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ABSTRACT 

Abstract of thesis entitled: 

Design of Application-specific Instruction Set Processors 
with Asynchronous Methodology 

for Embedded Digital Signal Processing Applications 

Submitted by KWOK Yan-lun Andy 

for the degree of Master of Philosophy in Electronic Engineering 

at The Chinese University of Hong Kong in November 2004 

This thesis presents a new design methodology of application-specific instruction set 
processors (ASIPs) using asynchronous design methodology. ASIPs are today's 
enabling technology for tackling increasingly complex embedded systems together 
with tightening time-to-market constraints. It combines the high design productivity 
of the software approach and the high performance of the hardware approach, which 
brings us programmable devices with dedicated hardware features for real-time 
applications. A major obstacle of ASIP design is the larger design space compared 
with pure hardware or pure software implementations. This makes it hard for the 
designers to search for large amounts of architecture alternatives in order to find an 
optimal implementation within a competitive design timeframe. 

The platform-based design methodology using asynchronous technology is 
developed. A highly extensible and flexible platform is designed as the heart. Using 
asynchronous interfaces, components can be added to the platform rapidly to expand 
its functionalities without affecting the global timing. The platform can be effectively 
optimized for particular applications. 

The proposed design methodology is proven to be effective in the case studies. It 
shows that the base platform can be scaled up easily to dramatically speed up 
different kinds of kernels, reaching the performance level of some advanced parallel 
DSPs. The benchmark of rotation CORDIC algorithm even illustrates further 
performance gain by using asynchronous design methodology for seamless 
cooperation between two different clock domains. 
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摘要 

曰益進步的半導體技術，使計算機系統得以向多樣化和高整合進化。面對越來 

越複雜的應用以及縮短開發周期的需求，使用專用指令集處理器（A S I P ) 
是最佳的選擇。專用指令集處理器結合專用集成電路(ASIC)的卓越運算 

能力及可編程架構的高靈活性，使系統設計師能在短時間內完成產品上市。但 

是設計專用指令集處理器本身是一個極難解的問題。當中涉及複雜的軟硬體協 

調，使設計師無從入手，更遑論嘗試各種不同的軟硬體組合以求得到最合適的 

設計。 

有鑒於此，本論文提出一個利用異步設計技術和以開發平台爲基礎的方案。利 

用異步設計的高度模組化和其溝通界面，不同的模組可迅速組裝在一個可延展 

的平台上，面向目標應用對平台進行優化。建基於平台的方案爲專用指令集處 

理器設計提供一個切入點，並有效將設計流程簡化。設計師因而可在有限的時 

間內評價不同配置的效能。 

本論文所提出的方案在不同的實作中能有效面向不同的數字訊號處理核心（D 
S P Kernel)進行優化，並帶來顯著的效能增益°其效能甚至可媳美超 

長指令數字處理器（V L I W D S P )。此結果令人鼓舞，亦證實本方案爲可 

行並有效。 
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1 • INTRODUCTION 

1.1. Motivation 

Moore's law 0 has driven the development of technology in the silicon industry for 

the past three decades. The silicon gate count continues to grow; and the transistor 

size continues to be scaled down with the regular pace that Moore predicted. 

Continuing growth in silicon capability is rapidly magnifying the functionality of 

digital circuits, leading us into a new era of diversified applications on embedded 

digital devices. 

However, Moore's law is found to be increasingly irrelevant. While the silicon gate 

count still continues to grow as Moore predicted, hardware designers find difficulties 

in using all the gates efficiently and effectively with the leading edge technology. 

The improvement of electronic design aided (EDA) tools and engineering skills 

cannot keep track of the growth in the capability and complexity of digital circuits. 
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This gap of design productivity leads to great tension in achieving time-to-market, 

and therefore it becomes a serious burden for realizing advanced competitive 

designs. 

As time-to-market is primarily important, application-specific integrated circuits 

(ASIC) are no longer the best option although they deliver excellent performance in 

terms of speed, power and silicon efficiency. Shifting from hardware to software can 

take advantages in this scenario. Increasing the software proportion of a design 

improves the design productivity due both to the simple and predictable software 

design flow and to the high degree of reusability of the software library together with 

the programmable device itself. It can be expected that programmable devices, 

especially general-purpose processors, continue to benefit from Moore's law scaling. 

However, general-purpose processors show limits in meeting stringent requirements 

of embedded real-time applications. Compared to ASICs, general-purpose processors 

consume more power and offer lower performance. For this reason, the new type of 

programmable devices, so-called application-specific instruction-set processors 

(ASIP) are being developed to fill the gap between performance and time-to-market 

of purely hardware and purely software solutions as shown in Figure 1.1. 

Performance 

i i 

- , 1 I 
； 

r • ASIC 
！ A$W I 

Time-to-market 

Figure 1.1: ASIP bridges the performance and time-to-market gap 
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The philosophy of ASIPs is to put to good use the optimized user-defined instruction 

set and datapath to gain higher performance of computation for certain target 

applications. From the software designers' point of view, ASIPs offer efficient 

macros to replace heavily loaded subroutines in software implementation. From the 

hardware designers' point of view, ASIPs simplify the hardware algorithms by 

realizing some tedious but uncritical modules in software. The advantages of this 

arrangement are threefold : 1) High degree of flexibility allows late design change to 

keep track of the evolving standards. 2) High degree of reusability facilitates rapid 

retargeting. 3) Tailor-made optimized features breakthrough the performance 

bottleneck of general-purpose processors. 

Design of an efficient ASIP is not a straightforward task. On the one hand, it requires 

precise judgment to balance the performance and the flexibility. On the other hand, it 

eliminates over-design and wastage of silicon. This multi-dimensional optimization 

problem widely covers three areas: hardware logic design; computer architecture 

design; and application software design, which makes it hard for the designers to 

search for large amounts of architecture alternatives in order to identify an optimal 

implementation within a competitive design timeframe. 

Another eye-catching technology, asynchronous design methodology [2][3] [4] may 

provide a new opportunity to tackle this problem. Asynchronous design style uses 

handshake to accomplish communication between modules in order to solve the 

clock skew problem. The beauty of this communication mechanism inherently 

provides robust and precisely defined interfaces between modules. By having these 

interfaces，the specifications of the modules can be precisely defined, and can be 
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independent of any global timing reference. The design task of a large system is 

greatly simplified to smaller tasks - design of component modules and verification of 

their interfaces. Undoubtedly, this is a good practice for designing ASIP efficiently. 

In addition, this module-based design facilitates design reuse, which means it 

increases the degree of retargetability of the designed ASIP. By exploring suitable 

design space for asynchronous technology, it is possible to solve the complex 

optimization problem. 

1.2. Objective and Approach 

The objective of this research is to study the way to apply asynchronous technology 

to ASIP design, and to provide an effective design methodology to optimize an 

asynchronous ASIP to meet real-time requirements of the target application. 

Our work focuses on the optimization of the datapath with its associated 

instruction-set in order to fulfil the timing criteria for embedded digital signal 

processing (DSP) applications. Power efficiency is the second concern but is not a 

major factor in optimization. The other issues about architecture design are also 

addressed. However, the rest of the ASIP design issues, such as application analysis 

and software generation, are not covered. 

As optimization of the datapath is closely related to the characteristics of the target 

application and some parameters of the overall architecture, such as memory 

bandwidth, depth of pipeline stages and degree of computational concurrency, the 
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following approach is taken to achieve our objective: 

1 • To find an architecture that can maximize the design space of the datapath; 

2. To find a parameterized extensible architecture that can take advantage of 

asynchronous technology; 

3. To find a methodology to design an optimized datapath based on the 

characteristics of the target application. 

The extensible architecture is the centre of our proposed methodology. Further 

datapath optimization essentially depends on that architecture. For the sake of ease of 

notation, this extensible architecture is called a "platform" for the rest of the thesis. 

1.3. Thesis Organization 

The remainder of the thesis is organized as follows: 

Chapter 2: Related Work. This chapter gives an outline of the related work in ASIP 

design methodology and some remarkable achievements in asynchronous 

technology research. 

Chapter 3: Asynchronous Technology. This chapter briefly describes the design 

style of asynchronous circuits. Afterwards, there is a discussion on the best 

option for our platform and also on its implementation. 
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Chapter 4: Platform-based ASIP Design Methodology. This chapter provides a 

complete description of the proposed design methodology. The exploration of the 

design space of the datapath, the architecture of the platform and the overall 

design flow are addressed. 

Chapter 5: Design of ASIP Platform. This chapter presents the microarchitecture of 

the platform. It includes functional description of each module, their working 

mechanism and the design consideration. 

Chapter 6: Case Studies. To prove this design methodology, case studies were 

conducted. A detailed description of the case studies is available. 

Chapter 7: Conclusion. This chapter summarizes the overall research work. 

Perspectives of future work are pointed out. 
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2 • RELATED WORK 

2.1. Coverage 

Presently, there is no publication covering the design methodology that explores 

advantages of using asynchronous technology in ASIP design. Publications related to 

asynchronous ASIP design can be separated into two areas: ASIP design 

methodologies and asynchronous processor methodologies. In order to focus on our 

objective, the summary of ASIP design methodologies describes only the works that 

have an explicit treatment on hardware implementation, and the resulting hardware 

should be in the class of instruction set architecture. The design methodologies 

mainly on compilation technique, software generation and synthesis of dedicated 

hardware accelerators are not covered. 

For the area of asynchronous design methodologies, we summarize some remarkable 

asynchronous processor designs in industry and in academia. A detailed discussion of 

the asynchronous design methodology is given in Chapter 3. 
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2.2. ASIP Design Methodologies 

Existing ASIP design environments can be classified into two approaches. Some 

design environments are based on predefined processor platforms and provide 

different architectural options for customization. Other environments provide 

architecture description languages for the designers to describe their target processor 

architectures. 

Xtensa of Tensilica [5][6], R.E.A丄 of Philips[7]，ARCtangent-A5 of ARC [8] and 

Jazz DSP processor of Improv Systems [9] are the commercial design environments 

using predefined processor platforms approach. 

Xtensa of Tensilica is a configurable, extensible and synthesizable RISC (reduced 

instruction set computer) processor with load store architecture. Its base architecture 

has a compact 16- and 24-bit instruction set comprising of 80 instructions. The 

configurable parameters include the choice of 32 or 64 general-purpose 32-bit 

registers, the size of cache, the write buffer size, and the availability of designer 

defined instruction execution unit. Designers can define the mnemonic, the encoding, 

and the semantics of single cycle instructions using TIE language. In addition, the 

development environment includes ANSI C/C++ compiler, linker, assembler, 

debugger, code profiler, and instruction set simulator. 

The R.E.A.L of Philips is customizable DSP having two independent 16x16 bit 

multipliers, four parallel 16-bit ALUs which can be combined into two 40-bit ALUs 

(including eight overflow bits each), and a number of parallel shifters and saturators in 
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base architecture. Besides a standard 16- and 32-bit instruction set, there are 

additional Application Specific Instructions (ASIs), which allow the full parallelism of 

the DSP to be exploited. The ASI concept allows up to 256 VLIW instructions in a 

96-bit width look-up table inside the R.E.A.L. DSP. These are triggered by a special 

class of 16 bit instructions, stored in the normal programme memory. The ASI look-up 

table can be a RAM (for prototype chips), ROM, a synthesized netlist，or a 

combination of these. If the ASI table is implemented in RAM, then its contents can be 

modified using the JTAG port, or under DSP programme control by writing to 

dedicated registers within the DSP. 

The ARCtangent-A5 of ARC is a four-stage 32-bit RISC processor that can be 

configured and extended to match the application requirements. Designers can 

customize the processor in two ways: configuration and extension. Configuration is 

the ability to change existing features of the processor, such as the main-memory and 

auxiliary-bus widths; the size and organization of the instruction and data caches; or 

the size of local memory and DSP XY memory. Extension is the ability to add entirely 

new features to the processor such as a 32x32-multiply instruction, a USB peripheral 

and user-defined application-specific extensions. The resulting core is generated to 

HDL code together with synthesis scripts, simulation make-files, documentation and 

an automated test environment. 

The Jazz DSP processor of Improv Systems is a configurable VLIW processor for 

their proprietary Programmable System Architecture (PSA). Improv employs this 

architecture that can scale from a single, uniquely configured Jazz DSP processor core, 

to a system level platform implementation that consists of many of these uniquely 
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configured Jazz processors in an interconnected structure defined by shared memory 

maps between the processors. Each processor instance can be customized by custom 

RTL blocks and instructions to create a designer-defined DSP core. The Jazz PSA 

Composer Tool Suite provides designers with automatically generated synthesizable 

HDL code and a full set of software design tools including the debugger, simulator 

and profiler. 

Other design environments using architecture description languages include the 

design environment of Target Compiler Technologies [10], LISA Processor Design 

Platform [11][12], MetaCore [13] and PEAS-III [14]. 

The design environment of Target Compiler Technologies is based on the processor 

modelling language nML. nML offers designers the abstraction level for describing a 

processor architecture and instruction set (ISA), which serves as an input to the various 

tools. nML captures the specification of the processor's instruction set, together with 

sufficient structural information to enable efficient compilation. Processor designers 

can describe alternative instruction-set architectures in nML. The support-tools for 

corresponding architecture are automatically available. Once the architecture has been 

optimized in nML, the control logics of processor description can be translated 

automatically into an HDL model. This HDL description can be synthesized with 

commercially available synthesis tools, for ASIC or FPGA implementation. 

The LISA Processor Design Platform (LPDP) tool-suite is based on the machine 

description LISA. Starting from architecture descriptions in the LISA language, 
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software development tools can be generated including HLL C-compiler, assembler, 

linker, simulator, and debugger front end. LISA is a language which aims at the formal 

description of programmable architectures, their peripherals, and external interfaces. 

The language elements of LISA enable the description of different aspects of processor 

architectures like behaviour, instruction set coding and syntax. The language LISA and 

its generic machine model can produce bit- and cycle/phase-accurate models of 

systems that consist of programmable architectures and peripheral hardware 

components. Moreover, synthesizable HDL (VHDL, Verilog, SystemC) code of the 

target processor can be generated and processed by the standard synthesis tools. 

MetaCore is a DSP-oriented ASIP development system that can generate efficient 

ASIP using benchmark-driven design methodology. The heart of the MetaCore 

system is a predefined micro-architecture. The design style of the predefined 

micro-architecture is parameterized and pipelined. The architectural parameters 

include register file size, bus width, address space of each memory, and bit width of 

functional blocks. The specification of the target ASIP in the MetaCore system is 

described using the structural specification language MSL and behavioural 

specification language MBL. MSL is used to specify the data path structure of the 

target micro-architecture, while MBL is used to specify the architectural parameters 

and the behaviour of instructions for the target ASIP. The MSL description consists of 

declarations of hardware resources such as busses, latches, multiplexer, functional 

units, and interconnections among the hardware resources. A synthesis tool called 

SMART is used to translate the given processor specification into the corresponding 

HDL code of the target ASIP equipped with the user-defined application-specific 

instructions. 
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PEAS-III is an architectural level processor design environment based on a 

micro-operation description of instructions. In the environment, designers model the 

target processor with the following five items: 1) Architecture parameters such as the 

number of pipeline stages, the number of delayed branch slots; 2) Declarations of 

resources to be included in processor (e.g. ALUs, registers); 3) Instruction format 

definitions which include interrupt conditions and the number of execution cycles of 

interrupt conditions and the number of execution cycles of interrupt; 5) 

Micro-operation descriptions of instructions and interrupts. PEAS-III synthesizes the 

datapath and the control logic of the processor, and generates a simulation model and 

synthesizable VHDL descriptions of the processor. 

2.3. Asynchronous Technology on Processors 

Over the past few years, industry and academia have put much effort on 

asynchronous circuit technology. Their achievements can be concluded by many 

advanced and sophisticated asynchronous processors. Table 2.1: The summary of 

asynchronous processors designed by industry and academia gives a summary of 

asynchronous processors designed by industry and academia. 
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Table 2.1: The summary of asynchronous processors designed by industry and academia 

Organization and 
Description Achievements 

Reference 

The Amulet Series. A series of 
Successfully delivered the 

University of asynchronous ARM processors using 
asynchronous processors for 

Manchester, [15][16][17] self-timed micropipelined VLSI 
commercial use. 

implementation. 

Four times lower power than a 

power-optimized synchronous 
Philips Electronics, [ 18] Asynchronous 80C51. 

version. Significant reduction 

of EM emissions. 

The asynchronous Pentium ！ ！ ！ 
1) Asynchronous Pentium !!!; 2) 

processor is three times faster 
Intel Corporation, [2] Incorporate clockless elements in 

and consumes half the power of 
Pentium 4 

synchronous counterpart. 

DDMP Signal Processor. A Operating at a speed of 8600 

self-timed data driven multi-media Million Operations per Second 
Sharp Corporation, [19] 

processor aimed at digital television and with power consumption of 

receivers and other applications less than 1 watt. 

R3000 exhibits significantly 

Asynchronous MIPS R3000. Using improved MlPS/watt 

asynchronous circuits to implement a performance over the 
Caltech, [20] 

deep, fine-grained pipelined MIPS synchronous version when 

processor scaled to account for different 

processes and voltages 
MiniMIPS processor is twice as 

Asynchronous Digital fast as all other designs using 
1) Vortex processor; 2) MiniMIPS 

Design Pasadena, Calif， the 0.6 micron process in 
processor. 

[21 ] addition to 30 percent less 

power consumption. 

Using delay-scaling techniques to 

Tokyo Institute of improve performance by taking 
TITAC2. A full-featured 32-bit 

Technology and Tokyo real circuit delays into account, 
architecture. 

University, [22] [23] rather than conservatively 

assuming unbounded gate delays 
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2.4. Summary 

Industry and academia provided convincing demonstrations on asynchronous 

processors. Their works showed the feasibility and potential performance gain of 

using asynchronous circuits in processor design. The published ASIP design 

methodologies do not pay special attention to asynchronous technology. All of them 

are focused on synchronous designs. None of them explicitly explores the power of 

asynchronous circuits in ASIP design. 

The differentiation of our work against the pervious works is that we consider 

asynchronous technology as a factor in optimization. We do not consider 

asynchronous ASIPs as the straightforward translation of synchronous ASIPs. We 

also focus on the delay insensitive nature of asynchronous circuits in order to explore 

the opportunity to enhance the design reusability in ASIP design. 
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3 • ASYNCHRONOUS DESIGN 
METHODOLOGY 

3.1. Overview 

Asynchronous circuits are fundamentally different from its well-known counterpart -

synchronous circuits. The operation of asynchronous circuits does not rely on global 

clock signal as that of synchronous, but on local handshake signals. The handshake 

signals are basically the control signals in the communication between modules. 

Different styles of asynchronous circuit implementation may have different 

handshake protocols [24]，for instance, two-phase protocol and four-phase protocol. 

In essence, all handshake protocols are the composition of request states and 

acknowledgement states. 

