
Induction of Classification
Rules and Decision Trees using

Genetic Algorithms

NG Sai-Cheong
-i .

A Thesis Submitted in Partial Fulfilment
“ of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

Supervised by

Prof. LEUNG Kwong Sak

«

©The Chinese University of Hong Kong
December 2004

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in

a proposed publication must seek copyright release from the Dean of the

Graduate School.

î̂ IBRARY SYSTEN̂；̂

利用遺傳算法建構分類法則及決策樹

伍世昌

論文摘要

數據發掘是指從大量數據中尋找隱藏的知識。監督式分類是多種數據發掘算法之

一。我們可利用監督式分類建構一組模型作爲知識表示方法，以預測未見的資料

項之分類。本論文會討論其中兩個監督式分類算法，包括分類法則及決策樹0不

過，分類法則及決策樹之搜索空間可能十分龐大。我們會運用遺傳算法以便建構

這些模型。

SCION是一個以分類法則爲基礎之專家系統，利用遺傳算法推論一組分類法則，

而每個法則爲一組串聯的一元不等式。我們以SCION爲藍本，提出一個以遺傳算

法爲基礎的推論分類法則之算法，稱爲GA-based CPRLS，而每個法則之前提爲

一組串聯的邏輯算式。這些邏輯算式包括由連續屬性組成的一次不等式和由一個

離散屬性及其數値組成之等式。GA-based CPRLS提供一種適用於離散及連續屬

性之建構分類法則的算法。

BTGA[9]是一個以遺傳算法爲基礎的線性決策樹之算法。我們以BTGA爲藍本，

提出一個以遺傳算法爲基礎的二次決策樹’稱爲GA-based QDT。它在每一個非

終結節點運用遺傳算法找尋最佳的二次決策函數。線性決策樹只不過是二次決策

樹之一種。實驗結果證明GA-based QDT較其他單變數及線性決策樹更能近似非

線性的分類邊界。

當我們利用較大的資料集建構線性或二次決策樹時，可於每個非終結節點決定最

佳決策函數前建構一棵k-d樹或廣義四分樹。爲了利用k-D樹或廣義四分樹建構線

性或二次決策樹，我們需計算一個合適的線性或二次函數在某個超矩形內之極端

値。

雖然我們可準’確地求出一個線性函數在某個超矩形內之極端値，但難以準確地計

算某二次函數在某個超矩形內之極端値。因此我們介紹了三種估計一個二次函數

在某超矩形內之極端値的方法。這三種方法均不會影響建構出的二次決策樹之質

素。 ‘ ‘

我們分別選擇BTGA及GA-based QDT來測試利用k-d樹及廣義四分樹建構線性及

二次決策樹時之表現。因此我們修改BTGA並提出BTGA with k-D Trees及BTGA

with Quadtrees。同樣地我們以GA-based QDT爲基礎’提出GA-based QDT with

k-D TreesRGA-based QDT with Quadtrees °除此之外，我們亦評估將剛提出的三

種估計一 j^Zl次函數在超矩形內之極端値的方法應用於GA-based QDT with k-D

Trees及GA-based QDT with Quadtrees時之表現°實驗結果證明當我們遇上較大的

資料集時，我們可利用k-d樹或廣義四分樹以加快建構線性或二次決策樹之速

度，而不會影響建構出的決策樹之質素。

Abstract of thesis entitled:
Induction of Classification Rules and Decision Trees using

Genetic Algorithms

Data mining is the process of discovering hidden knowledge
from large amounts of data. Supervised classification is a kind
of data mining algorithms. In supervised classification, a set of
models'as knowledge representation is constructed to predict the
class label of an unseen data. In the thesis, supervised classifica-
tion techniques including classification rules and decision trees
are presented. However, the search space of a classification rule
or a decision tree can be very large. Genetic algorithms (GAs)
are applied to facilitate the induction of these models.

In a rule-based expert system called SCION, a set of clas-
sification rules is evolved using GAs. The antecedent part of a
classification rule is a conjunctive set of inequalities with one nu-
meric attribute only. A genetic algorithm-based rule induction
algorithm, called GA-based CPRLS, is proposed by extending
SCION. In the GA-based CPRLS, the antecedent part of a clas-
sification rule is a conjunction of linear inequalities with several

, numeric attributes and nominal attribute-value pairs. The GA-
based CPRLS provides an alternative algorithm to construct
a set of classification rules for both numeric and nominal at-
tributes.

In BTGA [9], the optimal linear decision function is found
at each node of a linear decision tree. A genetic-algorithm
based quadratic decision tree algorithm, called GA-based QDT,
is proposed by extending BTGA. At each non-leaf node of a
quadratic decision tree, GAs are applied to search for the op-

i

timal quadratic decision function. Experiments show that the
GA-based QDT provides a better approximation to non-linear
class boundaries when compared with univariate and linear de-
cision tree algorithms.

Spatial data structures including k-D trees and generalized
quadtrees are applied to speed up the construction of oblique
and quadratic decision trees provided that the size of a dataset is
sufficiently large. In order to construct an oblique or a quadratic
decision tree using k-D trees or generalized quadtrees, it is nec-
essary to determine the extreme values of a linear or a quadratic
function within a hyperrectangle.

It is straight forward to determine the extreme values of a lin-
ear function within a hyperrect angle correctly. Nevertheless, it
is difficult to calculate the extreme values of a quadratic function
within a hyperrectangle correctly. Three methods of estimating
the extreme values of a quadratic function within a hyperrectan-
gle are introduced. These methods ensure that the classification
accuracy of a constructed quadratic decision tree is preserved.

BTGA and GA-based QDT are chosen to evaluate the perfor-
mance when an oblique and a quadratic decision tree are respec-
tively constructed using k-D trees and generalized quadtrees.
Two oblique decision tree algorithms, called BTGA with k-D
Trees and BTGA with Quadtrees, are extended from BTGA.
Moreover, two quadratic decision tree algorithms, called GA-
based QDT with k-D Trees and GA-based QDT with Quadtrees,
are introduced by extending the GA-based QDT. The perfor-
mance of the variants of the GA-based QDT is evaluated us-
ing the three methods of estimating the extreme values of a
quadratic function within a hyperrectangle. Experiments show
that the construction of oblique and quadratic decision trees can
be accelerated with the aid of k-D trees or generalized quadtrees
provided that the size of a dataset is sufficiently large, without
sacrificing the quality of a constructed decision tree.

ii

Acknowledgement

I would like to take this opportunity to acknowledge the help and
encouragement from my supervisor, markers, friends, colleagues,
as well as my family.

First I would like to express my sincere gratitude and appre-
ciation to my thesis supervisor, Prof. Kwong-Sak Leung. He
constantly provides guidance, advice and encouragement to my
research. It is impossible to complete the thesis without his
open-mindedness.

I would also like to express my appreciation to my markers,
Prof. Hanqiu Sun and Prof. Tien Tsin Wong, for providing
valuable comments and suggestions on my research in the past
years.

I am deeply grateful to my friends and colleagues for their
assistance and encouragement. The discussion with Jin Huidong
and Liang Yong gives me a lot of new insights to my research. I
would also like to acknowledege the help of Shum Wing Ho for
providing valuable suggestions on the presentation slides for my
oral examination.

Finally, I am indebted to my parents and my younger sister,
for giving me a family with full of love, support and encourage-
ment.

iii

Contents

Abstract i

Acknowledgement iii

1 Introduction 1
1.1 Data Mining 1
1.2 Problem Specifications and Motivations 3
1.3 Contributions of the Thesis 5
1.4 Thesis Roadmap 6

2 Related Work 9
2.1 Supervised Classification Techniques 9

2.1.1 Classification Rules 9
2.1.2 Decision Trees 11

2.2 Evolutionary Algorithms 19
2.2.1 Genetic Algorithms 19
2.2.2 Genetic Programming 24

‘ ‘2.2.3 Evolution Strategies 26
2.2.4 Evolutionary Programming 32

2.3 Applications of Evolutionary Algorithms to In-
duction of Classification Rules 33

‘ 2.3.1 SCION 33
2.3.2 GABIL 34
2.3.3 LOGENPRO 35

iv

2.4 Applications of Evolutionary Algorithms to Con-
struction of Decision Trees 35
2.4.1 Binary Tree Genetic Algorithm 35
2.4.2 OCl-GA 36
2.4.3 OCl-ES 38
2.4.4 GATree 38
2.4.5 Induction of Linear Decision Trees using

Strong Typing GP 39
2.5 Spatial Data Structures and its Applications . . . 40

2.5.1 Spatial Data Structures 40
2.5.2 Applications of Spatial Data Structures . . 42

3 Induction of Classification Rules using Genetic
Algorithms 45
3.1 Introduction 45
3.2 Rule Learning using Genetic Algorithms 46

3.2.1 Population Initialization 47
3.2.2 Fitness Evaluation of Chromosomes 49
3.2.3 Token Competition 50
3.2.4 Chromosome Elimination 51
3.2.5 Rule Migration 52
3.2.6 Crossover 53
3.2.7 Mutation 55
3.2.8 Calculating the Number of Correctly Clas-

sified Training Samples in a Rule Set . . . 56
‘ 3.3 ‘ Performance Evaluation 56

3.3.1 Performance Comparison of the GA-based
CPRLS and Various Supervised Classifi-
cation Algorithms 57

• 3.3.2 Performance Comparison of the GA-based
CPRLS and RS-based CPRLS 68

3.3.3. Effects of Token Competition 69
3.3.4 Effects of Rule Migration 70

V

3.4 Chapter Summary 73

4 Genetic Algorithm-based Quadratic Decision Trees 74
4.1 Introduction 74
4.2 Construction of Quadratic Decision Trees 76
4.3 Evolving the Optimal Quadratic Hypersurface us-

ing Genetic Algorithms 77
4.3.1 Population Initialization 80
4.3.2 Fitness Evaluation 81
4.3.3 Selection 81
4.3.4 Crossover 82
4.3.5 Mutation 83

4.4 Performance Evaluation 84
4.4.1 Performance Comparison of the GA-based

QDT and Various Supervised Classifica-
tion Algorithms 85

4.4.2 Performance Comparison of the GA-based
QDT and RS-based QDT 92

4.4.3 Effects of Changing Parameters of the GA-
based QDT 93

4.5 Chapter Summary 109

5 Induction of Linear and Quadratic Decision Trees
using Spatial Data Structures 111
5.1 Introduction I l l

‘ 5.2 . Construction of k-D Trees 113
5.3 Construction of Generalized Quadtrees 119
5.4 Induction of Oblique Decision Trees using Spatial

Data Structures 124
5.5. Induction of Quadratic Decision Trees using Spa-

tial Data Structures 130
5.6 Performance Evaluation 139

V

vi

5.6.1 Performance Comparison with Various Su-
pervised Classification Algorithms 142

5.6.2 Effects of Changing the Minimum Num-
ber of Training Samples at Each Node of
a k-D Tree 155

5.6.3 Effects of Changing the Minimum Num-
ber of Training Samples at Each Node of
a Generalized Quadtree 157

5.6.4 Effects of Changing the Size of Datasets . 158
5.7 Chapter Summary 160

6 Conclusions 164
6.1 Contributions 164
6.2 Future Work 167

A Implementation of Data Mining Algorithms Spec-
ified in the Thesis 170

Bibliography 1T8

�� ‘
vii

List of Figures

2.1 An Example Decision Tree 12
2.2 An Example Oblique Decision Tree 15
2.3 An Example Non-linear Decision Tree 16
2.4 An Example Parse Tree 25
2.5 ' A n Example that a Pair of Parse Trees Undergoes

Crossover 27
2.6 An Example that a Parse Tree Undergoes Mutation 28
2.7 The Algorithm of the Procedure createBTGAO . 37
2.8 An Example k-D Tree 41
2.9 An Example Quadtree 41

3.1 The Dataset ADSl 58
3.2 The Dataset ADS2 59
3.3 The Dataset ADS3 60
3.4 The Dataset ADS4 61

4.1 An Example GA-based QDT 75
4.2 The Algorithm of the Procedure createQDTO . . 78

‘ 4.3，The Dataset ADS7 86
4.4 The Dataset ADS8 87
4.5 Validation Accuracy (%) of GA-based QDT on

BALANCE versus Number of Generations T . . . 97
4.6 • Execution Time (in Seconds) of GA-based QDT ,

on BALANCE versus Number of Generations T . 97
4.7 Tree Size (in Number of Nodes) of GA-based QDT

on BALANCE versus Number of Generations T . 98
V

viii

4.8 Validation Accuracy (%) of GA-based QDT on
BALANCE versus Crossover Probability pc 99

4.9 Execution Time (in Seconds) of GA-based QDT
on BALANCE versus Crossover Probability pc . . 100

4.10 Tree Size (in Number of Leaf Nodes) of GA-based
QDT on BALANCE versus Crossover Probability
Pc 100

4.11 Validation Accuracy (%) of GA-based QDT on
BALANCE versus Mutation Probability pm • • . 101

4.12 Execution Time (in Seconds) of GA-based QDT
on BALANCE versus Mutation Probability prn • . 103

4.13. Tree Size (in Number of Leaf Nodes) of GA-based
QDT on BALANCE versus Mutation Probability
Pm 103

4.14 Validation Accuracy (%) of GA-based QDT on
BALANCE versus Minimum Number of Samples
no 105

4.15 Execution Time (in Seconds) of GA-based QDT
on BALANCE versus Minimum Number of Sam-
ples no 105

4.16 Tree Size (in Number of Nodes) of GA-based QDT
on BALANCE versus Minimum Number of Sam-
ples no 106

4.17 Validation Accuracy (%) of GA-based QDT on
^ BALANCE versus Minimum Impurity Reduction

'go 108
4.18 Execution Time (in Seconds) of GA-based QDT

on BALANCE versus Minimum Impurity Reduc-
tion go 108

4.19 Tree Size (in Number of Nodes) of GA-based QDT
on BALANCE versus Minimum Impurity Reduc-
tion go 109

V

ix

5.1 An Example that a Linear Decision Function Does
Not Intersect the Smallest Rectangle Containing
a Set of Training Samples 114

5.2 An Example that a Quadratic Decision Function
Does Not Intersect the Smallest Rectangle Con-
taining a Set of Training Samples 114

5.3 An Example that a Linear Decision Function In-
tersects the Smallest Rectangle Containing a Set
of Training Samples 115

5.4 An Example that a Quadratic Decision Function
Intersects the Smallest Rectangle Containing a

,Set of Training Samples 115
5.5 An Example k-D Tree 117
5.6 The Algorithm of the Procedure createkDTreeO 120
5.7 An Example Generalized Quadtree 122
5.8 The Algorithm of the Procedure createQuadtree () 123
5.9 The Algorithm of the Procedure processkDTreeO 128
5.10 The Algorithm of the Procedure processQuadtree () 129
5.11 An Algorithm to Calculate the Maximum and the

Minimum Values of the Quadratic Expression in
(5.15) for Xi e [yi, Zi],i = 1,2..., d 135

5.12 The Algorithm of the Procedure processkDTreeCurve () 140
5.13 The Algorithm of the Procedure processQuadtreeCurve () 141
5.14 The Dataset ADS9 144

, 5.15 The Dataset ADSIO 145
5.16' The Dataset ADSll 146

V %

X

List of Tables

2.1 An Comparison of Various Decision Tree Algo-
rithms 18

3.1 Number of Generations for OCl-ES on ADSl,
ADS2, ADS3 and ADS4 64

3.2 Parameters of OCl-GA on ADSl, ADS2, ADS3
and ADS4 64

3.3 Parameters of BTGA on ADSl, ADS2，ADS3 and
ADS4 65

3.4 Parameters of SCION on ADSl, ADS2, ADS3
and ADS4 65

3.5 Parameters of GA-based CPRLS on ADSl, ADS2,
ADS3, ADS4, ADS5 and ADS6 65

3.6 Average and Standard Deviation of Validation
Accuracy (%) of Various Supervised Classifica-
tion Algorithms on ADSl, ADS2, ADS3, ADS4,
ADS5 and ADS6 based on 10 Independent Runs . 67

3.7，Average and Standard Deviation of Execution Time
(in Seconds) of Various Supervised Classification
Algorithms on ADSl, ADS2 and ADS3 based on
10 Independent Runs 68

3.8 Average and Standard Deviation of Execution Time
(in Seconds) of Various Supervised Classification
Algorithms on ADS4, ADS5 and ADS6 based on
10 Independent Runs 69

xi

3.9 Average and Standard Deviation of Validation
Accuracy (%) of the GA-based CPRLS and RS-
based CPRLS on ADSl, ADS2, ADS3, ADS4,
ADS5 and ADS6 based on 10 Independent Runs . 70

3.10 Average and Standard Deviation of Validation
Accuracy (%) of the GA-based CPRLS with and
without Token Competition on ADSl based on
10 Independent Runs 71

3.11 Average and Standard Deviation of Validation
Accuracy (%) of the GA-based CPRLS versus
Migration Quota Qm on ADSl based on 10 Inde-
pendent Runs 72

4.1 Number of Generations for OCl-ES on ADS7,
ADS8, ECOLI and BALANCE 88

4.2 Parameters of OCl-GA on ADS7, ADS8, ECOLI
and BALANCE 88

4.3 Parameters of BTGA on ADS7, ADS8, ECOLI
and BALANCE 89

4.4 Parameters of the GA-based QDT on ADS7, ADS8,
ECOLI and BALANCE 89

4.5 Average and Standard Deviation of Validation
Accuracy (%) of Various Supervised Classifica-
tion Algorithms on ADS7, ADS8, ECOLI and
BALANCE based on 10 Independent Runs 91

- 4.6 V Average and Standard Deviation of Tree Size (in
Number of Nodes) of Various Supervised Classi-
fication Algorithms on ADS7, ADS8, ECOLI and
BALANCE based on 10 Independent Runs 92

4.7. Average and Standard Deviation of Execution Time
(in Seconds) of Various Supervised Classification
Algorithms on ADS7, ADS8, ECOLI and BAL-
ANCE based on 10 Independent Runs 93

Xll

4.8 Average and Standard Deviation of Validation
Accuracy (%) of the GA-based QDT and RS-
based QDT on ADS7, ADS8, ECOLI and BAL-
ANCE based on 10 Independent Runs 94

4.9 Average and Standard Deviation of Validation
Accuracy (%), Execution Time (in Seconds) and
Tree Size (in Number of Nodes) on BALANCE
based on 10 Independent Runs as the Number of
Generations T Varies 96

4.10 Average and Standard Deviation of Validation
Accuracy (%), Execution Time (in Seconds) and

• Tree Size (in Number of Leaf Nodes) on BAL-
ANCE based on 10 Independent Runs when the
Crossover Probability pc Varies 99

4.11 Average and Standard Deviation of Validation
Accuracy (%), Execution Time (in Seconds) and
Tree Size (in Number of Leaf Nodes) on BAL-
ANCE based on 10 Independent Runs when the
Mutation Probability pm Varies 102

4.12 Average and Standard Deviation of Validation
Accuracy (%), Execution Time (in Seconds) and
Tree Size (in Number of Nodes) on BALANCE
based on 10 Independent Runs when the Mini-
mum Number of Training Samples no Varies . . . 104

^ 4.13 Average and Standard Deviation of Validation
‘Accuracy (%), Execution Time (in Seconds) and
Tree Size (in Number of Nodes) on BALANCE
based on 10 Independent Runs when the Mini-
mum Impurity Reduction go Varies 107

5.1 Number of Generations for OCl-ES on ADS9,
ADSIO, ADSll, ECOLI and BALANCE 147

HI

xiii

5.2 Parameters of OCl-GA on ADS9, ADSIO, ADSll,
ECOLI and BALANCE 147

5.3 Parameters of BTGA and its Variants on ADS9,
ADSIO, ADSll, ECOLI and BALANCE 148

5.4 Parameters of the GA-based QDT and its Vari-
ants on ADS9, ADSIO, ADSll, ECOLI and BAL-
ANCE 149

5.5 Average and Standard Deviation of Validation
Accuracy (%) of Various Supervised Classifica-
tion Algorithms on ADS9, ADSIO and ADSll
based on 10 Independent Runs 150

5.6 Average and Standard Deviation of Validation
Accuracy (%) of Various Supervised Classifica-
tion Algorithms on ECOLI and BALANCE based
on 10 Independent Runs 151

5.7 Average and Standard Deviation of Execution Time
(in Seconds) of Various Supervised Classification
Algorithms on ADS9, ADSIO and ADSll based
on 10 Independent Runs 153

5.8 Average and Standard Deviation of Execution Time
(in Seconds) of Various Supervised Classification
Algorithms on ECOLI and BALANCE based on
10 Independent Runs 154

5.9 Average and Standard Deviation of Execution Time
(in Seconds) of BTGA with k-D Trees on ADS9

‘based on 10 Independent Runs when the Mini-
mum Number of Training Samples NQ at Each
Node of a k-D Tree Varies 155

i、

xiv

5.10 Average and Standard Deviation of Execution Time
(in Seconds) of all Versions of the GA-based QDT
with k-D Trees on BALANCE based on 10 In-
dependent Runs when the Minimum Number of
Training Samples NQ at Each Node of a k-D Tree
Varies 156

5.11 Average and Standard Deviation of Execution Time
(in Seconds) of BTGA with Quadtrees on ADS9
based on 10 Independent Runs when the Mini-
mum Number of Training Samples NQ at Each
Node of a Generalized Quadtree Varies 158

5.12 Average and Standard Deviation of Execution Time
(in Seconds) of all Versions of the GA-based QDT
with Quadtrees on BALANCE based on 10 In-
dependent Runs when the Minimum Number of
Training Samples NQ at Each Node of a Gener-
alized Quadtree Varies 159

5.13 Average and Standard Deviation of Execution Time
(in Seconds) of BTGA and its Variants based on
10 Independent Runs when the Number of Repli-
cations Nc on ADS9 Varies 160

5.14 Average and Standard Deviation of Execution Time
(in Seconds) of the GA-based QDT and all Ver-
sions of the GA-based QDT with k-D Trees based
on 10 Independent Runs when the Number of

•‘ ，Replications Nc on BALANCE Varies 161
5.15 Average and Standard Deviation of Execution Time

(in Seconds) of the GA-based QDT and all Ver-
sions of the GA-based QDT with Quadtrees based

• on 10 Independent Runs when the Number of
Replications Nc on BALANCE Varies 161

XV

Chapter 1

Introduction

1.1 Data Mining

Data mining is the process of extracting or mining hidden knowl-
edge from large amounts of data. It is becoming more popular in
academic organizations and large corporations. With the rapid
development of computer hardware, it is more feasible for aca-
demic organizations and companies to collect and maintain large
volumes of data. Moreover, the popularity of the World Wide
Web (WWW) enables us to access lots of data and information.
However, it is impractical for human brains to search for com-
plex relationships in tremendous amount of data. On the other
hand, it is more economical to apply automated data mining
systems instead of employing a team of highly trained profes-
sionals to perform analysis on large volumes of data. Although

. data mining systems cannot entirely solve complex problems
without humans, it simplifies the process of extracting knowl-
edge from data. The information discovered from data mining
systems can be applied to business decision making, marketing
analysis, transactional analysis and so on.

Data mining is regarded as an essential step in the process
of Knowledge Discovery in Databases (KDD). Some people may
treat data mining as a synonym for KDD. KDD is composed of
an iterative sequence of the following steps [21]:

1

Chapter 1 Introduction 2

• Data cleansing where inconsistent data are removed,

• Data integration where multiple data sources are combined
if necessary,

• Data selection where data relevant to the analysis are re-
trieved from the database,

• Data transformation where data are transformed into forms
which are suitable for data mining,

• Data mining which is an essential process to extract hidden
patterns and knowledge, and

• Data interpretation which identifies the truly interesting
patterns representing knowledge based on some measures
of interestingness.

Data mining tasks can be divided into several categories, in-
cluding supervised classification, unsupervised classification, as-
sociation analysis, data characterization and so on. Supervised
classification searches for a set of models in order to predict the
class label of an unseen data item. The possible models include
classification rules, decision trees, mathematical formulae and
so on. The proposed algorithms in the thesis are examples of
supervised classification algorithms. Unsupervised classification
is the process of analyzing a set of data items without class
labels. The data items are grouped so as to maximize the intra-
class similarity and minimize the interclass similarity. The data
items within the same group should be similar to each other.
But a pair of data items from distinct groups should have low
similarity. Association analysis discovers a set of association
rules describing the attribute-value conditions which occur fre-
quently together in a dataset [21]. Data characterization is the
process of summarizing the general characteristics of a specified
class of data [21:.

Chapter 1 Introduction 3

1.2 Problem Specifications and Motivations

A rule-based expert system for continuous input attributes called
SCION was proposed by Leung et al. [33], [34]. In this system,
a set of classification rules is evolved using Genetic Algorithms
(GAs). The antecedent part of a classification rule is a conjunc-
tive set of inequalities involving one numeric attribute, which is
equivalent to a hyperrectangle in the attribute space. On most
datasets, the class boundaries are not axis-parallel and there are
one or more nominal input attributes. Therefore, it is necessary
to propose a rule learning algorithm such that the antecedent
part of a rule may consist of linear inequalities involving one or
more numeric attributes and nominal attribute-value pairs. GAs
are applied to evolve a set of such classification rules because its
search space can be very large.

Murthy et al. proposed OCl algorithm, using a combination
of hill-climbing and randomization to find the optimal hyper-
plane at each internal node of an oblique decision tree [39], [38],
which uses one or more linear functions to perform classifica-
tions. Ittner et al. introduced Non-linear Decision Trees (NDT)
by extending the OCl algorithm [26]. The decision function
at each non-leaf node is equivalent to a quadratic hypersurface
26]. A quadratic hypersurface provides a better approximation

to a non-linear class boundary than a straight line. At each
non-leaf node of an NDT, the optimal quadratic hypersurface
is determined using a combination of hill-climbing and random-
ization. On the other hand, Chai et al. proposed Binary-Tree
Genetic Algorithm (BTGA), where the optimal hyperplane is
evolved using GAs at each non-terminal node [9]. Experiments
show that BTGA outperforms the OCl algorithm in most cases.
Therefore, a novel GA-based quadratic decision tree algorithm
is proposed by extending BTGA.

An oblique or a quadratic decision tree is usually constructed

\

Chapter 1 Introduction 4

using a top-down approach. At each non-leaf node of an oblique
or a quadratic decision tree, the optimal linear or quadratic de-
cision function is found using a heuristic. The optimality of
a decision function is usually defined as the impurity reduction
after partitioning a set of training samples into two disjoint sub-
sets. Several impurity measures such as the Gini-index [6] and
the Twoing value [6] can be used to evaluate the impurity of a
set of training samples.

To determine the impurity reduction, it is necessary to find
the number of training samples for each class satisfying the linear
or the quadratic decision function to be considered. This task
can be performed by evaluating the sign for each of these training
samples. However, this approach is time consuming on large
datasets.

Alternatively, spatial data structures such as k-D trees and
generalized quadtrees may be constructed before searching for
the optimal linear or quadratic decision function at each non-leaf
node of an oblique or a quadratic decision tree. At each node of
a k-D tree or a generalized quadtree, there is the corresponding
smallest hyperrectangle containing the set of training samples
arriving at that node. When a linear or a quadratic decision
function does not intersect the smallest hyperrectangle contain-
ing the set of training samples arriving at a node of a k-D tree
or a generalized quadtree, all of these training samples either
satisfy or violate the decision function. In this case, it is un-
necessary to decide whether the decision function is satisfied for
each of these training samples. Otherwise, the descendants of
the node are considered if necessary until a leaf node is reached.

It is straight forward to decide whether a linear decision func-
tion intersects a hyperrectangle correctly using a suitable lin-
ear function. However, it is difficult to determine whether a
quadratic decision function intersects a hyperrectangle correctly.
Therefore, it is necessary to choose the suitable methods to es-

Chapter 1 Introduction 5

timate the minimum and the maximum values of a quadratic
function within a hyperrectangle so that the quality of a con-
structed quadratic decision tree is preserved using k-D trees or
generalized quadtrees.

1.3 Contributions of the Thesis

The contributions of the thesis are summarized as follows:

• A novel rule induction algorithm is proposed. A set of clas-
sification rules is evolved using a genetic algorithm, where
the antecedent part of a rule is a conjunction of logical
expressions. The possible logical expressions include nomi-
nal attribute-value pairs and linear inequalities with one or
more continuous attributes.

• A novel quadratic decision tree algorithm is introduced,
where genetic algorithms are applied to search for the op-
timal quadratic decision function at each non-leaf node of
a quadratic decision tree.

• k-D trees and generalized quadtrees are proposed and ap-
plied to speed up the induction of an oblique and a quadratic
decision tree on a sufficiently large dataset, without sacri-
ficing the quality of a constructed decision tree.

- T h e optimality of a linear or a quadratic decision func-
tion is usually defined as the impurity reduction after
dividing a set of training samples into two disjoint sub-
sets. It is necessary to calculate the number of train-
ing samples for each class satisfying the linear or the
quadratic decision function to be considered. An alter-
native method to perform this task is introduced using
a constructed k-D tree or generalized quadtree.

Chapter 1 Introduction 6

-Three methods of estimating the minimum and the
maximum values of a quadratic function within a hy-
perrectangle, which are useful for evaluating the impu-
rity reduction due to a quadratic decision function, are
introduced. Although all of these methods may overes-
timate its maximum value and underestimate its min-
imum value, neither its maximum value is underesti-
mated nor its minimum value is overestimated. There-
fore, the impurity reduction due to a quadratic decision
function can be evaluated accurately.

1.4 Thesis Roadmap

In this chapter, the background of data mining is presented. The
motivation and the contributions of the thesis are also described.

In chapter 2, supervised classification algorithms including
decision trees and rule induction are introduced. Moreover, the
four kinds of evolutionary algorithms (EAs), including genetic
algorithms (GAs), genetic programming (GP), evolution strate-
gies (ES) and evolutionary programming (EP), are presented.
Several EA-based rule induction and decision tree algorithms
are described. In addition, spatial data structures such as k-D
trees and generalized quadtrees, as well as their applications,
are given.

In chapter 3, a novel rule induction algorithm, called Genetic
Algorithm-based Convex Polytope Rule Learning System (GA-
based CPRLS), is introduced by extending SCION [33], [34]. A
set of classification rules is evolved using GAs. The antecedent
part of each classification rule is a conjunction of logical expres-
sions, including linear inequalities and nominal attribute-value
pairs. Token competition [33], [34] is employed to remove re-
dundant rules. The performance of the GA-based CPRLS is
evaluated and compared with that of several supervised classi-

Chapter 1 Introduction 7

fication algorithms. In addition, the quality of the classification
rules evolved by the GA-based CPRLS is compared with that
generated by random search. Moreover, the effects of token com-
petition and rule migration on the performance of the GA-based
CPRLS are investigated.

In chapter 4, a novel decision tree algorithm, called Genetic
Algorithm-based Quadratic Decision Tree (GA-based QDT), is
proposed by extending Binary Tree-Genetic Algorithm (BTGA)
9]. At each non-terminal node of a GA-based QDT, the optimal

quadratic decision function is evolved using GAs. The perfor-
mance of the GA-based QDT is evaluated and compared with
that of various supervised classification algorithms. Moreover,
the performance of the GA-based QDT is compared with that
of Random Search-based Quadratic Decision Tree (RS-based
QDT). Moreover, the effect of changing the parameters of the
GA-based QDT is investigated. The effect of noise on the GA-
based QDT is also studied.

In chapter 5，two spatial data structures including k-D trees
and generalized quadtrees are employed to speed up the con-
struction of oblique and quadratic decision trees provided that
the size of a dataset is sufficiently large. The structures of a k-D
tree and a generalized quadtree for the construction of a linear
or a quadratic decision tree are described first. The algorithm to
construct the k-D trees and the generalized quadtrees are then
presented. After that, the algorithm to evaluate the optimality
of a linear decision function with the aid of k-D trees and gen-
eralized quadtrees is described. The algorithm to calculate the
optimality of a quadratic decision function using k-D trees and
generalized quadtrees is presented. Furthermore, three meth-
ods of estimating the maximum and the minimum values of a
quadratic function within a hyper rectangle are introduced.

Two linear decision tree algorithms, called Binary Tree-Genetic
Algorithm with k-D trees (BTGA with k-D Trees) and Binary-

Chapter 1 Introduction 8

Tree Genetic Algorithm with Quadtrees (BTGA with Quadtrees),
are modified from BTGA. Similarly, two quadratic decision tree
algorithms, called Genetic Algorithm-based Quadratic Decision
Tree with k-D Trees (GA-based QDT with k-D Trees) and Ge-
netic Algorithm-based Quadratic Decision Tree with Quadtrees
(GA-based QDT with Quadtrees), are introduced by extending
the GA-based QDT. The performance of all of the variants of
BTGA and the GA-based QDT, is evaluated and compared with
various supervised classification algorithms. The effects on these
proposed algorithms are investigated when the number of train-
ing samples at each node of a k-D tree or a generalized quadtree
is changed and the size of a dataset is increased.

In chapter 6，a conclusion of the thesis is provided, including
its contributions. Possible research directions of the thesis are
also described.

口 End of chapter.

Chapter 2

Related Work

2.1 Supervised Classification Techniques

There are various kinds of supervised classification techniques,
including classification rules, decision trees, artificial neural net-
works, nearest neighbor classifiers, Bayesian classifiers and so
on. In this section, classification rules and decision trees will be
discussed because my research work is closely ralated to them.

2.1.1 Classification Rules

A rule may be used to express useful knowledge in the form
of an "if-then" statement. It consists of two parts, including
the antecedent and the consequent parts. The antecedent part
of a rule specifies the necessary conditions so that a conclusion,
which is stated in the consequent part of the rule, can be drawn.

' A classification rule is a rule which can be used to perform
supervised classifications. The antecedent part of a rule states
the conditions of one or more of the input attributes of a sample.
The consequent part of a classification rule determines the class
label when the conditions specified in the antecedent part are
satisified. In most cases, it is necessary to employ more than
one classification rule to perform supervised classifications.

To learn a set of rules, a dataset is partitioned into two sub-

丨 、 9

Chapter 2 Related Work 10

sets, including a training and a testing sets. The training set
is applied to induce a set of classification rules. The quality of
a set of classification rules is evaluated on the testing set. A
good set of classification rules should minimize the number of
misclassifications on the testing set, rather than the training set.

