
Design of Application-specific Instruction Set Processors

with Asynchronous Methodology for

Embedded Digital Signal Processing Applications

KWOK Yan-lun Andy

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Electronic Engineering

© The Chinese University of Hong Kong

November 2004

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)
intending to use a part or whole of the materials in the thesis in a proposed publication must
seek copyright release from the Dean of the Graduate Schools.

/ y 统 系 绍

A J^/J
;.;\4IBRARY SYSTEM

ABSTRACT

Abstract of thesis entitled:

Design of Application-specific Instruction Set Processors
with Asynchronous Methodology

for Embedded Digital Signal Processing Applications

Submitted by KWOK Yan-lun Andy

for the degree of Master of Philosophy in Electronic Engineering

at The Chinese University of Hong Kong in November 2004

This thesis presents a new design methodology of application-specific instruction set
processors (ASIPs) using asynchronous design methodology. ASIPs are today's
enabling technology for tackling increasingly complex embedded systems together
with tightening time-to-market constraints. It combines the high design productivity
of the software approach and the high performance of the hardware approach, which
brings us programmable devices with dedicated hardware features for real-time
applications. A major obstacle of ASIP design is the larger design space compared
with pure hardware or pure software implementations. This makes it hard for the
designers to search for large amounts of architecture alternatives in order to find an
optimal implementation within a competitive design timeframe.

The platform-based design methodology using asynchronous technology is
developed. A highly extensible and flexible platform is designed as the heart. Using
asynchronous interfaces, components can be added to the platform rapidly to expand
its functionalities without affecting the global timing. The platform can be effectively
optimized for particular applications.

The proposed design methodology is proven to be effective in the case studies. It
shows that the base platform can be scaled up easily to dramatically speed up
different kinds of kernels, reaching the performance level of some advanced parallel
DSPs. The benchmark of rotation CORDIC algorithm even illustrates further
performance gain by using asynchronous design methodology for seamless
cooperation between two different clock domains.

i

摘要

曰益進步的半導體技術，使計算機系統得以向多樣化和高整合進化。面對越來

越複雜的應用以及縮短開發周期的需求，使用專用指令集處理器（A S I P)
是最佳的選擇。專用指令集處理器結合專用集成電路(ASIC)的卓越運算

能力及可編程架構的高靈活性，使系統設計師能在短時間內完成產品上市。但

是設計專用指令集處理器本身是一個極難解的問題。當中涉及複雜的軟硬體協

調，使設計師無從入手，更遑論嘗試各種不同的軟硬體組合以求得到最合適的

設計。

有鑒於此，本論文提出一個利用異步設計技術和以開發平台爲基礎的方案。利

用異步設計的高度模組化和其溝通界面，不同的模組可迅速組裝在一個可延展

的平台上，面向目標應用對平台進行優化。建基於平台的方案爲專用指令集處

理器設計提供一個切入點，並有效將設計流程簡化。設計師因而可在有限的時

間內評價不同配置的效能。

本論文所提出的方案在不同的實作中能有效面向不同的數字訊號處理核心（D
S P Kernel)進行優化，並帶來顯著的效能增益°其效能甚至可媳美超

長指令數字處理器（V L I W D S P)。此結果令人鼓舞，亦證實本方案爲可

行並有效。

ii

ACKNOWLEDGEMENTS

Gratitude to The Almighty, without whose blessing nothing can be achieved.

Special thanks to my supervisor Professor Choy Chiu-Sing, who has been a constant
source of inspiration for me, and has given me invaluable support, encouragement
and guidance. My appreciation also goes to Professor Chan Cheong-Fat and
Professor Pun Kong-Pang for their constructive comments on the work.

I would also like to thank Mr Yeung Wing-Yee, who maintained our design
environment and helped me with most of the technical problems. I will not forget the
students in our research group, especially Cheng Wang-Tung, Shen Jun-Hua, Yu
Chun-Pon, Xu Ke，Leung Pak-Keung, Chan Chi-Hong and Chan Wing-Kin, whose
energy and diversity have made for many stimulating interactions. It has been a
genuine pleasure to work with them.

My heartfelt thanks to my parents for their continuing support of all kinds，and to
auntie Mavis and my friend Chan Wan-Man for their endless encouragement.

Kwok Yan Lun
2004

iii

TABLE OF CONTENTS

Abstract i

摘要. ii

Acknowledgements iii

List of Figures vii

List of Tables and Examples x

1. Introduction 1

1.1. Motivation 1

1.2. Objective and Approach 4

1.3. Thesis Organization 5

2. Related Work 7

2.1. Coverage 7

2.2. ASIP Design Methodologies 8

2.3. Asynchronous Technology on Processors 12

2.4. Summary 14

3. Asynchronous Design Methodology 15

3.1. Overview 15

3.2. Asynchronous Design Style 17
3.2.1. Micropipelines 17
3.2.2. Fine-grain Pipelining 20
3.2.3. Globally-Asynchronous Locally-Synchronous (GALS) Design 22

iv

3.3. Advantages of GALS inASIP Design 27

3.3.1. Reuse of Synchronous and Asynchronous IP 27
3.3.2. Fine Tuning of Performance and Power Consumption 27
3.3.3. Synthesis-based Design Flow 28

3.4. Design of GALS Asynchronous Wrapper 28

3.4.1. Handshake Protocol 28
3.4.2. Pausible Clock Generator 29
3.4.3. Port Controllers 30
3.4.4. Performance of the Asynchronous Wrapper 33

3.5. Summary 35

4. Platform Based ASIP Design Methodology 36

4.1. Platform Based Approach 36
4.1.1. The Definition of Our Platform 37
4.1.2. The Definition of the Platform Based Design 37

4.2. Platform Architecture 38
4.2.1. The Nature of DSP Algorithms 38
4.2.2. Design Space of Datapath Optimization 46
4.2.3. Proposed Architecture 49
4.2.4. The Strategy of Realizing an Optimized Datapath 51
4.2.5. Pipeline Organization 59
4.2.6. GALS Partitioning 61
4.2.7. Operation Mechanism 63

4.3. Overall Design Flow 67

4.4. Summary 70

5. Design of the ASIP Platform 72

5.1. Design Goal 72

5.2. Instruction Fetch 74
5.2.1. Instruction fetch unit 74
5.2.2. Zero-overhead loops and Subroutines 75

5.3. Instruction Decode 77
5.3.1. Instruction decoder 77
5.3.2. The Encoding of Parallel and Complex Instructions 80

5.4. Datapath 81
5.4.1. Base Functional Units 81
5.4.2. Functional Unit Wrapper Interface 83

5.5. Register File Systems 84
5.5.1. Memory Hierarchy 84

V

5.5.2. Register File Organization 85
5.5.3. Address Generation 93
5.5.4. Load and Store 98

5.6. Design Verification 100

5.7. Summary 104

6. Case Studies 105

6.1. Objective 105

6.2. Approach 105

6.3. Based versus Optimized 106

6.3.1. Matrix Manipulation 106
6.3.2. Autocorrelation 109
6.3.3. CORDIC 110

6.4. Optimized versus Advanced Commercial DSPs 113
6.4.1. Introduction to TMS320C62x and SC140 113
6.4.2. Results 115

6.5. Summary 116

7. Conclusion 118

7.1. When ASIPs encounter asynchronous 118

7.2. Contributions 120

7.3. Future Directions 121

A Synthesis of Extended Burst-Mode Asynchronous Finite State

Machine 122

B Base Instruction Set 124

C Special Registers 127

D Synthesizable Model of GALS Wrapper 130

Reference 133

vi

LIST OF FIGURES

Figure 1.1: ASIP bridges the performance and time-to-market gap 2
Figure 3.1: An abstract interface of asynchronous circuits 16
Figure 3.2: Micropipeline with processing. (Source: [15]) 18
Figure 3.3: Muller C-element with inverter. (Source: [15]) 18
Figure 3.4: Micropipeline for simple logics 20
Figure 3.5: Micropipeline for self-timed logics 20
Figure 3.6: Conventional domino logic 21
Figure 3.7: Differential cascode voltage switch logic (DCVSL) 21
Figure 3.8: Globally asynchronous communication between modules 23
Figure 3.9: Asynchronous Wrapper 24
Figure 3.10: Pausible clock while stretching (Other control signals are not shown). 24
Figure 3.11: The GALS design methodology (modified from [36]) 26
Figure 3.12: Timing diagram of the four-phase handshake protocol 29
Figure 3.13: Pausible Clock Generator 30
Figure 3.14: Mutual Exclusion 30
Figure 3.15: The extended burst-mode specification and the logical implementation of

the output port controller 32
Figure 3.16: The extended burst-mode specification and the logical implementation of

the input port controller 32
Figure 3.17: The configuration of an asynchronous communication interface 33
Figure 3.18: The simulated waveform of the communication channel 34
Figure 4.1: A digital signal processing system 39
Figure 4.2: (a) Circular addressing of size 16 and step 3 at iteration K; (b) Bit-reversed

addressing of 3 bits in size at iteration K 40
Figure 4.3: (a) The algorithm of a two-tap FIR filter; (b) The corresponding DFG.. 41
Figure 4.4: (a) The unfolded algorithm of a two-tap FIR filter; (b) The corresponding

DFG 42
Figure 4.5: (a) The arbitrary algorithm with heavy data dependence; (b) The

corresponding DFG 42
Figure 4.6: (a) The reformed body of the arbitrary algorithm (b) The software

pipelined arbitrary algorithm 43
Figure 4.7: Applying Sobel edge detectors on a 8x8 image 45

vii

Figure 4.8: The pesudocode of ADPCM (a) encoding and (b) decoding (Source: [39])
46

Figure 4.9: The layout of the parallel datapath (a) for ordinary parallel operations (b)
for software pipelining 47

Figure 4.10: The datapath of saturation arithmetic 48
Figure 4.11: The design space of datapath optimization 49
Figure 4.12: The architecture overview of the platform 50
Figure 4.13: The idea of instruction decompression 54
Figure 4.14: Operand fetch units (OFU) are part of the address generation unit. They

are used to fetch operands for the functional units 55
Figure 4.15: The pipeline organization of the platform 60
Figure 4.16: (a) The normal flow of pipeline operation; (b) The shorten flow with stage

skipping 61
Figure 4.17: The GALS partitioning of the platform 63
Figure 4.18: The operation mechanism of simple instructions and complex instructions

64
Figure 4.19: The operation mechanism of parallel instructions 65
Figure 4.20: The operation mechanism of software pipelined parallel instructions •• 66
Figure 4.21: Typical ASIP design flow (source: [40]) 69
Figure 4.22: Platform-based design flow 70
Figure 5.1: The organization of the platform architecture 73
Figure 5.2: The structure of instruction fetch unit 75
Figure 5.3: The structure of the loop & subroutine controller 77
Figure 5.4: The content of the stack 77
Figure 5.5: The structure of the instruction decoder 79
Figure 5.6: The instruction format of (a) parallel instructions and (b) complex

instructions 81
Figure 5.7: The structure of the base datapath 82
Figure 5.8: The abstract view of the functional unit wrapper 83
Figure 5.9: The memory hierarchy 84
Figure 5.10: The structure of register file for exploiting data parallelism 87
Figure 5.11 :The structure of register file for applying software pipelining 89
Figure 5.12: Organize two read port register blocks to X bank and Y bank 90
Figure 5.13: The mechanism of reading data from the register file 92
Figure 5.14: The mechanism of writing data to the register file 93
Figure 5.15: The organization of address generation engine for (a) base and complex

datapath and (b) parallel datapath 94
Figure 5.16: The datapath for address generation 97

viii

Figure 5.17: The modified carry propagate adder 97
Figure 5.18: An example of the generation of 16-bit bit-reversed address 98
Figure 5.19: The partitioning of load and store operation in pipeline 99
Figure 5.20: Co-Simulation Environment 102
Figure 5.21: The memory model template 102
Figure 6.1: The partitioning of an optimized datapath 107
Figure 6.2: The implementation of the optimized datapath for vector multiplication

108

Figure 6.3: Task breakdown of optimized vector multiplication 108
Figure 6.4: The implementation of the optimized datapath for autocorrelation 109
Figure 6.5: Task breakdown of optimized autocorrelation 110
Figure 6.6: The structure of the CORDIC accelerator 112
Figure 6.7: Task breakdown of optimized CORDIC 112
Figure 6.8: Datapath of TMS320C62x (source: [50]) 114
Figure 6.9: Datapath of SC140 (source: [51]) 115
Figure A.l: The 3D machine of the input port controller 122
Figure A.2: The 3D machine of the output port controller 123

ix

LIST OF TABLES AND EXAMPLES

Table 2.1: The summary of asynchronous processors designed by industry and
academia 13

Table 3.1: Simulation results of the asynchronous wrapper 34
Table 4.1: DSP primitive mathematical operations 39
Table 5.1: The architectural parameters of the platform for verification 73
Table 5.2: The activity list of executing different classes of instructions 79
Table 5.3: The data access pattern for exploiting data parallelism 87
Table 5.4: The data access pattern for applying software pipelining 88
Table 5.5: The summary of synthesis and physical design 100
Table 5.6: Test programmes for the base platform 101
Table 5.7: FIR Benchmark Results 103
Table 6.1: Results of the vector multiplication benchmark 108
Table 6.2: Results of the autocorrelation benchmark 109
Table 6.3: Results of the Rotation CORDIC benchmark 112
Table 6.4: Processor features of TMS320C62x and SC140 114
Table 6.5: The summary of benchmark results among different DSPs 116
Table 6.6: The summary of the results of benchmark for base and optimized platform

117
Table B.l: The data processing instructions 124
Table B.2: The bit manipulation instructions 125
Table B.3: The Boolean operation instructions 125
Table B.4: The flow control instructions 125
Table B.5: The configuration instructions 126
Table B.6: The memory manipulation instructions 126
Table C.l : The organization of special purpose registers 127

X

1 • INTRODUCTION

1.1. Motivation

Moore's law 0 has driven the development of technology in the silicon industry for

the past three decades. The silicon gate count continues to grow; and the transistor

size continues to be scaled down with the regular pace that Moore predicted.

Continuing growth in silicon capability is rapidly magnifying the functionality of

digital circuits, leading us into a new era of diversified applications on embedded

digital devices.

However, Moore's law is found to be increasingly irrelevant. While the silicon gate

count still continues to grow as Moore predicted, hardware designers find difficulties

in using all the gates efficiently and effectively with the leading edge technology.

The improvement of electronic design aided (EDA) tools and engineering skills

cannot keep track of the growth in the capability and complexity of digital circuits.

1

This gap of design productivity leads to great tension in achieving time-to-market,

and therefore it becomes a serious burden for realizing advanced competitive

designs.

As time-to-market is primarily important, application-specific integrated circuits

(ASIC) are no longer the best option although they deliver excellent performance in

terms of speed, power and silicon efficiency. Shifting from hardware to software can

take advantages in this scenario. Increasing the software proportion of a design

improves the design productivity due both to the simple and predictable software

design flow and to the high degree of reusability of the software library together with

the programmable device itself. It can be expected that programmable devices,

especially general-purpose processors, continue to benefit from Moore's law scaling.

However, general-purpose processors show limits in meeting stringent requirements

of embedded real-time applications. Compared to ASICs, general-purpose processors

consume more power and offer lower performance. For this reason, the new type of

programmable devices, so-called application-specific instruction-set processors

(ASIP) are being developed to fill the gap between performance and time-to-market

of purely hardware and purely software solutions as shown in Figure 1.1.

Performance

i i

- , 1 I
；

r • ASIC
！ A$W I

Time-to-market

Figure 1.1: ASIP bridges the performance and time-to-market gap

2

The philosophy of ASIPs is to put to good use the optimized user-defined instruction

set and datapath to gain higher performance of computation for certain target

applications. From the software designers' point of view, ASIPs offer efficient

macros to replace heavily loaded subroutines in software implementation. From the

hardware designers' point of view, ASIPs simplify the hardware algorithms by

realizing some tedious but uncritical modules in software. The advantages of this

arrangement are threefold : 1) High degree of flexibility allows late design change to

keep track of the evolving standards. 2) High degree of reusability facilitates rapid

retargeting. 3) Tailor-made optimized features breakthrough the performance

bottleneck of general-purpose processors.

Design of an efficient ASIP is not a straightforward task. On the one hand, it requires

precise judgment to balance the performance and the flexibility. On the other hand, it

eliminates over-design and wastage of silicon. This multi-dimensional optimization

problem widely covers three areas: hardware logic design; computer architecture

design; and application software design, which makes it hard for the designers to

search for large amounts of architecture alternatives in order to identify an optimal

implementation within a competitive design timeframe.

Another eye-catching technology, asynchronous design methodology [2][3] [4] may

provide a new opportunity to tackle this problem. Asynchronous design style uses

handshake to accomplish communication between modules in order to solve the

clock skew problem. The beauty of this communication mechanism inherently

provides robust and precisely defined interfaces between modules. By having these

interfaces，the specifications of the modules can be precisely defined, and can be

3

independent of any global timing reference. The design task of a large system is

greatly simplified to smaller tasks - design of component modules and verification of

their interfaces. Undoubtedly, this is a good practice for designing ASIP efficiently.

In addition, this module-based design facilitates design reuse, which means it

increases the degree of retargetability of the designed ASIP. By exploring suitable

design space for asynchronous technology, it is possible to solve the complex

optimization problem.

1.2. Objective and Approach

The objective of this research is to study the way to apply asynchronous technology

to ASIP design, and to provide an effective design methodology to optimize an

asynchronous ASIP to meet real-time requirements of the target application.

Our work focuses on the optimization of the datapath with its associated

instruction-set in order to fulfil the timing criteria for embedded digital signal

processing (DSP) applications. Power efficiency is the second concern but is not a

major factor in optimization. The other issues about architecture design are also

addressed. However, the rest of the ASIP design issues, such as application analysis

and software generation, are not covered.

As optimization of the datapath is closely related to the characteristics of the target

application and some parameters of the overall architecture, such as memory

bandwidth, depth of pipeline stages and degree of computational concurrency, the

4

following approach is taken to achieve our objective:

1 • To find an architecture that can maximize the design space of the datapath;

2. To find a parameterized extensible architecture that can take advantage of

asynchronous technology;

3. To find a methodology to design an optimized datapath based on the

characteristics of the target application.

The extensible architecture is the centre of our proposed methodology. Further

datapath optimization essentially depends on that architecture. For the sake of ease of

notation, this extensible architecture is called a "platform" for the rest of the thesis.

1.3. Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2: Related Work. This chapter gives an outline of the related work in ASIP

design methodology and some remarkable achievements in asynchronous

technology research.

Chapter 3: Asynchronous Technology. This chapter briefly describes the design

style of asynchronous circuits. Afterwards, there is a discussion on the best

option for our platform and also on its implementation.

5

Chapter 4: Platform-based ASIP Design Methodology. This chapter provides a

complete description of the proposed design methodology. The exploration of the

design space of the datapath, the architecture of the platform and the overall

design flow are addressed.

Chapter 5: Design of ASIP Platform. This chapter presents the microarchitecture of

the platform. It includes functional description of each module, their working

mechanism and the design consideration.

Chapter 6: Case Studies. To prove this design methodology, case studies were

conducted. A detailed description of the case studies is available.

Chapter 7: Conclusion. This chapter summarizes the overall research work.

Perspectives of future work are pointed out.

6

2 • RELATED WORK

2.1. Coverage

Presently, there is no publication covering the design methodology that explores

advantages of using asynchronous technology in ASIP design. Publications related to

asynchronous ASIP design can be separated into two areas: ASIP design

methodologies and asynchronous processor methodologies. In order to focus on our

objective, the summary of ASIP design methodologies describes only the works that

have an explicit treatment on hardware implementation, and the resulting hardware

should be in the class of instruction set architecture. The design methodologies

mainly on compilation technique, software generation and synthesis of dedicated

hardware accelerators are not covered.

For the area of asynchronous design methodologies, we summarize some remarkable

asynchronous processor designs in industry and in academia. A detailed discussion of

the asynchronous design methodology is given in Chapter 3.

7

2.2. ASIP Design Methodologies

Existing ASIP design environments can be classified into two approaches. Some

design environments are based on predefined processor platforms and provide

different architectural options for customization. Other environments provide

architecture description languages for the designers to describe their target processor

architectures.

Xtensa of Tensilica [5][6], R.E.A丄 of Philips[7]，ARCtangent-A5 of ARC [8] and

Jazz DSP processor of Improv Systems [9] are the commercial design environments

using predefined processor platforms approach.

Xtensa of Tensilica is a configurable, extensible and synthesizable RISC (reduced

instruction set computer) processor with load store architecture. Its base architecture

has a compact 16- and 24-bit instruction set comprising of 80 instructions. The

configurable parameters include the choice of 32 or 64 general-purpose 32-bit

registers, the size of cache, the write buffer size, and the availability of designer

defined instruction execution unit. Designers can define the mnemonic, the encoding,

and the semantics of single cycle instructions using TIE language. In addition, the

development environment includes ANSI C/C++ compiler, linker, assembler,

debugger, code profiler, and instruction set simulator.

The R.E.A.L of Philips is customizable DSP having two independent 16x16 bit

multipliers, four parallel 16-bit ALUs which can be combined into two 40-bit ALUs

(including eight overflow bits each), and a number of parallel shifters and saturators in

8

base architecture. Besides a standard 16- and 32-bit instruction set, there are

additional Application Specific Instructions (ASIs), which allow the full parallelism of

the DSP to be exploited. The ASI concept allows up to 256 VLIW instructions in a

96-bit width look-up table inside the R.E.A.L. DSP. These are triggered by a special

class of 16 bit instructions, stored in the normal programme memory. The ASI look-up

table can be a RAM (for prototype chips), ROM, a synthesized netlist，or a

combination of these. If the ASI table is implemented in RAM, then its contents can be

modified using the JTAG port, or under DSP programme control by writing to

dedicated registers within the DSP.

The ARCtangent-A5 of ARC is a four-stage 32-bit RISC processor that can be

configured and extended to match the application requirements. Designers can

customize the processor in two ways: configuration and extension. Configuration is

the ability to change existing features of the processor, such as the main-memory and

auxiliary-bus widths; the size and organization of the instruction and data caches; or

the size of local memory and DSP XY memory. Extension is the ability to add entirely

new features to the processor such as a 32x32-multiply instruction, a USB peripheral

and user-defined application-specific extensions. The resulting core is generated to

HDL code together with synthesis scripts, simulation make-files, documentation and

an automated test environment.

The Jazz DSP processor of Improv Systems is a configurable VLIW processor for

their proprietary Programmable System Architecture (PSA). Improv employs this

architecture that can scale from a single, uniquely configured Jazz DSP processor core,

to a system level platform implementation that consists of many of these uniquely

9

configured Jazz processors in an interconnected structure defined by shared memory

maps between the processors. Each processor instance can be customized by custom

RTL blocks and instructions to create a designer-defined DSP core. The Jazz PSA

Composer Tool Suite provides designers with automatically generated synthesizable

HDL code and a full set of software design tools including the debugger, simulator

and profiler.

Other design environments using architecture description languages include the

design environment of Target Compiler Technologies [10], LISA Processor Design

Platform [11][12], MetaCore [13] and PEAS-III [14].

