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利用遺傳算法建構分類法則及決策樹 

伍世昌 

論文摘要 

數據發掘是指從大量數據中尋找隱藏的知識。監督式分類是多種數據發掘算法之 

一。我們可利用監督式分類建構一組模型作爲知識表示方法，以預測未見的資料 

項之分類。本論文會討論其中兩個監督式分類算法，包括分類法則及決策樹0不 

過，分類法則及決策樹之搜索空間可能十分龐大。我們會運用遺傳算法以便建構 

這些模型。 

SCION是一個以分類法則爲基礎之專家系統，利用遺傳算法推論一組分類法則， 

而每個法則爲一組串聯的一元不等式。我們以SCION爲藍本，提出一個以遺傳算 

法爲基礎的推論分類法則之算法，稱爲GA-based CPRLS，而每個法則之前提爲 

一組串聯的邏輯算式。這些邏輯算式包括由連續屬性組成的一次不等式和由一個 

離散屬性及其數値組成之等式。GA-based CPRLS提供一種適用於離散及連續屬 

性之建構分類法則的算法。 

BTGA[9]是一個以遺傳算法爲基礎的線性決策樹之算法。我們以BTGA爲藍本， 

提出一個以遺傳算法爲基礎的二次決策樹’稱爲GA-based QDT。它在每一個非 

終結節點運用遺傳算法找尋最佳的二次決策函數。線性決策樹只不過是二次決策 

樹之一種。實驗結果證明GA-based QDT較其他單變數及線性決策樹更能近似非 

線性的分類邊界。 

當我們利用較大的資料集建構線性或二次決策樹時，可於每個非終結節點決定最 

佳決策函數前建構一棵k-d樹或廣義四分樹。爲了利用k-D樹或廣義四分樹建構線 

性或二次決策樹，我們需計算一個合適的線性或二次函數在某個超矩形內之極端 

値。 

雖然我們可準’確地求出一個線性函數在某個超矩形內之極端値，但難以準確地計 

算某二次函數在某個超矩形內之極端値。因此我們介紹了三種估計一個二次函數 

在某超矩形內之極端値的方法。這三種方法均不會影響建構出的二次決策樹之質 

素。 ‘ ‘ 

我們分別選擇BTGA及GA-based QDT來測試利用k-d樹及廣義四分樹建構線性及 

二次決策樹時之表現。因此我們修改BTGA並提出BTGA with k-D Trees及BTGA 

with Quadtrees。同樣地我們以GA-based QDT爲基礎’提出GA-based QDT with 

k-D TreesRGA-based QDT with Quadtrees °除此之外，我們亦評估將剛提出的三 

種估計一 j^Zl次函數在超矩形內之極端値的方法應用於GA-based QDT with k-D 

Trees及GA-based QDT with Quadtrees時之表現°實驗結果證明當我們遇上較大的 

資料集時，我們可利用k-d樹或廣義四分樹以加快建構線性或二次決策樹之速 

度，而不會影響建構出的決策樹之質素。 



Abstract of thesis entitled: 
Induction of Classification Rules and Decision Trees using 

Genetic Algorithms 

Data mining is the process of discovering hidden knowledge 
from large amounts of data. Supervised classification is a kind 
of data mining algorithms. In supervised classification, a set of 
models'as knowledge representation is constructed to predict the 
class label of an unseen data. In the thesis, supervised classifica-
tion techniques including classification rules and decision trees 
are presented. However, the search space of a classification rule 
or a decision tree can be very large. Genetic algorithms (GAs) 
are applied to facilitate the induction of these models. 

In a rule-based expert system called SCION, a set of clas-
sification rules is evolved using GAs. The antecedent part of a 
classification rule is a conjunctive set of inequalities with one nu-
meric attribute only. A genetic algorithm-based rule induction 
algorithm, called GA-based CPRLS, is proposed by extending 
SCION. In the GA-based CPRLS, the antecedent part of a clas-
sification rule is a conjunction of linear inequalities with several 

, numeric attributes and nominal attribute-value pairs. The GA-
based CPRLS provides an alternative algorithm to construct 
a set of classification rules for both numeric and nominal at-
tributes. 

In BTGA [9], the optimal linear decision function is found 
at each node of a linear decision tree. A genetic-algorithm 
based quadratic decision tree algorithm, called GA-based QDT, 
is proposed by extending BTGA. At each non-leaf node of a 
quadratic decision tree, GAs are applied to search for the op-

i 



timal quadratic decision function. Experiments show that the 
GA-based QDT provides a better approximation to non-linear 
class boundaries when compared with univariate and linear de-
cision tree algorithms. 

Spatial data structures including k-D trees and generalized 
quadtrees are applied to speed up the construction of oblique 
and quadratic decision trees provided that the size of a dataset is 
sufficiently large. In order to construct an oblique or a quadratic 
decision tree using k-D trees or generalized quadtrees, it is nec-
essary to determine the extreme values of a linear or a quadratic 
function within a hyperrectangle. 

It is straight forward to determine the extreme values of a lin-
ear function within a hyperrect angle correctly. Nevertheless, it 
is difficult to calculate the extreme values of a quadratic function 
within a hyperrectangle correctly. Three methods of estimating 
the extreme values of a quadratic function within a hyperrectan-
gle are introduced. These methods ensure that the classification 
accuracy of a constructed quadratic decision tree is preserved. 

BTGA and GA-based QDT are chosen to evaluate the perfor-
mance when an oblique and a quadratic decision tree are respec-
tively constructed using k-D trees and generalized quadtrees. 
Two oblique decision tree algorithms, called BTGA with k-D 
Trees and BTGA with Quadtrees, are extended from BTGA. 
Moreover, two quadratic decision tree algorithms, called GA-
based QDT with k-D Trees and GA-based QDT with Quadtrees, 
are introduced by extending the GA-based QDT. The perfor-
mance of the variants of the GA-based QDT is evaluated us-
ing the three methods of estimating the extreme values of a 
quadratic function within a hyperrectangle. Experiments show 
that the construction of oblique and quadratic decision trees can 
be accelerated with the aid of k-D trees or generalized quadtrees 
provided that the size of a dataset is sufficiently large, without 
sacrificing the quality of a constructed decision tree. 
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Chapter 1 

Introduction 

1.1 Data Mining 

Data mining is the process of extracting or mining hidden knowl-
edge from large amounts of data. It is becoming more popular in 
academic organizations and large corporations. With the rapid 
development of computer hardware, it is more feasible for aca-
demic organizations and companies to collect and maintain large 
volumes of data. Moreover, the popularity of the World Wide 
Web (WWW) enables us to access lots of data and information. 
However, it is impractical for human brains to search for com-
plex relationships in tremendous amount of data. On the other 
hand, it is more economical to apply automated data mining 
systems instead of employing a team of highly trained profes-
sionals to perform analysis on large volumes of data. Although 

. data mining systems cannot entirely solve complex problems 
without humans, it simplifies the process of extracting knowl-
edge from data. The information discovered from data mining 
systems can be applied to business decision making, marketing 
analysis, transactional analysis and so on. 

