetter, the error values of all n-ary {n > k)

constraints and constraints not involving { x } U F must be 0. The combined error

values of all k-ary constraints involving {x}UY must be smaller (better) than the

corresponding error values on the combined error indicator on the L.H.S. Hence,

the L.H.S. is worse than the R.H.S. I

The following can again be proved using a simple application of Lemma 1.

Lemma 3 Given error indicators and � , (< f ' better A Abetter —

Given a CH P with variables V. If x G V and c/ G B(x), we define

approxk{x B d) 二 | vars{0) = {x} U Y A {x ^ d) e 9} \

y C V — {a;} A 二 k — 1}，where k G { 1 , . . . , |V|}. We call it k-approximation,

which provides estimates of the "goodness" of valuations involving the assign-

ment X d. Since the error indicators of all valuations involving x d might

not be comparable, we can only give an approximation, and approx\v\{x i-̂ d)

is the best possible approximation (since (e :^better approx\v\{x d) for all

0 such that {x ^ d) e 0), we call it best approximation. However, calcu-

lating approx\v\{x i-̂ d) is computationally expensive, and approx2{x i-)- d)

gives a more practical approximation (most commonly used technique in classi-

cal CSPs), we call it practical approximation. The following theorem states that

approxk{x d) is an approximation of approx\v\{x d).

Chapter 3 Local Consistency in Constraint Hierarchies 49

T h e o r e m 1 I f P i s a CH with variables V , x G V and c/ G D{x), then approx\v\{x

d) ：<better approxk{x d), i f A; < | y .

P roo f . By Lemma 2, given any F C V - {x} and \Y\ = k - 1, the combined

best case errors f y among the valuations {0 | vars{0) = {2:} U F 八（> cQ G 6>}

is better than approx\v\{x d). I t is thus easy to check that | V C

y _ {a；} A |y | = A; - 1} must also be better than approxivi(x H^ d) by simply

application of Lemma 3. I

3.4.2 Constraint Hierarchy fc-Consistency

Given a CH P with a constraint set Cu. P is constraint hierarchy /^-consistent

(CH-A;-C) if the associated error indicator of each constraint in Cu explicitly

indicates the implicit inconsistency information in P. Formally, we define CH-

k-C as follows.

De f i n i t i on 1 (CH-A;-C) Given P a CH with variables V and Cu the associated

constraint set. Let Ic^ = {fc | c G Cu}. P is CH-k-C if for all ̂ ：：吐 G Icu

such that approx\v\{x ^ d) ^better Cx=d ^better approxk{x d), where k G

{1 , . . •, V : ,

To perform constraint checking on unary and binary constraints is the most

commonly used technique for detecting local inconsistency, arc-consistency, in

classical CSPs. Therefore, we discuss CHAC (or CH-2-C) and provide a CHAC

enforcement algorithm in the following.

The error indicator G Icu stores the error information for the variable
—*

assignment x ^ d iov P. The definition of CHAC requires that “ d must be

"between" a'pprox\v\{x ^ d) and appr0x2(00 i-> d) for all x G V and d G D{x).

We would use a simple example to explain the definition in more detail. Given

Chapter 3 Local Consistency in Constraint Hierarchies 50

a CH P where V = D{x) = { 1 }， D { y) = {1 ,2} , D{z) 二 {1 ,2} ,

H - {(b,{x > y,x = 2},{y = < y},{z + y + z > 4 } } , 二 { a ; =

l,y = l,y = 2,z = l,z = 2}, and Ic, = { 乙二 i , 4 = 2 ， f 么 (2 = 2 } . Initially,

= = (v=2 二 6=1 = 6=2 - (0 , (0 ,0) , (0,0) , (0,0)) . P is obviously

not CHAC as described, but it becomes CHAC if the error indicators in Icu are

as listed in the third column of Table 3.3. The error indicators and ^=2
—*

are equal to the best and practical approximations. The error indicator is

better than the best approximation and equal to the practical approximation.

The error indicator f口2 is equal to the best approximation and worse than the

practical approximation. The error indicator is "between" the best and

practical approximations.

v^ d\ approx\v\{v ̂ d) iv=d approx2{v ^ d)—
��� ’�i,i�,�i,o�,�o，o�����,�i，i�,�i,o�,�o,o��〈〈〉，〈i，i�,�i,o�,�o’o��-
〈〈〉,〈1，1〉,〈1，1〉,〈0,1〉〉 〈〈〉,〈1’1〉,〈1，1〉，〈0,Q〉〉 〈〈〉,〈1，1〉，〈1’1〉,〈0,Q〉〉

〈〈〉，〈1，1〉，〈1,0〉,〈0"；̂〈〈〉,〈1，1〉，〈1,0〉,〈0，0〉〉〈〈〉’〈U〉，〈1,0〉,〈0,0〉〉

���,a,i〉，〈i,o�,�o,i�� (0,(1,1),(1,0),(0,0)) (0,(0,1),(1,0),(0,0))
���,a，i〉，〈i，i〉，〈i，o�����,�I;1)，〈1,1�,�1’0��〈〈〉，〈a，i�,�i,i�’�i，o��

Table 3.3: A table of error indicators.

3.4.3 A Comparsion between CHAC and PAC

In Section 3.3, we have discussed an arc-consistency technique, the SAC algo-

r i thm [10], in SCSPs. The SAC algorithm (or a local consistency algorithm)

approximates a complete solution algorithm. When applying the SAC algo-

r i thm, the implicit information is explicated by updating the semiring values

corresponding to the values in the variable domains of a SCSP. The scheme of

SAC is useful in theory, but the SAC algorithm has a heavy complexity for most

applications [7]. Therefore, Bistarelli et. al. [7] propose a more efficient arc-

consistency technique in SCSPs, which is called partial arc-consistency (PAC).

Chapter 3 Local Consistency in Constraint Hierarchies 65

A local consistency rule is used to explicate the implicit information of a

problem. When applying a local consistency rule (or simply a rule) to a prob-

lem, the resulting problem is the same as the original problem in terms of the

solution set. This is the idea of the SAC algorithm originally. The notion of an

approximate function </> is introduced for a local consistency rule. The idea of

an approximation function is to replace the complex computation in the SAC

algorithm by a simpler one when we concern arc-consistency. Two particular

approximation functions are introduced: b々est and (ĵ ujorst- The approximation

function (phest actually does no approximation. Therefore, the heavy complexity

of the SAC algorithm wi l l not be reduced when applying c^est, and the resulting

rule performs the same computation as in the original SAC algorithm. The ap-

proximation function 小柳rst does no domain reduction. This means no implicit

information can be explicated when applying </>柳rsf. A SCSP is PAC if the im-

plicit information obtained by applying 小 is "less" than the those obtained by

applying (j)hest and is “more，，than those obtained by applying <j)ujorst'

The idea of approximation functions, (j)hest and (j)worst-> in PAC is similar

to the idea of the best and practical approximations, approx\y\{v d) and

approx2{v d), in our proposal. Both of them avoid calculating the “best”

approximation of error information as it is computationally expensive. Instead,

they calculate a more "practical" approximation of error information “between，，

the upper and lower bounds. The subtle difference is in the definitions of the

upper and lower bounds. We can get “more” implicit information for a CH when

calculating the best approximation approx\v\{v d). The best approximation

of our proposal is calculated by checking all the n-ary constraints of the prob-

lem. We can also get “more” implicit information for a SCSP when applying the

approximation function (j)hest' However, the implicit information is calculated by

the ordinary SAC algorithm (without approximation). Similarly, we get “less”

implicit information for a CH when the practical approximation approx2{v t-)̂ d)

Chapter 3 Local Consistency in Constraint Hierarchies 52

of our proposal is calculated. The implicit information is calculated by checking

all the unary and binary constraints involving variable v of the problem. But

we get "less" implicit information for a SCSP when applying the approximation

function (j)vjorst', as i t does no reduction.

3.4.4 The CHAC Algorithm

The purpose of a CHAC algorithm is thus to explicate and place in Cu the implicit

error information in a CH that is otherwise not visible. Such an algorithm is

given in Figure 3.6. The subroutines chnc_pr i and chac_pri , in Figures 3.4

and 3.5 respectively, are responsible for ensuring the consistency of unary and

binary constraints respectively. After executing lines 1 to 5 in the pseudocode

of CHAC algorithm, each error indicators 二d G Icu should have contained the

errors of the unary and binary constraints involving variable x. We use the same

example in Section 3.4.2 to illustrate the idea. Before applying CHAC algorithm

f工=1 =〈〈〉,〈0，0),〈0’ 0〉，(0, 0〉〉. After executing lines 1 to 5 in the pseudocode of

CHAC algorithm, =〈〈〉，(1,1),〈0, 0),〈0,0)) where the underlined values are

the error values returned by tr ivial error function. I t is possible that some error

values should have been updated according to the definition of CHAC, but they

are missed, such as the boxed values in =〈〈〉，(1,1),〈0, 0〉，〈回,0)). In this

case, fj;=d cannot capture all the errors of the valuations involving only variables

X and y G V - { x } . Lines 6 to 11 in the pseudocode of the CHAC algorithm help

to recover this missing error information so that the whole of approx2{x H^ d) is
—*

computed in Cu. The CHAC algorithm ensures that the error indicator ix=d are

updated to reach at least approx2{x d) for all {x = d) e Cu, and sometimes

reveals more error information (thus producing “worse，，error indicators). In fact,

lines 6 to 11 in the pseudocode of CHAC algorithm also attempts, though not

always succeeds, to further update each G Icu to a “worse，，value towards

approxiv\{x d), but ix=d wi l l never be worse than approx\v\{x i-)̂ d). In this

Chapter 3 Local Consistency in Constraint Hierarchies 53

example, f么=i is strictly in "between" approx2{z ^ 1) and approx\v\{z 1),

whereas f之=2 is the same as approx\v\{z ^ 2) after applying CHAC algorithm.

u p d a t e (: r , y, c, /, k, D, Icu)
b e g i n

1 let ^rnin be an error value;
2 for each d^ G D{x) do
3 �min ^OO^
4 for each dy e D{y) do
5 l e t 0 = {x 心 ’ y dy};
6 i f e{cO) < imin t hen
7 L � i n — e(c(9);

—f —f
8 le t 卜 “ 知 G Icu.,
9 i f Ci < Cmin t h e n
10 一 tk — Cmin 5
11 r e t u r n Icu\

e n d

Figure 3.3: A subroutine to update error indicators.

3.4.5 Time and Space Complexities of the CHAC Algo-

rithm

Consider a general CH of n。labeled constraints wi th riy number of variables. In

addition, the size of the largest variable domain is of rid. The time complexity of

the subroutine chnc-pr i is simply of Oijid), since the only repeating operations,

lines 4 to 7 in Figure 3.4, are placed inside a single loop. These operations are

repeated unti l each element in a variable domain is tested. However, the time

complexity of the subroutine update is of 〇 i j id% since there exists operations,

lines 5 to 7 in Figure 3.3，locating inside a double loop. Therefore, in the worst

case, the time complexity of the subroutine chac一pri is of as shown

Chapter 3 Local Consistency in Constraint Hierarchies 54

chnc_pri(c, I, k, D, Ic^)
begin

1 i f |^;ars(c)| 二 1 t hen
2 let { x } 二 vars(c);
3 for each d G D{x) do
4 let 6 = {x ^ d}]
5 let (J 二 。 d G icu'i
6 i f ii < e{cO) t hen
7 L L 红 — e ⑷ ；

8 r e t u r n / c j
end

F igure 3.4: A subroutine to check unary constraints.

chac_pri(c, /, k, D, Icu)
begin

1 i f 卜ar«s(c)| 二 2 then
2 let {x^ y} — vars{c)]

—f
Update each “d^^ G Icu

3 Icu 卜 update(>，y, c, k, D, IcJ；
Update each。二dy € Icu

4 L ^Cu ^ update(y, re, c, I, k, D, IcJ；

5 r e t u r n /c^;
end

Figure 3.5: A subroutine to check binary constraints.