The design environment of Target Compiler Technologies is based on the processor

modelling language nML. nML offers designers the abstraction level for describing a

processor architecture and instruction set (ISA), which serves as an input to the various

tools. nML captures the specification of the processor's instruction set, together with

sufficient structural information to enable efficient compilation. Processor designers

can describe alternative instruction-set architectures in nML. The support-tools for

corresponding architecture are automatically available. Once the architecture has been

optimized in nML, the control logics of processor description can be translated

automatically into an HDL model. This HDL description can be synthesized with

commercially available synthesis tools, for ASIC or FPGA implementation.

The LISA Processor Design Platform (LPDP) tool-suite is based on the machine

description LISA. Starting from architecture descriptions in the LISA language,

10

software development tools can be generated including HLL C-compiler, assembler,

linker, simulator, and debugger front end. LISA is a language which aims at the formal

description of programmable architectures, their peripherals, and external interfaces.

The language elements of LISA enable the description of different aspects of processor

architectures like behaviour, instruction set coding and syntax. The language LISA and

its generic machine model can produce bit- and cycle/phase-accurate models of

systems that consist of programmable architectures and peripheral hardware

components. Moreover, synthesizable HDL (VHDL, Verilog, SystemC) code of the

target processor can be generated and processed by the standard synthesis tools.

MetaCore is a DSP-oriented ASIP development system that can generate efficient

ASIP using benchmark-driven design methodology. The heart of the MetaCore

system is a predefined micro-architecture. The design style of the predefined

micro-architecture is parameterized and pipelined. The architectural parameters

include register file size, bus width, address space of each memory, and bit width of

functional blocks. The specification of the target ASIP in the MetaCore system is

described using the structural specification language MSL and behavioural

specification language MBL. MSL is used to specify the data path structure of the

target micro-architecture, while MBL is used to specify the architectural parameters

and the behaviour of instructions for the target ASIP. The MSL description consists of

declarations of hardware resources such as busses, latches, multiplexer, functional

units, and interconnections among the hardware resources. A synthesis tool called

SMART is used to translate the given processor specification into the corresponding

HDL code of the target ASIP equipped with the user-defined application-specific

instructions.

11

PEAS-III is an architectural level processor design environment based on a

micro-operation description of instructions. In the environment, designers model the

target processor with the following five items: 1) Architecture parameters such as the

number of pipeline stages, the number of delayed branch slots; 2) Declarations of

resources to be included in processor (e.g. ALUs, registers); 3) Instruction format

definitions which include interrupt conditions and the number of execution cycles of

interrupt conditions and the number of execution cycles of interrupt; 5)

Micro-operation descriptions of instructions and interrupts. PEAS-III synthesizes the

datapath and the control logic of the processor, and generates a simulation model and

synthesizable VHDL descriptions of the processor.

2.3. Asynchronous Technology on Processors

Over the past few years, industry and academia have put much effort on

asynchronous circuit technology. Their achievements can be concluded by many

advanced and sophisticated asynchronous processors. Table 2.1: The summary of

asynchronous processors designed by industry and academia gives a summary of

asynchronous processors designed by industry and academia.

12

Table 2.1: The summary of asynchronous processors designed by industry and academia

Organization and
Description Achievements

Reference

The Amulet Series. A series of
Successfully delivered the

University of asynchronous ARM processors using
asynchronous processors for

Manchester, [15][16][17] self-timed micropipelined VLSI
commercial use.

implementation.

Four times lower power than a

power-optimized synchronous
Philips Electronics, [18] Asynchronous 80C51.

version. Significant reduction

of EM emissions.

The asynchronous Pentium ！ ！ ！
1) Asynchronous Pentium !!!; 2)

processor is three times faster
Intel Corporation, [2] Incorporate clockless elements in

and consumes half the power of
Pentium 4

synchronous counterpart.

DDMP Signal Processor. A Operating at a speed of 8600

self-timed data driven multi-media Million Operations per Second
Sharp Corporation, [19]

processor aimed at digital television and with power consumption of

receivers and other applications less than 1 watt.

R3000 exhibits significantly

Asynchronous MIPS R3000. Using improved MlPS/watt

asynchronous circuits to implement a performance over the
Caltech, [20]

deep, fine-grained pipelined MIPS synchronous version when

processor scaled to account for different

processes and voltages
MiniMIPS processor is twice as

Asynchronous Digital fast as all other designs using
1) Vortex processor; 2) MiniMIPS

Design Pasadena, Calif， the 0.6 micron process in
processor.

[21] addition to 30 percent less

power consumption.

Using delay-scaling techniques to

Tokyo Institute of improve performance by taking
TITAC2. A full-featured 32-bit

Technology and Tokyo real circuit delays into account,
architecture.

University, [22] [23] rather than conservatively

assuming unbounded gate delays

13

2.4. Summary

Industry and academia provided convincing demonstrations on asynchronous

processors. Their works showed the feasibility and potential performance gain of

using asynchronous circuits in processor design. The published ASIP design

methodologies do not pay special attention to asynchronous technology. All of them

are focused on synchronous designs. None of them explicitly explores the power of

asynchronous circuits in ASIP design.

The differentiation of our work against the pervious works is that we consider

asynchronous technology as a factor in optimization. We do not consider

asynchronous ASIPs as the straightforward translation of synchronous ASIPs. We

also focus on the delay insensitive nature of asynchronous circuits in order to explore

the opportunity to enhance the design reusability in ASIP design.

14

3 • ASYNCHRONOUS DESIGN
METHODOLOGY

3.1. Overview

Asynchronous circuits are fundamentally different from its well-known counterpart -

synchronous circuits. The operation of asynchronous circuits does not rely on global

clock signal as that of synchronous, but on local handshake signals. The handshake

signals are basically the control signals in the communication between modules.

Different styles of asynchronous circuit implementation may have different

handshake protocols [24]，for instance, two-phase protocol and four-phase protocol.

In essence, all handshake protocols are the composition of request states and

acknowledgement states.

An abstract interface of asynchronous circuits is shown in Figure 3.1. This interface

has three channels for communications, request, acknowledgement and data channel

between two modules. For simplicity, one module is defined as sender which is a

15

data provider and another one defined as receiver, a data consumer. When the sender

is ready to send data, a request state is asserted. A request signal is sent through the

request channel to inform the receiver. (This signal can be transition sensitive, level

sensitive or in binary encoded form. This is also true for acknowledgement signal).

After receiving this signal, the receiver starts to process the data and sends back an

acknowledgement signal when it finishes its work. Then the sender prepares another

set of data for next transfer. This data transfer mechanism can safely avoid hazards.

This concept is much clearer on asynchronous pipeline, which is discussed in the

section on Micropipelines on page 17.

Request •

M Acknowledgement
Sender Receiver

\
Data)

r |

Figure 3.1: An abstract interface of asynchronous circuits

Compared to synchronous circuits, asynchronous circuits have no common or

discrete reference time for all modules. There is only local reference time between

two communicating modules. This was previously considered a disadvantage,

because this violates the beauty of synchronous circuits - all components reference

to common and discrete time defined by clock, which is believed to greatly simplify

the design work. However, when the clock skew problem becomes significant due to

process scaling, asynchronous circuits beat its counterpart in this arena. Besides,

according to [25] asynchronous technology offers opportunities in the following

areas:

16

1. High performance;

2. Low power consumption;

3. Low noise and low EMI emission;

4. A good match with heterogeneous system timing.

For system integration, asynchronous technology is undeniably a better option than

synchronous. Its handshake-based communication mechanism provides a reliable

environment for reuse of pre-designed, pre-verified, pre-characterized IP blocks. The

freedom of using IP blocks with different specifications offers the highest potential

for improving design productivity.

3.2. Asynchronous Design Style

This section is an introduction to different asynchronous design styles. Based on

different sizes of communication blocks，three styles are presented —

micropipelines, fine-grain pipelining and globally-asynchronous-locally-synchronous

design.

3.2.1. Micropipelines

Micropipeline was first introduced in Ivan Sutherlands' Turing Award lecture [26].

Sutherlands designed micropipelines as an asynchronous alternative to synchronous

pipelines. From the definition of micropipelines，this is a simple form of event-driven

elastic pipeline that contains simple circuitry in each pipeline stage.

17

H{\n] Ad) AO) 一

H — i I fLA^ I I

m m \
» I I I * I 4 I r -i

I ^ f r t ！ I p r f j i 门

I I v J f I .fgl I N^
r r » • TTJ Ty I

丨 因丨I 丨
m ' m m)

Figure 3.2: Micropipeline with processing. (Source: [15])

IF inpyl̂ dlfftr 'm mt%
Q YH^^i €Ppy upper fof output

ELSE hold previous state;

Figure 3.3: Muller C-element with inverter. (Source: [15])

Figure 3.2 is a typical structure of micropipelines. This circuit operates in two-phase

handshake protocol which is based on the signal-transition conceptual framework

proposed in [26]. To fit to signal-transition signalling control system, capture and

pass latches are used as storage elements. The inputs C and P govern the capture and

pass function of the latch, and the outputs Cd and Pd represent "capture done" and

"pass done" respectively. When there is a transition occurring at signal C，data will be

captured and held in the latch. On the other hand, the latch looks transparent while a

transition is present at signal P.

The basic operation of the micropipeline can be easily explained using the events of

request and acknowledgement signal. Assuming that all the wires are initially set at

zero and all latches are initially transparent, when there is a transition in the request

input, then output of the first C-element will be changed from zero to one. This

18

transition notifies the first latch to capture the data. The latch passes the captured data

to the computation logic, at the same time it asserts a pair of request and

acknowledgement signals from Cd. The acknowledgement signal is sent back to the

data source while the request signal is sent through a delay line to the second stage.

The delay line matching the computation logic to the computation is completed

before the arrival of the request signal. Meanwhile, the first C-element blocks the

request from the data source and waits for an acknowledgement from the second

stage. After receiving the request, the second latch captures the data and sends back

an acknowledgement, and then the first latch is allowed to capture data again. This

operation is repeated when the next request signal arrives, and the data propagates

along the pipeline to the output.

Micropipelines have a simple and effective structure. It is easy to implement and easy

to achieve high throughput. Also, the latches moderate the flow of data through the

pipeline, and can be used to filter out hazards. Thus, any logic structure can be used in

the logic blocks, including the straightforward translation of synchronous pipelines.

Presently, there are different derivatives of micropipelines. Some designs give up

using capture and pass latches but use simple latches with four-phase latch control

(Figure 3.4). Some designs involve self-timed logic, which makes the pipeline even

more elastic (Figure 3.5).

19

/ — ^ (^

M Four-Phase 4 Acknowledgement Four-Phase _

Handshake • (delay T ^ J Handshake

J Requesi �

^ ‘ I

Q a t c h Z Z)

Computational Logic

Figure 3.4: Micropipeline for simple logics

/ ^ (^
Four-Phase Acknowledgement Four-Phase

^ Handshake I Handshake ^

] Requesi Completed y

[= > a t c h Z Z) Z Z) Latch I Z ：)

— L ^ Self-timed
Computational Logic

Figure 3.5: Micropipeline for self-timed logics

3.2.2. Fine-grain Pipelining

A number of design styles targets higher performance by using much smaller

communicating blocks. These styles decompose the design into a fine-grain pipeline.

In some aggressive approaches, the critical path of each pipeline stage is limited to a

few logic gates [27]. In order to have ultimately high throughput, this kind of design

styles adopt a latch-free structure in fine-grain pipelines [28][29], as the capture and

pass latch is too slow compared to the computation logic. Differential cascode voltage

switch logic (DCVSL) [30] is the spot of this structure.

20

DCVSL belongs to the dynamic logic family. Similar to the other members, DCVSL

operates in alternative precharge phase and evaluation phase [31]，but it has

differential input and output. The structure of DCVSL is shown in Figure 3.7. It is

symmetrical and comprise a pair of domino logics (Figure 3.6). An attractive

characteristic for using it in latch-free applications is that DCVSL can hold the

evaluated output whereas the input data is changed [32]. Thus, DCVSL can be

understood as a combination of the logic and storage elements that are preferred in

fine-grain pipelines.

0

��Output
/ ^

I n f \ nMos
I 随 / Logic Block

\ J
Clock IP

Figure 3.6: Conventional domino logic

i_J Completed
0 O ^

Request H
卜』Output

, \ r -k
\ nMos nMos / ^

_ _ ^ _ _ 1 / Logic Block Logic Block \ 。她__

V J V J

Figure 3.7: Differential cascode voltage switch logic (DCVSL)

The operation of DCVSL is similar to conventional dynamic logic. When the request

is low, the DCVSL shifts to precharge phase. At this moment the two upper pMOS

21

are turned on and make the two outputs low. When the request is high, then it is in

evaluation phase. Either one of the nMOS logic trees is turned on to change the

output to high. A differential output is obtained when the evaluation is completed.

This operation mechanism is inherently an incomplete handshake protocol, which

can provide a foundation to simplify the handshake logic. On the other hand, the

logic can indicate the completion of computation by the differential output. No

surplus timing margin is needed in contrast to the worst-case delay line used in

micropipelines.Thus, higher performance can be expected.

Fine-grain pipelining is excellent for high speed applications [33][34][35]. However,

designing dynamic logic requires more manual effort and incurs much longer design

cycles. This design style is not suitable for large scale designs.

3.2.3. Globally-Asynchronous Locally-Synchronous (GALS) Design

GALS uses largest communication blocks compared to the other two design styles.

Its asynchronous communication scheme targets on coarse grained block level whose

size can be as large as a finite state machine or an IP. The scope of GALS is also

different from that of micropipelines and fine-grain pipelining. Its design philosophy

focuses on the interconnection of synchronous blocks with asynchronous technology.

This approach partitions the large synchronous system into smaller synchronous

blocks and interconnects them with asynchronous handshake protocol. Similar to

other asynchronous design styles, the communication among blocks is referenced to

local handshake signals, therefore the synchronization can be spread among the

system effectively and reliably.

22

Synchronous-Asynchronous Cooperation

In order to carry out asynchronous global communication with others, all

synchronous modules are wrapped by an asynchronous interface. This asynchronous

wrapper is potentially capable to communicate with purely asynchronous modules as

long as they share the same protocol. This is a low cost way to establish

synchronous-asynchronous cooperation in a system (Figure 3.8). GALS can bridge

synchronous and asynchronous technology together to form a heterogeneous system

that is free to make good use of synchronous and asynchronous IPs.

r = i i
Synchronous / \ / Asynchronous \

Module \j / V Module /

n X n
Z \ R N L

Z Asynchronous \ / \ Synchronous
\ Module / \ / Module j Asynchronous \ H � M CommurHcatior ^

Figure 3.8: Globally asynchronous communication between modules.

Asynchronous Wrappers

广 The structure of an asynchronous wrapper is illustrated in Figure 3.9. The

asynchronous wrapper surrounds a synchronous module aiming to provide a

completely asynchronous external interface. All input and output ports of the module

are managed by separate port controller. When data enters or leaves the module, the

controller bundles the data with handshake signals to ensure its validity in the whole

transfer process. Additionally, the asynchronous wrapper provides a local clock

23

signal for the synchronous module. This clock signal is independent from outside

modules in order to fully encapsulate the synchronous module. On the other hand,

this clock is generated as stretchable. If incoming data arrives too close to a sampling

clock edge, either the clock edge or the data transfer gets shifted to a later point in

time in order to avoid being metastable (Figure 3.10).

C \
Pausable

^ Clock J ^

d l j
” V ：‘ „ , / — \ f \ Request Request ”

• —•• — •
Acknowledgement Input Port Output Port Acknowledgement

• 崎…Locally-synchronous 崎 • • • —
N / Module V

Data ‘ Data ‘

_L _
Figure 3.9: Asynchronous Wrapper

fe elk I I I I I~I I ~ 一
•O

^ :

g elk I I I f l T I I I I 一
0 ^^ stretching
S data .——.
a: in (Valid)

Figure 3.10: Pausible clock while stretching (Other control signals are not shown)

Desim Methodolosy of GALS Systems

While asynchronous design technology promises to solve the clock skew problem

and favours reuse of IPs, hardware designers are not willing to migrate completely

from synchronous to asynchronous in short. The reason is that the design of

24

asynchronous circuits needs special design methodology that has no or very little

support from commercial EDA tools. Without dedicated EDA tools, designers have

to work out an asynchronous circuit in semi-custom or full-custom manner.

Using GALS is an easier entry point to the asynchronous world. The design

methodology of GALS is an extension of the familiar synchronous design

methodology. It partitions the synchronous system into optimal size of synchronous

modules and redefines the communication among these modules to asynchronous

manner. The overall design methodology is summarized as follows:

1. At the beginning, the hierarchical description of the synchronous system has

to be accomplished.

2. According to the structure of hierarchy, a trail partitioning is performed by

separating the modules on the first level of hierarchy. If the size of module

violates the system specification, that module may be further partitioned into

its inner hierarchy or merged with other modules.

3. In the communication refinementstage, each module has to be characterized

by its operating frequency, the expected throughput and the nature (push or

pull mode) of its ports. By considering the requirement of each module and

the communication requirement between two modules, suitable asynchronous

wrappers can be identified.

4. The synchronous modules are synthesized and partitioned in floor planning.

5. Finally, the design undergoes evaluation. If the design cannot meet the timing

constraints, there are two paths to go. One is to adjust the clock periods of

some modules by adding delay in the layout. If the result is too bad or the

25

clock period of each module is already fine tuned, the design has to be

re-partitioned and its communication redefined.

Hierarchical HDL

Description
^ \

^

f
Trial Partitioning

•

Communication

Refinement

•
Synthesis

& Re-partitioning

Floorplanning

T {
T

ECO Refinement M ~ E v a l u a t i o n — ^

pass

t
Target GALS

Design

Figure 3.11: The GALS design methodology (modified from [36])

Hardware designers can maintain synchronous design methodology to implement the

computation and control parts of the whole GALS system, and need to pay more

“ attention to and manual effort on the asynchronous wrappers only. As time-to-market

and design efficiency are the number one considerations, the GALS design style is

the best among micropipelines and fine-grain pipelining.

26

3.3. Advantages of GALS in ASIP Design

Design of ASIP is not only an arena of performance, but also is an arena of

time-to-market and design efficiency. To take this into account, our ASIP platform is

designed with the GALS design style. There are three points to support our choice.

3.3.1. Reuse of Synchronous and Asynchronous IP

Design reuse can greatly improve time-to-market. Designers are now seriously

exploring opportunity for reusing IPs to compose a system. The GALS design is the

pioneer in this area. It has the freedom to use the mixture of synchronous IPs and

asynchronous IPs The exploration space of the GALS design in IP reuse is much

wider than other design styles.

3.3.2. Fine Tuning of Performance and Power Consumption

Using multiple frequency and voltage in a system is recognized to be an aggressive

power saving and performance tuning strategy [36]. In GALS systems, all modules

are perfectly encapsulated. All modules are isolated from one another, and do not

reference to a correlated clocking system. Their communication is controlled by

reliable handshakes, and therefore GALS systems are adaptive to change of timing.
r

Using GALS, designers are empowered to use fine grained frequency and voltage

scaling, even a dynamic one to compose the target system. The design space of

power efficient ASIP can be further widened.

27

3.3.3. Synthesis-based Design Flow

The push factor for using asynchronous is that designers have to work in transistor

level or standard cell level to some extent. For GALS, this adverse factor no longer

exists. Muttersbach reported a set of almost synthesizable asynchronous wrappers in

[37]. Only one cell has to be designed at layout level. Designers are allowed to use

behavioural model or register transfer level (RTL) model to describe GALS designs.

3.4. Design of GALS Asynchronous Wrapper

To realize a GALS processor, a set of input- and output-port controllers for

asynchronous wrappers is designed based on [37]. The input port module is also

reused in our design. Different from Muttersbach's design, our wrappers are fully

synthesizable.

3.4.1. Handshake Protocol

For the asynchronous communication channel, the four-phase handshake protocol is

selected. The timing diagram of the protocol is illustrated in Figure 3.12. In

four-phase protocol, valid data is accompanied by a pair of request and

r acknowledgement signals. When the data is ready for the receiver, the send sets the

request signal to high. The data is guaranteed to be valid until the request is dropped.

After getting the request signal, the receiver takes the data and sends back an

acknowledgement signal. Then the sender can set the request to low and process

another set of data.

28

Four-phase handshake protocol is level sensitive. It can interface with memory

naturally and control the latches effectively. Compared to two-phase one, four-phase

protocol is more robust because the data is wrapped by the request signal. The

invalid data can also be indicated by the low request signal.

— — — < valid data ̂ ^ / valid data 〉 /

acknowledgement V \ \
out r \ / \

Figure 3.12: Timing diagram of the four-phase handshake protocol

3.4.2. Pausible Clock Generator

The pausible clock generator is an important component in asynchronous wrappers.

The module either establishes or is requested for synchronization with another

module, and the period of the clock is stretched to match the clock of another one.

The port controllers are entitled to govern the stretch of the clock by sending a

stretch signal to stop the clock. As the clock keeps oscillating, it is possible for the

stretch signal to get too close to the clock edge leading to the state of being

metastable. A mutual exclusion (ME) element is used in the pausible clock to decide
f

which one can take over the control.

The structure of the pausible clock is shown in Figure 3.13. A ring oscillator is used

instead of crystal oscillators or PLL in order to be able to have full control of the

clock generation. To provide a control interface and to resolve the competition of the

29

clock and the stretch signal, an ME is inserted to the inverter chain of the ring

oscillator. Figure 3.14 shows the structure of ME. This element serves the request

signals on a first-come-first-served basis. Only the first coming request signal can

invoke the corresponding grant. If the two signals arrive concurrently, the ME selects

one to pass arbitrarily. The two grant signals are guaranteed to be mutually exclusive.

In the operation of the plausible clock generator, the ME is normally transparent to

the ring oscillator. Once the stretch signal wins the control, the ME blocks the

inverter chain and lowers the clock signal. At the same time, the stopped signal is

asserted. The ring oscillator can be recovered unless the stretch signal is released.

r < H < K … … - < H
f "N

e l k — •

Mutual
Exclusion

— s t r e t c h - ^ — s t o p p e d ^

V y

Figure 3.13: Pausible Clock Generator

request 1 ~
\ 0 grant2

request2 p 0 grant 1

Figure 3.14: Mutual Exclusion

3.4.3. Port Controllers

Another component in asynchronous wrapper is port controllers. The function of data

port controllers is to handle the handshake protocol and to control the local pausible

30

clock. As the port controllers operate in the absence of the clock, they are designed as

asynchronous finite state machines (AFSMs). Unlike synchronous finite state

machines (FSM), an AFSM has the potential problem of output hazard for multiple

input changes. To solve the hazard problem, our controllers are captured by the

extended burst-mode specification [38]. This kind of AFSM can be triggered by input

bursts — transition signalling, therefore, signals from the synchronous module can

trigger the port controller in every cycle.

The extended burst-mode specifications of our port controllers are depicted by Figure

3.15 and Figure 3.16. An extended burst-mode asynchronous finite state machine is

specified by a state diagram which consists of a finite number of states, and a set of

directed arcs connecting pairs of states. Each arc indicates the transition between two

states and is labelled with two sets of signal edges comprising the input burst and the

output burst. In a given state, when all input edges appear, the machine generates a

set of output changes and moves to a new state.