There are various algorithms to learn a set of classification
rules, including sequential covering algorithms [36], C4.5RULES
44] and so on.

In sequential covering algorithms, a set of positive and nega-
tive training samples is considered. A single rule is produced in
each iteration. After a single rule is learnt, the positive train-
ing samples covered by the rule are removed and the remain-
ing training samples are employed to induce another rule. The
process is repeated iteratively until the fraction of the positive
training samples covered by the disjunctive set of the generated
rules is greater than a threshold. A generated rule should have
high classification accuracy, rather than high coverage.

After a disjunctive set of rules is learnt, they can be sorted so
that more accurate rules will be considered first when they are
applied to classify unseen testing samples. Sequential covering
algorithms are greedy algorithms so that the best or the smallest
set of rules cannot be guaranteed to be found. CN2 [10] is an
example sequential covering algorithm.

C4.5RULES is a component of C4.5 algorithm [44]. C4.5RULES
transforms a decision tree constructed by the C4.5 algorithm
into a set classification rules. In a decision tree, a path from the
root to a leaf node is equivalent to a classification rule. The an-
tecedent part of a rule is the conjunction of the decision functions
at the non-leaf nodes in the corresponding path. The consequent
part is the class label associated with the leaf node. However, a
rule dervied from a decision tree can be very complicated and it
may be necessary to simplify the rule by removing one or more
conditions.

Chapter 2 Related Work 11

Some of the simplified rules may be redundant. For each
class, a subset of rules is chosen from the set of rules classifying
that class using the minimum description length (MDL) [46
principle.

2.1.2 Decision Trees

Decision trees are tree structures which classify an input sample
into one of its possible classes. Since the last century, decision
trees have been applied successfully in various tasks, including
character recognition, remote sensing, medical diagnosis and so
on [47:.

In a decision tree, there are two or more child nodes at each
non-terminal node. There is a decision criterion to select the
appropriate child node at each non-terminal node. One or more
input attributes are involved in a decision criterion. There is
a class label at each terminal node to classify an input sample
arrived at it.

In order to classify an input sample using a decision tree,
the root node should be considered first. The decision crite-
rion associated with the root node determines which child node
(or subtree) should be chosen next. The process is repeated re-
cursively at each selected descendant until a terminal node is
encountered. The input sample is classified according to the
class label associated with the terminal node. Figure 2.1 shows
an example decision tree.

To construct a decision tree, a set of input samples is par-
titioned into two or three disjoint subsets, called training set,
testing set, and validation set if necessary. The training set is
used to construct a decision tree. A constructed decision tree
should minimize the number of misclassifications on the testing
set, instead of the training set. The validation set sometimes can
be used for postpruning such as to decide whether to replace a

Chapter 2 Related Work 12

又 2 > - 3

Class 1 Xj >5

Class 3 Class 2

Figure 2.1: An Example Decision Tree

subtree by a node or not.
Usually, a decision tree is constructed using a top-down ap-

proach [16]. To build a decision tree, the root node is created
first. The optimal decision criterion associated with the root
node is determined to partition the training set into two or more
disjoint subsets. Several impurity measures, including informa-
tion gain [43], the Gini index [6], the Twoing rule [6] and so
on, can be applied to evaluate the optimality of a decision cri-
terion. After determining the optimal decision criterion at the
root node, two or more child nodes are created and the training
set is partitioned into two or more disjoint subsets such that

.. each subset is associated with one child node. The process is
repeated recursively for each child node until a termination cri-
terion is satisfied. An important issue of constructing a decision
tree is overfitting of the training samples. Overfitting occurs
when there exists a simplier decision tree such that it has higher
classification rate on the testing set. Although a decision tree
may classify all the training samples correctly, it may not clas-
sify the unseen testing samples well. It is necessary to control
the growth of a decision tree. The process of controlling the

1

Chapter 2 Related Work 13

growth of a decision tree is called pruning.
There are two major approaches of pruning, including preprun-

ing and post pruning. In prepruning, no child nodes are created
if the number of training samples arriving at a node is less than
a threshold. In post pruning, a decision tree with no misclassi-
fication is built first. Later, a subtree is replaced by a terminal
node using the validation set if necessary.

Decision trees whose decision criterion at each non-terminal
node depends on only one input attribute are called univariate
decision trees. Decision trees whose decision criterion involves
more than one input attribute at each non-terminal node are
called multivariate decision trees. The following describes sev-
eral decision tree algorithms which construct univariate or mul-
tivariate decision trees.

Univariate Decision Trees

In univariate decision trees, the decision criterion at each non-
terminal node considers one input attribute only. If the de-
cision criterion at a non-terminal node considers a continuous
attribute, it is equivalent to a hyperplane which is parallel to
one of the coordinate axes. Decision tree algorithms, such as
Iterative Dichotomiser 3 (IDS) [43], C4.5 [44] and Classification
and Regression Trees (CART) [6], can construct univariate deci-
sion trees. The decision tree shown in Figure 2.1 is an example
univariate decision tree.

Decision trees constructed by the ID3 algorithm are capable
of classifying an input sample consists of categorical attributes
only. The number of child nodes at each non-terminal node
equals the number of possible values of the corresponding at-
tribute* associated with the node. No pruning is employed in
the IDS algorithm. To construct a decision tree using the IDS
algorithm, the root node is created first. After that, the informa-
tion gain of the training set due to each attribute is evaluated.

Chapter 2 Related Work 14

The attribute which induces the maximum information gain is
chosen as the decision function associated with the root node.
The training set is partitioned into several subsets using the
selected attribute. The process is repeated recursively in each
subset until all the training samples arriving at a node belong
to one single class or they cannot be further partitioned using
any input attribute.

Quinlan introduced the C4.5 algorithm [44] so that it can
build decision trees which are capable of handling continuous in-
put attributes. At each non-terminal node whose decision func-
tion considers a categorical attribute, the number of child nodes
equals the number of possible values of the attribute. There are
two child nodes at each non-terminal node whose decision func-
tion considers a continuous attribute. The gain ratio is applied
to evaluate the optimality of a decision function because the
information gain tends to favor attributes which induce more
partitions [44 .

Breiman et al. introduced the CART algorithm in 1984 [6 .
Decision trees produced by the CART algorithm are binary
trees, in which each non-terminal node has two children. The
Gini index or the Twoing value [6] is used to evaluate the opti-
mality of a decision function. Decision trees constructed by the
CART algorithm can handle categorical and continuous input
attributes. At each terminal node, the corresponding class label
is determined as the class with the maximum number training
samples arriving at it. The process is repeated recursively until
the impurity reduction is less than a user-defined threshold. The
CART algorithm employes minimal cost-complexity pruning [6
to control the growth of a decision tree.

Multivariate Decision Trees

In a multivariate decision tree, the decision function is a lin-
ear or non-linear combination of more than one input attribute.

.1

Chapter 2 Related Work 15

3xj H-Xj >2

X2 -Xj >21 Class 3

Class 2 Class 1

Figure 2.2: An Example Oblique Decision Tree

Most of the multivariate decision tree algorithms construct bi-
nary trees. In an oblique decision tree [39], [38], the decision
function at each non-terminal node is a linear combination of
all input attributes. The decision function at each non-terminal
node is equivalent to a hyperplane with an arbitrary orienta-
tion in the attribute space [38]. Oblique decision trees are also
known as linear decision trees [20] or perceptron decision trees
2]. Figure 2.2 shows an example oblique decision tree.

The problem of finding the optimal hyperplane which min-
imizes the number of misclassifications after dividing a set of
training samples into two disjoint subsets is NP-hard [23]. Oblique

‘decision tree algorithms use a heuristic to attempt to search for
the optimal hyperplane at each non-terminal node.

In a non-linear decision tree, the decision function at each
non-terminal node is a non-linear combination of all input at-
tributes. -A special case of a non-linear decision tree is a quadratic
decision tree. In a quadratic decision tree, the decision function
at each non-terminal node is equivalent to a quadratic hyper-
surface in the attribute space. Figure 2.3 shows an example
non-linear decision tree.

Chapter 2 Related Work 16

Xj Class 3

Class 2 Class 1

Figure 2.3: An Example Non-linear Decision Tree

The CART algorithm is also capable of constructing a linear
decision tree. At each non-terminal node, the associated deci-
sion function is allowed to be a linear combination of continuous
input attributes. In order to find the optimal linear decision
function, the CART algorithm cycles thorugh the continuous
input attributes sequentially in each iteration. The cycling con-
tinues until the change in the impurity reduction is less than a
predefiend threshold. If the number of training samples arriv-
ing at a node is less than a user-defined threshold, the decision
function at that node considers one of the input attributes only.

Murthy et al. proposed Oblique Classifier 1 (OCl) to con-
‘ s t ruc t an oblique decision tree by extending the CART algorithm

38]. To find the optimal hyperplane at each non-terminal node,
the OCl algorithm searches for the best axis-parallel hyperplane
first. A hyperplane is said to be axis-parallel if it is parallel to
one of the coordinate axes in the attribute space. Then the op-
timal hyperplane with an arbitrary orientation is determined.
To improve the search for the optimal hyperplane, the OCl al-
gorithm attempts to escape from local optima in the coefficient
space using randomization [39], [38]. When a local optimum is

Chapter 2 Related Work 17

encountered, the coefficients of a linear decision function (in-
cluding the constant term) are added to a random vector in the
coefficient space, in which each point specifies a linear decision
function.

Brodley et al. [7] introduced Linear Machine Discriminant
Trees (LMDT) to construct multivariate decision trees. At each
non-leaf node, there are C child nodes, where C is the number
of possible classes. There are C linear discriminant functions at
each non-terminal node.

Shah et al. [51] introduced Alopex Perceptron Decision Tree
(APDT) algorithm to construct oblique decision trees. At each
non-terminal node, linear separability is used to evalaute the
optimality of a linear decision function. At each non-terminal
node, the initial hyperplane is perpendicular to the vector join-
ing two randomly chosen input samples of distinct classes ar-
riving at it. Alopex algorithm [54] is then applied to find the
optimal linear decision function. However, the APDT algorithm
is capable of handling two-class problems only.

Gama et al. proposed Ltree to construct oblique decision
trees [17]. At each node, a set of linear discriminant functions
are employed to create new attributes for each training sample
arriving at that node. A new training sample is created using
the original attributes and the newly created input attributes
for each original training sample. The C4.5 algorithm is used

. t o find the optimal hyperplane using the set of training sam-
ples containing the newly created input attributes [17]. After
determining the optimal hyperplane, the training samples are
partitioned into two disjoint subsets. The process is repeated
recurisvely and the newly created input attributes are propa-
gated to the descendants of the currently processed node.

Iyengar introduced a method of constructing oblique deci-
sion trees which can be incorporated into most of the exist-
ing univariate decision tree algorithms [27]. To construct an

Chapter 2 Related Work 18

Algorithm Binary Multivariate? Deterministic? Can Handle Can Handle

Tree? Continuous Multiclass

Attributes? Problems?

ID3 No No Yes No “ Yes

C4.5 ^ N o No Yes 一 Yes 一 ^

一 CART Yes Yes Yes — Yes Yes

一 OCl Yes Yes No — Yes Yes

LMDT No ^ ^ Yes — y S
APDT Yes ^ Yes Yes 一 No

Ltree Yes Yes Yes Yes Yes

Table 2.1: An Comparison of Various Decision Tree Algorithms

oblique decision tree, a univariate decision tree is constructed
first. The constructed decision tree is then pruned if necessary.
After that’ candidate oblique vectors are found using the deci-
sion tree. For each training sample, new input attributes are
created from these oblique vectors. The process is repeated for
a predefined number of iterations.

Yildiz et al. introduced linear discriminant trees [58]. Each
non-terminal node employes linear discriminant analysis (LDA)
to determine the hyperplane dividing a set of training sam-
ples into two disjoint subsets. Before constructing a decision
tree, each categorical attribute is transformed into K binary

.attributes, where K is the number of possible values of the cate-
gorical attribute. One of these K binary attributes is set to one
and the remaining ones are set to zero, depending on the value
of the corresponding categorical attribute.

Table 2.1 provides a comparison of various decision tree algo-
rithms. Note that the column 'Deterministic' shows whether a
decision tree algorithm always produces the same decision tree
when the same set of samples are applied in the training stage.

� I

Chapter 2 Related Work 19

2.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are stochastic optimization al-
gorithms inspired by the principles of natual selection and ge-
netics [12]. There are four kinds of EAs, including genetic algo-
rithms (GAs), genetic programming (GP), evolution strategies
(ES) and evolutionary programming (EP) [56 .

An evolutionary algorithm maintains a population of chromo-
somes. Each chromosome represents a candidate solution to a
problem. A fitness function is employed to measure the strength
of a chromosome, which reflects the quality of the correspond-
ing solution to a problem. Offspring chromosomes are generated
using selection, mutation and recombination operators.

The different kinds of evolutionary algorithms differ mainly
in the choices of the evolution models, the fitness functions, the
evolutionary operators and the selection methods [14 .

2.2.1 Genetic Algorithms

Genetic algorithms (GAs) were proposed by Holland [25]. In
traditional GAs, each individual is a binary string with a fixed
length. Nowadays, many GAs use a real-valued vector to repre-
sent an individual in a population. GAs which employ a binary
string to represent a chromosome are called binary-coded genetic
algorithms (BCGAs). GAs which use a real-valued vector to

• represent an individual are called real-coded genetic algorithms
(RCGAs) [24].

To solve a problem using GAs, a population of chromosomes
is initialized first. The fitness value of each chromosome is eval-
uated. Chromosomes are selected and replicated to the mating
pool. Chromosomes with higher fitness values are more likely
to be copied to the mating pool. Chromosomes in the mating
pool undergo crossover and mutation. The processes of fitness
evaluation, selection, crossover and mutation are repeated until

1

Chapter 2 Related Work 20

one of the predefined termination criteria is satisifed. An eli-
tist strategy is used to make sure that the best individual in
the current generation is preserved in the next generation. The
following outlines the steps of a GA:

1. Set r = 0, where r is the current generation number.

2. Initialize a population Pr of L chromosomes.

3. Evaluate the fitness value of each chromosome in the pop-
ulation Pj.

4. Set 0best as the best chromosome in the population Pr.

5. While all of the termination criteria are not satisfied,

(a) Select L chromosomes from the population Pj. The
selected chromosomes are then copied to the mating
pool M.

(b) Set M' = Crossover(M).
(c) Set M丨丨=Mutation(M').
(d) Evaluate the fitness value of each chromosome in M".
(e) Let Oworst be the worst chromosome in the population

M".

(f) Set Pr+I = {M" \ {^^orst}) U {6lf,est}.
• (g) Set Obest as the best chromosome in the population

PT+I-

(h) Set r = r + l.

6. The best chromosome in the population Pr is selected as
the solution to a problem.

Chapter 2 Related Work 21

Selection

There are several methods to select a chromosome to be repli-
cated to the mating pool, including roulette wheel selection [11],
rank based selection [1], tournament selection [22] and so on.
Stronger chromosomes are more likely to be replicated to the
mating pool in these selection methods.

In roulette wheel selection, the probability pi of selecting the
i认 chromosome in a population P is:

Pi = (2-1)

where fi, i = 1,2..., L, is the fitness value of the chromosome.
In rank based selection, the chromosomes in a population are

sorted in the descending order of their fitness values first. The
probability of a chromosome selected for replication depends
on the rank of its fitness value. A chromosome with a higher
ranking is more likely to be copied to the mating pool.

In tournament selection, two or more chromosomes are ran-
domly selected first. Each chromosome in a population is se-
lected with an equal probability. The best chromosome among
the selected ones is allowed to be copied to the mating pool.

Crossover

• There are. several crossover operators in BCGAs, including sim-
ple crossover [25], [19], uniform crossover [53] and so on. Given
two parent chromosomes bi = (6i’i, 6i’2..., &i’d) and b2 = (62,1, &2,2
...,62,d) in a BCGA, where d is the length of a chromosome, the
following, outlines the steps to generate two offspring chromo-
somes bi = (6i’i,6i’2...，6i’d) and b'2 =(的’ 1, &'2’2."’ 6'2’d) using
these crossover operators.

• Simple Crossover
I _

Chapter 2 Related Work 22

1. Generate a random integer c G {1,2..., d — 1]-.
2. Set b'l i = bi,i and = for i = 1,2."’ c.
3. Set = b2,i and b'2,i = 6i’i for z = c + 1, c + 2..., d.

• Uniform Crossover
FOR i = lTOdDO

1. Generate a random bit c G {0,1}.
2. Set b'l i = bî iC + 62,̂ 0.
3. Set &'2’i = + 62,iC.

There are various crossover operators in RCGAs, including
arithmetical crossover [35], BLX-a crossover [13], linear crossover
57], discrete crossover [37], Wright's heuristic crossover [57] and

so on. Note that each crossover operator in RCGAs may gener-
ate a different number of offspring. Suppose two parent chromo-
somes 9i -(没1,1，没i’2...，Oi^d) and 62 = (̂ 2,1?没2’2-.-,没2’d) are chosen
to undergo crossover, the following paragraphs describe the ef-
fect when different crossover operators are applied in RCGAs.

In arithmetical crossover, two offspring chromosomes O'̂ =
(没i’i，没;’2."，没id) and 約=(的’i’巧’2-"，約’d) are generated such
that:

oli = xei,i + (1 - x)e2,i (2.2)
= + (1 - (2.3)

. w h e r e A is a constant and i = 1,2..., d.
In BLX-a crossover, one offspring 6' = O2..., is gen-

erated such that i = 1, 2..., d, is a uniform random number
within the ragne [min(没i’i, 62,i) — na, max{6i^i,没2’i) + riQ；]，where
n = max[0i,i, 62,i) - min{6i^i, 62,1).^

In linear crossover, three offspring chromosomes O'̂ =(約,1，6[2
…，没i,丄 ̂ =("“，巧，2."，巧,d) and 約=(約，1,約，2…A,d) are gen-
erated first, where

• eli = 0.5^1,i + 0.502,i (2.4)

Chapter 2 Related Work 23

oy = - 0.502,i (2.5)
約，i = 1.5(92，i —0.5"i，i (2.6)

where i = 1,2..., d. The parent chromosomes are then replaced
by the two strongest offspring chromosomes among the three
ones.

In discrete crossover, one offspring 9' = $2..., 0'^) is gen-
erated such that 9[= O.5[0i’i(l + q) + �i (l — q)], i = 1，2..., d,
and Ci G { — 1,1} is a random integer.

In Wright's heuristic crossover, suppose Oi is stronger than
O2, one offspring 6' = O^..., is generated such that 6[=

— + where r is a random number within the range
0,1], 2 = 1,2..., d.

Mutation

In BCGAs； each bit of an individual is mutated with a fixed or
a varying probability. When the value of a selected bit equals
zero, its value is changed to one. Otherwise, the value of the
selected bit is set to zero.

Common mutation operators in RCGAs include random mu-
tation, non-uniform mutation and so on [35]. Suppose the chor-
mosome 6 二 (没i,没2...，没d), where 9i G [Omin,Omax], i =
is selected to undergo mutation, the effect of different mutation
operators is described below.

. In random mutation, an offspring 6' =�Q'i,Q'2…,Q'�is gener-
ated such that 0[is a uniform random number within the range
^min 1 ^max, •

The following outlines the steps to create an offspring 6'=

{9[, 62..., O'd) using non-uniform mutation:

1. Generate a random integer c e {—1,1}.

2. IF c = 1, THEN set e[= Oi + {Omax - Oi){l - r^^-hf)
ELSE set e'i = d i - {Oi — Omin)(l _ r(i-S)').

Chapter 2 Related Work 24

where 丁 is the current generation number, G is the maximum
number of generations and 6 is a user-defined constant.

2.2.2 Genetic Programming

Genetic programming (GP) was introduced by Koza [30], [31],
32]. GP usually manipulates a population of computer pro-

grams while GAs usually operate on a population of binary
strings of a fixed length [56]. There are two main types of GP,
namely, tree-based and linear GP. Tree-based GP is the more
common type of GP. A computer program is usually represented
in the form of a parse tree in tree-based GP. In other words, a
population of parse trees is usually maintained in most GP sys-
tems. A parse tree can modify its size and shape dynamically.
However, many GP algorithms restrict the depth of a parse tree.

A non-leaf node of a parse tree is called a primitive func-
tion. A terminal node of a parse tree is called a terminal. The
sets of primitive functions and terminals are called function and
terminal sets respectively. The function set consists of arith-
metic operators and functions [56]. The terminal set includes
constants and independent variables. The function set has the
closure property, which means each primitive function accepts
any terminal or any output produced by any function in the
function set as an input parameter. It is necessary to define
the function and the terminal sets in order to solve a problem

‘us ing GP; Figure 2.4 shows an example parse tree. In this fig-
ure, the function and the terminal sets are {+，*} and {X, y, 2}
respectively.

In a traditional GP algorithm, an initial population of parse
trees is generated randomly. To construct a parse tree, one
of the elements in the function set is selected as the label for
the root node of the parse tree. When a node labeled with a
primitive function is created, two or more nodes are generated as

�

Chapter 2 Related Work 25

�

• © ®

Figure 2.4: An Example Parse Tree

the children of the node, depending on the arity of the function.
Each child node is labeled with either a primitive function or a
terminal. The above process is repeated recursively until a child
node labeled with a terminal is created. The following outlines
the algorithm of a traditional GP system:

1. Set r = 0, where r is the current generation number.

. 2. Initialize a population Pj of parse trees.

. 3. Evaluate the fitness value of each individual in the popula-
tion Pr.

4. While all of the termination criteria are not satisfied,

(a) Generate a new population Pr+i of parse trees by se-
lection, crossover and mutation.

(b) Evaluate the fitness value of each parse tree in the pop-
ulation PT+1-

(c) Set r = r + 1.
；

Chapter 2 Related Work 26

5. Return the best parse tree as the computer program to a
problem.

In the crossover operation, a pair of parent parse trees is
randomly selected first. In each parental tree, one of its nodes
is chosen as a crossover point. Offspring trees are produced by
exchanging the subtrees rooted at the selected crossover points.
Figure 2.5 illustrates a crossover operation between a pair of
parse trees. The subtrees involved in the crossover operation
are marked with dotted lines.

In the mutation operation, one of the parse trees is chosen
first. One of the nodes of the parental tree is selected as the
mutation point. The subtree rooted at the mutation point is
replaced by a randomly generated subtree or leaf node. Figure
2.6 illustrates a mutation operation in a GP system.

2.2.3 Evolution Strategies

In evolution strategies (ES), a population of real-valued vec-
tors is maintained. ES was originally used to solve real-valued
function optimization problems [45]，[50]. In a function opti-
mization problem, the d-dimensional vector which maximizes or
minimizes an objective function is determined.

Usually, each individual in ES is an ordered pair X = (x, a),
where x = (xî xd) and cr = (ai, cr?...，â i) are rf-dimensional

.vectors. The vector x represents a point in the search space while
the vector cr is the standard deviation vector for the mutation
operator.

(1 + 1)-ES is the simplest and the earliest ES model. One off-
spring is generated by mutation in each geneation. The stronger
individual between the parent and the offsping is preserved in
the next generation. The following outlines the algorithm of
(1 + 1)-ES:

1. Initialize the ordered pair X = (x, cr), where x = (xi,x2 ...’

Chapter 2 Related Work 27

O 9 ©

(x) ； Y i : X) i 1 i

Parent A Offspring A

Crossover

o

. (: t 、 X

V----. Y (Z)
i X ； ； 1 ； • ^ ^ , « .

Parent B Offspring B

Figure 2.5: An Example that a Pair of Parse Trees Undergoes Crossover

•v

Chapter 2 Related Work 28

o © ~ • 八
X ^ Mutation 乂

y v , ® 、 . : : . ）

0 /..........
Parent (' 5) (Z)

Offspring

Figure 2.6: An Example that a Parse Tree Undergoes Mutation

•V
/ •

Chapter 2 Related Work 29

Xd) and a = (ai,(J2..., cr̂) are (/-dimensional vectors. The
vector X represents a point in the search space while the
vector a is the standard deviation vector for the mutation
operator.

2. While all of the termination criteria are not satisfied,

(a) Generate the offspring X' — (x', a') =Mutation(X).
(b) If the offspring X' is better than the parent X, then

set X = X'.

3. Return the vector x as the solution to a problem.

In [fi + 1)-ES, one offspring is generated from /x parents by
recombination and mutation in each generation. (1 + 1)-ES is a
special case of (/i + 1)-ES. The weakest individual among the fx
parents and the offspring is abandoned. The following outlines
the algorithm of (/z + 1)-ES:

1. Set r = 0, where r is the current generation number.

2. Initialize a population of (JL ordered pairs PR = {X\, X2
X^}, where Xi = (xi,ai), xi = and

cTi 二（ai’i, (Ti�2…�(Jî d) are c/-dimensional vectors. The vector
Xi represents a point in the search space while the vector ai
is the standard deviation vector for the mutation operator.

. 3. While all of the termination criteria are not satisfied,

(a) Generate the offspring X' = (x', a')=
Recombination (Pr).

(b) Generate the offspring X丨丨=(x〃，a") = Mutation(XO.
(c) Let Xworst be the weakest individual among the ji par-

ents and the offspring X".
(d) Set Pr+l 二 (Pr U {X"}) \ {X^orst}^
(e) Set r = r + l.

•V

Chapter 2 Related Work 30

4. Return the best individual in the population Pj as the so-
lution to a problem.

In (/i+A)-ES, A descendants are generated from ji parents by
recombination and mutation in each generation. The /x strongest
individuals among the fi parents and the 入 offspring are pre-
served in the next generation. The following outlines the algo-
rithm of {fj, + A)-ES:

1. Set r = 0, where r is the current generation number.

2. Initialize a population of fx ordered pairs Pr = {Xi ,X2
…，X^}, where Xi = (xi,c7i), Xi = and
(Ji = (cri’i, cri’2...，cFî d) are d-dimensional vectors. The vector
Xi represents a point in the search space while the vector ai
is the standard deviation vector for the mutation operator.

3. Set P''= PR.

4. While all of the termination criteria are not satisfied,

(a) FOR z - 1 TO A DO
i. Generate the offspring = (x|, (7|)=

Recombination(Pr).
ii. Generate the offspring X'l = (x;', o f) =

Mutation(义

. iii. Set F = U { X f } .
%

(b) Select the (jl strongest individuals in the population P'
to form the population PT+I-

(c) Set r = r + 1.

5. Return the best individual in the population Pr as the so-
lution to a problem.

In (jjL,入)-ES, A descendants are generated from (i parents by
recombination and mutation in each generation. The fi strongest >

Chapter 2 Related Work 31

individuals among the A descendants are preserved in the next
generation. The following outlines the algorithm of (/x,A)-ES:

1. Set 7•二 0，where r is the current generation number.

2. Initialize a population of fi ordered pairs Pr = {Xi , X2 …，

X^}, where Xi = (Xi,cri), where xi = and
a\ = (cri’i, cri’2..., (Ji,d) are G?-dimensional vectors. The vector
Xi represents a point in the search space while the vector a[
is the standard deviation vector for the mutation operator.

3. While all of the termination criteria are not satisfied,

(a) FOR 2 = 1 TO A DO
i. Generate the offspring X- = (x;, a[) 二

Recombinat ion (Pr).
ii. Generate the offspring = (xj', =

Mutation(XO.

(b) Set P' 二 U t i W } -
(c) Select the /x strongest individual in the population P'

to form the population Pr+i-
(d) Set r = r + l.

4. Return the best individual in the population Pr as the so-
lution to a problem.

There are several recombination operators proposed in the
literature [50]. In discrete recombination, two individuals are se-
lected first, d uniformly distributed random numbers ui,u2…,Ud
E [0,1] are then generated. Suppose Xa = (x^, a'J and X^ =
(x[j, cr(j), are selected as parents, an offspring X = A') is
generated such that:

, / 工a,i if Ui > 0.5,
S (2.7)

I xt^i otherwise,

Chapter 2 Related Work 32

a： = I if 均〉0-5， （2.8)

I cr&’i otherwise,
where i = 1, 2…,d.

In intermediate recombination, two individuals are selected
first. Suppose Xa = (x^, cr̂) and Xt = (xĵ , a^) are selected as
parents, an offspring X = a') is generated such that:

x'i = 0.5{xa,i + 工 b，i) (2.9)
J; = 0 . 5 (a a ’ … (2 . 1 0)

The following outlines the steps to create an offspring X'=
(X: a') from the individual X = (x, a) by the mutation operator:

1. Set z/ = iV(0,l).

2. Set a[= aiexp(TiN(fi, 1) + T2Z/), where ti and 下2 are user-
defined constants.

3. Set x[= Xi-^a[N{0,1).

2.2.4 Evolutionary Programming

Evolutionary Programming (EP) is a probabilistic optimization
strategy inspired by the concepts of Darwinian evolution [15],
12]. The behavioural relationship between parents and their

offspring is emphasized [56]. New offspring are produced by mu-
‘ tat ion only. No recombination is applied to generate offspring.

The following outlines the steps of an EP algorithm:

1. Set T = 0, where r is the current generation number.

2. Initialize a population Pr of individuals.

3. Evaluate the fitness value of each individual in the poupla-
tion Pr.

4. While all of the termination criteria are not satisified,
>1

Chapter 2 Related Work 33

(a) Generate one or more offsping for each individual in
the population Pr by mutation.

(b) Evaluate the fitness value of each offspring.
(c) Select the individuals for the population Pr+i using a

stochastic tournament selection.
(d) Set r = T + 1.

5. Return the best individual in the population Pj.

2.3 Applications of Evolutionary Algorithms
to Induction of Classification Rules

EAs are applied to evolve a set of classification rules because the
search space can be very large. In this section, several EA-based
rule induction algorithms such as SCION [33], [34], GABIL [29:
and LOgic grammar based GENetic PROgramming (LOGEN-
PRO) [55] are briefly discussed.

2.3.1 SCION

Leung et al. introduced a rule-based expert system called SCION.
In SCION, GAs are applied to evolve a set of classification rules.
The antecedent part of a classification rule is a conjunctive set of
inequalities involving one continuous attribute, while the conse-

‘quent part of the rule represents the class label. When a sample
satisfies the antecedent part of a rule, the sample is classified
according to the class label associated with the rule.

A population of chromosomes is partitioned into C subpop-
ulations, where C is the number of possible classes. There is
an associated class label in each subpopulation. A chromosome
classifies a sample into the class associated with its subpopu-
lation if the corresponding hyperrectangle contains the sample.
Each chromosome is a sequence of duples, where the duple

Chapter 2 Related Work 34

represents the lower and the upper bounds of the i认 input at-
tribute.

Token competition is applied to remove redundant rules. Re-
dundant rules may be produced because the individuals tend to
contain similar sets of training samples. Under token competi-
tion, the diversity of the chromosomes in each subpopulation is
maintained. The chromosomes in each subpopulation are sorted
according to their fitness values first. For each training sample,
its only one token is assigned to the strongest chromosome which
is capable of classifying the sample correctly. Stronger chromo-
somes can obtain more tokens while weaker ones may fail to
obtain any- token. Chromosomes which fail to obtain any token
are eliminated.

Rule migration was introduced in the SCION system because
a weak chromosome for a subpopulation may be a strong chro-
mosome for- another subpopulation. In the subpopulation,
when the fitness value of a weak chromosome for the k̂ ^ sub-
population is greater than the average fitness value of the chro-
mosomes in the k仇 subpopulation, where /c z, it is migrated
to the k仇 subpopulation.

2.3.2 GABIL

GABIL was introduced by De Jong et al. in 1993. A variable-
.„ length binary string is used to represent classification rules in

disjunctive' normal form (DNF). The antecedent part of each
rule is a conjunction of one or more conditions, each of which
involves one of the input attributes. The consequenct part of a
rule is the class label. The fitness value of an individual is the
square of the percentage of correctly classified training samples.

Each individual represents a set of classification rules. The
number of bits to represent a single classification rule is fixed.
When an individual undergoes a genetic operation, extra bits

�

Chapter 2 Related Work 35

may be added to the individual if necessary.

2.3.3 LOGENPRO

A data mining system, called LOgic grammar based GENetic
PROgramming (LOGENPRO), was introduced by Wong et al.
LOGENPRO is capable of evolving a set of classification rules
using GP.

Each individual is a derivation tree, which is used to represent
a classification rule. But the search space can be very large and a
grammar has to be designed to control the creation of derivation
trees. All the individuals should conform to a specified grammar
to accelerate the search for a set of classification rules. When
a new derivation tree is generated by genetic operators such
as crossover and mutation, it is necessary to check whether the
produced tree still obeys a specified grammar. Users are allowed
to specify the structure of a rule using a user-defined grammar.

Fitness sharing [19] and token competition are employed to
maintain the diversity of a population. In many cases, more
than one individual is chosen as the set of classification rules.

2.4 Applications of Evolutionary Algorithms
to Construction of Decision Trees

.Several decision tree algorithms employing EAs were proposed in
the literature, including binary-tree genetic algorithm (BTGA)
9], OCl-GA [8], OCl-ES [8], GATree [42] and so on. The fol-

lowing subsections describe these algorithms in brief.

2.4.1 Binary Tree Genetic Algorithm

In Binary Tree-Genetic Algorithm (BTGA), the decision func-
tion at each non-leaf node is a linear combination of all input

•v

Chapter 2 Related Work 36

attributes. GAs are applied to find the optimal linear decision
function at each non-leaf node. A binary string is used to repre-
sent an individual. The fitness value of a chromosome depends
on the impurity reduction after partitioning a set of training
samples into two disjoint subsets. The Gini index is chosen to
evaluate the impurity of a set of training samples. A rank based
selection is applied to select chromosomes to be replicated to
the mating pool. The chromosomes in the mating pool undergo
two-point crossover and mutation. The process is repeated re-
cursively until the number of training samples arriving at a node
is less than a positive integer no or the impurity of a set of train-
ing samples is less than a threshold go. It means prepruning is
employed to control the growth of a decision tree. Figure 2.7
shows the algorithm of the procedure createBTGAO , which out-
lines the steps to construct a linear decision tree using BTGA.
The procedure createBTGAO accepts the training set as the
parameter.

2.4.2 OCl-GA

OCl-GA was extended from the OCl algorithm proposed by
Murthy et al. [38]. At each non-terminal node of an oblique
decision tree, the optimal linear decision function is found using
GAs. OCl-GA is a RCGA because it uses a real-valued vec-
tor to represent a chromosoome. A population of chromosomes
is initialized such that one-tenth of the population is the best
axis-parallel hyperplane at each non-leaf node of an oblique deci-
sion tree. In OCl-GA, pairwise tournament selection is used to
choose chromosomes to be copied to the mating pool. Uniform
crossover is applied to the chromosomes in the mating pool.
Postpruning is used to control the size of an oblique decision
tree.