An abstract interface of asynchronous circuits is shown in Figure 3.1. This interface 

has three channels for communications, request, acknowledgement and data channel 

between two modules. For simplicity, one module is defined as sender which is a 
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data provider and another one defined as receiver, a data consumer. When the sender 

is ready to send data, a request state is asserted. A request signal is sent through the 

request channel to inform the receiver. (This signal can be transition sensitive, level 

sensitive or in binary encoded form. This is also true for acknowledgement signal). 

After receiving this signal, the receiver starts to process the data and sends back an 

acknowledgement signal when it finishes its work. Then the sender prepares another 

set of data for next transfer. This data transfer mechanism can safely avoid hazards. 

This concept is much clearer on asynchronous pipeline, which is discussed in the 

section on Micropipelines on page 17. 

Request • 

M Acknowledgement  
Sender Receiver  

\ 
Data ) 

r |  

Figure 3.1: An abstract interface of asynchronous circuits 

Compared to synchronous circuits, asynchronous circuits have no common or 

discrete reference time for all modules. There is only local reference time between 

two communicating modules. This was previously considered a disadvantage, 

because this violates the beauty of synchronous circuits - all components reference 

to common and discrete time defined by clock, which is believed to greatly simplify 

the design work. However, when the clock skew problem becomes significant due to 

process scaling, asynchronous circuits beat its counterpart in this arena. Besides, 

according to [25] asynchronous technology offers opportunities in the following 

areas: 
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1. High performance; 

2. Low power consumption; 

3. Low noise and low EMI emission; 

4. A good match with heterogeneous system timing. 

For system integration, asynchronous technology is undeniably a better option than 

synchronous. Its handshake-based communication mechanism provides a reliable 

environment for reuse of pre-designed, pre-verified, pre-characterized IP blocks. The 

freedom of using IP blocks with different specifications offers the highest potential 

for improving design productivity. 

3.2. Asynchronous Design Style 

This section is an introduction to different asynchronous design styles. Based on 

different sizes of communication blocks，three styles are presented — 

micropipelines, fine-grain pipelining and globally-asynchronous-locally-synchronous 

design. 

3.2.1. Micropipelines 

Micropipeline was first introduced in Ivan Sutherlands' Turing Award lecture [26]. 

Sutherlands designed micropipelines as an asynchronous alternative to synchronous 

pipelines. From the definition of micropipelines，this is a simple form of event-driven 

elastic pipeline that contains simple circuitry in each pipeline stage. 
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Figure 3.2: Micropipeline with processing. (Source: [15]) 
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ELSE hold previous state; 

Figure 3.3: Muller C-element with inverter. (Source: [15]) 

Figure 3.2 is a typical structure of micropipelines. This circuit operates in two-phase 

handshake protocol which is based on the signal-transition conceptual framework 

proposed in [26]. To fit to signal-transition signalling control system, capture and 

pass latches are used as storage elements. The inputs C and P govern the capture and 

pass function of the latch, and the outputs Cd and Pd represent "capture done" and 

"pass done" respectively. When there is a transition occurring at signal C，data will be 

captured and held in the latch. On the other hand, the latch looks transparent while a 

transition is present at signal P. 

The basic operation of the micropipeline can be easily explained using the events of 

request and acknowledgement signal. Assuming that all the wires are initially set at 

zero and all latches are initially transparent, when there is a transition in the request 

input, then output of the first C-element will be changed from zero to one. This 
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transition notifies the first latch to capture the data. The latch passes the captured data 

to the computation logic, at the same time it asserts a pair of request and 

acknowledgement signals from Cd. The acknowledgement signal is sent back to the 

data source while the request signal is sent through a delay line to the second stage. 

The delay line matching the computation logic to the computation is completed 

before the arrival of the request signal. Meanwhile, the first C-element blocks the 

request from the data source and waits for an acknowledgement from the second 

stage. After receiving the request, the second latch captures the data and sends back 

an acknowledgement, and then the first latch is allowed to capture data again. This 

operation is repeated when the next request signal arrives, and the data propagates 

along the pipeline to the output. 

Micropipelines have a simple and effective structure. It is easy to implement and easy 

to achieve high throughput. Also, the latches moderate the flow of data through the 

pipeline, and can be used to filter out hazards. Thus, any logic structure can be used in 

the logic blocks, including the straightforward translation of synchronous pipelines. 

Presently, there are different derivatives of micropipelines. Some designs give up 

using capture and pass latches but use simple latches with four-phase latch control 

(Figure 3.4). Some designs involve self-timed logic, which makes the pipeline even 

more elastic (Figure 3.5). 
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Figure 3.4: Micropipeline for simple logics 
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Figure 3.5: Micropipeline for self-timed logics 

3.2.2. Fine-grain Pipelining 

A number of design styles targets higher performance by using much smaller 

communicating blocks. These styles decompose the design into a fine-grain pipeline. 

In some aggressive approaches, the critical path of each pipeline stage is limited to a 

few logic gates [27]. In order to have ultimately high throughput, this kind of design 

styles adopt a latch-free structure in fine-grain pipelines [28][29], as the capture and 

pass latch is too slow compared to the computation logic. Differential cascode voltage 

switch logic (DCVSL) [30] is the spot of this structure. 

20 



DCVSL belongs to the dynamic logic family. Similar to the other members, DCVSL 

operates in alternative precharge phase and evaluation phase [31]，but it has 

differential input and output. The structure of DCVSL is shown in Figure 3.7. It is 

symmetrical and comprise a pair of domino logics (Figure 3.6). An attractive 

characteristic for using it in latch-free applications is that DCVSL can hold the 

evaluated output whereas the input data is changed [32]. Thus, DCVSL can be 

understood as a combination of the logic and storage elements that are preferred in 

fine-grain pipelines. 

0 

��Output 
/ ^ 

I n f \ nMos 
I 随 / Logic Block 

\ J 
Clock IP 

Figure 3.6: Conventional domino logic 

i_J Completed 
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Request H 
卜』Output 

, \ r -k 
\ nMos nMos / ^  
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V J V J 

Figure 3.7: Differential cascode voltage switch logic (DCVSL) 

The operation of DCVSL is similar to conventional dynamic logic. When the request 

is low, the DCVSL shifts to precharge phase. At this moment the two upper pMOS 
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are turned on and make the two outputs low. When the request is high, then it is in 

evaluation phase. Either one of the nMOS logic trees is turned on to change the 

output to high. A differential output is obtained when the evaluation is completed. 

This operation mechanism is inherently an incomplete handshake protocol, which 

can provide a foundation to simplify the handshake logic. On the other hand, the 

logic can indicate the completion of computation by the differential output. No 

surplus timing margin is needed in contrast to the worst-case delay line used in 

micropipelines.Thus, higher performance can be expected. 

Fine-grain pipelining is excellent for high speed applications [33][34][35]. However, 

designing dynamic logic requires more manual effort and incurs much longer design 

cycles. This design style is not suitable for large scale designs. 

3.2.3. Globally-Asynchronous Locally-Synchronous (GALS) Design 

GALS uses largest communication blocks compared to the other two design styles. 

Its asynchronous communication scheme targets on coarse grained block level whose 

size can be as large as a finite state machine or an IP. The scope of GALS is also 

different from that of micropipelines and fine-grain pipelining. Its design philosophy 

focuses on the interconnection of synchronous blocks with asynchronous technology. 

This approach partitions the large synchronous system into smaller synchronous 

blocks and interconnects them with asynchronous handshake protocol. Similar to 

other asynchronous design styles, the communication among blocks is referenced to 

local handshake signals, therefore the synchronization can be spread among the 

system effectively and reliably. 
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Synchronous-Asynchronous Cooperation 

In order to carry out asynchronous global communication with others, all 

synchronous modules are wrapped by an asynchronous interface. This asynchronous 

wrapper is potentially capable to communicate with purely asynchronous modules as 

long as they share the same protocol. This is a low cost way to establish 

synchronous-asynchronous cooperation in a system (Figure 3.8). GALS can bridge 

synchronous and asynchronous technology together to form a heterogeneous system 

that is free to make good use of synchronous and asynchronous IPs. 

r = i i 
Synchronous / \ / Asynchronous \ 

Module \j / V Module / 

n X n 
Z \ R N L 

Z Asynchronous \ / \ Synchronous 
\ Module / \ / Module j Asynchronous \ H � M CommurHcatior ^ 

Figure 3.8: Globally asynchronous communication between modules. 

Asynchronous Wrappers 

广 The structure of an asynchronous wrapper is illustrated in Figure 3.9. The 

asynchronous wrapper surrounds a synchronous module aiming to provide a 

completely asynchronous external interface. All input and output ports of the module 

are managed by separate port controller. When data enters or leaves the module, the 

controller bundles the data with handshake signals to ensure its validity in the whole 

transfer process. Additionally, the asynchronous wrapper provides a local clock 
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signal for the synchronous module. This clock signal is independent from outside 

modules in order to fully encapsulate the synchronous module. On the other hand, 

this clock is generated as stretchable. If incoming data arrives too close to a sampling 

clock edge, either the clock edge or the data transfer gets shifted to a later point in 

time in order to avoid being metastable (Figure 3.10). 
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Acknowledgement Input Port Output Port Acknowledgement 

• 崎…Locally-synchronous 崎 • • • — 
N / Module V  

Data ‘ Data ‘ 

_L _ 
Figure 3.9: Asynchronous Wrapper 
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Figure 3.10: Pausible clock while stretching (Other control signals are not shown) 

Desim Methodolosy of GALS Systems 

While asynchronous design technology promises to solve the clock skew problem 

and favours reuse of IPs, hardware designers are not willing to migrate completely 

from synchronous to asynchronous in short. The reason is that the design of 
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asynchronous circuits needs special design methodology that has no or very little 

support from commercial EDA tools. Without dedicated EDA tools, designers have 

to work out an asynchronous circuit in semi-custom or full-custom manner. 

Using GALS is an easier entry point to the asynchronous world. The design 

methodology of GALS is an extension of the familiar synchronous design 

methodology. It partitions the synchronous system into optimal size of synchronous 

modules and redefines the communication among these modules to asynchronous 

manner. The overall design methodology is summarized as follows: 

1. At the beginning, the hierarchical description of the synchronous system has 

to be accomplished. 

2. According to the structure of hierarchy, a trail partitioning is performed by 

separating the modules on the first level of hierarchy. If the size of module 

violates the system specification, that module may be further partitioned into 

its inner hierarchy or merged with other modules. 

3. In the communication refinementstage, each module has to be characterized 

by its operating frequency, the expected throughput and the nature (push or 

pull mode) of its ports. By considering the requirement of each module and 

the communication requirement between two modules, suitable asynchronous 

wrappers can be identified. 

4. The synchronous modules are synthesized and partitioned in floor planning. 

5. Finally, the design undergoes evaluation. If the design cannot meet the timing 

constraints, there are two paths to go. One is to adjust the clock periods of 

some modules by adding delay in the layout. If the result is too bad or the 
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clock period of each module is already fine tuned, the design has to be 

re-partitioned and its communication redefined. 
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Figure 3.11: The GALS design methodology (modified from [36]) 

Hardware designers can maintain synchronous design methodology to implement the 

computation and control parts of the whole GALS system, and need to pay more 

“ attention to and manual effort on the asynchronous wrappers only. As time-to-market 

and design efficiency are the number one considerations, the GALS design style is 

the best among micropipelines and fine-grain pipelining. 
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3.3. Advantages of GALS in ASIP Design 

Design of ASIP is not only an arena of performance, but also is an arena of 

time-to-market and design efficiency. To take this into account, our ASIP platform is 

designed with the GALS design style. There are three points to support our choice. 

3.3.1. Reuse of Synchronous and Asynchronous IP 

Design reuse can greatly improve time-to-market. Designers are now seriously 

exploring opportunity for reusing IPs to compose a system. The GALS design is the 

pioneer in this area. It has the freedom to use the mixture of synchronous IPs and 

asynchronous IPs The exploration space of the GALS design in IP reuse is much 

wider than other design styles. 

3.3.2. Fine Tuning of Performance and Power Consumption 

Using multiple frequency and voltage in a system is recognized to be an aggressive 

power saving and performance tuning strategy [36]. In GALS systems, all modules 

are perfectly encapsulated. All modules are isolated from one another, and do not 

reference to a correlated clocking system. Their communication is controlled by 

reliable handshakes, and therefore GALS systems are adaptive to change of timing. 
r 

Using GALS, designers are empowered to use fine grained frequency and voltage 

scaling, even a dynamic one to compose the target system. The design space of 

power efficient ASIP can be further widened. 
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3.3.3. Synthesis-based Design Flow 

The push factor for using asynchronous is that designers have to work in transistor 

level or standard cell level to some extent. For GALS, this adverse factor no longer 

exists. Muttersbach reported a set of almost synthesizable asynchronous wrappers in 

[37]. Only one cell has to be designed at layout level. Designers are allowed to use 

behavioural model or register transfer level (RTL) model to describe GALS designs. 

3.4. Design of GALS Asynchronous Wrapper 

To realize a GALS processor, a set of input- and output-port controllers for 

asynchronous wrappers is designed based on [37]. The input port module is also 

reused in our design. Different from Muttersbach's design, our wrappers are fully 

synthesizable. 

3.4.1. Handshake Protocol 

For the asynchronous communication channel, the four-phase handshake protocol is 

selected. The timing diagram of the protocol is illustrated in Figure 3.12. In 

four-phase protocol, valid data is accompanied by a pair of request and 

r acknowledgement signals. When the data is ready for the receiver, the send sets the 

request signal to high. The data is guaranteed to be valid until the request is dropped. 

After getting the request signal, the receiver takes the data and sends back an 

acknowledgement signal. Then the sender can set the request to low and process 

another set of data. 
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Four-phase handshake protocol is level sensitive. It can interface with memory 

naturally and control the latches effectively. Compared to two-phase one, four-phase 

protocol is more robust because the data is wrapped by the request signal. The 

invalid data can also be indicated by the low request signal. 

— — — < valid data ̂ ^ / valid data 〉 / 

acknowledgement V \ \ 
out r \ / \  

Figure 3.12: Timing diagram of the four-phase handshake protocol 

3.4.2. Pausible Clock Generator 

The pausible clock generator is an important component in asynchronous wrappers. 

The module either establishes or is requested for synchronization with another 

module, and the period of the clock is stretched to match the clock of another one. 

The port controllers are entitled to govern the stretch of the clock by sending a 

stretch signal to stop the clock. As the clock keeps oscillating, it is possible for the 

stretch signal to get too close to the clock edge leading to the state of being 

metastable. A mutual exclusion (ME) element is used in the pausible clock to decide 
f 

which one can take over the control. 

The structure of the pausible clock is shown in Figure 3.13. A ring oscillator is used 

instead of crystal oscillators or PLL in order to be able to have full control of the 

clock generation. To provide a control interface and to resolve the competition of the 
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clock and the stretch signal, an ME is inserted to the inverter chain of the ring 

oscillator. Figure 3.14 shows the structure of ME. This element serves the request 

signals on a first-come-first-served basis. Only the first coming request signal can 

invoke the corresponding grant. If the two signals arrive concurrently, the ME selects 

one to pass arbitrarily. The two grant signals are guaranteed to be mutually exclusive. 

In the operation of the plausible clock generator, the ME is normally transparent to 

the ring oscillator. Once the stretch signal wins the control, the ME blocks the 

inverter chain and lowers the clock signal. At the same time, the stopped signal is 

asserted. The ring oscillator can be recovered unless the stretch signal is released. 
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Figure 3.13: Pausible Clock Generator 
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Figure 3.14: Mutual Exclusion 

3.4.3. Port Controllers 

Another component in asynchronous wrapper is port controllers. The function of data 

port controllers is to handle the handshake protocol and to control the local pausible 
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clock. As the port controllers operate in the absence of the clock, they are designed as 

asynchronous finite state machines (AFSMs). Unlike synchronous finite state 

machines (FSM), an AFSM has the potential problem of output hazard for multiple 

input changes. To solve the hazard problem, our controllers are captured by the 

extended burst-mode specification [38]. This kind of AFSM can be triggered by input 

bursts — transition signalling, therefore, signals from the synchronous module can 

trigger the port controller in every cycle. 

The extended burst-mode specifications of our port controllers are depicted by Figure 

3.15 and Figure 3.16. An extended burst-mode asynchronous finite state machine is 

specified by a state diagram which consists of a finite number of states, and a set of 

directed arcs connecting pairs of states. Each arc indicates the transition between two 

states and is labelled with two sets of signal edges comprising the input burst and the 

output burst. In a given state, when all input edges appear, the machine generates a 

set of output changes and moves to a new state. 

For the output port controller, Den is the enable signal for the start of handshake. A 

transition of Den from low to high triggers the AFSM to enter state 1 from state 0 

r and lift sketch to high. Then the AFSM moves to state 2 when there is a positive 

transition of stopped. Walking through the AFSM state by state, the handshake 

sequence is accomplished in state 4. The AFSM waits for the negative transition of 

Den this time. The rest of the states repeat works of state 1 to 3. 

To implement port controller, the specifications are translated to 3D machines and 
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are synthesized with the method mentioned in [38]. A detailed description of the 

synthesis can be found in appendix A. The results of the synthesis are available in 

Figure 3.15 and Figure 3.16. 
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Figure 3.15: The extended burst-mode specification and the logical implementation 

of the output port controller 
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A one-way asynchronous communication channel between two modules is 

configured as in Figure 3.17. The input port controller and output port controller play 

different roles in the data transfer mechanism. Output port controller is the one to 

establish the communication channel. When the sender module activates the output 
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port controller with Den+, the local clock is stretched. An event of Rp+ is sent to the 

receiver module immediately after the clock is stopped. If the input port controller is 

already activated，it stretches the clock signal in the presence of Rp+, and replies 

with an Ap+ as soon as the local clock is stopped. Simultaneously, the Ap+ 

commands the latch to capture the data. After detecting the Ap+, the Rp+ is released 

to Rp-. The receiver feedbacks with an Ap- and recovers the local clock to sample the 

data captured in the latch. And the sender can recover its clock eventually. 
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Figure 3.17: The configuration of an asynchronous communication interface 

3.4.4. Performance of the Asynchronous Wrapper 

To evaluate our design, spice level simulations are performed using AMS 0.35um 

CMOS technology. The unit under simulation is configured as in Figure 3.17. The 

sender module runs with nominal frequency of 540MHz and the receiver with 

680MHz. The waveform in Figure 3.18 shows the simulated behaviour of the 

communication channel. From the waveform, the transfer of data takes about 3.1ns 

on average. This value is the time difference between the first positive clock edge 

that initiates the data transfer and the sampling clock edge of the receiver, which is 
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defined as the communication overhead of the channel. 

There are also some simulations of the mutual exclusion element and the pausible 

clock generator. The simulation results are summarized in Table 3.1. 