For the output port controller, Den is the enable signal for the start of handshake. A

transition of Den from low to high triggers the AFSM to enter state 1 from state 0

r and lift sketch to high. Then the AFSM moves to state 2 when there is a positive

transition of stopped. Walking through the AFSM state by state, the handshake

sequence is accomplished in state 4. The AFSM waits for the negative transition of

Den this time. The rest of the states repeat works of state 1 to 3.

To implement port controller, the specifications are translated to 3D machines and

31

are synthesized with the method mentioned in [38]. A detailed description of the

synthesis can be found in appendix A. The results of the synthesis are available in

Figure 3.15 and Figure 3.16.

®
Den+ Ap*/ stopped+/

stretch+<i .) _ R E ± _ ^ 2) —
^ ^ ^ ^ , , , ZO'-Der+R^Ap

h stretch = —— ^
+ZO*Der

Ap-/stretch- Ap+/Rp-

= Rp，Ai* 而 + 西，RK̂，Der*Ai
(3) P-

, _ ^ … ，„ ZCTDer+ZCT 而+ZCr 即
Ap+/Rp- Ap-/stretch- ZO = ^

+Rp^Der^Ap

广 s t o p p e d + / Der-Ap*/

(6 ~~{ 5)_stretch+ (4)

Figure 3.15: The extended burst-mode specification and the logical implementation

of the output port controller

®
Den+ Rp*/ stopped + Rp+/

s t r e t c h 、 一 ⑴ _ _) —
^^ ^ - r^ , , , Rp ŝtretch+^^ZO

i k stretch = ——
„ , +Der'"Ap'"ZO

stopped-/Ap- Rp-ystretch- 「
A n = RphtoPPed

f 7 J I 3 J Mp^stoppec

,, 即、Z0+刃，ZO
Rp-ystretch- stopped-/Ap- ZO = _ — _

+Der*Rp*Ap

® stopped + Rp+/ ^ ^ Der- Rp*/

_ _ _ s t r e t c N _ _ ⑴

(Figure 3.16: The extended burst-mode specification and the logical implementation

of the input port controller

A one-way asynchronous communication channel between two modules is

configured as in Figure 3.17. The input port controller and output port controller play

different roles in the data transfer mechanism. Output port controller is the one to

establish the communication channel. When the sender module activates the output

32

port controller with Den+, the local clock is stretched. An event of Rp+ is sent to the

receiver module immediately after the clock is stopped. If the input port controller is

already activated，it stretches the clock signal in the presence of Rp+, and replies

with an Ap+ as soon as the local clock is stopped. Simultaneously, the Ap+

commands the latch to capture the data. After detecting the Ap+, the Rp+ is released

to Rp-. The receiver feedbacks with an Ap- and recovers the local clock to sample the

data captured in the latch. And the sender can recover its clock eventually.

MM msm mm mm» mmm ^^ , <mm mmm mmm mmm msm '^mm <mmm

‘Pausible "l [Pausible

‘C lock ‘ I I Clock ,

[Generator J [Generator J

elk' t i _ _ t | clk2
乂 , § § I i • t X
V "S « "cB to V

R ^ 霸 議 R ^ •
- D e r > Ou ipu iP^ - J - R p - ^ R p l ； ! : P ? " , ^DerS—

Controller ^ ~ A p § Controller

Synchronous J , ' Synchronous
Module I^ I Module

(Sender) ‘ _ (Receiver)
1 “ I

I Data I 〉 L a t c h | j Data)

讓 , i r > • : : “
/ ^ ^ \

^m ^mm ^m ^m mm* mm mm^ <mm mmt：

Figure 3.17: The configuration of an asynchronous communication interface

3.4.4. Performance of the Asynchronous Wrapper

To evaluate our design, spice level simulations are performed using AMS 0.35um

CMOS technology. The unit under simulation is configured as in Figure 3.17. The

sender module runs with nominal frequency of 540MHz and the receiver with

680MHz. The waveform in Figure 3.18 shows the simulated behaviour of the

communication channel. From the waveform, the transfer of data takes about 3.1ns

on average. This value is the time difference between the first positive clock edge

that initiates the data transfer and the sampling clock edge of the receiver, which is
33

defined as the communication overhead of the channel.

There are also some simulations of the mutual exclusion element and the pausible

clock generator. The simulation results are summarized in Table 3.1.

Table 3.1: Simulation results of the asynchronous wrapper

Component Parameter Value
Asynchronous Interface Communication Overhead 3.1ns

Latency 0.45ns
Mutual Exclusion

Response Time 0.15ns

Pausible Clock Generator Maximum Clock Frequency 1.7GHz

33 D： /clkZ
E 二 rnnnnnnfinn.nnnfin.n..nnMn,nn.nnn.nn.n nn.nn.finfinn.nn
„ 3.3 峰：/'Den2 ^

二 0-0 I • . • I •…，• • . , 卜 …

_ 3.3 M°ppad2 .——,
: - I. \ J .1 1

3 3 ^: AiLi uLu h2 — 1 _

Z- B.0 , f. <\ J i • • • I ,
一 3.3 、 鄉

己 0_0 : _ ./"Tl - ‘ • -
八 3 3 /Rpp

: B . 0 丨 』• ！"TV .八

一 3.3 。： /®topped1 ——
己 0.0 1 li • 1 _ • _ ! • • • •

-f -K V： /tetratchi
> : : : � if] ‘ [1 ,
^ 3 3 A: /Deni ^ ^ ^
已 B.0 J I I

33 -： /clkl
；二 � r u i门 n n n n n n n n r i n n n n n n r i n . n . . n n n n n n n r
^ 2fln 30n 4Sn SCfn 6fln 70n Sfiln 9

time (9)

Figure 3.18: The simulated waveform of the communication channel

34

3.5. Summary

This chapter describes three asynchronous design styles: micropipelines, fine-grain

pipelining and GALS design. The GALS design style has been chosen for our

platform for three reasons: 1) It is heterogeneous and supports the mixture of

synchronous and asynchronous IPs; 2) It widens the design space by allowing the

designers to fine-tune the voltage and the frequency of each module. 3) It has a

synthesis-based design flow.

The design of the asynchronous wrapper based on the work of [37] has been

presented at the end. We have designed a set of fully synthesizable components —

pausible clock generator, input- and output- port controllers. The design

methodology of each component and their behaviour have been discussed. From the

spice-level simulation, it is found that the communication overhead of our wrapper is

about 3.1ns on average.

35

4 • PLATFORM BASED A S I P DESIGN
METHODOLOGY

4.1. Platform Based Approach

The asynchronous design style is excellent for system integration. Local handshake

interfaces allow seamless communication of modules with heterogeneous timing.

Modules can be put together in an ad-hoc manner on the ground of sharing common

handshake protocol. In ASIP design, it is obvious that some architectural parameters,

especially the datapath, have to be changed iteratively in the optimization cycle. To

take full advantage of the asynchronous design style, the target processor can be

realized by adding modules to expand and customize the functionality of the base

processor. This approach has several advantages:

1. The complexity of optimization, software generation can be lowered.

2. Accurate application profiling is possible.

3. The real-time performance of the whole system can be evaluated at an early

36

stage.

4. The base processor can be reused from design to design.

5. The design cycle can be shortened substantially.

6. The target processor is capable of being modified/upgraded in order to keep

track of the evolving application needs.

The effectiveness and efficiency of this approach largely depends on the base

processor. The design methodology used in this research is also based on a base

processor. We call the used base processor a 'platform'.

4.1.1. The Definition of Our Platform

Our platform is a base processor environment that provides sufficient facilities for

developing the target processor. It is a semi-finished product with general functions

for the target application domain. It provides maximum freedom for

application-specific customization. For this research, the platform is an extensible

architecture that targets on embedded DSP applications. It supports rapid assembly

and modification among synchronous and asynchronous modules. The target

processor can be built on top of it.

4.1.2. The Definition of the Platform Based Design

The platform based design is a design methodology based on the foundation

provided by the platform. Design begins in the middle of the whole process. The

design philosophy is to scale up the datapath of the platform and to customize its

architectural parameters to meet the real time requirements of the target application.

37

It is a straightforward way to design a complex system.

4.2. Platform Architecture

The platform is the centre of our design methodology. Its characteristics outline the

functionality and the performance of the target processor. The quality of the platform

is determined by three factors: 1) the design space of its datapath; 2) the

customization options; 3) the coverage of target application domain. These three

factors decide how much performance can be improved in the optimization and how

tight the functionality can be coupled to the target application.

In this section, we derive the architecture of our platform from the nature of DSP

algorithms. By investigating the DSP applications, the maximum desired design

space of the datapath and the elements needed for performance enhancement can be

identified. The extensible architecture of the platform is tailored for carrying these

features in order to give the largest room for optimization.

4.2.1. The Nature of DSP Algorithms

A generic DSP system, as shown in Figure 4.1，consists of one or more input signals

being processed by a digital circuitry to produce an output with the desired

characteristics. The characteristics of the system can be described by mathematical

models which is the transfer function H(z) in the z-transform domain. Although a

complete system can perform very complex functions, the majority of signal

processing operation can be broken down into a combination of the primitive

38

mathematical operations listed in Table 4.1.

_ I) — H{2) , I) y(n)
f , ‘ •

, S ‘ ^ y ,

Figure 4.1: A digital signal processing system

Table 4.1: DSP primitive mathematical operations

Finite Impulse Response ^^

(FIR) Filter T^q

Infinite Impulse Response ^^
y{n) = 2^aj^y{n-k) + x{ri)

(IIR) All-Pole Filter f：}

N-l M-1
General Filter y(n) = - k) + 办/少(《 一 0

A:=0 /=1
N-l

Cross-Correlation
n=0

Discrete Fourier Transform X (n) = ^ x (n) e “
k=o

N-l-m

Autocorrelation C砂(m) = ^ x(i)x(i + m)

DSP has been widely used in many areas, such as speech synthesis and recognition,

computer vision systems, control systems and digital communications. Many

different kinds of algorithms have been devised for different applications. But most

of the algorithms share some common characteristics, providing us with priori

knowledge to make use of. We outline those that are closely related to the

performance of a DSP application.

39

Computation-Intensive Kernels

Kernels are pieces of computational algorithms that make up the heart of the DSP

application. They are typically in the form of nested short loops that involve

intensive computation. The kernels often occupy the largest share of the computation

power, thus affecting the peak performance of the application.

Strong Data Locality

DSP applications tend to access data in a relatively small block of memory. Large

displacement of data address is infrequent. On the other hand, the data access pattern

is regular. For filters, correlations and most of the matrix operations, the data is

accessed in circular addressing with constant steps (Figure 4.2a). More sophisticated

bit-reversed addition pattern (Figure 4.2b) is used for butterfly-like transformations

K address K address

C C C 000 = C

~ 1 2 1 100 = 4

~2 e 2 010 =2
a £ a 110 = e

~4 12 4 001 = 1 / Ada 1 to MSB in

5 15 — £ 101 = £ / 融 iteration /

e 2 e 011 = a I The carry

； ~； 77； 了 1 I propagates from \
[： _- \ MSB to LSB \
8 8 a 000 = C \一 \

(a) (b)

Figure 4.2: (a) Circular addressing of size 16 and step 3 at iteration K;

(b) Bit-reversed addressing of 3 bits in size at iteration K

40

Explicit and Implicit Instruction Level Parallelism

DSP applications possess a high degree of instruction level parallelism (ILP),

especially in the kernels. For simplicity without losing generality, parallelism

exploration of a two-tap FIR filter is demonstrated as an example. The mathematical
1

formulation of a two-tap FIR filter is y{n) = and the algorithm and
k=0

the corresponding data flow graph (DFG) are depicted by Figure 4.3. From the

algorithm, it can be found that the two multiplications can operate in parallel. This is

the explicit parallelism of this algorithm. However, the parallelism is not limited to

this level. There is implicit parallelism that can be explored by doing transformation

on the algorithm.

C^O^
for n = 0 to N

to A(r) = aO^X(r)日(r) = arX(r) L ^

t1 Y(r) = A(r-1)+B(r) ^ ^ ^ ^

end

(a) (b)

Figure 4.3: (a) The algorithm of a two-tap FIR filter; (b) The corresponding DFG.

The vertical bar represents a delay element

One of the transformation techniques is unfolding. The summation series of the

two-tap FIR can be split into two summation series:

1 {y{2ri) = aQx{2n) + a^x{2n -1)
少 ⑷ = G " " A n - k) = i少(2” +1) 二 乃 +1) + “1 邓打）

Each of them is represented by a new DFG. Due to the dependency of the two

summation series, the two DFG can be merged as in Figure 4.4b. From this new

41

complete DFG, there are four parallel operations discovered (Aq, Ai，Bq, Bi) which

are double the original one. The unfolded algorithm is shown in Figure 4.4a. This

demonstration only unfolds the algorithm to two levels. For a higher degree of

parallelism, the algorithm can be further unfolded.

for n = 0 to N/2

to A(2n) = aCrX(2n)日(2n) = a1 哪 n) I \ (\

A(2n+1) = aO^X(2r+1)日(2n+1) = a rX(2n+1) ^ ^ ^

t1 Y(2n) = A(2n-1)4 B(2n) 丫 (Y \

Y(2n+1) = A(2n)+ B(2n+1) \

t^j^T—J ^ ^
(a) (t)

Figure 4.4: (a) The unfolded algorithm of a two-tap FIR filter; (b) The corresponding DFG

for r = C to N

tC A(n+1) = A(n)*X(n)

t1 日(n) = A(n) + £ (. A J

t2 C(n) = A(n-1) + B(n) J ^

t4 Y(n) = sC * C(n) / y U

(a) (t)

Figure 4.5: (a) The arbitrary algorithm with heavy data dependence; (b) The corresponding DFG

Some algorithms carry heavy data dependence in which some synchronization is

necessary between operations of various iterations. An arbitrary algorithm of this

kind is shown in Figure 4.5a and its DFG in Figure 4.5b as an example. The data

dependence between one iteration and the successive iteration prohibits parallelism

as that in the two-tap FIR filter. Another transformation technique, software

42

pipelining can unveil some potential parallelism in such cases. The idea behind

software pipelining is that the body of a loop can be reformed so that one iteration of

the loop can start before previous iterations finish executing. The reformed body of

the algorithm is shown in Figure 4.6a. The arrows indicate the data dependence of

two operations. Figure 4.6b shows the result of the transformation. The maximum

level of parallelism gains to four.

,.—...............\、、、、，,..................——.、.、
tC A(n+1) = A(n) * X(n) , 八 、、、、、、.,z

t1 日(n) = A(n) + £ A(n+2) = A(n+1)" X(n+1) , , '、、 •-、、、、

t2 C(n) = A(n-1) +B(n)日 (n+1) = A(n+1) + 5 A(n+2) = A(n+2) *X(n+2) \

t4 Y(n) = sC ‘ C(n) C(n+1) = A(n) + B(n+1) B(n+2) = A(n+2) + 5 A(n+4) = A(n+2) *X(n+2)

t£ Y(n+1) = aC，C(n+1) C(n+2) = A(n+1) + B(n+2) B(n+2) = A(n+2) + 5

t6 Y(n+2) = aC * C(n+2) C(n+:3) = A(n+2) + 日(n+2)

t7 Y(n+2) = aC * C(n+2)

一 ^ ^
(a)

tC A(1) = A(C)*X(C)

t1 B(C) = A(C) + £ A(2) = A(1 广 X(1)

t3 C(C) =日(C) B(1) = /H1) + 5 A(2) = A(2)*X(2)

for r = C to N-2

t4 Y(n) = sC * C(n) C(n+1) =/\(n) + B(n+1) B(n+2) = A(n+2) + £ A(n+4) = A(n+2) *X(n+3)

end

t£ Y(N-2) = aC ^ C(N-2) C(N-1) = A(N-2) + B(N-1) B(N)=A(N) + £

t6 Y(N-1) = aC ‘ C(N-1) C(N) = A(N-1) + B(N)

t7 Y(N) = sC * C(N) ^ ^ ^ ^ ^ ^

(fc)

Figure 4.6: (a) The reformed body of the arbitrary algorithm (b) The software pipelined

arbitrary algorithm

Data Parallelism

In some DSP applications, the data sets have an extremely high degree of internal

parallelism, which means that all the elements of the data sets can be processed

simultaneously. Matrix is an example. Matrix itself is a large data set that consists of

43

an array of data. There is no crucial relationship among the data. Only the spatial

relationship of each data is important. Computer vision and image processing use this

kind of data representation. Their computation is on images consisting of a large

array of pixels.

Because of the weak interdependence, each data or together with its close neighbours

can be mapped to an individual operation. The whole data set can therefore be

manipulated by a large number of individual operations that can be executed

simultaneously. This is illustrated by the edge detection of image processing. In

Figure 4.7 the input data set is an eight by eight grey scale image. Each data element

represents the light intensity. To do edge detection, a Sobel edge detector is applied

to each element to produce a weight that links to the possibility of the presence of an

edge. The Sobel edge detector is also shown in Figure 4.7 in a matrix form. The
2 2

mathematical formulation of this operation is O^^ = for
k=Q 1=0

Inm,Snm,Ortm ^^^ the elemciits of input matrix, Sobel edge detector and output

matrix respectively in row n and column m. As there is no linkage between any two

inputs of an edge detector, it is possible to apply maximum sixty-four edge detectors

on the image simultaneously. From a macro view, once a parallel data entity is

defined, it can be processed as an individual.

44

0 , , ,

0 ~ r I j u ^ ~ h | c | - i | M
=工二二二 = ^ ~ ^ Z ^ Z Z Z Z Z Z

广 1 |c 1-1 I ：^
二 二 二 = = — 二 三 ~ I I I —二 = = = = = =

：：二卞：―= | i | c |- i | ZF
E 二二 = \ 一：〉知

I 1 C -1
7 1 T T T ''"" I I I I

I 1 I c |-1 I

input operations ouput

Figure 4.7: Applying Sobel edge detectors on an 8x8 image

Mixed Control and Data Dominated

Some DSP applications do not have the high degree of parallelism as aforementioned.

The algorithms are a mixture of data operations and control operations. The control

operations manage the flow of the algorithms and govern their runtime behaviour

dynamically. The sequence of data operations cannot be known until the related

control operations have made the decision. This kind of dependence restricts the

exploration of parallelism across control operations. If the DSP application has a

large portion of control operations, its parallelism cannot be too high. Adaptive

differential pulse code modulation (ADPCM), coordinate rotation digital computer

(CORDIC) and Viterbi decoding belong to this type.

The pseudocode of ADPCM is shown in Figure 4.8. The lines highlighted in bold and

italics are control operations. In the encoding algorithm, the control operations

separate the data operations into pieces. In the first highlighted line, there are three

data operations under the influence of a control operation. This control operation

depends on the value of Da which varies with runtime. Once the condition of this

45

control operation is fulfilled, the values of Code[2], Da and A are modified. This

presents a potential dependency among Da, Code[2] and A. Similar situations also

occur in the other highlighted lines. As the control operations introduce more data

dependency, the parallelism is limited.

Encoding(* input/ output) { Decoding(*Code/ output) {
loop(number of samples) { C=*Code++;

X=*input+4 ； S=StepsizeTable(Index);
D=X-X-i A=0;
S=StepsizeTable(Index); if (C/2J=lj A+=S; S/=2;

Da= D|; if (C[lJ=lj ^+=5; S/=l;

Code=0; A=0; ^ ^ i/(C[OJ==lj A+=S;

ij (Da>Sj { Codel2J=l; Da-=S; A+=S; j ， ^ if (Codel3]=l》X=X..-A; else X=X.. +A;

S/=2; 、、”二^/^ControfSy/ if (X>32767j X =32767;

i/(Da>Sj {CodellJ=l;Da-=S;A+=S;j ； i f (X < ^ 3 2 7 6 8 , X =-32768;

S/=2; ^ y y \ Index+=IndexTable(Code);
iJ (Da>Sj { Code/OJ=l; Da-=S; A+=S; i X / • \ / 1/ (Index>88j Index=88;

Code|2 ： =(D>0)?0 1; Z / \ if (Index<Oj lndex=0;

X+=(D>0)?A:(.A); Z / =*outpu1++=X;
iJ(X>32767, X =32767; / X.i=X;
iJ (X<^32768> X=~32768; / / .

Index+=IndexTable (Code); X
if (Index>88j Index=88;

if (Index<Oj lndex=0; /

X-尸 X;
=*output++=Code;

(a) (b)

Figure 4.8: The pseudocode of ADPCM (a) encoding and (b) decoding (Source: [39])

4.2.2. Design Space of Datapath Optimization

According to the aforementioned nature of DSP applications, instruction level

parallelism and data parallelism are the two directions for improving computational

performance. Definitely, the room for performance improvement is related to the

characteristics of the algorithms in use, but the hardware can also limit the degree of

parallelism explored. To facilitate parallelism exploration, the processor must 1) have

a parallel datapath with a sufficient number of functional units; 2) supply sufficient

operands to the functional units at the same time. The layout of the desired datapath

is shown in Figure 4.9. It is assumed that each functional unit takes at most two

46

operands for computation, which is aligned to most primitive mathematical

operations. The figure shows two configurations of the datapath. The upper one is a

typical parallel datapath. The lower one is especially for an efficient implementation

of software pipelining. The designers are responsible for deciding the number of

parallel functional units and their content.

operand C operand ‘ operandi operand 2 operand 4 operand J operand 2 N operand S N-•‘

\ / \ / \ / \ /
！ r 1 r 1 r X /

FU 0 FL ‘ FL 2 FU N

“ ” I r “
result C result • result ： result Is

(a)

operand C operand ‘ operandi operand ： operand N-t'

！ r

FU 0 • FL ‘ • FL 2 ~ • … — — • FU N

(b) result

Figure 4.9: The layout of the parallel datapath (a) for ordinary parallel operations

(b) for software pipelining

For the algorithms dominated by mixed control and data operations, exploiting

parallelism cannot be effective for performance enhancement. The reason is that

control operations establish extra dependency to the algorithm, limiting parallel

executions. In this case, dedicated hardware can be used to accelerate the algorithm

by resolving the dependency. Reviewing the encoding pseudocode of ADPCM in

Figure 4.8a, we can find two control operations: if(X>22767) X=32767\ and

if(X<-22768) X=-32768; which are actually performing saturation arithmetic. By

performing conditional decision in hardware, these operations can be reformulated to

a sequential complex instruction. The simplified datapath is portrayed by Figure 4.10.

47

Introducing dedicate hardware to tackle sequential tasks is very effective because the

dependency is resolved inside the hardware instead of across several instructions.

However, designers have to take extra care in the timing of the hardware accelerator.

Its critical path should be less than that of the processor, or it should be divided into

multiple cycles. Otherwise the overall performance of the processor will deteriorate.

X

~ I 32767 I

——^ ^

I -32768

\ /

X，

Figure 4.10: The datapath of saturation arithmetic

To sum up, the optimization of the datapath can be broken down into two aspects as

depicted by Figure 4.11. The first aspect exploits the parallelism of the algorithm to

enable simultaneous execution of multiple operations. Depending on the pattern of

the involved data dependency, the datapath can be configured to

parallel-data-parallel-output manner as in Figure 4.9a or software pipelining as in

Figure 4.9b. The second aspect uses dedicated hardware accelerator which is tightly

coupled to the datapath. The hardware accelerator performs multiple operations in

sequence to realize a powerful complex instruction as in Figure 4.10. The length of

the operation sequence has to be matched with the timing of the processor, therefore

some accelerators have to work in multiple cycles.