Data mining is regarded as an essential step in the process 
of Knowledge Discovery in Databases (KDD). Some people may 
treat data mining as a synonym for KDD. KDD is composed of 
an iterative sequence of the following steps [21]: 

1 
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• Data cleansing where inconsistent data are removed, 

• Data integration where multiple data sources are combined 
if necessary, 

• Data selection where data relevant to the analysis are re-
trieved from the database, 

• Data transformation where data are transformed into forms 
which are suitable for data mining, 

• Data mining which is an essential process to extract hidden 
patterns and knowledge, and 

• Data interpretation which identifies the truly interesting 
patterns representing knowledge based on some measures 
of interestingness. 

Data mining tasks can be divided into several categories, in-
cluding supervised classification, unsupervised classification, as-
sociation analysis, data characterization and so on. Supervised 
classification searches for a set of models in order to predict the 
class label of an unseen data item. The possible models include 
classification rules, decision trees, mathematical formulae and 
so on. The proposed algorithms in the thesis are examples of 
supervised classification algorithms. Unsupervised classification 
is the process of analyzing a set of data items without class 
labels. The data items are grouped so as to maximize the intra-
class similarity and minimize the interclass similarity. The data 
items within the same group should be similar to each other. 
But a pair of data items from distinct groups should have low 
similarity. Association analysis discovers a set of association 
rules describing the attribute-value conditions which occur fre-
quently together in a dataset [21]. Data characterization is the 
process of summarizing the general characteristics of a specified 
class of data [21:. 
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1.2 Problem Specifications and Motivations 

A rule-based expert system for continuous input attributes called 
SCION was proposed by Leung et al. [33], [34]. In this system, 
a set of classification rules is evolved using Genetic Algorithms 
(GAs). The antecedent part of a classification rule is a conjunc-
tive set of inequalities involving one numeric attribute, which is 
equivalent to a hyperrectangle in the attribute space. On most 
datasets, the class boundaries are not axis-parallel and there are 
one or more nominal input attributes. Therefore, it is necessary 
to propose a rule learning algorithm such that the antecedent 
part of a rule may consist of linear inequalities involving one or 
more numeric attributes and nominal attribute-value pairs. GAs 
are applied to evolve a set of such classification rules because its 
search space can be very large. 

Murthy et al. proposed OCl algorithm, using a combination 
of hill-climbing and randomization to find the optimal hyper-
plane at each internal node of an oblique decision tree [39], [38], 
which uses one or more linear functions to perform classifica-
tions. Ittner et al. introduced Non-linear Decision Trees (NDT) 
by extending the OCl algorithm [26]. The decision function 
at each non-leaf node is equivalent to a quadratic hypersurface 
26]. A quadratic hypersurface provides a better approximation 

to a non-linear class boundary than a straight line. At each 
non-leaf node of an NDT, the optimal quadratic hypersurface 
is determined using a combination of hill-climbing and random-
ization. On the other hand, Chai et al. proposed Binary-Tree 
Genetic Algorithm (BTGA), where the optimal hyperplane is 
evolved using GAs at each non-terminal node [9]. Experiments 
show that BTGA outperforms the OCl algorithm in most cases. 
Therefore, a novel GA-based quadratic decision tree algorithm 
is proposed by extending BTGA. 

An oblique or a quadratic decision tree is usually constructed 

\ 
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using a top-down approach. At each non-leaf node of an oblique 
or a quadratic decision tree, the optimal linear or quadratic de-
cision function is found using a heuristic. The optimality of 
a decision function is usually defined as the impurity reduction 
after partitioning a set of training samples into two disjoint sub-
sets. Several impurity measures such as the Gini-index [6] and 
the Twoing value [6] can be used to evaluate the impurity of a 
set of training samples. 

To determine the impurity reduction, it is necessary to find 
the number of training samples for each class satisfying the linear 
or the quadratic decision function to be considered. This task 
can be performed by evaluating the sign for each of these training 
samples. However, this approach is time consuming on large 
datasets. 

Alternatively, spatial data structures such as k-D trees and 
generalized quadtrees may be constructed before searching for 
the optimal linear or quadratic decision function at each non-leaf 
node of an oblique or a quadratic decision tree. At each node of 
a k-D tree or a generalized quadtree, there is the corresponding 
smallest hyperrectangle containing the set of training samples 
arriving at that node. When a linear or a quadratic decision 
function does not intersect the smallest hyperrectangle contain-
ing the set of training samples arriving at a node of a k-D tree 
or a generalized quadtree, all of these training samples either 
satisfy or violate the decision function. In this case, it is un-
necessary to decide whether the decision function is satisfied for 
each of these training samples. Otherwise, the descendants of 
the node are considered if necessary until a leaf node is reached. 

It is straight forward to decide whether a linear decision func-
tion intersects a hyperrectangle correctly using a suitable lin-
ear function. However, it is difficult to determine whether a 
quadratic decision function intersects a hyperrectangle correctly. 
Therefore, it is necessary to choose the suitable methods to es-
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timate the minimum and the maximum values of a quadratic 
function within a hyperrectangle so that the quality of a con-
structed quadratic decision tree is preserved using k-D trees or 
generalized quadtrees. 

1.3 Contributions of the Thesis 

The contributions of the thesis are summarized as follows: 

• A novel rule induction algorithm is proposed. A set of clas-
sification rules is evolved using a genetic algorithm, where 
the antecedent part of a rule is a conjunction of logical 
expressions. The possible logical expressions include nomi-
nal attribute-value pairs and linear inequalities with one or 
more continuous attributes. 

• A novel quadratic decision tree algorithm is introduced, 
where genetic algorithms are applied to search for the op-
timal quadratic decision function at each non-leaf node of 
a quadratic decision tree. 

• k-D trees and generalized quadtrees are proposed and ap-
plied to speed up the induction of an oblique and a quadratic 
decision tree on a sufficiently large dataset, without sacri-
ficing the quality of a constructed decision tree. 