Chapter 3 Local Consistency in Constraint Hierarchies 55

A l g o r i t h m 1: The CHAC algorithm.

chac(F, y , D, I c J
beg in

1 for I 1 to n do
2 for k ^ I to \Hi\ do
3 let c be the k^^ constraint in Hi]
4 Icu — chnc_pri(c, I, k, D, / c j ;
5 L ^Cu chac_pri(c, I, k, D, IcJ]

6 for each ‘ G Icu do
7 for each y eV — {a:} do
8 let ^ be an error indicator s.t. each = oo;

—*

9 for each (y=dy G Icu do
10 L C ^

11 L —

12 r e t u r n Ic : ,
end

F igure 3.6: The CHAC algorithm.

Chapter 3 Local Consistency in Constraint Hierarchies 70

in Figure 3.5. Lines 3 to 5 in the pseudocode of the CHAC algorithm are the

operations for checking constraints as shown in Figure 3.6. Since these operations

should repeat unt i l all the constraints are considered, the t ime complexity should

be of OiucTid^). Lines 6 to 11 in the pseudocode of the CHAC algorithm help to

recover missing error information. Many steps are required for error information

recovery, since this operation is required for each error indicator corresponding to

the constraint in Cu. The time complexity for lines 6 to 11 in the pseudocode of

the CHAC algorithm is of 0 (n d V) . Therefore, the worst case time complexity

of the CHAC algorithm is of 0{{nc +

Since an error indicator is a tuple which stores error values of the correspond-

ing constraints, the space complexity for each error indicator is of 0{nc). The

memory requirement of the CHAC algorithm depends on the number of error in-

dicators corresponding to the constraints in Cu. Therefore, we require riyUd error

indicators. The space complexity of the CHAC algorithm is simply of 0{nyndnc)

in the worst case.

3.4.6 Correctness of the CHAC Algorithm

Let be an error indicator, approx2{x d), where approx2{x d)=

MAA'iMIAfiO I vars(O) = {x, z} A (x ^ d) e 0} I z e V - Let

be an error indicator corresponding to constraint (x = d) G Cu, which is

computed by a CHAC algorithm as shown in Figure 3.6. By definition, for all

constraints c) G Hi, where i G and n is the number of non-required

levels in hierarchy H, the error v a l u e � � = d)] corresponding to constraint c) is 0

if \vars{(fj)\ > 2 {vars{c^) % vars[p)). Since the CHAC algorithm only performs

constraint check for unary constraints and binary constraints (line 4 to 5 in chac),

the error value (f-二^)) corresponding to d- wi l l not be modified and equal to 0

if \vars{c'j)\ > 2. Therefore, the computed error value is equivalent to

Chapter 3 Local Consistency in Constraint Hierarchies 57

the error value {^x=d)] of approx2{x d) i f \vars{d-)\ > 2.

For the case vars{c^) = {x}, the error value of the practical approximation,

corresponding to constraint c} is max{min{<f0》| vars{0) = 八 ^

d) eO}\z e V - {x}}. Since vars{c^) = {x} x ^ d exists in each valuation

6•，the error value is simply equal to e{dj{{x ^ d})). The subroutine

chnc_pr i (line 4 in chac) updates error value to e (4 ({x d})) (line 7

in chnc_pri) when vars{c^) 二 {a;]^. Therefore, the computed error value 工

is equivalent to the error value {^x=d)] of approx2{x ^ d) i f vars{c)) = {x}.

For the case vars{dj) 二 where x ^ y, the error value {Cx=d)] corre-

sponding to constraint d- is max{min{&》 | vars{0) = {x,z} A {x d) e 0}

z ^ V - {x}}. When an error function is applied to cj-a, where {cr\vars{a)=

{x,w} A {x d) e (T t\w G V - {x,y]}, the error value of e[c)(j) 二 0

{vars{c)) % vars{(j)). The error value is simply equal to min仏》

vars(B) 二 d) e 0}. The subroutine chac_pri (line 5 in chac) up-

dates error value to I = ^ ^ d) e 0} (line 3 in

chac_pri) when vars{c^) = {x,y}. Therefore, the computed error value 工二

is equivalent to the error value [“dfj of approx2{x d) i f vars{c)) 二 {a; ,"} .

For the case vars{dj) = { y } , where y ^ x, the error value of the practical

approximation (^c^d); corresponding to constraint c) is max{min{^0} | vars{0) 二

{ x , 么 } 八 (i) G I 之 G - { x } } . For the same reason as the previous case,

the error value {^x=d)] is simply equal to m i n 保 | vars{0) = {x,y} A {x

d) G 0}. It is possible to simplify to min{6》 | vars{0) = {y}} in this case.

The pseudocode from line 7 to 11 in chac updates the error value (<fa；』； to

I dy G D{y)}, where 肝、is an error indicator corresponding

to constraint (y = dy) G Cu. Since each error value is computed by

performing constraint check on constraint c). This implies | dy G

D{y)} = I = {y}}. Therefore, the computed error value [C,xsd)]

is equivalent to the error value {^x=d)] of approx2{x i-^ d) i f vars{dj) = {y}.

Chapter 3 Local Consistency in Constraint Hierarchies 72

For the case vars{dj) = {u, v}, where u + t\v + x f\u + ^^ error value

of practical approximation (6：二ci);. corresponding to constraint c) is 0, since the

binary constraint cj does not contain variable x. However, the pseudocode from

line 7 to 11 in chac updates the error value (f^^^) } to max{min{ (< fu=“》

du e I d, G D{v)}}, where f、=“ and 知 are error

indicators corresponding to constraints {u 二 du) and (” = dy) respectively, {u =

du), {v 二 毛)G Cu. Since each error value (or v=dJi) is computed by

performing constraint check on constraint c》.This implies max{min{((f 以=知))

du € D{u)},mm{{Cy=dJj I 4 ^ D{v)}} > 0. Therefore, the computed error

value is greater than or equal to the error value (6;=d)》of approx2{x ^ d)

i f vars{c'j) 二 {w, v}.

Given any two error indicators “ d [approx式x d)) and €工二在(an error

indicator corresponding to constraint (x = c/) G Cu). The previous arguments

show that for all < [S 』] , this implies <f'工Abetter ix=d by Lemma 1.

Given any two error indicators " {approx\v\{x ^ d)) and 口丄(an error

indicator corresponding to constraint [x ^ d) e Cu). The error value

corresponding to constraint c} such that \vars{c))\ > 2 is equal to 0. However,

the error value {C'x^d)] corresponding to constraint c) such that \vars{dj)\ > 2

should be greater than or equal to 0, since constraint check is not restricted

to unary and binary constraints for the best approximation. Therefore, for

all {e.=d)] < d d f p this implies ^tetter L = d by Lemma 1. Hence,

our CHAC algorithm is correct in the sense that the computed error indicator

("f'o；二d e Icu) is "between" the best approximation {approx\v\{x h-)̂ d)) and the

practical approximation {approx2{x d)).

Chapter 4

A Consistency-Based Finite

Domain Constraint Hierarchy

Solver

The simplest way to find the solution set of a CH is to construct a complete search

tree for the problem, so that we can calculate the error values of each valuation at

the leaf nodes and compare all the valuations. However, traversing the complete

search tree and comparing all the valuations are tedious and time-consuming.

We propose to combine the CHAC and the Branch-and-Bound algorithms so as

to prune non-fruitful branches of the search tree and at the same time guarantee

that no solutions are missed.

4.1 The Branch-and-Bound CHAC Solver

The backbone of our solver is the ordinary Branch-and-Bound algorithm [42],

since CH-solving is an optimization problem. The Branch-and-Bound algorithm

always maintains the set of potential best solutions collected so far. The idea is

to invoke the CHAC algorithm at each node in the search tree, hoping that the

59

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 60

overhead of executing the CHAC algorithm can be more than compensated by the

pruning that can take place. At a CHAC tree node, before search proceeds down

a selected branch corresponding to a variable assignment, say x d, the solver

tries to verify if in Icu of that tree node is not worse than the error indicator

of each potential solution. I f that is the case, search proceeds; otherwise, there is

no point to explore the selected branch any further, and search is backtracked to

t ry another branch. When a leaf node is reached, we compare the error indicator

I of the valuation associated with the leaf node against the error indicators of all

the collected solutions. I f the error indicator of any collected solution is worse

than then the collected solution wil l be replaced by the current valuation.

The details of our finite domain CH solver is shown in Figure 4.3, which

is a simple adaptation of the basic Branch-and-Bound solver wi th the CHAC

algorithm. The numbered lines give the backbone of the algorithm, while the

unnumbered lines are new additions to enable CHAC enforcement. Note that

our algorithm also relies on classical node-consistency and arc-consistency algo-

rithms [37] to perform pruning using the required constraints in Hq in lines 1

and 2 in the pseudocode of bb_solv. Lines 6 to 17 deal wi th the case of a leaf

node. The CHAC algorithm is invoked between lines 17 and 18. Lines 18 to

22 perform the basic variable instantiation (or searching) recursively. The call

to the subroutine go (between lines 21 and 22) determines whether the error

indicator of the variable assignment of the selected branch in Icu of the current

node is not worse than the error indicator of each of the collected solutions so

far. The current variable instantiation proceeds only if go returns true.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 61

4.2 Correctness of the Branch-and-Bound CHAC

Solver

The subroutine cal_error_value as shown in Figure 4.1 is a function that maps

a valuation 0 to an error indicator ^e corresponding to 9. Given a hierarchy H
—*

and any two valuations a and 6>, the corresponding error indicators a r e 。 a n d

Iq respectively, l i a C 9, it is possible to have a constraint c) G Hi such that

{vars{dj) C vars{9)) A {vars{c^) % vars[(j)). However, it is not possible to have

a constraint c； G Hi such that {vars{d^) g vars{0)) A {vars{c^) C vars{a)).

This implies the fact that for all ^a] < i f cr C 6'. By simple application to

Lemma 1, ^q <
better

To apply the Branch-and-Bound algorithm in CH, i t is necessary to define a

function f to evaluate valuations and f should be monotonic. Such a function, / ,

in bb_solv is cal_error_value. We simply use f to represent cal_error_value

in the following explanations. The input of / is a valuation 0 and the output of f

is an error indicator corresponding to the input valuation Q, over comparator

<better- SinCC ^Q <better 迁 CT C / is monotoilic such that / (") <better

f[a). In addition, it is necessary to define a lower bound B. The bound B in

bb_solv is an error indicator f (or a set of error indicators) corresponding to

each valuation in the current best valuation set when global comparators are

used (or corresponding to the current best incomparable valuations when local

comparator is used). For simplicity we assume B is an error indicator in this case.

If a C 0 and f{a) -<hetter B, then by monotonicity of / , f{0) ：<better B. Given a

set of n valuation { ^ i , . • . , 9n}, it is easy to check that for any 6i G {Oi,...,

f{Oi) :<Better MXAf{f{Oj) | j G { l , . . . , ^i}} by simple application of Lemma 1.

This implies each error indicator of a valuation 7 corresponding to a leaf node

of the search tree, where {x d) e 7 , is worse than approxiv\{x d). I f ix=d

is an error indicator corresponding to constraint {x — d) ^ Cu (in any internal

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 62

node of the search tree) and ：<better B, then approx\v\{^ ^ d) :<better B.