48

Design Space of Datapath Optimization

Parallel Datapath Squential Datapath

Parallel-Data- Software Single Cycle Multiple Cycles
Parallel-Output Pipelining

Figure 4.11: The design space of datapath optimization

4.2.3. Proposed Architecture

Our platform is a parameterized extensible processor, which supports aggressive

optimization of the datapath. The proposed architecture is illustrated in Figure 4.12.

There are four kinds of modules shown in the figure. The base modules are the

essential parts of the platform. They sustain the basic functions, for example memory

manipulation, flow control and basic data processing. The extensible modules are

also a member of the foundation of the platform. In addition they are parameterized

for customization. The optional modules are add-on for datapath optimization. They

are the main engines for parallel and complex instructions. The modules shown in

yellow are massive storage for the programme and the data. They can be read only

memory (ROM) or random access memory (RAM) locating on or off the chip. A

brief introduction to the functionality of the modules is given in the following

paragraphs. After that, there is an in-depth discussion on the strategy of realizing an

optimized datapath. The detailed description of the microarchitecture of the platform

is presented in Chapter 5.

49

Instructior
I Fetch Unil
I Extended Decoder Decoder :::
L I
“—:—O：…---— I T

Instructior
I i ALU ROM

i Complex FU ~ — MAC 16 Processor

I Shifter""“ Control

Register File 「 | ''

. . I complex F u b 圓 Parallel FUs | 丨 二 $

I Base I I I

I Extensible"""! X Bank Data RAM

i Optiona i Address Generation Unil

“External I “ Y Bank Data RAM
Interna

Figure 4.12: The architecture overview of the platform

The instruction fetch unit is used to access the programme stored in the instruction

memory. It manages the programme counter to control the flow of the programme.

For the kernel-like loops of DSP algorithms, a dedicated hardware is used to handle

address displacement and loop count checking in order to alleviate the workload of

the datapath for address calculation.

The function of the decoder is to interpret the fetched instructions and translate them

into control signals and operands for other modules. It is also responsible for

invoking the optional decoder and the datapath if they are available.

The processor control is used to control the branching and exception states of the

processor. While a branch is taken or an exception is present, the processor control

informs the instruction fetch unit to modify the content of the programme counter.

The special registers store the status flags and the configuration parameters for the

50

address generation unit and the load store unit. The configuration of the processor is

centralized and unified by modifying the special registers with one instruction.

The load store unit serves as an interface for the data memory and the register file. It

is the only channel for data memory access. All data located in the data memory have

to be loaded into the register file before being processed.

The address generation unit provides addresses for fetching operands from and

storing results to the register file. It supports varies addressing mode in order to get

use of the data locality of DSP algorithms.

The base datapath is designed for both data and control domain operations. There is

arithmetic logic unit (ALU) for Boolean operations, bitwise manipulation and simple

addition and subtraction. For data processing, a multiply accumulation unit (MAC)

and a barrel shifter are available.

The register file is the source of the operands and the destination of the results for the

datapath. It is designed to be multi-port in order to provide sufficient data bandwidth

for the datapath.

4.2.4. The Strategy of Realizing an Optimized Datapath

Datapath optimization is the key to the customization of instruction set architecture of

the platform. In the course of the optimization, application-specific functions are

51

added to the datapath to accelerate the algorithms to meet the real-time requirement of

the application. The optimized datapath can be specialized for parallel instructions and

complex sequential instructions. Unlike simple basic instructions, these two aspects of

instructions induce several implementation challenges. For parallel instructions, there

are two major challenges: 1) supplying a sufficient number of instructions; 2)

supplying a sufficient number of operands. For complex instructions, the major

challenge is the coordination of timing of the hardware accelerators and the platform.

Supplying Instructions to the Parallel Datapath

The concept of exploiting instruction level parallelism is to shorten the execution

time of the given task by executing multiple instructions at the same time. This is

practical only if multiple instructions can arrive at the parallel datapath at the same

time to command their operations. In the general propose processors domain,

superscalar and VLIW are the two kinds of architectures designed for taking

advantage of instruction level parallelism.

The instruction fetching mechanism of superscalar processors is similar to the

processors without parallel datapath, which fetches instructions sequentially. To keep

the parallel datapath busy, the fetched instructions are rescheduled and packed into

parallel. The parallel instructions are dispatched to the functional units for parallel

executions. VLIW architectures are a straightforward solution for the instruction

fetching issue. The instructions of VLIW processors are extraordinary long in width,

and can include all the commands for each functional unit in a single instruction.

This method can be analogy, packing several short instructions in parallel to form a

long instruction. Hence, all the functional units can be commanded at once for one

52

instruction fetch.

However, these two solutions are prohibitive for embedded applications. The

rationales are: 1) superscalar processors tend to have significantly complex hardware

for exploring parallelism in runtime; 2) VLIW processors are extremely costly on

instruction width ~ they can be in the order of hundreds to thousands of bits. These

drawbacks lead to unaffordable power consumption and silicon area.

For embedded DSP applications, we have another solution. According to the nature

of DSP applications, some of the kernels are the critical path of the DSP application.

The performance of the DSP application can be improved dramatically by

accelerating the kernels which are a small portion of codes in the application.

Therefore we presume that allowing a small number of predefined patterns of

parallel instructions for the kernels can achieve significant performance improvement.

Based on this presumption, a parallel instructions compression scheme is used. Some

of the selected patterns of the parallel instructions are subjected to compression by

means of using a lookup table. These patterns are reduced to the enumerated index of

the lookup table, and hence can fit into a fixed width instruction. The compressed

patterns are stored in the lookup table in the form of opcodes, so that no further

decoding is needed.

The idea is shown in Figure 4.13. Once the instruction decoder receives a

compressed instruction from the instruction fetch unit, it enables the instruction

decompressor and passes the instruction to it. The compressed instructions contain

53

the index of the patterns of the parallel instructions. The decompressor fetches the

corresponding parallel instructions according to the index and dispatches them to the

datapath. Since the compressed instructions are independent of the number of

parallel instructions, we can expect minimal impact when scaling up the parallelism

of the datapath.

广 \

. LA , N
I . > d ^ C Z l) ^^^y I opcode)

_ \ \ Instruction _
O Decode^

From r ~] 厂
Instruction Fetch Unil „

J

rriz^zzzi] _ • \
, opcodes)

: ‘ 1 L ^ W _
Instruction

、 DecompressoiJ

Tc
Datapath

Figure 4.13: The idea of instruction decompression

Supplying Operands to the Parallel Datapath

For the similar argument of supplying parallel instructions, a smooth supply of

operands is also crucial for parallel processing. Multiple operands have to be sent to

the datapath simultaneously in order to execute the parallel datapath. This challenge

is similar to that of supplying instructions to datapath, but the solution used for

parallel instructions is not suitable for operands. Unlike the patterns of parallel

instructions, the address of operands is not confined to a small space. Encoding all

the possible addresses needs a lookup table with enormous entries. Consequently the

compression rate cannot be high, but great silicon overhead is incurred due to the

large lookup table.

54

As the addresses of operands are too difficult to encode, the solution makes use of

the strong data locality of DSP applications. The kernels of DSP applications

typically have regular operand access patterns. These patterns are classified into

different addressing modes. Automation of operand fetch is feasible when the

addressing mode is known. To exploit this, each parallel functional unit has a

hardware engine for fetching operands. These hardware engines are configurable by

instructions. After the configuration, the engines fetch operands automatically

according to the selected addressing mode. Therefore, it is not necessary to include

the addresses of the operands in the instructions. Only extra instructions are required

for configuring the operand fetch engines. As the number of operands required is

decoupled from the width of the instructions, it is again considered as having

minimal impact when scaling up the parallelism of the datapath, especially on the

space of the instruction encoding.

_ „ r - z ^ l — — -

l-j ^ ^ ^ =ZZ . OW . 0
i j i > - 4

ZmZ ‘ • v.;i'r.‘:. V̂MMM̂ ORJ J
秘戚 ；.：-•... î lM^^M：¥：： OFU :)

i ！ >11' III/ I

：^ ÎSIZS J ^m • , OFU)
y ^

, , , r L J ‘ ！ _ ！ ‘ J L _ _ j L J _ _ t Operand

‘ \ ^ p n p j Addresses

" X / ^ j / C ^ Address
�A L U ^ [y ^ FL FL FL Generation

Figure 4.14: Operand fetch units (OFU) are part of the address generation unit. They are used to fetch

operands for the functional units.

55

Coordinating the Timing of the Hardware Accelerators and the Platform

The timing of the hardware accelerators has to be carefully designed - otherwise the

overall performance of the DSP application will be adversely affected. When

introducing a hardware accelerator to the datapath of the platform, there are three

possible situations. 1) The execution period of the hardware accelerator within the

timing budget for the datapath. The hardware accelerator can be synchronized with

the platform safely without affecting the overall timing. 2) The execution period of

the hardware accelerator is slightly over the timing budget. In this case, the designers

have to decide whether to operate the platform at a lower frequency or to break the

hardware accelerator into multiple cycles. 3) The execution period of the hardware

accelerator is several times that of the timing budget. The hardware accelerator has to

operate in multiple cycles.

Lowering the operating frequency of the platform and breaking the accelerator into

multiple cycles are at different costs. The former one affects the overall timing

leading to a very complicated problem in optimization. It is hard to determine

whether the overall performance is improved or deteriorated after adding the

accelerator. The latter one needs a sophisticated processor controller to handle the

synchronization between the accelerator and the platform. The platform has to

reserve more resources for the accelerators.

To achieve easier coordination between hardware accelerator and the platform, the

GALS design style is used. Using asynchronous communication, the timing of the

accelerator can affect the platform only in synchronization. Both accelerators and

56

platform can run at its maximum speed without adverse effect on the overall timing.

For multiple cycle complex instruction, GALS handshake serves as a local controller.

It is unnecessary to have a dedicated processor controller for synchronization. This is

significantly worthwhile for the algorithm because its execution time depends on the

input data. In such a case, the accelerator can have average case instead of worst case

performance. On the other hand, the processor only needs to treat it as a single cycle

instruction. No additional polling mechanism is needed to detect the completion.

Cost Function of Using Application Specific Instructions

The presented strategy obviously allows for effective and efficient implementation of

the optimized datapath, but inevitably some means of costs are also established.

Therefore, we work out the cost functions of using parallel instructions and complex

instructions in order to provide a merit for optimization.

First of all, the gain and the overhead of using an application specific instruction are

defined as follow. The setup time is the effort used to setup the operation of a

particular instruction. For example, setup the configuration registers for address

generation.

original execution time {T i) - optimized execution time {T ,mi.ed)
Definition: Gain: . . / - ^ - —

original execution time (Xorigimi)

… . ^ ； ^ setup time (r)
Definition: Overhead =— ： ： —

original execution time (r —)

The definition of the cost function is the ratio of the overhead of introducing new

instructions to the gain. This function indicates whether the overhead or the gain has

57

a dominating effect. If the cost function approaches zero, the gain outweighs the

overhead and therefore this new instruction is apparently at no cost. The overhead

cancels out the gain when the cost function is equal to one.

Definition: Cost Function =…e咖ad
Gain

Before formulating the cost function, some terms have to be specified.

Tpiat ' Operating period of the platform
Tflcc • Operating period of the hardware accelerator
Fpiat ‘ Operating frequency of the platform

Face • Operating frequency of the hardware accelerator
T : Time for handshake communication comm

Nioop : Number of iteration of a loop
Npara '' Numbcr of instructions executed in parallel

: Number of cycle to complete the task

I original : Number of executed instructions

I para • Numbcr of executed instructions involved when using parallel instructions
I^piex : Number of executed instructions involved when using complex instructions
I— ： Number of instructions involved to configure an operand fetch unit

The cost function of using parallel instructions can be elaborated as follows:

Overhead
Cost Function =

Gain
一 Tsetup

"^original '^optimized

T N T
conf para plat

N loop I original ̂ exec ^ loop 工 para ^plat

T N
conf para r j _ ^ j — 八 ,

— ^ J^ para ~ ^ original ~ para
loop para loop

一 I conf

para

58

As I�nf is a constant，fully exploring parallelism in long loops is most beneficial.

The cost function of using complex instructions can be elaborated as follows:

广—厂 . Overhead Cost Function =
Gain

— Tsetup

Toriginal ^optimized

— Tcomm

I original Tplat ^ cycle I complex "^acc

— ^comm f J _ 1
r -XT J complex
original cycle
Fplat Fdec

Tc_ and are the architectural parameters that are treated as constant in the

optimization. The cost function indicates that including more instructions in the

complex instruction is advantageous providing that the operating frequency and the

number of cycles remain unchanged.

4.2.5. Pipeline Organization

The platform is a typical pipelined processor with five stages. The organization of the

pipeline is illustrated in Figure 4.14. The first stage is instruction fetch (IF). In this

stage, the instruction fetch unit provides instructions addressed to the instruction

memory and fetches the corresponding instructions into the processor. Then the

processor moves to decode stage (DEC). The fetched instruction is decoded into

commands and operands. Meanwhile, the address generation unit calculates for

operand address calculation. The third stage is read stage (RD). The major task is to

read out the operands from the register file. At the same time, the load store unit also

59

accesses the register file for preparing store operation. Some instruction decoding

works related to datapath is finished in this stage. The fourth stage is execution stage

(EX). All the data processing and Boolean manipulation tasks are performed there.

The load store unit accesses the data memory in this stage. The last stage is writeback

(WB). The processed data is written back to the register file. On the other hand, the

load store unit puts the loaded data into the register file.

The normal flow of pipeline operation involves five stages. However, for some

instructions that do not execute the datapath, the execution stage is skipped in order

to lower the latency. In this case, the read and write stages are combined. The normal

flow and the shortened flow are shown in Figure 4.16.

厂作 ,了？？，”、 , 一 ‘ 一 " •办〒.r，；，广，’：-̂、•啊•？̂八’ .^-〒、‘：• “ V 、 r - j 、 ' “

— 1 1 1 i c ；

• I ' ^ H .

• • ' 、： ’ DECI

“ 一 墨 幽 春 i S

• a . H g
漏：.......

Figure 4.15: The pipeline organization of the platform

60

(S)

岭&隱J
(b)

Figure 4.16: (a) The normal flow of pipeline operation; (b) The shortened flow with stage skipping.

4.2.6. GALS Partitioning

GALS design style is one of the key features of the platform. To design a GALS

system, partitioning the system into synchronous modules is crucial. There are four

considerations for partitioning the platform: 1) The synchronous modules should be

large enough to hide the communication cost; 2) The modules that are subjected to

change in the optimization should be modulized by asynchronous wrappers, so that

the overall timing cannot be affected; 3) There should be some interfaces for using

asynchronous IPs; 4) The asynchronous protocol can serve as coarse-grain clock

gating. The asynchronous wrapper should be applied to power hungry modules.

The platform is partitioned as in Figure 4.17. The parallel functional units and the

complex functional units are put into separated asynchronous wrappers. The base

platform that includes the base modules and base functional units are grouped in the

same synchronous module. All external components are interfaced with

asynchronous communication.

The parallel functional units and the complex functional units are the key roles in the

optimization. They change dramatically by means of structure and timing. Therefore,

the best practice is to modulize them perfectly with asynchronous wrappers. In

61

addition, due to the sophisticated algorithms of these modules, they are usually huge

and power hungry. As these modules are not involved in other general instructions, it

is better to wrap them asynchronously for power saving.

In contrast, the whole base platform is put into a single asynchronous wrapper. The

reason is that there are only minor changes in the platform compared to the parallel

and complex functional units. In addition，most of the instructions (all general

instructions) can be accomplished within the base platform. Further decomposing the

platform into finer partitions cannot take advantage of the timing encapsulation, but

introduces unnecessary communication overhead.

This partitioning establishes asynchronous communications between optimized

datapath (parallel and complex functional units) and the base platform. This enables

us to use asynchronous IPs in aggressive datapath optimization without altering the

operation mechanism of the whole system.

To cope with external components with different speeds, asynchronous

communication is used in the external interfaces. In our case, the instruction memory

and the data memory are surrounded by asynchronous wrappers, so that the target

processor can work with memory at slow speed. On the other hand, the processor can

operate at full throttle when there is no memory access.

62

, , - � : — —: - �I ,

I : I

I K X Bank Data RAM

f""' �

I I
I Parallel FUs 1
j , I

丨、、、 a . J

Figure 4.17: The GALS partitioning of the platform

4.2.7. Operation Mechanism

To summarize the platform architecture and the techniques we used, a demonstration

of the operation of an optimized platform is given. The demonstration is focused on

the operation mechanism of 1) simple and complex instructions; 2) parallel

instructions; 3) software pipelined parallel instructions.

Simple and Complex Instructions

Figure 4.18 shows the sequence of operations of performing simple and complex

instructions. First of all, the instruction fetch unit provides the instruction address to

the instruction memory and fetches the corresponding instruction. The fetched

instruction is classified and decoded into control signals for driving the other parts of

the processor and constant values. The address generation unit calculates the operand

addresses according to the predefined addressing mode unless the locations of the

operands are specified by immediate values in the instruction. As the base functional

units and the complex functional units are not designed for operating simultaneously,

63

they share the same pair of operand fetch units. Then, the addresses are passed to the

register file to read out the operands. On the other hand, the decoder prepares the

control signals for the required functional unit. The selected functional unit is

enabled for execution and receives the required operands and control signals. For

complex instructions, this information is sent through the asynchronous interface.

After the execution, the result can be stored in the internal storage of the functional

unit, for example the accumulator of the base functional unit, or written back to the

register file. The address for the writeback is also prepared by the address generation

unit or the immediate address from the instruction.

^^^ •圓圓 _ I ^ ^ I ^ J j •
(a) (t)

‘ I - mJ
(C)

Figure 4.18: The sequence of the data and control flow in the operation mechanism of simple

instructions and complex instructions

64

Parallel Instructions

Figure 4.19 shows the operations of parallel instructions. Similar to that of simple

and complex instructions, the procedures of fetching instructions are the same.

However, that of decoding instructions is different. As the parallel instructions are in

compressed form, the instruction decoder dispatches these instructions to the

instruction decompressor for further interpretation. The address generation unit

prepares operand addresses for each parallel functional unit. And the control signals

are sent to the functional units involved in the execution. Then the operations of

execution and writeback are the same as those of complex instructions. The only

difference is that all the results can be written back to the register file in parallel.

Y ；；— Y ML

• f i l l i f M I
(a) (b)

,11 " f " I

n j i i i l J i l i l I
Wm ^ ^ J j

(C) (d)

Figure 4.19: The sequence of the data and control flow in the operation mechanism of parallel

instructions

65

Software Pipelined Parallel Instructions

The operation of software pipelined parallel instructions is more or less the same as

that of the parallel instructions. To enable software pipelining, the results from the

functional units have to be sent to another functional unit as operand right after the

execution. The required configuration is shown in Figure 4.9b. In the platform, a

switch box is used for the connections among the parallel functional units. The

results are routed back as operands (Figure 4.20d). The final result that comes out

from the pipeline is written back to the register file.

i p l l l
(a) (b)

h M I _•圓圓•
MM mm ff J J

(c) (d)

Figure 4.20: The sequence of the data and control flow in the operation mechanism of software

pipelined parallel instructions

66

4.3. Overall Design Flow

To enrich the proposed design methodology, we round it up with a suggested overall

design flow. As we do not cover the application analysis and software generation in

our research, the design flow is conceptual but the suggestions are believed to be

practical. Refinement by the experts in these areas is recommended.

Jain [40] studied various ASIP design methodologies and found that typically there

are five main steps following the design of ASIP (Figure 4.21). The five steps are: 1)

application analysis - to get the desirable characteristics which can guide the

hardware synthesis as well as instruction set generation; 2) architecture design space

exploration - to find out the possible architecture for a specific application with

minimum hardware cost; 3) instruction set generation - to generate an instruction set

for that particular application and for the architecture selected; 4) code synthesis - to

synthesize code for the particular application or for a set of applications; 5) hardware

synthesis - to synthesize the selected architecture and the hardware modules

corresponding to the instruction set architecture.

The suggested design flow is more or less similar to the typical one. As the proposed

design methodology starts with a platform, those five steps are restructured and

realized as in Figure 4.22. First of all, we describe the application in high level

language (HLL). The description is mapped to the base instruction set (Appendix B)

for profiling. In application profiling, an instruction set simulator is used to collect

the static and dynamic characteristics of the application. The simulator uses some

sets of carefully selected realistic data as test vectors, and relaxes the size of the

67

register file in order to investigate the data locality. In the simulation, the number of

executions of each line of code, the memory access, the locality of data and the

statistics of programme flow are recorded. Loop kernels with a significant number of

iterations can be clearly identified.

Based on the results of the profiling, we can customize the architecture parameters of

the platform. Basically, there are four parameters: 1) the size of general register files;

2) the number of special registers; 3) the size of the programme counter stack; 4) the

size of the data memory; 5) the size of instruction memory; 6) the width of the data.

Intuitively, the size of the data and instruction memories required and the width of

the data can be found according to the memory access and the application

specification respectively. The size of the general register file depends on the locality

of data and the programme counter stack on statistics of programme flow, especially

the numbers about zero-overhead loops and function calls. The number of special

registers is related to the number of configuration registers needed for the optimized

datapath, hence this parameter can only be known after datapath optimization.

The loop kernels discovered in application profiling are treated in datapath

optimization. Parallel instructions and complex instructions are introduced to

accelerate the loop kernels with heavy duty. In the course of optimization, each of the

discovered loop kernels is investigated to identify its potential parallelism and the

available hardware accelerator for it. A gain value and the corresponding cost are

calculated for each attempt of acceleration. The instruction that has the highest gain

but its cost does not exceed the pre-defined threshold is selected.

68

After the optimization, the new instruction set is evaluated in architectural profiling.

This simulation takes the customized architectural parameters and the new

instruction set architecture into account. If the optimized platform meets the

real-time requirement of the target application, the new functional units will be

realized in HDL and inserted to the platform to scale up its datapath. The

corresponding software is implemented by compiling the HLL description of the

application with the new instruction set. The failed design has to go back for further

optimization.

f A.pplicaticm AiaaJy祐�

Ax̂ Chitiscrtuxskl I>es%n
Spaoe JgHptor供tiofi

. ' f II I I

Smt
Oeiieoktlicafi

, ^ ^ i Ojde IHtjurdware Synttoi* Synt l^ ls

Figure 4.21: Typical ASIP design flow (source: [40])

69

High bliel Description

of the Application

Instruction Set ^ ^ A^pH^tion
Profiling

Z \
Platform Parameters Datapath ^ ^

Customization Optimization ^ ^ ^

• 二 Architectural
Instruction Set Profiling

met? ^ ^ ^ ^ ^ ^ ^ ^

Software

Platform 丨 mp 丨帥 en ta—

Figure 4.22: Platform-based design flow

4.4. Summary

This chapter describes the platform-based design methodology of ASIP. This

methodology starts with a pre-defined platform. The design philosophy is to scale up

the datapath of the platform and to customize its architectural parameters to meet the

real time requirements of the target application. An efficient and effective platform

for embedded DSP application has been derived from the five highlighted natures of

DSP applications.