- T h e optimality of a linear or a quadratic decision func-
tion is usually defined as the impurity reduction after 
dividing a set of training samples into two disjoint sub-
sets. It is necessary to calculate the number of train-
ing samples for each class satisfying the linear or the 
quadratic decision function to be considered. An alter-
native method to perform this task is introduced using 
a constructed k-D tree or generalized quadtree. 
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-Three methods of estimating the minimum and the 
maximum values of a quadratic function within a hy-
perrectangle, which are useful for evaluating the impu-
rity reduction due to a quadratic decision function, are 
introduced. Although all of these methods may overes-
timate its maximum value and underestimate its min-
imum value, neither its maximum value is underesti-
mated nor its minimum value is overestimated. There-
fore, the impurity reduction due to a quadratic decision 
function can be evaluated accurately. 

1.4 Thesis Roadmap 

In this chapter, the background of data mining is presented. The 
motivation and the contributions of the thesis are also described. 

In chapter 2, supervised classification algorithms including 
decision trees and rule induction are introduced. Moreover, the 
four kinds of evolutionary algorithms (EAs), including genetic 
algorithms (GAs), genetic programming (GP), evolution strate-
gies (ES) and evolutionary programming (EP), are presented. 
Several EA-based rule induction and decision tree algorithms 
are described. In addition, spatial data structures such as k-D 
trees and generalized quadtrees, as well as their applications, 
are given. 

In chapter 3, a novel rule induction algorithm, called Genetic 
Algorithm-based Convex Polytope Rule Learning System (GA-
based CPRLS), is introduced by extending SCION [33], [34]. A 
set of classification rules is evolved using GAs. The antecedent 
part of each classification rule is a conjunction of logical expres-
sions, including linear inequalities and nominal attribute-value 
pairs. Token competition [33], [34] is employed to remove re-
dundant rules. The performance of the GA-based CPRLS is 
evaluated and compared with that of several supervised classi-
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fication algorithms. In addition, the quality of the classification 
rules evolved by the GA-based CPRLS is compared with that 
generated by random search. Moreover, the effects of token com-
petition and rule migration on the performance of the GA-based 
CPRLS are investigated. 

In chapter 4, a novel decision tree algorithm, called Genetic 
Algorithm-based Quadratic Decision Tree (GA-based QDT), is 
proposed by extending Binary Tree-Genetic Algorithm (BTGA) 
9]. At each non-terminal node of a GA-based QDT, the optimal 

quadratic decision function is evolved using GAs. The perfor-
mance of the GA-based QDT is evaluated and compared with 
that of various supervised classification algorithms. Moreover, 
the performance of the GA-based QDT is compared with that 
of Random Search-based Quadratic Decision Tree (RS-based 
QDT). Moreover, the effect of changing the parameters of the 
GA-based QDT is investigated. The effect of noise on the GA-
based QDT is also studied. 

In chapter 5，two spatial data structures including k-D trees 
and generalized quadtrees are employed to speed up the con-
struction of oblique and quadratic decision trees provided that 
the size of a dataset is sufficiently large. The structures of a k-D 
tree and a generalized quadtree for the construction of a linear 
or a quadratic decision tree are described first. The algorithm to 
construct the k-D trees and the generalized quadtrees are then 
presented. After that, the algorithm to evaluate the optimality 
of a linear decision function with the aid of k-D trees and gen-
eralized quadtrees is described. The algorithm to calculate the 
optimality of a quadratic decision function using k-D trees and 
generalized quadtrees is presented. Furthermore, three meth-
ods of estimating the maximum and the minimum values of a 
quadratic function within a hyper rectangle are introduced. 

Two linear decision tree algorithms, called Binary Tree-Genetic 
Algorithm with k-D trees (BTGA with k-D Trees) and Binary-
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Tree Genetic Algorithm with Quadtrees (BTGA with Quadtrees), 
are modified from BTGA. Similarly, two quadratic decision tree 
algorithms, called Genetic Algorithm-based Quadratic Decision 
Tree with k-D Trees (GA-based QDT with k-D Trees) and Ge-
netic Algorithm-based Quadratic Decision Tree with Quadtrees 
(GA-based QDT with Quadtrees), are introduced by extending 
the GA-based QDT. The performance of all of the variants of 
BTGA and the GA-based QDT, is evaluated and compared with 
various supervised classification algorithms. The effects on these 
proposed algorithms are investigated when the number of train-
ing samples at each node of a k-D tree or a generalized quadtree 
is changed and the size of a dataset is increased. 

In chapter 6，a conclusion of the thesis is provided, including 
its contributions. Possible research directions of the thesis are 
also described. 

口 End of chapter. 



Chapter 2 

Related Work 

2.1 Supervised Classification Techniques 

There are various kinds of supervised classification techniques, 
including classification rules, decision trees, artificial neural net-
works, nearest neighbor classifiers, Bayesian classifiers and so 
on. In this section, classification rules and decision trees will be 
discussed because my research work is closely ralated to them. 

2.1.1 Classification Rules 

A rule may be used to express useful knowledge in the form 
of an "if-then" statement. It consists of two parts, including 
the antecedent and the consequent parts. The antecedent part 
of a rule specifies the necessary conditions so that a conclusion, 
which is stated in the consequent part of the rule, can be drawn. 

' A classification rule is a rule which can be used to perform 
supervised classifications. The antecedent part of a rule states 
the conditions of one or more of the input attributes of a sample. 
The consequent part of a classification rule determines the class 
label when the conditions specified in the antecedent part are 
satisified. In most cases, it is necessary to employ more than 
one classification rule to perform supervised classifications. 

To learn a set of rules, a dataset is partitioned into two sub-

丨 、 9 
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sets, including a training and a testing sets. The training set 
is applied to induce a set of classification rules. The quality of 
a set of classification rules is evaluated on the testing set. A 
good set of classification rules should minimize the number of 
misclassifications on the testing set, rather than the training set. 

There are various algorithms to learn a set of classification 
rules, including sequential covering algorithms [36], C4.5RULES 
44] and so on. 

In sequential covering algorithms, a set of positive and nega-
tive training samples is considered. A single rule is produced in 
each iteration. After a single rule is learnt, the positive train-
ing samples covered by the rule are removed and the remain-
ing training samples are employed to induce another rule. The 
process is repeated iteratively until the fraction of the positive 
training samples covered by the disjunctive set of the generated 
rules is greater than a threshold. A generated rule should have 
high classification accuracy, rather than high coverage. 

After a disjunctive set of rules is learnt, they can be sorted so 
that more accurate rules will be considered first when they are 
applied to classify unseen testing samples. Sequential covering 
algorithms are greedy algorithms so that the best or the smallest 
set of rules cannot be guaranteed to be found. CN2 [10] is an 
example sequential covering algorithm. 