�

Chapter 2 Related Work 37

PROCEDURE createBTGA

INPUT A set of training samples Sh

OUTPUT A new node Nh

1. IF \SH\ is less than a positive integer tiq or the impurity of SH is less

than a threshold go, THEN the node Nh is declared as a leaf node and

go to step 6.

2. Find the optimal linear decision function b^x > 7'’ where b =

(bhh,…,bd)T is a d-dimensional column vector and 7' is a real con-

stant, using a BCGA such that the impurity reduction after partition-

ing the set Sh into two disjoint subsets is maximized.

3. IF the impurity reduction is less than go, THEN the node Nh is declared

as a leaf node and go to step 6.

4. Define R'h = {xe > 7'} and L'^ = Sh\ K

5. Invoke c r e a t e B T G A a n d createBTGA(LJ^), and go to step 7.

6. Determine the class label associated with the node Nh.

7. Return the node Nh.
\

Figure 2.7: The Algorithm of the Procedure createBTGA()

•v

Chapter 2 Related Work 38

2.4.3 OCl-ES

OCl-ES was also extended from the OCl algorithm proposed by
Murthy et al. [38]. At each non-terminal node of an oblique de-
cision tree, the optimal linear decision function is determined us-
ing a (1+1)-ES with self-adaptive mutations. The initial linear
decision function is equivalent to the best axis-parallel hyper-
plane in the attribute space. There is a mutation coefficient for
each coefficient of the linear decision function to be optimized.
All mutation coefficients are initially set to 1. In OCl-ES, one
offspring is generated from the parent by mutation. The size of
an oblique decision tree is controlled by post pruning.

2.4.4 GATree

GAs are applied to construct univariate decision trees. There
are two child nodes at each non-leaf node of the decision trees
evolved by GATree [42]. To evolve the optimal decision tree, a
population of minimal binary decision trees, which have the root
node and two leaf nodes, is initialized first. When two parents
are selected to undergo crossover, one of the nodes of each sub-
tree is selected as a crossover point. The subtrees rooted at the
selected crossover points are then swapped. When an individ-
ual undergoes mutation, one of its nodes is selected first. If the
selected node is a non-leaf node, the value of the corresponding

‘decision function is changed to a random value. Otherwise, its
class label is randomly changed to one of the possible classes.
The fitness value fi of the 一 individual is given by:

where nc,i is the number of training samples correctly classified
by the i仇 individual, nT,i is its tree size and fc is a user-defined
constant. To reduce the computational time, a modified version

1

Chapter 2 Related Work 39

of limited error fitness (LEF) [18] is employed. When the num-
ber of misclassifications of an individual is greater than an error
limit, all the remaining training samples will not be evaluated.

2.4.5 Induction of Linear Decision Trees using Strong
Typing GP

In [5] and [4], an oblique decision tree is evolved using a strong
typing GP. In a strong typing GP, the data type for each ele-
ment in the terminal set is specified. Moreover, each function in
the function set specifies the data types for all arguments and
the data type of the output returned by the function.. When
an invalid individual is generated by crossover or mutation, it
is modified so the the restrictions on the data types are satis-
fied. Tournament selection is used to select chromosomes to be
replicated to. the mating pool.

There are two possible ways to avoid the problem of code
bloat. The fitness value of an individual is a weighted sum of
the number of correctly classified training samples and its tree
size in number of nodes.

In the second method, Pareto scoring with fitness sharing
19] is applied with two dimensions, including the number of

misclassifications and the number of nodes of an individual. The
advantage of this method over the first one is that there is no
need to adjust the weights in order to produce better oblique
decision trees.

To reduce the computational time, limited error fitness (LEF)
18] is employed. When the number of misclassifications of an in-

dividual is greater than an error limit, all the remaining training
samples will not be evaluated. The error limit may be changed
when oblique decision trees are being evolved. The error limit
increases when the number of misclassifications of the best indi-
vidual is greater than the error limit and decreases if the number

Chapter 2 Related Work 40

of misclassifications of the worst individual is lower than the er-
ror limit.

2.5 Spatial Data Structures and its Applica-
tions

2.5.1 Spatial Data Structures

k-D trees [3] and quadtrees are hierarchical data structures based
on the principle of recursive decomposition of space [49]. Appli-
cations of these data structures include computer graphics, im-
age processing, geographic information system (GIS), database
management system, data mining and so on.

A k-D tree is a binary tree. There are two child nodes at
each non-leaf node of a k-D tree. At each non-leaf node of a k-D
tree, one of the attributes is chosen to divide a space into two
subspaces. The choice of the attribute for partitioning a space
at a non-leaf node depends on its depth. Each leaf node of a k-D
tree may represent a region, a pixel or a record depending on
its application. In my research work, each leaf node represents
the smallest hyperrect angle containing a small subset of training
samples. Figure 2.8 shows an example k-D tree.

A quadtree recursively subdivides a two-dimensional space
into four quadrants. There are at most four child nodes at each

. ,non-leaf node of a quadtree. At each non-leaf node of a quadtree,
two attributes are applied to divide a two-dimensional space into
four quadrants. Each leaf node of a quadtree may represent an
area or a pixel depending on its application. Figure 2.9 shows
an example quadtree. -

An octree is similar to a quadtree, except that a three-dimensional
space is partitioned into eight octants recursively. There are at
most eight child nodes at each non-leaf node of an octree. At
each non-leaf node of an octree, a three-dimensional space is di->

Chapter 2 Related Work 41

Node A

5•厂{(2，5’1)，(6，1，5)，(2，5，5)，
(2，5,2)，(5，1，2)，(6，2，6)}

Node B Node C

5g={(2,5,l),(2,5,5),(2.5,2)} 5c={(6,1,5),(5,1，2)，(6，2，6)}

. LC RC

Node D Node E

5o={(5,l,2)} 5£={(6,1,5),(6,2,6)}

Figure 2.8: An Example k-D Tree

Node A

54={(2,5),(2,3),(6,2),(4,1),
(3,5)}

‘ ^A.l 厂八2 厂八3 ^A.4

I
NodeB N o d e C N o d e D

知={(2’3)} �={(2，5)，(3，5)} •V={(6，2)，(4，1)}

Figure 2.9: An Example Quadtree

Chapter 2 Related Work 42

vided into eight octants using three attributes. Each leaf node of
an octree may represent an voxel in a three-dimensional image.

A generalized quadtree is a generalization of a quadtree in
a higher dimensional space. There are at most children at
each non-leaf node of a generalized quadtree, where d is the
dimensionality of the space to be represented. All the attributes
are applied to divide a d-dimensional space at each non-leaf node
of a genearlized quadtree. Each leaf node may represent a record
having d attributes in a database. In this thesis, each leaf node
represents the smallest hyper rectangle containing a small subset
of training samples.

2.5.2 Applications of Spatial Data Structures

Spatial data structures can be applied in various fields of com-
puter science, including computer graphics, image processing,
database management system and so on. Moreover, they can
also be applied in geographic information systems (GIS).

In computer graphics, curvilinear data such as polygons can
be represented using a quadtree. A possible way to represent a
polygon is described as follows. When a region contains more
than one line segment, it is divided into four quadrants recur-
sively until a rectangle containing a single straight line is ob-
tained. At each leaf node of a quadtree, the information about
the straight line passing thourgh the rectangle such as direction,

. ”

'intercept and intensity is stored [52 .
An octree can be used to represent a three dimensional object.

An object is decomposed recursively until a single vertex or a
single edge is obtained. A leaf node of an octree represents a
single vertex or a single edge of an object.

In image procesing, a quadtree can be built to represent an
image, which is a two-dimensional array of pixels. A leaf node
correponds to a square array of one or more homogeneous pixels

>

Chapter 2 Related Work 43

in an image. In addition, the color of a pixel in an image can
be determined by considering the quadtree constructed from the
image. To find the color of a pixel, the root node of a quadtree is
considered first. Then the descendants containing the pixel are
considered successively until the leaf node containing the pixel is
found. Moreover, basic image opeartions such as dithering [28
and windowing can be performed using the quadtree constructed
from the image to be processed. In dithering, each pixel of
a grayscaled image is converted to either black or white while
maintaining as much similarity to the original image as possible.
Windowing is the process of extracting a rectangular array of
pixels from- an image.

When a quadtree is constructed from an image, the image can
be viewed at different levels of resolution. This is particularly
useful when an image is transmitted through a communication
channel with lower bandwitdth. In this case, a low resolution
image can be viewed first and the more detailed one can be
shown later.

In data mining, a quadtree may be constructed to improve
the efficiency of a nearest neighbor classifier. To determine the
class label of an unseen sample using a nearest neigbor classi-
fier, say one-nearest neighbor classifier, the class label of the
nearest training sample with respect to the unseen sample is
determined. It is necessary to calculate the distance between

.the unseen sample and each of the training samples. When a
quadtree is constructed from a set of training samples, only a
subset of the training samples are needed to be considered.

In GIS, a power line, a cityline map or a roadline map can be
represented by a quadtree [48]. A power line specifies the path
of the main powerline within a region. A cityline map shows
the border of a city. A roadway network within a region can be
represented using a roadline map.

*%»
•I ,

Chapter 2 Related Work 44

• End of chapter.

t

� �
'I .. ••

Chapter 3

Induction of Classification
Rules using Genetic Algorithms

3.1 Introduction

In this chapter, a novel rule-learning algorithm, called genetic
algorithm-based convex polytope rule learning system (GA-based
CPRLS), is proposed by extending a rule-based expert system
called SCION [33], [34]. In the GA-based CPRLS, genetic al-
gorithms (GAs) are applied to evolve a set of rules for classifi-
cations. The antecedent part of each rule is a conjunctive set
of logical expressions. The possible logical expressions include
linear inequalities with one or more continuous attributes and
nominal attribute-value pairs. When a sample satisfies the an-
tecedent part of a rule, it is classified according to the class label
.associated with the rule.

Although the antecedent part of a classification rule is a con-
junctive set of logical expressions in both SCION and the GA-
based CPRLS, there is a major difference between the GA-based
CPRLS and SCION. The possible logical expressions include
linear inequalities involving one or more numeric attributes and
nominal attribute-value pairs in the GA-based CPRLS. In SCION,
each logical expression is an inequality with one numeric at-
tribute only. It means SCION cannot handle nominal attributes.

4 5

Chapter 3 Induction of Classification Rules using Genetic Algorithms 46

In other words, the GA-based CPRLS is a generalization of
SCION.

3.2 Rule Learning using Genetic Algorithms

Before learning a set of rules using GAs, a set of samples is
partitioned into the training and the testing sets. The training
set is applied to evolve a set of rules for classifications. A good
set of rules should minimize the number of misclassifications on
the testing set, rather than the training set.

A population of chromosomes is initialized and maintained in
the GA-based CPRLS. Each chromosome represents a conjunc-
tive set of logical expressions, which may include linear inequal-
ities with several continuous attributes and nominal attribute-
value pairs. The population is partitioned into C subpopula-
tions, where C is the number of possible classes. Each subpop-
ulation is associated with a distinct class label. In each subpop-
ulation, each chromosome classifies a sample as the same class
if the sample satisfies the antecedent part of the corresponding
rule.

After a population of chromosomes is initialized, the fitness
value of each chromosome is evaluated. The higher the fitness
value of a chromosome is, the better the corresponding rule is.
Token competition is applied to remove redundant chromosomes

. -in each subpopulation. Weaker chromosomes are also removed if
necessary. Rule migration allows a weak chromosome for a par-
ticular class to become a chromosome in another subpopulation
provided that it is a strong chromosome for the associated class.
Common operators of GAs including crossover and mutation are
applied to the survived chromosomes in each subpopulation. In
each generation, the total number of correctly classified training
samples is evaluated in order to preserve the best-so-far set of
rules in the next generation. The above processes are repeated

Chapter 3 Induction of Classification Rules using Genetic Algorithms 47

until the maximum number of generations G is reached. Finally,
a set of rules for classifications is constructed from the best set
of chromosomes. The following outlines the steps of learning
rules in the GA-based CPRLS.

• Initialize a population of chromosomes P.

• FOR r = 1 TO G DO

- F O R z = 1 TO C DO
1. Evaluate the fitness value of each chromosome in

the subpopulation Pi using the fitness function in
.(3.9).

2. Sort the chromosomes in the subpopulation Pi in
the descending order of their fitness values.

3. Apply token competition to the subpopulation Pi.
4. Remove all chromosomes in the subpopulation Pi

which fail to obtain any tokens.
5. Remove weaker chromosomes if the number of chro-

mosomes in the subpopulation Pi is greater than the
maximum number of parent chromosomes Qp.

-Migrate rules among the subpopulations î i,尸2…，Pc'
—Apply crossover and mutation to the subpopulations

Pl,P2 …,Pc.
• - Calculate the total number of training samples cor-

rectly classified by the population of chromosomes.

3.2.1 Population Initialization

A population of chromosomes are initialized before evolving a
set of rules using GAs. The population is divided into C subpop-
ulations Pi, P2---5 Pc where C is the number of possible classes.

Chapter 3 Induction of Classification Rules using Genetic Algorithms 48

Each chromosome in the subpopulation Pi, i = 1,2..., C, clas-
sifies a sample as class i if the sample satisfies the antecedent
part of the corresponding rule.

Let Qij = i G {1,2...,C}, j G {1,2...，L}’ be a
duple denoting the 产 chromosome in the subpopulation Pi,
where L is the number of chromosomes in each subpopulation.
A population of (7 x L chromosomes is maintained.

In this chapter, is defined as the set of linear inequalities
for the chromosome Let a;ij,k = (^y’fc’i, ̂ ^ij’fc’2..., iyi’j，fc’d+i)，

i e {1，2..., C}, j G {1，2...，L}, k e {1,2...’ H}, be the {d + 1)-
dimensional vector specifying the coefficients of the k̂ ^ inequal-
ity in the set �j , where d is the number of continuous attributes
and H is the number of inequalities. The inequality represented
by the vector ĉ i丄k is given by:

d

y ^ m,j,k,m^m > Wi,j,k,d+1. (3 . 1)
m=l

Suppose y = (yi, 2/2..., Ud) and z = (^i, 2:2..., Zd), where yi and
Zi, i = 1,2..., d^ are respectively the minimum and the max-
imum values of the i仇 numeric attribute in the training set.
The inequality specified by the vector ct;ij，k, i E {1,2."，C},
j G {1，2...,L}, satisfies the following conditions:

- 1 < 'Wiĵ k̂ m < 1 , rn = (3.2)
. ‘ d i < Wi,j,k,d+i < (h (3.3)

where

山 = 亡 kufc，m|(2/m + Zm) + Wi,j,k,jjjm Zm) (3 4)

m—l

1 川i’j,k,m {Vm + + — Vm) /o c �

尚 = 2 (3.5)
m=l •

•V

Chapter 3 Induction of Classification Rules using Genetic Algorithms 49

d
E 秘？，从m = l (3.6)
m=l

On the other hand, aij = (Q;y’i, ai’j’2..., oti,j’d'�, i G {1,2..., C} ,
j E {1,2."，L}, is a cf-dimensional integer-valued vector repre-

senting the nominal attribute-value pairs for the chromosome

队,j, where ai,j,k G {0,1,2, ...hk}, k G {1,2,d ' } ^ represents
the value of the k*^ nominal attribute, hk is the number of pos-

sible values of the k^ nominal attribute and d' is the number
of nominal attributes. The equivalent logical expression for the
kfh nominal attribute is given by:

/ if e {1,2，…，hk}
^ k e < (3.7)

[{1,2’ if aiĵ k = 0

If a sample x = {xi,x2...,xd, where cci, i e

{l，2...,c?}，is a continuous attribute and x'j^ j G is

a nominal attribute, satisfies the logical expression represented

by the chromosome Qi,j, or equivalently,

H d d'
: ^ h J A m X m > 切y’M+i)] A [/\(K^-,fc = 0)v (4 = ay’fc)):
k=l m=l k=l

(3.8)

the sample is classified as class i.

3.2.2 Fitness Evaluation of Chromosomes

The fitness value of each chromosome is evaluated. The higher
the fitness value of a chromosome is, the stronger the corre-

sponding rule is. Given Sij, i G {l,-2..., C}, j G {1,2...,L}，is

the set of training samples satisfying the condition specified by

the chromosome Qij and S、j is the set of training samples of

class i in the set Sij. The fitness value of the chromosome
i e { 1 , 2 … , C } , j e {1，2..., L}, is given by:

、

Chapter 3 Induction of Classification Rules using Genetic Algorithms 50

八) = ^ (3.9)

The numerator of the above equation equals the number of train-
ing samples correctly classified by the chromosome By . One is
added to the denominator in order to avoid a divide by zero
error when all the training samples cannot be classified by the
chromosome.

3.2.3 Token Competition

In each subpopulation, the chromosomes tend to cover a simi-
lar set of training samples as the rule learning proceeds. This
reduces the diversity of the chromosomes in each subpopulation.

A similar problem is also addressed in [33], [34]. Token com-
petition can be employed to remove redundant chromosomes.
In the GA-based CPRLS, token competition is applied inde-
pendently to each subpopulation. In the subpopulation Pi, i =
1,2..., C, the chromosomes are sorted in the descending order of
their fitness values first. For each training sample, one token is
assigned to the strongest chromosome which is capable of classi-
fying it correctly. Once a token is assigned by a training sample,
other chromosomes cannot obtain any tokens for that sample al-
though they can correctly classify it. The stronger chromosomes
are capable of acquiring more tokens. In each subpopulation, it
'is more difficult for weaker chromosomes similar to the stronger
ones to receive tokens. Chromosomes which fail to obtain any
tokens are then eliminated. A more concise set of stronger rules
can be produced under token competition. Moreover, redundant
rules can be eliminated and the diversity of the chromosomes in
each subpopulation is increased.

Given the training set S = {si,s2...sn} has n training sam-
ples, where Si = (:ri’i’0；《’2..., rr;’！’ q), i = l，2...’n’
is the i仇 sample in the training set, a:i’i,:ri’2."’而，d are numeric

Chapter 3 Induction of Classification Rules using Genetic Algorithms 51

attributes, 1, are nominal attributes and Ci is the
class label of the sample Si, the following outlines the steps of
token competition:

• FOR 2 = 1 TO C DO

- S o r t the chromosomes Bi,i, Bz,2---5 Oî L in the subpop-
ulation Pi according to the descending order of their
fitness values.

- F O R j = 1 TO L DO
1. Set ti’j = 0, where Uj is the number of tokens ac-

-quired by the chromosome Qij.
2. Let €)� ’�={f^i’⑴，ai’(j)}，j = 1,2...,L be the 产

strongest chromosome in the subpopulation Pi.
—FOR j = 1 TO \S\ DO

FOR A: = 1 TO L DO
IF 八二=1(E二 1 秘i，�’M’PA’P > 切 i ’ � ’m ’ d + l)] , THEN

IF [八LI((AI’⑷’饥=0) V = A调 ’』] ,THEN

1. Set ti,⑷=ti,{k) + 1-

2. Quit the innermost FOR loop.

3.2.4 Chromosome Elimination

If a chromosome fails to acquire any tokens under token com-
petition, it .will be eliminated. When the number of chromo-
somes in each subpopulation is still greater than Qp, weaker
chromosomes will be eliminated and imprisoned. In order to
include the effect of token competition, another fitness function
should be used to evaluate the strength of a chromosome. The
modified fitness value of the chromosome Qi,j, i G {1,2..., C} ,
j e {1’2."，L}，is given by:

• 片 广 ‘ （3.10)

Chapter 3 Induction of Classification Rules using Genetic Algorithms 52

Note that the numerator of the above equation equals the num-
ber of tokens acquired by the chromosome, rather than the num-
ber of training samples correctly classified. The denominator of
the above equation depends on the number of training samples
satisfying the condition represented by the chromosome

The survived chromosomes in each subpopulation become
parent chromosomes. Parent chromosomes are allowed to pro-
duce their offspring using crossover and mutation. It is hoped
that better chromosomes can be produced by these genetic oper-
ators. The imprisoned chromosomes in a subpopulation may be
migrated to another subpopulations, depending on its strength
for other classes.

In each subpopulation, the probability of a parent chromo-
some selected for crossover or mutation depends on the rank
of its fitness value calculated by (3.10). Chromosomes which
fail to obtain any tokens are never selected. When a parent
chromosome is in rank i, i = 1, 2..., Q P , the probability of the
chromosome chosen for crossover or mutation is:

(l)min(i’Qp-l) (3.11)
2

3.2.5 Rule Migration

A weak chromosome for a particular class may be a strong
chromosome for another classes. In the subpopulation Pi, i =
'1,2..., C, the average fitness value fi of the survived chromo-
somes is calculated first. The fitness value of each imprisoned
chromosome in the subpopulation 尸“ i = 1,2...，C，is computed
for all classes except class i. If the fitness value of an imprisoned
chromosome in the subpopulation Pi is greater than f j for class
j, j e {1,2..., C} \ { i } , it will be migrated to the subpopula-
tion Pj, provided that the number of migrated chromosomes for
the subpopulation Pj is less than the migration quota QM- The
following outlines "the steps of rule migration.

Chapter 3 Induction of Classification Rules using Genetic Algorithms 53

• FOR z = 1 TO C DO

1. Evaluate the average fitness value fi of the survived
chromosomes in the subpopulation Pi.

2. Set rrii = 0, where mi is the number of migrated chro-
mosomes for the subpopulation Pi.

• FOR z = 1 TO C DO

1. Set I as the number of imprisoned chromosomes in the
subpopulation Pi.

2. Let G)i’i, G) i ’ 2 ， b e the imprisoned chromosomes in
the subpopulation Pi.

3. FOR j = 1 TO / DO
—FOR A; = 1 TO C DO

IF k^i, THEN
(a) Evaluate the fitness value / 么 o f the chromo-

some Qij for class k.
(b) IF (4)) > h) A (m, < Qm)，then

i. The chromosome G)y is migrated to the sub-
population Pk.

ii. Set mk = mk-\-1.

3.2.6 Crossover

In each subpopulation, a pair of chromosomes are selected from
the survived ones after chromosome elimination. The migrated
chromosomes are not selected for crossover and mutation. Sup-
pose two parent chromosomes Bî u — c»;i’u) and Qî y =
(flî v, Q;i’v) are selected to undergo crossover. The elements of
Qî u and Qî y are exchanged using two-point crossover. On the
other hand, the elements of ai’u and ai’v are swapped using
one-point crossover. The following outlines the steps when two

Chapter 3 Induction of Classification Rules using Genetic Algorithms 54

parent chromosomes Oî u and Qi,y are selected to exchange their
genes.

1. Let pu = (Pw，i,Pw’2...,Pu’H(d+i)), where
Pu,k =秘i’t4结」+i’(fc-I)m�d(d+1)+1，^ = 1,2...,H{d+ 1).

2. Let pv = {Pv,i,Pv,2-^Pv,H{d+i)), where
Pv,k = /c = 1，2...，丑(d+1).

3. Generate two random integers x and y such that 1 < x <
y<H[d+l)-l.

4. Let Qu = (qu’i, qu,2-'-, qu,H{d+i)) and qv = (qv,i, qv,2--', qv,H(d+i)),
where ‘

Pu,k i f 於 — 1 , 2 . . . ,

qu,k 二 \ Pv,k ifk = x + l,x + 2...,y, (3.12)
‘ , P u , k if k = y + l,y-j-2...,H(d-hl),

and

Pv,k if k = 1,2..., x^
qv,k = Pu,k if /c = xH- (3.13)

,Pv,k if k = y + l,y + 2...,H{d-\-l),

5. Generate a random integer x' such that 1 < x' < d' — I.

. . . 6 . Let = (A’n’i，/W", A " ') and A.v = (/ W / W " , / W) ，
where

F
o —J ai,u，k if A; = 1,2,..,

and

p. ^ _ I if /c = 1,2..., (3 15)

Chapter 3 Induction of Classification Rules using Genetic Algorithms 55

7. Set the offspring chromosomes ©- ̂ = "i’u) and ^ =
(n;’w/?i,v) such that

= M u ’ i , � 2 - " ’ < u ’ h } and
= M ’ v ’ i ’ � 2 " . , K v ’ h }，w h e r e

<̂ i,u,k = (^U,(k-I)(d+1)+1, Qu,(k-i)(d+i)+2---, Qu,k(d+1)) and
=(如，(A；—I)(d+1)+1,如’(fc-i)(d+i)+2...,如,fc(d+i)), k = 1,2...，if.

Suppose QR is the maximum number of chromosomes pro-
duced by rule migration and crossover. The above processes are
repeated until the total number of chromosomes produced by
rule migration and the crossover operator equals .

3.2.7 Mutation

In each subpopulation, one of the parent chromosomes is se-
lected and replicated first. Suppose the parent chromosome
©y = i e {1,2 . . . ,C}, j e {1,2...,(3p}, is selected
to undergo mutation, each element of Qij and aij is modified
by uniform mutation with a probability pm.

When the value of Wi’j’k’m, k G {1,2..., H}, m E {1,2…,d}, is
selected to mutate, it is replaced by a random real number within
the range [—1,1]. When the value of Wi’j,k,d+i is selected to
mutate, it is replaced by a random real number within the range
A,而],where the values of di and d) are calculated using (3.4)
and (3.5) respectively. Moreover, the values of Wi’j,k,i,切ij，fc’2 ...,

, •切y,fc’d+i are normalized so that the condition (3.6) is satisfied.
When the value of ay’^, k G {1,2..., d'}^ is selected to mutate,
it is replaced by a random integer in the set {0，1."，hk}, where
hk is the number of possible values of the k*̂ nominal attribute.

The above processes are repeated until each subpopulation
fills up with chromosomes.

Chapter 3 Induction of Classification Rules using Genetic Algorithms 56

3.2.8 Calculating the Number of Correctly Classified
Training Samples in a Rule Set

A population of chromosomes are maintained and evolved in
the GA-based CPRLS. It is necessary to calculate the num-
ber of correctly classified training samples for the population of
chromosomes because a population having the set of best chro-
mosomes does not necessarily have the best set of chromosomes
for classifications. In each subpopulation, only the Qp strongest
chromosomes are used to calculate the number of correctly clas-
sified samples and to construct the set of rules for classifications.

It is possible that a pair of chromosomes from subpopulations
Pi and Pj, i ^ j , classify the same sample because the sample
satisfies the conditions specified by both of the chromosomes,
even though they are not identical. This causes inconsistency
of the set of classification rules derived from the population. To
solve the problem of inconsistency in the GA-based CPRLS, the
sample is classified as unknown.

It is possible that a sample does not satisfy the condition
specified by each chromosome. In this case, the sample is also
classified as unknown because there is no suitable rule to classify
the sample.

3.3 Performance Evaluation

The performance of the GA-based CPRLS is evaluated in terms
of validation accuracy and execution time in this section. Four
sets of experiments were performed. In the first set of experi-
ments, the performance of the GA-based CPRLS is compared
with that df various data mining algorithms. The second set of
experiments compares the performance of the GA-based CPRLS
and that of Random Search-based Convex Polytope Rule Learn-
ing System (RS-based CPRLS). The third set of experiments

Chapter 3 Induction of Classification Rules using Genetic Algorithms 57

investigate the effects of token competition in the GA-based
CPRLS. In the last set of experiments, the effects of rule migra-
tion are studied.

All the experiments were executed on a dual Intel Xeon 2.2GHz
machine.

3.3.1 Performance Comparison of the GA-based CPRLS
and Various Supervised Classification Algorithms

In this subsection, the performance of the GA-based CPRLS is
compared with that of various data mining algorithms, includ-
ing C4.5 [44], OCl [38], NDT [26]，OCl-GA, OCl-ES [8], BTGA
9] and SCION. C4.5 is a univariate decision tree algorithm [44 .
OCl constructs oblique decision trees [38], [7]. A quadratic de-
cision tree can be constructed by NDT [26]. In OCl-GA and
BTGA, GAs are employed to search for the optimal hyperplane
at each non-terminal node of oblique decision trees [8], [9]. In
OCl-ES, a (1+1) evolution strategy with self-adaptive muta-
tions is applied to find the optimal hyperplane at each non-leaf
node of oblique decision trees [8]. Six artificial datasets are cho-
sen to compare the performance of the GA-based CPRLS with
that of the others.

The first dataset, called ADSl, is an artificial dataset with
1000 samples. ADSl is a two-class problem. Two straight lines
are used to separate the samples into two classes. Each sample

•is a two-dimensional vector (xi,x2), where Xi G [0,1000] and
X2 G [0,2000]. A sample is labeled as class 1 if one of the
following conditions is satisfied:

. 2xi + X2> 2000 A 2x1 < (3.16)
2xi + X2< 2000 A 2xi > X2 (3.17)

Otherwise, the sample is labeled as class 2. Figure 3.1 shows
the dataset ADSl.

>J •

Chapter 3 Induction of Classification Rules using Genetic Algorithms 58

2000f++ + ++± +++ +

� # / +) ++TA + class 1

1 8 � 够 锻 ,f ^

，•智M备^ t

0 200 400 600 800 1000
x1

Figure 3.1: The Dataset A D S l

•V

I •
“

Chapter 3 Induction of Classification Rules using Genetic Algorithms 59

iooop o o o oo 8 a o o rp o 9 nr. .
AO O CO O o ® oo OOOQ Oq O + class 1

900么 A. ^ 安J o 0° 货 O Class3

-；：! ̂：̂ t K傳。續少 f

4��-:+ ： > + �t y ^ A 〜 紫 \ 〈 二 』 〜 .

200-+ + + + + � 、 忠 改 念 A

100: ++++ + +�+ ++ V ++仏 + * + +洽 +

o4~+ I + + T__-j +++ 4 H•本 + ±——I_+ + I 1_+ +1 0 100 200 300 400 500 600 700 800 900 1000 x1

Figure 3.2: The Dataset ADS2

The second dataset, called ADS2, is also an artificial dataset
with 1000 samples. Two parallel straight lines are used to sep-
arate the samples into three classes. Each sample is a two-
dimensional vector (xi,0:2), where xi,xi G [0,1000]. A sample
is labeled as class 1 if (3.18) is satisfied. If (3.18) is violated but

., (3.19) is satisfied, the sample is labeled as class 2. If neither
(3.18) nor (3.19) is satisfied, the sample is classified as class 3.
Figure 3.2 shows the dataset ADS2.

0；1 + 2X2 < 1000 (3.18)
‘ xi + 2x2 < 2000 (3.19)

The third dataset, called ADS3, is an artificial dataset with
1000 samples. ADS3 is a two-class problem. Each sample is a
two-dimensional vector (a;i,0:2), where Xi G [0,5000] and X2 G

“

Chapter 3 Induction of Classification Rules using Genetic Algorithms 60

800 於 a / ！ ； 、 、 > ++务

6 � � � � 於 、i + ’々梦+++二
400 > ^^^^ ++ ++ • 二 巡 a A a a 华 A +丰#

2 � � 玲 〜 、
+ + 化 、 较 : V

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 - XI
Figure 3.3: The Dataset ADS3

0,2000]. A sample is labeled as class 1 if one of the following
conditions is satisfied:

5X2 > IXX AXI > 2500 (3.20)

2x1 + 5x2 < 10000 AX2 > 1000 (3.21)
... 5X2 < 2X1 AXI < 2500 (3.22)

‘ 2 X 1 + > 10000 A x 2 < 1000 (3.23)

Otherwise, the sample is labeled as class 2. Figure 3.3 shows
the dataset ADS3.

The fourth dataset, called ADS4, is an artificial dataset with
1000 samples. ADS4 is a four-class problem. Each sample is a
two-dimensional vector (xi,X2), where xi G [0,1000] and X2 G
[0,2000]. The samples are labeled according to the following
rules

•V
• .7 .. •

Chapter 3 Induction of Classification Rules using Genetic Algorithms 61

誦厂》c? 。。紀 01�0哲0°0银§0? Ooo�o�o

宏 aa ’ AAA� ^ O 省。 + + + ++* +

‘ 於 〜 q WAY�I�气：：〜。〜

6。。、 t ^ . � - 〜^ ； ++++ +

400 > 么 辟 左 A - X > r 策 X 兮 X + 丰斗

200巡么 P XX ^ X tx^og Vx X Vx �^ 、 广 + ++
200 - A ^ X X ^ X J 灸 X X X Xxx X 上

> A . V „ X >«< XX * ^ X X x X v +

么尸 A X X英 X X X x X X V x ' i x ^ � X - t

0 100 200 300 400 500 600 700 800 900 1000
_ x1

Figure 3.4: The Dataset ADS4

• IF 2xi + X2> 2000 A x 2 < 2xi, THEN class = 1.

• IF 2xi + X2< 2000 t\X2> 2x1, THEN class = 2.

• IF 2xi + X2 < 2000 八:r2 g 2xi, THEN class = 3.

• IF 2X1 + 工2〉2000 AX2> 2X1, THEN class = 4.
\

Figure 3.4 shows the dataset ADS4.
The fifth dataset, called ADS5, is an artificial dataset with

1000 samples. ADS5 is a four-class problem. Each sample
has two numeric attributes xi, X2 and one nominal attribute 0:3,
where xi e [0,1000], X2 G [0,2000] and 0:3 e {red, green}. The
samples are labeled according to the following rules:

• I F 2x1 + ^2 > 2000 A 0：2 < 2XIAX3 = red, T H E N class = 1.

Chapter 3 Induction of Classification Rules using Genetic Algorithms 62

• IF 20；1 + 0；2 > 2000 A 0；2 < 2:̂ 1八0；3 = green, THEN class =
2.

• IF 2x1-^x2 < 2000 A 3：2 < 2:riAa;3 二 red, THEN class = 3.

• IF 2xi-\-X2 < 2000 八:r2 < 2:riA:r3 = green, THEN class =
4.

• IF 2xi-{-X2 < 2000 A 0；2 > 2:riA:r3 = red, THEN class = 1.

• IF 2xi-\-X2 < 2000 八:r2 > 2:r;iA:r3 green, THEN class =
2.

• IF 2X1^X2 > 2000 A 0：2 > 2:riA:r3 = red, THEN class = 3.

• IF 2X1^X2 > 2000 A > 2a;iAa:3 = green, THEN class =
4.