70

The design space of datapath optimization has been investigated. There are mainly

two approaches to accelerate the target application: 1) introduce parallel instructions

2) introduce complex instructions. The gain and the cost functions for these two

approaches have been defined and formulated.

Lastly, an overall design flow has been suggested. The suggestions are not formally

discussed, but are believed to be practical. They are ready for further refinement and

development.

71

5 • DESIGN OF THE A S I P PLATFORM

5.1. Design Goal

The system level architecture of the platform has been presented in Chapter 4. In this

chapter, we discuss the micro-architecure of the platform. The design goal of the platform

is to maximize the degree of reusability by 1) minimizing the extent of modification

needed for the base platform; 2) minimizing the impact on timing and the power

consumption when changing the architectural parameters. For the sake of explanation, the

architecture is divided into instruction fetch, instruction decode, datapath and register file

system as in Figure 5.1.

It was decided to implement the described platform on silicon for verification. Due to cost

considerations, the implementation of the platform is with comparatively smaller size of

instruction memory, data memory and register file. But this decision does not affect the

functionality, the architecture and the instruction encoding of the platform. The selected

72

architectural parameters are listed in Table 5.1.

Extended Decoder Decoder ‘ : 、

INSTRUCTION : , ‘ Instructior
decode S ^ r … , Fetch un,1

‘complex FU ’ . 、 感 ^ 歸 。

： ‘巧 ^ S L \
•

； i Parallel FUs INSTRUCTION
R_erFile ；‘ FETCH

/ A r=，”，一 , “ 1
DATAPATH f li... . . „ , „ , ：

X Bank Data RAM
Address Generation Unii [' . • • ,

‘ f" Y Bank Data RAM

� : ; • • ‘ ‘ '“‘~— g HLE SYSTEM

Figure 5.1: The organization of the platform architecture

Table 5.1: The architectural parameters of the platform for verification

Instruction Addressing 16 bits

Instruction Width 24 bits

Data Addressing 2 x 1 6 bits

Data Width 16 bits

Register File 2 x 64 x 16 bits

73

5.2. Instruction Fetch

5.2.1. Instruction fetch unit

The instruction fetch unit is responsible for reading instructions from programme memory,

passing them to the instruction decoder and updating the programme counter. It begins to

operate autonomously as soon as reset is released. The only factor complicating the

operation of the instruction fetch unit is the need to handle branch instructions. When a

branch is executed, the fetch unit must stop fetching instructions from the current stream

and change the programme counter to the new value.

The structure of the instruction fetch unit is shown in Figure 5.2. It consists of three major

modules: programme counter, address selector and loop, and subroutine controller. The

programme counter is a register that stores the current position of the programme. This

stored value is used as the instruction address for fetching instruction. On the other hand,

this value is also passed to the instruction decoder as a reference for branching and other

programme flow control activities. The programme counter updates its content

autonomously with the new address provided by the address selector. The address selector

controls the content of the programme counter. It calculates the new address and also

collects the addresses from instruction decoder and the controller for loops and

subroutines. Depending on the status of the processor and the requests from those two

modules, the address selector supplies the appropriate address to update the programme

counter. In this way, branches, loops and subroutine calls can be realized.

74

、 Instruction f
Address . .

i I i 1'
I ,」new WtttK^M branch address

^ ^ ^ ^ ^ ^ Program Address ^ |
^ ^ ^ ^ ^ Counter 丨 Selector

j i——branch control

I ^ — —
I Loop & subroutine • j
. address • !
j LOOD loop and subroutine
I ‘ & setup data

I Subroutine 丨
I Controller ——ILoop control

I I

INSTEUCTION J �J € C O E D E R
m e m o r y — —

Figure 5.2: The structure of instruction fetch unit

5.2.2. Zero-overhead loops and Subroutines

Loops and subroutine calls are complicated tasks for instruction fetching. A dedicated

controller is used to maintain the current status of a loop or a subroutine and to handle the

address calculation. The structure of the controller is shown in Figure 5.3. The internal

control logic interacts with the request from instruction decoder and, in addition, controls

the operation of the stack and the loop counter. The status of the loop or subroutine is

temporarily stored in the stack. The content of the stack is shown in Figure 5.4. The loops

and subroutine calls are treated in a unified way in order to save resources and to be

flexible to applications with different behaviours. The first one bit field tags the entry with

an identity. The second field indicates the start or the return position of a loop or a

subroutine respectively. The third field indicates the number of lines of instructions

covered by a loop. The fourth field states the number of iterations left. The last two fields

are not for subroutine calls. When a zero-overhead loop is set up, the current status and

the setup data of the loop (start address and size) are pushed into the stack and the loop tag

75

is set to one. The number of iterations is stored in the loop counter. Based on the setup

data, the control logic can figure out the end position of the loop and the current relative

position of the programme in the loop. At the end of each iteration, the loop counter is

decreased by one，and the programme counter is updated with the start address of the loop.

Once the loop counter reaches zero, the stored loop status pops up and the previous status

can be maintained.

For subroutine calls, the setup procedure is more or less the same with zero-overhead

loops. When a subroutine call is set up, the current status and the return address of the

subroutine are push into the stack. This time the tag is set to zero. The programme counter

then jumps to the position of the subroutine. Unlike the zero-overhead loops, there is no

explicit end of the subroutine unless a return instruction is present. The return instruction

can force the controller to restore to its pervious status and also the programme counter to

the previous address stored in the stack. For zero-overhead loops, this return instruction is

also effective. It is used to break the loop and to make the programme continue at the end

of the loop.

As the loops and subroutine calls are treated similarly in the stack, it is possible to have

nested levels of mixture of zero-overhead loops and subroutines. The total number of

levels depends on the number of entries of the stack. Hence the size of the stack should be

considered in application analysis in order to match the behaviour of the target

application.

76

loop and subroutine pC Loop control
setup data from decorder

L ^ N I I
r control .

^ Stack
^ status

• ^
• • •

> _ 1 1

、 7 start address ‘
\ / • Y •
Loop Counter ^ ^ ^ ^

start address end address

Figure 5.3: The structure of the loop and subroutine controller

loop start address size iteration

Figure 5.4: The content of the stack

5.3. Instruction Decode

5.3.1. Instruction decoder

The instruction decoder is responsible for translating the fetched instruction into useful

information for different parts of the processor. Basically, it has three tasks to do: 1)

identify the fetched instruction; 2) interpret the encoded part of the instruction and

generate the corresponding control signals and opcodes; 3) dispatch the decoded

information to the corresponding modules. In ASIP design, different application-specific

instructions are introduced to accommodate different application's needs. Inevitably, the

77

instruction decoder needs to be redesigned frequently, which is not favoured in design

reuse. To meet our design goal, the changing part must be isolated in order to minimize

the modification effort. Therefore, a highly modulized instruction decoder is designed.

The structure of the instruction decoder is shown in Figure 5.5. The decoding of parallel

instructions and complex instructions is separated from the decoding of base instructions.

Two internal decoder modules are dedicated to these application-specific instructions. The

contents of the parallel and complex instruction decoder can be changed without altering

the others.

Secondly, the whole decoder is divided into two levels in order to match the pipeline

organization. It is natural that the instructions involving execution of datapath is assigned

to the second level which is closer to the datapath. This partitioning has two advantages: 1)

numbers of pipeline registers can be saved because the data that has passed along the

pipeline stages is the encoded part of the instruction instead of the massive control signals

and opcodes; 2) The unused modules can be turned off efficiently. Table 5.2 lists out the

modules that are activated in the execution of different classes of instructions. It shows

that the second level can be disabled when the processor is doing flow control,

configuration and memory manipulation. Moreover, the first level can activate one of the

modules in second level only, as the base instructions, parallel instructions and complex

instructions are orthogonal.

To make good use of this partitioning, the class of the fetched instruction has to be

identified as soon as possible. Hence, the instruction encoding is first based on the

classification of the instructions, then the number of bits needed for the arguments, so that

the fetched instruction can be classified within the first few bits.

78

INSTRUCT 10\
tLICH u\n AmU¥SS

J I...：： : , �： r " €EKERATION UÎ IT
loop&jumr： I

contro V
j immediate addresses

instructior •； •„“„ 、一
address Instruction 一

.一 Decorder , —
— 、 OFU setup data

� : $tage1 丨：
branch ； : move mode

^ I ；-„- - , I
I ^Fwmi & SPECIAL

FEOCESSOH, J - < : : : : , • � � . : . I ‘ . graST腿 FILE
CONTROL

I I ^
n •• , ^ , Instruction
Parallel Complex Decorder
Instruction Instruction
Decorder Decorder Stage 2

罕 罕 罕
opcodes opcodes opcodes d^yAPj^TH

Figure 5.5: The structure of the instruction decoder

Table 5.2: The activity list of executing different classes of instructions

Address General Special
Instruction Processor .

Classification Generation Register Register Datapath
Fetch Uni t Control

Uni t File File

Data Processing 0 E l

Bit Manipulation 0 0 ^

Boolean Operation E l 0 E l

Flow Control 0 B

Configuration 0

Memory ^ ^

Manipulation

79

5.3.2. The Encoding of Parallel and Complex Instructions

The encoding of parallel instructions and complex instructions are different from that of

the base instructions. The corresponding instruction formats are shown in Figure 5.6. A

parallel instruction has five fields. The first field is the identification tag. The second field

is an enumerated index for recalling the corresponding opcodes stored in the lookup table

of the parallel instruction decoder. The third field is the enable flags for each functional

unit. It is possible to disable some functional units in the parallel operations. Some similar

parallel instructions can be represented by one compressed entity, and therefore

redundancy of the storage can be avoided. The fourth field is the enable flags for the

writeback operation of each functional unit. The last two fields are the enable flags for the

load store unit. One is for the X bank and the other is for Y bank. Besides using load and

store instructions, the load store unit can be activated by the parallel instructions as a side

effect. The load store unit can work autonomously if this flag is set. In this way, the load

store operations can be decoupled from the operation of the processor, and their latency

can be shadowed.

The format of the complex instructions is more complicated than that of parallel

instructions. A complex instruction has eight fields. The first field is also an identification

tag. The second field states the target hardware accelerator of this instruction. The third

field is used for configuring the accelerator. The meaning of this field is defined by the

functionality of the accelerator. The fourth and the fifth fields are enable flags for the

operand fetch units. If they are not set, the immediate addresses provided in the last two

fields are used. The sixth and seventh fields are bank select bit to indicate the bank of the

provided immediate addresses.

80

— r r n
1C INST EN WB S S

(a)

1' INST CONF 0 g I I LOP ROP
F F ^ ^

(t)

Figure 5.6: The instruction format of (a) parallel instructions and (b) complex instructions

5.4. Datapath

5.4.1. Base Functional Units

The base datapath is designed for general DSP application. Similar to other general digital

signal processors, the number representation is two's complement and the heart of this

datapath is a multiplier-and-accumulator (MAC). The structure of the base datapath is

shown in Figure 5.7. In the centre is a 16X16 40-bit MAC. It is made of 3:2 compressors

in Wallace tree configuration, an adder and a 40-bit register for accumulation. The most

significant eight bits are guard bits for avoiding overflow. The adder in the MAC is also

responsible for addition and subtraction operations.

For shift operation, a barrel shifter is used in the datapath. It can shift the accumulator by

at most 32 bits to left and to right in arithmetic manner or in logical manner. The shift

distance can be defined by the immediate value from the instruction and the value store in

the register file. In addition, this shifter is also used to implement normalization operation.

After the exponent instruction, the exponent of the current accumulated value is stored

into a special register. This stored value is used as the shift distance of the shift operation

when executing the normalization instruction.

81

There are also other modifiers for the accumulator: 1) logical unit for bitwise logic

manipulation including AND, OR, XOR and NOT; 2) absolute unit for working out the

absolute value of the accumulator; 3) negation unit for converting the accumulator to its

opposite sign. The modified value is stored back to the accumulator.

Besides data processing, there is a comparison unit for comparing the two values in the

register file or comparing the accumulator with one stored value in the register file. The

comparison unit can report six conditions: 1) equal; 2) not equal; 3) greater than; 4) less

than; 5) greater than or equal; 6) less than or equal. The result is stored as conditional

flags in special register.

A complete instruction set description is shown in Appendix B.

i i jj “-‘‘
Operand Selector

I t ^
•
•

+/‘ 32b Shiftei Multiplier

“‘ L J ^^^
’’ i \ l og ic^

R I . ^ F F I

t i t h 4
H^^J^HH�Accumulator H H ^ L ^ h I b H I ^ EXP CTponenl^

Figure 5.7: The structure of the base datapath

82

5.4.2. Functional Unit Wrapper Interface

For the application specific datapath, the platform is designed to offer maximum freedom

to the hardware designers to design the extended functionality of the datapath. Designers

can design synchronous and asynchronous, parallel and complex, single-cycle and

multi-cycle functional units to enrich the datapath. For seamless integration of

designer-defined functional units and the platform, a standard wrapper interface for each

functional unit is defined. The wrapper interface is illustrated in Figure 5.8. Basically, the

interface defines four parameters for controlling the source of operands, the working mode

of the functional unit and the destination of the result. It also defines an optional internal

register for temporary storage.

Parameter selOp is used to select the operands among the data from the register file, from

the internal register and from the internal register of other parallel functional units

(notated as SPin). Parameter selFunc is used to define the working mode of a

multi-functional functional unit. Parameter option is used to define the configurable

options. Parameter selOut is used to select the source of output: 1) result from functional

unit or 2) from internal register; and the destination of the output: 1) to internal register or

2) to register file.

selOp selFunc option selOut

i J i i
I L R e g i s t e r 〉 | _ _ _K I K

I R Register^ | I \ Functional Unit) |)

L，-v [I j L^
control T I , Internal J ,

data V J Register \ 乂

internal

I I optional

Figure 5.8: The abstract view of the functional unit wrapper

83

5.5. Register File Systems

5.5.1. Memory Hierarchy

In common with other current DSPs, the platform uses a dual Harvard architecture where

one programme memory and two separate data memories (labelled X and Y) are used.

This avoids conflicts between programme and data fetches, and many DSP operations

map naturally onto dual memory space. For example, the data and the filter coefficients

can be stored separately in X and Y memories. This is also true for storing two individual

streams of data for convolution or cross correlation.

As most of the DSP algorithms illustrate strong locality of data reference, a large register

file is preferred in order to allow high degree of data reuse. The memory hierarchy is

shown in Figure 5.9. The register file is partitioned into X and Y banks for matching the

organization of the data memory. To interface with the data memories, a load store unit is

used. It is designated for reading from and writing to the data memories in bulk.

X Data Memory Y Data Memory

64Kx16-bit 64Kx16-bit

X Register Y Register

64x16-bit 64x16-bit

Figure 5.9: The memory hierarchy

84

5.5.2. Register File Organization

To supply enough operands to the parallel datapath without introducing any conflict, the

register file is designed to be multi-ported. However, when the number of ports grows, the

performance of the register file deteriorates in terms of delay, area and power

consumption. Rixer presented the impact to the performance of a register file with

increasing number of arithmetic units in [47]. He showed that for A/̂ arithmetic units, the

area of the register file grows as N^, the delay as ，and the power consumption as N^ •

The main reason is that more arithmetic units need more ports for parallel execution,

which implies exponential growth in the complexity of the address decoder and the

interconnection between the arithmetic units and the register file. Inevitably, this can have

a great impact on the platform when scaling up the parallel datapth.

Partitioning register file into multiple banks was reported to be an effective solution to

slowing down the performance deterioration in [44] [45][46][47]. The design philosophy

of multi-banked register files is to distribute the ports to different register banks, so that

the number of ports per bank can be reduced. This method can alleviate the complexity of

the interconnection, but the drawback is that each port is confined to access the

corresponding bank only. The primary challenge of this scheme is to avoid the number of

simultaneous accesses to any bank exceeding the available ports on each bank. In other

design, a recovery stage is inserted after the read stage in order to resolve the conflict. Our

design is based on the observation that the data that needs to be accessed simultaneously

can be uniformly assigned to different banks for many DSP algorithms. In other words,

data conflict can be omitted if the data is carefully assigned to suitable banks.

85

Data Memory Access Pattern

A study of the data access pattern of DSP algorithm is carried out. Convolution and

correlation are the subjects of the study. The rationales are: 1) they are the most

fundamental in DSP, most of the algorithms are derived from and based on it; 2) they

show lots of parallelism, which is suitable for studying parallel data access pattern; 3) they

involve arithmetic operation (multiply) and access to local temporary storage

(accumulation), which is sophisticated enough for modelling more complex algorithms.

On the other hand, they are simple enough for analysis.

To analyze convolution and correlation in a unified view, they are combined
N-\

mathematically into a general form, y{n) 二 A(k)B(n 士 k) where A(n) and B(n) are the

two digitized input signals, yin) is the resultant signal. N is the frame length of A(n) or

B{n). The data access pattern for exploiting data parallelism is tabulated in Table 5.3. It is

assumed that N = 16 and there are four functional units in the parallel datapath. In the

table, the bold items are the arithmetic operations. The operation mul represents a

multiplication; operation mac is a multiplication-and-accumulation; operation add is an

addition. The four functional units have their own accumulator for temporary storage

which are notated in acc. The items in italics are the operands needed for the

corresponding operation. And t indicates a particular time instant.

Observing the data dependency of the access pattern in Table 5.3, it is possible to further

partition each register bank into four blocks (conventional term is bank, but to get rid of

misleading to X and Y banks, we call them ‘blocks’）. The first block contains data with

index 4n; the second one contains those with 4n+l; the third one contains those with 4n+2;

86

the last one contains those with 4n+3. In this arrangement, each functional unit possesses

a block of X bank and a block of Y bank. The functional units only need to access data

from the local blocks, and there is no need to access data across other blocks. As a result,

each block is only required to provide one read port for the functional unit. The

corresponding structure of the register file is shown in Figure 5.10. A(n) and B(n) are

supposed to be stored in X and Y banks separately. This structure illustrates a way to

assemble an eight read ports register file with eight register blocks that with one local read

port on each block.

Table 5.3: The data access pattern for exploiting data parallelism

t FUO FUl FU2 FU3

0 mill Ao Bn mul A] Bn±i mul A2 凡士 2 mul A3
1 mac A4 Bn±4 acco mac A5 B 壯5 accj mac Ae Bn±6 accj mac A-j B„±7 accs
2 mac As B„±8 acco mac Ag B 壯9 acc� mac Aw B„士] 0 accz mac Ajj 凡土" acCj
3 mac Aj2 B„±j2 acc� mac Ajs B 壯 ” accj mac Aj4 B„±i4 acc 2 mac Ajs B„±j5 acc 3

4 add acco acc! add acc 2 acc 3
5 add acco acc2

i Address Generation Unil i

r — = 1 ^ f t l ^ = r - |
^^^ ： — ； “ “ ~ “ ： - ““ 、\

(“ ― “ I • •‘ . 1 ^ I
• i

X X(4r： X(4r+') X(4r+2: X|4r+3I： ： ； ：,： Y(4rl：; Y(4r+-： Y<4r+2;; Y(4r+3) Y]

譽 ： 響 J
TOT I M ^ ^

operanc C operanc ‘ operanc ； | operanc S | [operanc A [operanc £ {operanc € | operanc 7

Figure 5.10: The structure of register file for exploiting data parallelism

87

Software pipelining is another method to exploit parallelism. Its data access pattern is

tabulated in Table 5.4. Similar to the previous case，we can organize a register bank to four

blocks without data conflict for only one read port per block. However, it is impossible to

assign two dedicated blocks for each functional unit. According to the access pattern, the

functional units need to access different blocks in a rotating manner. For example, one

functional unit accesses in the sequence of the first block, then successively the second,

the third and the fourth. Afterwards, it accesses back to the first block and repeats the

sequence. Therefore, rotators are used for dispatching the address to the correct block. The

corresponding structure of the register file is shown in Figure 5.11.

Table 5.4: The data access pattern for applying software pipelining "71 ^ FUl FU2 FU3

0 mul Ao B„
1 mul Ao Bn±i mac A� B„ acco
2 mul Ao B 壯2 mac Aj B 壯 】 a c c o mac A? B^ accj
3 mul Ao Bn±3 mac Aj B 社2 acco mac A2 B„±i accj mac A3 B„ acc2

4 mac A4 Bn accs mac A� B„±3 acco mac A2 B 壯2 accj mac A3 B 壯j acc2
5 mac A4 B„±i acc3 mac A5 B„ acco mac A2 B 社 3 acc! mac A3 B„±2 accj
6 mac A4 B 壯 2 accj mac A5 B 肚1 acco mac A6 B„ acc] mac A3 B„±3 膨 2

7 mac A4 B 社3 accs mac A5 B社 2 acco mac Ae B 壯! accj mac Ay B„±3 acc2
. . • • •
. . • • •
. . • • •

14 mac A12 B 社2 accs mac A13 B 肚�acco mac A14 B„ accj mac A�� B„±3 acc 2
15 mac A]2 B 社3 acc 3 mac A13 B 壯2 acco mac Aj4 B 壯! accj mac A” B„ acc 2
16 mac Ai3 B„±3 acc� mac Aj4 B„±2 accj mac A15 B„±i acc2
17 mac A�4 B„±3 accj mac Ajs B„±2 acc 2
18 mac Aj5 Bn±3 acc 2

88

i Address Generation Unit j

~ = = U N * ^ — ； ~

i 1 ' ~ 1 I i
Rotator Rotator

, � -P J Q ^ - P L ^ 4 - � �
！ • • “ '••：'' ‘ 'K I
： i

丨 X X(4r ; X(4r+ '} Xi4r+2： X|4r+3： Y(4r： Y{4r+'； Y|4r+2： Y(4r+3； Y :
: - • • . ‘ ’ . • ' • ‘ . . ；

； � ,7'-. • . ； -, I , • ‘ A
\ • • ‘ ‘ ： \
• .
i ： ‘ ‘ y • .心 \ \ I ‘ I ‘“ _ ：…1 I • Z 丨 I‘ ‘ . ' , < I ::

^ ^ I R - ' " I — ^ [J I — J

i m , TOT ,
operand C operand ‘ operand 2 operand S operand i operand £ | operand £ 叩eranc 7

Figure 5.11:The structure of register file for applying software pipelining

The Organization of the Register File

Considering that A{n) and B{n) can be referred to the same signal for some algorithms,

such as autocorrelation, all the data need to be fetched from the same register bank. The

required number of ports per bank is double of the previous analysis. In order to provide

enough ports, a pair of X and Y blocks with the same index are combined and organized in

register block with two local read ports. The organization of these register blocks are

shown in Figure 5.12. The first half of the blocks is assigned to the X bank and the other

half is assigned to the Y bank. The most significant bit of the address of the blocks is used

to identify the two banks. This arrangement has two advantages: 1) it unifies the ports for

X and Y banks, thus allowing reading across X and Y banks freely; 2) it keeps the two

banks separate in the programming model without requiring complex logics for address

mapping.