Therefore, each valuation 7 corresponding to a leaf node of the search tree, where

i^x d) e 7 , should be worse than the current best valuation set. The subroutine

go in Figure 4.2 performs such a check bound operation [42] in bb_solv.

c a l一e r r o r一v a l u e (F , ⑴

begin
1 for I ^ 1 to n do
2 for k 卜 1 to \Hi\ do
3 let c be the A:力"constraint in Hi]
4 L e(c6>);

—f

5 r e t u r n ^e]
end

F igure 4.1: A subroutine to calculate error values.

go(fc, So, I So, Abetter)
begin

1 for each 0 ^ So do
—f —*

2 i f Cc Abetter (o t hen
3 |_ r e t u r n false;

4 r e t u r n true;
end

F igure 4.2: A subroutine to check bound.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 63

A l g o r i t h m 2: The Branch-and-Bound CHAC solver.

bb_so lv (F , y , D, So, in out Is�, Cu, Ic从, better)
b e g i n

Any classical node-consistency algorithm
1 D — n c _ a l g o r i t h m (i 7 o , D);

Any classical arc-consistency algorithm
2 D f - ac_algorithm(丑0, D)]
3 i f D contains an empty variable domain t hen
4 |_ r e t u r n

5 else i f D contains all singleton variable domain t h e n
6 let 9 be the valuation corresponding to D;
7 let ê be the error indicator corresponding to
8 ie c a l _ e r r o r _ v a l u e s (i 7 , 0, ^e)]
9 for each a G So do

10 i f 6 Abetter 6 t h e n
11 So So — {cr};
12 L I So 卜 ISq —

13 else i f ^e ^better t h e n
14 |_ r e t u r n ô；

15 u {0} j
16 I So — ho U {ieh
17 r e t u r n 6'o；

for each (x = (i) G Cu do
li d^ D{x) t h e n

Cu ^Cu ~ ~ d;,
L Icu 卜 Icu —

Ic^ — chac(丑，y, D, I c J]
18 choose variable x eV foi which \D{x)\ > 2;
19 let W he di variable domain;
20 M/̂ f " D{x);
21 for each d e W do

i f So, I So, ^better) t h e n
22 卜 b b _ s o l v ({ i 7 o A (a: = d), H i , … , H ^ } , V , D , So, Isq , Cu, Icu ,

_ ~^better�,

23 return So；

end

Figure 4.3: The Branch-and-Bound CHAC solver.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 64

4.3 An Example Execution Trace

We use the example in Figure 2.11 (applying tr iv ial error function and locally-

better comparator) to illustrate the functioning of our proposed solver in more de-

tail. Given a constraint hierarchy problem Pa such that H = {0, {c}, 4 } , {c?, cj,

c i } } , y 二 � - { 1 , 2 } , D { y) 二 {1 ,2} , and D{z) = {1 ,2} . Cu 二

= l，：c = 2 , y 二 1,2/ 二 2 ， 么 = 1 , 之 二 2 } and the associated set of error indi-

cators is Ic^ = i y=u iy=2 . i z=u l=2} - For each t in Ic^ we initialize

I to ((0,0), (0,0,0)). We ignore the error values for required constraints, since

CHAC concerns only non-required constraints. Figure 4.4 depicts how the com-

plete search is traversed (by following the search nodes in alphabetical order),

and when pruning takes place.

A

B H

......

c l \f\ I

Ji^ 八 ^^
D E G i i I I i 1 I I

I :••••• : :••" :• • •
Figure 4.4: A search tree example.

At node A, there being no required constraints in Hq implies that no do-

main values are removed as a result of the classical node-consistency and arc-

consistency algorithms. However, Pa is not CHAC. After applying the CHAC

algorithm on {Pa, Cu), Icu would be updated so that = Cx=2 二 “=2 =

6 = 1 = ((0,0), (0,0,0)), 二〈〈0，0〉,〈0,1，0〉〉，and 1=, =〈〈1,0〉,〈0,0,0〉〉。

Assuming that we pick variable x and instantiate i t wi th 1 from D{x), the sub-

routine god=i，0, 0, -<i-b) returns true. Hence, bb .so lv is invoked recursively.

At B and (7, the flow of control is similar, except that both D{x) and D{y)

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 65

becomes the singleton {1} .

At node D, since all variables are instantiated to the value 1, the constraint hi-

erarchy becomes Pd such that 丑 = { { o ; = 1, y 二 1, z = 1}, {c} ’ 4 } , {c?, eg,。•}},

y 二 {:z;，y’z}, D{x) 二 {1}，D{y) = {1} , and D{z) 二 {1 ,2} . Since there is a

required constraint z = I m Hq, the domain D{z) is updated also to {1} . Thus

D IS a. leaf node with a complete valuation. So is empty, but would be updated

to {<9i} where = {x l,y ^ ^ 1} and the associated error indicator

e；, = ((0,1),(1,1,0)).

At node E, Pe has the form i；̂ 二 = 1, = 1’ 么=2}，{c;, 4 } , {c?, c^,。•}},

y 二 {:i:,y，4, D{x) = {1}，D{y) = {1}，and D{z) = {1 ,2} . After instantiating

z, node E is also a leaf node with valuation $2 = {x l,y 2} and

the associated error indicator is ^ 二〈〈1, 0〉,〈1,1，•〉〉. Since (e, and 9̂2 are

incomparable, 02 would also be added to

Search proceeds next to node F, where Pf is defined by 丑 = { { a : = 1 , " :

2}, W , 4 } ’ R e g , 4 } } , y = {:r,y，吐 D{x) = {1} , D{y) 二 {1 ,2} , and D{z) 二

{1,2} . The instantiation of y by the required constraint y 二 2 causes D[y) to be-

come {2} . However, Pf is not CHAC. The CHAC algorithm would update / c , for

Pf such that = ^=2 = 1=1 = ((0, 0), (0,0, 0)), and = ((1,1), (0, 0, 0)).

Then, search would pick variable z and instantiate i t to 1 from B[z). Since

Iqx and -ĵ i-h the subroutine go(<f^=i, {01,62}, {61,62}^

would return true, and bb一so lv is invoked recursively.

Similar to nodes D and E, node G is also a leaf node wi th valuation 6*3 = {x

l , y H-> I-)- 1} and the associated error indicator is ^e^ 二〈〈0,0〉,〈0, 0’ 0〉〉.

Since ie, -<i-h 63 and ^e^ <i-h 63, this implies ^e, and Iq: would be removed from

5*0 and replaced by 6>3. Hence, ^o 二 {Os}- Upon backtracking, F is visited again.

This time, we can make use of the error indicators in Icu computed previously,

since node F is already CHAC. Here, “ 1 = “=2 二 Cz=i = “ but iz二2 <i-h

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 66

the subroutine go(f口2，{"3}，{63}. -<i-h) would return false, and backtracking

occurs immediately without visiting the right child of node F. Similarly, the

left subtree of node H and the right child of I are pruned as shown in Figure

4.4. In summary, our proposed solver prunes the subtrees of a node only when

the estimated error in the current node is already worse than the errors of the

potential solutions collected so far. In other words, proceeding further from that

node would only increase the error, thus never yielding a better valuation than

the ones collected so far.

4.4 Experiments and Results

We implement our proposed Branch-and-Bound CHAC solver (in Figure 4.3) for

three reasons. First, we want to test the correctness of the solver. Second, we

want to examine the efficiency of the solver. Third, we try to investigate the

properties of the solver, in particular the pruning power, the memory require-

ment, and the overhead of the CHAC algorithm, among the four comparators:

locally-better, weighted-sum-better, worst-case-better, and least-squares-better.

Since IHCS [39] is not maintained by anyone [15], we cannot get either the

program or the benchmark of IHCS for comparison. DeltaStar [23] requires to

store all the valuations in S i - i for level then it invokes a subroutine filter

to remove the “worse” valuations in Si - i for level Hi recursively (Section 2.4.4).

I f no required constraint for a given CH, then ^o contains all the possible valua-

tions. We found that DeltaStar requires a lot of memories for program execution.

For example, we test DeltaStar for a CH with 10 variables and each variable do-

main wi th 10 elements. For most of the time, ^o requires more than 512MB of

memories for storing valuations. We encounter failure due to insufficient mem-

ories. Therefore, DeltaStar is a theoretical general framework for solution [21 .

To use the semiring Sg-b (Section 2.4.3) for solving finite domain CH, we need

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 67

to encode (the set of semiring values A) when applying clp(FD, S). However,

the size of A is l imited to 32 elements [29]. The reason for this l imitat ion is the

fact that an element of A is encoded in a word (32 bits) for efficiency reasons

and there is no simple way to extend this size [28]. Therefore, we cannot solve

any of our benchmarks according to this l imitation.

We compare the performance of our solver and the reified constraint ap-

proach by Lua (the Lua's solver hereafter) [36]. Since both Lua's solver and ours

are based on a branch-and-bound backbone, we first implement a solver engine

Sg (V stands for "Generate-and-Test"), which searches using ILOG's default

goal definition and it is simply a Generate-and-Test mechanism, in ILOG Solver

4.4 [35]. In order to provide a (simple) basic Branch-and-Bound solver for com-

parison, we define an alternative goal Gb. The basic Branch-and-Bound solver

Sf, (“6” stands for "Branch-and-Bound") is obtained by implementing additional

comparators in Gb. The goal Gb follows the same searching order as the default

goal, but compares the errors of the current best valuations and the accumulated

errors so far at each search node. The accumulated errors are calculated by

performing constraint checking at each search node. For example, a given CH

with three variables {x, y, z} and two strong constraints { x y = - z I}.

Suppose that variable x has been instantiated to 1，variable y is being instanti-

ated to 1 at the moment, and variable z has not been instantiated yet. Then,

the accumulated errors are 1 and 0 corresponding to constraints + " 二 3”

and "-X - z ^ 1” if tr ivial error function is applied. Since the values assigned to

variables x and y have been known and the constraint + y = 3” is being vio-

lated at the moment, the error of constraint “a: + y = 3” is 1. However, the error

of constraint “a;—么二 1” is unknown, as variable z has not been instantiated.

Hence, the error is 0 meaning that no error can be calculated at the moment.

The search proceeds if the accumulated errors is not “worse，，than the errors

of the current best valuations. Otherwise, the search is backtracked to another

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 68

branch as in the ordinary Branch-and-Bound algorithm.

Our proposed solver Sc ("c" stands for "CHAC") is obtained by implementing

additional functions and an alternative goal definition Gc in Sg. The goal Gc

follows the same searching order as the default goal, but enforces CHAC at

each search node. While the input to our solvers is a CH, the input to Lua's

solver Sr (“ r ” stands for “reified constraint") is a CSP wi th reified constraints

for implementing a specific comparator and error function. The solver Sr also

requires an alternative goal Gr that implements the reified arithmetic comparison

propagators and reified logic operation propagators (Section 2.4.2). In the solver

Sr, the program variables are instantiated during search. However, the value

of each variable q , corresponding to a constraint c, is obtained automatically

by reified propagation. The value of each variable (or error vector) Ec�which

stores the combined error values of the reified constraints in level i , is obtained

by normal propagation of an error combining constraint (Section 2.4.2). The

values stored in the error vectors wi l l be compared to the values stored in the

current best error vectors at each search node. Similarly, the search proceeds if

the error vectors are not "worse" than the current best error vectors. Otherwise,

the search is backtracked to another branch. This implementation design ensures

“fairness，，in our comparisons, since all the solvers share the same backbone.

4.4.1 Experimental Setup

We benchmark the performance of our solver Sc by conducting two different

experiments. In the first experiment, we want to examine the efficiency, the

memory requirement, and the pruning power of our solver. We also want to know

the overhead of the CHAC algorithm. We use different problem instances, which

are randomly generated, for different comparators. In the second experiment, we

want to investigate the performance, in terms of execution time, of our solver for

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 69

different comparators. Therefore, we use same problem instances for different

comparators. For simplicity reason, we apply tr iv ial error function to test our

solver in both experiments.

For global comparators, we benchmark the performance of our solver by com-

paring Sc wi th Sg, Sb, and Sr accordingly. Since it is unclear how the locally-better

can be implemented using Lua's reified constraint approach, we only compare Sc

wi th Sg and Sh for local comparator. Since there is a lack of benchmarks for finite

domain CH [20, 15, 4，52], we randomly generate CHs for our testing. For each

comparator, we benchmark the performance of Sc in three different ways. First,

we set up an experiment that consists of 4 sets of randomly generated CHs: P、,

尸'2, P � , and P � , each of which contains 15 problem instances. The number of

variables and constraints are fixed (|V| = 5, H = {Hq, HI, H2}, \HO\ 二 0, and

Hi\ 二 li^sl = 5) across all instances, while problems in the same set share a

specific domain size: P'l has variable domains of size lOz for i G {1,2,3,4} . A l l

problems do not have any required constraints to make them more "difficult" to

solve.