The sixth dataset, called ADS6, is an artificial dataset with
1000 samples. ADS6 is a four-class problem. Each sample has
two numeric attributes xi,x2 and one nominal attribute 0:3,
where xi e [0,1000], X2 G [0, 2000] and xs e {apple, orange,
banana, grape}. The samples are labeled according to the fol-
lowing rules:

• IF 2XI-\-X2 > 2OOOAX2 < 2xiAxs = apple, THEN class = 1.

• IF 2xi + X2 > 2000 八：r2 g 2x1 八 2:3 = orange, THEN
class = 2.

• IF 2x[-\-X2 > 2000 八:r2 S 2xi A xs ^ banana, THEN
class 二 3.

• IF 2x1 + 0:2 > 2000 A 0；2 < 2a;iAa;3 二 grape, THEN class =
4 . . ‘

• IF 2XI-\-X2 < 2000Aa:2 < 2xiAxs = apple, THEN class = 3.

• IF 2x1 X2 < 2000 Ax2 < 2xi A xs = orange, THEN
class — 4.

> »

Chapter 3 Induction of Classification Rules using Genetic Algorithms 63

• IF 2X1 + < 2000 Ax2 < 2xi A X3 = banana, THEN
class = 1.

• IF 2xi + X2 < 2000 A 0；2 < 2xiAa:3 : grape, THEN class =
2.

• IF 2x1-^x2 < 2OOOAX2 > 2xiAx3 = apple, THEN class = 1.

• IF 2xi + X2 < 2000 A X2 > 2xi 八:r3 二 orange, THEN
class — 2.

• IF 2x1 + 0；2 < 2000 Ax2 > 2xi t\xz 二 banana, THEN
class = 3.

• IF 2xi-\-X2 < 2000 A0：2 > 2xl^x^ = grape, THEN class =
4.

• IF 2xi-\-X2 > 2000Aa;2 > Ix^Nx^ = apple, THEN class = 3.

• IF 2xi + 工 2 � 2 0 0 0 Ax2 > 2xi A X3 = orange, THEN
class = 4.

• IF 2xi + X2 > 2000 t\X2�2^1 A 0:3 = banana, THEN
class — 1.

• IF 2xi-{-X2 > 2000 A > 2xiAx3 = grape, THEN class =
2.

A (1+1) evolution strategy with self-adaptive mutations is
‘applied in the OCl-ES algorithm [8]. Table 3.1 shows the num-
ber of generations for the OCl-ES algorithm on ADSl, ADS2,
ADS3 and ADS4. Note that OCl-ES cannot handle the datasets
ADS5 and ADS6 because they have one nominal attribute.

The implementation of the OCl-GA algorithm in this set of
experiments is different from that in [8]. No mutation is applied
for all the experiments reported in [8], while non-uniform mu-
tation [35] is applied for all the experiments in this subsection.
The purpose of adding mutation to the OCl-GA algorithm is to

、 ‘

Chapter 3 Induction of Classification Rules using Genetic Algorithms 64

Dataset Number of Generations

ADS1~ 100,000

ADS2~ 200,000

ADS3 110,000

ADS4~ 98,000

Table 3.1: Number of Generations for OCl-ES on ADSl, ADS2, ADS3 and

ADS4

— P a r a m e t e r s ADSl | ADS2 | ADS3 | AlS^T

Population Size 100

Number of Generations 2000 1000 25000 22000

Crossover Probability 0.7 0.8 0.8 0.9

Mutation Probability 0.1 0.05 0.1 0.1

Table 3.2: Parameters of OCl-GA on ADSl, ADS2, ADS3 and ADS4

improve the quality of the decision trees constructed by it. Table
3.2 shows the parameters of the OCl-GA algorithm so that its
validation accuracy is maximized on ADSl, ADS2, ADS3 and
ADS4. Note that OCl-GA cannot handle datasets with nominal
attributes, including ADS5 and ADS6.

Prepruning is employed in BTGA [9]. If the number of train-
ing samples at a node is less than a positive integer no or the
impurity reduction is less than a threshold go, no child node is

.created. Table 3.3 shows the parameters of the BTGA algorithm
and its validation accuracy is maximized on ADSl, ADS2, ADS3
and ADS4. Note that BTGA cannot construct a tree classifier
for datasets with nominal attributes.

Tables 3.4 and 3.5 show the parameters of SCION and that
of the GA-based CPRLS respectively. Standard parameter set-
tings are applied in C4.5, OCl and NDT. C4.5 can handle both
nominal and continuous attributes, while OCl and NDT can
handle continuous attributes only.

Chapter 3 Induction of Classification Rules using Genetic Algorithms 65

— P a r a m e t e r s ADSl | ADS2 | ADS3 | A D ^

Population Size 100

Number of Generations "~5Q00 1000 63000 55655"

Crossover Probability 0.7 0.9 0.9 0.9

Mutation Probability 0.05 0.05 0.2 0.1

no 15— 100 —10 100 “

go 0.01 0.2 0.1 0.2

Table 3.3: Parameters of BTGA on ADSl, ADS2, ADS3 and ADS4

‘Parameters ADSl | ADS2 | ADS3 | ADS4

Number of Chromosomes L 100

Number of Generations G 10000 | 125000 | 110000

Parent Quota QP 30

Crossover Quota Qc 40

Migration Quota QM 5 5 5 6

Mutation Probability 0.2 0.1 0.1 0.15

Table 3.4: Parameters of SCION on ADSl, ADS2, ADS3 and ADS4

Parameters ADSl 丨 ADS2 ADS3 ADS4 | ADS5 ADS6

Number of Chromosomes L 10 20 10 12

• . Number of Hyperplanes H 3

Number oTGenerations G 10000 100000 | 10000 100000

Parent Quota Qp 3 6 3 4

Crossover Quota Qc 4 8 4

Migration Quota QM 2 1, 3 2

Mutation Probability 0.2 0.1 0.2 0.1

Table 3.5: Parameters of GA-based CPRLS on ADSl, ADS2, ADS3, ADS4,

ADS5 and ADS6 .

Chapter 3 Induction of Classification Rules using Genetic Algorithms 66

Table 3.6 shows the average and the standard deviation of
the validation accuracy of various supervised classification algo-
rithms when 10-fold cross-validation is applied over 10 runs.

According to the one-sided t-tests, the GA-based CPRLS out-
performs the others on ADSl in terms of validation accuracy
at 95% confidence interval. The performance of the GA-based
CPRLS is better than that of OCl, NDT, OCl-GA, OCl-ES
and BTGA because impurity reduction is used to determine the
decision function at each non-leaf node of a decision tree. Al-
though the concept of impurity reduction makes these decision
tree algorithms to work well in many cases, but it is not the case
on ADSl..

On the other hand, OCl-GA, OCl-ES and BTGA outper-
form the others (including the GA-based CPRLS) on ADS2 in
terms of validation accuracy at 95% confidence interval using
the one-sided t-tests. Less parameters are required to specify a
classifier using OCl-GA, OCl-ES and BTGA when compared
with the GA-based CPRLS. For OCl-GA, OCl-ES and BTGA,
the decision functions at non-leaf nodes are sufficient to model
the class boundaries of ADS2.

BTGA and the GA-based CPRLS outperforms the others on
ADS3 in terms of validation accuracy at 95% confidence interval,
according to the one-sided t-tests. On the other hand, BTGA
outperforms the others (including the GA-based CPRLS) on

. .ADS4 in terms of validation accuracy at 95% confidence interval
using the one-sided t-tests.

The GA-based CPRLS outperforms C4.5 on ADSl, ADS2,
ADS3, ADS4, ADS5 and ADS6 in terms of validation accu-
racy at 95 % confidence interval. Although C4.5 is capable of
handling toth numeric and nominal attributes, the GA-based
CPRLS produces a better classifier on datasets with non-axis
parallel boundaries.

The GA-based CPRLS outperforms SCION on ADSl, ADS2,

Chapter 3 Induction of Classification Rules using Genetic Algorithms 67

Algorithm ADSl ADS2 ADS3 ADS4 ADS5 ADS6

Ci^ 94.1 士 0.5 —95.2 士 0.3 93.6 土 0.6 "^.3 士 0.4 92.0 土 0.5 88.6 士 0.5

0C1 96.5 士 1.2 99.1 士 0.4 93.2 士 0.8 98.4 士 0.3 Cannot be determined

NDT 96.5 士 0.6 98.4 士 0.3 93.1 土 0.5 98.3 士 0.3 Cannot be determined

OCl-GA 95.5 士 0.5 99.7 土 0.2 93.0 士 0.8 95.8 士 0.5 Cannot be determined

OCl-ES 95.8 士 0.4 99.6 士 0.3 94.8 士 0.8 98.6 士 0.6 Cannot be determined"

BTGA 97.7 士 0.4 99.7 ±0.1 96.7 土 0.4 99.5 士 0.2 Cannot be determined

SCION 93.2 士 0.4 94.5 土 0.3 92.1 土 0.3 92.5 士 o i Cannot be determined—

GA-based CPRLS 98.8 士 0.3 99.3 士 0.2 97.0 士 0.6 99.1 士 0.2 98.1 士 0.6 | 96.3 士 0.5

Table 3.6: Average and Standard Deviation of Validation Accuracy (%) of

Various Supervised Classification Algorithms on ADSl, ADS2, ADS3, ADS4,

ADS5 and ADS6 based on 10 Independent Runs

ADS3 and ADS4 because the antecedent part of a classification
rule may include linear inequalities involving several numeric
attributes in the GA-based CPRLS. In SCION, the antecedent
part of a rule is restricted to a conjunctive set of linear inequal-
ities involving one continuous attribute only. It is more difficult
for SCION to produce a better set of rules on datasets with
non-axis parallel class boundaries.

Table 3.7 shows the average and the standard deviation of the
execution time of various supervised classification algorithms on
ADSl, ADS2 and ADS3 when 10-fold cross-validation is applied
over 10 runs. Table 3.8 shows the average and the standard
deviation of the execution time of various supervised classifica-
tion algorithms on ADS4, ADS5 and ADS6 when 10-fold cross-
validation is applied over 10 runs. The execution time of the
GA-based CPRLS on ADSl is longer than that of C4.5, OCl
and NDT/ A large number of generations are required to con-
struct a better set of rules for classifications using the GA-based
CPRLS. The execution times of OCl-GA, OCl-ES and BTGA
on ADSl, ADS3 and ADS4 are longer than that of the GA-based

Chapter 3 Induction of Classification Rules using Genetic Algorithms 68

Algorithm ADSl ADS2 ADS3

C4.5 — < 1 — < 1 < 1

O ^ 20.8 士 2.3 9.8 ±1.9 12.4 ±0.7

NDT —24.7 士 2.1 16.6 士 1.1 _ 45.6 士 1.8

OCl-GA _752.5 士 11.0 125.2 土 1.3 8841.2 士 112.5

OCl-ES 811.2 士 39.8 123.0 士 2.4— 8853.8 士 189.3

BTGA 708.3 士 6.1 “ 44.8 土 1.9 8765.2 士 85.9

SCION 711.5 士 12.8 955.8 士 11.2 8812.5 士

GA-based CPRLS 672.0 士 12.4 "933.7 士 14.1 "8605.2 士 102.5—

Table 3.7: Average and Standard Deviation of Execution Time (in Seconds)

of Various Supervised Classification Algorithms on ADSl, ADS2 and ADS3

based on 10 Independent Runs

CPRLS to investigate whether the GA-based CPRLS is capable
of constructing a better classifier in a shorter period of time.

On the other hand, the execution time of the GA-based CPRLS
on ADSl, ADS2, ADS3 and ADS4 is shorter than that of SCION
to investigate whether the GA-based CPRLS is capable of pro-
ducing a better set of rules than SCION in a shorter period of
time.

3.3.2 Performance Comparison of the GA-based CPRLS
and RS-based CPRLS

“ • In this part, the performance of the GA-based CPRLS is com-
pared with that of the RS-based CPRLS (Random Search-based
Convex Polytope Rule Learning System). In the RS-based CPRLS,
100,000 candidate rules are randomly generated for each class.
This value equals the total number of chromosomes generated in
the GA-based CPRLS for the experiments in the previous sub-
section. Each candidate rule has a conjunctive set of H' linear
inequalities.

Table 3.5 shows the parameters of the GA-based CPRLS for

Chapter 3 Induction of Classification Rules using Genetic Algorithms 69

Algorithm ADS4 ADS5 ADS6

Ci^ < 1 < 1 < 1
OCl 7.3 士 1.1 Cannot be determined

NDT 28.1 士 1.4 Cannot be determined

OCl-GA 7915.2 士 170.2 Cannot be determined

OCl-ES 7912.3 士 169.3 Cannot be determined

BTGA 7902.0 士 78.3 Cannot be determined

SCION 7851.3 士 152.4 Cannot be determined

GA-based CPRLS —7681.6 士 121.4_ 626.3 士 14.0 | 4904.6 士 60.4

Table 3.8: Average and Standard Deviation of Execution Time (in Seconds)

of Various Supervised Classification Algorithms on ADS4, ADS5 and ADS6

based on 10 Independent Runs

the experiments in this subsection. Note that H' = H on each
dataset to evaluate the performance of the RS-based CPRLS.

Table 3.9 reports the average and the standard deviation of
the classification accuracy of the GA-based CPRLS and the RS-
based CPRLS when 10-fold cross-validation is applied over 10
runs. According to the one-sided t-tests, the GA-based CPRLS
outperforms the RS-based CPRLS on ADSl, ADS2, ADS3, ADS4,
ADS5 and ADS6 at 95% confidence interval. The GA-based
CPRLS is usually more capable of finding a better set of rules
for classifications than the RS-based CPRLS because there is
a fitness value for each candidate rule to guide the search for

‘ better ones in the GA-based CPRLS. Moreover, crossover and
mutation improve the search for better rules because more com-
putational effort is allocated to potentially more promising re-
gions of the search space.

3.3.3 Effects of Token Competition

In order to investigate the effect of token competition in the GA-
based CPRLS, the validation accuracy of the best set of rules on >

Chapter 3 Induction of Classification Rules using Genetic Algorithms 70

Dataset GA-based CPRLS RS-based CPRLS

ADSl 98.8 土 0.3 — 93.2 士 0.5

~ADS2 99.3 士 0.2 95.3 士 0.3

~ADS3 97.0 土 0.6 “ 92.8 士 0.7

“ADS4 — 99.1 士 0.2 — 95.5 士 0.4

ADS5 98.1 士 0.6 93.1 土 0.3

~ADS6 96.3 士 0.5 92.6 士 0.4

Table 3.9: Average and Standard Deviation of Validation Accuracy (%) of

the GA-based CPRLS and RS-based CPRLS on ADSl, ADS2, ADS3, ADS4,

ADS5 and ADS6 based on 10 Independent Runs

ADSl is evaluated as the number of generations increases from
100 to 10000. Table 3.5 shows the values of the other parameters
of the GA-based CPRLS. In each subpopulation, only the Qp
strongest rules are considered.

Table 3.10 reports the average and the standard deviation of
the validation accuracy of the best set of rules on ADSl as the
number of generations increases from 100 to 10000.

From Table 3.10, the validation accuracy of the GA-based
CPRLS with token competition is much higher than that with-
out token competition. The GA-based CPRLS with token com-
petition is capable of constructing a better set of rules than that
without token competition. Token competition is capable of re-
moving redundant chromosomes in the GA-based CPRLS. This

‘increases the diversity of the chromosomes in a subpopulation
because a less similar set of parent chromosomes is constructed,
producing a less similar set of offspring chromosomes.

3.3.4 Effects of Rule Migration

In this subsection, the effect of rule migration on the perfor-
mance of the GA-based CPRLS is investigated. This can be
achieved by adjusting the migration quota QM. Note that no

> »

Chapter 3 Induction of Classification Rules using Genetic Algorithms 71

Number of Generations Token Competition Without Token Competition

i S 61.7 士 2.2 41.3 士 2.2

^ 70.3 士 3.7 42.9 士 1.9 一

300 — 75.5 士 2.5 43.5 土 2.1

400 78.6 ±2.1 43.9 士 3.0 一

500 81.0 士 2.4 44.3 士 3.4

600 83.2 ±2.1 44.8 士 3.2 ~ ~

700 84.3 士 2.2 44.7 士 2.5 ~ ~

800 85.6 士 2.5 45.0 ± 2.7

m 86.8 士 1.9 45.2 士 2.9

87.4 士 2.5 45.4 士 3.2

2000 94.4 土 1.7 45.8 士 3.1

3000 95.9 ±1.1 46.6 ±2.5

4000 96.8 士 0.8 47.1 士 2.6

5000 97.8 士 0.3 47.7 士 2.1 一

6000 98.1 士 0.2 47.9 士 2.5

7000 98.3 ±0.3 48.6 士 2.3 一

8000 98.5 士 0.5 49.2 土 2.5

9000 — 98.7 士 0.3 49.6 士 3.1

.. 10000 98.8 士 0.3 50.5 ±3.5

Table 3.10: Average and Standard Deviation of Validation Accuracy (%) of

the GA-based CPRLS with and without Token Competition on ADSl based

on 10 Independent Runs

I •

Chapter 3 Induction of Classification Rules using Genetic Algorithms 72

Migration Quota QM Validation Accuracy (%)

0 — 96.5 士 1.0

1 — 97.6 士 0.6

2 98.8 土 0.3

^ 98.2 士 0.5

4 — 97.2 士 0.8

5 95.2 ±1.2

Table 3.11: Average and Standard Deviation of Validation Accuracy (%) of

the GA-based CPRLS versus Migration Quota QM on ADSl based on 10

Independent Runs

rule migration occurs when QM = 0. The experiments in this
subsection investigates the effect of token competition as the
migration quota QM varies. Table 3.5 shows the values of the
other parameters of the GA-based CPRLS.

Table 3.11 reports the average and the standard deviation of
the validation accuracy of the best set of rules on ADSl as the
migration quota Q m increases from 0 to 5.

Prom Table 3.11，the validation accuracy of the GA-based
CPRLS increases for 0 < QM < 2 but decreases for 2 < QM < 5.
The GA-based CPRLS performs better with a suitable value of
QM because a weak chromosome for a particular class may be a
good chromosome for another classes. When a subpopulation ac-
cepts a good chromosome from another subpopulation where the
chromosome is regarded as a weak one for its original subpop-
ulation, the quality of the best offspring chromosome is greater
than the average fitness of the parent chromosomes. However,
common genetic operators including crossover and mutation do
not guarantee that such a chromosome can be produced.

On the other hand, too large a value of QM does not improve
the performance of the GA-based CPRLS because it is possible
that no chromosomes can be reproduced by crossover because

Chapter 3 Induction of Classification Rules using Genetic Algorithms 73

too many chromosomes are migrated from another subpopula-
tions.

3.4 Chapter Summary

In this chapter, a novel rule-learning system called GA-based
CPRLS has been proposed by extending SCION. The antecedent
part of a classification rule is a conjunctive set of logical expres-
sions, which may include linear inequalities with several numeric
attributes and nominal attribute-value pairs.

The algorithm to evolve a set of rules using the GA-based
CPRLS has been discussed. The processes of token competition
and rule migration have also been described. Moreover, the
performance of the GA-based CPRLS has been compared with
that of various supervised classification algorithms.

Token competition and rule migration improve the perfor-
mance of the GA-based CPRLS in terms of validation accuracy.
The GA-based CPRLS provides an alternative algorithm to in-
duce a set of classification rules. Experiments show that the
GA-based CPRLS provides a better set of rules than SCION on
datasets with non-axis parallel class boundaries.

• End of chapter.
’、 *

Chapter 4

Genetic Algorithm-based
Quadratic Decision Trees

4.1 Introduction

In this chapter, a novel multivariate decision tree algorithm,
called Genetic Algorithm-based Quadratic Decision Tree (GA-
based QDT) [40], is proposed. At each non-leaf node of a GA-
based QDT, the decision criterion is of the form:

x^Ax + b'^x > 7 (4.1)

where A = (aj^k) is a symmetric matrix of order d,h = (61,62.-.,
is a c/-dimensional column vector, and 7 is a real constant. The
decision criterion in (4.1) is equivalent to a quadratic hyper-
surface in a ci-dimensional attribute space. GAs are employed

‘ to find the optimal quadratic hypersurface to partition a set of
training samples into two disjoint subsets. At each leaf node
of a GA-based QDT, there is a class label to classify an input
sample arriving at that node. Figure 4.1 shows an example GA-
based QDT. In this example, an input sample x = (6’ 0.5)了 is
classified as class 2 because + 0.5 < 38 and 6 — 2 x 0.5^ > 5.

Although the proposed algorithm extends the original work
of Chai et al [9], there are some major differences between Bi-
nary Tree Genetic Algorithm (BTGA) and the GA-based QDT.

n *

74

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 75

xj +X2 >38

Xj >5 Class 3

Class 1 Class 2

Figure 4.1: An Example GA-based Q D T

Firstly, the decision criterion at each non-leaf node of BTGA
is equivalent to a hyperplane while that of the GA-based QDT
is equivalent to a quadratic hypersurface in the attribute space.
Secondly, the coefficients of a hyperplane are encoded by a fi-
nite binary string in BTGA. In the GA-based QDT, the coef-
ficients of a quadratic hypersurface are encoded by a vector of
real numbers. The number of coefficients required to represent
a quadratic hypersurface is [d + + 2)/2 (including the con-
stant term 7 in (4.1)), therefore the search space is continuous
and high-dimensional. It is not suitable to encode a solution to
a high-dimensional problem as a finite binary string. Thirdly,

‘ B T G A uses linear normalization technique [11] to assign the fit-
ness value of each chromosome, while an absolute fitness value
is assigned to each chromosome in the GA-based QDT. Exper-
imental results show that linear normalization technique is less
capable of finding better quadratic hypersurfaces.

-

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 76

4.2 Construction of Quadratic Decision Trees

Before constructing a decision tree, a set of input samples is di-
vided into two disjoint subsets, called training set and testing
set. The training set is applied to construct a decision tree. A
constructed decision tree should minimize the number of mis-
classifications on the testing set, instead of the training set.

In order to construct a quadratic decision tree using the train-
ing set, the root node is created first. Descendants of the root
node may be created if necessary. When a new node Nh is
created, the GA-based QDT searches for the optimal quadratic
hypersurface if:

• the impurity of the set Sh of training samples arriving at
the node Nh is not less than a threshold go; and

• is not less than a positive integer no.

Otherwise, the node Nh is declared as a leaf node and the as-
sociated class label is the class with the maximum number of
training samples arriving at that node.

In this chapter, the impurity of a set of samples is measured
by the Gini-index. The impurity of Sh is defined as:

仍二 1 —) 2 (4.2)

i=l
\

where C is the number of classes and Sh,i, i = 1,2..., C, is the set
of training samples of class i arriving at node Nh. Suppose Rh is
the set of training samples arriving at node Nh such that (4.1)
is satisfied and Lh = Sh \ Rh, the weighted average impurity of
the subsets Lh and Rh is defined as:

(4.3)

丄 I 一 丄

•V

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 77

where Rh,i, z = 1,2..., C, is the set of training samples of class i
arriving at node Nh such that (4.1) is satisfied and Lh’i = Sh,i \
Rh,i, i = 1, 2..., C. The impurity reduction after partitioning the
set Sh into two disjoint subsets L^ and Rh is defined as:

g' = 91- 92. (4.4)

Note that G [0,1] for all cases.
When a new node Nh is created, the GA-based QDT searches

for the optimal quadratic hypersurface, maximizing the impu-
rity reduction after splitting the set Sh into two disjoint subsets.
The algorithm to find the optimal quadratic hypersurface is de-
scribed in the next subsection. If the impurity reduction after
partitioning the set Sh into two disjoint subsets is less than the
threshold go, the node Nh is declared as a leaf node and the
associated class label is the class with the maximum number of
training samples arriving at that node. Otherwise, the optimal
quadratic hypersurface is applied to partition the set Sh into
two disjoint subsets. A child node is created for each subset.

Figure 4.2 shows the algorithm of the procedure createQDTO.
The procedure createQDTO outlines the steps to create a new
node and its descendants of a GA-based QDT. To construct a
GA-based QDT, the procedure createQDTO accepts the train-
ing set as the parameter.

4.3 Evolving the Optimal Quadratic Hyper-
surface using Genetic Algorithms

At each non-leaf node of a GA-based QDT, there is an associated
quadratic 'hypersurface for partitioning the training samples ar-
riving at that node into two disjoint subsets. In this section, D is
defined as the number of terms required to represent a quadratic
hypersurface when each sample has d input attributes. From

、、 *
•J —

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 78

PROCEDURE CREATEQDI

INPUT A set of training samples Sh

OUTPUT A new node Nh

1. IF \SH\ is less than a positive integer no or the impurity of SH is less

than a threshold go, THEN the node Nh is declared as a leaf node and

go to step 6.

2. Find the optimal quadratic hypersurface x'^^'x + b'^x > 7'’ where

A' = (a'j^k) is a symmetric matrix of order d, b' = 62, ...’％)『is a

d-dimensional column vector and 7' is a real constant, using GAs such

that the impurity reduction after dividing the set Sh into two disjoint

subsets is maximized.

3. IF the impurity reduction is less than 卯’ THEN the node Nh is declared

as a leaf node and go to step 6.

4. Define = {x G + b'^x > 7'} and L； = Sh\ R'h-

5. Invoke createQDT(i?^) and createQDT(L'"), and go to step 7.

6. Determine the class label associated with the node Nh.

••• . 7. Return the node Nh.
\

Figure 4.2: The Algorithm of the Procedure createQDTO

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 79

(4.1), the relation between D and d is given by:

I) 二 华 + “ l = (" + i y + 2) ’ (4 .5)

since 咖广)terms are required to represent a symmetric matrix
of order d. For example, 10 terms are required to represent
a quadratic hypersurface in a 3-dimensional attribute space.
When a new node Nh is created, a GA is applied to evolve
the optimal quadratic hypersurface if the impurity of the set
Sh of training samples arriving at that node is not less than
a threshold go and \Sh\ is not less than a positive integer no.
The following outlines the steps to evolve the optimal quadratic
hypersurface using a GA:

1. Initialize a population of chromosomes P = {̂ I,没2...，没L},

where L is the population size.

2. Evaluate the fitness values of all chromosomes in P.

3. Let 没best be the best chromosome in the population P, T
be the number of generations, r be the current generation
number.

4. FOR T = 1 TO r

(a) Select L chromosomes from P (with replacement) us-
, ‘ ing the roulette wheel selection method. The selected

cfiromosomes are replicated to the mating pool M.
(b) Set M = Crossover(M).
(c) Set M = Mutation(M).
(d) Evaluate the fitness values of all chromosomes in M.
(e) Let "worst be the worst chromosome in M.
(f) Set P = M \ { ^ w o r s t } U { ^ b e s t } .

(g) Let 没best be the best chromosome in P.
•V

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 80

5. The chromosome 没best is chosen to divide the set Sh of train-
ing samples arriving at node Nh into two disjoint subsets,
provided that the fitness value of the chromosome is not
less than the threshold go.

An elitist strategy is employed to ensure the best chromosome
in the current generation is preserved in the next generation.

4.3.1 Population Initialization

Given a population of L chromosomes P = {̂ i,没2.-.,没l}. The
chromosome i = 1 ,2."，L, represents the following quadratic
hypersurface:

x^AiX + hfx > (4.6)
where Ai = (a ĵ̂ jt), i = 1，2...，L, is a symmetric matrix of order
d, bi = (6i，i, bi�2…,�)T, 2 = 1,2..., L , is a c?-dimensional column

vector and '7“ i = 1,2..., L, is a real constant. The chromosome
9i = i = 1,2..., L, is encoded such that:

if j — 1 ,2 . . . , (i，

2ai,i’j_d+i iij = d-\-l,d + 2..., 2d - 1，

2ai,2j-(2d-i)+2 if j = 2d + I.", M - 3,
切 id = :

2ai,d-i,d if j = (i (d+l) /2 ,
. kj-d{d+i)/2 if j = d{d + l) /2 + 1 …,d(d + 3)/2,

�7i if j = D.
(4.7)

The value of i = 1,2..., L , j = 1,2..., D — 1, is initialized
with a uniform random number within the range [-1, 1]. The
following outlines the steps to initialize the value of Wi,D, i =
1,2…，L'.

1. Two training samples x = (xi, Xd)^ and y = (yi, VdV
belonging to different classes are randomly chosen.

•V.

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 81

2. Set z = rx + (1 — r)y where r G [0,1] is a uniform random
number.

3. Set Wi,D = z^AiZ + hfz.

Each chromosome represents a candidate quadratic hypersurface
which passes through a randomly generated point on the line
segment joining a pair of randomly selected training samples of
two different classes. Moreover, the values of Wî î ...，切i’D,
i = 1, 2..., L, are normalized such that the following condition is
satisfied:

D

“ i=l

Each chromosome represents a candidate quadratic hypersur-
face in a d-dimensional attribute space. It is hoped that the
quality of each chromosome is improved by selection, crossover
and mutation.

4.3.2 Fitness Evaluation

The fitness value fi of the chromosome 屯 i = 1,2...，L, equals
the impurity reduction when the corresponding quadratic hy-
persurface is applied to divide a set of training samples into
two disjoint subsets. The impurity reduction is evaluated using
(4.2)，(4.3) and (4.4).

4.3.3 Selection

After the fitness value of each chromosome is evaluated, L chro-
mosomes are selected (with replacement) using the roulette wheel
selection method. The selected chromosomes are replicated to
the mating pool. The chromosome ^i, i = 1,2..., L, is selected
with a probability pi, where

. • = (4.9)

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 82

where / “ i = 1,2..., L, is the fitness value of the chromosome
9i. Chromosomes with higher fitness values are more likely to
be replicated to the mating pool because they are more likely to
generate offspring of higher quality.

4 .3 .4 Crossover

L/2 pairs of chromosomes are selected from the mating pool
without replacement. After a pair of parent chromosomes are
selected, they undergo crossover with a fixed probability pc. Let
M = {^i,没'2…,^i,} be the mating pool. The following describes
the steps of the crossover applied to the chromosomes in the
mating pool M. A new population M' of offspring chromosomes
is generated.

1. Set M' =

2. FOR i = 1 TO L/2

(a) A pair of chromosomes and 没v are selected from the
mating pool M.

(b) Set M = M\{(9u,6>v}.

(c) Generate a uniform random number r G [0,1 .
(d) IF r < Pc, THEN generate two uniform random num-

bers ri,r'2 G [-0.5,1.5];
. ELSE set ri = r2 = 0.

«

(e) IF e j ^ < 0, THEN set Q �=
(f) Generate two offspring chromosomes ^21-1 and 0么 such

that:

二 n0u + (l - n)没 V (4.10)
蛇 i =厂2没V + (1 - r2)没u (4.11)

(g) SetM' = M'U{^—1，^}.

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 83

4.3.5 Mutation

After the crossover operator is applied to the chromosomes in
the mating pool, the offspring chromosomes undergo mutation.
When the chromosome 6{ = w î’2."，切i’_D),�二 1,2..., L, rep-
resenting the quadratic hypersurface in (4.6) undergoes muta-
tion, the value of Wi,j, j — 1,2..., D, is modified with a fixed
probability pm- When the value of Wi’j, j = 1,2..., D — is
mutated, it is set to zero or modified by non-uniform mutation
35]. Suppose r is the current generation number and T is the

number of generations. The following describes the steps of the
mutation applied to the chromosome 没i，i = 1,2..., L:

1. FOR j = 1T0 D-1

(a) Generate a uniform random number ri G [0,1 .
(b) I F ' n C P m ， T H E N

i. Generate a uniform random number r2 G [0,1 .
ii. IF Wij + 0 and r̂ < Pm, THEN set Wij = 0; ELSE

A. Generate a random integer k G {—1，1}.
B. Generate a uniform random number r^ G [0,1 .
C. Set Wij = Wij ~h (k — Wij)(l — rp 『）).

iii. IF Wij = 0 and 厂2 < Pm, THEN
A. Generate a random integer k G {—1,1}.

‘ . B . Generate a uniform random number rs e [0,1 .

C. Set Wij = Wij + (A; - Wij)(I - r î—T)).

2. Generate a uniform random number ri G [0,1.

3. IF r {<pm, THEN

(a) Let Uhj, j = 1,2..., d, be the minimum value of the
产 input attribute in the set Sh of training samples
arriving at node Nh.

、

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 84

(b) Let Zh,j, j = 1,2..., d, be the maximum value of the
产 input attribute in the set Sh of training samples
arriving at node Nh.

(c) Set mi = I Ylf=i '^iA^hjil + sgn{wij)) + phj{l -
sgn{wij))] and m2 ^ | • [入 — sgn—tj)�+
Ph,j{l + sgn{wij))], where

ylj i f j = 1,2".,d,
yh,iyh,j-d+i if j = ci + 1, d + 2..., 2d — 1,

. _ yh,2yhj-{2d-i)+2 if i = 2d, 2d-\- 3,
入 h,j = .

yh,d-iyh,d if j = d{d + l) /2,
�yh,j-d{d+i)/2 if j = d{d + l) /2 + 1".，d{d + 3)/2,

and

Zh,iZhj-d+i if j = d+l,d-\- 2...，2d - 1,

Zh,2Zh,j-{2d-i)+2 if i = 2d, 2d-\- 3,
Ph,j = :

Zh,d-iZh,d if j = d{d+ l) /2,
�Zhj-d{d+i)/2 if j = d{d + l) /2 + 1..., d{d + 3)/2.

(d) Generate a random integer k G {0，1}.
... (e) Generate a uniform random number rs E [0,1 •

(f) IF /c = 0,
THEN set Wi,D = Wi,D + (爪2 — Wî D){l — ̂ 丄̂―承))；

ELSE set Wij) = m,D — (Wi,D — m i) (l — rg—⑷).

4.4 Performance Evaluation

In this section, the performance of the GA-based QDT is evalu-
ated in terms of validation accuracy, number of nodes and exe-

• if .

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 85

cution time. Four sets of experiments were performed. The first
set of experiments compares the performance of the GA-based
QDT with that of various supervised classification algorithms.
The second set of experiments compares the performance of the
GA-based QDT and that of Random Search-based Quadratic
Decision Tree (RS-based QDT). In the third set of experiments,
the effect of changing one of the parameters of the GA-based
QDT is investigated. In the last set of experiments, the effect of
adding noise in a dataset on the performance of the GA-based
QDT is studied. All the experiments were executed on a dual
Intel Xeon 2.2GHz machine.