C4.5RULES is a component of C4.5 algorithm [44]. C4.5RULES 
transforms a decision tree constructed by the C4.5 algorithm 
into a set classification rules. In a decision tree, a path from the 
root to a leaf node is equivalent to a classification rule. The an-
tecedent part of a rule is the conjunction of the decision functions 
at the non-leaf nodes in the corresponding path. The consequent 
part is the class label associated with the leaf node. However, a 
rule dervied from a decision tree can be very complicated and it 
may be necessary to simplify the rule by removing one or more 
conditions. 
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Some of the simplified rules may be redundant. For each 
class, a subset of rules is chosen from the set of rules classifying 
that class using the minimum description length (MDL) [46 
principle. 

2.1.2 Decision Trees 

Decision trees are tree structures which classify an input sample 
into one of its possible classes. Since the last century, decision 
trees have been applied successfully in various tasks, including 
character recognition, remote sensing, medical diagnosis and so 
on [47:. 

In a decision tree, there are two or more child nodes at each 
non-terminal node. There is a decision criterion to select the 
appropriate child node at each non-terminal node. One or more 
input attributes are involved in a decision criterion. There is 
a class label at each terminal node to classify an input sample 
arrived at it. 

In order to classify an input sample using a decision tree, 
the root node should be considered first. The decision crite-
rion associated with the root node determines which child node 
(or subtree) should be chosen next. The process is repeated re-
cursively at each selected descendant until a terminal node is 
encountered. The input sample is classified according to the 
class label associated with the terminal node. Figure 2.1 shows 
an example decision tree. 

To construct a decision tree, a set of input samples is par-
titioned into two or three disjoint subsets, called training set, 
testing set, and validation set if necessary. The training set is 
used to construct a decision tree. A constructed decision tree 
should minimize the number of misclassifications on the testing 
set, instead of the training set. The validation set sometimes can 
be used for postpruning such as to decide whether to replace a 
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又 2 > - 3 

Class 1 Xj >5 

Class 3 Class 2 

Figure 2.1: An Example Decision Tree 

subtree by a node or not. 
Usually, a decision tree is constructed using a top-down ap-

proach [16]. To build a decision tree, the root node is created 
first. The optimal decision criterion associated with the root 
node is determined to partition the training set into two or more 
disjoint subsets. Several impurity measures, including informa-
tion gain [43], the Gini index [6], the Twoing rule [6] and so 
on, can be applied to evaluate the optimality of a decision cri-
terion. After determining the optimal decision criterion at the 
root node, two or more child nodes are created and the training 
set is partitioned into two or more disjoint subsets such that 

.. each subset is associated with one child node. The process is 
repeated recursively for each child node until a termination cri-
terion is satisfied. An important issue of constructing a decision 
tree is overfitting of the training samples. Overfitting occurs 
when there exists a simplier decision tree such that it has higher 
classification rate on the testing set. Although a decision tree 
may classify all the training samples correctly, it may not clas-
sify the unseen testing samples well. It is necessary to control 
the growth of a decision tree. The process of controlling the 

1 
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growth of a decision tree is called pruning. 
There are two major approaches of pruning, including preprun-

ing and post pruning. In prepruning, no child nodes are created 
if the number of training samples arriving at a node is less than 
a threshold. In post pruning, a decision tree with no misclassi-
fication is built first. Later, a subtree is replaced by a terminal 
node using the validation set if necessary. 

Decision trees whose decision criterion at each non-terminal 
node depends on only one input attribute are called univariate 
decision trees. Decision trees whose decision criterion involves 
more than one input attribute at each non-terminal node are 
called multivariate decision trees. The following describes sev-
eral decision tree algorithms which construct univariate or mul-
tivariate decision trees. 

Univariate Decision Trees 

In univariate decision trees, the decision criterion at each non-
terminal node considers one input attribute only. If the de-
cision criterion at a non-terminal node considers a continuous 
attribute, it is equivalent to a hyperplane which is parallel to 
one of the coordinate axes. Decision tree algorithms, such as 
Iterative Dichotomiser 3 (IDS) [43], C4.5 [44] and Classification 
and Regression Trees (CART) [6], can construct univariate deci-
sion trees. The decision tree shown in Figure 2.1 is an example 
univariate decision tree. 

Decision trees constructed by the ID3 algorithm are capable 
of classifying an input sample consists of categorical attributes 
only. The number of child nodes at each non-terminal node 
equals the number of possible values of the corresponding at-
tribute* associated with the node. No pruning is employed in 
the IDS algorithm. To construct a decision tree using the IDS 
algorithm, the root node is created first. After that, the informa-
tion gain of the training set due to each attribute is evaluated. 
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The attribute which induces the maximum information gain is 
chosen as the decision function associated with the root node. 
The training set is partitioned into several subsets using the 
selected attribute. The process is repeated recursively in each 
subset until all the training samples arriving at a node belong 
to one single class or they cannot be further partitioned using 
any input attribute. 

Quinlan introduced the C4.5 algorithm [44] so that it can 
build decision trees which are capable of handling continuous in-
put attributes. At each non-terminal node whose decision func-
tion considers a categorical attribute, the number of child nodes 
equals the number of possible values of the attribute. There are 
two child nodes at each non-terminal node whose decision func-
tion considers a continuous attribute. The gain ratio is applied 
to evaluate the optimality of a decision function because the 
information gain tends to favor attributes which induce more 
partitions [44 . 

Breiman et al. introduced the CART algorithm in 1984 [6 . 
Decision trees produced by the CART algorithm are binary 
trees, in which each non-terminal node has two children. The 
Gini index or the Twoing value [6] is used to evaluate the opti-
mality of a decision function. Decision trees constructed by the 
CART algorithm can handle categorical and continuous input 
attributes. At each terminal node, the corresponding class label 
is determined as the class with the maximum number training 
samples arriving at it. The process is repeated recursively until 
the impurity reduction is less than a user-defined threshold. The 
CART algorithm employes minimal cost-complexity pruning [6 
to control the growth of a decision tree. 

Multivariate Decision Trees 

In a multivariate decision tree, the decision function is a lin-
ear or non-linear combination of more than one input attribute. 

.1 
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3xj H-Xj >2 

X2 -Xj >21 Class 3 

Class 2 Class 1 

Figure 2.2: An Example Oblique Decision Tree 

Most of the multivariate decision tree algorithms construct bi-
nary trees. In an oblique decision tree [39], [38], the decision 
function at each non-terminal node is a linear combination of 
all input attributes. The decision function at each non-terminal 
node is equivalent to a hyperplane with an arbitrary orienta-
tion in the attribute space [38]. Oblique decision trees are also 
known as linear decision trees [20] or perceptron decision trees 
2]. Figure 2.2 shows an example oblique decision tree. 