89

. I I . I I , . I I , , I I ,
X(0) X(1) X(2) X(3)

X(4) — X(5) — X(6) — X (7) —

… 丨•• … …

N_I_一 X(4N-4) — X(4N-3) — X(4N-2) — X (4 N - 1) —

N ^ Y(1) — Y(2) — Y(3)

Y(4) — Y(5) — Y(6) Y (7) —

... … … ^

1 Y(4N-4) Y(4N-3) Y(4N-2) Y (4 N - 1) —

- ^ ^ ^ ^ ^ ^
Figure 5.12: Organize two read port register blocks to X bank and Y bank

For writing back the results, it is necessary to have four global write ports for four

functional units. Based on the finding in [44] by Tseng, we decide to use two local write

ports in a block to realize the required number of global ports. Tseng reports that the

incidence of writeback conflicts can be reduced by having two local write ports per block.

On the other hand, the block with two read two write ports is comparable to that with two

read one write in term of delay, area and power consumption. In our case, there are totally

eight local write ports among the blocks. If the data can be allocated carefully, it is

believed that the chance of conflict is very low.

Working Mechanism

The mechanism of reading data from the register file is shown in Figure 5.13. For a

parallel datapath with four functional units, there are totally 10 read requests at most.

These comprise eight operands for the functional units and two data for the load store unit.

The requests have two fields to indicate the location of the data: 1) the bank selection and

90

2) the reference address. Before supplying this information to the register file, the requests

that refer to the same location are screened out. Only one of the duplicated requests can be

included in the active list. In the example illustrated in Figure 5.13，requests 0 to 2 refer to

the same location, also 4 to 6 and 7 to 8，therefore the active list contains requests 0，3，4，

7 and 9. This reduces the necessary number of read ports, which can improve the

reusability of the fetched data and reduce the chance of conflict. The screened requests are

recovered in the latter stage. The addresses in the active list are translated to block

selections and local addresses to fit our register organization. The block selection indicates

the block containing the requested data. It is the residual of dividing the address by the

number of functional units. The local address is the physical location within a block. It is

the quotient of dividing the address by the number of functional units. Then the translated

addresses are scanned sequentially and distributed to the first read port of the blocks. The

second scan is in reverse order and for the second read port of the blocks. The distribution

scheme is on a first-come-first-served basis，which means if one request occupies a

particular port, the scanning for that port stops immediately. The reason is based on the

assumption that there are always at most two read requests for the same block. Therefore,

all the undistributed requests can be caught by the second scan. When the data are fetched

from the register blocks, they are all tagged with its address in the active list. Based on the

address tags, the multiplexers select the correct data and send them to the correct operand

slot.

91

bank address 0 V

bank address. \ ,

bank address 2 \
\ bank address 0

bank address 3 \ ‘

、 b a n k address 3 % 4
bank address 4 (_ l \ ‘

(牛 ^ ^ ^ bank address 4

bank address 5 V J ^ ^ r
^ ^ ^ ‘ bank address 7 -r A

bank address 6 I + •“ r

I bank address 9 •
bank address 7 I r - — R - — , .. „ .,~7~\

I active list bank local addr 0 block

bank address 8 / y bank local addr s "

bank I address 9 」 X bank local addr 4 "
requests £ b a n k l o c a l addr? block

, bank local addr 9 block

/ I
bank address 0 data — X X X X

" b i i ^ k a d d r e s s 3 data block 0 block 1 block 2 block ：•
bank address 4 data ^ H H ^ I

bank address 7 data Y Y Y Y

bank address 9 data block 0 block 1 block 2 block 2

^^^^^^ 各 各 各 各 毒 各 ^^^^^^^ ROP - right hand side operand

FLO FLO FL' FL' FL2 FL2 FL3 FL3 Store Store LOP - left hand side operana

ROP LOP ROP LOP ROP LOP ROP LOP 丨 X 丨 Y

Figure 5.13: The mechanism of reading data from the register file

For writing data to the register file, the mechanism is at most the same, as shown in Figure

5.14. There are at most six write requests, four of them for the write back of the four

functional units and the other two for the load operation of the load store unit. The

requests are the bundle of bank selections, reference addresses and the data. Similarly, the

addresses are translated to block selections and local addresses, and then supplied to the

register blocks together with the corresponding data to accomplish the write operation.

92

bank address 0 data

bank address ‘ data “ ^
——-~— — i — f % 4

bank address 2 data
bank address 3 data ‘

H H ^ mm^m^^
bank address 4 data [
bank address 5 data

bank local addrO block data
bank local addr ‘ block data
bank local addr 2 block data
bank local addr 3 block data
bank local addr 4 block data
bank local addr 5 block data

I
X X X X

block 0 block 1 block 2 block ：

Y Y Y Y

block 0 block 1 block 2 block ：

Figure 5.14: The mechanism of writing data to the register file

5.5.3. Address Generation

Address generation is another important task for smooth data supply. An autonomous

generation can avoid interrupting the data processing task by address calculation. A

dedicated component, address generation unit is responsible for handling the automation

of address generation.

Address generation unit comprises hardware engines for address calculation. There are

two kinds of address generation engines, one is for base datapath and complex datapath,

the other one is for parallel datapath. The base and complex datapath share one engine, but

the parallel datapath has one engine per functional unit. The organizations of the engines

are shown in Figure 5.15. Both have 1) an operand fetch unit for calculating the addresses

of the right and left hand side operands of a functional unit; 2) a writeback unit for the

addresses of the result; 3) some registers for keeping the current address and the

configuration parameters. These registers belong to the class of special registers and are

93

organized as in Appendix C. In the engines for parallel datapath, there is an additional

controller for triggering the operand fetch unit and writeback unit. The interval register

specifies the interval between triggers in number of cycles. The controllable trigger

pattern is used to realize the access pattern of software pipelining (refer to Table 5.4),

hence the controller is omitted from the engine for base and complex datapath.

address
^ ‘ ‘‘；-

address 、 step 八丄 „ ;
^ ^ Controller

step module ^ ： ^

modulo 、 interva •

_ Operand Fetch _ ^ Operand Fetch
• Unit 1 • Unit •

.I

Writeback Writeback
Unit Unit

Y i 1 ̂ i
(a) (t)

Figure 5.15: The organization of address generation engine for (a) base and complex datapath and

(b) parallel datapath

Addressing Modes

The operand fetch unit and the writeback unit support three basic addressing modes: 1)

increment, increasing the current address by one; 2) decrement, decreasing the current

address by one; 3) displacement, increasing or decreasing the current address by the value

specified in step register. There are also two complicated addressing modes: 1) circular,

and 2) bit-reversed.

Circular addressing repetitively accesses a fixed size of block of data, in the way that

accesses of data continue at the beginning of the block once the end of the block is passed.

To set up the circular addressing on a block of size R, the size register has to be set to R.

94

The data block must be aligned to N-bit boundary, which means N least significant bits

(LSBs) of the start address must be zero. The upper bound of the block size R has to be

For example, block with 32 entries must start at an address whose five LSBs are zero.

Bit-reversed addressing is used for butterfly-like data movement in some transformation

algorithms, such as discrete cosine transform (DCT) and fast fourier transform (FFT). Its

access pattern to data is the reverse of bit order of the basic increment addressing. For

example, the sequence of a four bits address in binary is 0000，1000, 1100，0010，1010，…，

0111 and 1111. To setup the bit-reversed addressing, the step register has to be set to zero.

The size register indicates the half size of the transform. For a 64-point FFT, the value in

the size register must be 32. The criterion for setting up start address is similar to that of

circular addressing, which must be aligned to N-bit boundary. In addition, the size of the

transformation must be less than or equal to

Address Generation Datapath

The structure of the datapath for address generation used in the operand fetch unit and the

writeback unit is shown in Figure 5.16. First of all, the mechanism of generating circular

addressing is explained. Before doing any operation to the current address, a mask is

applied in order to isolate the address range that is going to be modified. For example,

when having circular addressing at (OlOOOO)b with block size of eight, the most significant

three bits are masked and kept untouched. The rest of the bits are dispatched to the

following datapath. The actual operation of circular addressing

address' 二 (^address + step)%size. If the value of step is always less than that of size,

then = 哨 . f o r 遍 ^ ^ expression can be
address + step - size size < address + step

95

implemented as a datapath with a two-input adder, a three-input adder and a multiplexer.

The three-input adder is composed of a carry save adder (CSA) and a carry propagate

adder (CPA). For stepping down, the operation is

address' = < address一step ^̂ 0̂ < address-step ^^ the address space is unsigned integer,
[address 一 step + size address + step < 0

we use overflowing effect to realise down-stepping with the same datapath. It is found that

when address passes across the block boundary, the address is actually stepping down to

get back to the data block. Therefore, we assume ihdiiaddress' 二 address — step can be

realized by address' = address + step' - size , if step' = size - step . When we substitute

address + step' address + step' < size . . .
Step' = size-Step into address'= \ " , . f o r ,，we can obtain

尸 ^ address + step - size size < address + step

the expression for the operation of down-stepping. It is decided that such conversion work

will be left for the assembler and hidden from programmers.

For bit-reversed addressing, we need an adder with reversed carry chain. The CPA in the

three-input adder is reused and modified to fit the need. The structure of the modified CPA

is shown in Figure 5.17. The carry chain of the modified CPA is designed to be

bidirectional. The direction of propagation is selected by the multiplexer of each full adder.

To activate bit-reversed addressing mode, the step and the size have to be set to zero and

to the half size of the transform respectively. As the size register always presents a one at

the MSB of the unmasked bits, we can simply add the current address and the size with a

reversed adder to obtain bit-reversed addressing. An example of the generation of 16-bit

bit-reversed address is illustrated in Figure 5.18.

For both addressing modes, the calculated address is eventually merged with the masked

96

bits to form a complete address. This new address replaces the old one in the address

register and is ready for the next cycle of address generation.

• f ^ address

mask

• j , I
I m , R ^ ^ 關 unnjask |

[> ‘ ‘ s i z e 绅 p : � ，1

\ \ /
\ reversible / \ J . /

reverse adder / \ /

isNeg
• ^ ―

sunr

V
7

reverse & i s N e g ^ ^ ‘

u
next address r ~ ^ — r — • " _ .

merged

Figure 5.16: The datapath for address generation

Cn4；

An+S Bn+2 An-fi Bn+i An Bn An-i Bn.i

Cn-f3 Cp-fi

Figure 5.17: The modified carry propagate adder

97

G 0 0 0 C^C 1 .0
4 4 1 G c � 厂 1 C C C

/ .1 Qr 0 . 0 / 1,0,
0 1 0 0 0 � 巧 / 1 0 0 0 / + 1 c c c

0 0 0/ “0 1 0 0 / “0,1 1.：0- . •.
0 0 0 0 4 1 0 c 0 / 4 1 0 0 0

—“‘1 1, 0 G: / ' T ~ T T '
+ 1 c � 。 / 4 1 0 0 0

0 0 1 0 / 0 C 0 M ：

masking reverse-adding

Figure 5.18: An example of the generation of 16-bit bit-reversed address

5.5.4. Load and Store

Load and store are the two operations for accessing the data memory, and they are the

only bridge between the data memory and the register file. A dedicated hardware, the load

store unit is responsible for the tasks in transferring data from data memory to register file

and vice versa. The duties of the load store unit are providing addresses, generating

control signals and dispatching the fetched data. To accommodate the X-Y bank

organization of the memory, the load store unit has independent address datapaths for the

two banks. For each bank, there are one address datapath for memory, one for reading

from register file and one for writing to register file. The address datapaths are the same as

those in address generation unit and the special registers attached to the address datapath

are also organized as in Appendix C.

The load store unit is designed to transfer data between data memory and register file in

bulk. Its operation is decoupled from the datapath, therefore they can work in parallel

unless there are conflicts. To cooperate with the address generation unit, the load store unit

has lower priority in gaining access to the register file. It is restricted to using only the

unused read ports and write ports after the port assignment to the address generation unit.

98

As each load or store operation involves successive read and write, they have to be fit well

into the pipeline organization to avoid frequent stall due to conflict. The partitioning of

load and store operation in pipeline is shown in Figure 5.19. The white and black broad

arrows represent the data and address flow of store and load operations respectively. We

can see that the load operation begins in the execution stage but the store operation begins

in the read stage. The main reason for this arrangement is to group the access to data

memory in one pipeline stage, so that there can be no conflict when a load operation is

followed by a store operation immediately and vice versa. For the programmers' point of

view, the access to register file is aligned to other data processing operations, which is

convenient to predict and control the time of data arrival at and from register file,

especially when doing load store operation together with parallel instructions.

f 一 — 一 、

I 1 , , Load Store Unit
Register File -i-read request— I

J , V z ^ ； . I
I I Data) Data Memory ；
、 • 一 一 ' 一 . , 一 一 ‘ — T L 一 一 一 'm^l'm —

z — —. 一 — ^ —̂ —. , — —
, —output request* �

f , —write request-̂ - i
I • ；: . , \
I address y I

I , (i
I EX ‘ ‘ i
j ！

k — — J U L - l - z ^ ^ r h i - i - ,
, -̂ write request—— | | �
I I
_ 1

V T ^ ^ }

Figure 5.19: The partitioning of load and store operation in pipeline

99

5.6. Design Verification

The base platform was implemented for verification. The focus of the verification is on

the timing and the functionality of the micro-architecture of the base platform, therefore

the GALS interfaces were removed in order to obtain the exact timing and to avoid

non-determinism due to asynchronous interfaces.

The design was modelled in synthesizable Verilog and synthesized in Design Compiler.

The physical design was performed in Silicon Ensemble with 0.35|im 4 metal 2 poly

technology. The results of synthesis and physical design are summarized in Table 5.5. The

silicon-ready design was under two tests: static timing analysis (STA) and dynamic

simulation. The former one was done using PrimeTime. For the latter test, some small

programmes were written and their functions are listed in Table 5.6. These test

programmes were run on the design with Verilog-XL. The simulation environment is

introduced in the latter section.

Table 5.5: The summary of synthesis and physical design

Area (NAND2 equ.) 34K

Area (^m X nm) 2600X2600

Number of Pads ^

-Clock 1_

-Power 8

-Address 48

-Data 56

-Control 7

100

Table 5.6: Test programmes for the base platform

Program Function

flowO Test of jump and conditional branching

flowl Test of zero-overhead loop and subroutine call

load Test of loading to register file and accumulator

store Test of storing from register file and accumulator

arith Test all arithmetic instructions

address Test of different address generation mode

F IR l 6 16 taps FIR filter

Dynamic Simulation Environment

Unlike ASIC design, microprocessor-based architecture involves apparently infinite states

which can be defined by software. It is impossible to test it heuristically with a long list of

test vectors. Having real programmes for verification is more sensible. A hardware and

software co-simulation technique is deployed to fit the need. The co-simulation

environment is illustrated in Figure 5.20. Conventionally, a simulation only involves the

device under test (DUT) and the testbench. The testbench is responsible for supplying

control signals, such as clock and reset, and test vectors. Based on the testbench, the

simulator calculates the response of the DUT, and records the results as waveforms in

database. In this approach, the DUT takes a passive role. The whole simulation is steered

by the testbench, which is difficult to simulate the branching and subroutine calls

activities of a processor. In the co-simulation approach, the testbench is responsible for the

control signals only. The test vectors are stored separately in programme memory model

and data memory model as test programme and test data respectively. The memory model

emulates the physical memories. Based on the addresses supplied by the DUT, the

memory models return the corresponding test vectors (instructions and data) to the DUT,

hence, the DUT can steer the simulation, which is useful for simulating branching and

subroutine calls. To prepare the programme memory model, the test programme is first

101

compiled to machine codes, then the codes are included in the memory model template as

seen in Figure 5.21. Similarly, the data vectors are also included in another memory model

instance for preparing the data memory model.

/ Prograrr A
Memory

�M o d e l \ J

I S

^ ^ ^ I H A ^ / D a t a 7
(V 二

\ Model
Testbench ^ ^ - A ^ ^ ^

control) ^ ^ ^ • i l M ^ ^ ^ H

例 ̂ I
Figure 5.20: Co-Simulation Environment

module PROM(csN oe wer addr data；

r CSn C-effective
OE 1 -effective for read
WEn 1 -effective *i

parameter pc_width = 16
parameter inst_wiclth = 2A

input csN oe wer
input [pc_width-1 0] addr
output [inst_width-1 0] data
reg [inst_width-1 0] data

always @(addr or csN or oe or wen； begir
iK-csN & oe & wer; begir
case (addr；

r
insert the program here

format
address data <= instruction

V
default data <= 2A hOOOOOC

endcase
end
else
data <=24 bzzzzzzzzzzzzzzzzzzzzzzzz

end
endmodule

Figure 5.21: The memory model template

102

Results

According to the results from STA, the maximum operating frequency of the base

platform is 86 MHz. The critical path is at the datapath, from the operand selection

network, thru the 16X16 multiplier and 40-bit adder/substracter to the accumulator. On

the other hand, the platform passed all the test programmes without any functional or

timing error found.

A comparison to other processors of the similar class is made. The information of the

other three widely used processors is from [48]. A summary of the comparison is shown in

Table 5.7. The StrongARM has the worst performance due to the lack of a single-cycle

multiplier. It has to take many instructions thus cycles to accomplish the kernel in

sequence. The two TI DSPs show superior computational power in this benchmark. They

can execute a FIR tap in one cycle. In contrast, our design needs two cycles for a FIR tap,

which is apparently worse than the TI DSPs. An extra cycle is spent on loading data to the

register file. The load store architecture of our design is beneficial when the memory

becomes the bottleneck of the performance. This advantage can overweigh the cost when

scaling to more advanced technologies.

Table 5.7: FIR Benchmark Results

Processor StrongARM TMS320C2x TMS320LC54x Base Platform

Technology …m) 0-35 ^ ^ 0.35

Frequency (MHz) ^ ^ ^ 孙

of Multipliers ^ [[[

Throughput (cycle/tap) 17̂ ^

Speed (M tap/second) 9.9 2丄 40 43

103

5.7. Summary

Base platform is the intermediate design. It is a good starting point for designing an

optimized processor for particular application. The design goal is to maximize the degree

of reusability by 1) minimizing the extent of modification needed for the base platform; 2)

minimizing the impact on timing and the power consumption when changing the

architectural parameters. Therefore, a flexible instruction encoding scheme, highly

modulized datapath organization, scaleable instruction decoder and register file are

designed to fulfil the requirement of complex and parallel instructions.

The organization of the pipeline is open to the programmers who are responsible for

resolving any conflict in the pipeline. This approach can simplify the design by moving

the conflict resolver from hardware to software, which can enable easier modification to

the base platform. On the other hand, advanced programmers can make use of the delay

slots to fully optimize the target application. A powerful compiler is of paramount

importance in this case. Similar functionalities are available in the compiler of VLIW

series of Texas Instruments, therefore, this approach is believed to be practical.

Finally, a benchmark shows that the performance of the base platform is comparable to

other similar class DSPs. That means our design has demonstrated a good tradeoff point

between performance and the architectural flexibility.

104

CASE STUDIES

6.1. Objective

For proving the feasibility of the proposed design methodology, two case studies

were carried out. The objective of the case studies is to evaluate the impact of

datapath optimization. The subjects are three well-known kernels which are widely

used in sound and video processing domains, such as speech codec and digital video

broadcasting.

6.2. Approach

A comparison of the base platform and the optimized one is given out. The measure

focuses on the reduction of the average number of cycles needed to complete a task.

The cycle used in the comparison is normalized to the cycle of the base platform. If

the period of cycle of the optimized platform is different, it is presented as a fraction

105

of a normalized cycle. In addition，the area overhead is also measured for estimating

silicon cost. The measure of the area is normalized to equivalent area of NAND2

logic.

A comparison of the performance among the optimized processor and two advanced

commercial DSPs is also provided. The comparison is based on the study of the

instruction set architecture (ISA) of the two DSPs. To be fair and to avoid the

influence from the compiler, the algorithm is programmed and optimized for the

DSPs by hand. As the DSPs may have different strategies on interfacing memories

resulting in different memory hierarchies, the effect of memory access is too

complicated to be compared and it should be excluded when evaluating the datapath.

Therefore, memory access is assumed to be accomplished in one cycle in the

following study.

6.3. Based versus Optimized

6.3.1. Matrix Manipulation

This case is about the vector multiplication of two matrices. The general form can be

written as:

"floo «01 «02 «03 0̂0 0̂1 0̂2 0̂3 Km
fllO All a\2 «13 … 办 10 办 11 1̂2 办 13 …
«20 «21 以22 «23 ^ 办20 2̂1 2̂2 办23 Îm
«30 «31 «32 口 33 3̂0 办 31 3̂2 办 33 办 3m

• ： ： ：
： • • •

«m3 ••• L̂ nO 办 nl ^nl ••• ^nm.

‘aooho + + • • • + ̂ On^nO ... +
— • •

• • • 書

a^QbQQ + a^^b^o + .. • + a 卿b„Q amoKm + • " + ^mn^nm _

106

Each element in the resultant matrix is the scalar product of a row from the first

matrix and a column from the second matrix. This operation involves an enormous

amount of multiplications and additions. For the multiplication of an mXn and an

nXm matrix, the calculation of one element needs n+1 multiplications and n

additions. To enhance the computational performance, instruction level parallel is

explored. Obviously, there is no dependence among the multiplications and also

among the additions. It is possible to introduce an instruction for n+1 parallel

multiplications and one for n parallel additions. For the consideration of practical

implementation, the introduced instructions are partitioned into three instructions: 1)

parallel execution of four multiply-and-accumulate; 2) parallel execution of four

multiplications; and 3) parallel execution of four additions. The corresponding

optimized datapath is shown in Figure 6.1.

To implement the optimized datapath, four MACs are used as seen in Figure 6.2.

These MACs includes bypass connections in order to perform separated

multiplication and addition operations. Having the three new instructions, the

platform can perform vector-like operations to the data set for taking advantage of

instruction level parallelism.

/W Y ML

(^^TO......
Figure 6.1: The partitioning of an optimized datapath

107

JA Multiplier Multiplier Multiplier

• … ？ ••：' , ‘ ‘；

V 4 _ Y V ^ V

〉Accumulator -^Accumulator m I ^Accumulator •

Figure 6.2: The implementation of the optimized datapath for vector multiplication

For evaluation purposes, vector multiplication of two 6X6 matrices is examined. The

results are shown in Table 6.1. The loading distribution of the optimized task is

shown in Figure 6.3.

Table 6.1: Results of the vector multiplication benchmark

Implementat ion Base Optimized

Area (NAND2 equ.) 34k 52k

Cycles per matrix 364 222

^ u i k ^ H K ' k

ap/o

Figure 6.3: Task breakdown of optimized vector multiplication

108

6.3.2. Autocorrelation

Another case is autocorrelation which always an index benchmark for DSP
N-\-m

evaluation. The mathematical expression = + ^x{i)x{i + m). The nature
z=0

of this kernel and its data access pattern are similar to FIR filter, which are elaborated

in detail in the previous chapters (section 4.2.1 & 5.5.2). Therefore, it was decided

not to do a brief introduction here.

To optimize autocorrelation, software pipelining is preferable because it is less

memory bandwidth hungry. A datapath for optimizing a 64-point autocorrelation is

suggested as shown in Figure 6.4. One additional instruction is needed to command

the software pipelined serial multiply-and-accumulate operations. The corresponding

benchmark results and the breakdown of the optimized task are shown in Table

6.2and Figure 6.5 respectively.