4.4.1 Performance Comparison of the GA-based QDT
and Various Supervised Classification Algorithms

In this subsection, the performance of the GA-based QDT is
compared with that of various supervised classification algo-
rithms, including C4.5, OCl, NDT, OCl-GA, OCl-ES and BTGA.
Two artificial and two public domain datasets from the UCI ma-
chine learning repository are chosen to compare the performance
of the GA-based QDT with that of the others.

The first dataset, called ADS7, is an artificial dataset with
100 samples. ADS7 is a two-class problem. A straight line is
used to separate the samples into two classes. Each sample is
a two-dimensional vector (0:1,0:2), where xi,x2 G [0,1000]. A
sample is labeled as class 1 if 0.8xi — 0.6x2 > 150. Otherwise,
the sample is labeled as class 2. Figure 4.3 shows the dataset
ADS7.

The second dataset, called ADS8, is an artificial dataset with
1000 samples. ADS8 is a three-class problem. Each sample is
a two-dimensional vector X2), where Xi^X2 G [0,1000]. If
a sample satisfies (4.12), it is labeled as class 1. If a sample
violates (4.12) but satisfies (4.13), it is labeled as class 2. If a

•V

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 86

1000「� t̂ t̂ A .
A A A A ^ + class 1

A A A Class 2
900 - ^

A A A +
A A +

800 - A A A A

‘ • \ A +
700 - A A A A +

A +
600 - A ^ A + + +

• A , +
500 - ,

- A A A A 不
A ^ A 本上 + +

400 - t ^ L A A + + + + +
A A + +

300- A ^ i + +

“ A + + + +
2 0 0 - + • 卞

A + + ++ + +
100- A + + +

+ +
+ +

O' 1 1 1 1 I 1 1 I I I
0 100 200 300 400 500 600 700 800 900 1000

x1

‘ 、 Figure 4.3: The Dataset ADS7

/

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 87

1000「+ ,+ +++ + + 丄 + + +++++-tt- + + ±
++ ++ 本 + + ++++++++ +、主+ + 1 + class 1
-h. + , , + + , +A ++ A class 2

9。。,:+ > 、 + 1 5 +,++ +::+ +++:++++++ V：

800 斗、+++ �A * H ^ i “ +�+ +++

。 ： 气 。 4 ：

伊。/ rV^ . A . ： ：

叫u + f Ooro © n O o^ O力 O 么 ++ +

� J 於 念 葛 会

3。。、 A，、5 / A > ++

0 100 200 300 400 500 600 700 800 900 1000
- x1

Figure 4.4: The Dataset ADS8

sample violates both (4.12) and (4.13)，it is labeled as class 3.
Figure 4.4 shows the dataset ADS8.

2 0 2 5 0 0 + 1 2 2 5 0 0 > (4 . 丄

(工 5 0 0) 2 (巧 - 5 1 0) 2

• . , 90000 + 62500 〉丄.。 （4.id)

The third dataset, called ECOLI, is a public domain dataset
from the UCI machine learning repository. Each sample has 7
numeric input attributes. This dataset has 336 samples and 8
classes.

The fourth dataset, called BALANCE, is also a public domain
dataset from the UCI machine learning repository. Each sample
has 4 numeric input attributes. This dataset has 625 samples

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 88

Dataset Number of Generations

ADS7 300,000

ADS8 60,000 ~

ECOLI 300,000

BALANCE 150,000

Table 4.1: Number of Generations for OCl-ES on ADS7, ADS8, ECOLI and

BALANCE

Parameters ADS7 | ADS8 | ECOLI | B A L A N C ^

Population Size 100

Number of Generations 2500 1000 4000 2000 —

Crossover Probability 1.0 0.8 0.9 0.9

Mutation Probability 0.25 0.3 0.3 0.15

Table 4.2: Parameters of OCl-GA on ADS7, ADS8, ECOLI and BALANCE

and 3 classes.
The number of generations for the OCl-ES algorithm is mod-

ified on each dataset so that the execution time of the OCl-ES
algorithm is longer than that of the GA-based QDT. Table 4.1
shows the number of generations for the OCl-ES algorithm on
each dataset.

The implementation of the OCl-GA algorithm in this set of
experiments is identical to that described in Section 3.3.1. The

‘number of generations for the OCl-GA algorithm is modified
on each dataset so that the execution time of the OCl-GA algo-
rithm is longer than that of the GA-based QDT. Table 4.2 shows
the parameters of the OCl-GA algorithm so that its validation
accuracy is maximized on each dataset.

If the number of training samples at a node is less than a pos-
itive integer no or the impurity reduction is less than a threshold
go, no child node is created in BTGA. The number of generations
for the BTGA algorithm is modified on each dataset so that the

I

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 89

Parameters ADS7 | ADS8 | ECOLI | B A L A N ^

Population Size 100

Number of Generations 2500 1000 4000 2000 —

Crossover Probability 1.0 0.8 0.8 ^

Mutation Probability 0.25 0.15 0.15 0.1

no 50 10 15 10

go 0.4 0.01 0.1 ~~ 0.1

Table 4.3: Parameters of BTGA on ADS7, ADS8, ECOLI and BALANCE

Parameters ADS7 | ADS8 | ECOLI | BALANCE"

Population Size 100

Number of Generations 1000

Crossover Probability 0.9 1.0 0.9 0.9 一

Mutation Probability 0.15 0.15 0.1 0.1

no 50 —100 20 30 “

^ 0.3 0.3 0.15 0.1

Table 4.4: Parameters of the GA-based QDT on ADS7, ADS8, ECOLI and

BALANCE

execution time of the BTGA algorithm is longer than that of the
GA-based QDT. Table 4.3 shows the parameters of the BTGA
algorithm so that its validation accuracy is maximized on each
dataset.

. . Table 4.4 shows the parameters of the GA-based QDT so as
to maximize its validation accuracy. The value of no specifies
the minimum number of training samples and that of go specifies
the minimum impurity reduction. Standard parameter settings
are applied in various decision tree algorithms including C4.5,
OCl and NDT.

Table 4.5 shows the average and the standard deviation of
the validation accuracy of various supervised classification algo-
rithms when 10-fold cross-validation is applied over 10 runs.

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 90

According to the one-sided t-tests, the GA-based QDT out-
performs the others on ADS8, ECOLI and BALANCE in terms
of validation accuracy at 95% confidence interval. The deci-
sion criterion at each non-leaf node of a GA-based QDT usually
provides a better approximation to non-linear class boundaries
when compared with that of univariate and oblique decision tree
algorithms. Although both NDT and GA-based QDT construct
quadratic decision trees, the GA-based QDT outperforms NDT
on all of the datasets. When a new node is created, GA-based
QDT is more capable of finding a better quadratic hypersurface
than NDT because GA-based QDT is more capable of escaping
from local optima.

On the other hand, BTGA outperforms the others (including
the GA-based QDT) on ADS7 in terms of validation accuracy
at 95% confidence interval using the one-sided t-tests. Suppose
each input sample has d numeric input attributes. The number
of parameters required to specify a hyperplane is •⑷，while the
number of terms required to specify a quadratic hypersurface is
0{(P). Since the class boundary of ADS7 is linear, a hyperplane
can be used to divide the samples into two classes completely. It
is much faster to find the optimal hyperplane than the optimal
quadratic hypersurface using GAs when the training samples
to be partitioned are linearly separable. Moreover, a quadratic
hypersurface tends to overfit the training samples when they are
linearly separable.

Univariate decision tree algorithms should outperform the
others (including the GA-based QDT) on datasets whose class
boundaries are axis-parallel hyper planes. Again, a quadratic hy-
persurface tends to overfit the training samples in such datasets.
It is more*suitable to use univariate decision tree algorithms to
construct decision trees for such datasets than the GA-based
QDT.

Table 4.6 shows the average and the standard deviation of the

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 91

Algorithm ADS7 ADS8 ECOLI BALANCE—

045 87.4 士 2.0 93.6 士 0.6 81.6 士 1.2 77.6 士 0.7

O a 94.0 士 1.6 93.2 土 0.8 "^0.7 士 1.8 士 0.6

NDT 93.8 士 1.5 93.1 士 0.5 士 1.8 91.8 士 1.1

0C1-GA 93.4 ± 1.2 93.0 ±0.5 83.6 ±1.3 93.9 士 1.2

0C1-ES 98.1 士 1.3 ~94.8 士 0.8 "80.6 士 2.0 90.7 土 0.9

BTGA 99.4 士 0.7 ~96.0 士 0.3 "83.6 士 1.4 93.1 士 1.0

GA-based QDT 98.3 士 0.8 98.9 士 0.3 84.9 97.2 士 0.5

Table 4.5: Average and Standard Deviation of Validation Accuracy (%) of

Various Supervised Classification Algorithms on ADS7, ADS8, ECOLI and

BALANCE based on 10 Independent Runs

tree size (in number of nodes) of various supervised classification
algorithms when 10-fold cross-validation is applied over 10 runs.
The time required to classify an input sample depends on the
number of non-leaf nodes visited and the number of parameters
required to specify the decision criterion at each non-leaf node of
a decision tree. Although the GA-based QDT usually constructs
decision trees with fewer nodes, the decision trees constructed
by the GA-based QDT do not necessarily classify input samples
more quickly than those constructed by the others.

Table 4.7 shows the average and the standard deviation of
the execution time of various supervised classification algorithms
when 10-fold cross-validation is applied over 10 runs. The exe-

‘ c u t ion time of the GA-based QDT is longer than that of C4.5,
OCl and NDT. The number of coefficients required to specify
a quadratic hypersurface in a d-dimensional attribute space is
0[(P� , a sufficiently large number of generations is required to
find an acceptable quadratic hypersurface using GAs. The num-
ber of generations for OCl-ES, OCl-GA and BTGA is modified
so that the execution times of these algorithms are longer than
that of the GA-based QDT (except for BTGA on ADS7). The

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 92

Algorithm ADS7 ADS8 ECOLI BALANCE—

C ^ 5.7 ±0.1 33.6 ±0.9 18.6 ± 1 . 0 4 1 . 8 ±1.1

OCl 3.1 士 0.2 12.3 士 3.1 4.6 士 1.0 5.5 士 1.2

NDT 3.2 ±0.3 "10.5 士 2.3 17.9 土 0 . 9 7 . 6 土 1.5

OCl-GA 3.2 土 0.4 16.0 士 3.1 5.0 士 i 6.1 士 1.2

0C1-ES 3.0 士 0.1 11.5 士 2"T 4.9 士 0.8一 5.5 士 1.5

BTGA 士 0.0 25.9 士 0.6 6.7 士 厂 7.0 士 0.5

GA-based QDT 士 0.0 5.0 土 0.0 6.1 土 5 T " 5.1 士 0.1

Table 4.6: Average and Standard Deviation of Tree Size (in Number of

Nodes) of Various Supervised Classification Algorithms on ADS7, ADS8,

ECOLI and BALANCE based on 10 Independent Runs

reason for this is to investigate whether the GA-based QDT
constructs a better decision tree in a shorter period of time.

However, the execution time of BTGA on ADS7 is shorter
than that of the GA-based QDT because BTGA can find a hy-
perplane such that the weighted average impurity of the training
samples in ADS7 is zero in less than 1000 generations. In other
words, the impurity reduction is maximized. In this case, BTGA
finishes the construction of oblique decision trees for the dataset
ADS7.

4.4.2 Performance Comparison of the GA-based QDT
and RS-based QDT

*

In this part, the performance of the GA-based QDT is com-
pared with that of Random Search-based Quadratic Decision
Tree (RS-based QDT). At each non-leaf node of a RS-based
QDT, 100，000 candidate quadratic hypersurfaces are randomly
generated using the same way as the chromosomes in the GA-
based QDT are initialized. This number is equal to the num-
ber of chromosomes generated by the GA-based QDT when a
new node is created. The impurity reduction of each candidate

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 93

Algorithm ADS7 ADS8 ECOLI B A L A N C ^

C4.5 < 1 — < 1 < 1 — < 1

OCl < 1 44.0 士 0.8 73.7 士 2.1 57.8 士 0.6

NDT 1.7 土 0.5 102.6 土 4.5 142.0 士 2.7 90.3 士 2.6

0C1-GA 47.6 ±4.6 417.9 士 18.0 1015 士 27 471.2 士 30.0

0C1-ES 36.0 士 3.9 264.0 士 1021 士 38 476.1 士 12.9

BTGA 3.4 士 2.0 717.3 士 s d X 1254 土 i f 485.7 士 67.3

GA-based Q D ^ 31.5 士 0.5 246.5 士 21"^ 959.9 士 54.0 366.7 士 ^

Table 4.7: Average and Standard Deviation of Execution Time (in Seconds)

of Various Supervised Classification Algorithms on ADS7, ADS8, ECOLI

and BALANCE based on 10 Independent Runs

quadratic hypersurface is evaluated and the quadratic hypersur-
face with the maximum impurity reduction is chosen to partition
a set of samples into two disjoint subsets if the minimum number
of samples is not less than a positive integer no and the impurity
reduction is not less than a threshold QQ. In this case, a child
node is created for each subset.

Table 4.4 shows the minimum number of samples no and the
minimum impurity reduction go required to create child nodes
on each dataset. Table 4.8 reports the average and the stan-
dard deviation of the validation accuracy of the GA-based QDT
and the RS-based QDT when 10-fold cross-validation is applied
over 10 runs. According to the one-sided t-tests, the GA-based

• QDT outperforms the RS-based QDT on ADS8, ECOLI and
BALANCE at 95% confidence interval. The GA-based QDT is
usually more capable of finding a better quadratic hypersurface
than the RS-based QDT when a new node is created.

4.4.3 Effects of Changing Parameters of the GA-based
QDT

There are several parameters in the GA-based QDT, including:

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 94

Dataset GA-based QDT RS-based QDY^

ADS7 98.3 士 0.8 98.3 ± 1 . 3 ^

^ A D S 8 98.9 士 0.3 52.1 士 3.8

^ E C O L I 84.9 士 0.7 83.8 ± 0 . 3 ^

BALANCE 97.2 士 0.5 89.2 士 1.0

Table 4.8: Average and Standard Deviation of Validation Accuracy (%) of

the GA-based QDT and RS-based QDT on ADS7, ADS8, ECOLI and BAL-

ANCE based on 10 Independent Runs

• Crossover Probability (pc)；

• Mutation Probability (Pm);

• Number of Generations (T);

• Minimum Number of Training Samples (no); and

• Minimum Impurity Reduction (仍).

The first three parameters are common parameters of GAs.
The last two parameters specify the necessary and sufficient con-
ditions of creating child nodes. Table 4.4 shows that the optimal
values of these parameters (except for the number of genera-
tions) are different on each dataset. The BALANCE dataset is
applied to illustrate the effect of changing one of these parame-
ters.

Number of Generations (T)

In this part, the number of generations increases from 100 to
5000 while the values of the other parameters are shown in Table
4.4. . ‘

Table 4.9 reports the average and the standard deviation of
the validation accuracy, the execution time and the tree size (in
number of nodes) based on 10 independent runs when the num-
ber of generations T equals 100，200.",900,1000,2000"., 5000.

•V

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 95

The results reported in Table 4.9 are used to plot Figures 4.5,
4.6 and 4.7.

Although the validation accuracy tends to increase as the
number of generations increases, the validation accuracy and
the number of generations may not be related by an increas-
ing function. For example, the validation accuracy for T = 800
is greater than that for T = 900. Although the quality of the
quadratic hypersurface at each non-leaf node can be improved as
the number of generations increases, producing better quadratic
hypersurfaces during the training stage does not necessarily con-
struct better decision trees.

On the other hand, the execution time is not directly propor-
tional to the number of generations. The number of nodes varies
as the number of generations varies. When a larger GA-based
QDT is constructed, more candidate quadratic hypersurfaces
are initialized, evaluated and evolved using GAs. At the root
node, all the samples in the training set are considered when
GAs are applied to find the optimal quadratic hypersurface.
Nevertheless, a different subset of samples in the training set
is considered to search for the optimal quadratic hypersurface
at each non-root node of a GA-based QDT. As a result, the time
required to find the optimal quadratic hypersurface is different
for each non-leaf node.

Crossover Probability (pc)
S

In this part, the crossover probability increases from 0.0 to 1.0
while the values of the other parameters are shown in Table 4.4.

Table 4.10 shows the average and the standard deviation of
the validation accuracy, the execution time and the tree size
(in number of leaf nodes) based on 10 independent runs when
the crossover probability pc equals 0.0,0.1...’ 1.0. The results
reported in Table 4.10 are used to plot Figures 4.8, 4.9 and
4.10. The maximum validation accuracy is attained when the

•V

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 96

T Validation Accuracy (%) Execution Time (s) Tree Size

100 95.06 士 0.83 45.3 士 5.6 5.93 士 0.28

200 96.02 士 0.56 90.1 士 9.9 5.81 士 0.17

~m 96.28 士 0.68 122.0 士 2.3 " ^ 士 0.14

400 — 96.25 士 0.85 — 159.8 士 3.1 5.57 士 0.19

96.34 士 0.66 199.8 士 4.0 " ^ 士 0.19

600 — 97.06 士 0.75 233.8 士 2.3 5.51 士 0.17

700 — 96.78 士 0.92 268.7 士 5.5 5.55 士 0.2"^

800 - 96.98 士 0.44 310.5 士 4.9 5.47 士 o i T
"~900 96.73 士 0.75 347.3 ± 3.6 5.39 士 0.19

1000 97.23 士 0.49 — 366.7 士 5.1 5.13 士 0.11

2000 97.13 ±0.81 741.0 士 7.1 5.16 ±0.11

3000 — 97.08 士 0.84 1110.5 士 11.4 5.19 士 0.19

4000 — 97.40 士 0.61 1459.2 士 6.1 5.17 士 0.12

5000 97.50 士 0.65 1885.2 ± 7.2 5.13 ±0.09

Table 4.9: Average and Standard Deviation of Validation Accuracy (%), Exe-

- . c u t i o n Time (in Seconds) and Tree Size (in Number of Nodes) on BALANCE

based on id Independent Runs as the Number of Generations T Varies

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 97

98.51 1 1 1 1 1

98 - 丁 -

97,5 - T -

T j l - ^ 一 Z

196.5 - T f 丄 -
I � A 丄 丄

I 96- . -
1 T I 丄1

95.5 - i•丄 .

95 - -

94.5 - -

941 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000

Number of Generations (T)

Figure 4.5: Validation Accuracy {%) of GA-based QDT on BALANCE versus

Number of Generations T

2 0 0 0 r 1 1 1 1 1

1800 - Z -

1600 - Z •

1400 - -
Si200 - -

卜 z _
.. m 800 - / -

‘ • z
600 - Z -
400_

200 - y^
QI 1 1 ‘ 1 1

* 0 1000 2000 3000 4000 5000 6000
Number of Generations (T)

Figure 4.6: Execution Time (in Seconds) of GA-based QDT on BALANCE

versus Number of Generations T

•V

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 98

6.51 1 1 1 1 1

S 6- -
I
0 \
^ 、 N - r

1 Jt T
三 丁 丁

I }T
I 5.5- \ / \ -

/ 丄丄

p

,51 ± 1 ^ 1 ‘
V 0 1000 2000 3000 4000 5000 6000

Number of Generations (T)

‘ Figure 4.7: Tree Size (in Number of Nodes) of GA-based QDT on BALANCE

versus Number of Generations T

crossover probability is 0.9. However, the confidence intervals
“ of the validation accuracy for different crossover probabilities do
： overlap.
•i •

^ Mutation Probability (p饥）

� In this part, the mutation probability increases from 0.0 to 1.0
、广- while the values of the other parameters are shown in Table 4.4.
V . Table 4.11 reports the average and the standard deviation
、丨: of the validation accuracy, the execution time and the tree size
JK" (in number of leaf nodes) based on 10 independent runs when the

mutation probability prn equals 0.0,0.05,0.1,…，0.25’ 0.3，0.4..., 1.0.
The results reported in Table 4.11 are used to plot Figures 4.11,

f 4.12 and "4.13.
u The maximum validation accuracy is attained when the mu-
； tation probability is 0.05. The execution time tends to be longer
.� as the mutation probability increases because non-uniform mu-

k ‘
i- "‘

I,.

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 99

Pc Validation Accuracy (%) Execution Time (s) Tree Size

~aO 96.45 土 0.99 369.4 土 6.6 3.30 士 0.16

0.1 96.82 士 0.98 — 364.1 士 5.2 3.15 士 0.12

0.2 96.80 士 0.71 — 362.8 士 5.0 3.14 士 0.11

0.3 ~ ~ 97.07 士 0.67 367.8 士 4.8 3.18 士 0.12

" M 96.80 士 0.86 364.8 士 4.0 3.18 士 O.li"

~05 97.04 土 1.03 367.8 士 5.1 3.22 ±0.10

0.6 — 97.20 士 0.81 — 369.7 土 6.3 3.21 士 0.11

0.7 96.83 士 0.86 367.5 ± 5.5 3.19 士 0.13

"08 97.07 士 0.82 365.3 士 5.7 3.11 土 o.of
"O^ 97.23 士 0.49 366.7 士 5.1 3.13 士 0.1厂

1.0 , 96.50 士 0.42 — 368.4 士 8.1 3.14 士 0.10

Table 4.10: Average and Standard Deviation of Validation Accuracy (%),

Execution Time (in Seconds) and Tree Size (in Number of Leaf Nodes) on

BALANCE based on 10 Independent Runs when the Crossover Probability

Pc Varies

98.51 I I I ‘ I I I I

98 - T T -

丁 丁

97.5 • 丁 -

卜 . 厂 八 / ^ A z i i -
I 96.5- / \ -

• I 丄 “

96 - 丄 丄 丄 -

95.5 - 1 -

. 9 5 1 ‘ ‘ ‘ ‘ ‘ 1
0 0.2 0.4 0.6 0.8 1

Crossover Probability

Figure 4.8: Validation Accuracy (%) of GA-based QDT on BALANCE versus

Crossover Probability Pc

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 100

3801 1 1 r 1 1 —r-

375 _ -

2 370 -

L. \ I _
360 - 1 -

355 L- ‘ 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Crossover Probability

Figure 4.9: Execution Time (in Seconds) of GA-ba^ed QDT on BALANCE

versus Crossover Probability Pc

3-5 r 1 1 1 r 1 1

3.45 - T -

3.4 - -

I 3.35 • ‘ -
z
« T T T
3 3.3 - T -
3 \ T T w \ T
I 3.25 - \ 丁 -

.. I 3.2- \ — Z � \ -

. ‘ 1 � z — I -
3.1 - 1 .

3.05 - -
‘ 31 ‘ ‘ ‘ -J ‘ 1

0 0.2 0.4 0.6 0.8 1
Crossover Probability

Figure 4.10: Tree Size (in Number of Leaf Nodes) of GA-based QDT on

BALANCE versus Crossover Probability Pc

；)

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 101

981 1 1 1 1 1 1

Kr T T 丁
\ —

96- 丄 r ^ T T -

丄 \ T

I \ T

1 9 2 - 丄 \ -

I T
5 \ T T

9 0 - 1 \ -

丄 丄
88 - _[

‘86' ‘ 1 ‘ 1 ‘ 1
0 0.2 0.4 0.6 0.8 1

Mutation Probability

Figure 4.11: Validation Accuracy (%) of GA-based QDT on BALANCE

versus Mutation Probability pm

tation is applied to each chromosome in the GA-based QDT.
The computation of r f (gee Section 4.3.5) is a bottleneck of
non-uniform mutation. As the mutation probability increases,
the expected number of mutations increases. Therefore, the ex-
ecution time is longer.

The minimum number of leaf nodes is attained when the mu-
tation probability is 0.05. When the mutation probability equals

. 0 . 0 5 , GA-based QDT has its greatest capability of evolving the
optimal quadratic decision function at each internal node on
BALANCE. The impurity reduction after partioning a set of
training samples for this value of mutation probability is much
higher than that for other values of mutation probability. There-
fore, less nodes are generated when the mutation probability is
0.05.

ij . . .

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 102

Pm Validation Accuracy (%) Execution Time (s) Tree Size

0.0 89.44 士 0.81 381.2 土 5.4 4.23 士 0.58

97.23 士 0.49 366.7 ± 5 . 1 3.13 士 0.11

96.56 ± 0.50 379.9 士 8.4 5.54 士 0.23

0.15 — 96.32 士 0.59 — 386.3 士 10.4 5.74 土 0.23

0.2 — 96.32 士 0.47 390.2 士 10.3 5.90 士 0.38

0.25 一 95.66 土 1.19 413.8 土 15.0 6.04 士 0.48

0.3 95.23 士 0.99 438.3 士 17.7 —6.12 土 0.44

0.4 一 94.93 士 1.05 439.8 士 11.4 3.80 士 0.35"

0.5 93.22 士 1.04 471.6 士 20.3 3.97 士 0.41

0.6 — 91.92 士 1.06 497.7 士 10.4 4.08 士 0.3『

0.7 90.74 士 0.75 505.6 士 12.7 —4.2 8 士

0.8 89.57 ± 1 . 0 1 514.0 士 16.1 4.22 士 0.55

0.9 — 89.42 士 1.65 540.4 士 15.7 4.54 士 0.71

1.0 89.30 士 1.02 565.8 ± 10.5 4.55 ± 0.73

Table 4.11: Average and Standard Deviation of Validation Accuracy (%)，

Execution Time (in Seconds) and Tree Size (in Number of Leaf Nodes) on

‘ BALANCE based on 10 Independent Runs when the Mutation Probability

Pm Varies

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 103

6001 1 1 1 1 1 1

550 - •

2 5 0 0 - 丄 -

I K
0 J

1 , /

i2 450 - T / 丄 -

400 - y - - -

. V ^ .
3 5 0 ' ‘ " 1 1 ‘ 1

0 0.2 0.4 0.6 0.8 1
Mutation Probability

Figure 4.12: Execution Time (in Seconds) of GA-based QDT on BALANCE

versus Mutation Probability prn

71 1 1 1 1 1 1

6.5 - T T -

. 6 - j / Z -

F/ T l 让
3.5 - \ 丄 _

31 1_i 1 1 " 1 1
0 0.2 0.4 0.6 0.8 1

Mutation Probability

Figure 4.13: Tree Size (in Number of Leaf Nodes) of GA-based QDT on

BALANCE versus Mutation Probability Pm

1、

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 104

no Validation Accuracy (%) Execution Time (s) Tree Size

To 97.20 ±0.51 367.3 ±6.1 5.17 士 0.16

"Is 97.20 士 0.51 367.6 士 5.9 5.17 士 0.16

97.23 士 0.49 366.9 土 4.8 5.13 士 0.11

25 97.23 士 0.49 366.8 士 4.7 5.13 士 0.11

97.23 士 0.49 366.7 士 5.1 5.13 士 0.11

"35 97.09 土 0.56 — 367.1 士 4.5 5.11 士 0.10

97.09 士 0.56 — 364.9 士 3.3 5.11 士 0.10

"45 97.04 士 0.54 366.2 士 7.5 5.08 士 0.09

97.10 ±0.62 363.7 士 5.3 5.00 士 0.00

Table 4.12: Average and Standard Deviation of Validation Accuracy (%),

Execution Time (in Seconds) and Tree Size (in Number of Nodes) on BAL-

ANCE based on 10 Independent Runs when the Minimum Number of Train-

ing Samples no Varies

Minimum -Number of Training Samples (no)

In this part, the minimum number of training samples increases
from 10 to 50 while the values of the other parameters are shown
in Table 4.4.

Table 4.12 shows the average and the standard deviation of
the validation accuracy, the execution time and the tree size
(in number of nodes) based on 10 independent runs when the
minimum number of training samples no equals 10，15..., 50. The
results reported in Table 4.12 are used to plot Figures 4.14,

‘ 4.15 and 4.16. The maximum validation accuracy is attained
when the minimum number of training samples is 20, 25 or 30.
As expected, the number of nodes decreases as the minimum
number of training samples increases.

Minimum Impurity Reduction (^o)

In this part, the minimum impurity reduction is increased from
0.05 to 1.0 while the values of the other parameters are shown

"V

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 105

981 I < k I I I I I I

97.8 - -

T T T T T T

97.6 _ -

?97.4 - -

I
197.2- 一 \ •

I \
I 97 - -

96.8 - -

96.6 - -

'96 41 1 1 1 1 1 1 1 1 1 —
5 10 15 20 25 30 35 40 45 50 55

Minimum Number of Samples

Figure 4.14: Validation Accuracy (%) of GA-based QDT on BALANCE

versus Minimum Number of Samples no

3741 1 1 1 1 1 1 1 1 1
T T

372 - -

370 - -

^368 - T -

I 一 \ 一 一 \

•. ^ 364 - \
*

362 - 丄 丄 丄 _

360 - -

3 5 8 I I I ' I I I I I
. 5 10 15 20 25 30 35 40 45 50 55

Minimum Number of Samples

Figure 4.15: Execution Time (in Seconds) of GA-based QDT on BALANCE

versus Minimum Number of Samples no

、’ .

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 106

5.41 1 1 1 1 1 1 1 1 1

5.35 - -

5.3 • -

I 5.25 -

B
至 5 . 2 - _

E
^ ——\ 丁

误 \ 一

I 5.1 - \ -

I 1 1 I I 1 I \ •
5 - 丄 、 -

« •‘

4 951 I I 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 55

Minimum Number of Samples

Figure 4.16: Tree Size (in Number of Nodes) of GA-based QDT on BAL-

ANCE versus Minimum Number of Samples no

in Table 4.4.
Table 4.13 reports the average and the standard deviation of

the validation accuracy, the execution time and the tree size (in
number of nodes) based on 10 independent runs when the min-
imum impurity reduction go equals 0.05,0.1..., 0.25,0.3,0.4..., 1.
The results reported in Table 4.13 are used to plot Figures 4.17,
4.18 and 4.19. The maximum validation accuracy is attained

‘ when thq minimum impurity reduction is 0.1. As the minimum
impurity reduction increases from 0.1 to 0.5, the validation ac-
curacy decreases. But the validation accuracy remains stable as
the minimum impurity reduction increases from 0.5 to 1.0.

As expected, the number of nodes of a GA-based QDT de-
creases as the minimum impurity reduction increases. When the
impurity reduction equals 0.5, every constructed decision tree
has the root node only because GAs fails to find a quadratic

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 107

go Validation Accuracy (%) Execution Time (s) Tree Size
97.20 士 0.40 402.6 士 9.8 T i ^ 士 0.15

0.1 — 97.23 士 0.49 366.7 士 5.1 5.13 士 0.11

0.15 97.04 士 0.52 362.5 士 3.1 5.00 士 0.05

0.2 96.67 士 0.81 — 455.1 士 6.2 4.92 ± 0 . 0 8

0.25 91.82 士 0.47 290.5 士 4.5 4.12 士 0.10

0.3 91.26 士 0.32 232.1 土 0.7 3.00 土 0.00

0.4 91.39 士 0.42 218.2 士 4.9 3.00 士 ^ ^

~ 0 5 41.30 ± 1 . 5 6 215.3 士 3.8 1.00 土 0.00

0.6 — 41.30 士 1.56 0.0 士 0.0 1.00 士 0.00

~ 0 7 41.30 ± 1.56 0.0 士 0.0 1.00 士 0.00

~ 0 8 41.30 ± 1.56 0.0 ± 0 . 0 1.00 士 0.00

0.9 — 41.30 士 1.56 0.0 士 0.0 1.00 士 0.00

T o 41.30 士 1.56 0.0 士 0.0 1.00 士 0.00

Table 4.13: Average and Standard Deviation of Validation Accuracy (%)’ Ex-
ecution Time (in Seconds) and Tree Size (in Number of Nodes) on BALANCE
based on 10 Independent Runs when the Minimum Impurity Reduction go
Varies

hypersurface such that the impurity reduction is greater than or
equal to 0.5.

When the minimum impurity reduction is greater than or
equal to 0.6，the execution time is almost zero and every con-
structed decision tree has the root node only. The GA-based
QDT algorithm does not attempt to find the optimal quadratic
hypersurface because the impurity of every possible training set
of the BALANCE dataset is less than the minimum impurity
reduction. The impurity of the BALANCE dataset should lie
between the range 0.5 and 0.6.

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 108

1001 1 1 1 [1 n 90 - T -

: \ -
I 70- \ •

I- \
50 - \ -

40- I I i " " “ I ^ ^ i I -
• 3Q| 1 1 1 1 1 0 0.2 0.4 0.6 0.8 1

Minimum Impurity Reduction

Figure 4.17: Validation Accuracy (%) of GA-based QDT on BALANCE
versus Minimum Impurity Reduction QQ

5001 1 1 1 1 1
450 - X -
4��- -
350 - \ -

2300 - i. -
J \
§ 250 - \ -
1
i2 200 - \ -

. . . ‘ 1 \
150 - \ -
100 - \ -

50 - \ -
o' ‘ ‘ � ‘ ‘

• 0 0.2 0.4 0.6 0.8 1
Minimum Impurity Reduction

Figure 4.18: Execution Time (in Seconds) of GA-based QDT on BALANCE
versus Minimum Impurity Reduction go

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 109

61 ! 1 1 1 1

卜 \ •

^ 3.5 - \ -

I \ _ ^
•E 3- ^ \ -

\ -

： \ ^
1 - ^ _

• 0.51 ‘ ‘ ‘ ‘ ‘ ~ ： ~

0 0.2 0.4 0.6 0.8 1

Minimum Impurity Reduction

Figure 4.19: Tree Size (in Number of Nodes) of GA-based QDT on BAL-
ANCE versus Minimum Impurity Reduction go

4.5 Chapter Summary

In this chapter, a novel multivariate decision tree algorithm
called GA-based QDT has been proposed by extending the BTGA
algorithm. The algorithm to construct a GA-based QDT has
been discussed. The performance of the GA-based QDT is com-

... pared with that of various supervised classification algorithms.
When a new node of a quadratic decision tree is created, the

‘ performance of searching for the optimal quadratic hypersurface
using random search has been compared to that using GAs. The
effects of changing one of the parameters of the GA-based QDT
have been studied.

Experiments show that the GA-based QDT provides a bet-
ter approximation to non-linear class boundaries when com-
pared with other univariate and linear decision tree algorithms.
Moreover, GAs are more capable of searching for the optimal

Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 110

quadratic decision function than random search at each internal
node of a quadratic decision tree.