Table 3.1: Simulation results of the asynchronous wrapper 

Component Parameter Value 
Asynchronous Interface Communication Overhead 3.1ns 

Latency 0.45ns 
Mutual Exclusion  

Response Time 0.15ns 

Pausible Clock Generator Maximum Clock Frequency 1.7GHz 
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Figure 3.18: The simulated waveform of the communication channel 
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3.5. Summary 

This chapter describes three asynchronous design styles: micropipelines, fine-grain 

pipelining and GALS design. The GALS design style has been chosen for our 

platform for three reasons: 1) It is heterogeneous and supports the mixture of 

synchronous and asynchronous IPs; 2) It widens the design space by allowing the 

designers to fine-tune the voltage and the frequency of each module. 3) It has a 

synthesis-based design flow. 

The design of the asynchronous wrapper based on the work of [37] has been 

presented at the end. We have designed a set of fully synthesizable components — 

pausible clock generator, input- and output- port controllers. The design 

methodology of each component and their behaviour have been discussed. From the 

spice-level simulation, it is found that the communication overhead of our wrapper is 

about 3.1ns on average. 
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4 • PLATFORM BASED A S I P DESIGN 
METHODOLOGY 

4.1. Platform Based Approach 

The asynchronous design style is excellent for system integration. Local handshake 

interfaces allow seamless communication of modules with heterogeneous timing. 

Modules can be put together in an ad-hoc manner on the ground of sharing common 

handshake protocol. In ASIP design, it is obvious that some architectural parameters, 

especially the datapath, have to be changed iteratively in the optimization cycle. To 

take full advantage of the asynchronous design style, the target processor can be 

realized by adding modules to expand and customize the functionality of the base 

processor. This approach has several advantages: 

1. The complexity of optimization, software generation can be lowered. 

2. Accurate application profiling is possible. 

3. The real-time performance of the whole system can be evaluated at an early 
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stage. 

4. The base processor can be reused from design to design. 

5. The design cycle can be shortened substantially. 

6. The target processor is capable of being modified/upgraded in order to keep 

track of the evolving application needs. 

The effectiveness and efficiency of this approach largely depends on the base 

processor. The design methodology used in this research is also based on a base 

processor. We call the used base processor a 'platform'. 

4.1.1. The Definition of Our Platform 

Our platform is a base processor environment that provides sufficient facilities for 

developing the target processor. It is a semi-finished product with general functions 

for the target application domain. It provides maximum freedom for 

application-specific customization. For this research, the platform is an extensible 

architecture that targets on embedded DSP applications. It supports rapid assembly 

and modification among synchronous and asynchronous modules. The target 

processor can be built on top of it. 

4.1.2. The Definition of the Platform Based Design 

The platform based design is a design methodology based on the foundation 

provided by the platform. Design begins in the middle of the whole process. The 

design philosophy is to scale up the datapath of the platform and to customize its 

architectural parameters to meet the real time requirements of the target application. 
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It is a straightforward way to design a complex system. 

4.2. Platform Architecture 

The platform is the centre of our design methodology. Its characteristics outline the 

functionality and the performance of the target processor. The quality of the platform 

is determined by three factors: 1) the design space of its datapath; 2) the 

customization options; 3) the coverage of target application domain. These three 

factors decide how much performance can be improved in the optimization and how 

tight the functionality can be coupled to the target application. 

In this section, we derive the architecture of our platform from the nature of DSP 

algorithms. By investigating the DSP applications, the maximum desired design 

space of the datapath and the elements needed for performance enhancement can be 

identified. The extensible architecture of the platform is tailored for carrying these 

features in order to give the largest room for optimization. 

4.2.1. The Nature of DSP Algorithms 

A generic DSP system, as shown in Figure 4.1，consists of one or more input signals 

being processed by a digital circuitry to produce an output with the desired 

characteristics. The characteristics of the system can be described by mathematical 

models which is the transfer function H(z) in the z-transform domain. Although a 

complete system can perform very complex functions, the majority of signal 

processing operation can be broken down into a combination of the primitive 
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mathematical operations listed in Table 4.1. 

_ I ) — H{2) , I ) y(n) 
f , ‘ • 

, S ‘ ^ y , 

Figure 4.1: A digital signal processing system 

Table 4.1: DSP primitive mathematical operations 

Finite Impulse Response ^^ 

(FIR) Filter T^q 

Infinite Impulse Response ^^ 
y{n) = 2^aj^y{n-k) + x{ri) 

(IIR) All-Pole Filter f：} 

N-l M-1 
General Filter y(n) = - k ) + 办/少(《 一 0 

A:=0 /=1 
N-l 

Cross-Correlation 
n=0 

Discrete Fourier Transform X ( n ) = ^ x ( n ) e “ 
k=o 

N-l-m 

Autocorrelation C砂(m) = ^ x(i)x(i + m) 

DSP has been widely used in many areas, such as speech synthesis and recognition, 

computer vision systems, control systems and digital communications. Many 

different kinds of algorithms have been devised for different applications. But most 

of the algorithms share some common characteristics, providing us with priori 

knowledge to make use of. We outline those that are closely related to the 

performance of a DSP application. 
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Computation-Intensive Kernels 

Kernels are pieces of computational algorithms that make up the heart of the DSP 

application. They are typically in the form of nested short loops that involve 

intensive computation. The kernels often occupy the largest share of the computation 

power, thus affecting the peak performance of the application. 

Strong Data Locality 

DSP applications tend to access data in a relatively small block of memory. Large 

displacement of data address is infrequent. On the other hand, the data access pattern 

is regular. For filters, correlations and most of the matrix operations, the data is 

accessed in circular addressing with constant steps (Figure 4.2a). More sophisticated 

bit-reversed addition pattern (Figure 4.2b) is used for butterfly-like transformations 

K address K address 

C C C 000 = C 

~ 1 2 1 100 = 4 

~2 e 2 010 =2 
a £ a 110 = e 

~4 12 4 001 = 1 / Ada 1 to MSB in 

5 15 — £ 101 = £ / 融 iteration / 

e 2 e 011 = a I The carry 

； ~； 77； 了 1 I propagates from \ 
[ ： _- \ MSB to LSB \ 
8 8 a 000 = C \一 \ 

(a) (b) 

Figure 4.2: (a) Circular addressing of size 16 and step 3 at iteration K; 

(b) Bit-reversed addressing of 3 bits in size at iteration K 
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Explicit and Implicit Instruction Level Parallelism 

DSP applications possess a high degree of instruction level parallelism (ILP), 

especially in the kernels. For simplicity without losing generality, parallelism 

exploration of a two-tap FIR filter is demonstrated as an example. The mathematical 
1 

formulation of a two-tap FIR filter is y{n) = and the algorithm and 
k=0 

the corresponding data flow graph (DFG) are depicted by Figure 4.3. From the 

algorithm, it can be found that the two multiplications can operate in parallel. This is 

the explicit parallelism of this algorithm. However, the parallelism is not limited to 

this level. There is implicit parallelism that can be explored by doing transformation 

on the algorithm. 

C^O^ 
for n = 0 to N 

to A(r) = aO^X(r)日(r) = arX(r ) L ^ 

t1 Y(r) = A(r-1)+B(r) ^ ^ ^ ^ 

end 

(a) (b) 

Figure 4.3: (a) The algorithm of a two-tap FIR filter; (b) The corresponding DFG. 

The vertical bar represents a delay element 

One of the transformation techniques is unfolding. The summation series of the 

two-tap FIR can be split into two summation series: 

1 {y{2ri) = aQx{2n) + a^x{2n -1) 
少 ⑷ = G " " A n - k) = i少(2” +1) 二 乃 +1) + “1 邓打） 

Each of them is represented by a new DFG. Due to the dependency of the two 

summation series, the two DFG can be merged as in Figure 4.4b. From this new 
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complete DFG, there are four parallel operations discovered (Aq, Ai，Bq, Bi) which 

are double the original one. The unfolded algorithm is shown in Figure 4.4a. This 

demonstration only unfolds the algorithm to two levels. For a higher degree of 

parallelism, the algorithm can be further unfolded. 

for n = 0 to N/2 

to A(2n) = aCrX(2n)日(2n) = a1 哪 n ) I \ ( \ 

A(2n+1) = aO^X(2r+1)日(2n+1) = a rX(2n+1) ^ ^ ^ 

t1 Y(2n) = A(2n-1)4 B(2n) 丫 ( Y \ 

Y(2n+1) = A(2n)+ B(2n+1) \ 

t^j^T—J ^ ^ 
(a) ( t) 

Figure 4.4: (a) The unfolded algorithm of a two-tap FIR filter; (b) The corresponding DFG 

for r = C to N 

tC A(n+1) = A(n)*X(n) 

t1 日(n) = A(n) + £ ( . A J 

t2 C(n) = A(n-1) + B(n) J ^ 

t4 Y(n) = sC * C(n) / y U 

(a) (t) 

Figure 4.5: (a) The arbitrary algorithm with heavy data dependence; (b) The corresponding DFG 

Some algorithms carry heavy data dependence in which some synchronization is 

necessary between operations of various iterations. An arbitrary algorithm of this 

kind is shown in Figure 4.5a and its DFG in Figure 4.5b as an example. The data 

dependence between one iteration and the successive iteration prohibits parallelism 

as that in the two-tap FIR filter. Another transformation technique, software 
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pipelining can unveil some potential parallelism in such cases. The idea behind 

software pipelining is that the body of a loop can be reformed so that one iteration of 

the loop can start before previous iterations finish executing. The reformed body of 

the algorithm is shown in Figure 4.6a. The arrows indicate the data dependence of 

two operations. Figure 4.6b shows the result of the transformation. The maximum 

level of parallelism gains to four. 

,.—...............\、、、、，,..................——.、.、 
tC A(n+1) = A(n) * X(n) , 八 、、、、、、.,z  

t1 日(n) = A(n) + £ A(n+2) = A(n+1)" X(n+1) , , '、、 •-、、、、 

t2 C(n) = A(n-1) +B(n)日 (n+1) = A(n+1) + 5 A(n+2) = A(n+2) *X(n+2) \ 

t4 Y(n) = sC ‘ C(n) C(n+1) = A(n) + B(n+1) B(n+2) = A(n+2) + 5 A(n+4) = A(n+2) *X(n+2) 

t£ Y(n+1) = aC，C(n+1) C(n+2) = A(n+1) + B(n+2) B(n+2) = A(n+2) + 5 

t6 Y(n+2) = aC * C(n+2) C(n+:3) = A(n+2) + 日(n+2) 

t7 Y(n+2) = aC * C(n+2) 

一 ^ ^ 
(a) 

tC A(1) = A(C)*X(C) 

t1 B(C) = A(C) + £ A(2) = A(1 广 X(1) 

t3 C(C) =日(C) B(1) = /H1) + 5 A(2) = A(2)*X(2) 

for r = C to N-2 

t4 Y(n) = sC * C(n) C(n+1) =/\(n) + B(n+1) B(n+2) = A(n+2) + £ A(n+4) = A(n+2) *X(n+3) 

end 

t£ Y(N-2) = aC ^ C(N-2) C(N-1) = A(N-2) + B(N-1) B(N)=A(N) + £ 

t6 Y(N-1) = aC ‘ C(N-1) C(N) = A(N-1) + B(N)  

t7 Y(N) = sC * C(N) ^ ^ ^ ^ ^ ^ 

(fc) 

Figure 4.6: (a) The reformed body of the arbitrary algorithm (b) The software pipelined 

arbitrary algorithm 

Data Parallelism 

In some DSP applications, the data sets have an extremely high degree of internal 

parallelism, which means that all the elements of the data sets can be processed 

simultaneously. Matrix is an example. Matrix itself is a large data set that consists of 
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an array of data. There is no crucial relationship among the data. Only the spatial 

relationship of each data is important. Computer vision and image processing use this 

kind of data representation. Their computation is on images consisting of a large 

array of pixels. 

Because of the weak interdependence, each data or together with its close neighbours 

can be mapped to an individual operation. The whole data set can therefore be 

manipulated by a large number of individual operations that can be executed 

simultaneously. This is illustrated by the edge detection of image processing. In 

Figure 4.7 the input data set is an eight by eight grey scale image. Each data element 

represents the light intensity. To do edge detection, a Sobel edge detector is applied 

to each element to produce a weight that links to the possibility of the presence of an 

edge. The Sobel edge detector is also shown in Figure 4.7 in a matrix form. The 
2 2 

mathematical formulation of this operation is O^^ = for 
k=Q 1=0 

Inm,Snm,Ortm ^^^ the elemciits of input matrix, Sobel edge detector and output 

matrix respectively in row n and column m. As there is no linkage between any two 

inputs of an edge detector, it is possible to apply maximum sixty-four edge detectors 

on the image simultaneously. From a macro view, once a parallel data entity is 

defined, it can be processed as an individual. 
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Figure 4.7: Applying Sobel edge detectors on an 8x8 image 

Mixed Control and Data Dominated 

Some DSP applications do not have the high degree of parallelism as aforementioned. 

The algorithms are a mixture of data operations and control operations. The control 

operations manage the flow of the algorithms and govern their runtime behaviour 

dynamically. The sequence of data operations cannot be known until the related 

control operations have made the decision. This kind of dependence restricts the 

exploration of parallelism across control operations. If the DSP application has a 

large portion of control operations, its parallelism cannot be too high. Adaptive 

differential pulse code modulation (ADPCM), coordinate rotation digital computer 

(CORDIC) and Viterbi decoding belong to this type. 

The pseudocode of ADPCM is shown in Figure 4.8. The lines highlighted in bold and 

italics are control operations. In the encoding algorithm, the control operations 

separate the data operations into pieces. In the first highlighted line, there are three 

data operations under the influence of a control operation. This control operation 

depends on the value of Da which varies with runtime. Once the condition of this 
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control operation is fulfilled, the values of Code[2], Da and A are modified. This 

presents a potential dependency among Da, Code[2] and A. Similar situations also 

occur in the other highlighted lines. As the control operations introduce more data 

dependency, the parallelism is limited. 

Encoding(* input/ output) { Decoding(*Code/ output) { 
loop(number of samples) { C=*Code++; 

X=*input+4 ； S=StepsizeTable(Index); 
D=X-X-i A=0; 
S=StepsizeTable(Index); if (C/2J=lj A+=S; S/=2; 

Da= D|; if (C[lJ=lj ^+=5; S/=l; 

Code=0; A=0; ^ ^ i/(C[OJ==lj A+=S; 

ij (Da>Sj { Codel2J=l; Da-=S; A+=S; j ， ^ if (Codel3]=l》X=X..-A; else X=X.. +A; 

S/=2; 、、”二^/^ControfSy/ if (X>32767j X =32767; 

i/(Da>Sj {CodellJ=l;Da-=S;A+=S;j ； i f ( X < ^ 3 2 7 6 8 , X =-32768; 

S/=2; ^ y y \ Index+=IndexTable(Code); 
iJ (Da>Sj { Code/OJ=l; Da-=S; A+=S; i X / • \ / 1/ (Index>88j Index=88; 

Code|2 ： =(D>0)?0 1; Z / \ if (Index<Oj lndex=0; 

X+=(D>0)?A:(.A); Z / =*outpu1++=X; 
iJ(X>32767, X =32767; / X.i=X; 
iJ (X<^32768> X=~32768; / / . 

Index+=IndexTable (Code); X 
if (Index>88j Index=88; 

if (Index<Oj lndex=0; / 

X-尸 X; 
=*output++=Code; 

(a) (b) 

Figure 4.8: The pseudocode of ADPCM (a) encoding and (b) decoding (Source: [39]) 

4.2.2. Design Space of Datapath Optimization 

According to the aforementioned nature of DSP applications, instruction level 

parallelism and data parallelism are the two directions for improving computational 

performance. Definitely, the room for performance improvement is related to the 

characteristics of the algorithms in use, but the hardware can also limit the degree of 

parallelism explored. To facilitate parallelism exploration, the processor must 1) have 

a parallel datapath with a sufficient number of functional units; 2) supply sufficient 

operands to the functional units at the same time. The layout of the desired datapath 

is shown in Figure 4.9. It is assumed that each functional unit takes at most two 
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operands for computation, which is aligned to most primitive mathematical 

operations. The figure shows two configurations of the datapath. The upper one is a 

typical parallel datapath. The lower one is especially for an efficient implementation 

of software pipelining. The designers are responsible for deciding the number of 

parallel functional units and their content. 

operand C operand ‘ operandi operand 2 operand 4 operand J operand 2 N operand S N-•‘ 

\ / \ / \ / \ / 
！ r 1 r 1 r X / 

FU 0 FL ‘ FL 2 FU N 

“ ” I r “ 
result C result • result ： result Is 

(a) 

operand C operand ‘ operandi operand ： operand N-t' 

！ r 

FU 0 • FL ‘ • FL 2 ~ • … — — • FU N 

(b) result 

Figure 4.9: The layout of the parallel datapath (a) for ordinary parallel operations 

(b) for software pipelining 

For the algorithms dominated by mixed control and data operations, exploiting 

parallelism cannot be effective for performance enhancement. The reason is that 

control operations establish extra dependency to the algorithm, limiting parallel 

executions. In this case, dedicated hardware can be used to accelerate the algorithm 

by resolving the dependency. Reviewing the encoding pseudocode of ADPCM in 

Figure 4.8a, we can find two control operations: if(X>22767) X=32767\ and 

if(X<-22768) X=-32768; which are actually performing saturation arithmetic. By 

performing conditional decision in hardware, these operations can be reformulated to 

a sequential complex instruction. The simplified datapath is portrayed by Figure 4.10. 
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Introducing dedicate hardware to tackle sequential tasks is very effective because the 

dependency is resolved inside the hardware instead of across several instructions. 

However, designers have to take extra care in the timing of the hardware accelerator. 

Its critical path should be less than that of the processor, or it should be divided into 

multiple cycles. Otherwise the overall performance of the processor will deteriorate. 

X 

~ I 32767 I 

——^ ^ 

I -32768 

\ / 

X， 

Figure 4.10: The datapath of saturation arithmetic 

To sum up, the optimization of the datapath can be broken down into two aspects as 

depicted by Figure 4.11. The first aspect exploits the parallelism of the algorithm to 

enable simultaneous execution of multiple operations. Depending on the pattern of 

the involved data dependency, the datapath can be configured to 

parallel-data-parallel-output manner as in Figure 4.9a or software pipelining as in 

Figure 4.9b. The second aspect uses dedicated hardware accelerator which is tightly 

coupled to the datapath. The hardware accelerator performs multiple operations in 

sequence to realize a powerful complex instruction as in Figure 4.10. The length of 

the operation sequence has to be matched with the timing of the processor, therefore 

some accelerators have to work in multiple cycles. 
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Design Space of Datapath Optimization 

Parallel Datapath Squential Datapath 

Parallel-Data- Software Single Cycle Multiple Cycles 
Parallel-Output Pipelining 

Figure 4.11: The design space of datapath optimization 

4.2.3. Proposed Architecture 

Our platform is a parameterized extensible processor, which supports aggressive 

optimization of the datapath. The proposed architecture is illustrated in Figure 4.12. 