Second, we set up an experiment that consists of 4 sets of randomly generated

CHs: P"2，P"3, and 尸"4，each of which contains 15 problem instances.

The domain size and the number of constraints are fixed (Vx G V, \D{x)\ = 5’

ff = {丑0,丑1,^2}，I丑o| 二 0, and 丨丑i| = |丑2I = 5) across all instances, while

problems in the same set share a specific number of variables: P"i has 2{i + 1)

number of variables for i G {1,2,3,4} .

Third, we set up an experiment that consists of 4 sets of randomly generated

CHs: P〃'i, P"'2,尸"'3, and each of which contains 15 problem instances. The

number of variables and the domain size are fixed = 5 and Mx G V, \D{x)=

20) across all instances, while problems in the same set share a specific number

of hierarchies (or constraints): P'"i has z + l non-required levels for i G {1,2,3,4}

such that \Ho\ = 0 and V j G { 1 , . . . , < + 1}, \Hj\ = 5.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 70

Our experiments are conducted on Sun Ultra 5/400 workstations wi th 256MB

RAM. We collect the following information of solver Si、Sg, Si, and Sc) from

all the experiments:

• The execution time T)

• The maximum memory requirement M i

• The number of leaf nodes visited 料i in searching

• The number of choice points in searching

• The overhead (for enforcing the CHAC algorithm) 0。of solver Sc

• The number of failures (or backtracking) . F i in searching

In Lua's reified constraint approach, backtracking wi l l be performed when

there exists an empty variable domain (after applying local consistency algo-

r i thm) or the values in error vector are “worse” than the bound during search

(Section 2.4.2). We use a simple example as shown in Figure 4.5 to illustrate

backtracking in Lua's solver. I f values in error vector are "worse" than the bound

during search (case I in Figure 4.5), then failure wi l l be detected in Sr and the

counter jf^Fr wi l l be incremented by 1. Suppose the variable domain D{y) is

an empty domain after applying local consistency algorithm at node ''x ^ 2"

(case I I in Figure 4.5), then backtracking should be performed and the counter

wi l l be incremented by 1. However, there is no failure or backtracking if

3 G D{x) is removed after applying local consistency algorithm in Sr (case I I I in

Figure 4.5). Hence, the counter remains unchanged = 2).

Since values in variable domains wil l not be removed (after applying the

CHAC algorithm) in our approach, backtracking wi l l be performed only when

the check bound operation (go in Figure 4.3) returns false. We use a simple

example as shown in Figure 4.6 to illustrate backtracking in our solver. For all

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 71

^ ^ j j j U"
I 2 ! ^ 3 ：

丄 ^ n “ • • • • • • • • ••
1 ： 1/ 2 :

Figure 4.5: Backtracking of Lua's solver.

the cases (I, I I , and III)，the failures are detected by performing the check bound

operation in Sc. When the subroutine go returns false, the counter wi l l be

incremented by 1. Suppose the number of internal nodes and leaf nodes visited

by Sr and Sc are the same, the number of failures # F r and may not be the

same = 2，but 二 4 in this simple example).

111
^ 1 卜 3 j

~ ~ T ~ ~ n
Z X I .•乂

• • • : • •

1 / ； 1 i y ^ 2 \ \ 1 / ； ^ 1 ： ：

i ••••••••••••• •••••••••••••

Figure 4.6: Backtracking of the Branch-and-Bound CHAC solver.

I t is possible that Sr and Sc prune the same number of branches, but #F r

and can be very different. We do not use the number of failures to compare

the pruning power of different solvers, because it unfair to Lua's solver. However,

we also report such information.

4.4.2 The First Experiment

We randomly generate 720 problem instances for the first experiment. We

benchmark the performance of each comparator {locally-better, weighted-sum-

better, worst-case-better, and I east-squares-better) using 180 problem instances.

We want to examine the efficiency, the memory requirement, and the pruning

power of our solver, as well as the overhead of the CHAC algorithm, from this

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 72

large-scale experiment.

E x p e r i m e n t s f o r t h e locally-better c o m p a r a t o r

We randomly generate 180 problem instances (3 experiments X 4 sets of CHs X

15 instances) as the benchmark problems for the locally-better comparator. We

record the results in three different ways: varying the size of variable domains

(P ' l , P、,广3, and P'4), varying the number of variables {JP'\, P"2, P'、, and

and varying the 皿mber of hierarchies P⑴2,广"3，and P'\). We

use the same experimental setup for other comparators {weighted-sum-better,

worst-case-better, and least-squares-better).

We use the ratio TgjTc as a measurement of efficiency of our solver Sc cor-

responding to solver Sg. Similarly, we use the ratio T^/Tc (or T^/Tc) as a mea-

surement of efficiency of our solver corresponding to the basic Branch-and-Bound

solver Sh (or Lua's solver Sr). The larger the value of the ratio Ti/Tc {i G {g, b, r})

is, the better the performance of our solver Sc corresponding to solver Si in terms

of execution time. For example, solver Sc is faster than solver Sg, wi th a factor

3.2 on average and with a factor 1.56 in terms of median, for the set of CHs in

P ' l as shown in Table 4.1. If the mean ratio of T,-/Te is larger than the median

ratio of T,-/Tc, then this implies our solver is faster than solver Si with a relatively

large factor for some problem instances.

The ratio Mi /Mc is used to compare the memory requirement of solver Si

and our solver Sc- For example, solver Sg requires less memory than our solver

as the mean ratio of Mg/Mc is less than or equal to 1 as shown in Tables 4.1，4.3,

and 4.5. Our solver requires more memories than solver Sg, since extra memories

are required to store the consistency information in solver S^

A choice point corresponds to a branching node in a search tree. I f the

number of choice points is small, then the number of branching nodes is also

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 73

small. We use the ratios and as a measurement of pruning

power of solver Sc corresponding to solver Si. The larger the values of

and are, the better the pruning power of Sc.

We use the ratio OJTc as a measurement of the overhead for enforcing CHAC

in solver Sc. The larger the value of Oc/Te is, the more the proportion of time

is required to enforce the CHAC algorithm. Experimental results show that

the mean ratio of Oc/Tc is very close to the median ratio of Oc/Tc as shown

in Tables 4.1, 4.3, and 4.5. We can observe that our solver requires more than

half of the execution time in enforcing the CHAC algorithm. The mean (or

median) ratio of O j T c almost remains constant, even the problem size increases

as shown in Tables 4.land 4.3. However, the mean (or median) ratio of 0。/7；

strictly increases when the number of hierarchies increases as shown in Table 4.5.

Experimental results show that our solver can produce more pruning when

the size of the problem instances are getting larger. The mean ratios of . L g ! # 1 。

(or and #Cg l#Cc (or strictly increases when the size of

variable domains increases as shown in Table 4.1 (or Table 4.2). Therefore, our

solver can solve a "large" problem more efficient than solvers Sg and Sb- Results

also show that the mean ratio of TgjTc (or T^/Tc) strictly increases when the size

of variable domains increases as shown in Table 4.1 (or Table 4.2). When the size

of the problem instances increases in terms of increasing the number of variables,

we observe similar results as those of increasing the size of the variable domains.

The mean ratios of TgjTc and Tfe/T； increase as shown in Tables 4.3 and 4.4.

Although they do not strictly increase, results show that the pruning power of

our solver is guaranteed as the mean ratios of and # “ / # ! / 。 s t r i c t l y

increase when the number of variables increases as shown in Tables 4.3 and 4.4.

However, no particular pattern of the ratio TgjTc (or T^/Tc) can be observed

when the number of hierarchies increases as shown in Table 4.5 (or Table 4.6).

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 74

Mean
CHs T j T e M j M e . L j . L c . C g l . C 。 O c / T ,

OTOT" 20.65 5.27 0.53
661.46 72.48 — 0.59
5518.85 416.12 — 0.57

PU 1114.78 0.75 6676.14 1453.42 0.57
Median

CHs T j T c M 具 # I , / # “ O c / n
P\ 1.56 9.42 2.98 0.50
P 、 ~ ~ 54.99— 0.61

_ 3 2 j Q _] 3 7 ^ _ J 7 6 . 5 6 ~ ~ 48.91 一 0.57
PU 130.38 0.74 1583.67 181.71 0.57

Table 4.1: A comparison between Sg and Sc by varying the size of variable
domains for l-b.

Mean
I s n/T, •Chl.Cc

P\ 4.55 0.92 11.24 4.51
32.98 0.81 266.86 27.98 —
139.04" 0.79 408.63 ~ 1 ^ . 7

P\ 150.00 0.75 524.82 524.82
Median

TVTc Mb/Mc •“l#Lc
2.52 0.92 7.46 2.63

尸,2 3 . 8 ~ 0.81 50.90 9.68

6.21 ~ 0.79 — 45.30 —11.02
P 、 5.76 0.74 65.50 13.45

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 75

“ Mean
CHs T J T , M j M c • C g j ^ C 。 O c / T ,

~ T Q O ~ 13.85 3.76 0.55
2.91 1.00 一 16.80 4.95 “ 0.57
4.62 Q.92~ 24.34 8.06 “ 0.55

~ P 7 | 16.06 0.95 58.33 26.86 0.51
Median

CHs T j T c Mg/Mc Oc/Tc
~ P r 2.00 1.00 8.80 2.26 0.50
" P ^ 1 . 8 1 1.00 一 10.35 3.32 “ 0.58
尸〃3 ^ ^ ^ 一 0 . 9 2 12.00 3.46 0.55 “

~ p 4 4.18 0.92 13.66 7.02 0.51 “

Table 4.3: A comparison between Sg and Sc by varying the number of variables
for l-b.

Mean
W s n/T, Mb/Mc

P\ 2.44 1.00 6.74 2.24
尸〃 2 4.6"2~ 1.00 15.12 “ 4.46

4.28 0.92— 15.73 4.17 —
11.91 0.95 26.76 11.33

Median
W s T,/Te Mb/Mc

" T 5 0 ~ 1.00 3.88 1.87
P 丨丨 2 2.27— 1.00 7.10 — 2.86

1.65 _ 0.92 5.53 _ 2 . 4 3
P\ 3.35 0.92 6.55 4.37

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 76

“ Mean 一

CHs T j T e MgjMc # i W # “ • C g / . C c Oc/T,
] g ^ J 3 6 . 4 6 1897.50 186.89 0.57

15.54 — 0.85 198.15 19.38 0.61 “
尸 3 3 9 . 9 6 0.88 4521.15 400.76 0.65 —

140.29 0.88 2706.92 160.78 0.66
Median

CHs T,/Te MgjMc • C J . C c OdT,
17.37 0.87 258.50 21.76 0.57

广 2 8.81 — 0.88 59.74 14.06 0.58 —

P'% 67.14 - 0.88 657.62 82.68 0.61 _
67.55 0.88 634.17 50.74 0.66 _

Table 4.5: A comparison between Sg and Sc by varying the number of hierarchies
for l-b.

Mean
W s n/T, Mb/Mc 铜 . L c

38.40 0.87 295.72 36.78
P 丨丨丨 2 1 1 . " ^ 0.85 59.26 10.80
P'丨IIG.GT 0.88 624.67 — 52.43
P'\ 34.31 0.88 325.14 23.86

Median
W s

~ ~ l O W 0.87 “ 28.94 10.21
P 丨丨丨2 7.46— 0.85 - 35.90 — 4.77

尸,〃3 19.84~ 0.88 42.38 — 6.32

P'% 18.65 0.88 69.54 10.18

Table 4.17: A comparison between Sh and Sc by varying the size of variable
d o m a i n s for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 77

E x p e r i m e n t s f o r t h e weighted-sum-better c o m p a r a t o r

Experimental results show that the performance of our solver is getting bet-

ter when the size of the problem instances increases. The mean ratio of Ti/Tc

{i G {g, 6, r }) strictly increases when the size of the problem instances (in terms

of the size of variable domains or the number of variables) increases, since the

mean ratios of and • C i / . C 。 a l s o strictly increase as shown in Ta-

bles 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12. However, no particular pattern of the

mean ratio of Ti/T。can be observed, except the mean ratio of T^/Tc strictly in-

creases, when the number of hierarchies increases as shown in Tables 4.13, 4.14,

and 4.15. In addition, results show that the mean ratio of TijTc is always larger

than the corresponding median ratio for all the cases.