Xjn Ŝĵ ^̂ WpS jĵ npSilSlii® dlii|iliSiiii|B
^ ^ ^ Multiplier Multiplier Multiplier Multiplier

” i i i C�u,

•^Accumula to r~]^J j Accumulator^ Accumulator^ Accumulator ^ ^ ^ ^

Figure 6.4: The implementation of the optimized datapath for autocorrelation

Table 6.2: Results of the autocorrelation benchmark

Implementation Base Optimized

Area (NAND2 equ.) 34k 57k

Ave. cycles per 64 points 4226 1070

109

MiihpMmiip.
»7»/o ^ ^

^ • ^ ^ ^ ^ C ^： ^，勘 10/0

CO•秘� L n E n m ^ access
2% OP/o

Figure 6.5: Task breakdown of optimized autocorrelation

6.3.3. CORDIC

The coordinate Rotation Digital Computer (CORDIC) algorithm for trigonometric

computing was first introduced by Voider [49]. There are two computing modes,

rotation and vectoring. In the rotation mode, the coordinate components of a vector

and an angle of rotation are given and the coordinate components of the original

vector, after rotation through the given angle, are computed. In the second mode,

vectoring, the coordinate components of a vector are given and the magnitude and

angular argument of the original vector are computed.

The CORDIC algorithm computes iteratively on the following equations:

�+i=^Ttairi(2- ')

Where Xi and 7/ are the two coordinate components in the plane coordinate system,

and 6U is the angle of rotation.

110

In the rotation mode, the goal of the each operation is to let 0 in N iteration,

thus I ^i+il < I Therefore, the upper signs of the three equations are chosen if 夕/

> 0，otherwise the lower signs. For the vectoring mode, the goal is to obtain -> 0

in N iterations. Similarly, | Yi+i\ has to be smaller than | Yi\ in each iteration. Therefore,

if the signs oi Xi and Yi are different, the upper signs are chosen, otherwise the lower

signs.

After N iterations, the magnitude of the resultant vector has been increased compared
i=N-\

to the start vector by a factor of K n where ^ ^ = Y l + . Therefore, the
1=0

resultant vector in the rotation mode has to be scaled by K n ' ^ for correct magnitude.

Obviously, CORDIC algorithm is computationally intensive and allows simultaneous

calculation of Xi+i, Yi+j and 么+7 • However, the domination of control operations

prohibits the use of parallel instructions. In this scenario, hardware accelerator is the

best candidate for optimization. A suggested accelerator is shown in Figure 6.6.

Practically, setting the number of iterations up to the bit length of the operands can

obtain adequate accuracy. Having a fixed number of iterations allows pre-calculation

of the scaling factor K, which can reduce the number of multipliers. In contrast to

software loop control, a flow controller is built inside the accelerator for handling

iterations. This arrangement can take full advantage of GALS design style: 1) the

accelerator can operate at full throttle; 2) early completion is possible once the

desired accuracy is met. In our design, early completion detection is not implemented.

The number of iterations is fixed to 16.

I l l

Xin Yin ^ in

X 丄 Flow

\ ,. / \ , / \ , / Controller

ZIZ™ ‘ z x z , \
r ^ F p

1 1 S e ” X Y 0

I sh l e t I I s h i e r I

W W W [X — — —
flags

y/r ^r

1 r -i- - '
Xou1 Youl Q 0U1

Figure 6.6: The structure of the CORDIC accelerator

Besides the cordic instruction, three more additional instructions are introduced to

put the X, r and 0 to the datapath. But they can be encoded using the configuration

argument of the complex instruction encoding. A benchmark of Rotation CORDIC

algorithm is performed. The results are shown in Table 6.3. The loading distribution

of the optimized task is shown in Figure 6.7.

Table 6.3: Results of the Rotation CORDIC benchmark

Implementation Base Optimized
Area (NAND2 equ.) 34k 41k

Ave. cycles per CORDIC 253 19.8

finAcn^rffe
G3P/0

i m r a n e y a c e e s s

lOP/o

Figure 6.7: Task breakdown of optimized CORDIC

112

6.4. Optimized versus Advanced Commercial DSPs

In the previous section, the optimized processor presents supreme improvement on

performance without great silicon overhead. The flexibility and the potential of the

base platform are proven.

In this section, a study among advanced commercial DSPs and the optimized

processor is performed. This study is aimed to provide another angle to evaluate the

impact of the datapath optimization. TMS320C62x [50] of Texas Instruments Inc and

SC140 [51] of Freescale Semiconductor Inc are chosen as the subjects in the study.

The reasons are: 1) they are highly optimized to exploit parallelism in DSP

applications; 2) they are designed for conveying high performance over

general-purpose DSP applications; 3) their architecture details and instruction sets

are open to the public. The approach of this study is to compare the performance of

the DSPs on the three kernels aforementioned according to their instruction set

architecture.

6.4.1. Introduction to TMS320C62x and SC140

Before the comparison, an introduction to TMS320C62x and SCI40 is given. The

architecture features of TMS320C62x and SCI40 is summarized in Table 6.4. Both

are VLIW processors with several parallel execution units. They have dedicated

hardware for memory transfer and for address generation. For the register file, they

have different organizations -- TMS320C62x has a split register file with 32 bits data

width, but SCI40 has a unified register file with 40 bits data width.

113

Table 6.4: Processor features ofTMS320C62x and SCI40

TMS320C62X [50] SC140 [51]

Architecture , VLIW

Instruction width 256 bits 128 bits

Register file size 2 x 16X32 hits 16 X40 bits

Floating point support No No

of parallel exec units 8 6

Parallel memory transfer 2 2

SIMD support ^ ^

of multipliers 2 4

of ALUs 4 4

of Address generation units 2 2

The datapath of TMS320C62x and SC140 are depicted in Figure 6.8 and Figure 6.9

respectively. These figures illustrate the degree of parallelism of their datapath, in

addition the interfaces to data memory are also shown. Obviously, these two DSPs

are aimed to provide as much parallelism as possible for getting outstanding

performance.

Execute El
SADO i S M P Y STH f j STH ISMPYH SUB SPpD
.Li ,S1 Mi -D1 P H I 搬 I -S2 I .12 I

K K ____！」L ��!__3__』巧 I S
ir ir 1 r V ” 丨 I 1 + 1 I •

沾 ‘ 店 胆 明 Y 7 Y 5 4 3 2 1 0 - — - 15141312 1110 9 8 7 6 5 4 3 2 1 0

Register file A 321 J32 RegisterfiteB
LD1'-32 STI| I ST2 32 'LD2

I Data meiTKify interface coifrd |

-.32 二：16 二 ：16 、：16 、 3 2
1 r ‘ r ‘ ‘ 1 ‘

f o " 1 I 2 " T T T 5 I 6 ~ r |
DA1 _8_ _9 DA2

Data address 1 』Data ackfess 2

Internal data nremofy
(t^e a 敝essabte)

Figure 6.8: Datapath ofTMS320C62x (source: [50])

114

64 | 6 4 ‘ 64 ‘ 64

^ 18) ShMlef/Umitere ^

A I i A “ i k i I t i ^

^ 40 / 40 m -- 40 / 40 40 ^ / 40 ” ”

Data Registers D&4D15

/ 40 ^ 40 40 ' 4 0 ^40 ' 4 0 ^ 40 ' 4 0 4Q ‘ 40 40 ‘ 40

t t I f f I f f T f _
MJU ALU ALU ALU

Figure 6.9: Datapath of SC140 (source: [51])

6.4.2. Results

The benchmark tests in the last study are also applied to the subject processors. The

tests are: 1) vector multiplication of 6X6 matrices; 2) 64-point autocorrelation; 3)

CORDIC algorithm. The results of the benchmark are shown in Table 6.5. The last

column is our design.

According to the results, our design has comparable performance to the other two

advanced processors in the first two benchmarks. Although our design is scalar in

nature, the additional parallel datapath boosts the performance to the level of parallel

architectures. For the CORDIC algorithm, our design performs much better than the

others. It shows that the CORDIC algorithm hampers the parallelism exploration for

parallel architecture. Our design uses dedicated hardware accelerator to handle this

task that is always a blind spot in parallel architecture.

115

Table 6.5: The summary of benchmark results among different DSPs

Benchmark (ave. cycles) TMS320C62x SC140 Optimized
Vector multiplication of 皿 169 222
6X6 matrices

64 points autocorrelation 2052 1028 1070

Rotation CORDIC 82 66 ^

6.5. Summary

To evaluate our design methodology, case studies for 1) optimized verses base

platform and 2) optimized platform versus two commercial DSPs were conducted.

The first study demonstrates the ways to optimize the base platform to kernels of

different natures. The results are summarized in Table 6.6. In the first case, the kernel

is relatively small. The configuration operations occupy up to 8 % of the

computation power, which leads to low gain in performance. In the second case

software pipeline technique is used. The requirement of memory bandwidth is

relaxed, and therefore simultaneous execution of memory access and arithmetic

operations is possible. On the other hand, as the loop involved is sufficiently large,

the configuration overhead becomes neglectable. Hence the performance gain is up

to 400 %• In the last case, dedicated hardware accelerator is used. Using GALS

interface, the hardware accelerator runs at its full speed, which is faster than the base

platform. Extra performance gain due to asynchronous technique is resulted.

To sum up, the performance gain is of several folds and the silicon overhead is at

most 68%. This is due to the contribution of effective design of the flexible platform

and the efficient design methodology.

116

Table 6.6: The summary of the results of benchmark for base and optimized platform

Vector multiplication of 64-point Rotat ion
6 X 6 matr ices autocorrelation C O R D I C

of new instructions 3 1 i

Performance Gain 164 % 395 % 1278%

Silicon Overhead 53 % 68% 20o/o

The base platform is essentially a scalar architecture.However, after optimization its

performance is comparable to advanced commercial VLIW DSPs. The second study

compares the performance of TMS320C62x, SC140 and our optimized design. It

shows that our optimized design can have performance at the level of these highly

parallel architectures without the need of expanding the instruction width. In addition,

our design performs several times better in control-dominated kernels, which are

always the weakness of VLIW architectures.

These two case studies prove the effectiveness and the efficiency of our design

methodology and our base platform. They also show that the optimized processor

approaches or even surpasses the performance of today's advanced DSPs.

117

7 # CONCLUSION

7.1. When ASIPs encounter asynchronous

Application-specific instruction-set processors (ASIP) are today's enabling

technology for tackling increasing complexities of embedded systems together with

tightening time-to-market constraints. It combines the high design productivity of

software approach and the high performance of hardware approach, which brings to

us programmable devices with dedicated hardware features for real-time constrained

applications. A major obstacle of ASIP design is the larger design space compared to

pure hardware or pure software implementations. This makes it hard for the

designers to search for large amounts of architecture alternatives in order to identify

an optimal implementation in competitive design time.

When ASIP design meets asynchronous design methodology, the mindset seems to

be changed. We find that searching for alternative architectures has become much

118

easier than before. Thanks to the synchronization mechanism of asynchronous

techniques, global timing requirements are broken into timing requirements of local

modules. Different architectures can be built by putting different modules together

rapidly without worrying about global timing. Designers only have to pay attention

to verifying individual modules and their interfaces.

With this in mind, a platform-based design methodology for asynchronous ASIPs is

developed. Platform-based design is the design methodology that starts in the middle

of the whole process. It is based on the foundation provided by the platform. Using

asynchronous techniques, modules can be added on the platform easily to scale up

the functionality of the datapath. It is a straightforward way to design a complex

system. However, asynchronous technique does not mean all to the platform. Some

other design strategies are deployed to ensure the platform has maximum room for

optimization and induces less impact on timing and the power consumption during

datapath scaling.

The proposed design methodology is proven to be effective in the case studies. It

shows that the base platform can be scaled up easily to speed up different kinds of

kernels dramatically, which can reach the performance of some advanced parallel

DSPs. The benchmark of rotation CORDIC algorithm even illustrates further

performance gain by using asynchronous design methodology for seamless

cooperation between two different clock domains.

119

7.2. Contributions

In this thesis, we develop a new design methodology for asynchronous ASIPs. The

globally-asynchronous locally-synchronous design style is chosen for this design

methodology. A fully synthesized asynchronous wrapper is designed to facilitate

rapid development of ASEP. The asynchronous wrapper only introduces 3.1 ns

overhead in the communication between two modules.

A highly extensible and flexible base platform is designed based on the study of the

nature of DSP applications. The platform is aimed at providing a high degree of

parallelism and powerful complex instructions for different DSP applications. A

mechanism of conveying parallel instructions and parallel data using ‘narrow，width

instruction set is devised. To support the parallel datapath, the instruction decoder

and the register file are specially designed. The instruction decoder is modulized in

order to isolate the changes due to addition of application specific instructions. The

register file is highly extensible in terms of size and number of ports. Novel register

file organization is developed so that each register bank can keep an acceptable

number of ports while expanding the number of global ports. Much effort has been

put into strengthening the flexibility and the extensibility of the base platform, but

the performance of the base platform is still kept up. The platform operates at 86

MHZ and is able to handle 43 filter taps per second, which is comparable to other

DSPs of the same class.

Finally, we presented two case studies using three different types of kernels, showing

significant performance improvement after datapath optimization, which proves the

120

effectiveness of our design methodology.

7.3. Future Directions

The work presented in this thesis is limited to the hardware part of the ASIP design.

The scenarios being considered in development and testing are relatively small

pieces of codes or a fraction of application that can be handled by hand. To have a

full picture of ASIP design and to further evaluate our design methodology, software

generation and EDA tool development can be directions for the future.

As the silicon technology becomes more and more advanced, having multiple

processor cores in a chip is increasingly possible. ASIP should not be limited to

single core design. As asynchronous design methodology is an excellent technique to

interface different components, it is interesting to develop a methodology for

designing asynchronous multi-core ASIPs.

121

A SYNTHESIS OF EXTENDED BURST-MODE

ASYNCHRONOUS FINITE STATE MACHINE

The 3D machines of the input- and output-port controller are represented by

Karnaugh maps as in Figure A.l and Figure A.2 respectively. The red arrows in the

map indicate the sequential flow of the machines, and the red numbers are the state

number. The blank cells can be treated as don't care. Synthesizing these two

Karnaugh maps can result in the formula shown in Figure 3.15and Figure 3.16.

V Den stopped Ap

ZO stretch R ^ 000 001 Oil 010 110 111 101 100

000 ^ : " (o ^ ^
’ —-… …一 I—

001

�11 一 J

010 C I l T i ^ ^ ^

V Den stopped Ap

ZO stretch R ^ \ 000 001 Oil 010 110 111 101 100

100 巧 - ，^^
101 " p " ^ - 一r""""“

111

110 ^ ^ ^ 义 y

Figure A.l: The 3D machine of the input port controller

122

V Den stopped Rp

ZO stretch A p \ 000 001 Oil 010 IIC 111 101 IOC

000 ^ j

_ ̂ 二̂?̂函口
on 函,曾鸡 J
010 ^ 硬

V Den stopped Rp

ZO stretch 000 001 Oil 010 llfl 111 101 IOC

looliTo \ :

-n一=Jz园==函
111 fe)� 一

110 ^ ^

Figure A.l: The 3D machine of the output port controller

123

B BASE INSTRUCTION SET

The base instructions can be divided into six categories. All the six kinds of

instructions are summarized in the six following tables. Some acronyms and

definitions are presented after the tables.

Table B. 1: The data processing instructions

Mnemonic Input — Output Description

m a c (Reg, Reg, Acc) 一 Acc Multiply two values of registers and accumulate

MPY (Reg, Reg) 一 Acc Multiply two values of registers

j ^ D (Reg, Reg) — Acc Add two values of registers together

SUB (Reg, Reg) — Acc Subtract one value of registers from another one

ADDC (Reg, Reg, Flag) — Acc Add two values of registers together with carry
SUBB (Reg, Reg, Flag) — Acc Subtract one value of registers from another one

with borrow

M D A (Reg, Offset, Acc) — Acc Add an offset-able value of register to accumulator.

SUBA (Reg, Offset, Acc) — Acc Subtract an offset-able value of register from

accumulator.

NEG ACC — Acc Invert the sign of the accumulator.

Acc Acc Take the absolute value of the accumulator.
ACC — SReg Determine the exponent of the accumulator.

n o r m (Acc, SReg) — Acc Normalize the accumulator to the exponent stored
in the special register.

SH (Acc, Reg) 一 Acc Shift the accumulator by the value of the register.

SHK (ACC, Value) 一 Acc Shift the accumulator by the immediate value.

124

Table B.2: The bit manipulation instructions

Mnemonic Input — Output Description

n o t Acc — Acc Bitwise NOT of the accumulator

OR (Reg, Offset, Acc) — Acc Bitwise OR of the accumulator with an offset-able
value from register.

AND (Reg, Offset, Acc) — Acc Bitwise AND of the accumulator with an
offset-able value from register.

XOR (Reg, Offset, Acc) 一 Acc Bitwise XOR of the accumulator with an
offset-able value from register.

Table B.3: The Boolean operation instructions

Mnemonic Input 一 Output Description

CMP (Reg, Reg) — Flag Compare two values from registers and assert the
condition flag.

CMPACC (Reg, Offset, Acc) 一 Flag Compare the accumulator with a value from
register and assert the condition flag.

Table B.4: The flow control instructions

Mnemonic Input 一 Output Description

BEQ Flag PC Branch if "equal to" flag is asserted.

腿 E Flag — PC Branch if "not equal to" flag is asserted.

虹 T Flag — PC Branch if "less than" flag is asserted.

g Q j Flag — PC Branch if "greater than" flag is asserted.

B l e Flag — PC Branch if "less or equal to" flag is asserted.

BGE Flag — PC Branch if "greater or equal to" flag is asserted.

SR Value 一 (PC, stack) Subroutine call

j p Value PC Unconditional jump

LOOP (size, cycle) 一 (PC, stack) Zero-overhead looping

j ^ T stack — PC Return from subroutine call or break a
zero-overhead loop.

NOP NA No operation

125

Table B.5: The configuration instructions

Mnemonic Input — Output Description

CONF4 (Value, Pos) — SReg Write a nibble to a special register without altering
other bits.

CONF8 (Value, Pos) — SReg Write a byte to a special register without altering
other bits.

CONF16 Value — SReg Write a word to a special register.

Table B.6: The memory manipulation instructions

Mnemonic Input 一 Output Description

MOV Reg — Reg Move a register content to another register

LOAD Mem — Reg Load a value from data memory to register.
STORE Reg — Mem Store a register content to data memory.
LDACC (Value, Pos) 一 Acc Load a word to the higher or lower word of the

accumulator.
STACC Acc — Reg Store the accumulator to register.

Reg — register content

Acc - accumulator content

Flag - status and conditional flags

Offset - shift the value to the left by 16 bits

Offset-able - a value can be set to be offset

SReg - special register content

PC - programme counter

Stack - programme stack

Value - immediate value

Size - the number of instructions within a zero-overhead loop

Cycle - the number of iterations of a zero-overhead loop

NA 一 not available

Pos 一 a position of a nibble or a byte in a 16 bits value.

Mem 一 data memory

126

C SPECIAL REGISTERS

The organization of special purpose registers is shown in Table C.l. The leftmost

column is the addresses of the registers. The acronyms used in the table are presented

after the table.

Table C.l: The organization of special purpose registers
15 8 I 7 2 =

0 INT (RESERVED)
o v o v E N L G L G q 0 E X P

7 4 0 3 2 q | E | T | T | e | E |

2 LSU XDATA address

3 LSU XDATA size

4 LSU XDATA step

5 LSU YD ATA address

6 LSU YD ATA size

7 LSU YD ATA step

8 Q Q LSU XREGLD address 0 0 LSU XREGLD size

9 0 0 LSUYREGLD address 0 0 LSUYREGLD size

JO 0 0 LSU XREGLD step 0 0 LSUYREGLD step

11 0 0 LSU XREG ST address 0 0 LSU XREG ST size

7 2 0 0 LSUYREGST address 0 0 LSUYREG ST size

J3 0 0 LSU XREG ST step 0 0 LSUYREGST step

24 LSU Configuration

7 5 0 Y SFU LOP address 0 0 SFU LOP size

2 6 0 Y SFU ROP address 0 0 SFU ROP size

7 7 0 0 SFU LOP step 0 0 SFU ROP step

0 Y SFU WB address 0 0 SFU WB size

127

I 19 0 0 0 0 SFU Conf 0 0 SFUWBstep

20 PFUO �P F U 3 Configuration

21 0 Y PFUO LOP address 0 0 PFUO LOP size

2 2 0 Y PFUO ROP address 0 0 PFUO ROP size

I 23 0 0 PFUO LOP step 0 0 PFUO ROP step

0 Y PFUO WB address 0 0 PFUO WB size

25 0 0 0 0 PFUO interval 0 0 PFUO WB step

^ 2 6 0 Y PFUl LOP address 0 0 PFUl LOP size

I 27 0 Y PFUl ROP address 0 0 PFUl ROP size

28 0 0 PFUl LOP step 0 0 PFUl ROP step

I 29 0 Y PFUl WB address 0 0 PFUl WB size

3 0 0 0 0 0 PFUl interval 0 0 PFUl WB size

I S I 0 Y PFU2 LOP address 0 0 PFU2 LOP size

I 3 2 0 Y PFU2 ROP address 0 0 PFU2 ROP size

55 0 0 PFU2 LOP step 0 0 PFU2 ROP step

I 3 4 0 Y PFU2 WB address 0 0 PFU2 WB size

5 5 0 0 0 0 PFU2n interval 0 0 PFU2 WB size

I 3 6 0 Y PFU3 LOP address 0 0 PFU3 LOP size

I 5 7 0 Y PFU3 ROP address 0 0 PFU3 ROP size

38 0 0 PFU3 LOP step 0 0 PFU3 ROP step

I 3 9 0 Y PFU3 WB address 0 0 PFU3 WB size

40 0 0 0 0 PFU3 interval 0 0 PFU3 WB step

PFUn-3 ~ PFUn Configuration

^ ^ , I :
0 Y PFUn LOP address 0 0 PFUn LOP size

0 Y PFUn LOP address 0 0 PFUn ROP size

0 0 PFUn ROP step 0 0 PFUn ROP step

0 Y PFUn WB address 0 0 PFUn WB size

0 0 0 0 PFUn interval 0 0 PFUn WB step

128

INT - interrupt flags. Reserved for future implementation.

OV-overflow flag. The following number indicates the bit location of the happened overflow.

EQ 一 condition flag. Equal to.

NE - condition flag. Not equal to.

GT-condition flag. Greater than.

LT— condition flag. Less than.

GE - condition flag. Great than or equal to.

LE — condition flag. Less than or equal to.

EXP — exponent value. Obtained after EXP instruction.

LSU- load store unit.

XDATA - Xbank data memory.

YD ATA - Ybank data memory.

XREG - X bank register file.

YREG — Ybank register file.

LD - load operation.

ST-store operation.

SFU- scalar functional unit. For base and complex instructions.

PFU - parallel functional unit. The following number indicates the ID of the functional unit.

XY- hank selector. One means X bank. Zero means Ybank.

LOP - left hand side operand.

ROP - right hand side operand.

WB - writeback.

Conf - configuration.