There are four kinds of modules shown in the figure. The base modules are the 

essential parts of the platform. They sustain the basic functions, for example memory 

manipulation, flow control and basic data processing. The extensible modules are 

also a member of the foundation of the platform. In addition they are parameterized 

for customization. The optional modules are add-on for datapath optimization. They 

are the main engines for parallel and complex instructions. The modules shown in 

yellow are massive storage for the programme and the data. They can be read only 

memory (ROM) or random access memory (RAM) locating on or off the chip. A 

brief introduction to the functionality of the modules is given in the following 

paragraphs. After that, there is an in-depth discussion on the strategy of realizing an 

optimized datapath. The detailed description of the microarchitecture of the platform 

is presented in Chapter 5. 
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Figure 4.12: The architecture overview of the platform 

The instruction fetch unit is used to access the programme stored in the instruction 

memory. It manages the programme counter to control the flow of the programme. 

For the kernel-like loops of DSP algorithms, a dedicated hardware is used to handle 

address displacement and loop count checking in order to alleviate the workload of 

the datapath for address calculation. 

The function of the decoder is to interpret the fetched instructions and translate them 

into control signals and operands for other modules. It is also responsible for 

invoking the optional decoder and the datapath if they are available. 

The processor control is used to control the branching and exception states of the 

processor. While a branch is taken or an exception is present, the processor control 

informs the instruction fetch unit to modify the content of the programme counter. 

The special registers store the status flags and the configuration parameters for the 
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address generation unit and the load store unit. The configuration of the processor is 

centralized and unified by modifying the special registers with one instruction. 

The load store unit serves as an interface for the data memory and the register file. It 

is the only channel for data memory access. All data located in the data memory have 

to be loaded into the register file before being processed. 

The address generation unit provides addresses for fetching operands from and 

storing results to the register file. It supports varies addressing mode in order to get 

use of the data locality of DSP algorithms. 

The base datapath is designed for both data and control domain operations. There is 

arithmetic logic unit (ALU) for Boolean operations, bitwise manipulation and simple 

addition and subtraction. For data processing, a multiply accumulation unit (MAC) 

and a barrel shifter are available. 

The register file is the source of the operands and the destination of the results for the 

datapath. It is designed to be multi-port in order to provide sufficient data bandwidth 

for the datapath. 

4.2.4. The Strategy of Realizing an Optimized Datapath 

Datapath optimization is the key to the customization of instruction set architecture of 

the platform. In the course of the optimization, application-specific functions are 
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added to the datapath to accelerate the algorithms to meet the real-time requirement of 

the application. The optimized datapath can be specialized for parallel instructions and 

complex sequential instructions. Unlike simple basic instructions, these two aspects of 

instructions induce several implementation challenges. For parallel instructions, there 

are two major challenges: 1) supplying a sufficient number of instructions; 2) 

supplying a sufficient number of operands. For complex instructions, the major 

challenge is the coordination of timing of the hardware accelerators and the platform. 

Supplying Instructions to the Parallel Datapath 

The concept of exploiting instruction level parallelism is to shorten the execution 

time of the given task by executing multiple instructions at the same time. This is 

practical only if multiple instructions can arrive at the parallel datapath at the same 

time to command their operations. In the general propose processors domain, 

superscalar and VLIW are the two kinds of architectures designed for taking 

advantage of instruction level parallelism. 

The instruction fetching mechanism of superscalar processors is similar to the 

processors without parallel datapath, which fetches instructions sequentially. To keep 

the parallel datapath busy, the fetched instructions are rescheduled and packed into 

parallel. The parallel instructions are dispatched to the functional units for parallel 

executions. VLIW architectures are a straightforward solution for the instruction 

fetching issue. The instructions of VLIW processors are extraordinary long in width, 

and can include all the commands for each functional unit in a single instruction. 

This method can be analogy, packing several short instructions in parallel to form a 

long instruction. Hence, all the functional units can be commanded at once for one 
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instruction fetch. 

However, these two solutions are prohibitive for embedded applications. The 

rationales are: 1) superscalar processors tend to have significantly complex hardware 

for exploring parallelism in runtime; 2) VLIW processors are extremely costly on 

instruction width ~ they can be in the order of hundreds to thousands of bits. These 

drawbacks lead to unaffordable power consumption and silicon area. 

For embedded DSP applications, we have another solution. According to the nature 

of DSP applications, some of the kernels are the critical path of the DSP application. 

The performance of the DSP application can be improved dramatically by 

accelerating the kernels which are a small portion of codes in the application. 

Therefore we presume that allowing a small number of predefined patterns of 

parallel instructions for the kernels can achieve significant performance improvement. 

Based on this presumption, a parallel instructions compression scheme is used. Some 

of the selected patterns of the parallel instructions are subjected to compression by 

means of using a lookup table. These patterns are reduced to the enumerated index of 

the lookup table, and hence can fit into a fixed width instruction. The compressed 

patterns are stored in the lookup table in the form of opcodes, so that no further 

decoding is needed. 

The idea is shown in Figure 4.13. Once the instruction decoder receives a 

compressed instruction from the instruction fetch unit, it enables the instruction 

decompressor and passes the instruction to it. The compressed instructions contain 
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the index of the patterns of the parallel instructions. The decompressor fetches the 

corresponding parallel instructions according to the index and dispatches them to the 

datapath. Since the compressed instructions are independent of the number of 

parallel instructions, we can expect minimal impact when scaling up the parallelism 

of the datapath. 
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Figure 4.13: The idea of instruction decompression 

Supplying Operands to the Parallel Datapath 

For the similar argument of supplying parallel instructions, a smooth supply of 

operands is also crucial for parallel processing. Multiple operands have to be sent to 

the datapath simultaneously in order to execute the parallel datapath. This challenge 

is similar to that of supplying instructions to datapath, but the solution used for 

parallel instructions is not suitable for operands. Unlike the patterns of parallel 

instructions, the address of operands is not confined to a small space. Encoding all 

the possible addresses needs a lookup table with enormous entries. Consequently the 

compression rate cannot be high, but great silicon overhead is incurred due to the 

large lookup table. 
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As the addresses of operands are too difficult to encode, the solution makes use of 

the strong data locality of DSP applications. The kernels of DSP applications 

typically have regular operand access patterns. These patterns are classified into 

different addressing modes. Automation of operand fetch is feasible when the 

addressing mode is known. To exploit this, each parallel functional unit has a 

hardware engine for fetching operands. These hardware engines are configurable by 

instructions. After the configuration, the engines fetch operands automatically 

according to the selected addressing mode. Therefore, it is not necessary to include 

the addresses of the operands in the instructions. Only extra instructions are required 

for configuring the operand fetch engines. As the number of operands required is 

decoupled from the width of the instructions, it is again considered as having 

minimal impact when scaling up the parallelism of the datapath, especially on the 

space of the instruction encoding. 
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Figure 4.14: Operand fetch units (OFU) are part of the address generation unit. They are used to fetch 

operands for the functional units. 
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Coordinating the Timing of the Hardware Accelerators and the Platform 

The timing of the hardware accelerators has to be carefully designed - otherwise the 

overall performance of the DSP application will be adversely affected. When 

introducing a hardware accelerator to the datapath of the platform, there are three 

possible situations. 1) The execution period of the hardware accelerator within the 

timing budget for the datapath. The hardware accelerator can be synchronized with 

the platform safely without affecting the overall timing. 2) The execution period of 

the hardware accelerator is slightly over the timing budget. In this case, the designers 

have to decide whether to operate the platform at a lower frequency or to break the 

hardware accelerator into multiple cycles. 3) The execution period of the hardware 

accelerator is several times that of the timing budget. The hardware accelerator has to 

operate in multiple cycles. 

Lowering the operating frequency of the platform and breaking the accelerator into 

multiple cycles are at different costs. The former one affects the overall timing 

leading to a very complicated problem in optimization. It is hard to determine 

whether the overall performance is improved or deteriorated after adding the 

accelerator. The latter one needs a sophisticated processor controller to handle the 

synchronization between the accelerator and the platform. The platform has to 

reserve more resources for the accelerators. 

To achieve easier coordination between hardware accelerator and the platform, the 

GALS design style is used. Using asynchronous communication, the timing of the 

accelerator can affect the platform only in synchronization. Both accelerators and 
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platform can run at its maximum speed without adverse effect on the overall timing. 

For multiple cycle complex instruction, GALS handshake serves as a local controller. 

It is unnecessary to have a dedicated processor controller for synchronization. This is 

significantly worthwhile for the algorithm because its execution time depends on the 

input data. In such a case, the accelerator can have average case instead of worst case 

performance. On the other hand, the processor only needs to treat it as a single cycle 

instruction. No additional polling mechanism is needed to detect the completion. 

Cost Function of Using Application Specific Instructions 

The presented strategy obviously allows for effective and efficient implementation of 

the optimized datapath, but inevitably some means of costs are also established. 

Therefore, we work out the cost functions of using parallel instructions and complex 

instructions in order to provide a merit for optimization. 

First of all, the gain and the overhead of using an application specific instruction are 

defined as follow. The setup time is the effort used to setup the operation of a 

particular instruction. For example, setup the configuration registers for address 

generation. 

original execution time {T i) - optimized execution time {T ,mi.ed) 
Definition: Gain: . . / - ^ - — 

original execution time (Xorigimi) 

… . ^ ； ^ setup time ( r ) 
Definition: Overhead =— ： ： — 

original execution time ( r — ) 

The definition of the cost function is the ratio of the overhead of introducing new 

instructions to the gain. This function indicates whether the overhead or the gain has 
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a dominating effect. If the cost function approaches zero, the gain outweighs the 

overhead and therefore this new instruction is apparently at no cost. The overhead 

cancels out the gain when the cost function is equal to one. 

Definition: Cost Function =…e咖ad 
Gain 

Before formulating the cost function, some terms have to be specified. 

Tpiat ' Operating period of the platform 
Tflcc • Operating period of the hardware accelerator 
Fpiat ‘ Operating frequency of the platform 

Face • Operating frequency of the hardware accelerator 
T : Time for handshake communication comm 

Nioop : Number of iteration of a loop 
Npara '' Numbcr of instructions executed in parallel 

: Number of cycle to complete the task 

I original : Number of executed instructions 

I para • Numbcr of executed instructions involved when using parallel instructions 
I^piex : Number of executed instructions involved when using complex instructions 
I— ： Number of instructions involved to configure an operand fetch unit 

The cost function of using parallel instructions can be elaborated as follows: 

Overhead 
Cost Function = 

Gain 
一 Tsetup 

"^original '^optimized 

T N T 
conf para plat 

N loop I original ̂ exec ^ loop 工 para ^plat 

T N 
conf para r j _ ^ j — 八 , 

— ^ J^ para ~ ^ original ~ para 
loop para loop 

一 I conf 

para 
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As I�nf is a constant，fully exploring parallelism in long loops is most beneficial. 

The cost function of using complex instructions can be elaborated as follows: 

广—厂 . Overhead Cost Function = 
Gain 

— Tsetup 

Toriginal ^optimized 

— Tcomm  

I original Tplat ^ cycle I complex "^acc 

— ^comm f J _ 1 
r -XT J complex 
original cycle 
Fplat Fdec 

Tc_ and are the architectural parameters that are treated as constant in the 

optimization. The cost function indicates that including more instructions in the 

complex instruction is advantageous providing that the operating frequency and the 

number of cycles remain unchanged. 

4.2.5. Pipeline Organization 

The platform is a typical pipelined processor with five stages. The organization of the 

pipeline is illustrated in Figure 4.14. The first stage is instruction fetch (IF). In this 

stage, the instruction fetch unit provides instructions addressed to the instruction 

memory and fetches the corresponding instructions into the processor. Then the 

processor moves to decode stage (DEC). The fetched instruction is decoded into 

commands and operands. Meanwhile, the address generation unit calculates for 

operand address calculation. The third stage is read stage (RD). The major task is to 

read out the operands from the register file. At the same time, the load store unit also 
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accesses the register file for preparing store operation. Some instruction decoding 

works related to datapath is finished in this stage. The fourth stage is execution stage 

(EX). All the data processing and Boolean manipulation tasks are performed there. 

The load store unit accesses the data memory in this stage. The last stage is writeback 

(WB). The processed data is written back to the register file. On the other hand, the 

load store unit puts the loaded data into the register file. 

The normal flow of pipeline operation involves five stages. However, for some 

instructions that do not execute the datapath, the execution stage is skipped in order 

to lower the latency. In this case, the read and write stages are combined. The normal 

flow and the shortened flow are shown in Figure 4.16. 

厂作 ,了？？，”、 , 一 ‘ 一 " •办〒.r，；，广，’：-̂、•啊•？̂八’ .^-〒、‘：• “ V 、 r - j 、 ' “ 

— 1 1 1 i c ； 

• I ' ^ H . 

• • ' 、： ’ DECI 

“ 一 墨 幽 春 i S 

• a . H g 
漏：....... 

Figure 4.15: The pipeline organization of the platform 
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Figure 4.16: (a) The normal flow of pipeline operation; (b) The shortened flow with stage skipping. 

4.2.6. GALS Partitioning 

GALS design style is one of the key features of the platform. To design a GALS 

system, partitioning the system into synchronous modules is crucial. There are four 

considerations for partitioning the platform: 1) The synchronous modules should be 

large enough to hide the communication cost; 2) The modules that are subjected to 

change in the optimization should be modulized by asynchronous wrappers, so that 

the overall timing cannot be affected; 3) There should be some interfaces for using 

asynchronous IPs; 4) The asynchronous protocol can serve as coarse-grain clock 

gating. The asynchronous wrapper should be applied to power hungry modules. 

The platform is partitioned as in Figure 4.17. The parallel functional units and the 

complex functional units are put into separated asynchronous wrappers. The base 

platform that includes the base modules and base functional units are grouped in the 

same synchronous module. All external components are interfaced with 

asynchronous communication. 

The parallel functional units and the complex functional units are the key roles in the 

optimization. They change dramatically by means of structure and timing. Therefore, 

the best practice is to modulize them perfectly with asynchronous wrappers. In 
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addition, due to the sophisticated algorithms of these modules, they are usually huge 

and power hungry. As these modules are not involved in other general instructions, it 

is better to wrap them asynchronously for power saving. 

In contrast, the whole base platform is put into a single asynchronous wrapper. The 

reason is that there are only minor changes in the platform compared to the parallel 

and complex functional units. In addition，most of the instructions (all general 

instructions) can be accomplished within the base platform. Further decomposing the 

platform into finer partitions cannot take advantage of the timing encapsulation, but 

introduces unnecessary communication overhead. 

This partitioning establishes asynchronous communications between optimized 

datapath (parallel and complex functional units) and the base platform. This enables 

us to use asynchronous IPs in aggressive datapath optimization without altering the 

operation mechanism of the whole system. 

To cope with external components with different speeds, asynchronous 

communication is used in the external interfaces. In our case, the instruction memory 

and the data memory are surrounded by asynchronous wrappers, so that the target 

processor can work with memory at slow speed. On the other hand, the processor can 

operate at full throttle when there is no memory access. 
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Figure 4.17: The GALS partitioning of the platform 

4.2.7. Operation Mechanism 

To summarize the platform architecture and the techniques we used, a demonstration 

of the operation of an optimized platform is given. The demonstration is focused on 

the operation mechanism of 1) simple and complex instructions; 2) parallel 

instructions; 3) software pipelined parallel instructions. 

Simple and Complex Instructions 

Figure 4.18 shows the sequence of operations of performing simple and complex 

instructions. First of all, the instruction fetch unit provides the instruction address to 

the instruction memory and fetches the corresponding instruction. The fetched 

instruction is classified and decoded into control signals for driving the other parts of 

the processor and constant values. The address generation unit calculates the operand 

addresses according to the predefined addressing mode unless the locations of the 

operands are specified by immediate values in the instruction. As the base functional 

units and the complex functional units are not designed for operating simultaneously, 
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they share the same pair of operand fetch units. Then, the addresses are passed to the 

register file to read out the operands. On the other hand, the decoder prepares the 

control signals for the required functional unit. The selected functional unit is 

enabled for execution and receives the required operands and control signals. For 

complex instructions, this information is sent through the asynchronous interface. 

After the execution, the result can be stored in the internal storage of the functional 

unit, for example the accumulator of the base functional unit, or written back to the 

register file. The address for the writeback is also prepared by the address generation 

unit or the immediate address from the instruction. 

^^^ •圓圓 _ I ^ ^ I ^ J j • 
(a) (t) 

‘ I - mJ 
(C) 

Figure 4.18: The sequence of the data and control flow in the operation mechanism of simple 

instructions and complex instructions 
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Parallel Instructions 

Figure 4.19 shows the operations of parallel instructions. Similar to that of simple 

and complex instructions, the procedures of fetching instructions are the same. 

However, that of decoding instructions is different. As the parallel instructions are in 

compressed form, the instruction decoder dispatches these instructions to the 

instruction decompressor for further interpretation. The address generation unit 

prepares operand addresses for each parallel functional unit. And the control signals 

are sent to the functional units involved in the execution. Then the operations of 

execution and writeback are the same as those of complex instructions. The only 

difference is that all the results can be written back to the register file in parallel. 

Y ；；— Y ML 

• f i l l i f M I 
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Figure 4.19: The sequence of the data and control flow in the operation mechanism of parallel 

instructions 
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Software Pipelined Parallel Instructions 

The operation of software pipelined parallel instructions is more or less the same as 

that of the parallel instructions. To enable software pipelining, the results from the 

functional units have to be sent to another functional unit as operand right after the 

execution. The required configuration is shown in Figure 4.9b. In the platform, a 

switch box is used for the connections among the parallel functional units. The 

results are routed back as operands (Figure 4.20d). The final result that comes out 

from the pipeline is written back to the register file. 

i p l l l 
(a) (b) 

h M I _•圓圓• 
MM mm ff J J 

(c) (d) 

Figure 4.20: The sequence of the data and control flow in the operation mechanism of software 

pipelined parallel instructions 
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4.3. Overall Design Flow 

To enrich the proposed design methodology, we round it up with a suggested overall 

design flow. As we do not cover the application analysis and software generation in 

our research, the design flow is conceptual but the suggestions are believed to be 

practical. Refinement by the experts in these areas is recommended. 

Jain [40] studied various ASIP design methodologies and found that typically there 

are five main steps following the design of ASIP (Figure 4.21). The five steps are: 1) 

application analysis - to get the desirable characteristics which can guide the 

hardware synthesis as well as instruction set generation; 2) architecture design space 

exploration - to find out the possible architecture for a specific application with 

minimum hardware cost; 3) instruction set generation - to generate an instruction set 

for that particular application and for the architecture selected; 4) code synthesis - to 

synthesize code for the particular application or for a set of applications; 5) hardware 

synthesis - to synthesize the selected architecture and the hardware modules 

corresponding to the instruction set architecture. 