• End of chapter.

Chapter 5

Induction of Linear and
Quadratic Decision Trees using
Spatial Data Structures

5.1 Introduction

In this chapter, two spatial data structures, including k-D trees
and generalized quadtrees, are applied to speed up the construc-
tion of oblique and quadratic decision trees on datasets with
sufficiently large number of training samples. When a new node
of an oblique or a quadratic decision tree is created, either a k-D
tree or a generalized quadtree is constructed using the training
samples arriving at that node.

.. k-D trees are binary trees. There are two child nodes at each
non-leaf node of a k-D tree. At each non-leaf node of a k-D tree,

‘ one of the input attributes is chosen to divide a set of training
samples into two disjoint subsets.

There are at most child nodes at each non-leaf node of a
generalized quadtree, where d is the number of input attributes
of a sample. At each non-leaf node of a generalized quadtree,
all the input attributes are applied to divide a set of training
samples into at most disjoint subsets.

Both oblique and quadratic decision trees are usually con-• •

111

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 112

structed using a top-down approach. At each non-leaf node of
an oblique decision tree, the optimal linear decision function is
determined. The linear decision function at a non-leaf node is
of the form:

wixi + W2X2 + . . . + WdXd > Wo, (5.1)

where WQ, WI... ,WD are the coefficients of a linear decision func-
tion. A linear decision function is equivalent to a hyperplane in
a (^-dimensional attribute space. On the other hand, the optimal
quadratic decision function is determined at each non-terminal
node of a quadratic decision tree. The quadratic decision func-
tion at a non-leaf node is specified in (4.1). At each leaf node of
an oblique or a quadratic decision tree, there is a class label to
classify a sample arriving at that node.

The optimality of a hyperplane or a quadratic hypersurface
at a non-terminal node is determined using the impurity reduc-
tion after partitioning a set of training samples into two disjoint
subsets. The impurity of a set of samples can be measured
by the Gini-index, entropy and so on. To measure the impu-
rity reduction after dividing a set of training samples into two
disjoint subsets, it is required to find the number of training
samples for each class such that either (4.1) or (5.1) is satisfied,
depending on whether a quadratic or an oblique decision tree is
being constructed. An intuitive way to determine the number of

. . training samples satisfying (4.1) or (5.1) for each class is to con-
sider each of these training samples. However, this approach is
time consuming on large or high-dimensional datasets because
the computational time required to evaluate the impurity re-
duction is 0{dn) for a hyperplane and 0{(Pn) for a quadratic
hypersurface, where n is the number of training samples being
considered.

Alternatively, either a k-D tree or a generalized quadtree is
constructed before searching for the optimal linear or quadratic

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 113

decision function at each internal node of an oblique or a quadratic
decision tree. At each node of a k-D tree or a generalized
quadtree, there is the associated smallest hyperrectangle con-
taining all the training samples arriving at that node. If a
quadratic (or a linear) decision function does not intersect the
hyperrectangle, all the training samples inside the hyperrectan-
gle either satisfy or violate (4.1) (or (5.1)). In this case, there is
no need to determine whether (4.1) or (5.1) is satisfied for each
of these training samples. Figures 5.1 and 5.2 respectively illus-
trate a linear and a quadratic decision functions which do not
intersect the smallest hyperrectangle containing a set of train-
ing samples. Otherwise, all of the descendants are considered
until the decision function in (4.1) or (5.1) does not intersect
the smallest hyperrectangle of a non-leaf node or a leaf node
is being considered. If a leaf node is being processed and the
decision function in (4.1) or (5.1) intersects the smallest hyper-
rectangle containing all the training samples arriving at that
node, it is necessary to calculate the sign for each of these train-
ing samples. Figures 5.3 and 5.4 respectively illustrate a linear
and a quadratic decision functions which intersect the smallest
hyperrectangle containing a set of training samples.

5.2 Construction of k-D Trees

. When a new node Nh of an oblique or a quadratic decision tree
is created, either a k-D tree or a generalized quadtree is con-
structed and the optimal decision function is determined if the
impurity of the set Sh of training samples arriving at that node
is not less than a threshold GO and \SH\ is greater than or equal
to a positive integer no. In this section, the structure of a k-D
tree is described first. The algorithm to construct a k-D tree is
then discussed.

A k-D tree is a binary tree. There are two child nodes at each

IJ

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 114

1000r
+ Class 1
A class 2 900 - O class 3

800 -众 + o + +.A..么..：
:+ O + 么 + 700 - A A A + + o A aO : O i A O O A

600- ; + ^ t A；
冷 么 A + + o +。： 500 - A + + ++ : :O + + ° + O

400- + � � + �� A � r � ^
300 - O �O � AA 么：

； + A O ^ Ô + 丨 ^ 200 - “ A +
100 -

- 0' I I -̂^̂ 1 1 1 1 1 1 ；I 0 100 200 300 400 500 600 700 800 900 1000 xi

Figure 5.1: An Example that a Linear Decision Function Does Not Intersect
the Smallest Rectangle Containing a Set of Training Samples

lOOOr + class 1 A class 2 900 • O class 3
800 - .--v A X O

； : � �A o + + A A 电 +

7��- t . � / � � ；

600 • A A O A ：

y 500 - : A + 4 o + :
• ？AAA ” � “ ？ A 广 +:

400 - + o o
1° a A ^ A Q

�300 - ^ Â o 丛 + 0
: + o o 0+ o ^ ^

200 - 龙….+. 0.•…0.…+..A A 0+
100 - 一

QI I I 1 1 1 1 1 I I I 0 100 200 300 400 500 600 700 800 900 1000 ‘ x1

Figure 5.2: An Example that a Quadratic Decision Function Does Not In-
tersect the Smallest Rectangle Containing a Set of TVaining Samples

> •

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 115

1000r + class 1 A class 2 900 - O class 3
800 - 0. + Q..•.. + +A ̂

；+ O + A +
700 . A A A + t) + o A aO O Q AO o ^ A O 600 - ： + A + A:

‘500 - ; � t , � �
A + + O

+ � �J �
300 - A � + � �L L

: + A ° � 200 - ^ • —̂ ^ + •
100 -

- QI I ^^ I I 1 1 1 1 1 ：I 0 100 200 300 400 500 600 700 800 900 1000 x1

Figure 5.3: An Example that a Linear Decision Function Intersects the Small-
est Rectangle Containing a Set of Training Samples

1000「 / / + class 1 / A class 2 900 - / O class 3
800 - .- • •4 ^ X / O

7。。- 会 A O / 。 〜 ：

6�� - 、 。；；
K~ 500 - q-. /a \

PAAA /A . A ^ 400- o O ... * ° y/o & A A .
‘ « 300 - L / �O 丛 + O

^ o o o + �

100 -

QI I I I 1 1 L_ 1 I I I
0 100 200 300 400 500 600 700 800 900 1000

Figure 5.4: An Example that a Quadratic Decision Function Intersects the
Smallest Rectangle Containing a Set of Training Samples

»
/

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 116

non-leaf node of a k-D tree. Suppose each sample has d input
attributes, a non-leaf node NQ of a k-D tree has the following
attributes as shown in Figure 5.5:

1. A set SQ of training samples arriving at the node NQ of a
k-D tree.

2. A set SQ,i, i = 1,2."，C, of training samples of class i arriv-
ing at the node NQ, where C is the number of classes.

3. A (i-dimensional vector yq = (2/Q’i，yQ’2"., 2/Q’d), where yen,
i = 1,2...,d, is the minimum value of the i力"input attribute
of the set SQ of training samples.

4. A o?-dimensional vector z q = (: q ’ i , 2 ; q ’ 2 . . . , 2 ; Q ’ d) , where ZQ�i�

i = 1,2..., d, is the maximum value of the i认 input attribute
of the set SQ of training samples.

5. A positive integer kq e {1,2..., d}, denoting the kq input
attribute is chosen to divide the set SQ of training samples
into two disjoint subsets.

6. A real number 7g representing the threshold for dividing
the set SQ of training samples into two disjoint subsets
using the /cg input attribute.

7. A pointer LQ pointing to the left child node of the node
. . . . NQ.

8. A pointer RQ pointing to the right child node of the node
NQ.

A leaf node of a k-D tree has the first four attributes only. Note
that ZQ^I] x z q ’ 2] … x [VQ.D,么q’d] represents the smallest
hyperrectangle containing the set SQ of training samples arriving
at the node NQ of a k-D tree. Figure 5.5 shows an example k-D
tree used in this chapter. To construct a k-D tree using the set

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 117

Node A

yA=(i , i)
Za=(6,5)

Y 厂 3.2
�={(1,5，1)，(2,3，1)，(6，2，2)，

. (4 ’1，2)，(3 ’5，2)}

^ ^ 〜 尸 { (1 ， 5 ’ 1) ’ (2 ， 3 ， 1) } ^

5*a2={(6，2，2)，(4，1’2)，(3，5，2)}

Node B Node C

yB=(l,3) yc=(4，l)

z b = (3 , 5) z c = (6 , 2)

‘ �= { (1 ; 5 ， 1) ， (2 ， 3 ’ 1) ， (3 ’ 5 ， 2) } ^ 5 c = { (6 , 2 , 2) , (4 , l , 2) }

知 = { (1 ， 5 ’ 1) , (2 ， 3 , 1) } 尸 m m

s b ， 2 = { (3 , 5 , 2) } - 、，2= { (6 , 2 , 2) , (4 , 1 ， 2) }

Figure 5.5: An Example k-D Tree

• • •

‘J .. .

I

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 118

Sh of training samples arriving at node Nh of a decision tree, the
root node of a k-D tree is created first. At node NQ of a k-D tree,
two new child nodes are created when the number of training
samples arriving at that node is not less than a positive integer
nq and there exists kq G {1,2..., d} such that yq^kq + zq̂ kq•

When a new node NQ of a k-D tree is created, the attributes
are initialized using the set SQ of training samples arriving at
that node. If node NQ is the root node of a k-D tree, the small-
est positive integer kq G {1,2..., d} such that yq^kq ^Q.kq is
determined and the kg input attribute is chosen to partition the
set SQ of training samples into two disjoint subsets. If node NQ
is a non-root node of a k-D tree, the following outlines the steps
to determine the value of kq G {1,2..., d}:

1. Determine the value of kp G {1,2..., d} such that the /cp in-
put attribute is chosen to divide the set of training samples
arriving at the parent of the node NQ.

2. Set kq — {kp mod d) + 1.

3. WHILE YQ,KQ 二 句’fcg DO
Set kq = {kq mod d) + 1.

Given the set SQ = of training samples ar-
riving at the node NQ of a k-D tree, the threshold 7q for dividing

” the set SQ into two disjoint subsets is given by:

‘ 1

= (5.2)

where XQ J^^, i = 1,2..., \SQ\, is the value of the kq input at-
tribute of the sample xq^

Figure 5.6 shows the algorithm of the procedure createkDTree(),
which outlines the steps of creating a new node of a k-D tree. To
create the root node of a k-D tree, the procedure createkDTree()

J

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 119

accepts the set Sh of training samples arriving at node Nh of a
decision tree as a parameter.

5.3 Construction of Generalized Quadtrees

In this section, the structure of a generalized quadtree is de-
scribed first. After that, the algorithm to construct a generalized
quadtree is discussed.

When a sample has d input attributes, there are at most
child nodes at each non-leaf node of a generalized quadtree. A
non-leaf node NQ of a generalized quadtree has the following
attributes as shown in Figure 5.7:

1. A set SQ of training samples arriving at the node NQ of a
generalized quadtree.

2. A set SQ�i, i 二 1，2."，C, of training samples of class i arriv-
ing at the node NQ, where C is the number of classes.

3. A d-dimensional vector yq = (yQ，i, 2/q’2...，yQ,d), where yQ,i,
z = 1,2..., d, is the minimum value of the input attribute
of the set SQ of training samples.

4. A c?-dimensional vector Z Q = {ZQ^I, where ZQ’̂ ,
i = 1，2..., d, is the maximum value of the input attribute
of the set SQ of training samples.

• • 5. A o^-dimensional vector 7q = (7Q’i, 7Q’2…，7Q’d), where 7Q’i,
i = 1,2..., c?, is the threshold for the i认 input attribute to
partition the set SQ of training samples.

6. Aset of pointers rQ，i,r(5’2...,rQ’2d’ where rQ’i, i = 1 ,2 . . . ,2�

is the pointer pointing to the i认 child node of the node NQ
of a generalized quadtree.

A leaf node of a generalized quadtree has the first four attributes
only. If node NQ is a non-leaf node, it is possible that there

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 120

PROCEDURE createkDTree

INPUTS — A set of training samples SQ - {xĵ)，x[̂)...，xĴ ŜqI)}’ where xj^)=
(工仏，喊I2.••，工仏’ c^j))?’ I — 1,2..., \SQ\, Q̂̂ d are the
input attributes and C^Q is the class label of the sample X q .

- A positive integer k G {1,2...,0?}. If the root node of a k-D tree is
being created, set k = 1.

OUTPUT A pointer to a new node NQ of a k-D tree.

1. Initialize the vector yq = (2 / q ’ i， 2 / Q， 2 . . . ’ 2 / Q ’ d) ’ where yQ�i, i = 1’ 2...,<i, is
the minimum value of the I仇 input attribute of the set SQ of training
samples.

2. Initialize the vector Z q = (2 ; q ’ i ’ 免 2 . "，： Q ’ d) ’ where ZQ’i, i = 1,2..., d, is
the maximum value of the I仇 input attribute of the set SQ of training
samples.

3. Initialize the set SQ,i, i = 1, 2..., C, of training samples of class i arriving
at the node NQ.

4. IF \SQ\ < RIQ OR yq = zq, THEN the node NQ is declared as a leaf
node and go to step 10.

5. Set kq = {k mod d) + 1.

6. WHILE yQ�kQ = ZQ̂ Q̂ DO
Set kQ = (fcg mod d) + 1.

“ 7. Set 7(5 = EIJi' ^Q.kq-

“ . 8. S e t . L q = createkDTree(5^,kq), where S^ = {x e SqlxkQ < 7q}，

where rci, i = l,2...,(i, is the value of the i仇 input attribute of a sample
X € SQ.

9. Set RQ = createkDTree (路 /cq), where = SQ\ S^.

10. Return the pointer to the node NQ.

Figure 5.6: The Algorithm of the Procedure createkDTree ()

•V

“

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 121

exists i G {1,2..., 2^} such that Fĝ j is a null pointer. Note
that [YQ^I, ZQ^I] x z q ’ 2] " . x [YQ,D, zq ’d] represents the smallest
hyperrectangle containing the set SQ of training samples arriving
at the node NQ of a generalized quadtree. Figure 5.7 shows an
example generalized quadtree used in this chapter, where d = 2.
To construct a generalized quadtree using the set Sh of training
samples arriving at node Nh of a decision tree, the root node of a
generalized quadtree is created first. At node NQ of a generalized
quadtree, at most child nodes are created when the number
of training samples arriving at that node is greater than or equal
to a positive integer nq and there exists kq G {1,2..., d} such
that yQ,kQ + ZQ,kQ.

When a new node NQ is created, the attributes are initial-
ized using the set SQ of training samples arriving at that node.
All the input attributes are applied to partition the set SQ
of training samples into at most disjoint subsets. Suppose
SQ = Xq -̂--? ̂ Q QI)}，where X q = (工 � 2 - . . ， � d , c ? , ，

1 < z < \SQ\̂ ^g^j d are the input attributes and C^Q is
the class label of the sample Xq\ the value of j = 1, 2...’ d,
is given by:

彻 = (5 . 3)

1
Figure 5.8 shows the algorithm of the procedure createQuadtree(),

. . which outlines the steps of creating a new node of a generalized
quadtree. To create the root node of a generalized quadtree,
the procedure createQuadtree() accepts the set Sh of training
samples arriving at node Nh of a decision tree as the parameter.

•t�

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 122

Node A

y A = (U)

ZA=(6,5)

V (3 .2，3 .2)

(4，1，2)，(3，5，2)}

^ ； = { (! , 5 , 1) , (2 , 3 , 1) } ^

5•八 2={(6，2，2)，(4，1，2)，(3，5，2)}

I
Node B Node C Node D

yB=(2,3) y c = (l , 5) yD=(4 , l)

Zb=(2，3) ZC=(3,5) ZD=(6，2)

... 知 = { (2 ， 3 ， 1) } 5 c = { (l , 5 , l) , (3 , 5 , 2) } 5^={ (6 ,2 ,2) , (4 ,1 ,2) }

^ 、 尸 { (2 ， 3 ， 1) } ^ 知 = { (1 ， 5 ， 1) } ^

� 2 =丨 ⑴ 知={(3，5，2)} |知，尸{(6，2，2),(4，1，2)}

, Figure 5.7: An Example Generalized Quadtree

� •

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 123

PROCEDURE createQuadtree

INPUT A set of training samples SQ = {XSJ)’X5^)...，X[^SQ1)}，where x j ^) =
(a;仏’ a:么…，a:仏’ c?)T，I = 1,2..., \SQ\, 仏，•，工[？Id 祉e the input
attributes and Cq is the class label of the sample XQ.

OUTPUT A pointer to a new node NQ of a generalized quadtree.

1. Initialize the vector yq = (jjQ,hyQ，2.",yQ,d)’ where yq^i, i = 1，2…,d, is
the minimum value of the I仇 input attribute of the set SQ of training
samples.

2. Initialize the vector z q = (-^q.i, where ZQ^I, i = 1,2…,D, is
the maximum value of the I仇 input attribute of the set SQ of training
samples.

3. Initialize the set SQ��, i = 1,2...’ C, of training samples of class i arriving
at the node NQ.

4. IF \SQ\ < RIQ OR yQ = Zq, THEN the node NQ is declared as a leaf
node and go to step 9.

5. FOR i = lTOdDO
Set f 丄•丨丨7•� bet; 7q,2 - |5q|

6. FOR i - 1 TO DO

Set XQ�i = {(f)}.

7. FOR i = 1 TO Î SqI d o

(a) Set k = 0.
(b) FOR j = 1 TO d DO

•• , i. Set k = k X 2.
‘ i i . IF x̂ q]̂ > JQJ, THEN set A; = A: + 1.

(c) Set XQ,k = XQ,k U {x[i)}

8. FOR i = 1 TO 2 �O
IF.|xq,i| — 0，THEN set TQ^I = createQuadtree(Xq,J
ELSE set rQ’i as a null pointer.

9. Return the pointer to the node NQ.

^Figure 5.8: The Algorithm of the Procedure createQuadtree ()

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 124

5.4 Induction of Oblique Decision Trees us-
ing Spatial Data Structures

An oblique decision tree is usually constructed using a top-down
approach. The optimal hyperplane is determined at each non-
leaf node of an oblique decision tree. The optimality of a hyper-
plane is defined as the impurity reduction after dividing a set
of training samples into two disjoint subsets. To measure the
impurity reduction after partitioning a set of training samples
into two disjoint subsets, it is required to find the number of
training samples for each class such that (5.1) is satisfied.

In this chapter, the Gini-index is used to measure the impu-
rity of a set of training samples. Suppose Sh is the set of training
samples arriving at node Nh of an oblique decision tree. Recall
that the impurity of the set Sh is defined as:

‘ 仍 = 1 _ (5.4)

i=l

where Sh�i, i = 1,2..., C, is the set of training samples of class i
arriving at the node Nh and C is the number of classes. Suppose
Rh is the set of training samples arriving at the node Nh such
that (5.1) is satisfied and Lh = Sh\ Rh, the weighted average
impurity of the subsets Lh and Rh is defined as:

• ‘ 徵(1 —B 靜 2) +靜 (傲 2) (5 ,)
%一1 2-—i.

where Rh,i, i = 1,2...，(7, is the set of training samples of class
i arriving at the node Nh such that (5.1) is satisfied and Lh,i 二

Sh,i \ Rh,i, i = 1,2…,C. Recall that the impurity reduction after
partitioning the set Sh into the subsets Lh and Rh is defined as:

g' = gi- 92' (5.6)

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 125

Therefore, it is necessary to find the values of \Sh,i\, \Rh,i\ and
L"’i|, i = 1,2...，C，before evaluating the impurity reduction

after dividing the set Sh into two disjoint subsets. The value of
Sh,iI, i = 1,2...，C，can be found using the set Sh. Note that
Lh^i\ = |iSy — \Rh,i\, i = 1,2..., C. Therefore, the most time-

consuming task before evaluating the impurity reduction is to
find the values of |i4’i|, |/4’2|…，|丑/i’c •

In this section, rh’i, i = 1,2..., C, is defined as the number of
elements in the set Rh,i. The values of rh,i, n i ’ 2-"， can be in-
tuitively determined by considering each of the training samples
in the set Sh. Let û o，切i.",扮d be the coefficients of the linear
decision function in (5.1). Suppose Sh =

1 (i) _ / (i) {%) � • _ i 0 Q ii) (i)
wnere Xĵ =) , 2 =丄，2 …’ ^h , ^h,!̂
… ， a r e the input attributes and cĵ) is the class label of the
sample xĵ i), the sign of the following expression is evaluated for
each training sample x̂ ^ G Sh:

d
(5.7)

j=i

The following outlines the steps to find the values of r"’i, 7\2...,
when the linear decision function in (5.1) is used to partition the
set Sh of training samples into two disjoint subsets:

1. Set rh,i 二 0, i = 1，2."，C.

2. FOR z = l T O I別 DO

(a) Set 5i = ^hj'^j —
(b) IF 5i>0 THEN, r,̂ ,̂) = r^^^ + 1.

Alternatively, spatial data structures including k-D trees and
generalized quadtrees can be applied to determine the values

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 126

of rh,i,rh,2-'-,rh,c by considering a subset of the training sam-
ples in the set Sh- When node NQ of a k-D tree or a general-
ized quadtree is being considered, it is necessary to determine
whether the linear decision function in (5.1) intersects the small-
est hyperrectangle HQ = [2/Q’i，ZQ’i] x [2/Q’2, zq’2]... x ZQ^D
containing the set SQ of training samples arriving at that node.

If the linear decision function in (5.1) intersects the hyper-
rectangle HQ and the node NQ is a non-leaf node of a k-D tree
or a generalized quadtree, the children of the node NQ are con-
sidered instead. The process is repeated recursively until a leaf
node of a k-D tree or a generalized quadtree is considered, or
the smallest hyperrectangle formed by a node is not. intersected
by the linear decision function.

If the linear decision function in (5.1) intersects the hyper-
rectangle HQ and the node NQ is a leaf node of a k-D tree or
a generalized quadtree, the sign of the following expression is
evaluated for each training sample Xq G SQ:

d

There are two possible scenarios that the linear decision func-
tion in (5.1) does not intersect the smallest hyperrectangle HQ
containing the set SQ of training samples arriving at node NQ of

., a k-D tree or a generalized quadtree. The first scenario is that all
‘ t h e training samples in the set SQ satisfy the linear decision func-

tion in (5.1). In this case, the minimum value of the following
expression is greater than zero for all x = (xi, x^) G HQ:

d

Y ^ x j w j - w o . (5.9)
i=i

Note that Sq^i C Rh�i, i 二 1,2..:, C. The minimum value of the

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 127

expression in (5.9) within the hyperrect angle HQ is given by:

1 ^
T^^'^AvqA^ + sgn(Wj)) + ZQj{l - sgn{wj))] - wq, (5.10)
〜 = 1

where
if a; > 0,

sgn{x) = 0 ifa: = 0’ （5.11)
- 1 if X < 0.

\

The second scenario is that the linear decision function in
(5.1) is violated for all training samples in the set SQ. Note that
Rh n ^Q = The maximum value of the expression in (5.9) is
less than zero for all x = (xi,0:2..., XD) G HQ. The maximum
value of the expression in (5.9) within the hyperrect angle HQ is
given by:

1 ^
^ Y l ^AvqA^ - sgniwj)) + ZQj{l + s"n(秘力)]-^o- (5.12)
� = 1
The time required to calculate the minimum and the maxi-

mum values of the expression in (5.9) is about twice the time
required to determine whether a sample satisfies the linear deci-
sion function in (5.1). It is more time-consuming to determine
whether the linear decision function in (5.1) intersects the small-
est hyperrectangle containing at most two training samples be-
fore testing whether the linear decision function is satisfied for

. e a c h of these training samples. When a node NQ of a k-D tree
or a generalized quadtree contains at most two training samples,
neither (5.10) nor (5.12) is evaluated.

Figure 5.9 shows the algorithm of the procedure processkDTree(),
which outlines the steps to determine the values of r/̂ î, rh,c
using a constructed k-D tree. On the other hand, Figure 5.10
shows the algorithm of the procedure processQuadtree(), which
outlines the steps to perform the same task using a constructed
generalized quadtree.

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 128

PROCEDURE processkDTree

INPUTS 1. A node NQ of a k-D tree.

2. A set of training samples SQ = { x q \ Xq\.., Xq®* '̂̂ }, where X q =
/ (i) (i) (i) {i)\T • _ -I 9 IQ I (0 (0 (i) , i Q̂) ’ ^ = 丄 ， 丄 . . ’ 丨 � ^ q I ， a r e tiie
input attributes and C^Q is the class label of the sample X q .

3. A [d + l)-dimensional vector w = {WQ^WI^ where
Wo, wi..., Wd axe the coefficients of the linear decision function in
(5.1).

INPUT/OUTPUT A C-dimensional vector R^ = {RH,I,RH,2-, RH,C), where r̂ I，I = 1，2...，C,
is the number of training samples of class i arriving at node Nh of an
oblique decision tree such that (5.1) is satisfied.

1. IF the node NQ is the root node of a k-D tree, THEN set RH’I = 0，

i ^^ 1，2.. .J C•

2. IF S 2，THEN

(a) 'FOIU = l T O |Sq| DO
i f TU > 切。，then set r,̂ ,̂) = r,̂ ,̂) + 1.

(b) Return.

3- IF I + sgniwj)) + ZQJ[1 — sgn(wj))l > WQ,
THEN set rh,i = r^ + \SQ^ i = l,2,...’ C
ELSE IF i y^AVQA^ - sgn(wj)) + ZQj{l + sgn{wj))] < Wo, THEN
IF the node NQ is a non-leaf node, THEN

(a) Set SQ = {x G SQLXKQ < 7q } , where XKQ is the value of the KQ
... input attribute of a training sample x G SQ.

’ (b) SetS^ = SQ\S^.

(c) Invoke the procedure processkDTree(LQ, SQ, w, fh).

(d) Invoke the procedure processkDTree(i?Q, SQ, w, fh).

ELSE FOR i = 1 TO \SQ\ DO

IF EU �帅 ， t h e n set r^ cg) = + 1.

Figure 5.9: The Algorithm of the Procedure processkDTree()

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 129

PROCEDURE processQuadtree

INPUTS 1. A node NQ of a generalized quadtree.

2. A set of training samples SQ = { x q \ X q ^ ^ ' ^ } , where X q =
(̂ Q̂ n Q̂̂ d' i ~ 1,2..., |5q|, :e|j)’i, : r [j : 2 . . .，are the
input attributes and C^Q is the class label of the sample Xg .

3. A {d + l)-dimensional vector w = {wq̂ Wi^WdY, where
WQ̂ Wi..., Wd axe the coefficients of the linear decision function in
(5.1).

INPUT/OUTPUT A C-dimensional vector FH = (r̂ i，7̂ 2...’ rh,c), where r̂ .i, i = 1’ 2...，C,
is the number of training samples of class i arriving at node Nh of an
oblique decision tree such that (5.1) is satisfied.

1. If the node NQ is the root node of a generalized quadtree, set RH’I = 0，

i — 1,2..., C.

2. IF s 2 ， t h e n

(a) FOR i = lTO |Sq| DO
IF EU ^i^QJ > 鄉’ t h e n set r,^^,) = r,^^,) + 1.

(b) Return.

3. IF 1 + sgn{wj)) + ZQJ{1 - sgn{wj))] > WQ,
t h e n set rh,i = r ^ + l^g.il, i 二 1，2，…，C
ELSE IF i ^AVQA'^ - sgn{wj)) + ZQj(l + sgn(wj))] < w^, THEN
IF the node NQ is a non-leaf node, THEN

(a) Let XQ�i, i = 1,2...’2"，be the set of training samples arriving at
the i认 child node of the node NQ.

(b) FOR i = 1 TO 2 �O
IF rQ’i is not a null pointer, THEN invoke the procedure
processQuadtree(rQ，i，XQ^i, w, Fh).

ELSE FOR z = 1 TO \SQ\ DO
IF TU 巧 趟 > 鄉 ， t h e n set = + 1.

Figure 5.10: The Algorithm of the Procedure processQuadtree ()

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 130

5.5 Induction of Quadratic Decision Trees us-
ing Spatial Data Structures

At each non-leaf node of a quadratic decision tree, the optimal
quadratic hypersurface is found. The optimality of a quadratic
hypersurface is defined as the impurity reduction after parti-
tioning a set of training samples into two disjoint subsets. To
evaluate the impurity reduction after dividing a set of training
samples into two disjoint subsets, it is necessary to find the num-
ber of training samples for each class such that (4.1) is satisfied.

The impurity reduction after dividing the set Sh of training
samples into two disjoint subsets is calculated using (4.2), (4.3)
and (4.4). From (4.2)，（4.3) and (4.4), it is required to find
the values of \Sh,i\^ and i = 1,2...，C, before eval-
uating the impurity reduction. The most time-consuming task
before evaluating the impurity reduction is to find the values of
Rh,i\, \Rh,2\"-, because the values of \Sh,i\, |5̂ /i’2|".，\Sh,c

can be determined using the set Sh and \Lh,i\ = — \Rh,i\̂
I = 1，2..., C.

In this section, rh’i is defined such that rh,i = \Rh,i\^ i =
1,2. . ,C. Suppose Sh = {x|̂ i),x|f)...，x||Shl)}，where x|；) 二 {x f , ,

(i) (i) {i)\T _ 19 o (i) (i) (i) , i
J ， 2 = 丄 , 2 ••., ^h ，工/i’i， ...，工h’d are tne

input attributes and cj^�is the class label of the sample , the
following outlines the steps to calculate the values of r�i，r"’2 …，

. r h , c when the decision function in (4.1) is applied to partition
the set Sh of training samples into two disjoint subsets:

1. Set rh,i = 0, 2 = 1,2..., C.

2. FOR i = 1 TO I况 DO

(a) Set Ci =(交L i)) T屈 1!) + bT^i) — 7’ where
Xh 一 I丄h,l，丄/i’2...,丄/i’d/ .

(b) IF 0 > 0 THEN, r^^^ = r^^^ + 1.

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 131

Alternatively, spatial data structures including k-D trees and
generalized quadtrees can be applied to find the values of 厂/̂山

r/i’2 …，rh,c by considering a subset of the training samples in the
set SH- When node NQ of a k-D tree or a generalized quadtree
is being considered, it is necessary to determine whether the
quadratic decision function in (4.1) intersects the smallest hy-
perrectangle HQ = [？ X [2/q’2，似2]... X ZQ^D] con-
taining the set SQ of training samples arriving at that node.

If the quadratic decision function in (4.1) intersects the hy-
perrectangle HQ and the node NQ is a non-leaf node of a k-D
tree or a generalized quadtree, the children of the node NQ are
considered instead. The process is repeated recursively until a
leaf node of a k-D tree or a generalized quadtree is considered, or
the smallest hyperrectangle formed by a node is not intersected
by the quadratic decision function.

If node NQ is a leaf node of a k-D tree or a generalized
quadtree, and the corresponding hyperrectangle HQ is inter-
sected by the quadratic decision function in (4.1), the sign of
the following expression is evaluated for each training sample
XJ^) E SQ:

(xii^rAx^i^ + bTxI^^-T, (5.13)

where Xq = (̂ g^u ^gld)^-
There are two possible scenarios that the quadratic decision

function in (4.1) does not intersect the smallest hyperrectan-
• gle HQ containing the set SQ of training samples arriving at

node NQ of a k-D tree or a generalized quadtree. The first
scenario is that all the training samples in the set SQ satisfy
the quadratic decision function in (4.1). In this case, the min-
imum value of the following expression is greater than zero for
all X = (x i , X2-..,XD) G HQ:

x^Ax + b^x - 7. (5.14)

Three methods of estimating the minimum value of the above

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 132

quadratic expression within a hyperrectangle will be described
later.

The second scenario is that the quadratic decision function in
(4.1) is violated for all training samples in the set SQ. The maxi-
mum value of the expression in (5.14) within the hyperrectangle
HQ is less than zero.

Three methods of estimating the minimum and the maximum
values of the expression in (5.14) will be introduced. In most
cases, all of these methods tend to overestimate the maximum
value of the expression in (5.14) but underestimate the minimum
value of this expression. Therefore, it is possible that a quadratic
hypersurface is regarded as cutting a hyperrectangle but this
actually does not occur.

However, all of these methods neither underestimate the max-
imum value of the expression in (5.14) nor overestimate the min-
imum value of this expression. If the estimated maximum value
of the expression in (5.14) is less than zero, its actual value is also
less than zero. If the estimated minimum value of the expression
in (5.14) is greater than zero, its actual value is also greater than
zero. If the estimated maximum value of the expression in (5.14)
within a hyperrectangle is less than zero or the estimated min-
imum value is greater than zero, the corresponding quadratic
hypersurface cuts the hyperrectangle. The impurity reduction
due to a quadratic hypersurface is evaluated accurately and the
classification accuracy of a constructed quadratic decision tree is

‘ preserved even k-D trees or generalized quadtrees are employed.
Given the hyperrectangle HQ = [VQ^UZQ^I] x [yq,2, x

yQ,(ji, ZQ̂ d], where d is the number of input attributes of a sample,
the following describes the first algorithm estimating the maxi-
mum value (max and the minimum value (min of the expression
in (5.14) within the hyperrectangle HQ:

1. Set (max = E t i s"n(ai，i)) + z ^ / 1 + sgn(ai,i)).

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 133

2. Set Cmm = E t i + + — sgn(ai,i))..

3. FOR i = 1 TO d - 1 DO
FOR j = i + l TO d DO

• IF ay > 0, THEN
(a) S e t ^max — Cmax + •

(b) S e t Cmm = Cmin + '^CLhjVQ.iyQJ•

ELSE

(a) Set Cmax = Cmax + •

(b) S e t (min — Cmin +

4. Set Crnax = Cmax+Etl |["Q,“1 — 几 ⑷) + 似 几 ⑷) : .

5. Set Cmin = Cmm + E» l l + + -sc/n(6i))".

6 . S e t ..(^max — Cmax — 7 a n d (^rnin ~ Cmin — T*

In the first algorithm, the maximum value î̂ max and the
minimum value “min of the following quadratic expression for
Xi E [yq^i, ZQ^i], i = l,2...,d, are estimated:

. a ^ x f + biXi (5.15)

The following outlines the steps to estimate the values of î̂ max
and î̂ rniri) ^ 二 1,2..., d.