Experimental results show that our solver requires less memories than Lua's

solver as shown in Tables 4.9, 4.12, and 4.15, except for the set of CHs in P\

as shown in Table 4.9. Experimental results again show that the mean ratio of

Oc/Tc is very close to the median ratio of Oc/Tc for weighted-sum-better. The

mean ratio of Oc/Tc almost remains constant when the size of variable domains

increases as shown in Table 4.7, but decreases when the number of variable

increases as shown in Table 4.10. However, the mean ratio of Oc/Tc strictly

increases when the number of hierarchies increases as shown in Table 4.13. The

comparison between #F r and is listed in Tables 4.9, 4.12, and 4.15 for a

more complete comparison. However, we do not use this ratio as a measurement

of pruning power.

E x p e r i m e n t s f o r t h e worst-case-better c o m p a r a t o r

Experimental results show that the performance of our solver is also getting

better when the size of the problem instances increases for worst-case-better. The

mean ratio of TijTc {i G {g, 6, r }) strictly increases when the size of the problem

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 78

Mean
CHs r j T e M J M c • C g j . C 。 O c / T ,

" F T 6.86 0.92 59.61 11.04 0.58
P',, 6 7 . 0 3 0 . 5 8
广3 _ _ 6 Q 2 ^ 9363：0^ 7 2 9 . 5 0 0 . 6 0

1233.76 0.76 15644.83 1525.96 0.59

Median
CHs T j T c M J M c O d T .

" F T 3.59 0 . " ^ 34.01 5.83 0.59
尸 m 6 3 1 8 . 9 6 0 . 5 8
P'3 _ 4 1 7 5 2 7 ^ 7 " " 57.11 ~ ~ 0.59

~ p u \ 120.58 0.77 1880.24 156.08 0.59

Table 4.7: A comparison between Sg and Sc by varying the size of variable
domains for w-s-b.

Mean —
W s %/T, M狐

P\ 5.47 0.92 33.84 8.06

P � 28.7 厂 0.87 “ 149.97 — 23.18

•P'3 264.6^" 0.83 “ 5524.71 — 131.24
P'4 1066.57 0.76 8007.48 1114.50

Median
T,/Te Mb/Mc . L ⑩ Lc

P\ 3 . 4 2 ~ 0.92 17.94 “ 4.23

P'2 6.74~~ 0.87 26.30 6.53 “
尸'3 9.48 0.83 128.40 8.46 “

6.27 0.77 41.77 9.96

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 79

Mean
CHs Tr /T , Mr /Mc

4.54 1.26 29.63 5.56 0.02295

P,2 10.13 94.56 — 13.69 — 0.00116
111.75 1.04 5005.39— 92.16 — 0.00115

828.31 0.91 7342.58 930.08 0.00020—

Median
CHs M 批 # L r l # L c • C r I . C c

2 ? f r ~ 1.25 9.94 3.56 0.000368
尸 3 . 0 4 1 . 1 3 20.29~~ 3.46 — 0.00005^

5.39 1.06— 84.67 5.09 “ Q.QQ0079
P'各 4.60 0.91 25.46 5.70 0.000031

Table 4.9: A comparison between Sr and Sc by varying the size of variable
domains for w-s-b.

Mean
CHs T j T c M j M c • C J # C c O c / n
P\ 1.04" 0.99 4.61 1.74 0.62
P丨丨2 3.63 _ 0.99 17.32 6.13

15.17 0.92 93.54 22.15 0.53 “
17.85 0.94 182.62 27.07 0.53

Median
CHs TglTc Mg/Mc # L , / # L 。 O c / T .
P\ 0.83 1.00 3.13 1.44 0.67

T " 2 2.30 1.00 ~ 1 3 . 3 0 3.92 0.57 “
3.84 — 0.92 2 2 ^ ~ 5.15 0.52 _
3.18 0.92 8.02 6.21 0.53 “

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 80

Mean

~ ~ E ^ 0.99 2.64 1.33
尸〃2 3.90— 0.99 9.76 一 3.89

12.5「0.92 — 58.55 — 12.49

P\ 15.61 0.94 132.01 16.74

Median
W s n/T, MblMc 则 . L c

~ ~ T T T " 1.00 2.49 1.19
2.83— 1.00 5.29 一 3.35

尸"3 2.64— 0.92 — 8.50 一 2.59

2.37 0.92 5.18 4.24

Table 4.11: A comparison between Sb and Sc by varying the number of variables
for w-s-b.

Mean
CHs Tr/T, Mr/Mc

0.72 1.40 1.59 0.88 0.16327

1.36 1.33— 5.32 1.74 0.01145 “

""""8.86 1.26 ~ 44.67 10.95 . 0.00085

12.58 1.22 118.84 15.92 0.00090—

Median
CHs T r / n Mr/Mc . L r l . L c • C r I . C c
p\ 0.67 1.40 1 . 6 3 0 . 6 0 0.054393

尸〃2 1.06 3 . 3 9 1 . 7 1 一 Q.0Q6QQQ~
尸"3 1.79 6.79 2 . 5 9 一 0.QQQ24F"

1.51 1.23 3.98 2.97 0.000015

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 81

Mean

CHs T j T c M j M c OJTc
124.29 0.87 2566.32 150.96 0.60

P'\ 26.06 0.86 372.62 33.35 0.65 “

127.96 2986.32 1 3 6 . 6 5 ~ 0.67

271.32 0.88 6066.67 276.83 0.71

Median
CHs T J T , M j M c OQ/TC

P'\ 64.15 0.87 603.77 73.29 0.56

尸 1 4 . 1 6 0.88 154.90 17.65 0.64 “

严"3 41.47 — 0.88 731.43 36.72 0.66 一

43.74 0.88 514.80 45.15 0.69 —

Tab le 4.13: A comparison between Sg and Sc by varying the number of hierar-
chies for w-s-b.

Mean —
I s r , /Te 铜 •Chl.Cc

16.74 0.87 159.75 11.20

P〜33.3r 0.86 137.20 一 20.28

52.2^ 0.88 452.63 一 26.43

P'% 34.90 0.88 492.53 36.60

Median

P"\ 9.45~ 0.87 42.67 5.11

P 丨丨丨 2 0.88 73.04 4.93

P �9.84— 0.88 _ 119.98 — 17.23

P,"4 11.10 0.88 149.37 8.93

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 82

~ Mean
CHs TriTc M r / M ,

101.70— 8.06 _ 0.0016
11.39 1.21 96.75 — 11.52 — 0.0043

_2272 435.72 19.03~~ Q.3527~
27.06 1.49 426.83 21.41 0.9804—

Median
CHs Tr/Tg Mr/M, •CrI.Cc

^ ^ — 5 . 9 6 1.13 35.70 — 4.85 0.00051
3.98 60.71 3.85 — 0.00016

P 〜 8 . 9 0 ~ T 3 1 97.66 8.00 — 0.00021
5.37 1.44 111.48 4.69 0.00044

Table 4.15: A comparison between and Sc by varying the number of hierar-
chies for w-s-b.

instances (in terms of the size of variable domains or the number of variables)

increases, since the corresponding mean ratio of • C i / # C c also strictly increases

as shown in Tables 4.16, 4.17, 4.18’ 4.19, 4.20, and 4.21. However, no particular

pattern of the mean ratio of Ti/Tc can be observed, except the mean ratio of

TgjTc strictly increases as shown in Tables 4.22, when the number of hierarchies

increases as shown in Tables 4.23, and 4.24.

Experimental results show that our solver requires less memories than Lua's

solver as shown in Tables 4.18，4.21, and 4.24, except for the set of CHs in P\ as

shown in Table 4.18. The mean ratio of OcjTc almost remains constant when the

size of variable domains increases as shown in Table 4.16. However, the mean

ratio of Oc/T^ increases when the number of variables (or hierarchies) increases

as shown in Table 4.19 (or Table 4.22).

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 83

Mean
CHs T j T c M j M c • L j . L c Oc/T,

7.87 0.92 73.55 13.49 0.53
__19.64 ~0：86~~ 1 8 9 . 4 ^ 32.80~~ 0.56

33.94 1 2 2 . 7 ^ 60.39 0.55
363.38 0.76 2802.27 546.22 0.56

Median
CHs T j T c MgjMc • L j . L c • C g l . C 。 O c / n

" F T " 0.88 0.92 9.09 1.83 0.50
— 0.87 33.34 9.63 0.55 —

广3 __3 j3 ~ 0.83 12.12 7.46 0.52 ~
19.74 0.77 279.57 39.23 0.53

Table 4.16: A comparison between Sg and Sc by varying the size of variable
domains for w-c-b.

Mean
I s n/T, M, /Me •Chl.Cc

P\ 0.92 37.06 5.92
19.81— 0.86 179.52 ~ 27.79

•P,3 32.2厂 0.83 115.82 — 51.78

PU 261.77 0.76 1626.16 348.81
Median

P\ 1.28 0.92 5.92 1.75
P'2 6 . 6 ^ 0.87 16.70 “ 7.11
尸'3 2.1 厂 0.83 9.94 — 5.84

22.52 0.77 169.07 26.47

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 84

Mean
CHs Mr lMc m . F c

IT25~" 35.66 5.59 0.3215
163.82— 24.49 — 0.0017 “

_ ^ 3 _ _ 3 0 . 3 4 1.03— 97.69 43.10 “ 0.1334
P\ 231.96 0.93 1420.50 318.86 0.1330

Median
CHs T r / n Mr jMc

1.25 3.11 1.72 0.007203
P'^ 5.32 ~ n 3 ~ 9.84 6.09 “ 0.000061

1.69 6.62 3.15 “ 0.000041
PU 20.16 0.91 139.40 20.15 0.000029

Table 4.18: A comparison between Sr and Sc by varying the size of variable
domains for w-c-b.

一 Mean
CHs T j T c M j M c • L j . L c Oc/T.

~ p r 1.60 0.98 7.75 2.78 0.46
2.92 1 . 0 0 1 3 . 2 7 4.95 一 0.52

P% 5.50 0.92 16.89 11.46
~~P% 18.72 0.94 106.82 27.59

Median
CHs T J T , MglMc . L j ^ L c Oc/T,
P'\ 1.25 — 1.00 4.17 1.93 0.50
P''2 0.74 1.00 一 1.96 1.77
尸"3 1.64 0.92 — 4.34 3.48

P% 1.85 0.92 5.73 3.92 0.53 一

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 85

Mean
^ s MiJMc
~ T \ ~ ~ 0 . 9 8 6.16 2.54
尸"2 3.59一 1.00 12.21 一 4.63

6.50~ 0.92 一 13.57 — 10.02
P% 21.11 0.94 103.59 26.67

Median

^ r , /Te Mb/Mc .L 抓 c
P'\ 1.56 1.00 3.11 1.41
P 丨丨 2 0.97一 1.00 1.88 — 1.67
尸"3 1.58一 0.92 ~ 3.35 — 2.97

1.78 0.92 5.21 2.91

Table 4.20: A comparison between Sb and Sc by varying the number of variables
for w-c-b.

— Mean
CHs T./Te M 批 . L r l . L c

1.69 1.32 5.14 2.01 0.178
下 2 3.08 1.27 11.76 4 . 3 5一 0.341

4.03 1.23— 11.66 8.23 0.075 _
19.72 1.19 102.91 26.05 0.067 —

Median
CHs TrjT, Mr/Mc
P\ 1.00 "~L3Q~~ 2.27~~ 1.33 0.0216718

0.87 ~ T 2 r ~ 1 . 8 4 ~ 1 . 6 2一 0.006607^
P"^ 1.23 3.28 2 . 5 7一 0 . 00017^

1.53 1.15 5.00 2.38 0.0000061 “

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 86

Mean
CHs T j T c M j M c • C J . C c O d T ,

125.78 21.95 0.58
7 4 9 . 5 ~ 5 7 . 2 4 — _ 0 6 5 _
4 8 5 . 7 ~ 91.43 —

78.49 0.88 1510.83 93.41 0.69
Median

CHs T J T , M j M c . L j . L c Oc/Tc
5.55 21.08 12.62 0.53

0.88 142.58 31.25
13.59 1 7 0 . ^ ~ 15.82 — 0.69
19.05 0.88 187.35 22.02 0.68

Table 4.22: A comparison between Sg and Sc by varying the number of hierar-
chies for w-c-b.