129

D SYNTHESIZABLE MODEL OF G A L S
WRAPPER

module GALS_wrapl_lI10(rstN, pclk, Den一out, Den一in, Rp_out, Ap_out, Rp_in,
Ap_in);

input rstN, Den—out, Den_in, Ap_out, Rp_in;
output pclk, Rp_out, Ap_in;

wire stretch, stopped;
wire stretch-Out, stopped—out;
wire stretch_in, stopped—in;

wire stretchN;
wire stopped_outN;
wire stopped_inN;

pausibleClkl

U_pclkl(.elk(pclk), .rstN(rstN), .stretch(stretch), .stopped(stopped));

outport
U_output(.rstN(rstN), .Den(Den—out), .Rp(Rp_out), .Ap(Ap_out)• .stretch(st
retch_out), .stopped(stopped—out));
inport
U_inport(.rstN(rstN), .Den(Den_in), .Rp(Rp_in), .Ap{Ap_in), .stretch(stret
ch_in), .stopped(stopped—in));
N0R21 U_N0R21_stretchN(.A(stretch_out), .B(stretch_in), .Q(stretchN))；

INVl U:INVl_stretcli(.A(stretchN) , .Q (stretch));
NAND21 U_NAND2l_stopped_outN(.A(stretch_out) , .B(stopped) , .Q(stopped_outN));
NAND21 xLNAND21_stopped_inN(.A(stretch_in), .B(stopped), .Q(stopped_inN))；
INVl U_INVl_stopped—out(.A(stopped_outN), .Q(stopped—out))；
INVl U_INVl—stopped一in(.A(stopped_inN), .Q(stopped一in));
endmodule

module inport(rstN, Den, Rp, Ap, stretch, stopped);

input rstN, Den, Rp, stopped;
output Ap, stretch;

wire ZO, Ri, Ai;
wire nAp, nRp, nAi, nDen' nZO;

assign stretch = Ri;
assign Ai = stopped;

INVl U—INV2(.A(Ap), .Q(nAp))；
INVl U一INV3(.A(Rp), .Q(nRp))；
INVl U_INV4(.A(Ai), .Q(nAi));
INVl U_INV5(.A(Den), .Q(nDen));
INVl U_INV6(.A(ZO), .Q(nZO));

wire Ri一1, Ri_2, Ri一3;
NAND33 U_NAND_Ri1(.A(Ri_l) , .B(Ri一2)' .C(Ri_3) , .Q(Ri))7
NAND31 U_NAND_Ri2(.A(Rp), .B(Ri), .C(rstN), .Q(Ri_l))；

130

NAND31 U_NAND_Ri3{.A(nDen), .B(ZO), .C(rstN), .Q{Ri_2));
NAND41 U_NAND_Ri4(.A(Den), .B(nAp), .D(nZO), .C(rstN), .Q(Ri_3));

wire Ap_l, Ap_2;
NAND23 U_NAND_Apl(.A(Ap_l), •B{Ap_2), .Q(Ap));
NAND31 U_NAND_Ap2(.A(Ai), .B(Rp), .C(rstN), .Q(Ap_l));
NAND31 U_NAND_Ap3(.A(Ai), .B{Ap), .C(rstN), .Q(Ap_2));

wire Z0_1, Z0_2, Z0_3;
NAND33 U_NAND_Z01{.A(Z0_1), .B(ZO一2), .C(Z0_3)' .Q(ZO));
NAND31 U_NAND_Z02(.A(nRp), .B(ZO), .C(rstN), .Q(Z0_1));
NAND31 U_NAND_Z03(.A(nAi), .B(ZO), .C(rstN), .Q(Z0_2));
NAND41 U_NAND_Z04(.A(Den), .B(Ap), .D(nRp), .C(rstN), .Q(Z0_3));
endmodule

module outport(rstN, Den, Rp, Ap, stretch, stopped);

input rstN, Den, Ap, stopped;
output Rp, stretch;

wire ZO, Ai, Ri;
wire nRi, nAp, nRp, nAi, nDen, nZO, nrst;

assign stretch = Ri;
assign Ai = stopped;

INVl U_INV1(.A(Ri), .Q(nRi))；
INVl U_INV2(.A(Ap), .Q(nAp))；
工 N V l U_INV3(.A(Rp), .Q(nRp))；
工 N V l U_INV4 (.A(M) , .Q(nAi))；
工 N V l U_INV5(.A(Den), .Q(nDen))；
INVl U_INV6(.A(ZO), .Q(nZO))；
INVl U_INV7(.A(rstN), .Q(nrst));

wire Ri_l, Ri_2, Ri_3;
NAND33 U_NAND_Ril(.A(Ri_l), .B(Ri_2)' .C(Ri_3)' .Q(Ri));
NAND31 U_NAND_Ri2(.A{nZO), .B(Den), .C(rstN), .Q(Ri_l))；
NAND31 U_NAND_Ri3(.A(Ri), .B(Ap), .C(rstN), .Q(Ri_2));
NAND31 U_NAND_Ri4(.A(ZO), .B(nDen), .C(rstN), .Q(Ri_3));

wire Rp_l, Rp_2, Rp_3, Rp一21, Rp_22, Rp_31, Rp_32;
NAND33 U_NAND_Rpl (.A(Rp_l) , . B (Rp_2) , . C (Rp一3) , . Q (Rp))
NAND41 U_NAND_Rp2(.A(Rp), .B(Ai), .C(nAp), .D(rstN), .Q(Rp_l));
NAND21 U_NAND_Rp3(.A(Rp_21), .B(Rp_22), .Q(Rp_2));
NAND21 U_NAND_Rp4(.A(Rp_31), .B(Rp_32), .Q(Rp_3));
N0R41 U_N0R_Rp5(.A(Z 0) , .B(nRi), .C(Rp), .D(nrst) , .Q(Rp_21));
N0R31 U_N0R_Rp6(.A(nDen), .B(nAi), .C(nrst), .Q(Rp_22));
N0R31 U_N0R_Rp7(.A(nZ 0) , .B(nRi), .C(nrst) , .Q(Rp_31));
N0R41 U_NOR_Rp 8(.A(Rp) , .B(Den) , .C(nAi), .D(nrst) , .Q(Rp_32));

wire ZO—l, Z0_2, Z0_3, Z0_4;
NAND43 U_NAND_Z01(.A(Z0_1), .B(Z0_2), .C(Z0_3), .D(ZO一4), .Q(Z0))7
NAND31 U_NAND_Z02(.A(ZO), .B(Den), .C(rstN), .Q{Z0_1));
NAND31 U_NAND_Z03(.A(ZO), .B(nAp), .C(rstN), .Q(Z0_2));
NAND31 U_NAND_Z04(.A(ZO), .B(nRp), .C(rstN), .Q(Z0_3));
NAND41 U_NAND_Z05(.A(Rp), .B(Den), .C(Ap), .D(rstN)' .Q{Z0_4));

endmodule

module pausibleClkl(elk, rstN, stretch, stopped);

input rstN, stretch;
output elk, stopped;

wire clk_delayed, elk一in;

delayl U_delayl(.i(elk), .o(clk_delayed));

131

me
U_me(.requestl(clk_in), .request2(stretch), .grant1(elk), .grant2(stopped));

assign clk_in = ~(elk—delayed|~rstN);

endmodule ‘
module me(requestl, request2, grantl, grant2);

input requestl, request2;
output grantl, grant2;

wire nl, n2；

wire tied一low, tied—high;
assign tied—low = 1'bO;
assign tied—high = 1'bl;

NAND21 U_NAND1(.A(requestl), .B(n2), .Q(nl));
NAND21 U_NAND2(.A(request2), .B(nl), .Q(n2));

MUX22 U_MUX2_1(.A(n2), .B(tied—low), .S(nl), .Q(grantl));
MUX22 U_MUX2_2(.A(nl), .B(tied_low), .S(n2), .Q(grant2));

endmodule

module delayl(i, o);

input i ;
output o;

DLY12 U_DLY1(.A(i), .Q{o));

endmodule

132

REFERENCE

[1] G. E. Moore, "Cramming More Components onto Integrated Circuits," Electronics, vol. 38，no. 8,

1965

[2] C. Ttistram, "It's Time For Clockless Chips," MIT's Technology Review magazine, October 2001

[3] B. Cole, "Asynchronous design gets a second look," EE Times, 6 June 2003.

[4] P. A. Beerel, "Asynchronous circuits: an increasingly practical design solution," Proceedings of

International Symposium on Quality Electronic Design 2002, pp. 367 - 372, 18-21 March 2002.

[5] Tensilica Inc., Xtensa V — A Proven Configurable Processor,

http://www.tensilica.coni/html/xteiisa—v.html

[6] R. E. Gonzalez; "Xtensa: a configurable and extensible processor," IEEE Micro, vol. 20，issue. 2，

pp. 60 — 70，March-April 2000

[7] P. Kievits, E. Lambers, C. Moerman and R. Woudsma, "R.E.A.L. DSP Technology for Telecom

Baseband Processing," Proceedings oflCSPAT 1998

[8] ARC Cores Ltd. ARCtangent Processor, http://www.arccores.com

[9] Improv Systems Inc., Jazz PSA/Jazz DSP, http://www.iniprovsys.com

[10] Target Compiler Technologies, Chess/Checkers is a retargetable tool-suite,

http ://www.retarget.com/products-more .html

[11] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A. Wieferink,H. Meyr,

"A novel methodology for the design of application-specific instruction-set processors (ASIPs)

using a machine description language," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 20, issue. 11，pp. 1338 - 1354, November 2001

[12] Institute of Integrated Signal Processing Systems, Aachen University of Technology, Germany,

LSIA Processor Design Platform, http://www.iss.rwth-aachen.de/lisa/lpdp.html

[13] J. H. Yang, B. W. Kim, S. J. Nam, Y. S. Kwon, D. H. Lee, J. Y. Lee, C. S. Hwang, Y. H. Lee, S. H.

Hwang, I. C. Park and C. M. Kyung, "MetaCore: an application-specific programmable DSP

development system," IEEE Transactions on VLSI Systems, vol. 8 , issue. 2，pp. 173 - 183’ April

2000

133

http://www.tensilica.coni/html/xteiisa%e2%80%94v.html
http://www.arccores.com
http://www.iniprovsys.com
http://www.retarget.com/products-more
http://www.iss.rwth-aachen.de/lisa/lpdp.html

[14] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi, A. Kitajima and M. Imai, "PEAS-III: an ASIP

design environment," Proceedings of International Conference on Computer Design 2000, pp.

4 3 0 - 4 3 6 , 17-20 Sept. 2000

[15] J. V. Woods, P. Day, S. B. Furber, J. D. Garside, N. C. Paver, and S. Temple, "AMULET 1: an

asynchronous ARM microprocessor,' IEEE Transactions on Computers, vol. 46 , issue. 4，pp.

385 - 3 9 8 , April 1997

[16] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day and N. C. Paver, "AMULET2e: an

asynchronous embedded controller," Proceedings of Third International Symposium on

Advanced Research in Asynchronous Circuits and Systems, pp. 290 - 299，7-10 April 1997

[17] S. B. Furber, D. A. Edwards and J. D. Garside, "AMULET3: a 100 MIPS asynchronous

embedded processor," Proceedings of International Conference on Computer Design 2000, pp.

329 — 334，17-20 September 2000

[18] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor, and G. Stegmaim, "An

asynchronous low-power 80C51 microcontroller," Proceedings of Forth International

Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 96 - 107 ’ April

1998

[19] H. Terada, S. Miyata, and M. Iwata, "Ddmps: Self-timed super-pipelined data-driven multimedia

processors. Proceedings of the IEEE, vol. 87, issue. 2，February 1999

[20] A.J. Martin, A. Lines, R. Manohar，M. Nystroem, P. Penzes, R. Southworth, and U. Cummings,

"The design of an asynchronous MIPS R3000 microprocessor," Proceedings of Seventeenth

Conference on Advanced Research in VLSI, pp. 164-181 , September 1997.

[21] P. Clarke, "University spinouts revive clockless processors," EE Times, 25 October 2001

[22] A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku, Y. Ueno and T. Nanya,

"TITAC-2: an asynchronous 32-bit microprocessor based on scalable-delay-insensitive model,"

Proceedings. oflEEEICCD '97, pp. 288 — 294, 12-15 October 1997

[23] A. Takamura, M. Imai, M. Ozawa, I. Fukasaku, T. Fujii, Kuwako, M. Y. Ueno and T. Nanya,

"TITAC-2: an asynchronous 32-bit microprocessor," Proceedings of the ASP-DAC '98, pp. 3 1 9 -

320，10-13 February 1998

[24] J. Sparse and S. Furber, "Chapter 2: Fundamentals," Principles of Asynchronous Circuit Design:

A Systems Perspective, Kluwer Academic Publishers, 2001

[25] C. H. Van Berkel; M. B. Josephs and S. M. Nowick, "Applications of asynchronous circuits,"

134

Proceedings of the IEEE, vol. 87，issue 2，pp. 223 - 233，February 1999

[26] I. E. Sutherland, "Micropipelines," Communications of the ACM, vol. 32, issue 6, June 1989.

[27] K. Y. Yun, "Recent advances in asynchronous design methodologies," Proceedings of the

ASP-DAC '99, vol.1, pp. 253 - 259, 18-21 January 1999.

[28] C. S. Choy; J. Butas, J. Povazanec, and C. F. Chan, "A fine-grain asynchronous pipeline

reaching the synchronous speed," Proceedings of the 4th International Conference on ASIC

2001, pp. 547 - 550, 23-25 October. 2001

[29] C. S. Choy; J. Butas, J. Povazanec, and C. F. Chan, "A new control circuit for asynchronous

micropipelines," IEEE Transactions on Computers, vol. 50, issue. 9，pp. 992 — 997 , September

2001

[30] K. M. Chu and D. L. Pulfrey, "A comparison of CMOS techniques: differential cascade voltage

switch logic versus conventional logic," IEEE Journal of Solid-State Circuits, vol. 22 , issue 4，pp.

528 - 5 3 2 , August 1987

[31] A.J. McAuley, "Dynamic Asynchronous Logic for High-Speed CMOS Systems, “ IEEE Journal

of Solid-State Circuits, vol. 27, no. 3, pp. 382 - 388, March 1992

[32] M. Renaudin, B.E. Hassan and A. Guyot, "A New Asynchronous Pipeline Scheme: Application to

the Design of a Self-Timed Ring Divider," IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp.

1001-1013 , July 1996

[33] J. L. Yang , C. S. Choy and C. F. Chan, "A self-timed divider using a new fast and robust pipeline

scheme," IEEE Journal ofSolid-State Circuits, vol. 36 , issue 6, pp. 9 1 7 - 923, June 2001

[34] J. Butas, C. S. Choy; J. Povazanec, and C. F. Chan, "Asynchronous cross-pipelined multiplier,"

IEEE Journal of Solid-State Circuits, vol. 36，issue 8, pp. 1272 - 1275, August 2001

[35] C. W. Lee, C. S. Choy, J. Butas and C. F. Chan, "A pipelined dataflow small micro-coded

asynchronous processor and its application to DCT," Proceedings of the ISCAS 2001, vol. 4, pp.

910-913，6-9 May 2001

[36] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson, J. Oberg，P. Ellervee and D.

Lundqvist, "Lowering power consumption in clock by using globally asynchronous locally

synchronous design style," Proceedings of 36th Design Automation Conference 1999, pp. 873 -

878, 21-25 June 1999

[37] J. Muttersbach; T. Villiger and W. Fichtner, "Practical design of globally-asynchronous

135

locally-synchronous systems," Proceedings of. Sixth International Symposium on ASYNC 2000，

pp. 5 2 - 5 9 , 2-6 April 2000

[38] K. Y. Yun, D. L. Dill, "Automatic synthesis of extended burst-mode circuits. I. (Specification and

hazard-free implementations)," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 18, issue. 2, pp. 1 0 1 - 1 1 7 , February 1999

[39] "Dialogic ADPCM Algorithm", Dialogic Corporation, 1988，

[40] M. K. Jain, M. Balakrishnan, A. Kumar, "ASIP design methodologies: survey and issues,"

Fourteenth International Conference on VLSI Design 2001, pp. 7 6 - 8 1 , 3-7 January 2001

[41] w. K. Chan, C. S. Choy, C. F. Chan and K. P. Pun, "An asynchronous SOVA decoder for wireless

communication application," ISCAS 2004’ publishing

[42] P. K. Leung, C. S. Choy, C. F. Chan and K. P. Pun, "A low power asynchronous ALU for

elliptic curve crypto-processor," Proceedings of the ISCAS '03, vol. 5 , pp. V-337 - V-340, 25-28

May 2003

[43] p. L. Siu, C. S. Choy, J. Butas and C. F. Chan, "A low power asynchronous DES," Proceedings of

the ISCAS 2001, vol. 4，pp. 538 -541, 6-9 May 2001

[44] J. H. Tseng, K. Asanovic, "Banked multiported register files for high-frequency superscalar

microprocessors," Proceedings of 30th ISCA, 2003, pp. 62 - 71，9-11 June 2003

[45] I. Park, M. D. Powell, and T. N. Vijaykumar, "Reducing register ports for higher speed and

lower energy," Proceedings of MICROS 5, November 2002.

[46] V. Zyuban and P. Kogge, "The energy complexity of register files," Proceedings ofl 998

International Symposium on Low Power Electronics and Design, pp. 305 - 310, August 1998.

[47] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi and J. D. Owens, "Register

organization for media processing," Proceedings of International Symposium on HPCA-6, pp.

375 - 386 , 8-12 January 2000

[48] A. Abnous, K. Seno, Y. Ichikawa, M. Wan，J. Rabaey, "Evaluation of a Low-Power

Reconfigurable DSP Architecture" Proc. of the Reconflgurable Architecture Workshop, Orlando,

Floride, USA, March 1998

[49] J. E. Voider, "The CORDIC Trigonometric Computing Technique", IRE Transaction on Electronic

Computers, EC-8, p.330-334, 1959.

[50] TMS320C62X/C67X CPU and Instruction Set Reference Guide, Texas Instruments Inc.

136

S

 二

 .

 ’

 I

 -
 •

‘_

 \

 •

 =

 •

 =

 -

 .

 .

 •

 •

 -

I
-

_
 I

 I

 I

 I
 --5

 .
 •

 I

J

4,-
 -

‘

J

i

.
-

I

 -
 %
 ,«

 •

I

••

I

.•
 •

 -

 •
 •

r

I

-

^

•

^

.•••
 t
 I

 .

R
 ̂
^

‘

-

.

'

•

_

 ..

•

•

 ...

 .’

.

 •、」--.

 .
.
.

 .，..〔.

\

厂

.

•

 -
 r
f
^
 I

•

«
r

••
 .

 •

-
-
A
"

..
 •

^

.
 ••

 •

 •

 •

 •

 >

 •

 •

-
n
^
-
 ̂

 M

„

'

r

'

 •
!

r
-
-

 •
•
‘

•

 .

 •

 •

.
f

>.

=

.

‘

‘

/

-

 喊

t
 r

办

 ”
V

」

决

办
/

 .

 .

.
.
H

.
 、.-.

 -

 .
.
一

 ••

 「

V

/

1

^
 ̂
^
^

？

 .—

-
p
.
-
.
.
:
-

’
_

—
-

d

 r
-
 -
 .
.
/
-
-

•
•
,

•
•
:

I
 ̂

 L
-

 V

--

-

 ‘

^

:
 •

 -
 •

 -
 :

 .

 •
 •

 •、."/._--

 -
.
-

」
—

 -
.

V
.

」
-
名

•
r
t
^
v
:

•

 ；

I
I

•

V
 M

 I

.

「

-

.

_

.

-
 :

..

 .

 -.

r

、-.

 .•

 —

r
^

々

r
 ̂

 ̂

‘
i
-
,
!
•
•
」
：
-

"

.

•

•

 -
.
;
•
.
.
.
,
.
-
」
-
•
‘
：
、

r
u
.
.
.

二

 ：.•…

 -
-
-
-

-

-

.

.

•

 ...

^
 r

 f

-
 .

 •

.

•

•

•

•

.

•

•

-

 _

 .

 -

 .

/

J

.

.

'

t

•
-

•
•
•
•
•

:

•

•

-

w
.
.
.
 计
-

•
:
>
•
!

々
 y

.̂.v

-.>,?•‘_•
 -
厂

I
.

 L

,
 •
 :

•
•
•

 (

 -

 •

-

-

•

'

•

•

 '
'

 -
 •

 ••

 _

 -

 •»

I
r

f
t
c

_
。

-
-
.
L
l

.

.

 ...::，-

〜

-

 .
.
.
:
”
，
貪

了
广

 -
.
.

 •

-.v..

--
 ?
:
.
:
,
」
-
(
：
.
：
.
-
:
-
:
.
.
:
;
.
-
•

.

 >

 -

 〉

 .

〈
r
^

:
^

.

,

-

.

.
 .
•
-
.
.
.
.

.
「
.
.
-
-
.
.
“

 ：
:
-

•

 ..

,

.

i
p

,

.

/

 ._-•_。

-

-

-
.

.

:

二

„

.

.

v

.

-
-
.
•
•
「
•
丄
，
-
,
-
:
\

.

厂

-

-

.

-

t
/
m

？
，

一

f

」
 “

r
r

,
-

—

.

^

>

t

.
 .
-

-

:
.
.
-
-
:
.
，
.
.
-
.
.
.
•
,
-
-
-
-
•
:

 •
•
•

 ..

 ；
.

 ...

 .

-
l
-
i
?

 A

-
 ,

 —

S

,
 -

I
:
」

 ：
"

,

.

.

•

-

-

.

1

沾
”

K

‘

^

.
 .

 •

L
」
-

-

.

.

.

.

:

:
 .

.

-

 ..

.

.

.

 ...

-

 ...

.

 ；
二

一

琴
J

>

§

.

 、；-..::•

 .::_:.-.,.•.、--「-.>:-•

 •

 •

 .

r

.

A
.

-

 ,
仏
？

_
 ̂

 ,..=

 3

 ::
’
•
.

 »

 •
 -

 ••

 ••

 -

I

•

I

•

i

-
 ••

 •

 -

-
M

-

h
f
f

#

.

隱

-

:

,

二
.
.
丨
…
.
-
1
:
.
,
:
.
」
-
.
、

—

-

.

:

.

.

.

.

.

.

〜

7

A
、

 ！

 、.
.

 —

 —
 ...)

 --

f

—

.、._

S
;

 M

鼠」._.-「.：v々

“

 .
 ：
 ：
•
：
羞

肩
、：
：
：
輸
讓

I：
.

：
.

::
:.
_:
.

.
，

V

j
�

：

m

R
：
：

•

.
：

二

:
•

々
:

.
—

、

.
:

.
-

”
.

〜
:

_

:
:
々

…

•
-

；
,

�
-
-

P
'、

.
.

：‘
：

”

.

“
：

.
,

^
、

灣

R
:

^

.
‘

“
.

j
.

.
,

•
:

:
:

.
:

:
•

:
-

:
�

.

I
〜

,
六

?

_
..
-:
:>
-.
…
’

.
厂

…
.
•

.
..

、，
.

•
�

^

I
…

.
=

.r:、
::：

；

 ：
^

‘

-
：

：

’
,

^
’

‘

，
、

.
.

、
、

？
」

‘
，

�
i

_

I
愈

‘

.

：
’

=
I

、
〜

-
:
•

:
、

.
，

•‘

•

.
__

•
”

:
:
:
:
：

爛

_
：

：
處

C U H K L i b r a r i e s

0 0 4 2 7 0 4 9 0