The problem of finding the optimal hyperplane which min-
imizes the number of misclassifications after dividing a set of 
training samples into two disjoint subsets is NP-hard [23]. Oblique 

‘decision tree algorithms use a heuristic to attempt to search for 
the optimal hyperplane at each non-terminal node. 

In a non-linear decision tree, the decision function at each 
non-terminal node is a non-linear combination of all input at-
tributes. -A special case of a non-linear decision tree is a quadratic 
decision tree. In a quadratic decision tree, the decision function 
at each non-terminal node is equivalent to a quadratic hyper-
surface in the attribute space. Figure 2.3 shows an example 
non-linear decision tree. 
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Xj Class 3 

Class 2 Class 1 

Figure 2.3: An Example Non-linear Decision Tree 

The CART algorithm is also capable of constructing a linear 
decision tree. At each non-terminal node, the associated deci-
sion function is allowed to be a linear combination of continuous 
input attributes. In order to find the optimal linear decision 
function, the CART algorithm cycles thorugh the continuous 
input attributes sequentially in each iteration. The cycling con-
tinues until the change in the impurity reduction is less than a 
predefiend threshold. If the number of training samples arriv-
ing at a node is less than a user-defined threshold, the decision 
function at that node considers one of the input attributes only. 

Murthy et al. proposed Oblique Classifier 1 (OCl) to con-
‘ s t ruc t an oblique decision tree by extending the CART algorithm 

38]. To find the optimal hyperplane at each non-terminal node, 
the OCl algorithm searches for the best axis-parallel hyperplane 
first. A hyperplane is said to be axis-parallel if it is parallel to 
one of the coordinate axes in the attribute space. Then the op-
timal hyperplane with an arbitrary orientation is determined. 
To improve the search for the optimal hyperplane, the OCl al-
gorithm attempts to escape from local optima in the coefficient 
space using randomization [39], [38]. When a local optimum is 
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encountered, the coefficients of a linear decision function (in-
cluding the constant term) are added to a random vector in the 
coefficient space, in which each point specifies a linear decision 
function. 

Brodley et al. [7] introduced Linear Machine Discriminant 
Trees (LMDT) to construct multivariate decision trees. At each 
non-leaf node, there are C child nodes, where C is the number 
of possible classes. There are C linear discriminant functions at 
each non-terminal node. 

Shah et al. [51] introduced Alopex Perceptron Decision Tree 
(APDT) algorithm to construct oblique decision trees. At each 
non-terminal node, linear separability is used to evalaute the 
optimality of a linear decision function. At each non-terminal 
node, the initial hyperplane is perpendicular to the vector join-
ing two randomly chosen input samples of distinct classes ar-
riving at it. Alopex algorithm [54] is then applied to find the 
optimal linear decision function. However, the APDT algorithm 
is capable of handling two-class problems only. 

Gama et al. proposed Ltree to construct oblique decision 
trees [17]. At each node, a set of linear discriminant functions 
are employed to create new attributes for each training sample 
arriving at that node. A new training sample is created using 
the original attributes and the newly created input attributes 
for each original training sample. The C4.5 algorithm is used 

. t o find the optimal hyperplane using the set of training sam-
ples containing the newly created input attributes [17]. After 
determining the optimal hyperplane, the training samples are 
partitioned into two disjoint subsets. The process is repeated 
recurisvely and the newly created input attributes are propa-
gated to the descendants of the currently processed node. 

Iyengar introduced a method of constructing oblique deci-
sion trees which can be incorporated into most of the exist-
ing univariate decision tree algorithms [27]. To construct an 
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Algorithm Binary Multivariate? Deterministic? Can Handle Can Handle 

Tree? Continuous Multiclass 

Attributes? Problems? 

ID3 No No Yes No “ Yes 

C4.5 ^ N o No Yes 一 Yes 一 ^ 

一 CART Yes Yes Yes — Yes Yes 

一 OCl Yes Yes No — Yes Yes 

LMDT No ^ ^ Yes — y S 
APDT Yes ^ Yes Yes 一 No 

Ltree Yes Yes Yes Yes Yes 

Table 2.1: An Comparison of Various Decision Tree Algorithms 

oblique decision tree, a univariate decision tree is constructed 
first. The constructed decision tree is then pruned if necessary. 
After that’ candidate oblique vectors are found using the deci-
sion tree. For each training sample, new input attributes are 
created from these oblique vectors. The process is repeated for 
a predefined number of iterations. 

Yildiz et al. introduced linear discriminant trees [58]. Each 
non-terminal node employes linear discriminant analysis (LDA) 
to determine the hyperplane dividing a set of training sam-
ples into two disjoint subsets. Before constructing a decision 
tree, each categorical attribute is transformed into K binary 

.attributes, where K is the number of possible values of the cate-
gorical attribute. One of these K binary attributes is set to one 
and the remaining ones are set to zero, depending on the value 
of the corresponding categorical attribute. 

Table 2.1 provides a comparison of various decision tree algo-
rithms. Note that the column 'Deterministic' shows whether a 
decision tree algorithm always produces the same decision tree 
when the same set of samples are applied in the training stage. 

� I 
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2.2 Evolutionary Algorithms 

Evolutionary algorithms (EAs) are stochastic optimization al-
gorithms inspired by the principles of natual selection and ge-
netics [12]. There are four kinds of EAs, including genetic algo-
rithms (GAs), genetic programming (GP), evolution strategies 
(ES) and evolutionary programming (EP) [56 . 

An evolutionary algorithm maintains a population of chromo-
somes. Each chromosome represents a candidate solution to a 
problem. A fitness function is employed to measure the strength 
of a chromosome, which reflects the quality of the correspond-
ing solution to a problem. Offspring chromosomes are generated 
using selection, mutation and recombination operators. 

The different kinds of evolutionary algorithms differ mainly 
in the choices of the evolution models, the fitness functions, the 
evolutionary operators and the selection methods [14 . 

2.2.1 Genetic Algorithms 

Genetic algorithms (GAs) were proposed by Holland [25]. In 
traditional GAs, each individual is a binary string with a fixed 
length. Nowadays, many GAs use a real-valued vector to repre-
sent an individual in a population. GAs which employ a binary 
string to represent a chromosome are called binary-coded genetic 
algorithms (BCGAs). GAs which use a real-valued vector to 

• represent an individual are called real-coded genetic algorithms 
(RCGAs) [24]. 