The suggested design flow is more or less similar to the typical one. As the proposed 

design methodology starts with a platform, those five steps are restructured and 

realized as in Figure 4.22. First of all, we describe the application in high level 

language (HLL). The description is mapped to the base instruction set (Appendix B) 

for profiling. In application profiling, an instruction set simulator is used to collect 

the static and dynamic characteristics of the application. The simulator uses some 

sets of carefully selected realistic data as test vectors, and relaxes the size of the 
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register file in order to investigate the data locality. In the simulation, the number of 

executions of each line of code, the memory access, the locality of data and the 

statistics of programme flow are recorded. Loop kernels with a significant number of 

iterations can be clearly identified. 

Based on the results of the profiling, we can customize the architecture parameters of 

the platform. Basically, there are four parameters: 1) the size of general register files; 

2) the number of special registers; 3) the size of the programme counter stack; 4) the 

size of the data memory; 5) the size of instruction memory; 6) the width of the data. 

Intuitively, the size of the data and instruction memories required and the width of 

the data can be found according to the memory access and the application 

specification respectively. The size of the general register file depends on the locality 

of data and the programme counter stack on statistics of programme flow, especially 

the numbers about zero-overhead loops and function calls. The number of special 

registers is related to the number of configuration registers needed for the optimized 

datapath, hence this parameter can only be known after datapath optimization. 

The loop kernels discovered in application profiling are treated in datapath 

optimization. Parallel instructions and complex instructions are introduced to 

accelerate the loop kernels with heavy duty. In the course of optimization, each of the 

discovered loop kernels is investigated to identify its potential parallelism and the 

available hardware accelerator for it. A gain value and the corresponding cost are 

calculated for each attempt of acceleration. The instruction that has the highest gain 

but its cost does not exceed the pre-defined threshold is selected. 
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After the optimization, the new instruction set is evaluated in architectural profiling. 

This simulation takes the customized architectural parameters and the new 

instruction set architecture into account. If the optimized platform meets the 

real-time requirement of the target application, the new functional units will be 

realized in HDL and inserted to the platform to scale up its datapath. The 

corresponding software is implemented by compiling the HLL description of the 

application with the new instruction set. The failed design has to go back for further 

optimization. 
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Figure 4.21: Typical ASIP design flow (source: [40]) 
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Figure 4.22: Platform-based design flow 

4.4. Summary 

This chapter describes the platform-based design methodology of ASIP. This 

methodology starts with a pre-defined platform. The design philosophy is to scale up 

the datapath of the platform and to customize its architectural parameters to meet the 

real time requirements of the target application. An efficient and effective platform 

for embedded DSP application has been derived from the five highlighted natures of 

DSP applications. 
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The design space of datapath optimization has been investigated. There are mainly 

two approaches to accelerate the target application: 1) introduce parallel instructions 

2) introduce complex instructions. The gain and the cost functions for these two 

approaches have been defined and formulated. 

Lastly, an overall design flow has been suggested. The suggestions are not formally 

discussed, but are believed to be practical. They are ready for further refinement and 

development. 
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5 • DESIGN OF THE A S I P PLATFORM 

5.1. Design Goal 

The system level architecture of the platform has been presented in Chapter 4. In this 

chapter, we discuss the micro-architecure of the platform. The design goal of the platform 

is to maximize the degree of reusability by 1) minimizing the extent of modification 

needed for the base platform; 2) minimizing the impact on timing and the power 

consumption when changing the architectural parameters. For the sake of explanation, the 

architecture is divided into instruction fetch, instruction decode, datapath and register file 

system as in Figure 5.1. 

It was decided to implement the described platform on silicon for verification. Due to cost 

considerations, the implementation of the platform is with comparatively smaller size of 

instruction memory, data memory and register file. But this decision does not affect the 

functionality, the architecture and the instruction encoding of the platform. The selected 
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architectural parameters are listed in Table 5.1. 
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Figure 5.1: The organization of the platform architecture 

Table 5.1: The architectural parameters of the platform for verification 

Instruction Addressing 16 bits 

Instruction Width 24 bits 

Data Addressing 2 x 1 6 bits 

Data Width 16 bits 

Register File 2 x 64 x 16 bits 
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5.2. Instruction Fetch 

5.2.1. Instruction fetch unit 

The instruction fetch unit is responsible for reading instructions from programme memory, 

passing them to the instruction decoder and updating the programme counter. It begins to 

operate autonomously as soon as reset is released. The only factor complicating the 

operation of the instruction fetch unit is the need to handle branch instructions. When a 

branch is executed, the fetch unit must stop fetching instructions from the current stream 

and change the programme counter to the new value. 

The structure of the instruction fetch unit is shown in Figure 5.2. It consists of three major 

modules: programme counter, address selector and loop, and subroutine controller. The 

programme counter is a register that stores the current position of the programme. This 

stored value is used as the instruction address for fetching instruction. On the other hand, 

this value is also passed to the instruction decoder as a reference for branching and other 

programme flow control activities. The programme counter updates its content 

autonomously with the new address provided by the address selector. The address selector 

controls the content of the programme counter. It calculates the new address and also 

collects the addresses from instruction decoder and the controller for loops and 

subroutines. Depending on the status of the processor and the requests from those two 

modules, the address selector supplies the appropriate address to update the programme 

counter. In this way, branches, loops and subroutine calls can be realized. 
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Figure 5.2: The structure of instruction fetch unit 

5.2.2. Zero-overhead loops and Subroutines 

Loops and subroutine calls are complicated tasks for instruction fetching. A dedicated 

controller is used to maintain the current status of a loop or a subroutine and to handle the 

address calculation. The structure of the controller is shown in Figure 5.3. The internal 

control logic interacts with the request from instruction decoder and, in addition, controls 

the operation of the stack and the loop counter. The status of the loop or subroutine is 

temporarily stored in the stack. The content of the stack is shown in Figure 5.4. The loops 

and subroutine calls are treated in a unified way in order to save resources and to be 

flexible to applications with different behaviours. The first one bit field tags the entry with 

an identity. The second field indicates the start or the return position of a loop or a 

subroutine respectively. The third field indicates the number of lines of instructions 

covered by a loop. The fourth field states the number of iterations left. The last two fields 

are not for subroutine calls. When a zero-overhead loop is set up, the current status and 

the setup data of the loop (start address and size) are pushed into the stack and the loop tag 
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is set to one. The number of iterations is stored in the loop counter. Based on the setup 

data, the control logic can figure out the end position of the loop and the current relative 

position of the programme in the loop. At the end of each iteration, the loop counter is 

decreased by one，and the programme counter is updated with the start address of the loop. 

Once the loop counter reaches zero, the stored loop status pops up and the previous status 

can be maintained. 

For subroutine calls, the setup procedure is more or less the same with zero-overhead 

loops. When a subroutine call is set up, the current status and the return address of the 

subroutine are push into the stack. This time the tag is set to zero. The programme counter 

then jumps to the position of the subroutine. Unlike the zero-overhead loops, there is no 

explicit end of the subroutine unless a return instruction is present. The return instruction 

can force the controller to restore to its pervious status and also the programme counter to 

the previous address stored in the stack. For zero-overhead loops, this return instruction is 

also effective. It is used to break the loop and to make the programme continue at the end 

of the loop. 

As the loops and subroutine calls are treated similarly in the stack, it is possible to have 

nested levels of mixture of zero-overhead loops and subroutines. The total number of 

levels depends on the number of entries of the stack. Hence the size of the stack should be 

considered in application analysis in order to match the behaviour of the target 

application. 
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Figure 5.3: The structure of the loop and subroutine controller 

loop start address size iteration 

Figure 5.4: The content of the stack 

5.3. Instruction Decode 

5.3.1. Instruction decoder 

The instruction decoder is responsible for translating the fetched instruction into useful 

information for different parts of the processor. Basically, it has three tasks to do: 1) 

identify the fetched instruction; 2) interpret the encoded part of the instruction and 

generate the corresponding control signals and opcodes; 3) dispatch the decoded 

information to the corresponding modules. In ASIP design, different application-specific 

instructions are introduced to accommodate different application's needs. Inevitably, the 
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instruction decoder needs to be redesigned frequently, which is not favoured in design 

reuse. To meet our design goal, the changing part must be isolated in order to minimize 

the modification effort. Therefore, a highly modulized instruction decoder is designed. 

The structure of the instruction decoder is shown in Figure 5.5. The decoding of parallel 

instructions and complex instructions is separated from the decoding of base instructions. 

Two internal decoder modules are dedicated to these application-specific instructions. The 

contents of the parallel and complex instruction decoder can be changed without altering 

the others. 

Secondly, the whole decoder is divided into two levels in order to match the pipeline 

organization. It is natural that the instructions involving execution of datapath is assigned 

to the second level which is closer to the datapath. This partitioning has two advantages: 1) 

numbers of pipeline registers can be saved because the data that has passed along the 

pipeline stages is the encoded part of the instruction instead of the massive control signals 

and opcodes; 2) The unused modules can be turned off efficiently. Table 5.2 lists out the 

modules that are activated in the execution of different classes of instructions. It shows 

that the second level can be disabled when the processor is doing flow control, 

configuration and memory manipulation. Moreover, the first level can activate one of the 

modules in second level only, as the base instructions, parallel instructions and complex 

instructions are orthogonal. 

To make good use of this partitioning, the class of the fetched instruction has to be 

identified as soon as possible. Hence, the instruction encoding is first based on the 

classification of the instructions, then the number of bits needed for the arguments, so that 

the fetched instruction can be classified within the first few bits. 
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Figure 5.5: The structure of the instruction decoder 

Table 5.2: The activity list of executing different classes of instructions 

Address General Special 
Instruction Processor . 

Classification Generation Register Register Datapath 
Fetch Uni t Control 

Uni t File File 

Data Processing 0 E l  

Bit Manipulation 0 0 ^ 

Boolean Operation E l 0 E l 

Flow Control 0 B  

Configuration 0 

Memory ^ ^ 

Manipulation  
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5.3.2. The Encoding of Parallel and Complex Instructions 

The encoding of parallel instructions and complex instructions are different from that of 

the base instructions. The corresponding instruction formats are shown in Figure 5.6. A 

parallel instruction has five fields. The first field is the identification tag. The second field 

is an enumerated index for recalling the corresponding opcodes stored in the lookup table 

of the parallel instruction decoder. The third field is the enable flags for each functional 

unit. It is possible to disable some functional units in the parallel operations. Some similar 

parallel instructions can be represented by one compressed entity, and therefore 

redundancy of the storage can be avoided. The fourth field is the enable flags for the 

writeback operation of each functional unit. The last two fields are the enable flags for the 

load store unit. One is for the X bank and the other is for Y bank. Besides using load and 

store instructions, the load store unit can be activated by the parallel instructions as a side 

effect. The load store unit can work autonomously if this flag is set. In this way, the load 

store operations can be decoupled from the operation of the processor, and their latency 

can be shadowed. 

The format of the complex instructions is more complicated than that of parallel 

instructions. A complex instruction has eight fields. The first field is also an identification 

tag. The second field states the target hardware accelerator of this instruction. The third 

field is used for configuring the accelerator. The meaning of this field is defined by the 

functionality of the accelerator. The fourth and the fifth fields are enable flags for the 

operand fetch units. If they are not set, the immediate addresses provided in the last two 

fields are used. The sixth and seventh fields are bank select bit to indicate the bank of the 

provided immediate addresses. 
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Figure 5.6: The instruction format of (a) parallel instructions and (b) complex instructions 

5.4. Datapath 

5.4.1. Base Functional Units 

The base datapath is designed for general DSP application. Similar to other general digital 

signal processors, the number representation is two's complement and the heart of this 

datapath is a multiplier-and-accumulator (MAC). The structure of the base datapath is 

shown in Figure 5.7. In the centre is a 16X16 40-bit MAC. It is made of 3:2 compressors 

in Wallace tree configuration, an adder and a 40-bit register for accumulation. The most 

significant eight bits are guard bits for avoiding overflow. The adder in the MAC is also 

responsible for addition and subtraction operations. 

For shift operation, a barrel shifter is used in the datapath. It can shift the accumulator by 

at most 32 bits to left and to right in arithmetic manner or in logical manner. The shift 

distance can be defined by the immediate value from the instruction and the value store in 

the register file. In addition, this shifter is also used to implement normalization operation. 

After the exponent instruction, the exponent of the current accumulated value is stored 

into a special register. This stored value is used as the shift distance of the shift operation 

when executing the normalization instruction. 
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There are also other modifiers for the accumulator: 1) logical unit for bitwise logic 

manipulation including AND, OR, XOR and NOT; 2) absolute unit for working out the 

absolute value of the accumulator; 3) negation unit for converting the accumulator to its 

opposite sign. The modified value is stored back to the accumulator. 

Besides data processing, there is a comparison unit for comparing the two values in the 

register file or comparing the accumulator with one stored value in the register file. The 

comparison unit can report six conditions: 1) equal; 2) not equal; 3) greater than; 4) less 

than; 5) greater than or equal; 6) less than or equal. The result is stored as conditional 

flags in special register. 

A complete instruction set description is shown in Appendix B. 
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Figure 5.7: The structure of the base datapath 
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5.4.2. Functional Unit Wrapper Interface 

For the application specific datapath, the platform is designed to offer maximum freedom 

to the hardware designers to design the extended functionality of the datapath. Designers 

can design synchronous and asynchronous, parallel and complex, single-cycle and 

multi-cycle functional units to enrich the datapath. For seamless integration of 

designer-defined functional units and the platform, a standard wrapper interface for each 

functional unit is defined. The wrapper interface is illustrated in Figure 5.8. Basically, the 

interface defines four parameters for controlling the source of operands, the working mode 

of the functional unit and the destination of the result. It also defines an optional internal 

register for temporary storage. 

Parameter selOp is used to select the operands among the data from the register file, from 

the internal register and from the internal register of other parallel functional units 

(notated as SPin). Parameter selFunc is used to define the working mode of a 

multi-functional functional unit. Parameter option is used to define the configurable 

options. Parameter selOut is used to select the source of output: 1) result from functional 

unit or 2) from internal register; and the destination of the output: 1) to internal register or 

2) to register file. 

selOp selFunc option selOut 

i J i i 
I L R e g i s t e r 〉 | _ _ _K I K 

I R Register^ | I \ Functional Unit ) | ) 

L，-v [ I j L^ 
control T I , Internal J , 

data V J Register \ 乂 

internal  

I I optional 

Figure 5.8: The abstract view of the functional unit wrapper 
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5.5. Register File Systems 

5.5.1. Memory Hierarchy 

In common with other current DSPs, the platform uses a dual Harvard architecture where 

one programme memory and two separate data memories (labelled X and Y) are used. 

This avoids conflicts between programme and data fetches, and many DSP operations 

map naturally onto dual memory space. For example, the data and the filter coefficients 

can be stored separately in X and Y memories. This is also true for storing two individual 

streams of data for convolution or cross correlation. 

As most of the DSP algorithms illustrate strong locality of data reference, a large register 

file is preferred in order to allow high degree of data reuse. The memory hierarchy is 

shown in Figure 5.9. The register file is partitioned into X and Y banks for matching the 

organization of the data memory. To interface with the data memories, a load store unit is 

used. It is designated for reading from and writing to the data memories in bulk. 

X Data Memory Y Data Memory 

64Kx16-bit 64Kx16-bit 

X Register Y Register 

64x16-bit 64x16-bit 

Figure 5.9: The memory hierarchy 
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5.5.2. Register File Organization 

To supply enough operands to the parallel datapath without introducing any conflict, the 

register file is designed to be multi-ported. However, when the number of ports grows, the 

performance of the register file deteriorates in terms of delay, area and power 

consumption. Rixer presented the impact to the performance of a register file with 

increasing number of arithmetic units in [47]. He showed that for A/̂  arithmetic units, the 

area of the register file grows as N^, the delay as ，and the power consumption as N^ • 

The main reason is that more arithmetic units need more ports for parallel execution, 

which implies exponential growth in the complexity of the address decoder and the 

interconnection between the arithmetic units and the register file. Inevitably, this can have 

a great impact on the platform when scaling up the parallel datapth. 

Partitioning register file into multiple banks was reported to be an effective solution to 

slowing down the performance deterioration in [44] [45][46][47]. The design philosophy 

of multi-banked register files is to distribute the ports to different register banks, so that 

the number of ports per bank can be reduced. This method can alleviate the complexity of 

the interconnection, but the drawback is that each port is confined to access the 

corresponding bank only. The primary challenge of this scheme is to avoid the number of 

simultaneous accesses to any bank exceeding the available ports on each bank. In other 

design, a recovery stage is inserted after the read stage in order to resolve the conflict. Our 

design is based on the observation that the data that needs to be accessed simultaneously 

can be uniformly assigned to different banks for many DSP algorithms. In other words, 

data conflict can be omitted if the data is carefully assigned to suitable banks. 
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Data Memory Access Pattern 

A study of the data access pattern of DSP algorithm is carried out. Convolution and 

correlation are the subjects of the study. The rationales are: 1) they are the most 

fundamental in DSP, most of the algorithms are derived from and based on it; 2) they 

show lots of parallelism, which is suitable for studying parallel data access pattern; 3) they 

involve arithmetic operation (multiply) and access to local temporary storage 

(accumulation), which is sophisticated enough for modelling more complex algorithms. 

On the other hand, they are simple enough for analysis. 

To analyze convolution and correlation in a unified view, they are combined 
N-\ 

mathematically into a general form, y{n) 二 A(k)B(n 士 k) where A(n) and B(n) are the 

two digitized input signals, yin) is the resultant signal. N is the frame length of A(n) or 

B{n). The data access pattern for exploiting data parallelism is tabulated in Table 5.3. It is 

assumed that N = 16 and there are four functional units in the parallel datapath. In the 

table, the bold items are the arithmetic operations. The operation mul represents a 

multiplication; operation mac is a multiplication-and-accumulation; operation add is an 

addition. The four functional units have their own accumulator for temporary storage 

which are notated in acc. The items in italics are the operands needed for the 

corresponding operation. And t indicates a particular time instant. 

Observing the data dependency of the access pattern in Table 5.3, it is possible to further 

partition each register bank into four blocks (conventional term is bank, but to get rid of 

misleading to X and Y banks, we call them ‘blocks’）. The first block contains data with 

index 4n; the second one contains those with 4n+l; the third one contains those with 4n+2; 
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the last one contains those with 4n+3. In this arrangement, each functional unit possesses 

a block of X bank and a block of Y bank. The functional units only need to access data 

from the local blocks, and there is no need to access data across other blocks. As a result, 

each block is only required to provide one read port for the functional unit. The 

corresponding structure of the register file is shown in Figure 5.10. A(n) and B(n) are 

supposed to be stored in X and Y banks separately. This structure illustrates a way to 

assemble an eight read ports register file with eight register blocks that with one local read 

port on each block. 