- . 1. Set ^i^max = - sgn{ai,i)) + + sgn{a^))'.

2. Set�,min =字["5，i(l + sgn(ai,i)) + z ^ / 1 — sgn(ai^i)) •
3. S e t 《 丽 = “ 丽 + + sgn{bi)) + ？/Q,i(l - sgn{bi))].

4. Set�,min = Ci,min + ！ — sgn(bi)) + yQ,i(l + sgn{bi)).

Note that the maximum value “marc, i : l,2...，d，of the ex-
pression in (5.15) within the hyperrectangle HQ may be over-
estimated. However, the minimum value &，min, ^ = 1,2..., d,

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 134

of the expression in (5.15) within the hyperrectangle HQ may
be underestimated. The impurity reduction due to a quadratic
decision function can be evaluated accurately.

Example 1 Estimate the maximum value (max and the minimum value
Cmin of the quadratic function f{xi^ x^) = 2x\ — x2 — 2xix2 —
8x1 + 10x2 within the hyperrectangle [1，3] x [1，2] using the
first algorithm.

C,max = 2 x 3 2 - 1 2 — 2 x 1 x 1 — 8 x 1 + 1 0 x 2 = 27

(min = 2 x 1 2 - 2 2 - 2 x 3 x 2 — 8 x 3 + 1 0 x 1 = - 2 8

In the second algorithm estimating the maximum and the
minimum values of the expression in (5.14) within the hyper-
rectangle HQ, the maximum value ^I^MAX and the minimum value
^i,min of the expression in (5.15) for xi G [yq^i, , i = 1,2..., d,
are calculated rather than estimated. Figure 5.11 outlines the
steps to calculate the values of ^i^max and “ 她 ， i = 1,2..., d.
Although the estimation time is increased when compared with
the first algorithm, but the second algorithm provides the same
or better estimated maximum and minimum values.

The second algorithm estimating the maximum value (max
and the minimum value (rnin of the expression in (5.14) within
the hyperrectangle HQ is described as follows:

1. Set (^MAX — ^I,MAX)— 7 , where is the maximum
value of the expression in (5.15) for xi G [yQ’i’：Q’i], i =
1，2 • • • ’ d •

2. Set Cmin = {J2i=i ^i,min) — 7, where IS the minimum
value of the expression in (5.15) for Xi G [2/Q’i,之Q’i], i =
1，2••” D •

3. FOR z = 1 TO d - 1 DO ,
FOR j = z + 1 TO d DO

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 135

1. S e t ” - 老 .

2. IF ai�i > 0’ THEN

• IF p < yQ,i’ THEN
(a) Set = + KZQ’i.
(b) Set “min 二 (k’iyl�i + kyq^i.
ELSE IF p > ZQ’i, THEN
(a) Set = 0'i,iyQ,i + hyQ,i-

(b) Set Ci.mm = + kZQ’i.
ELSE IF p < 卿 ; '如’ THEN

(a) Set = cii’izl + biZQ’i.
(b) Set =-易.
ELSE
(a) Set = ai,iyQ,i + kycu.

(b) Set = - 4 ^ -

ELSE IF ai’i < 0，THEN

• IF p < 2/Q,i, THEN
(a) Set “max = HiVQA + ~2/Q’i.

(b) Set 二 fli’减i + biZQ’i.
ELSE IF p > ZQ’i, THEN
(a) Set ̂ i,max = i + biZQ，i.
(b) Set = CLi成、i + % Q ’ i .

— ELSE IF p < 叫 ‘ ， T H E N

(a) Set max = - i ^ .
(b) Set iî min = + biZQ’i.
ELSE

(a) Set î̂ rnax =―备 .

(b) Set î̂ rnax = (k 成 + &i2/Q’i.

ELSE

(a) Set = + sgn{bi)) + yQ’i(l - sgn(bi))].

(b) Set Ci.min = - sgn(bi)) + yQ’i(l + sgn(bi))].

Figure 5.11: An Algorithm to Calculate the Maximum and the Minimum
Values of the Quadratic Expression in (5.15) for Xi G [？/i, Zi], i = 1，2..., d

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 136

• IF aij > 0，THEN
(a) S e t (max — Cmax +

(b) Set Cmin = (min + 2ai,jyQ,iyQ,j.
ELSE
(a) Set Cmax = Cmax + '̂ CLijVQ̂ iVQJ-
(b) S e t � m i n — Cmin +

Example 2 Estimate the maximum value (max and the minimum value
(min of the quadratic function f(xi, X2) = 2xi — x2 — 2xix2 —
8x1 + 10x2 within the hyperrectangle [1,3] x [1,2] using the
second algorithm.

.•. max = 2X 1 2 - 8 x l = - 6 , mm = ^ = " 8

. .•端 = 5〉2 八 - 1 < 0

...6,max = -22 + 10 X 2 = 16, 6,mm 二 + 10 X 1 = 9

Cmax = - 6 + 16 - 2 X 1 X 1 = 8

(min =-8 + 9-2x3x2 = -11

The expression in (5.14) can be written as:

E t i + 2 E t i E U + 1 工 i 工 j + E t i biXi - 7
=Etl — Etl Yfj=i+1 - + xj) + biXi — 7

= E t i E^li CiiĴ i + E t i H U + I aiA工i - �) 2 + E t i biOCi - 7
= HtM^l + biXi) + EtI Ej=i+i aiA 工 i —工 j)2 - 7

where a- — ^ij- In the third algorithm estimating the
maximum value (max and the minimum value (rnin of the ex-
pression in (5.14) within the hyperrectangle HQ, it is necessary
to calculate:

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 137

• The maximum v a l u e � ’醒工 and the minimum value《爪

of the following quadratic expression for xi € [yi, Zi], i =
1，2 • • •, d •

a[xl + biXi (5.16)

• The maximum value Îĵ rnax and the minimum value Îĵ rnin
of the following quadratic expression for Xi G [ŷ , ẑ], i =
1,2..., d — I, j = 2 + + 2 , d .

{xi - Xj f (5.17)

The algorithm to calculate the values of îĵ rnax and îĵ min is
described as follows:

1. Set Pi = 0.5(ZQ’i + VQ̂ i) and p2 = 0.5{zqj + yqj).

2. IF Pi > p2, THEN set vi = z q � �- yq ĵ ELSE set vi =
yQ,i ^Qj-

3. IF ZQ�i < THEN set v̂ = ZQ,i - yqj
ELSE IF YQ,I > ZQJ, THEN set 仍= Y Q , I — ZQJ
ELSE set V2 = 0.

4. IF dij > 0, THEN

(a) S e t � ’丄賺 z = a i jv l

(b) Set ‘ j — =

� ELSE

(a) Set�’j’爪az = a i jv l 3
(b) Set =

The following describes the third algorithm estimating the
maximum value (max and the minimum value (min of the ex-
pression in (5.14) within the hyperrectangle HQ：

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 138

1. Set (max = (Ei=i ^i,max) — 7, wheie C’賺T is the maximum
value of the expression in (5.16) for Xi G [yg.i, zq^i]^ i =
1，2 • • • ̂ DJ •

2. Set Crnin = (E t i 蘇min) _ 7，where C'i,min is the minimum
value of the expression in (5.16) for Xi G |i/Q’i, ZQ’i]，i =
1 ’ 2 •..，

3. FOR i = lTOd-lDO
FOR j = TO dDO

� Set Cmaa; 二 Cmax +

(b) S e t (min = Cmin +

Example 3 Estimate the maximum value (max and the minimum value
Cmin of the quadratic function / (x i , 0:2) = 2a;卜工$ —20：1工2 —
8xi + 10x2 within the hyper rectangle [1,3] x [1，2] using the
third algorithm.

2X1 ~ ~ 20；10：2 - 8x1 + 10x2

= 2 X 1 — XL — XI-\- {XI — 2XIX2 + ^2) — XL — 8x1 + 10X2

= x\- 8x1 - 2x1 + 10工2 + — 0；2)2

0.5 X (1 + 2) < 0.5 X (1 + 3) A 3 > 1 A 1 < 2

...̂ i,2,max — (1 - 3)2 = 4,仏2’min = •

• . . • 端 = 4 � 3 / \ l � 0

...《’醒工=12 — 8 X 1 = —7’ 仏 饥 二 32 — 8 X 3 = - 1 5

V ^ = 2 . 5 > 2 A - 2 < 0

...？2,max = -2x22+10x2 = 12,线爪‘，=-2XI^+IOX1 = 8

Cmax = - 7 + 1 2 + 4 = 9 ‘

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 139

Cmm = -15 + 8 + 0 = - 7

Figure 5.12 shows the algorithm of the procedure
processkDTreeCurve(), which outlines the steps to determine
the values of using a constructed k-D tree. On
the other hand, Figure 5.13 shows the algorithm of the procedure
processQuadtreeCurve(), which outlines the steps to perform
the same task using a generalized quadtree.

5.6 Performance Evaluation

In this section, the performance of applying spatial data struc-
tures to the induction of oblique and quadratic decision trees
is evaluated. Two oblique decision tree algorithms, called Bi-
nary Tree-Genetic Algorithm with k-D trees (BTGA with k-
D Trees) and Binary-Tree Genetic Algorithm with Quadtrees
(BTGA with Quadtrees), are proposed by extending BTGA. In
the BTGA with k-D Trees and the BTGA with Quadtrees, a k-
D tree and a generalized quadtree are respectively constructed
before finding the optimal hyperplane at each non-leaf node of
a linear decision tree.

Similarly, two quadratic decision tree algorithms, called Ge-
netic Algorithm-based Quadratic Decision Tree with k-D Trees
(GA-based QDT with k-D Trees) [41] and Genetic Algorithm-
based Quadratic Decision Tree with Quadtrees (GA-based QDT

‘ w i t h Quadtrees), are introduced by extending the GA-based
QDT. In the GA-based QDT with k-D Trees and the GA-based
QDT with Quadtrees, a k-D tree and a generalized quadtree
are respectively built before searching for the optimal quadratic
decision function at each internal node of a quadratic decision
tree.

GA-based QDT with k-D Trees VI, GA-based QDT with k-D
Trees V2 and GA-based QDT with k-D Trees V3 are respectively

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 140

PROCEDURE processkDTreeCurve

INPUTS 1. A node NQ of a k-D tree.

2. A set of training samples SQ = where X q =

(喊:i ’ 工么 . . .， I 仏， I ~ 1,2..., \SQ\, ^ ^ q j , a r e the
input attributes and Cq is the class label of the sample X q .

3. The symmetric matrix A = (aj^k) of order d specified in (4.1).
4. The d-dimensional vector b = (BI，L)2...’BD)T specified in (4.1).
5. The real constant 7 specified in (4.1).

i n p u t / o u t p u t a C-dimensional vector fh 二 (rh,i, 7\2."’ r\c)，where rh,i, i = 1，2...’ C,
is the number of training samples of class i arriving at node Nh of a
decision tree such that (4.1) is satisfied.

1. If the node NQ is the root node of a k-D tree, set RH’I = 0, i = 1,2..., C.

2. IF < 2，THEN

(a) FOR i = 1 TO Î SqI DO
• ； Spt 5 � —f r �T � T �F

ii. IF + b^xSj) > 7, THEN set r,^^,) = r � � §) + 1.

(b) Return.

3. Estimate the maximum value Cmax and the minimum value (min of
the expression in (5.14) within the hyperrectangle HQ = [2/q,i, ZQ^I] x

[2/q，2，句,2]…X [YQ,D,ZQ,D]-

4. IF (min > 0,
THEN set r ^ = r ^ + {SQ^I i = 1，2’..., C

“ , ELSE IF Cmax < 0，THEN
IF the node NQ is a non-leaf node, THEN

(a) Set Sq = { k e Sqlxkg < 7q}，where XkQ is the value of the kq
input attribute of a training sample x G SQ.

(b) Set 功 =
(c) Invoke the procedure processkDTreeCurve(LQ, 5q , A, b, 7, fh).

(d) Invoke the procedure processkDTreeCurve(i?Q, SQ, A, b, 7, fh).

E L S E F O R i = lTO |5q| D 0 '

(a) Set Xq = (xq^j, XQ 2---I ^Q^d)̂ -

(b) IF + b^xSj) > 7’ t h e n set r e g) = VSj) + 1.

Figure 5.12: The Algorithm of the Procedure processkDTreeCurve ()

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 141

PROCEDURE processQuadtreeCurve

INPUTS 1. A node NQ of a generalized quadtree.

2. A set of training samples SQ = where xj^)=
(xq^j, ^qY^ 1 ^ ~ 1,2..., IS'qI, ^qV " ' are the
input attributes and Cq is the class label of the sample X q .

3. The symmetric matrix A = {aj^k) of order d specified in (4.1).
4. The c?-dimensional vector b = (&i，62..., 了 specified in (4.1).
5. The real constant 7 specified in (4.1).

i n p u t / o u t p u t a C-dimensional vector r^ = {rh,i,rh,2-, rh’c), where rh,i, i = 1，2...，C,
is the number of training samples of class i arriving at node Nh of a
decision tree such that (5.1) is satisfied.

1. If the node NQ is the root node of a generalized quadtree, set RH,I = 0,
i — 1，2..., C,

2. IF S 2, THEN

(a). FOR i = \ TO \SQ\ DO
；CPF YCO — (J^ J^ J^ \T
丄-oei Xq _〈丄Q’1，丄Q’2...，丄.

ii. IF + b ^ x l j) > 7’ t h e n set r.̂ ^g) = r,^^,) + 1.

(b) Return.

3. Estimate the maximum value (̂ max and the minimum value ^min of
the expression in (5.14) within the hyperrectangle HQ = [YQ,I, ZQ^I] X
feQ’2 内’ 2]…X [2/Q’d’:Q，d].

4 IP c饥切 > 0，

•“ . t h e n set rh,i = r^i + |知i|，i = 1，2,…’ C
ELSE IF Cmax < 0’ THEN
IF the node NQ is a non-leaf node, THEN

(a) Let XQ’i, i = 1,2...，2�be the set of training samples arriving at
the I仇 child node of the node NQ.

(b) FOR i = 1 TO 2化O
IF Tq î is not a null pointer, THEN invoke the procedure
processQuadtreeCurve(rQ,i, XQ’�A, b, 7，rh).

ELSE FOR i = 1 TO \SQ\ DO

(a) Set Xq = (̂ Q̂ u Q̂̂ d)̂ -

(b) IF + b^xlj) > 7, THEN set r … � � =r … � � + 1.

Figure 5.13: The Algorithm of the Procedure processQuadtreeCurve()

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 142

the GA-based QDT with k-D Trees algorithms using the first,
the second and the third method of estimating the maximum
and the minimum values of the expression in (5.14) within a
hyperrectangle. GA-based QDT with Quadtrees VI, GA-based
QDT with Quadtrees V2 and GA-based QDT with Quadtrees
V3 are respectively the GA-based QDT with Quadtrees algo-
rithms using the first, the second and the third method of esti-
mating the maximum and the minimum values of the expression
in (5.14) within a hyperrectangle.

In this chapter, the experiments are divided into four parts:

• The performance of the BTGA with k-D Trees, the BTGA
with Quadtrees, and all versions of the GA-based QDT
with k-D Trees and the GA-based QDT with Quadtrees
is compared with that of various supervised classification
algorithms in terms of validation accuracy and execution
time.

• The effects of modifying the minimum number of training
samples at each leaf node of a k-D tree are investigated.

• The effects of changing the minimum number of training
samples at each leaf node of a generalized quadtree are
studied.

• The effects of changing the size of datasets are investigated.

‘ All the experiments were executed on a dual Intel Xeon 2.2GHz
machine.

5.6.1 Performance Comparison with Various Super-
vised Classification Algorithms

In this subsection, the performance of the BTGA with k-D
Trees, the BTGA with Quadtrees, and all variants of the GA-
based QDT with k-D Trees and the GA-based QDT with Quadtrees

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 143

is compared with that of various supervised classification algo-
rithms, including C4.5, OCl, NDT, OCl-GA, OCl-ES, BTGA
and GA-based QDT.

The first dataset, called ADS9, is an artificial dataset with
300 samples. ADS9 is a three-class problem. Two straight lines
are used to separate the samples into three classes. Each sample
is a two-dimensional vector (xi,x2), where xi, X2 G [0,1000]. If
a sample satisfies (5.18)，it is labeled as class 1. If a sample
violates (5.18) but satisfies (5.19), it is labeled as class 2. If a
sample satisfies neither (5.18) nor (5.19), it is labeled as class 3.
Figure 5.14 shows the dataset ADS9.

-0.1a:i +0.9x2 > 400 (5.18)
0.2x1 - 0.8x2 < 350 (5.19)

The second dataset, called ADSIO, is an artificial dataset
with 1000 samples. ADSIO is a three-class problem. Each sam-
ple is a two-dimensional vector (xi, X2), where xi, X2 G [0,1000 .
If a sample satisfies (5.20), it is labeled as class 1. If a sample
violates (5.20) but satisfies (5.21), it is labeled as class 2. If a
sample satisfies neither (5.20) nor (5.21), it is labeled as class 3.
Figure 5.15 shows the dataset ADSIO.

fa - 500)2 (0；2 - 500)2

202500 + 122500 〉丄.。 （ .̂？。）

• (rri - 500)2 (幻 _ 510)2
90000 + 62500 〉工.。 卿

The third dataset, called ADSll, is also an artificial dataset
with 1000 samples. ADSll has three possible classes. Each sam-
ple is a two-dimensional vector (XI, X2), where XI, X2 G [0’ 1000 .
If a sample satisfies (5.22), it is labeled as class 1. If a sample
violates (5.22) but satisfies (5.23), it is labeled as class 2. If a

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 144

1000� + + + + + + + + +
+ + 本 + + + 十 十 + class 1

, + . . . , + ^ class 2
900 - + , 十 卞 十 十 + 十 + + o class 3

++ + + 补 + ‘ + =r+
+ + + + + + + + + + + * +

8 0 0 - + + + + + + + + + + 丄

+ + 斗 + + + + , + + * ++ +

700 - + + + + + +

+ ++ ++++ ++ + ++: +
600- + + + + + + + + ++ ++ +

林 + + + + _ i _ + � 0 0
切 500 - + 计 + + A + A g O O ® o

• a / a ° o o ° o
4 0 。 ） ^ ^ A A A AA A O # O 0 o

^ ^ 么A A A 么 A � < & 。 0 。 cP 。 0 §
300 - 吟 i O ° o

A H A A A A ° O O O O O O

2 � � - : 、 广a a o � � � ��

100- A : 、 让 . o � S O : � 8 � o

qI , ， _ _ ^ _ _ , _ _ _ 。 , 。 。 ？ � • o .
0 100 200 300 400 500 600 700 800 900 1000

xi

‘ Figure 5.14: The Dataset ADS9

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 145

1000�++ + ++++++ + +. +++4.+-IV+ + + ~
++ ++ 本 + + + + + + + + + 主 本 "i + class 1
•h. , + + , ^ + +J=+ +, A class 2

9。。广:+ + + + 、 + 1:+++ +,+ + ̂ +++:+++++ V :

4 � � . + + + + � : + { i f � J . +++:

3 。 。 二 ， + + + 4 � > ；0 A � � ^ l+ ： ! +++:++++

。 工 ; ^ ： : ； 乂 + ‘ �+ h V i ¥ + ‘ , .
0 100 200 300 400 500 600 700 800 900 1000

x1

< Figure 5.15: The Dataset ADSIO

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 146

1 0 0 0 � + + , + + + + + + + V + + + + 丄 I
+ + + ± , . + + + + + t + 斗 + Class 1

900 ++> I +; +,+ : V +:+•++++++,+++ , .O 二

800 ,、+++ /++++ + 乂公 '

+ 斜 : � • ” #:f:++
+ 卄:+ y/A �O � � e � � �T ^ z u ^ i +

艾 500 - + 八於 A o ̂ O OĈQ oo \ i +
+ 丸廿+ A A ̂ A C5̂<§>0 … 0 0 + +

o L i I _ ± I =t r + + 丨+T + I fri-fT •fh——I ± ± _ L 3 L H 卜十卞 + 0 100 200 300 400 500 600 700 800 900 1000 . xi

Figure 5.16: The Dataset ADSll

sample satisfies neither (5.22) nor (5.23), it is labeled as class 3.
Figure 5.16 shows the dataset ADSll.

. (x i - 550)2 - 500)2
1 2 2 5 0 0 + 1 4 4 0 0 0 〉 丄 . 。 （。.‘之）

工2 > 6 0 0 s m (^) (5.23)

The fourth dataset, called ECOLI, is a public domain dataset
from the UCI machine learning repository. This dataset has
336 samples and 8 classes. Each sample has 7 numeric input
attributes.

The fifth dataset, called BALANCE, is also a public domain
dataset from the UCI machine learning repository. This dataset
has 625 samples and 3 possible classes. Each sample has 4 nu-
meric input attributes.

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 147

Dataset Number of Generations
^ A D S 9 ^ 60,000

A D S I O ~ 60，OOP
ADSll 60,000
ECOLI — 300,000

BALANCE 150,000

Table 5.1: Number of Generations for OCl-ES on ADS9, ADSIO, ADSll ,
ECOLI and BALANCE

Parameters ADS9 | ADSIO | ADSll | ECOLI | BALANCE
Population Size 100

Number of
Generations 6000 2000 5000 4000 2000

Crossover
Probability 0.6 0.9 1.0 0.9 0.9
Mutation -

Probability 0.1 0.1 0.1 0.3 0.15

Table 5.2: Parameters of OCl-GA on ADS9, ADSIO, ADSll , ECOLI and
BALANCE

The implementation of the OCl-ES algorithm is same as that
in [8]. Table 5.1 shows the number of generations for the OCl-
ES algorithm on each dataset.

The implementation of the OCl-GA algorithm in this section
‘ is same as that in Section 3.3.1. Table 5.2 shows the parame-

ters of the OCl-GA algorithm so as to maximize its validation
accuracy on each dataset.

Table 5.3 shows the parameters of the BTGA and all of its
variants so that their validation accuracies are maximized on
each dataset. If the number of training samples at a node is less
than a positive integer no or the impurity reduction is less than
a threshold go, no child node is created in the BTGA.

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 148

Parameters ADS9 | ADSIO | ADSll | ECOLI | BALANCE
Population Size 100

Number of
Generations 1000 1000 1000 4000 2000

Crossover
Probability 0.7 0.9 0.9 0.8 0.8
Mutation

Probability 0.05 0.05 0.1 0.15 0.1
^ 50 15 10 15 — 10
go 0.3 0.01 0.01 0 . 1 0 . 1

Table 5.3: Parameters of BTGA and its Variants on ADS9, ADSIO, ADSll ,
ECOLI and BALANCE

Table 5.4 shows the parameters of the GA-based QDT and all
of its variants so as to maximize their validation accuracies. The
value of no specifies the minimum number of training samples
at each node of a quadratic decision tree and the value of go
specifies the minimum impurity reduction. Standard parameter
settings are used in various supervised classification algorithms
including C4.5, OCl and NDT.

Table 5.5 shows the average and the standard deviation of
the validation accuracy of various supervised classification algo-
rithms on ADS9, ADSIO and ADSll when 10-fold cross-validation
is applied over 10 runs. On the other hand, Table 5.6 reports the

. average and the standard deviation of the validation accuracy
of various supervised classification algorithms on ECOLI, BAL-
ANCE when 10-fold cross-validation is applied over 10 runs.

According to the one-sided t-tests, the GA-based QDT and
all of its variants outperform the others on ADSIO, ADSll,
ECOLI and BALANCE in terms of validation accuracy at 95%
confidence interval. The decision function at each non-terminal
node of a GA-based QDT and its variants usually provides a

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 149

Parameters ADS9 丨 ADSIO | ADSll | ECOLI | BALANCE
Population Size 100

Number of
Generations 1000

Crossover
Probability 0.9 0.9 0.9 0.9 0.9
Mutation

Probability 0.1 0.15 0.15 0.1 0.1
no 50 一 100 80 20 30 —
go 0.3 0.2 0.3 0.15 0.1

Table 5.4: Parameters of the GA-based QDT and its Variants on ADS9,
ADSIO, ADSll , ECOLI and BALANCE

better approximation to non-linear class boundaries when com-
pared with that of univariate and oblique decision tree algo-
rithms. When a new node is created, the GA-based QDT and
its variants are more capable of finding a better quadratic deci-
sion function than NDT because they have better capability of
escaping from local optima.

On the other hand, the BTGA and all of its variants outper-
form the others on ADS9 in terms of validation accuracy at 95%
confidence interval using the one-sided t-tests. Since the class
boundaries of ADS9 are linear, two straight lines can be used to
partition the samples into three classes completely. Moreover,

• a quadratic hypersurface tends to overfit the training samples
when they are linearly separable.

The validation accuracy of BTGA is same as that of the
BTGA with k-D Trees and the BTGA with Quadtrees. The
main difference between the BTGA and its variants is that dif-
ferent algorithms are used to evaluate the impurity reduction
after partitioning a set of training samples into two disjoint sub-
sets, although the same result is obtained using either the BTGA

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 150

- Algorithm ADS9 ADSIO ADSl l
C4.5 95.6 士 0.7 95.1 士 0.3 94.0 士 o i
OCi 97.4 士 0.8 95.3 土 0.8 95.5 土 0.7

- NDT " ^ 士 0.5 95.5 士 0.6 95.1 士 oTT
一 0C1-GA 95.9 士 0.9 94.6 士 0.7 94.8 土 o "T

OCl-ES 98.3 士 0.4 95.7 士 0.6 95.2 士 0.7
BTGA 98.7 士 0.5 96.5 95.9 士 oT"

GA-based QDT 98.1 士 0.5 —99.2 士 0.3 "^8.6 士 0.4
- BTGA with k-D Trees " ^ 土 0.5 96.5 士 0.7 95.9 士 0.4
- BTGA with Quadtrees 98.7 士 0.5 96.5 士 0.7 95.9 士 0.4
~GA-based QDT with k-D Trees VI 98.1 士 0.5 99.2 士 0.3 98.6 士 d T

GA-based QDT with k-D Trees V2 98.1 士 0.5 99.2 士 0.3 98.6 士 0.4
“GA-based QDT with k-D Trees V3 "98.1 土 0.5 99.2 士 0.3 98.6 士 0.4

GA-based QDT with Quadtrees VI 98.1 士 0.5 99.2 士 0.3 98.6 士 0.4
GA-based QDT with Quadtrees V2 98.1 士 0.5 99.2 士 0.3 98.6 士 0.4
GA-based QDT with Quadtrees V3 98.1 士 0.5 99.2 土 0.3 98.6 士 0.4

Table 5.5: Average and Standard Deviation of Validation Accuracy (%) of
Various Supervised Classification Algorithms on ADS9, ADSIO and ADSl l
based on 10 Independent Runs

or one of its variants. On the other hand, the GA-based QDT
and all of its variants construct the same quadratic decision tree
when the same set of parameters is applied.

Table 5.7 shows the average and the standard deviation of the
. execution time of various supervised classification algorithms on

ADS9, ADSIO and ADSll when 10-fold cross-validation is ap-
plied over 10 runs. Table 5.8 shows the average and the standard
deviation of the execution time of various supervised classifica-
tion algorithms on ECOLI and BALANCE when 10-fold cross-
validation is applied over 10 runs.

The BTGA with k-D Trees and the BTGA with Quadtrees
run faster than the BTGA on all datasets. Note that the maxi-

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 151

Algorithm ECOLI BALANCE
C4.5 81.6 士 1.2 77.6 士 0.7

OCl ~ 80.7 士 1.8 91.1 士 0.6
NDT 81.1 士 1.8 91.8 士 1.1

OCl-GA 83.6 士 1.3 93.9 士 1.2

OCl-ES 80.6 士 2.0 9 0 7 士 0.9

BTGA ~ 83.6 士 1.4 93.1 士 1.0
GA-based QDT 84.9 士 0.7 97.2 士 0.5

BTGA with k-D Trees 83.6 士 1 . 4 9 3 . 1 士 1.0
BTGA with Quadtrees 83.6 士 1.4 93.1 ± 1.0

GA-baged QDT with k-D Trees v F " 84.9 士 0.7 97.2 士 0.5
GA-based QDT with k-D Trees V2 84.9 士 0 7 97.2 土 0.5
GA-baged QDT with k-D Trees V3 84.9 士 0.7 97.2 ± 0.5
GA-based QDT with Quadtrees VI 84.9 士 0 . 7 9 7 . 2 士 0.5
GA-based QDT with Quadtrees V2 84.9 士 0.7 97.2 ± 0 . 5
GA-baged QDT with Quadtrees V3 84.9 土 0.7 97.2 士 0.5

Table 5.6: Average and Standard Deviation of Validation Accuracy (%)
‘ of Various Supervised Classification Algorithms on ECOLI and BALANCE

based on 10 Independent Runs

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 152

mum and the minimum values of the expression in (5.9) within
a hyperrectangle can be calculated accurately. The time re-
quired to calculate these values within a hyperrectangle is ap-
proximately equal to twice the time required to find the sign of
the expression in (5.9) for a training sample. When there are
not too few training samples at all leaf nodes of a k-D tree or a
generalized quadtree, the BTGA with k-D Trees and the BTGA
with Quadtrees run faster than the BTGA. Among the BTGA
and its variants, the BTGA with k-D Trees run the fastest on
ECOLI and BALANCE. The BTGA with Quadtrees run the
fastest on ADS9, ADSIO and ADSll.

All versions of the GA-based QDT with k-D Trees run faster
than the GA-based QDT on ADS9, ADSIO, ADSll and ECOLI.
The execution time of the GA-based QDT with k-D Trees V3
is longer than that of the other versions of the GA-based QDT
with k-P Trees on ADS9, ECOLI and BALANCE. On the other
hand, all versions of the GA-based QDT with Quadtrees run
faster than the GA-ba^ed QDT on ADS9, ADSIO and ADSll.
The execution time of the GA-based QDT with Quadtrees V3
is longer than that of the other versions of the GA-based QDT
with Quadtrees on ADS9, ECOLI and BALANCE.

Among the GA-based QDT and all of its variants, the GA-
based QDT with k-D Trees V2 run the fastest on ADSIO and
BALANCE. The GA-based QDT with Quadtrees VI run the
fastest on ADS9. The GA-based QDT with Quadtrees V2 run

‘ t h e fastest on ECOLI. The GA-based QDT with Quadtrees V3
run the fastest on ADSll. The validation accuracy of each vari-
ant of the GA-based QDT is identical to that of each other for
all datasets.

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 153

Algorithm ADS9 ADSIO ADSl l
C4.5 < 1 — < 1 ^

“ OCl 4.1 士 1.0 士 1.8 33.2 士 1.8
NDT 2.4 ± 0 . 5 2 4 . 2 士 1.2 25.0 士 2.4

OCl-GA 21.5 土 1.4 265.1 士 5 . 1 2 9 2 . 3 士 3.2

0 C 1 - E S 24.9 士 0.3 256.8 士 5.8 286.5 土 2.1

— BTGA 士 1.3 士 6.2 265.7 士 1.6
— BTGA with k-D Trees 12.0 士 0.5 " ^ . 4 士 2.7 1 3 1 . 8 士 1.2

BTGA with ^Quadtrees 11.0 士 0.1 i . 2 士 2.5 129.6 土 1.5
GA-based QDT 41.0 士 0.9 219.1 土 1.2 216.5 士 1.0

GA-based QDT with k-D Trees VI ~19A 士 1.0 163.4 士 5 . 2 1 7 0 . 0 士 5.7
—GA-baaed QDT with k-D Trees V2 l 9 . 3 士 0.8 士 2.3 117.8 士 3.6
—GA-baged QDT with k-D Trees V3 21.8 士 6.3 103.6 士 3.0 102.6 士 1.8
GA-based QDT with Quadtrees VI 18.1 士 0.6 " i ^ . 4 土 1.4 157.1 士 2.5

"GA-based QDT with Quadtrees V2 19.8 士 1.5 96.2 士 5.8 124.5 士 11.2
~GA-based QDT with Quadtrees V3 22.0 士 2.1 94.8 土 5.2 94.8 土 2.0

Table 5.7: Average and Standard Deviation of Execution Time (in Seconds)
‘ of Various Supervised Classification Algorithms on ADS9, ADSIO and ADSl l

based on 10 Independent Runs

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 154

Algorithm ECOLI BALANCE
C4.5 < 1 < 1
OCl 73.7 士 2.1— 57.8 土 0.6
NDT 142.0 ± 2 . 7 9 0 . 3 士 2.6

OCl-GA - 1015 士 27 471.2 士 30.0
OCl-ES 1021 士 38 476.1 士 12.9
BTGA - 1007 士 28 485.7 士 67.3

GA-based QDT —891.6 士 14.0 366.7 土 5.1
BTGA with k-D TVees 一 665.2 士 14.9 218.6 士 7.4
BTGA with Quadtrees 783.4 士 19^" 222.0 土 7.9

GA-based QDT with k-D lYees V l " 837.3 士 13.1" 284.4 士 9.6
GA-based QDT with k-D Trees V2 840.8 土 12.5 300.1 士 11.5
GA-based QDT with k-D Trees V3 861.5 ± 1 3 . 5 3 7 1 . 6 士 8.9
GA-based QDT with Quadtrees v f 784.4 士 16.0 310.2 士 12.2
GA-based QDT with Quadtrees V2_ 778.6 士 16 .7 308.5 士

GA-based QDT with Quadtrees V3 915.6 土 15.2 372.3 士 21.2

Table 5.8: Average and Standard Deviation of Execution Time (in Seconds)
‘ of Various Supervised Classification Algorithms on ECOLI and BALANCE

based on 10 Independent Runs

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 155

NQ Execution Time (s)
4 22.2 士 0.7

~ 8 18.3 士 0.8
" U " 14.9 士 0.6

12.8 士 0.6

12.0 士 0.5
128 12.3 士 0.5
256 14.2 士 0.6

Table 5.9: Average and Standard Deviation of Execution Time (in Seconds)
of BTGA with k-D Trees on ADS9 based on 10 Independent Runs when
the Minimum Number of Training Samples NQ at Each Node of a k-D Tree
Varies

5.6.2 Effects of Changing the Minimum Number of
Training Samples at Each Node of a k-D Tree

In this subsection, the effect of changing the minimum number
of training samples at each node of a k-D tree is investigated in
terms of execution time.