To solve a problem using GAs, a population of chromosomes 
is initialized first. The fitness value of each chromosome is eval-
uated. Chromosomes are selected and replicated to the mating 
pool. Chromosomes with higher fitness values are more likely 
to be copied to the mating pool. Chromosomes in the mating 
pool undergo crossover and mutation. The processes of fitness 
evaluation, selection, crossover and mutation are repeated until 

1 
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one of the predefined termination criteria is satisifed. An eli-
tist strategy is used to make sure that the best individual in 
the current generation is preserved in the next generation. The 
following outlines the steps of a GA: 

1. Set r = 0, where r is the current generation number. 

2. Initialize a population Pr of L chromosomes. 

3. Evaluate the fitness value of each chromosome in the pop-
ulation Pj. 

4. Set 0best as the best chromosome in the population Pr. 

5. While all of the termination criteria are not satisfied, 

(a) Select L chromosomes from the population Pj. The 
selected chromosomes are then copied to the mating 
pool M. 

(b) Set M' = Crossover(M). 
(c) Set M丨丨=Mutation(M'). 
(d) Evaluate the fitness value of each chromosome in M". 
(e) Let Oworst be the worst chromosome in the population 

M". 

(f) Set Pr+I = {M" \ {^^orst}) U {6lf,est}. 
• (g) Set Obest as the best chromosome in the population 

PT+I-

(h) Set r = r + l. 

6. The best chromosome in the population Pr is selected as 
the solution to a problem. 
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Selection 

There are several methods to select a chromosome to be repli-
cated to the mating pool, including roulette wheel selection [11], 
rank based selection [1], tournament selection [22] and so on. 
Stronger chromosomes are more likely to be replicated to the 
mating pool in these selection methods. 

In roulette wheel selection, the probability pi of selecting the 
i认 chromosome in a population P is: 

Pi = (2-1) 

where fi, i = 1,2..., L, is the fitness value of the chromosome. 
In rank based selection, the chromosomes in a population are 

sorted in the descending order of their fitness values first. The 
probability of a chromosome selected for replication depends 
on the rank of its fitness value. A chromosome with a higher 
ranking is more likely to be copied to the mating pool. 

In tournament selection, two or more chromosomes are ran-
domly selected first. Each chromosome in a population is se-
lected with an equal probability. The best chromosome among 
the selected ones is allowed to be copied to the mating pool. 

Crossover 

• There are. several crossover operators in BCGAs, including sim-
ple crossover [25], [19], uniform crossover [53] and so on. Given 
two parent chromosomes bi = (6i’i, 6i’2..., &i’d) and b2 = (62,1, &2,2 
...,62,d) in a BCGA, where d is the length of a chromosome, the 
following, outlines the steps to generate two offspring chromo-
somes bi = (6i’i,6i’2...，6i’d) and b'2 =(的’ 1, &'2’2."’ 6'2’d) using 
these crossover operators. 

• Simple Crossover 
I _ 
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1. Generate a random integer c G {1,2..., d — 1]-. 
2. Set b'l i = bi,i and = for i = 1,2."’ c. 
3. Set = b2,i and b'2,i = 6i’i for z = c + 1, c + 2..., d. 

• Uniform Crossover 
FOR i = lTOdDO 

1. Generate a random bit c G {0,1}. 
2. Set b'l i = bî iC + 62,̂ 0. 
3. Set &'2’i = + 62,iC. 

There are various crossover operators in RCGAs, including 
arithmetical crossover [35], BLX-a crossover [13], linear crossover 
57], discrete crossover [37], Wright's heuristic crossover [57] and 

so on. Note that each crossover operator in RCGAs may gener-
ate a different number of offspring. Suppose two parent chromo-
somes 9i -(没1,1，没i’2...，Oi^d) and 62 = (̂ 2,1?没2’2-.-,没2’d) are chosen 
to undergo crossover, the following paragraphs describe the ef-
fect when different crossover operators are applied in RCGAs. 

In arithmetical crossover, two offspring chromosomes O'̂  = 
(没i’i，没;’2."，没id) and 約=(的’i’巧’2-"，約’d) are generated such 
that: 

oli = xei,i + (1 - x)e2,i (2.2) 
= + (1 - (2.3) 

. w h e r e A is a constant and i = 1,2..., d. 
In BLX-a crossover, one offspring 6' = O2..., is gen-

erated such that i = 1, 2..., d, is a uniform random number 
within the ragne [min(没i’i, 62,i) — na, max{6i^i,没2’i) + riQ；]，where 
n = max[0i,i, 62,i) - min{6i^i, 62,1).^ 

In linear crossover, three offspring chromosomes O'̂  =(約,1，6[ 2 
…，没i,丄 ̂  =("“，巧，2."，巧,d) and 約=(約，1,約，2…A,d) are gen-
erated first, where 

• eli = 0.5^1,i + 0.502,i (2.4) 



Chapter 2 Related Work 23 

oy = - 0.502,i (2.5) 
約，i = 1.5(92，i —0.5"i，i (2.6) 

where i = 1,2..., d. The parent chromosomes are then replaced 
by the two strongest offspring chromosomes among the three 
ones. 

In discrete crossover, one offspring 9' = $2..., 0'^) is gen-
erated such that 9[ = O.5[0i’i(l + q) + �i ( l — q)], i = 1，2..., d, 
and Ci G { — 1,1} is a random integer. 

In Wright's heuristic crossover, suppose Oi is stronger than 
O2, one offspring 6' = O^..., is generated such that 6[= 

— + where r is a random number within the range 
0,1], 2 = 1,2..., d. 

Mutation 

In BCGAs； each bit of an individual is mutated with a fixed or 
a varying probability. When the value of a selected bit equals 
zero, its value is changed to one. Otherwise, the value of the 
selected bit is set to zero. 

Common mutation operators in RCGAs include random mu-
tation, non-uniform mutation and so on [35]. Suppose the chor-
mosome 6 二 (没i,没2...，没d), where 9i G [Omin,Omax], i = 
is selected to undergo mutation, the effect of different mutation 
operators is described below. 

. In random mutation, an offspring 6' =�Q'i,Q'2…,Q'�is gener-
ated such that 0[ is a uniform random number within the range 
^min 1 ^max, • 

The following outlines the steps to create an offspring 6'= 

{9[, 62..., O'd) using non-uniform mutation: 

1. Generate a random integer c e {—1,1}. 

2. IF c = 1, THEN set e[ = Oi + {Omax - Oi){l - r^^-hf) 
ELSE set e'i = d i - {Oi — Omin)(l _ r(i-S)'). 
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where 丁 is the current generation number, G is the maximum 
number of generations and 6 is a user-defined constant. 