Table 5.3: The data access pattern for exploiting data parallelism  

t FUO FUl FU2 FU3 

0 mill Ao Bn mul A] Bn±i mul A2 凡士 2 mul A3 
1 mac A4 Bn±4 acco mac A5 B 壯5 accj mac Ae Bn±6 accj mac A-j B„±7 accs 
2 mac As B„±8 acco mac Ag B 壯9 acc� mac Aw B„士] 0 accz mac Ajj 凡土" acCj 
3 mac Aj2 B„±j2 acc� mac Ajs B 壯 ” accj mac Aj4 B„±i4 acc 2 mac Ajs B„±j5 acc 3 

4 add acco acc! add acc 2 acc 3 
5 add acco acc2  

i Address Generation Unil i 

r — = 1 ^ f t l ^ = r - |    
^^^ ： — ； “ “ ~ “ ： - ““ 、\ 

( “ ― “ I • •‘ . 1 ^ I 
• i 

X X(4r： X(4r+') X(4r+2: X|4r+3I： ： ； ：,： Y(4rl：; Y(4r+-： Y<4r+2;; Y(4r+3) Y ] 

譽 ： 響 J 
TOT I M ^ ^ 

operanc C operanc ‘ operanc ； | operanc S | [ operanc A [ operanc £ {operanc € | operanc 7 

Figure 5.10: The structure of register file for exploiting data parallelism 

87 



Software pipelining is another method to exploit parallelism. Its data access pattern is 

tabulated in Table 5.4. Similar to the previous case，we can organize a register bank to four 

blocks without data conflict for only one read port per block. However, it is impossible to 

assign two dedicated blocks for each functional unit. According to the access pattern, the 

functional units need to access different blocks in a rotating manner. For example, one 

functional unit accesses in the sequence of the first block, then successively the second, 

the third and the fourth. Afterwards, it accesses back to the first block and repeats the 

sequence. Therefore, rotators are used for dispatching the address to the correct block. The 

corresponding structure of the register file is shown in Figure 5.11. 

Table 5.4: The data access pattern for applying software pipelining  "71 ^ FUl FU2 FU3 

0 mul Ao B„  
1 mul Ao Bn±i mac A� B„ acco  
2 mul Ao B 壯2 mac Aj B 壯 】 a c c o mac A? B^ accj  
3 mul Ao Bn±3 mac Aj B 社2 acco mac A2 B„±i accj mac A3 B„ acc2 

4 mac A4 Bn accs mac A� B„±3 acco mac A2 B 壯2 accj mac A3 B 壯j acc2 
5 mac A4 B„±i acc3 mac A5 B„ acco mac A2 B 社 3 acc! mac A3 B„±2 accj 
6 mac A4 B 壯 2 accj mac A5 B 肚1 acco mac A6 B„ acc] mac A3 B„±3 膨 2 

7 mac A4 B 社3 accs mac A5 B社 2 acco mac Ae B 壯! accj mac Ay B„±3 acc2 
. . • • • 
. . • • • 
. . • • • 

14 mac A12 B 社2 accs mac A13 B 肚�acco mac A14 B„ accj mac A�� B„±3 acc 2 
15 mac A]2 B 社3 acc 3 mac A13 B 壯2 acco mac Aj4 B 壯! accj mac A” B„ acc 2 
16 mac Ai3 B„±3 acc� mac Aj4 B„±2 accj mac A15 B„±i acc2 
17 mac A�4 B„±3 accj mac Ajs B„±2 acc 2 
18 mac Aj5 Bn±3 acc 2 
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Figure 5.11:The structure of register file for applying software pipelining 

The Organization of the Register File 

Considering that A{n) and B{n) can be referred to the same signal for some algorithms, 

such as autocorrelation, all the data need to be fetched from the same register bank. The 

required number of ports per bank is double of the previous analysis. In order to provide 

enough ports, a pair of X and Y blocks with the same index are combined and organized in 

register block with two local read ports. The organization of these register blocks are 

shown in Figure 5.12. The first half of the blocks is assigned to the X bank and the other 

half is assigned to the Y bank. The most significant bit of the address of the blocks is used 

to identify the two banks. This arrangement has two advantages: 1) it unifies the ports for 

X and Y banks, thus allowing reading across X and Y banks freely; 2) it keeps the two 

banks separate in the programming model without requiring complex logics for address 

mapping. 

89 



. I I . I I , . I I , , I I , 
X(0) X(1) X(2) X(3) 

X(4) — X(5) — X(6) — X ( 7 ) — 

… 丨•• … … 

N_I_一 X(4N-4) — X(4N-3) — X(4N-2) — X ( 4 N - 1 ) — 

N ^ Y(1) — Y(2) — Y(3) 

Y(4) — Y(5) — Y(6) Y ( 7 ) — 

... … … ^  

1 Y(4N-4) Y(4N-3) Y(4N-2) Y ( 4 N - 1 ) — 

- ^ ^ ^ ^ ^ ^ 
Figure 5.12: Organize two read port register blocks to X bank and Y bank 

For writing back the results, it is necessary to have four global write ports for four 

functional units. Based on the finding in [44] by Tseng, we decide to use two local write 

ports in a block to realize the required number of global ports. Tseng reports that the 

incidence of writeback conflicts can be reduced by having two local write ports per block. 

On the other hand, the block with two read two write ports is comparable to that with two 

read one write in term of delay, area and power consumption. In our case, there are totally 

eight local write ports among the blocks. If the data can be allocated carefully, it is 

believed that the chance of conflict is very low. 

Working Mechanism 

The mechanism of reading data from the register file is shown in Figure 5.13. For a 

parallel datapath with four functional units, there are totally 10 read requests at most. 

These comprise eight operands for the functional units and two data for the load store unit. 

The requests have two fields to indicate the location of the data: 1) the bank selection and 
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2) the reference address. Before supplying this information to the register file, the requests 

that refer to the same location are screened out. Only one of the duplicated requests can be 

included in the active list. In the example illustrated in Figure 5.13，requests 0 to 2 refer to 

the same location, also 4 to 6 and 7 to 8，therefore the active list contains requests 0，3，4， 

7 and 9. This reduces the necessary number of read ports, which can improve the 

reusability of the fetched data and reduce the chance of conflict. The screened requests are 

recovered in the latter stage. The addresses in the active list are translated to block 

selections and local addresses to fit our register organization. The block selection indicates 

the block containing the requested data. It is the residual of dividing the address by the 

number of functional units. The local address is the physical location within a block. It is 

the quotient of dividing the address by the number of functional units. Then the translated 

addresses are scanned sequentially and distributed to the first read port of the blocks. The 

second scan is in reverse order and for the second read port of the blocks. The distribution 

scheme is on a first-come-first-served basis，which means if one request occupies a 

particular port, the scanning for that port stops immediately. The reason is based on the 

assumption that there are always at most two read requests for the same block. Therefore, 

all the undistributed requests can be caught by the second scan. When the data are fetched 

from the register blocks, they are all tagged with its address in the active list. Based on the 

address tags, the multiplexers select the correct data and send them to the correct operand 

slot. 
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Figure 5.13: The mechanism of reading data from the register file 

For writing data to the register file, the mechanism is at most the same, as shown in Figure 

5.14. There are at most six write requests, four of them for the write back of the four 

functional units and the other two for the load operation of the load store unit. The 

requests are the bundle of bank selections, reference addresses and the data. Similarly, the 

addresses are translated to block selections and local addresses, and then supplied to the 

register blocks together with the corresponding data to accomplish the write operation. 
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Figure 5.14: The mechanism of writing data to the register file 

5.5.3. Address Generation 

Address generation is another important task for smooth data supply. An autonomous 

generation can avoid interrupting the data processing task by address calculation. A 

dedicated component, address generation unit is responsible for handling the automation 

of address generation. 

Address generation unit comprises hardware engines for address calculation. There are 

two kinds of address generation engines, one is for base datapath and complex datapath, 

the other one is for parallel datapath. The base and complex datapath share one engine, but 

the parallel datapath has one engine per functional unit. The organizations of the engines 

are shown in Figure 5.15. Both have 1) an operand fetch unit for calculating the addresses 

of the right and left hand side operands of a functional unit; 2) a writeback unit for the 

addresses of the result; 3) some registers for keeping the current address and the 

configuration parameters. These registers belong to the class of special registers and are 
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organized as in Appendix C. In the engines for parallel datapath, there is an additional 

controller for triggering the operand fetch unit and writeback unit. The interval register 

specifies the interval between triggers in number of cycles. The controllable trigger 

pattern is used to realize the access pattern of software pipelining (refer to Table 5.4), 

hence the controller is omitted from the engine for base and complex datapath. 

address 
^ ‘ ‘‘；-

address 、 step 八丄 „ ; 
^ ^ Controller 

step module ^ ： ^  

modulo 、 interva • 

_ Operand Fetch _ ^ Operand Fetch 
• Unit 1 • Unit • 

.I 

Writeback Writeback 
Unit Unit 

Y i 1 ̂  i 
(a) (t) 

Figure 5.15: The organization of address generation engine for (a) base and complex datapath and 

(b) parallel datapath 

Addressing Modes 

The operand fetch unit and the writeback unit support three basic addressing modes: 1) 

increment, increasing the current address by one; 2) decrement, decreasing the current 

address by one; 3) displacement, increasing or decreasing the current address by the value 

specified in step register. There are also two complicated addressing modes: 1) circular, 

and 2) bit-reversed. 

Circular addressing repetitively accesses a fixed size of block of data, in the way that 

accesses of data continue at the beginning of the block once the end of the block is passed. 

To set up the circular addressing on a block of size R, the size register has to be set to R. 
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The data block must be aligned to N-bit boundary, which means N least significant bits 

(LSBs) of the start address must be zero. The upper bound of the block size R has to be 

For example, block with 32 entries must start at an address whose five LSBs are zero. 

Bit-reversed addressing is used for butterfly-like data movement in some transformation 

algorithms, such as discrete cosine transform (DCT) and fast fourier transform (FFT). Its 

access pattern to data is the reverse of bit order of the basic increment addressing. For 

example, the sequence of a four bits address in binary is 0000，1000, 1100，0010，1010，…， 

0111 and 1111. To setup the bit-reversed addressing, the step register has to be set to zero. 

The size register indicates the half size of the transform. For a 64-point FFT, the value in 

the size register must be 32. The criterion for setting up start address is similar to that of 

circular addressing, which must be aligned to N-bit boundary. In addition, the size of the 

transformation must be less than or equal to 

Address Generation Datapath 

The structure of the datapath for address generation used in the operand fetch unit and the 

writeback unit is shown in Figure 5.16. First of all, the mechanism of generating circular 

addressing is explained. Before doing any operation to the current address, a mask is 

applied in order to isolate the address range that is going to be modified. For example, 

when having circular addressing at (OlOOOO)b with block size of eight, the most significant 

three bits are masked and kept untouched. The rest of the bits are dispatched to the 

following datapath. The actual operation of circular addressing 

address' 二 (^address + step)%size. If the value of step is always less than that of size, 

then = 哨 . f o r 遍 ^ ^ expression can be 
address + step - size size < address + step 
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implemented as a datapath with a two-input adder, a three-input adder and a multiplexer. 

The three-input adder is composed of a carry save adder (CSA) and a carry propagate 

adder (CPA). For stepping down, the operation is 

address' = < address一step ^̂ 0̂ < address-step ^^ the address space is unsigned integer, 
[address 一 step + size address + step < 0 

we use overflowing effect to realise down-stepping with the same datapath. It is found that 

when address passes across the block boundary, the address is actually stepping down to 

get back to the data block. Therefore, we assume ihdiiaddress' 二 address — step can be 

realized by address' = address + step' - size , if step' = size - step . When we substitute 

address + step' address + step' < size . . . 
Step' = size-Step into address'= \ " , . f o r ,，we can obtain 

尸 ^ address + step - size size < address + step 

the expression for the operation of down-stepping. It is decided that such conversion work 

will be left for the assembler and hidden from programmers. 

For bit-reversed addressing, we need an adder with reversed carry chain. The CPA in the 

three-input adder is reused and modified to fit the need. The structure of the modified CPA 

is shown in Figure 5.17. The carry chain of the modified CPA is designed to be 

bidirectional. The direction of propagation is selected by the multiplexer of each full adder. 

To activate bit-reversed addressing mode, the step and the size have to be set to zero and 

to the half size of the transform respectively. As the size register always presents a one at 

the MSB of the unmasked bits, we can simply add the current address and the size with a 

reversed adder to obtain bit-reversed addressing. An example of the generation of 16-bit 

bit-reversed address is illustrated in Figure 5.18. 

For both addressing modes, the calculated address is eventually merged with the masked 
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bits to form a complete address. This new address replaces the old one in the address 

register and is ready for the next cycle of address generation. 

• f ^ address 

mask 

• j , I 
I m , R ^ ^ 關 unnjask | 

[> ‘ ‘ s i z e 绅 p : � ，1 

\ \ / 
\ reversible / \ J . / 

reverse adder / \ / 

isNeg 
• ^ ―  

sunr 

V    
7 

reverse & i s N e g ^ ^ ‘ 

u 
next address r ~ ^ — r — • " _ . 

merged 

Figure 5.16: The datapath for address generation 
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Figure 5.17: The modified carry propagate adder 
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Figure 5.18: An example of the generation of 16-bit bit-reversed address 

5.5.4. Load and Store 

Load and store are the two operations for accessing the data memory, and they are the 

only bridge between the data memory and the register file. A dedicated hardware, the load 

store unit is responsible for the tasks in transferring data from data memory to register file 

and vice versa. The duties of the load store unit are providing addresses, generating 

control signals and dispatching the fetched data. To accommodate the X-Y bank 

organization of the memory, the load store unit has independent address datapaths for the 

two banks. For each bank, there are one address datapath for memory, one for reading 

from register file and one for writing to register file. The address datapaths are the same as 

those in address generation unit and the special registers attached to the address datapath 

are also organized as in Appendix C. 

The load store unit is designed to transfer data between data memory and register file in 

bulk. Its operation is decoupled from the datapath, therefore they can work in parallel 

unless there are conflicts. To cooperate with the address generation unit, the load store unit 

has lower priority in gaining access to the register file. It is restricted to using only the 

unused read ports and write ports after the port assignment to the address generation unit. 
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As each load or store operation involves successive read and write, they have to be fit well 

into the pipeline organization to avoid frequent stall due to conflict. The partitioning of 

load and store operation in pipeline is shown in Figure 5.19. The white and black broad 

arrows represent the data and address flow of store and load operations respectively. We 

can see that the load operation begins in the execution stage but the store operation begins 

in the read stage. The main reason for this arrangement is to group the access to data 

memory in one pipeline stage, so that there can be no conflict when a load operation is 

followed by a store operation immediately and vice versa. For the programmers' point of 

view, the access to register file is aligned to other data processing operations, which is 

convenient to predict and control the time of data arrival at and from register file, 

especially when doing load store operation together with parallel instructions. 
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Figure 5.19: The partitioning of load and store operation in pipeline 
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5.6. Design Verification 

The base platform was implemented for verification. The focus of the verification is on 

the timing and the functionality of the micro-architecture of the base platform, therefore 

the GALS interfaces were removed in order to obtain the exact timing and to avoid 

non-determinism due to asynchronous interfaces. 

The design was modelled in synthesizable Verilog and synthesized in Design Compiler. 

The physical design was performed in Silicon Ensemble with 0.35|im 4 metal 2 poly 

technology. The results of synthesis and physical design are summarized in Table 5.5. The 

silicon-ready design was under two tests: static timing analysis (STA) and dynamic 

simulation. The former one was done using PrimeTime. For the latter test, some small 

programmes were written and their functions are listed in Table 5.6. These test 

programmes were run on the design with Verilog-XL. The simulation environment is 

introduced in the latter section. 

Table 5.5: The summary of synthesis and physical design 

Area (NAND2 equ.) 34K 

Area (^m X nm) 2600X2600 

Number of Pads ^  

-Clock 1_  

-Power 8 

-Address 48 

-Data 56 

-Control 7 
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Table 5.6: Test programmes for the base platform 

Program Function 

flowO Test of jump and conditional branching 

flowl Test of zero-overhead loop and subroutine call 

load Test of loading to register file and accumulator 

store Test of storing from register file and accumulator 

arith Test all arithmetic instructions 

address Test of different address generation mode 

F IR l 6 16 taps FIR filter  

Dynamic Simulation Environment 

Unlike ASIC design, microprocessor-based architecture involves apparently infinite states 

which can be defined by software. It is impossible to test it heuristically with a long list of 

test vectors. Having real programmes for verification is more sensible. A hardware and 

software co-simulation technique is deployed to fit the need. The co-simulation 

environment is illustrated in Figure 5.20. Conventionally, a simulation only involves the 

device under test (DUT) and the testbench. The testbench is responsible for supplying 

control signals, such as clock and reset, and test vectors. Based on the testbench, the 

simulator calculates the response of the DUT, and records the results as waveforms in 

database. In this approach, the DUT takes a passive role. The whole simulation is steered 

by the testbench, which is difficult to simulate the branching and subroutine calls 

activities of a processor. In the co-simulation approach, the testbench is responsible for the 

control signals only. The test vectors are stored separately in programme memory model 

and data memory model as test programme and test data respectively. The memory model 

emulates the physical memories. Based on the addresses supplied by the DUT, the 

memory models return the corresponding test vectors (instructions and data) to the DUT, 

hence, the DUT can steer the simulation, which is useful for simulating branching and 

subroutine calls. To prepare the programme memory model, the test programme is first 
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compiled to machine codes, then the codes are included in the memory model template as 

seen in Figure 5.21. Similarly, the data vectors are also included in another memory model 

instance for preparing the data memory model. 

/ Prograrr A 
Memory 

�M o d e l \ J 

I S 

^ ^ ^ I H A ^ / D a t a 7 
(V 二 

\ Model 
Testbench ^ ^ - A ^ ^ ^ 

control ) ^ ^ ^ • i l M ^ ^ ^ H  

例 ̂  I 
Figure 5.20: Co-Simulation Environment 

module PROM(csN oe wer addr data； 

r CSn C-effective 
OE 1 -effective for read 
WEn 1 -effective *i 

parameter pc_width = 16 
parameter inst_wiclth = 2A 

input csN oe wer 
input [pc_width-1 0] addr 
output [inst_width-1 0] data 
reg [inst_width-1 0] data 

always @(addr or csN or oe or wen； begir 
iK-csN & oe & wer; begir 
case (addr； 

r 
insert the program here 

format 
address data <= instruction 

V 
default data <= 2A hOOOOOC 

endcase 
end 
else 
data <=24 bzzzzzzzzzzzzzzzzzzzzzzzz 

end 
endmodule 

Figure 5.21: The memory model template 
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Results 

According to the results from STA, the maximum operating frequency of the base 

platform is 86 MHz. The critical path is at the datapath, from the operand selection 

network, thru the 16X16 multiplier and 40-bit adder/substracter to the accumulator. On 

the other hand, the platform passed all the test programmes without any functional or 

timing error found. 