Mean
T H s n/T, Mb/Mc #“/#Lc •Chj.Cc

1 3 ^ 0.87 108.44 16.30
44.35" 0.85 — 550.01 — 47.90

广〃3 58.4^ 0.88 379.01 68.35
24.43 0.88 355.37 20.29

Median
^ s T,/Te M批 •婦Cc

P"\ 0.87 14.18 5.90
P','2 0.88 128.04 21.23
广 3 lOW 0.88 80.27 10.87

11.29 0.88 57.55 6.55

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 87

Mean
CHs TriTc M r / M , • L r l . L c • C r / . C c

98.99 14.28 0.134
^ . 0 7 512.50 38.06 _ 0.333

1.27— 307.29 65.37 一 0.067
19.51 1.38 329.98 16.49 0.067

Median
CHs r , /Te Mr/Mc

_2A0 ~ T l 3 11.92 _ 3.31 0.0002679
17.37 116.07 17.13 "0.0001983

P 〜 8 . 2 0 79.21 7.55 "0.0000335
P " 、 4.84 1.37 41.44 4.33 0.0000833

Table 4.24: A comparison between Sr and Sc by varying the number of hierar-
chies for w-c-b.

E x p e r i m e n t s f o r t h e least-squares-better c o m p a r a t o r

Experimental results show that the mean ratio of TgjTc strictly increases when

the size of variables domain increases, since the mean ratio of • C g / # C c also

strictly increases as shown in Table 4.25. Although the mean ratios of

and do not strictly increase, the mean ratio of TijTc also strictly in-

creases as shown in Table 4.26. However, the mean ratio of T^/Tc does not strictly

increase, even the size of variable domains increases as shown in Table 4.27. The

mean ratio of T^/Tc {i G {g .h . r]) increase, but not strictly increasing, as the

number of the variables increases as shown in Tables 4.28, 4.29, and 4.30. How-

ever, no particular pattern for the mean ratio of TijT^ when the number of

hierarchies increases as shown in Tables 4.31, 4.32, and 4.33. We can only ob-

serve that the median ratio of increases when comparing our solver to

the Lua's solver as shown in Table 4.33.

The memory requirement of our solver is less than that of the Lua's solver for

most of the cases as shown in Tables 4.27, 4.30, and 4.33. However, our solver

always requires more memories than solvers Sg and Results show that the

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 88

mean ratio of Oc/Tc almost remains constant when the size of variable domains

increases as shown in Table 4.25. However, the mean ratio of Oc/^c decreases

(increases) when the number of variables (hierarchies) increases as shown in

Table 4.28 (Table 4.31).

Mean
CHs T j T c M J M c #Cg/#Cc Oc/T.

0.92 17.02 4.88 0.54

32.13 0.87~~ 440.84 45.03 ——0.57

214.58 0 . 8厂 7853.79 248.74 ~ 0.58

~ P \ \ 385.12 0.75 2618.29 526.99 0.57
Median

CHs T j T e Mg/Mc OQ/TC
O M " " 15.17 4.60 0.52
0.87 65.98 18.26 0.55 —

15.94 0 . 8 「 58.01 24.58 一 0.56
下 4 11.55 0.74 24.77 16.91 0.56

Table 4.25: A comparison between Sg and Sc by varying the size of variable
domains for l-s-h.

R e m a r k s

Our proposed solver Sc is faster than the Generate-and-Test solver Sg, the basic

Branch-and-Bound solver Sh, and the Lua's solver Sr for most of the time. For

example, S。is faster than Sg, Sb, and Sr respectively 88%, 79%, and 73% of the

time for weighted-sum-better as shown in Table 4.34. Since the CHAC algorithm

incurs overhead in the branch-and-bound search, this is the main reason for Sc

to be slower than others for some problem instances. The inferiority of solver Sc

for “small，，problems, in terms of the size of variable domains and the number of

variables, is expected since the pruning obtained is outweighed by the overhead.

For the larger problems the extra effort paid by the CHAC algorithm at each

search node is demonstrated worthwhile. This result is in line with the behav-

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 89

Mean
W s niTc M.jMA # W # 丄 c

3.33 0.92 13.11 3.03
0.87 —64.09 ~ 1 1 . 0 8

尸'3 13.3 厂 0.83 — 148.52 — 34.15

25.17 0.75 72.86 32.74

Median
I s T,/Te M , / M J • C h l . C c
~ T \ ~ ~ i W 0.92 6.85 2.77
广 2 2.71 _ 0.87 15.46 ~ 2 . 6 6

•P'3 2。08一 0.83 — 13.32 — 6.61

P'4 8.21 0.74 21.64 5.38

Table 4.26: A comparison between Sb and Sc by varying the size of variable
domains for l-s-b.

Mean 一

CHs Tr /T, M 具

1.99 1.26 8.10 2.68 0.02573

P'^ 5.53 1.10 45.11 7.41 “ 0.00134
12.38 1.01— 128.78 15.60 “ 0.00181

10.21 0.91 66.82 13.01 O.QQQ15~
Median

CHs TrITc M r / M , # L r l # L c # 0 7 # (7 。

1.61 1.25 6.60 — 1.89 0.QQ1161Q
0.98 ~ T 0 7 ~ 8.17 1 . 0 9 — 0 . 0 0 0 1 6 ‘

尸'3 1.87 —1.00 1 2 . 9 1 3 . 5 0 一 0.0000173^

下 4 3.90 0.87 19.23 4.97 O.OOOOOl̂

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 90

Mean
CHs T j T c M j M c • C J . C 。 O c / T ；

" F T 1.12 ~ ~ T M ~ 6.03 2.24 0.64
2.51 1.00 一 10.77 4.02 “ 0.55

尸"3 J 7 ^ ~ 0 . 9 2 8 6 . 0 7 ~ 2 9 . 2 2 ~ 0.54

11.11 0.95 45.23 18.94 0.54

Median
CHs T J T , M j M c # i W # “ Oc/T,
P'\ 1.00 1.00 4.11 2.05 0.60

1.45 ~TQ0~~ 4.87 — 2.73 “ 0.52
4.68 0.92 15.52 10.42 “ 0.54
4.44 0.92 20.29 7.99 0.53 ~

Table 4.28: A comparison between Sg and Sc by varying the number of variables
for l-s-b.

Mean
I s n/T, Mb/Mc

P'\ 2.32 1.00 2.75 1.25
尸"2 2.21 ~ 1.00 6.37 ~~2.96

0.92 19.39 10.36 —
P\ 6.03 0.95 21.58 8.63

Median
^ H s niTc Mb/Mc •“I.Lc

P\ 1.14 1.00 2.30 “ 1.16
P'丨 2 i W 1.00 2.73 “ 1.83

—4.09 0 . 9 2 5 . 4 9 5.45 一

P% 1.62 0.92 4.53 4.25

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 91

Mean
CHs T r jT , M r / M , . C r l . C c

[g r ^ O . 7 7 1.38 2.55 _ 0.99 0.11417
~ P V 1.23 5.13 1.82 “ 0.07130

5.37 1.24 — 16.80 9.11 “ 0.00507
~ P \ \ 4.43 1.20 15.65 7.42 0.00016

Median
CHs T,/Te M 具 • C r I . C c

"~T40 1.76 “ 0.79 0.070588
户〃2 1.84 — 1.00 — 0.005418

1.47 1.25 ~ 5.28 2.14 “ 0.000753
~ P 7 "] 1.32 1.23 3.47 2.59 0.000013

Table 4.30: A comparison between Sr and Sc by varying the number of variables
for l-s-b.

‘ Mean
CHs T j T c Mg/Mc • C J . C c O J T ,

347.25 0.86 11461.62 414.69 0.59
“ 0.85 229.15 18.94 0.62—

77.70 0 . 8 「 1820.66 81.70 一 0.69
146.77 0.88 4133.90 161.91 0.72

Median
CHs TgjTc Mg/Mc • L j . L c #Cg l#Cc OcjTc

24.62 0.87 206.87 24.22 0.60

P'\ 6.79 - 0.88 156.64 9.40 0.61 —

24.46 “ 0.88 799.80 27.68 0.7Q~
~P〃4 39.70 0.88 493.45 32.55 0.72—

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 92

Mean

0.86 283.60 41.17
P'\ 9.31— 0.85 62.88 — 8.22
P � 5 Q . 8 r 0.88 899.27 — 40.77

27.72 0.88 223.75 8.05
Median

I s r^/Te •Lbl.Lc
0.87 28.75 10.93

5.50— 0.88 28.08 — 5.78
1 8 ^ 0.88 29.01 4.51 —
16.99 0.88 63.01 7.07

Table 4.32: A comparison between Sb and Sc by varying the number of hierar-
chies for l-s-b.

Mean “
CHs Tr /T, Mr/Mc . C r / . C 。

P"\ 31.51 1.12 204.87— 37.87 0.11031

P�_J21 ~ T T r ~ 48.87 7.65 — 0.00132 •
P丨‘丨 3 37.11 1.27 754.02~~ 34.57 O.QQ79f~

8.55 1.37 179.29 7.62 0.00071 “

Median
CHs Tr /T, M 批 • C r / . C c

1.13 21.95 3.27 0.000378

2.37 1.19— 24.15 2.06 0.000074 _
P丨丨5.18 “ 1.25 — 26.67 3.93 "0000457

2.25 1.37 44.90 2.16 O.QQQ183~

Table 4.17: A comparison between Sh and Sc by varying the size of variable
domains for w-c-b.

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 93

ior of embedding classical consistency techniques in basic tree search in solving

classical CSPs.

Since the consistency information (or error indicators) may be recomputed

for the tradeoff between time and space. The experimental results show that

our implementation of Sc requires more memories than Sr at most 14% of the

t ime for global comparators as shown in Table 4.34. Results also show that our

solver always requires more memories than Sg or However, recomputation of

consistency information incurs a larger proportion of overhead. At least 50% of

the execution time is used to calculate consistency information in Sc on average.

Experimental results show that the number of leaf nodes visited by solver Sc

is less than that of Sg, St, and Sr at least 91% of the time for worst-case-better.

The number of choice points visited by solver Sc is also less than that of Sg,

Sb, and Sr at least 89% (for w-c-b), 78% (for l-s-b), and 72% (for l-s-b) of the

time respectively. Sr relies on classical constraint propagation to enforce the

semantics and the operations of the comparators via reified constraints. While

the approach, based on existing technology, is clever and clean, the pruning

power of reified constraints is relatively weak. On the other hand, Sc executes a

dedicated algorithm for maintaining CHAC to help pruning and solution filtering,

thus attaining a higher efficiency. Experimental results show that our solver can

prune better than Lua's reified constraint approach in practice. Therefore, the

execution time of our solver can be further reduced if the implementation of the

CHAC algorithm is optimized.

The detail comparisons for each comparator, in terms of the mean and median

ratios, are shown in Tables 4.35 and 4.36. The ratios for each comparator are

calculated by using 180 problem instances. Results show that the mean is larger

than the median in terms of the time, the number of leaf nodes visited, and

the number of choice points in the search. This implies that our solver can

perform extremely well for some problem instances. Our solver is efficient in

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 94

terms of the execution time, since it visits less number of leaf nodes and number

of choice points than Lua's solver on average. Besides, it requires less memory

than Lua's solver. However, at least 50% of the execution time is used to calculate

consistency information by the CHAC algorithm on average.