2.2.2 Genetic Programming 

Genetic programming (GP) was introduced by Koza [30], [31], 
32]. GP usually manipulates a population of computer pro-

grams while GAs usually operate on a population of binary 
strings of a fixed length [56]. There are two main types of GP, 
namely, tree-based and linear GP. Tree-based GP is the more 
common type of GP. A computer program is usually represented 
in the form of a parse tree in tree-based GP. In other words, a 
population of parse trees is usually maintained in most GP sys-
tems. A parse tree can modify its size and shape dynamically. 
However, many GP algorithms restrict the depth of a parse tree. 

A non-leaf node of a parse tree is called a primitive func-
tion. A terminal node of a parse tree is called a terminal. The 
sets of primitive functions and terminals are called function and 
terminal sets respectively. The function set consists of arith-
metic operators and functions [56]. The terminal set includes 
constants and independent variables. The function set has the 
closure property, which means each primitive function accepts 
any terminal or any output produced by any function in the 
function set as an input parameter. It is necessary to define 
the function and the terminal sets in order to solve a problem 

‘us ing GP; Figure 2.4 shows an example parse tree. In this fig-
ure, the function and the terminal sets are {+，*} and {X, y, 2} 
respectively. 

In a traditional GP algorithm, an initial population of parse 
trees is generated randomly. To construct a parse tree, one 
of the elements in the function set is selected as the label for 
the root node of the parse tree. When a node labeled with a 
primitive function is created, two or more nodes are generated as 

� 
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Figure 2.4: An Example Parse Tree 

the children of the node, depending on the arity of the function. 
Each child node is labeled with either a primitive function or a 
terminal. The above process is repeated recursively until a child 
node labeled with a terminal is created. The following outlines 
the algorithm of a traditional GP system: 

1. Set r = 0, where r is the current generation number. 

. 2. Initialize a population Pj of parse trees. 

. 3. Evaluate the fitness value of each individual in the popula-
tion Pr. 

4. While all of the termination criteria are not satisfied, 

(a) Generate a new population Pr+i of parse trees by se-
lection, crossover and mutation. 

(b) Evaluate the fitness value of each parse tree in the pop-
ulation PT+1-

(c) Set r = r + 1. 
； 
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5. Return the best parse tree as the computer program to a 
problem. 

In the crossover operation, a pair of parent parse trees is 
randomly selected first. In each parental tree, one of its nodes 
is chosen as a crossover point. Offspring trees are produced by 
exchanging the subtrees rooted at the selected crossover points. 
Figure 2.5 illustrates a crossover operation between a pair of 
parse trees. The subtrees involved in the crossover operation 
are marked with dotted lines. 

In the mutation operation, one of the parse trees is chosen 
first. One of the nodes of the parental tree is selected as the 
mutation point. The subtree rooted at the mutation point is 
replaced by a randomly generated subtree or leaf node. Figure 
2.6 illustrates a mutation operation in a GP system. 

2.2.3 Evolution Strategies 

In evolution strategies (ES), a population of real-valued vec-
tors is maintained. ES was originally used to solve real-valued 
function optimization problems [45]，[50]. In a function opti-
mization problem, the d-dimensional vector which maximizes or 
minimizes an objective function is determined. 

Usually, each individual in ES is an ordered pair X = (x, a), 
where x = (xî  xd) and cr = (ai, cr?...，â i) are rf-dimensional 

.vectors. The vector x represents a point in the search space while 
the vector cr is the standard deviation vector for the mutation 
operator. 

(1 + 1)-ES is the simplest and the earliest ES model. One off-
spring is generated by mutation in each geneation. The stronger 
individual between the parent and the offsping is preserved in 
the next generation. The following outlines the algorithm of 
(1 + 1)-ES: 

1. Initialize the ordered pair X = (x, cr), where x = (xi,x2 ...’ 
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Figure 2.5: An Example that a Pair of Parse Trees Undergoes Crossover 

•v 



Chapter 2 Related Work 28 

o © ~ • 八 
X ^ Mutation 乂 

y v , ® 、 . : : . ） 

0 /.......... 
Parent (' 5 ) ( Z ) 

Offspring 

Figure 2.6: An Example that a Parse Tree Undergoes Mutation 

•V 
/ • 



Chapter 2 Related Work 29 

Xd) and a = (ai,(J2..., cr̂ ) are (/-dimensional vectors. The 
vector X represents a point in the search space while the 
vector a is the standard deviation vector for the mutation 
operator. 

2. While all of the termination criteria are not satisfied, 

(a) Generate the offspring X' — (x', a') =Mutation(X). 
(b) If the offspring X' is better than the parent X, then 

set X = X'. 

3. Return the vector x as the solution to a problem. 

In [fi + 1)-ES, one offspring is generated from /x parents by 
recombination and mutation in each generation. (1 + 1)-ES is a 
special case of (/i + 1)-ES. The weakest individual among the fx 
parents and the offspring is abandoned. The following outlines 
the algorithm of (/z + 1)-ES: 

1. Set r = 0, where r is the current generation number. 

2. Initialize a population of (JL ordered pairs PR = {X\, X2 
X^}, where Xi = (xi,ai), xi = and 

cTi 二（ai’i, (Ti�2…�(Jî d) are c/-dimensional vectors. The vector 
Xi represents a point in the search space while the vector ai 
is the standard deviation vector for the mutation operator. 

. 3. While all of the termination criteria are not satisfied, 

(a) Generate the offspring X' = (x', a')= 
Recombination (Pr). 

(b) Generate the offspring X丨丨=(x〃，a") = Mutation(XO. 
(c) Let Xworst be the weakest individual among the ji par-

ents and the offspring X". 
(d) Set Pr+l 二 (Pr U {X"}) \ {X^orst}^ 
(e) Set r = r + l. 

•V 
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4. Return the best individual in the population Pj as the so-
lution to a problem. 

In (/i+A)-ES, A descendants are generated from ji parents by 
recombination and mutation in each generation. The /x strongest 
individuals among the fi parents and the 入 offspring are pre-
served in the next generation. The following outlines the algo-
rithm of {fj, + A)-ES: 

1. Set r = 0, where r is the current generation number. 

2. Initialize a population of fx ordered pairs Pr = {Xi ,X2 
…，X^}, where Xi = (xi,c7i), Xi = and 
(Ji = (cri’i, cri’2...，cFî d) are d-dimensional vectors. The vector 
Xi represents a point in the search space while the vector ai 
is the standard deviation vector for the mutation operator. 