A comparison to other processors of the similar class is made. The information of the 

other three widely used processors is from [48]. A summary of the comparison is shown in 

Table 5.7. The StrongARM has the worst performance due to the lack of a single-cycle 

multiplier. It has to take many instructions thus cycles to accomplish the kernel in 

sequence. The two TI DSPs show superior computational power in this benchmark. They 

can execute a FIR tap in one cycle. In contrast, our design needs two cycles for a FIR tap, 

which is apparently worse than the TI DSPs. An extra cycle is spent on loading data to the 

register file. The load store architecture of our design is beneficial when the memory 

becomes the bottleneck of the performance. This advantage can overweigh the cost when 

scaling to more advanced technologies. 

Table 5.7: FIR Benchmark Results 

Processor StrongARM TMS320C2x TMS320LC54x Base Platform 

Technology …m) 0-35 ^ ^ 0.35 

Frequency (MHz) ^ ^ ^ 孙 

# of Multipliers ^ [ [ [ 

Throughput (cycle/tap) 17̂  ^  

Speed (M tap/second) 9.9 2丄 40 43 
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5.7. Summary 

Base platform is the intermediate design. It is a good starting point for designing an 

optimized processor for particular application. The design goal is to maximize the degree 

of reusability by 1) minimizing the extent of modification needed for the base platform; 2) 

minimizing the impact on timing and the power consumption when changing the 

architectural parameters. Therefore, a flexible instruction encoding scheme, highly 

modulized datapath organization, scaleable instruction decoder and register file are 

designed to fulfil the requirement of complex and parallel instructions. 

The organization of the pipeline is open to the programmers who are responsible for 

resolving any conflict in the pipeline. This approach can simplify the design by moving 

the conflict resolver from hardware to software, which can enable easier modification to 

the base platform. On the other hand, advanced programmers can make use of the delay 

slots to fully optimize the target application. A powerful compiler is of paramount 

importance in this case. Similar functionalities are available in the compiler of VLIW 

series of Texas Instruments, therefore, this approach is believed to be practical. 

Finally, a benchmark shows that the performance of the base platform is comparable to 

other similar class DSPs. That means our design has demonstrated a good tradeoff point 

between performance and the architectural flexibility. 

104 



CASE STUDIES 

6.1. Objective 

For proving the feasibility of the proposed design methodology, two case studies 

were carried out. The objective of the case studies is to evaluate the impact of 

datapath optimization. The subjects are three well-known kernels which are widely 

used in sound and video processing domains, such as speech codec and digital video 

broadcasting. 

6.2. Approach 

A comparison of the base platform and the optimized one is given out. The measure 

focuses on the reduction of the average number of cycles needed to complete a task. 

The cycle used in the comparison is normalized to the cycle of the base platform. If 

the period of cycle of the optimized platform is different, it is presented as a fraction 
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of a normalized cycle. In addition，the area overhead is also measured for estimating 

silicon cost. The measure of the area is normalized to equivalent area of NAND2 

logic. 

A comparison of the performance among the optimized processor and two advanced 

commercial DSPs is also provided. The comparison is based on the study of the 

instruction set architecture (ISA) of the two DSPs. To be fair and to avoid the 

influence from the compiler, the algorithm is programmed and optimized for the 

DSPs by hand. As the DSPs may have different strategies on interfacing memories 

resulting in different memory hierarchies, the effect of memory access is too 

complicated to be compared and it should be excluded when evaluating the datapath. 

Therefore, memory access is assumed to be accomplished in one cycle in the 

following study. 

6.3. Based versus Optimized 

6.3.1. Matrix Manipulation 

This case is about the vector multiplication of two matrices. The general form can be 

written as: 

"floo «01 «02 «03 0̂0 0̂1 0̂2 0̂3 Km 
fllO All a\2 «13 … 办 10 办 11 1̂2 办 13 … 
«20 «21 以22 «23 ^ 办20 2̂1 2̂2 办23 Îm 
«30 «31 «32 口 33 3̂0 办 31 3̂2 办 33 办 3m 

• ： ： ： 
： • • • 

«m3 ••• L̂ nO 办 nl ^nl ••• ^nm. 

‘aooho + + • • • + ̂ On^nO ... + 
— • • 

• • • 書 

a^QbQQ + a^^b^o + .. • + a 卿b„Q amoKm + • " + ^mn^nm _ 
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Each element in the resultant matrix is the scalar product of a row from the first 

matrix and a column from the second matrix. This operation involves an enormous 

amount of multiplications and additions. For the multiplication of an mXn and an 

nXm matrix, the calculation of one element needs n+1 multiplications and n 

additions. To enhance the computational performance, instruction level parallel is 

explored. Obviously, there is no dependence among the multiplications and also 

among the additions. It is possible to introduce an instruction for n+1 parallel 

multiplications and one for n parallel additions. For the consideration of practical 

implementation, the introduced instructions are partitioned into three instructions: 1) 

parallel execution of four multiply-and-accumulate; 2) parallel execution of four 

multiplications; and 3) parallel execution of four additions. The corresponding 

optimized datapath is shown in Figure 6.1. 

To implement the optimized datapath, four MACs are used as seen in Figure 6.2. 

These MACs includes bypass connections in order to perform separated 

multiplication and addition operations. Having the three new instructions, the 

platform can perform vector-like operations to the data set for taking advantage of 

instruction level parallelism. 

/W Y ML 

(^^TO...... 
Figure 6.1: The partitioning of an optimized datapath 
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Figure 6.2: The implementation of the optimized datapath for vector multiplication 

For evaluation purposes, vector multiplication of two 6X6 matrices is examined. The 

results are shown in Table 6.1. The loading distribution of the optimized task is 

shown in Figure 6.3. 

Table 6.1: Results of the vector multiplication benchmark 

Implementat ion Base Optimized 

Area (NAND2 equ.) 34k 52k 

Cycles per matrix 364 222 

^ u i k ^ H K ' k 

ap/o 

Figure 6.3: Task breakdown of optimized vector multiplication 
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6.3.2. Autocorrelation 

Another case is autocorrelation which always an index benchmark for DSP 
N-\-m 

evaluation. The mathematical expression = + ^x{i)x{i + m). The nature 
z=0 

of this kernel and its data access pattern are similar to FIR filter, which are elaborated 

in detail in the previous chapters (section 4.2.1 & 5.5.2). Therefore, it was decided 

not to do a brief introduction here. 

To optimize autocorrelation, software pipelining is preferable because it is less 

memory bandwidth hungry. A datapath for optimizing a 64-point autocorrelation is 

suggested as shown in Figure 6.4. One additional instruction is needed to command 

the software pipelined serial multiply-and-accumulate operations. The corresponding 

benchmark results and the breakdown of the optimized task are shown in Table 

6.2and Figure 6.5 respectively. 

Xjn Ŝĵ ^̂ WpS jĵ npSilSlii® dlii|iliSiiii|B 
^ ^ ^ Multiplier Multiplier Multiplier Multiplier 

” i i i C�u, 

•^Accumula to r~]^J j Accumulator^ Accumulator^ Accumulator ^ ^ ^ ^ 

Figure 6.4: The implementation of the optimized datapath for autocorrelation 

Table 6.2: Results of the autocorrelation benchmark 

Implementation Base Optimized 

Area (NAND2 equ.) 34k 57k 

Ave. cycles per 64 points 4226 1070 

109 



MiihpMmiip. 
»7»/o ^ ^ 

^ • ^ ^ ^ ^ C ^： ^，勘 10/0 

CO•秘� L n E n m ^ access 
2% OP/o 

Figure 6.5: Task breakdown of optimized autocorrelation 

6.3.3. CORDIC 

The coordinate Rotation Digital Computer (CORDIC) algorithm for trigonometric 

computing was first introduced by Voider [49]. There are two computing modes, 

rotation and vectoring. In the rotation mode, the coordinate components of a vector 

and an angle of rotation are given and the coordinate components of the original 

vector, after rotation through the given angle, are computed. In the second mode, 

vectoring, the coordinate components of a vector are given and the magnitude and 

angular argument of the original vector are computed. 

The CORDIC algorithm computes iteratively on the following equations: 

�+i=^Ttairi(2- ') 

Where Xi and 7/ are the two coordinate components in the plane coordinate system, 

and 6U is the angle of rotation. 
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In the rotation mode, the goal of the each operation is to let 0 in N iteration, 

thus I ^i+il < I Therefore, the upper signs of the three equations are chosen if 夕/ 

> 0，otherwise the lower signs. For the vectoring mode, the goal is to obtain -> 0 

in N iterations. Similarly, | Yi+i\ has to be smaller than | Yi\ in each iteration. Therefore, 

if the signs oi Xi and Yi are different, the upper signs are chosen, otherwise the lower 

signs. 

After N iterations, the magnitude of the resultant vector has been increased compared 
i=N-\  

to the start vector by a factor of K n where ^ ^ = Y l + . Therefore, the 
1=0 

resultant vector in the rotation mode has to be scaled by K n ' ^ for correct magnitude. 

Obviously, CORDIC algorithm is computationally intensive and allows simultaneous 

calculation of Xi+i, Yi+j and 么+7 • However, the domination of control operations 

prohibits the use of parallel instructions. In this scenario, hardware accelerator is the 

best candidate for optimization. A suggested accelerator is shown in Figure 6.6. 

Practically, setting the number of iterations up to the bit length of the operands can 

obtain adequate accuracy. Having a fixed number of iterations allows pre-calculation 

of the scaling factor K, which can reduce the number of multipliers. In contrast to 

software loop control, a flow controller is built inside the accelerator for handling 

iterations. This arrangement can take full advantage of GALS design style: 1) the 

accelerator can operate at full throttle; 2) early completion is possible once the 

desired accuracy is met. In our design, early completion detection is not implemented. 

The number of iterations is fixed to 16. 

I l l 
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Figure 6.6: The structure of the CORDIC accelerator 

Besides the cordic instruction, three more additional instructions are introduced to 

put the X, r and 0 to the datapath. But they can be encoded using the configuration 

argument of the complex instruction encoding. A benchmark of Rotation CORDIC 

algorithm is performed. The results are shown in Table 6.3. The loading distribution 

of the optimized task is shown in Figure 6.7. 

Table 6.3: Results of the Rotation CORDIC benchmark 

Implementation Base Optimized 
Area (NAND2 equ.) 34k 41k 

Ave. cycles per CORDIC 253 19.8 

finAcn^rffe 
G3P/0  

i m r a n e y a c e e s s 

lOP/o 

Figure 6.7: Task breakdown of optimized CORDIC 
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6.4. Optimized versus Advanced Commercial DSPs 

In the previous section, the optimized processor presents supreme improvement on 

performance without great silicon overhead. The flexibility and the potential of the 

base platform are proven. 

In this section, a study among advanced commercial DSPs and the optimized 

processor is performed. This study is aimed to provide another angle to evaluate the 

impact of the datapath optimization. TMS320C62x [50] of Texas Instruments Inc and 

SC140 [51] of Freescale Semiconductor Inc are chosen as the subjects in the study. 

The reasons are: 1) they are highly optimized to exploit parallelism in DSP 

applications; 2) they are designed for conveying high performance over 

general-purpose DSP applications; 3) their architecture details and instruction sets 

are open to the public. The approach of this study is to compare the performance of 

the DSPs on the three kernels aforementioned according to their instruction set 

architecture. 

6.4.1. Introduction to TMS320C62x and SC140 

Before the comparison, an introduction to TMS320C62x and SCI40 is given. The 

architecture features of TMS320C62x and SCI40 is summarized in Table 6.4. Both 

are VLIW processors with several parallel execution units. They have dedicated 

hardware for memory transfer and for address generation. For the register file, they 

have different organizations -- TMS320C62x has a split register file with 32 bits data 

width, but SCI40 has a unified register file with 40 bits data width. 
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Table 6.4: Processor features ofTMS320C62x and SCI40 

TMS320C62X [50] SC140 [51] 

Architecture , VLIW 

Instruction width 256 bits 128 bits  

Register file size 2 x 16X32 hits 16 X40 bits 

Floating point support No No 

# of parallel exec units 8 6 

Parallel memory transfer 2 2 

SIMD support ^ ^  

# of multipliers 2 4 

# of ALUs 4 4 

# of Address generation units 2 2 

The datapath of TMS320C62x and SC140 are depicted in Figure 6.8 and Figure 6.9 

respectively. These figures illustrate the degree of parallelism of their datapath, in 

addition the interfaces to data memory are also shown. Obviously, these two DSPs 

are aimed to provide as much parallelism as possible for getting outstanding 

performance. 

Execute El   
SADO i S M P Y STH f j STH ISMPYH SUB SPpD 
.Li ,S1 Mi -D1 P H I 搬 I -S2 I .12 I 
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ir ir 1 r V ” 丨 I 1 + 1 I • 

沾 ‘ 店 胆 明 Y 7 Y 5 4 3 2 1 0 - — - 15141312 1110 9 8 7 6 5 4 3 2 1 0  

Register file A 321 J32 RegisterfiteB  
LD1'-32 STI| I ST2 32 'LD2  

I Data meiTKify interface coifrd | 
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Figure 6.8: Datapath ofTMS320C62x (source: [50]) 

114 



64 | 6 4 ‘ 64 ‘ 64 

^ 18) ShMlef/Umitere ^ 

A I i A “ i k i I t i ^ 

^ 40 / 40 m -- 40 / 40 40 ^ / 40 ” ” 

Data Registers D&4D15 

/ 40 ^ 40 40 ' 4 0 ^40 ' 4 0 ^ 40 ' 4 0 4Q ‘ 40 40 ‘ 40 

t t I f f I f f T f _ 
MJU ALU ALU ALU 

Figure 6.9: Datapath of SC140 (source: [51]) 

6.4.2. Results 

The benchmark tests in the last study are also applied to the subject processors. The 

tests are: 1) vector multiplication of 6X6 matrices; 2) 64-point autocorrelation; 3) 

CORDIC algorithm. The results of the benchmark are shown in Table 6.5. The last 

column is our design. 

According to the results, our design has comparable performance to the other two 

advanced processors in the first two benchmarks. Although our design is scalar in 

nature, the additional parallel datapath boosts the performance to the level of parallel 

architectures. For the CORDIC algorithm, our design performs much better than the 

others. It shows that the CORDIC algorithm hampers the parallelism exploration for 

parallel architecture. Our design uses dedicated hardware accelerator to handle this 

task that is always a blind spot in parallel architecture. 
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Table 6.5: The summary of benchmark results among different DSPs 

Benchmark (ave. cycles) TMS320C62x SC140 Optimized 
Vector multiplication of 皿 169 222 
6X6 matrices  

64 points autocorrelation 2052 1028 1070 

Rotation CORDIC 82 66 ^  

6.5. Summary 

To evaluate our design methodology, case studies for 1) optimized verses base 

platform and 2) optimized platform versus two commercial DSPs were conducted. 

The first study demonstrates the ways to optimize the base platform to kernels of 

different natures. The results are summarized in Table 6.6. In the first case, the kernel 

is relatively small. The configuration operations occupy up to 8 % of the 

computation power, which leads to low gain in performance. In the second case 

software pipeline technique is used. The requirement of memory bandwidth is 

relaxed, and therefore simultaneous execution of memory access and arithmetic 

operations is possible. On the other hand, as the loop involved is sufficiently large, 

the configuration overhead becomes neglectable. Hence the performance gain is up 

to 400 %• In the last case, dedicated hardware accelerator is used. Using GALS 

interface, the hardware accelerator runs at its full speed, which is faster than the base 

platform. Extra performance gain due to asynchronous technique is resulted. 

To sum up, the performance gain is of several folds and the silicon overhead is at 

most 68%. This is due to the contribution of effective design of the flexible platform 

and the efficient design methodology. 
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Table 6.6: The summary of the results of benchmark for base and optimized platform 

Vector multiplication of 64-point Rotat ion 
6 X 6 matr ices autocorrelation C O R D I C 

# of new instructions 3 1 i 

Performance Gain 164 % 395 % 1278% 

Silicon Overhead 53 % 68% 20o/o 

The base platform is essentially a scalar architecture.However, after optimization its 

performance is comparable to advanced commercial VLIW DSPs. The second study 

compares the performance of TMS320C62x, SC140 and our optimized design. It 

shows that our optimized design can have performance at the level of these highly 

parallel architectures without the need of expanding the instruction width. In addition, 

our design performs several times better in control-dominated kernels, which are 

always the weakness of VLIW architectures. 

These two case studies prove the effectiveness and the efficiency of our design 

methodology and our base platform. They also show that the optimized processor 

approaches or even surpasses the performance of today's advanced DSPs. 
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7 # CONCLUSION 

7.1. When ASIPs encounter asynchronous  

Application-specific instruction-set processors (ASIP) are today's enabling 

technology for tackling increasing complexities of embedded systems together with 

tightening time-to-market constraints. It combines the high design productivity of 

software approach and the high performance of hardware approach, which brings to 

us programmable devices with dedicated hardware features for real-time constrained 

applications. A major obstacle of ASIP design is the larger design space compared to 

pure hardware or pure software implementations. This makes it hard for the 

designers to search for large amounts of architecture alternatives in order to identify 

an optimal implementation in competitive design time. 

When ASIP design meets asynchronous design methodology, the mindset seems to 

be changed. We find that searching for alternative architectures has become much 
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easier than before. Thanks to the synchronization mechanism of asynchronous 

techniques, global timing requirements are broken into timing requirements of local 

modules. Different architectures can be built by putting different modules together 

rapidly without worrying about global timing. Designers only have to pay attention 

to verifying individual modules and their interfaces. 

With this in mind, a platform-based design methodology for asynchronous ASIPs is 

developed. Platform-based design is the design methodology that starts in the middle 

of the whole process. It is based on the foundation provided by the platform. Using 

asynchronous techniques, modules can be added on the platform easily to scale up 

the functionality of the datapath. It is a straightforward way to design a complex 

system. However, asynchronous technique does not mean all to the platform. Some 

other design strategies are deployed to ensure the platform has maximum room for 

optimization and induces less impact on timing and the power consumption during 

datapath scaling. 

The proposed design methodology is proven to be effective in the case studies. It 

shows that the base platform can be scaled up easily to speed up different kinds of 

kernels dramatically, which can reach the performance of some advanced parallel 

DSPs. The benchmark of rotation CORDIC algorithm even illustrates further 

performance gain by using asynchronous design methodology for seamless 

cooperation between two different clock domains. 
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7.2. Contributions 

In this thesis, we develop a new design methodology for asynchronous ASIPs. The 

globally-asynchronous locally-synchronous design style is chosen for this design 

methodology. A fully synthesized asynchronous wrapper is designed to facilitate 

rapid development of ASEP. The asynchronous wrapper only introduces 3.1 ns 

overhead in the communication between two modules. 