"Comparator | Time | Memory | Leaf Node | Choice P o i ^
Comparison between Sg and Sc

lb 94% 100% 100% 98%
w-s-b 88% 100% 100% 94%
w-c-b 73% 100% 91% 89%
l-s-b 83% 100% 99% 94%

Comparison between Sb and Sc
l-b 79% 100% 93% 79%

w-s-b 79% 100% 一97% 84%
w-c-b 73% 100% 一91% 89%
l-s-b 66% 100% 96% 78%

Comparison between Sr and Sc
w-s-b 73% 11% 97% 81%
w-c-b 71% 12% 一91% 88%
l-s-b 63% 14% 95% 72%

Table 4.34: A summary of the performance of S^

4.4.3 The Second Experiment

We randomly generate 180 problem instances (3 experiments X 4 sets of CHs x

15 instances) as the benchmark problems for the second experiment. However,

we only focus on the execution time in this experiment. Similar to the first

experiment, we record the results in three different ways: varying the size of

variable domains {P'u 尸'2,尸'3, and P �) , varying the number of variables {P"i,

P〃2, P"3, and P'U), and varying the number of hierarchies 尸…2, P"'3, and

We benchmark the performance of our solver on different comparators

{locally-better, weighted-sum-better, worst-case-better, and least-squares-better)

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 95

Mean —
Comparison between Sg and Sc

" S e p a r a t o r TJT, M J M � • L J . L �霄

一 l-b 176 0.88 1860 230

w-s-b 0.89 3149 249

54 0.89 517 80 一

一 l-s-b 105 0.89 2394 130

Comparison between Sb and Sc
^ C ^ p a r a t o r Mb/M�料

—l-b 46 0.88 215 70 —

w-s-b 128 0.89 1263 117

w-c-b ~ " 4 r ~ 0.89 291 53

—l-s-b 18 0.89 152 17

Comparison between Sr and Sc
^^C^parator T,/Te M r / M � # 0 7 # (7 。

—w-s-b 87 1.22 T 1142 94

w-c-b 37 1.19 258 47

—l-s-b 11 1.19 123 12

Table 4.35: A summary of the mean performance of S^

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 96

Median
Comparison between Sg and Sc

"^C^parator TJT�MJM�料口丨料。^CJ^PT
一 l-b 9 0.88 I 70 I 13

w-s-b 9 0.88 86 13
w-c-b 4 0.88 22 7

—l-s-b 5 0.88 I 33 I 9
Comparison between Sb and Sc

^ ^ p a r a t o r T ^ M ^ J M � • C b / . C �

—l-b 7 0:88 I 31 I 7
w-s-b 6 0.88 22 6

—w-c-b 3 0.88 13 — 5 —
—l-s-b 3 0.88 16 6

Comparison between Sr and Sc
" C ^ p a r a t o r Tr /T, M 批 料 “ 料 。

w-s-b 3 1.25 ^ 3
—w-c-b 3 ~T.23 11 3
—l-s-b 2 1.25 11 2

Table 4.36: A summary of the median performance of Sc-

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 97

using same problem instances. Therefore, we can fairly compare the performance

of our solver on different comparators.

V a r y i n g t h e S ize o f V a r i a b l e D o m a i n s

We randomly generate 60 problem instances (4 sets of CHs X 15 instances)

to benchmark the performance of our solver when the size of variable domains

increases. We compare the performance between the solver Sg and our solver Sc

first as shown in Table 4.37. Experimental results show that the mean ratios of

TgjTc on weighted-sum-better, worst-case-better, and least-squares-better strictly

increase when the size of variable domains increases. Results also show that the

mean and median ratios of Tg/Tc on weighted-sum-better and least-squares-better

are very close. The mean and median ratios of Tg/Tc on the worst-case-better

comparator are almost the smallest. This implies the performance of our solver

on the worst-case-better comparator is the worst.

TgjTc (Mean) TgjTc (Median)
CHs l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-h
P 、 4 4 一 1.5

36 — 15 37 3 7 0.6 7
171 267 “ 67 261 74 6 72
76 385 72 342 | 12 | 13 5 T3~

Table 4.37: A comparison between Sg and Sc by varying the size of variable
domains.

When comparing the performance of our solver to the basic Branch-and-

Bound solver Sh and Lua's solver S ” we can only observe that the mean and

median ratios of Tb/Tc (or T^/T^) on weighted-sum-better and least-squares-better

are very close as shown in Tables 4.38 and 4.39.

Chapter \ A Consistency-Based Finite Domain Constraint Hierarchy Solver 98

n / T c (Mean) Tb/T； (Median)
"CHs l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

6 4 "~6 2 2 _ _
18 22 19 " T F
121 47 123 4 2 5 2

I 23 I 37 I 35 I 39 I 3 I 5 3 | 厂

Table 4.38: A comparison between Sb and Sc by varying the size of variable
domains.

- TrITc (Mean) Tr/T^ (Median)
CHs w-s-b w-c-b l-s^ w-s-b w-c-b l-s-b

广2 _ 9 _ ^ _ _ 1 9 9 一 5

113 42 “ 115 0.9 5
. P ' 4 I 17 I 27 I 18 I 2 2 I 2

Table 4.39: A comparison between Sr and Sc by varying the size of variable
domains.

V a r y i n g t h e N u m b e r o f V a r i a b l e s

We also randomly generate 60 problem instances (4 sets of CHs x 15 instances)

to benchmark the performance of our solver on different comparators when the

number of variables increases. When comparing the performance between the

solver Sg and our solver S。as shown in Table 4.40, the results show that the mean

ratios oi TgjTc on weighted-sum-better, worst-case-better, and least-squares-better

increase if the problem size increases in terms of the number of variables. The

mean and median ratios of TgjTc on weighted-sum-better and least-squares-better

are very close. Again, the performance of our solver for solving the worst-case-

better comparator is the worst.

For the comparison between the basic Branch-and-Bound solver Sb and our

solver, the results show that the mean and median ratios of Tb/Tc on weighted-

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 99

TgjTc (Mean) TglT。(Median)
CHs l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

" P T 1.2 1.2 — 0.9 ~ T 3 ~ ~ r ~ 0.8 - 0.6 ~ T ~ “
~ 6 ~ ~ 3 — 6 2 ~ ~ 3 1 . 4

" T P T 4 7 " 3 " ~ T ~ 2 3 “ 1.5
I 26 I 24 I 8 I 24 I 2 I 4 | 1.4 |

Table 4.40: A comparison between Sg and Sc by varying the number of variables.

sum-better and least-squares-better are very close as shown in Table 4.41. The

results, in particular for the median ratio, also show that our solver performs the

worst for the worst-case-better comparator.

n / T , (Mean) n / T ^ (Median)
CHs l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

^ T V T g " 1.2 1.3 " T 5 ~ ~ O " 1.3 - 1
4 ~ 5 "3~~ 5 1.5 2 1.4 2
厂 5 1 ~ 5 1.4 2 1.4 2

I 5 I 3 7 3 I 1.4 I 3 I 0.7 I 3

Table 4.41: A comparison between Sb and Sc by varying the number of variables.

In the comparison between Lua's solver Sr and our solver, we can only observe

that the mean and median ratios of T^/T^ on weighted-sum-better and least-

squares-better are very close as shown in Table 4.42. The results are obtained by

increasing the number of variables in this experiment, but we obtain results by

increasing the size of variable domains in previous experiment. We obtain similar

results in both experiments, since the number of hierarchies is kept constant.

V a r y i n g t h e N u m b e r o f H i e r a r c h i e s

Lastly, we benchmark the performance of our solver on different comparators

when the number of hierarchies increases. Experimental results show that the

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 100

TriTc (Mean) T；/?； (Median)
CHs w-s-b w-c-b l-s-b w-s-b w-c-b l-s-b

T ^ i ~ ~ I T " 1.1 ~ T X " 1.2 1
3 ~ T ~ " 1.4 —1.4 1.3

4" 4 ~ T ~ 2 —1.4 1.7
P〃4 I 1.4 I 6 I 1.4 I 1 I 0.6 I 1

Table 4.42: A comparison between Sr and Sc by varying the number of variables.

mean and median ratios, corresponding to T^/Tc, Th/Tc^ and T^/Tc, on weighted-

sum-better and least-squares-better are very close as show in Tables 4.43，4.44,

and 4.45. These are similar results as those obtained in previous experiments.

However, the results show that our solver can perform very well, in particular for

the worst-case-better comparator, when problem instances with more constraints.

The mean ratio of T^/Tc (or T^/Tc) on the worst-case-better comparator strictly

increases when the number of hierarchies increases. Results show that the perfor-

mance of our solver on the worst-case-better comparator is the worst only when

problem instances consist "less" constraints.

TgjTc (Mean) Tg/T, (M e d i a n) —
CHs l-b w-s-b w-c-b l-s-b l-b w-s-b w-c-b l-s-b

r ^ 146 108 151 - 27 24 ‘ 6 ~ W
116 209 130 212— 29 52 12
W 232 168 219 10 63 29
75 122 154 124 | 15 | 44 | 52 [47

Table 4.43: A comparison between Sg and Sc by varying the number of hierar-
chies.

R e m a r k s

Experiment results show that the performances of our solver on weighted-sum-

better and least-squares-better are very close. However, the performance of our

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 101

T^/Te (Mean) T^/T^ (Median)
CHs l-b w-s-h w-c-b l-s-b l-b w-s-b w-c-b l-s-b

~ W i ~ ~ W 44 44 44 4 3 4 “ ~ T ~
51 116 50 — ~ 6 “ 10

21 121 ~44 3 ~ 6 ~ ~ 8
I 26 I 58 I 132 I 60 I 4 I 11 53 | 11 —

Table 4.44: A comparison between Sb and Sc by varying the number of hierar-
chies.

TrjTc (Mean) T./T^ (Median)
CHs w-s-h w-c-b l-s-b w-s-b w-c-b l-s-b
P"\ 3 7 ~ 39 39~ 2 4 2
P 丨丨丨 2 38— 104 6 9 6
尸〃,3 31— 113 29 5 6 5

P'% 51 128 52 9 I 51 I 9

Table 4.45: A comparison between Sr and Sc by varying the number of hierar-
chies.

solver on the worst-case-better comparator is the worst for most of the cases.

The aggregated error value in each level of a valuation is calculated by max in

worst-case-better, but ^ in weighted-sum-better (or least-squares-better). It is

possible that a valuation 6 is weighted-sum-better than another valuation cr, but

they may be incomparable if worst-case-better is used. For example, there are

three constraints in a particular hierarchy level Hi. The error values in level i of

valuations 0 and a are {10,0,0} and {10,9,8} respectively. It is clear that we

cannot compare valuations 0 and a at level i using worst-case-better, since they

have the same aggregated error value 10 at this level. However, valuation 0 is

weighted-sum-hetter than valuation cr, since they have different aggregated error

values 10 and 27 corresponding to 0 and a at this level. The same argument is

also applicable to the least-squares-better and the locally-better comparators. No

pruning can be produced if errors are incomparable. Thus, the performance on

Chapter 4 A Consistency-Based Finite Domain Constraint Hierarchy Solver 102

the worst-case-better comparator is low for our solver as well as Lua's solver.

Given a problem instance with more number of constraints, the performance

of Lua's solver, comparing to our solver, on the worst-case-better comparator

is relatively low. The main reason is the requirement of extra variables. The

extra variables include variables associated with the reified constraints, as well

as the error combining constraints. This implies that Lua's solver searches a

larger search tree than our solver. Furthermore, the error combining constraint

is implemented using the I l c M a x constraint in ILOG Solver 4.4，which is again

weak in propagation.

Chapter 5

Concluding Remarks

5.1 Summary and Contributions

We have discussed the deficiencies of existing techniques [23, 39, 8, 36] in solving

finite domain CH in the thesis. DeltaStar [23] fails to solve even small prob-

lems in practice [21]. Current status of clp(FD, S) cannot solve any practical

finite domain CH [28], because there exists a limitation of the size of the set of

semiring values. Lua's solver [36] is based on combining reified constraint prop-

agation and the ordinary Branch-and-Bound algorithm [42]. Our experiments

have shown that reified constraint propagation is a relatively weak propagation.

We propose to adopt the general notion of local consistency in SCSP [9] to finite

domain CH. Since this general notion of local consistency can handle soft con-

straints, it is possible to adopt it to CH. This idea is realized by reformulating CH

with the notion of error indicators. An error indicator is defined as useful con-

sistency information to indicate the “goodness” of values in variable domains.