B T G A with k-D Trees

ADS9 is chosen to investigate the effect of changing the mini-
mum number of training samples NQ at each node of a k-D tree
in the BTGA with k-D Trees. Table 5.9 shows the average and
the standard deviation of the execution time of the BTGA with
k-D Trees as the minimum number of training samples NQ at
each node of a k-D tree varies. The minimum execution time is
attained when NQ = 64. The execution time of the BTGA with
k-D Trees is longer than that of BTGA when NQ = 4,8. (See
Table 5.7) However, the validation accuracy of BTGA with k-D
trees is same as that of BTGA for all values of NQ.

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 156

NQ GA-based QDT with k-D Trees —
VI I V2 I V3 一

4 294.4 士 9.2 323.6 士 15.6 570.4 士 23.2

~ ~ 8 2 8 4 . 4 ± 9 . 6 3 0 0 . 1 士 11.5 498.0 士 20.1

16 311.2 土 11.1 309.6 士 15.2 404.1 土 16.6

~ ~ 3 3 0 . 4 ± 1 2 . 2 ~ ~ 3 1 3 . 8 士 9 . 4 ~ ~ 3 8 0 . 2 士 15.8

6 4 343.0 土 10.5 351.8 士 10.1 371.6 士 8.9

Table 5.10: Average and Standard Deviation of Execution Time (in Seconds)
of all Versions of the GA-based QDT with k-D Trees on BALANCE based
on 10 Independent Runs when the Minimum Number of Training Samples
NQ at Each Node of a k-D Tree Varies

GA-based QDT with k-D Trees

The BALANCE dataset is selected to investigate the effect of
modifying the minimum number of training samples NQ at each
node of a k-D tree in all versions of the GA-based QDT with k-D
Trees. Table 5.10 shows the average and the standard deviation
of the execution time of all versions of the GA-based QDT with
k-D Trees as the minimum number of training samples NQ at
each node of a constructed k-D tree varies. The minimum execu-
tion time is attained when NQ = S for the GA-based QDT with
k-D Trees VI and the GA-based QDT with k-D Trees V2 and
NQ = 64 for the GA-based QDT with k-D Trees V3. The exe-
cution time of the GA-based QDT with k-D Trees V3 is longer

• than that of the GA-based QDT. (See Table 5.8) The reason is
that the time required to estimate the maximum and the mini-
mum values of the expression in (5.14) using the third algorithm
is so long that the computational overhead caused by processing
a k-D tree cannot be completely compensated by reducing the
number of tests on the decision function in (4.1). Nevertheless,
the validation accuracy of the GA-based QDT is same as that
of all variants of the GA-based QDT with k-D Trees.

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 157

5.6.3 Effects of Changing the Minimum Number of
Training Samples at Each Node of a Generalized
Quadtree

In this subsection, the effect of modifying the minimum number
of training samples at each node of a generalized quadtree is
investigated in terms of execution time.

BTGA with Quadtrees

ADS9 is chosen to investigate the effect of changing the mini-
mum number of training samples NQ at each node of a general-
ized quadtree in the BTGA with Quadtrees. Table 5.11 shows
the average and the standard deviation of the execution time of
the BTGA with Quadtrees as the minimum number of training
samples NQ at each node of a generalized quadtree varies. The
minimum execution time is attained when NQ = 128. The exe-
cution time of the BTGA with Quadtrees is longer than that of
the BTGA when NQ = 4. (See Table 5.7) However, the valida-
tion accuracy of the BTGA with Quadtrees is same as that of
BTGA no matter what the value of NQ is.

GA-based QDT with Quadtrees

The BALANCE dataset is selected to study the effect of chang-
ing the minimum number of training samples NQ at each node of

. a generalized quadtree in all versions of the GA-based QDT with
Quadtrees. Table 5.12 shows the average and the standard devi-
ation of the execution time of all versions of the GA-based QDT
with Quadtrees as the minimum number of training samples NQ
at each node of a generalized quadtree varies. The minimum ex-
ecution time is attained when NQ = 32 for the GA-based QDT
with Quadtrees VI and the GA-based QDT with Quadtrees V2
and NQ = 128 for the GA-based QDT with Quadtrees V3. The
execution time of the GA-based QDT with Quadtrees V3 is

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 158

NQ Execution Time (s)
"~4 21.9 ± 0 . 8

8 17.1 士 0.3
" U " 15.1 土 0.7

12.0 士 0.5
64 11.3 士 0.5
128 11.0 士 0.1

11.1 ±0.1

Table 5.11: Average and Standard Deviation of Execution Time (in Seconds)
of BTGA with Quadtrees on ADS9 based on 10 Independent Runs when the
Minimum Number of Training Samples NQ at Each Node of a Generalized
Quadtree Varies

longer than that of the GA-based QDT. (See Table 5.8) Never-
theless, the validation accuracy of the GA-based QDT is same
as that of all versions of the GA-based QDT with Quadtrees.

5.6.4 Effects of Changing the Size of Datasets

In this subsection, the effect of changing the size of datasets is
investigated in terms of execution time.

B T G A and its Variants

In this part, ADS9 is replicated Nc times. Table 5.13 shows the
, average and the standard deviation of the execution time of the

BTGA and its variants as the number of replications Nc varies.
The execution time of the BTGA with k-D Trees and the BTGA
with Quadtrees is lower than that of the BTGA. The BTGA
with Quadtrees runs faster than the BTGA with k-D Trees. The
percentage decrease in the execution time of the BTGA with k-
D Trees and that of the BTGA with Quadtrees when compared
with that of the BTGA increases as the number of replications
Nc increases. When the size of a dataset is increased, the BTGA

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 159

NQ GA-ba^ed QDT with Quadtrees —
VI I V2 I V3

329.8 士 10.2 324.6 土 9.4 “ 420.0 士 11.1"

~ 8 322.6 士 10.1 318.1 士 9.8 412.8 土 10.5

319.2 士 9.8 314.6 士 9.1 409.8 士 11.4—

310.2 士 12.2 308.5 士 14.5 385.8 士 9.5—

318.2 士 9.3 “ 312.9 土 8.9 378.6 士 10.3"

128 322.6 士 9.5 316.6 ± 8 . 6 372.3 士 21.2

Table 5.12: Average and Standard Deviation of Execution Time (in Seconds)
of all Versions of the GA-based QDT with Quadtrees on BALANCE based
on 10 Independent Runs when the Minimum Number of Training Samples
NQ at Each Node of a Generalized Quadtree Varies

with k-D Trees and the BTGA with Quadtrees are more likely
to run faster than the BTGA. The validation accuracy of BTGA
is same as that of the BTGA with k-D trees and the BTGA with
Quadtrees for all possible values of NQ-

GA-based QDT and its Variants

In this part, the BALANCE dataset is replicated N�t imes. Ta-
ble 5.14 shows the average and the standard deviation of the
execution time of the GA-based QDT and all versions of the
GA-based QDT with k-D Trees as the number of replications
Nc varies. Table 5.15 reports the average and the standard de-

‘ viation of the execution time of all versions of the GA-based
QDT with Quadtrees as the number of replications Nc varies.
The percentage change in the execution time of all versions of
the GA-based QDT with k-D Trees when compared with that
of the GA-based QDT decreases as the number of replications
Nc increases. Similarly, the percentage change in the execution
time of all versions of the GA-based QDT with Quadtrees when
compared with that of the GA-based QDT decreases as the num-

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 160

Nc BTGA BTGA with k-D Trees BTGA with Q u a d t r ^
17.2 士 1.3 12.0 土 0.5 11.0 士 0.1

一1 26.9 ± 0 . 6 16.1 士 0.5 14.5 士 0.5

38.8 士 1.3 18.6 士 0.7 17.2 士 0.4

50.1 士 0.9 21.7 士 0.7 19.4 士 0.5

~ 5 6 0 . 9 士 1.0 22.9 士 0.6 20.4 士 0.5

6 73.2 士 1.4 25.6 士 0.7 ~ 21.9 士 0.7
7 84.8 士 2.7 26.9 士 0.9 23.0 士 0.8

~ 8 9 6 . 3 士 2.5 27.5 士 1.0 — 23.9 士 1.0
9 107.1 士 2.5 27.7 士 0.7 24.7 士 0.7

~ T o 1 1 7 . 6 士 2.0 - 28.8 士 0.7 25.4 士 0.9

Table 5.13: Average and Standard Deviation of Execution Time (in Seconds)
of BTGA and its Variants based on 10 Independent Runs when the Number
of Replications Nc on ADS9 Varies

ber of replications Nc increases. Although the GA-based QDT
with k-D Trees V3 runs slower than the GA-based QDT when
Nc = 1, this is not the case when Nc > 1. The validation accu-
racy of the GA-based QDT is same as that of all of its variants
no matter what the value of Nc is.

5.7 Chapter Summary

Spatial data structures, including k-D trees and generalized quadtrees,
‘ can be used to speed up the construction of an oblique or a

quadratic decision tree when the size of a dataset is sufficiently
large, without deteriorating the quality of a constructed decision
tree.

In this chapter, the structures of a k-D tree and a generalized
quadtree have been introduced. Several possible algorithms to
construct oblique and quadratic decision trees using k-D trees
and generalized quadtrees have been proposed.

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 161

N c GA-baged QDT with k-D Trees GA-baaed QDT

V I I V2 I V3
1 354.0 士 9.6 士 10.5 387.2 士 10.5 366.7 士 5.1
2 588.1 士 13.9 574.2 士 12.3 668.4 士 13.5 —718.4 士 12.5 “

~ 3 8 0 6 . 6 士 22.5 779.2 士 23.厂 926.8 士 27.1 1092.6 士 33.9

4 1001.2 士 21.5 957.8 士 18.8 H i 9 . 8 士 20.3 1418.9 士 25.9 —

~ ~ 5 1 1 5 4 . 3 士 15.6 1109.2 士 14.3 1354.1 士 1 1 . 6 1 7 4 1 . 9 士 25.1

6 1285.3 士 18.2 "1^5.6 士 18.7 1545.7 士 19.8 2118.0 士

7 1421.1 土 12.8 1 ^ 1 . 2 士 25.2 1721.6 士 20.1 2440.8 土 33.8

~~81548 .4 士 20.1 1491.2 士 16.9 1870.6 士 20.1 2746.5 士 25.4

~ 9 1 6 8 8 . 2 士 26.2 1608.6 士 23.1 2047.8 士 1 7 . 8 3 1 6 4 . 5 士 51.3

10 1780.1 士 39.2 1692.5 土 33.4 ^ 8 . 6 士 36.1 ~^572.9 士 129.3

Table 5.14: Average and Standard Deviation of Execution Time (in Seconds)
of the GA-based QDT and all Versions of the GA-based Q D T with k-D Trees
based on 10 Independent Runs when the Number of Replications N�on
BALANCE Varies —

N c GA-based QDT with Quadtrees GA-baged Q D T
V I I V2 I V3 —

320.4 士 1 1 . 8 3 1 1 . 0 土 7 . 5 3 5 8 . 2 ± 10.1 366.7 土 5.1
2 500.1 士 10.9 ^ 6 . 8 士 9.5 — 士 8.5 718.4 土 1 2 ^ ~

3 538.2 士 12.3 543.2 士 13.2 830.2 士 12.5 ^ 0 9 2 . 6 士 33.9 “

615.8 士 1 0 . 5 6 1 5 . 4 士 8.6 .1006.3 士 20.4 1418.9 士 25.9

~ 5 667.8 士 9.9 .647.3 士 12.5 1076.0 士 1741.9 士 25.1

" 6 7 5 0 . 8 士 11.4 734.2 士 10.8 1133.6 士 1 6 " ^ 2118.0 士 30.3

‘ 846.6 士 15.3 833.0 士 16.0 1220.2 士 21.3 2440.8 土 33.8

~ ~ 8 9 0 7 . 4 士 12.1 884.8 士 12.6_ 1322.0 士 15.0 2746.5 士 25.4

9 933.6 士 12.4 924.2 士 13.8 Y377.6 士 18.7 . 3164.5 士 5 1 ^
10 942.6 士 17.2 935.8 士 17.3 " 1 1 ^ . 6 士 15.6 "T572.9 士 129.3 “

Table 5.15: Average and Standard Deviation of Execution Time (in Seconds)
of the GA-based QDT and all Versions of the GA-based Q D T with Quadtrees
based on 10 Independent Runs when the Number of Replications N c on
BALANCE Varies

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 162

Binary Tree-Genetic Algorithm (BTGA) is chosen to evalu-
ate the performance when an oblique decision tree is constructed
with the aid of k-D trees and generalized quadtrees.On the other
hand, Genetic Algorithm-based Quadratic Decision Tree (GA-
based QDT) is selected to evaluate whether it is suitable to con-
struct a quadratic decision tree using k-D trees and generalized
quadtrees.

To construct a quadratic decision tree for classifications, it
is necessary to estimate the maximum and the minimum values
of a quadratic function within a hyperrectangle when the op-
timality of a quadratic decision function is determined using a
k-D tree or a generalized quadtree. Three methods to estimate
the maximum and the minimum values of a quadratic function
within a hyperrectangle are introduced. The execution time of
the variants of the GA-based QDT depends on the quality of the
estimated maximum and minimum values of a quadratic func-
tion within a hyperrectangle and the time required to estimate
these values. Although all of these methods may overestimate
its maximum value and underestimate its minimum value, they
neither underestimate its maximum value nor overestimate its
minimum value, and therefore we can preserve the classification
accuracy of the constructed quadratic decision tree. To design
a suitable algorithm to estimate the maximum and the mini-
mum values of a quadratic function within a hyperrectangle, it
is necessary to strike the right balance between the quality of

‘ the estimated values and the estimation time.
The effects of modifying the minimum number of training

samples at each node of a k-D tree and a generalized quadtree
on the execution time of the variants of the BTGA and that of
the GA-based QDT have been investigated. Experiments show
that the minimum number of training samples at each node of
a k-D tree or a generalized quadtree should not be too small or
too large in order to minimize the execution time. Moreover, the

Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 163

effects of increasing the size of datasets on the execution time of
the variants of the BTGA and that of the GA-based QDT have
been studied. Experiments show that the variants of the BTGA
and that of the GA-based QDT are more effective in reducing
their computational time as the size of datasets increases.

• End of chapter.

Chapter 6

Conclusions

In this chapter, the contributions of the thesis are concluded. In
addition, we provide the possible future research directions of
the thesis.

6.1 Contributions

A rule induction algorithm called SCION was introduced by Le-
ung et al. [33], [34]. The antecedent part of a classification rule
is equivalent to a hyperrectangle in the attribute space. A ge-
netic algorithm-based rule induction algorithm, called Genetic
Algorithm-based Convex Polytope Rule Learning System (GA-
based CPRLS), has been proposed by extending SCION. In the
GA-based CPRLS, the antecedent part of a classification rule
is a conjunctive set of logical expressions. The possible logical

• expressions include linear inequalities with several continuous
attributes and nominal attribute-value pairs. The GA-based
CPRLS provides an alternative rule learning algorithm. Ex-
periments show that the GA-based CPRLS generates a better
set of classification rules than SCION on datasets with non-axis
parallel class boundaries. GAs are more capable of finding a
better rule set than random search. Token competition and rule
migration improves the performance of the GA-based CPRLS.

164

Chapter 6 Conclusions 165

A genetic-algorithm based quadratic decision tree algorithm,
called Genetic Algorithm-based Quadratic Decision Tree (GA-
based QDT), has been proposed by extending Binary Tree-Genetic
Algorithm (BTGA) [9]. At each non-leaf node of a quadratic de-
cision tree, GAs are applied to search for the optimal quadratic
decision function. A linear function is a special case of a quadratic
function. Experiments show that the GA-based QDT provides a
better decision tree classifier than univariate and linear decision
trees on datasets with non-linear class boundaries. In addition,
GAs have higher capability of searching for a better quadratic
decision function than random search at each internal node of a
quadratic decision tree, and therefore a better quadratic decision
tree can be constructed.

We have proposed to construct a k-D tree or a generalized
quadtree before searching for the optimal linear or quadratic de-
cision function at each internal node of a linear or a quadratic
decision tree. The time required to construct an oblique or a
quadratic decision tree can be reduced when the size of a dataset
is sufficiently large, without deteriorating the quality of a con-
structed decision tree.

In order to construct a linear or a quadratic decision tree
with the aid of k-D trees or generalized quadtrees, it is neces-
sary to calculate the maximum and the minimum values of a
linear or a quadratic function within a hyperrectangle. We can
accurately calculate the maximum and the minimum values of

‘ a linear function within a hyperrectangle. However, it is dif-
ficult to evaluate the maximum and the minimum values of a
quadratic function within a hyperrectangle accurately. In this
thesis, we have suggested three methods to estimate the maxi-
mum and the minimum values of a quadratic function within a
hyperrectangle. Although the overall execution time can only be
reduced significantly when a quadratic decision tree is built with
the aid of k-D trees or generalized quadtrees provided that the

Chapter 6 Conclusions 166

data size is large, the classification accuracy of the constructed
decision tree is not sacrificed because the impurity reduction is
still evaluated accurately.

Two linear decision tree algorithms, called Binary Tree-Genetic
Algorithm with k-D trees (BTGA with k-D Trees) and Binary-
Tree Genetic Algorithm with Quadtrees (BTGA with Quadtrees),
have been proposed by extending BTGA. In the BTGA with k-D
Trees and the BTGA with Quadtrees, a k-D tree and a general-
ized quadtree are respectively constructed before searching for
the optimal linear decision function at each internal node of a
linear decision tree. Experiments show that the classification
accuracy of BTGA is same as that of the BTGA with k-D trees
and the BTGA with Quadtrees.

Similarly, two quadratic decision tree algorithms, called Ge-
netic Algorithm-based Quadratic Decision Tree with k-D Trees
(GA-based QDT ‘with k-D Trees) and Genetic Algorithm-based
Quadratic Decision Tree with Quadtrees (GA-based QDT with
Quadtrees), have been introduced by extending the GA-based
QDT. In the GA-based QDT with k-D Trees and the GA-based
QDT with Quadtrees, a k-D tree and a generalized quadtree
are respectively constructed before searching for the optimal
quadratic hypersurface at each non-terminal node of a quadratic
decision tree. Three methods of estimating the maximum and
the minimum values of a quadratic function within a hyperrect-
angle have been introduced. GA-based QDT with k-D Trees

‘ V I , GA-based QDT with k-D Trees V2 and GA-based QDT
with k-D Trees V3 are respectively the GA-based QDT with
k-D Trees algorithms using the first, the second and the third
method of estimating the maximum and the minimum values of
a quadratic function within a hyperrectangle. GA-based QDT
with Quadtrees VI, GA-based QDT with Quadtrees V2 and GA-
based QDT with Quadtrees V3 are respectively the GA-based
QDT with Quadtrees algorithms using the first, the second and

Chapter 6 Conclusions 167

the third method of estimating the maximum and the mini-
mum values of a quadratic function within a hyperrectangle. To
design a suitable algorithm to estimate the minimum and the
maximum values of a quadratic function within a hyperrectan-
gle, it is necessary to strike the balance between the quality of
the estimated values and the estimation time. Nevertheless, the
classification accuracy of the GA-based QDT is same as that of
all of its variants.

The effects of changing the minimum number of training sam-
ples at each node of a k-D tree and a generalized quadtree of
the variants of BTGA and the GA-based QDT have been in-
vestigated. The minimum number of training samples at each
node of a k-D tree or a generalized quadtree should be carefully
adjusted in order to minimize the execution time. However, the
validation accuracy of all variants of BTGA and the GA-based
QDT remains unchanged when the minimum number of train-
ing samples at each node of a k-D tree or a generalized quadtree
is changed. The effects of increasing the size of datasets on
the execution time of the variants of BTGA and the GA-based
QDT have been studied. Experiments show that the variants
of BTGA and that of the GA-based QDT are more effective in
reducing their execution time as the size of datasets increases.

6.2 Future Work

In the GA-based CPRLS, the number of linear inequalities in
the antecedent part of a classification rule needs to be speci-
fied. However, the optimal number of linear inequalities in a
classification rule varies from problem to problem. When the
number of linear inequalities is too small, two or more classifica-
tion rules may be required to represent a cluster in the attribute
space. When there are too many linear inequalities to represent
a classification rule, the classification rule may overfit the train-

Chapter 6 Conclusions 168

ing samples. An inappropriate number of linear inequalities may
result in poor generalization. The determination of the optimal
number of linear inequalities in a classification rule is a possible
research direction of the GA-based CPRLS.

The experiments in Section 4.4.1 show that a quadratic hy-
persurface tends to overfit the training samples with linear class
boundaries, although a hyperplane is a special case of a quadratic
hypersurface. It is needed to study the possible ways to evolve
the optimal quadratic hypersurface so that the impurity reduc-
tion after dividing a set of training samples into two disjoint
subsets is maximized while the number of non-zero coefficients
is minimized. In other words, the number of terms of a decision
function should be minimized.

To evaluate the optimality of a quadratic hypersurface using
a k-D tree or a generalized quadtree, it is necessary to estimate
the maximum and the minimum values of a quadratic function
within the smallest hyperrectangle containing a set of training
samples. In order to estimate its maximum and minimum values
more accurately, more computational time is usually required.
New algorithms estimating the maximum and the minimum val-
ues of a quadratic function within a hyperrectangle can be ex-
plored so that the quality of these estimated values is improved
while the computational time is minimized.

In all of the variants of BTGA and the GA-based QDT, the
minimum number of training samples at each leaf node of a con-

‘structed k-D tree or a generalized quadtree is defined in advance.
The experiments reported in Section 5.6.3 conclude that it is
necessary to carefully choose the minimum number of training
samples at each leaf node of a k-D tree or a generalized quadtree.
It is worthwhile to study the possible ways to determine the op-
timal minimum number of training samples at each leaf node
of a k-D tree or a generalized quadtree so as to minimize the
execution time.

Chapter 6 Conclusions 169

In all of the proposed algorithms in the thesis, the values of
all of the input attributes of each sample need to be specified.
When the value of an input attribute of a sample is unspecified,
the GA-based CPRLS cannot determine whether the sample
satisfies the antecedent part of a classification rule. Both the
GA-based QDT and BTGA are incapable of choosing the ap-
propriate terminal node when a sample with one or more missing
attribute values is encountered. However, most real life datasets
contain one or more samples whose values of one or more of the
input attributes are missing. It is necessary to investigate how
to handle a sample with one or more missing values in the pro-
posed algorithms.

• End of chapter.

Appendix A

Implementation of Data Mining
Algorithms Specified in the
Thesis

In order to evaluate the performance of the proposed algorithms
in the thesis, it is necessary to compare the performance of other
data mining algorithms with that of the proposed algorithms.
This part describes how to implement other data mining algo-
rithms mentioned in the Thesis.

C4.5 The source code of the C4.5 algorithm can be downloaded
in the following website:
http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/c4.5r8.tar.gz

OCl The source code of the OCl algorithm can be downloaded in
the website http://www.tigr.org/%7Esalzberg/0Cl.tar.gz.

«

NDT Since NDT is extended from OCl, it was implemented by
modifying the source code of the OCl algorithm down-
loaded in the Internet

OCl-ES Since OCl-ES is extended from OCl, it was implemented
by modifying the source code of the OCl algorithm down-
loaded in the Internet.

170

http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/c4.5r8.tar.gz
http://www.tigr.org/%7Esalzberg/0Cl.tar.gz

OCl-GA Since OCl-GA is extended from OCl, it was implemented
by modifying the source code of the OCl algorithm down-
loaded in the Internet.

SCION A program for SCION was written.

BTGA A program for BTGA was written.

• End of chapter.

171

Bibliography

1] J. Baker. Adaptive selection methods for genetic algo-
rithms. In Proceedings of an International Conference on
Genetic Algorithms and Their Applications, pages 101-111.
Lawrence Erlbaum, 1985.

2] K. P. Bennett, N. Cristianini, J. Shawe-Taylor, and D. Wu.
Enlarging the margins in perceptron decision trees. Ma-
chine Learning, 41(3):295-313, 2000.

3] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Communications of the ACM^
18(9):509-517, Sept. 1975.

4] M. C. J. Bot. Improving induction of linear classification
trees with genetic programming. In D. Whitley, D. Gold-
berg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer,
editors, Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2000), pages 403-410, Las
Vegas, Nevada, USA, 10-12 2000. Morgan Kaufmann.

5] M. C. J. Bot and W. B. Langdon. Application of ge-
netic programming to induction of linear classification trees.
In R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller,
P. Nordin, and T. C. Fogarty, editors, Genetic Program-
ming, Proceedings of EuroGP，2000, volume 1802, pages
247-258, Edinburgh, 15-16 2000. Springer-Verlag.

172

6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth Interna-
tional Group, 1984.

7] C. E. Brodley and P. E. Utgoff. Multivariate decision trees.
Technical Report UM-CS-1992-083, 1992.

8] E. Cantu-Paz and C. Kamath. Inducing oblique decision
trees with evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 7(l):54-68, Feb. 2003.

9] B.-B. Chai, T. Huang, X. Zhuang, Y. Zhao, and J. Sklansky.
Piecewise linear classifiers using binary tree structure and
genetic algorithm. Pattern Recognition, 29(11): 1905—1917,
1996.

10] P. Clak and T. Niblett. The cn2 induction algorithm. Ma-
chine Learning, 3:261-283，1989.

11] L. Davis. Handbook of Genetic Algorithm. New York : Van
Nostrand Reinhold, 1991.

12] D. Dumitrescu, B. Lazzerini, L. Jain, and A. Dumitrescu.
Evolutionary Computation. CRC Press, 2000.

13] L. J. Eshelman and J. D. Shaffer. Real coded genetic al-
gorithms and interval schemata. In Foundations of genetic
algorithms II, pages 187-202. Morgan Kaufmann, 1993.

14] D. B. Fogel. An introduction to simulated evolutionary
optimization. IEEE Transactions on Neural Network, 5:3-
14’ 1994.

15] L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence
through Simulated Evolution. John Wiley and Sons, 1966.

16] A. A. Preitas. Data Mining-and Knowledge Discovery with
Evolutionary Algorithms. New York: Springer-Verlag, 2002.

173

17] J. Gama. Oblique linear tree. Lecture Notes in Computer
Science, 1280:187-198, 1997.

18] C. Gathercole and P. Ross. Tackling the boolean even N
parity problem with genetic programming and limited-error
fitness. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel,
M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Pro-
gramming 1997: Proceedings of the Second Annual Confer-
ence, pages 119-127, Stanford University, CA, USA, 13-16
1997. Morgan Kaufmann.

19] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, 1989.

20] M. Goodrich, V. Mirelli, M. Orletsky, and J. Salowe. Deci-
sion tree construction in fixed dimensions: Being global is
hard but local greed is good, 1995.

21] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers, 2001.

22] I. Harvey. Evolutionary robotics and saga: The case for
hill crawling and tournament selection. In Proceedings of
Workshop on Artificial Life, volume XVI’ pages 299-326.
Santa Fe, NM, Addison-Wesley, 1992.

23] D. Heath, S. Kasif, and S. Salzberg. Induction of oblique
decision trees. In Proceedings of the 13th International
Joint Conference on Artificial Intelligence, pages 1002-
1007, 1993.

24] F. Herrera, M. Lozano, and J. L. Verdegay. Tackling
real-coded genetic algorithms: Operators and tools for be-
havioural analysis. Artificial Intelligence Review, 12(4) :265-
319, 1998.

174

'25] J. H. Holland. Adaption in Natural and Artificial Systems.
MIT Press, 1975.

26] A. Ittner and M. Schlosser. Non-linear decision trees - NDT.
In International Conference on Machine Learning�pages
252-257, 1996.

27] V. S. Iyengar. Hot: Heuristics for oblique trees. In 11th In-
ternational Conference on Tools with Artificial Intelligence,
pages 91-98, 1999.

28] J. F. Javis, C. N. Judice, and W. H. Ninke. A survey of
techniques for the image display of continuous tone images
on a bilevel display. Computer Graphics and Image Pro-
cessing, 5(1):13—40，Mar. 1976.

29] K. A. D. Jong, W. M. Spaers, and D. F. Gordon. Using
genetic algorithms for concept learning. Machine Learning,
13:161-188, 1993.

30] J. R. Koza. Genetic Programming: on the Programming
of Computers by Means of Natural Selection. MIT Press,
1992.

31] J. R. Koza. Genetic Programming: Genetic Programming
II: Automatic Discovery of Reusable Programs. MIT Press,
1994.

• 32] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane. Ge-
netic Programming: Genetic Programming III: Darwinian
Invention and Problem Solving. Morgan Kaufmann, 1999.

33] K. S. Leung, Y. Leung, L. So, and K. F. Yam. Rule learning
in expert systems using genetic algorithm: 1, concepts. In
Proceedings of the 2nd International Conference on Fuzzy
Logic and Neural Networks, .volume 1, pages 201-204, 1992.

175

34] K. S. Leung, Y. Leung, L. So, and K. F. Yam. Rule learn-
ing in expert systems using genetic algorithm: 2, empirical
studies. In Proceedings of the 2nd International Confer-
ence on Fuzzy Logic and Neural Networks, volume 1, pages
205-208, 1992.

35] Z. Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. New York: Springer-Verlag, 3rd edi-
tion, 1996.

36] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

37] H. Muhlenbein and D. Schlierkamp-Voosen. Predictive
models for the breeder genetic algorithm i: Continuous pa-
rameter optimization, 1993.

38] S. K. Murthy, S. Kasif, and S. Salzberg. A system for in-
duction of oblique decision trees. Journal of Artificial In-
telligence Research, 2:1-32, 1994.

39] S. K. Murthy, S. Kasif, S. Salzberg, and R. Beigel. Ocl: A
randomized induction of oblique decision trees. In National
Conference on Artificial Intelligence, pages 322-327, 1993.

40] S. C. Ng and K. S. Leung. Induction of quadratic deci-
sion trees using genetic algorithms. In Proceedings of 2003
Intelligent Automation Conference, pages 979-984, 2003.

’ 41] S. C. Ng and K. S. Leung. Induction of quadratic decision
trees using genetic algorithms and k-d trees. In Proceedings
of the Third WSEAS International Conference on Artificial
Intelligence, Knowledge Engineering and Databases, 2004.

42] A. Papagelis and D. Kalles. Breeding decision trees using
evolutionary techniques. In Proceedings of the 18th Inter-
national Conference on Machine Learning, pages 393-400.
Morgan Kaufmann, 2001.

176

43] J. R. Quinlan. Induction of decision trees. Machine Learn-
ing, 1(1):81-106, 1986.

44] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, 1993.

45] I. Rechenberg. Evolutionsstrategie: Optimienrung Technis-
cher Systeme nach Prinzipien der Biologiscen Evolution.
Prommann-Holzboogt Verlag, 1973.

46] J. Rissanen. Modeling by shortest data description. Auto-
matical 14:465-471, 1978.

47] S. R. Safavian and D. Landgrebe. A survey of decision
tree classifier methodology. IEEE Transactions on Systems,
Man and Cybernetics, 21(3):660-674, 1991.

48] H. Samet. Applications of Spatial Data Structures: Com-
puter -Graphics, Image Processing, and GIS. Addison-
Wesley, 1990.

49] H. Samet. The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, 1990.

50] H. P. Schewefel. Numerical Optimization of Computer Mod-
els. Wiley, 1981.

51] S. Shah and P. S. Sastry. New algorithms for learining
and pruning oblique decision trees. IEEE Transactions on

. Systems, Man，and Cybernetics - Part C: Applications and
Reviews, 29(4):494—505, Nov. 1999.

52] M. Shneier. Two hierarchical linear feature representation:
Edge pyramids and edge quadtrees. Computer Graphics
and Image Processing, 17(3):211-224, Nov. 1981.

53] G. Syswerda. Uniform crossover in genetic algorithms. In
Proceedings of the 3rd International Conference on Genetic
Algorithms, pages 2-9. Morgan Kaufmann Publishers, 1989.

177

54] K. P. Unnikrishnan and K. P. Venugopal. Alopex: A
correlation-based learning algorithm for feedforward and
recurrent neural networks. Neural Computation, 6(3):469-
490, 1994.

55] M. L. Wong and K. S. Leung. Inducing logic programs with
genetic algorithms: The genetic logic programming system.
IEEE Expert, 10(5):68—76，1995.

56] M. L. Wong and K. S. Leung. Data Mining using Gram-
mar Based Genetic Programming and Applications. Kluwer
Academic Publishers, 2000.

57] A. H. Wright. Genetic algorithms for real parameter opti-
mization. In G. J. Rawlins, editor, Foundations of Genetic
Algorithms, pages 205-218. Morgan Kaufmann, San Mateo,
CA, 1991.

58] O. T. Yildiz and E. Alpaydin. Linear discriminant trees. In
Proc. 17th Int. Conf. Machine Learning, pages 1175-1182,
2000.

178

1 J - . ‘ � • •

‘ “ T
• .

. - . . A

� ‘ � � • •

•i.

‘ � •
, “ . . r

；• A . “
. y

. ‘ ‘

• « * •

«• -

• 二 ‘ A. - • .

. ‘ - •
-

.•. ；- “ I,- . •• .- I ,� . ‘•,..�.• � , • . i , ... …. 、、‘、. > -
� . . 'AT -

‘ • , - -

. . > • “ ‘ • • •

..•...、• -：•： V ， . ‘ .

；•, . .S > . ； . ^ •" • . ‘‘ .

. -L ‘ • ‘ • • ‘ r ,,

.. 〜- •• —

, “ 錢 ： “
‘ . . 、 . ： . 如 - • • • -••»�• . . .� ‘ . . .,-1 . ‘ - 1 , -

- . ： . - : ' � • � • , . - .

- • . ， • ：, • . . i • .
IL: ” . • • . . ‘ . . - ., • ‘ .

. �� . ‘

- ^ ‘ . • .

“ •• ： .

- . f . �V..-: •• T- ；.

‘ . ^̂ .‘
， • 二 … ： 沾 ：

. . ^ ... / ：

CUHK L i b r a r i e s

0 0 4 2 7 8 9 8 1