A highly extensible and flexible base platform is designed based on the study of the 

nature of DSP applications. The platform is aimed at providing a high degree of 

parallelism and powerful complex instructions for different DSP applications. A 

mechanism of conveying parallel instructions and parallel data using ‘narrow，width 

instruction set is devised. To support the parallel datapath, the instruction decoder 

and the register file are specially designed. The instruction decoder is modulized in 

order to isolate the changes due to addition of application specific instructions. The 

register file is highly extensible in terms of size and number of ports. Novel register 

file organization is developed so that each register bank can keep an acceptable 

number of ports while expanding the number of global ports. Much effort has been 

put into strengthening the flexibility and the extensibility of the base platform, but 

the performance of the base platform is still kept up. The platform operates at 86 

MHZ and is able to handle 43 filter taps per second, which is comparable to other 

DSPs of the same class. 

Finally, we presented two case studies using three different types of kernels, showing 

significant performance improvement after datapath optimization, which proves the 
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effectiveness of our design methodology. 

7.3. Future Directions 

The work presented in this thesis is limited to the hardware part of the ASIP design. 

The scenarios being considered in development and testing are relatively small 

pieces of codes or a fraction of application that can be handled by hand. To have a 

full picture of ASIP design and to further evaluate our design methodology, software 

generation and EDA tool development can be directions for the future. 

As the silicon technology becomes more and more advanced, having multiple 

processor cores in a chip is increasingly possible. ASIP should not be limited to 

single core design. As asynchronous design methodology is an excellent technique to 

interface different components, it is interesting to develop a methodology for 

designing asynchronous multi-core ASIPs. 
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A SYNTHESIS OF EXTENDED BURST-MODE 

ASYNCHRONOUS FINITE STATE MACHINE 

The 3D machines of the input- and output-port controller are represented by 

Karnaugh maps as in Figure A.l and Figure A.2 respectively. The red arrows in the 

map indicate the sequential flow of the machines, and the red numbers are the state 

number. The blank cells can be treated as don't care. Synthesizing these two 

Karnaugh maps can result in the formula shown in Figure 3.15and Figure 3.16. 
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Figure A.l: The 3D machine of the input port controller 
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Figure A.l: The 3D machine of the output port controller 
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B BASE INSTRUCTION SET 

The base instructions can be divided into six categories. All the six kinds of 

instructions are summarized in the six following tables. Some acronyms and 

definitions are presented after the tables. 

Table B. 1: The data processing instructions  

Mnemonic Input — Output Description  

m a c (Reg, Reg, Acc) 一 Acc Multiply two values of registers and accumulate 

MPY (Reg, Reg) 一 Acc Multiply two values of registers 

j ^ D (Reg, Reg) — Acc Add two values of registers together 

SUB (Reg, Reg) — Acc Subtract one value of registers from another one 

ADDC (Reg, Reg, Flag) — Acc Add two values of registers together with carry 
SUBB (Reg, Reg, Flag) — Acc Subtract one value of registers from another one 

with borrow  

M D A (Reg, Offset, Acc) — Acc Add an offset-able value of register to accumulator. 

SUBA (Reg, Offset, Acc) — Acc Subtract an offset-able value of register from 

accumulator.  

NEG ACC — Acc Invert the sign of the accumulator. 

Acc Acc Take the absolute value of the accumulator. 
ACC — SReg Determine the exponent of the accumulator. 

n o r m (Acc, SReg) — Acc Normalize the accumulator to the exponent stored 
in the special register.  

SH (Acc, Reg) 一 Acc Shift the accumulator by the value of the register. 

SHK (ACC, Value) 一 Acc Shift the accumulator by the immediate value. 
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Table B.2: The bit manipulation instructions 

Mnemonic Input — Output Description  

n o t Acc — Acc Bitwise NOT of the accumulator 

OR (Reg, Offset, Acc) — Acc Bitwise OR of the accumulator with an offset-able 
value from register.  

AND (Reg, Offset, Acc) — Acc Bitwise AND of the accumulator with an 
offset-able value from register. 

XOR (Reg, Offset, Acc) 一 Acc Bitwise XOR of the accumulator with an 
offset-able value from register. 

Table B.3: The Boolean operation instructions  

Mnemonic Input 一 Output Description  

CMP (Reg, Reg) — Flag Compare two values from registers and assert the 
condition flag.  

CMPACC (Reg, Offset, Acc) 一 Flag Compare the accumulator with a value from 
register and assert the condition flag. 

Table B.4: The flow control instructions  

Mnemonic Input 一 Output Description  

BEQ Flag PC Branch if "equal to" flag is asserted. 

腿 E Flag — PC Branch if "not equal to" flag is asserted. 

虹 T Flag — PC Branch if "less than" flag is asserted. 

g Q j Flag — PC Branch if "greater than" flag is asserted. 

B l e Flag — PC Branch if "less or equal to" flag is asserted. 

BGE Flag — PC Branch if "greater or equal to" flag is asserted. 

SR Value 一 (PC, stack) Subroutine call  

j p Value PC Unconditional jump 

LOOP (size, cycle) 一 (PC, stack) Zero-overhead looping  

j ^ T stack — PC Return from subroutine call or break a 
zero-overhead loop.  

NOP NA No operation 
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Table B.5: The configuration instructions 

Mnemonic Input — Output Description  

CONF4 (Value, Pos) — SReg Write a nibble to a special register without altering 
other bits.  

CONF8 (Value, Pos) — SReg Write a byte to a special register without altering 
other bits.  

CONF16 Value — SReg Write a word to a special register. 

Table B.6: The memory manipulation instructions 

Mnemonic Input 一 Output Description  

MOV Reg — Reg Move a register content to another register 

LOAD Mem — Reg Load a value from data memory to register. 
STORE Reg — Mem Store a register content to data memory. 
LDACC (Value, Pos) 一 Acc Load a word to the higher or lower word of the 

accumulator.  
STACC Acc — Reg Store the accumulator to register. 

Reg — register content 

Acc - accumulator content 

Flag - status and conditional flags 

Offset - shift the value to the left by 16 bits 

Offset-able - a value can be set to be offset 

SReg - special register content 

PC - programme counter 

Stack - programme stack 

Value - immediate value 

Size - the number of instructions within a zero-overhead loop 

Cycle - the number of iterations of a zero-overhead loop 

NA 一 not available 

Pos 一 a position of a nibble or a byte in a 16 bits value. 

Mem 一 data memory 
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C SPECIAL REGISTERS 

The organization of special purpose registers is shown in Table C.l. The leftmost 

column is the addresses of the registers. The acronyms used in the table are presented 

after the table. 

Table C.l: The organization of special purpose registers 
15 8 I 7 2 = 

0 INT (RESERVED) 
o v o v E N L G L G q 0 E X P 

7 4 0 3 2 q | E | T | T | e | E |  

2 LSU XDATA address 

3 LSU XDATA size  

4 LSU XDATA step  

5 LSU YD ATA address  

6 LSU YD ATA size  

7 LSU YD ATA step 

8 Q Q LSU XREGLD address 0 0 LSU XREGLD size 

9 0 0 LSUYREGLD address 0 0 LSUYREGLD size 

JO 0 0 LSU XREGLD step 0 0 LSUYREGLD step 

11 0 0 LSU XREG ST address 0 0 LSU XREG ST size 

7 2 0 0 LSUYREGST address 0 0 LSUYREG ST size 

J3 0 0 LSU XREG ST step 0 0 LSUYREGST step 

24 LSU Configuration  

7 5 0 Y SFU LOP address 0 0 SFU LOP size 

2 6 0 Y SFU ROP address 0 0 SFU ROP size 

7 7 0 0 SFU LOP step 0 0 SFU ROP step  

0 Y SFU WB address 0 0 SFU WB size 
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I 19 0 0 0 0 SFU Conf 0 0 SFUWBstep 

20 PFUO �P F U 3 Configuration 

21 0 Y PFUO LOP address 0 0 PFUO LOP size 

2 2 0 Y PFUO ROP address 0 0 PFUO ROP size 

I 23 0 0 PFUO LOP step 0 0 PFUO ROP step 

0 Y PFUO WB address 0 0 PFUO WB size 

25 0 0 0 0 PFUO interval 0 0 PFUO WB step 

^ 2 6 0 Y PFUl LOP address 0 0 PFUl LOP size 

I 27 0 Y PFUl ROP address 0 0 PFUl ROP size 

28 0 0 PFUl LOP step 0 0 PFUl ROP step  

I 29 0 Y PFUl WB address 0 0 PFUl WB size 

3 0 0 0 0 0 PFUl interval 0 0 PFUl WB size 

I S I 0 Y PFU2 LOP address 0 0 PFU2 LOP size 

I 3 2 0 Y PFU2 ROP address 0 0 PFU2 ROP size 

55 0 0 PFU2 LOP step 0 0 PFU2 ROP step 

I 3 4 0 Y PFU2 WB address 0 0 PFU2 WB size 

5 5 0 0 0 0 PFU2n interval 0 0 PFU2 WB size 

I 3 6 0 Y PFU3 LOP address 0 0 PFU3 LOP size 

I 5 7 0 Y PFU3 ROP address 0 0 PFU3 ROP size 

38 0 0 PFU3 LOP step 0 0 PFU3 ROP step  

I 3 9 0 Y PFU3 WB address 0 0 PFU3 WB size 

40 0 0 0 0 PFU3 interval 0 0 PFU3 WB step  

PFUn-3 ~ PFUn Configuration  

^ ^ , I : 
0 Y PFUn LOP address 0 0 PFUn LOP size 

0 Y PFUn LOP address 0 0 PFUn ROP size 

0 0 PFUn ROP step 0 0 PFUn ROP step 

0 Y PFUn WB address 0 0 PFUn WB size 

0 0 0 0 PFUn interval 0 0 PFUn WB step  
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INT - interrupt flags. Reserved for future implementation. 

OV-overflow flag. The following number indicates the bit location of the happened overflow. 

EQ 一 condition flag. Equal to. 

NE - condition flag. Not equal to. 

GT-condition flag. Greater than. 

LT— condition flag. Less than. 

GE - condition flag. Great than or equal to. 

LE — condition flag. Less than or equal to. 

EXP — exponent value. Obtained after EXP instruction. 

LSU- load store unit. 

XDATA - Xbank data memory. 

YD ATA - Ybank data memory. 

XREG - X bank register file. 

YREG — Ybank register file. 

LD - load operation. 

ST-store operation. 

SFU- scalar functional unit. For base and complex instructions. 

PFU - parallel functional unit. The following number indicates the ID of the functional unit. 

XY- hank selector. One means X bank. Zero means Ybank. 

LOP - left hand side operand. 

ROP - right hand side operand. 

WB - writeback. 

Conf - configuration. 
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D SYNTHESIZABLE MODEL OF G A L S 
WRAPPER 

module GALS_wrapl_lI10(rstN, pclk, Den一out, Den一in, Rp_out, Ap_out, Rp_in, 
Ap_in); 

input rstN, Den—out, Den_in, Ap_out, Rp_in; 
output pclk, Rp_out, Ap_in; 

wire stretch, stopped; 
wire stretch-Out, stopped—out; 
wire stretch_in, stopped—in; 

wire stretchN; 
wire stopped_outN; 
wire stopped_inN; 

pausibleClkl 

U_pclkl(.elk(pclk), .rstN(rstN), .stretch(stretch), .stopped(stopped)); 

outport 
U_output(.rstN(rstN), .Den(Den—out), .Rp(Rp_out), .Ap(Ap_out)• .stretch(st 
retch_out), .stopped(stopped—out)); 
inport 
U_inport(.rstN(rstN), .Den(Den_in), .Rp(Rp_in), .Ap{Ap_in), .stretch(stret 
ch_in), .stopped(stopped—in)); 
N0R21 U_N0R21_stretchN(.A(stretch_out), .B(stretch_in), .Q(stretchN))； 

INVl U:INVl_stretcli( .A(stretchN) , .Q (stretch)); 
NAND21 U_NAND2l_stopped_outN(.A(stretch_out) , .B(stopped) , .Q(stopped_outN)); 
NAND21 xLNAND21_stopped_inN(.A(stretch_in), .B(stopped), .Q(stopped_inN))； 
INVl U_INVl_stopped—out(.A(stopped_outN), .Q(stopped—out))； 
INVl U_INVl—stopped一in(.A(stopped_inN), .Q(stopped一in)); 
endmodule 

module inport(rstN, Den, Rp, Ap, stretch, stopped); 

input rstN, Den, Rp, stopped; 
output Ap, stretch; 

wire ZO, Ri, Ai; 
wire nAp, nRp, nAi, nDen' nZO; 

assign stretch = Ri; 
assign Ai = stopped; 

INVl U—INV2(.A(Ap), .Q(nAp))； 
INVl U一INV3(.A(Rp), .Q(nRp))； 
INVl U_INV4(.A(Ai), .Q(nAi)); 
INVl U_INV5(.A(Den), .Q(nDen)); 
INVl U_INV6(.A(ZO), .Q(nZO)); 

wire Ri一1, Ri_2, Ri一3; 
NAND33 U_NAND_Ri1(.A(Ri_l) , .B(Ri一2)' .C(Ri_3) , .Q(Ri))7 
NAND31 U_NAND_Ri2(.A(Rp), .B(Ri), .C(rstN), .Q(Ri_l))； 
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NAND31 U_NAND_Ri3{.A(nDen), .B(ZO), .C(rstN), .Q{Ri_2)); 
NAND41 U_NAND_Ri4(.A(Den), .B(nAp), .D(nZO), .C(rstN), .Q(Ri_3)); 

wire Ap_l, Ap_2; 
NAND23 U_NAND_Apl(.A(Ap_l), •B{Ap_2), .Q(Ap)); 
NAND31 U_NAND_Ap2(.A(Ai), .B(Rp), .C(rstN), .Q(Ap_l)); 
NAND31 U_NAND_Ap3(.A(Ai), .B{Ap), .C(rstN), .Q(Ap_2)); 

wire Z0_1, Z0_2, Z0_3; 
NAND33 U_NAND_Z01{.A(Z0_1), .B(ZO一2), .C(Z0_3)' .Q(ZO)); 
NAND31 U_NAND_Z02(.A(nRp), .B(ZO), .C(rstN), .Q(Z0_1)); 
NAND31 U_NAND_Z03(.A(nAi), .B(ZO), .C(rstN), .Q(Z0_2)); 
NAND41 U_NAND_Z04(.A(Den), .B(Ap), .D(nRp), .C(rstN), .Q(Z0_3)); 
endmodule 

module outport(rstN, Den, Rp, Ap, stretch, stopped); 

input rstN, Den, Ap, stopped; 
output Rp, stretch; 

wire ZO, Ai, Ri; 
wire nRi, nAp, nRp, nAi, nDen, nZO, nrst; 

assign stretch = Ri; 
assign Ai = stopped; 

INVl U_INV1(.A(Ri), .Q(nRi))； 
INVl U_INV2(.A(Ap), .Q(nAp))； 
工 N V l U_INV3(.A(Rp), .Q(nRp))； 
工 N V l U_INV4 ( .A(M) , .Q(nAi))； 
工 N V l U_INV5(.A(Den), .Q(nDen))； 
INVl U_INV6(.A(ZO), .Q(nZO))； 
INVl U_INV7(.A(rstN), .Q(nrst)); 

wire Ri_l, Ri_2, Ri_3; 
NAND33 U_NAND_Ril(.A(Ri_l), .B(Ri_2)' .C(Ri_3)' .Q(Ri)); 
NAND31 U_NAND_Ri2(.A{nZO), .B(Den), .C(rstN), .Q(Ri_l))； 
NAND31 U_NAND_Ri3(.A(Ri), .B(Ap), .C(rstN), .Q(Ri_2)); 
NAND31 U_NAND_Ri4(.A(ZO), .B(nDen), .C(rstN), .Q(Ri_3)); 

wire Rp_l, Rp_2, Rp_3, Rp一21, Rp_22, Rp_31, Rp_32; 
NAND33 U_NAND_Rpl ( .A(Rp_l) , . B (Rp_2 ) , . C (Rp一3 ) , . Q (Rp) ) 
NAND41 U_NAND_Rp2(.A(Rp), .B(Ai), .C(nAp), .D(rstN), .Q(Rp_l)); 
NAND21 U_NAND_Rp3(.A(Rp_21), .B(Rp_22), .Q(Rp_2)); 
NAND21 U_NAND_Rp4(.A(Rp_31), .B(Rp_32), .Q(Rp_3)); 
N0R41 U_N0R_Rp5(.A(Z 0) , .B(nRi), .C(Rp), .D(nrst) , .Q(Rp_21)); 
N0R31 U_N0R_Rp6(.A(nDen), .B(nAi), .C(nrst), .Q(Rp_22)); 
N0R31 U_N0R_Rp7(.A(nZ 0) , .B(nRi), .C(nrst) , .Q(Rp_31)); 
N0R41 U_NOR_Rp 8(.A(Rp) , .B(Den) , .C(nAi), .D(nrst) , .Q(Rp_32)); 

wire ZO—l, Z0_2, Z0_3, Z0_4; 
NAND43 U_NAND_Z01(.A(Z0_1), .B(Z0_2), .C(Z0_3), .D(ZO一4), .Q(Z0))7 
NAND31 U_NAND_Z02(.A(ZO), .B(Den), .C(rstN), .Q{Z0_1)); 
NAND31 U_NAND_Z03(.A(ZO), .B(nAp), .C(rstN), .Q(Z0_2)); 
NAND31 U_NAND_Z04(.A(ZO), .B(nRp), .C(rstN), .Q(Z0_3)); 
NAND41 U_NAND_Z05(.A(Rp), .B(Den), .C(Ap), .D(rstN)' .Q{Z0_4)); 

endmodule 

module pausibleClkl(elk, rstN, stretch, stopped); 

input rstN, stretch; 
output elk, stopped; 

wire clk_delayed, elk一in; 

delayl U_delayl(.i(elk), .o(clk_delayed)); 
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me 
U_me(.requestl(clk_in), .request2(stretch), .grant1(elk), .grant2(stopped)); 

assign clk_in = ~(elk—delayed|~rstN); 

endmodule ‘ 
module me(requestl, request2, grantl, grant2); 

input requestl, request2; 
output grantl, grant2; 

wire nl, n2； 

wire tied一low, tied—high; 
assign tied—low = 1'bO; 
assign tied—high = 1'bl; 

NAND21 U_NAND1(.A(requestl), .B(n2), .Q(nl)); 
NAND21 U_NAND2(.A(request2), .B(nl), .Q(n2)); 

MUX22 U_MUX2_1(.A(n2), .B(tied—low), .S(nl), .Q(grantl)); 
MUX22 U_MUX2_2(.A(nl), .B(tied_low), .S(n2), .Q(grant2)); 

endmodule 

module delayl(i, o); 

input i ; 
output o; 

DLY12 U_DLY1(.A(i), .Q{o)); 

endmodule 
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