We define constraint hierarchy A^consistency (CH-/c-C) in finite domain CH,

which is based on error indicators. Since arc-consistency algorithm is a common

technique to detect local inconsistency in classical CSPs [6, 30], we design and

implement an algorithm to enforce CH-2-C, which we also called constraint hi-

103

Chapter 5 Concluding Remarks 104

erarchy arc-consistency (CHAC). The CHAC algorithm is derived and it is used

to transform a finite domain CH from arc-inconsistent to arc-consistent. We

propose to combine the CHAC algorithm and the ordinary Branch-and-Bound

algorithm to facilitate pruning in a search tree. This technique is implemented

in the Branch-and-Bound CHAC solver. Our large-scale experiments show that

our proposed solver is practical and produce more pruning than Lua's solver.

The contribution of our work is two-fold. First, we reformulate CH with the

notion of error indicators. By using error indicators and adopting the general

notion of local consistency in SCSP, we define /c-consistency in finite domain

CH. We derive the CHAC algorithm, which maintains a finite domain CH to be

arc-consistent by performing constraint check of unary and binary constraints.

The correctness of the CHAC algorithm is established.

Second, we show how the CHAC algorithm can be incorporated into the ordi-

nary Branch-and-Bound algorithm to provide a general finite domain CH solver

(Branch-and-Bound CHAC solver). Our solver can find solutions wi th respect

to locally-better, weighted-sum-better, worst-case-better, and least-squares-better

comparators. In addition, our solver is designed to handle arbitrary error func-

tions. Pruning is realized in our solver by invoking CHAC algorithm in each

step of traversing a search tree and comparing the current bound [42] with error

indicators. The correctness of the Branch-and-Bound CHAC solver is also estab-

lished. Our experiments confirm the efficiency, pruning power, and robustness of

our solver, which brings us one step towards practical finite domain CH solving.

5.2 Future Work

There is room for future research. First, we realize that inconsistent values

in variable domains can be removed in Lua's reified constraint approach. Our

Chapter 5 Concluding Remarks 105

experiments show that pruning heavily relies on removing inconsistent values

from variable domains in Lua's solver. A relatively small proportion of pruning

relies on comparing the bound in Branch-and-Bound algorithm. It would be

interesting to study how to integrate reified constraint propagation and CHAC

algorithm to produce more pruning.

Second, finite domain CH is an optimization problem. The efficiency of the

Branch-and-Bound algorithm can be sensitive to variable and value orderings.

I f the “best” solutions are located nearer to the left hand side of a search tree,

then the Branch-and-Bound algorithm can find the "best" solutions in an earlier

time. This implies more pruning can be produced. Therefore, it is worthwhile

to investigate good ordering heuristics.

Concerning implementations, our implementation and even the CHAC al-

gorithm are hardly optimized. Experiments show that our solver spends more

than 50% of the execution time to enforce CHAC algorithm. It is impractical

to store all consistency information during searching, as too many memories are

required. Hence, some consistency information is recomputed resulting in such

a large overhead. Our experiments show that the current implementation of our

solver requires fewer memories with respect to Lua's solver. I t would be inter-

esting to study a way to make the tradeoff between time and space in order to

reduce the overhead of the CHAC algorithm.

The current proposal of our solver guarantees the correctness of local and

global comparators. In addition, it is easy to check that our solver can support

regional comparator [51], regionally-better comparator. The existing compara-

tors, although rigorously and mathematically defined, might be too general for a

specific real-life situation [16]. It would be interesting to allow user-defined com-

parators, tailored for individual situations. It would be interesting to introduce

new comparators that should be of particular relevance to real-life problems and

applicable to our solver.

Chapter 5 Concluding Remarks 120

Last but not the least, in order to establish the practicality of our work, we

need to experiment on more structured problems and real-life problems as we

test our solver only on random problems. It would be also interesting to study

whether our solver can have better pruning when applying metric error function.

Bibliography

1] B. Abramson and M. Yung. Divide and conquer under global constraints:

A solution to the n-queens problem. Journal of Parallel and Distributed

Computing, 6:649-662, 1989.

.2] G.J. Badros, A. Borning, and P.J. Stuckey. The cassowary linear arithmetic

constraint solving algorithm. ACM Transactions on Computer-Human In-

teraction, 8(4):267-306, 2001.

3] R. Bartak. A plug-in architecture of constraint hierarchy solvers. In Pro-

ceedings of PACT97, pages 359-371, 1997.

4] R. Bartak. Benchmark for finite domain constraint hierarchies. Private

Communication, May 2002.

.5] C. Bessiere. Arc-consistency and arc-consistency again. Artificial Intelli-

gence, 65(1):179-190, 1994.

6] C. Bessiere, E.G. Freuder, and J.C. Regin. Using inference to reduce arc

consistency computation. In Proceedings of IJCAI95, pages 592-598, 1995.

7] S. Bistarelli, P. Codognet, Y. Georget, and F. Rossi. Labeling and partial

local consistency for soft constraint programming. In Proceedings of the

2nd International Workshop on Practical Aspects of Declarative Languages,

pages 230-248, 2000.

107

8] S. Bistarelli, Y. Georget, and J.H.M. Lee. Capturing (fuzzy) constraint hier-

archies in semiring-based constraint satisfaction. Unpublished Manuscript,

1999.

•9] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving

and optimization. Journal of the ACM, 44⑶:201-236, 1997.

10] S. Bistarelli and F. Rossi. About arc-consistency in semiring-based con-

straint problems. In AMAI98 (Symposium on Mathematics and Artificial

Intelligence), 1998.

11] A. Borning, R. Anderson, and B. Freeman-Benson. Indigo: A local prop-

agation algorithm for inequality constraints. In Proceedings of the 1996

ACM Symposium on User Interface Software and Technology, pages 129-

136, 1996.

12] A. Borning and B. Freeman-Benson. Ultraviolet: A constraint satisfaction

algorithm for interactive graphics. Constraints: An International Journal,

3(l):9-32, 1998.

.13] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint hierarchies.

Lisp and Symbolic Computation, 5(3):223-270, 1992.

.14] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving linear arith-

metic constraints for user interface applications. In Proceedings of the ACM

Symposium on User Interface Software and Technology, pages 87-96, 1997.

15] P. Codognet. Benchmark for finite domain constraint hierarchies. Private

Communication, May 2002.

16] P. Codognet. Semantic of the existing comparators. Private Communication,

July 2002.

108

17] P. Codognet and D. Diaz. Compiling constraints in clp(FD). Journal of

Logic Programming, 27(3), 1996.

18] P. Codognet and D. Diaz. Yet another adaptive search method for constraint

solving. In The 1st Symposium on Stochastic Algorithms, Foundations and

Applications, 2001.

.19] B. Freeman-Benson. Converting an existing user interface to use constraints.

In Proceedings of the 1993 ACM Symposium on User Interface Software and

Technology, pages 207-215, 1993.

.20] B. Freeman-Benson. Benchmark for finite domain constraint hierarchies.

Private Communication, May 2002.

21] B. Freeman-Benson. Efficiency of DeltaStar. Private Communication, Apr i l

2002.

22] B. Freeman-Benson, J. Maloney, and A. Borning. An incremental constraint

solver. Communications of the ACM, 33(l):54-63, 1990.

23] B. Freeman-Benson, M. Wilson, and A. Borning. DeltaStar: A general algo-

r i thm for incremental satisfaction of constraint hierarchies. In The 11th An-

nual IEEE Phoenix Conference on Computers and Communications, pages

561-568, 1992.

.24] E.G. Freuder. Synthesizing constraint expressions. Communications of the

ACM, 12:958-966, 1978.

25] E .g . Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial

Intelligence, 58:21-70, 1992.

.26] P. Galinier and J.K. Hao. A general approach for constraint solving by local

search. In Proceedings of the 2nd International Workshop on Integration

109

of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems, pages 57-69, 2000.

27] J. Gaschnig. A general backtracking algorithm that eliminates most redun-

dant tests. In Proceedings of IJCAI77, page 457, 1977.

28] Y Georget. Using clp(FD,S) for solving finite domain constraint hierarchies.

Private Communication, Feb 2002.

29] Y. Georget and P. Codognet. Compiling semiring-based constraints with

clp(FD,S). In Proceedings of the Fourth International Conference on PnVi-

ciples and Practice of Constraint Pvogiramming, 1998.

30] S.A. Grant and B.M. Smith. The phase transition behavior of maintaining

arc consistency. In Proceedings of ECAI96, pages 175-179, 1996.

31] P.V. Hentenryck. Tutorial on the CHIP systems and applications. In Work-

shop of Constraint Logic Programming, 1988.

"32] P.V. Hentenryck, Y. Deville, and C. Teng. A generic arc-consistency algo-

r i thm and its specializations. Artificial Intelligence, 57:291-321, 1992.

33] H. Hosobe, S. Matsuoka, and A. Yonezawa. Generalized local propaga-

tion: A framework for solving constraint hierarchies. In Proceedings of the

Second International Conference on Principles and Practice of Constraint

Programming, pages 237-251, 1996.

.34] H. Hosobe, K. Miyashita, S. Takahashi, S. Matsuoka, and A. Yonezawa.

Locally simultaneous constraint satisfaction. In Proceedings of PPCP94,

pages 51-62, 1994.

35] ILOG. ILOG Solver 44 Reference Manual, 1999.

.36] S.C. Lua. Solving finite domain hierarchical constraint optimization prob-

lems. Master's thesis, National University of Singapore, 2001.

110

37] A.K. Mackworth. Consistency in networks of relations. AI Journal, 8(1):99-

118, 1977.

.38] K. Marriott and P.J. Stuckey. Programming with Constraints: An Introduc-

tion. M I T Press, 1998.

39] F. Menezes, P. Barahona, and P. Codognet. An incremental hierarchical

constraint solver. In First Workshop on Principle and Practice of Constraint

Processing, 1993.

40] R. Mohr and T. Henderson. Arc and path consistency revisited. Artificial

Intelligence, 28:225-233, 1986.

.41] B.A. Nadel. Constraint satisfaction algorithms. Computational Intelligence,

5:188-224, 1989.

.42] P.M. Narendra and K. Fukunaga. A branch and bound algorithm for feature

subset selection. IEEE Transactions on Computers, 26(9):917-922, 1977.

.43] J.A. Nelder and R. Mead. A simplex method for function minimization.

The Computer Journal, 7:308-313, 1965.

•44] Zs. Ruttkay. Fuzzy constraint satisfaction. In Proceedings of the 3rd IEEE

International Conference on Fuzzy Systems, pages 1263-1268, 1994.

•45] M. Sannella. SkyBlue: A multi-way local propagation constraint solver for

user interface construction. In Proceedings of the 1994 ACM Symposium on

User Interface Software and Technology, pages 137-146, 1994.

46] M. Sannella. The SkyBlue constraint solver and its applications. In V.A.

Saraswat and P.V. Hentenryck, editors, Proceedings of the First Workshop

on Principles and Practice of Constraint Programming. M I T Press, 1994.

I l l

47] T. Schiex. Possibilistic constraint satisfaction problems or "how to handle

soft constraints?”. In Proceedings of the 8th International Conference on

Uncertainty in Artificial Intelligence, pages 269-275, 1992.

.48] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction prob-

lems: hard and easy problems. In Proceedings of IJCAI95, pages 631-637,

1995.

49] SICStus. SICStus Prolog User's Manual, 2002.

50] G.L. Steele and G.J. Sussman. Constraints. In APL conference proceedings

part 1, pages 208-225, 1979.

•51] M. Wilson and A. Borning. Hierarchical constraint logic programming. Jour-

nal of Logic Programming, 16:277-318, 1993.

.52] A. Wolf. Benchmark for finite domain constraint hierarchies. Private Com-

munication, May 2002.

112

”.、\ ‘ -

y.-。.’

. . . ,
•； ... ： • • .. ！ , . . •

CUHK L i b r a r i e s

•••llllll
•D3T5EflD3

I