3. Set P''= PR. 

4. While all of the termination criteria are not satisfied, 

(a) FOR z - 1 TO A DO 
i. Generate the offspring = (x|, (7|)= 

Recombination(Pr). 
ii. Generate the offspring X'l = (x;', o f ) = 

Mutation(义 

. iii. Set F = U { X f } . 
% 

(b) Select the (jl strongest individuals in the population P' 
to form the population PT+I-

(c) Set r = r + 1. 

5. Return the best individual in the population Pr as the so-
lution to a problem. 

In (jjL,入)-ES, A descendants are generated from (i parents by 
recombination and mutation in each generation. The fi strongest > 
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individuals among the A descendants are preserved in the next 
generation. The following outlines the algorithm of (/x,A)-ES: 

1. Set 7•二 0，where r is the current generation number. 

2. Initialize a population of fi ordered pairs Pr = {Xi , X2 …， 

X^}, where Xi = (Xi,cri), where xi = and 
a\ = (cri’i, cri’2..., (Ji,d) are G?-dimensional vectors. The vector 
Xi represents a point in the search space while the vector a[ 
is the standard deviation vector for the mutation operator. 

3. While all of the termination criteria are not satisfied, 

(a) FOR 2 = 1 TO A DO 
i. Generate the offspring X- = (x;, a[) 二 

Recombinat ion (Pr). 
ii. Generate the offspring = (xj', = 

Mutation(XO. 

(b) Set P' 二 U t i W } -
(c) Select the /x strongest individual in the population P' 

to form the population Pr+i-
(d) Set r = r + l. 

4. Return the best individual in the population Pr as the so-
lution to a problem. 

There are several recombination operators proposed in the 
literature [50]. In discrete recombination, two individuals are se-
lected first, d uniformly distributed random numbers ui,u2…,Ud 
E [0,1] are then generated. Suppose Xa = (x^, a'J and X^ = 
(x[j, cr(j), are selected as parents, an offspring X = A') is 
generated such that: 

, / 工a,i if Ui > 0.5, 
S (2.7) 

I xt^i otherwise, 
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a： = I if 均〉0-5， （2.8) 

I cr&’i otherwise, 
where i = 1, 2…,d. 

In intermediate recombination, two individuals are selected 
first. Suppose Xa = (x^, cr̂ ) and Xt = (xĵ , a^) are selected as 
parents, an offspring X = a') is generated such that: 

x'i = 0.5{xa,i + 工 b，i) (2.9) 
J; = 0 . 5 ( a a ’ … ( 2 . 1 0 ) 

The following outlines the steps to create an offspring X'= 
(X: a') from the individual X = (x, a) by the mutation operator: 

1. Set z/ = iV(0,l). 

2. Set a[ = aiexp(TiN(fi, 1) + T2Z/), where ti and 下2 are user-
defined constants. 

3. Set x[ = Xi-^a[N{0,1). 

2.2.4 Evolutionary Programming 

Evolutionary Programming (EP) is a probabilistic optimization 
strategy inspired by the concepts of Darwinian evolution [15], 
12]. The behavioural relationship between parents and their 

offspring is emphasized [56]. New offspring are produced by mu-
‘ tat ion only. No recombination is applied to generate offspring. 

The following outlines the steps of an EP algorithm: 

1. Set T = 0, where r is the current generation number. 

2. Initialize a population Pr of individuals. 

3. Evaluate the fitness value of each individual in the poupla-
tion Pr. 

4. While all of the termination criteria are not satisified, 
>1 
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(a) Generate one or more offsping for each individual in 
the population Pr by mutation. 

(b) Evaluate the fitness value of each offspring. 
(c) Select the individuals for the population Pr+i using a 

stochastic tournament selection. 
(d) Set r = T + 1. 

5. Return the best individual in the population Pj. 

2.3 Applications of Evolutionary Algorithms 
to Induction of Classification Rules 

EAs are applied to evolve a set of classification rules because the 
search space can be very large. In this section, several EA-based 
rule induction algorithms such as SCION [33], [34], GABIL [29: 
and LOgic grammar based GENetic PROgramming (LOGEN-
PRO) [55] are briefly discussed. 

2.3.1 SCION 

Leung et al. introduced a rule-based expert system called SCION. 
In SCION, GAs are applied to evolve a set of classification rules. 
The antecedent part of a classification rule is a conjunctive set of 
inequalities involving one continuous attribute, while the conse-

‘quent part of the rule represents the class label. When a sample 
satisfies the antecedent part of a rule, the sample is classified 
according to the class label associated with the rule. 

A population of chromosomes is partitioned into C subpop-
ulations, where C is the number of possible classes. There is 
an associated class label in each subpopulation. A chromosome 
classifies a sample into the class associated with its subpopu-
lation if the corresponding hyperrectangle contains the sample. 
Each chromosome is a sequence of duples, where the duple 
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represents the lower and the upper bounds of the i认 input at-
tribute. 

Token competition is applied to remove redundant rules. Re-
dundant rules may be produced because the individuals tend to 
contain similar sets of training samples. Under token competi-
tion, the diversity of the chromosomes in each subpopulation is 
maintained. The chromosomes in each subpopulation are sorted 
according to their fitness values first. For each training sample, 
its only one token is assigned to the strongest chromosome which 
is capable of classifying the sample correctly. Stronger chromo-
somes can obtain more tokens while weaker ones may fail to 
obtain any- token. Chromosomes which fail to obtain any token 
are eliminated. 

Rule migration was introduced in the SCION system because 
a weak chromosome for a subpopulation may be a strong chro-
mosome for- another subpopulation. In the subpopulation, 
when the fitness value of a weak chromosome for the k̂ ^ sub-
population is greater than the average fitness value of the chro-
mosomes in the k仇 subpopulation, where /c z, it is migrated 
to the k仇 subpopulation. 

2.3.2 GABIL 

GABIL was introduced by De Jong et al. in 1993. A variable-
.„ length binary string is used to represent classification rules in 

disjunctive' normal form (DNF). The antecedent part of each 
rule is a conjunction of one or more conditions, each of which 
involves one of the input attributes. The consequenct part of a 
rule is the class label. The fitness value of an individual is the 
square of the percentage of correctly classified training samples. 

Each individual represents a set of classification rules. The 
number of bits to represent a single classification rule is fixed. 
When an individual undergoes a genetic operation, extra bits 

� 
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may be added to the individual if necessary. 

2.3.3 LOGENPRO 

A data mining system, called LOgic grammar based GENetic 
PROgramming (LOGENPRO), was introduced by Wong et al. 
LOGENPRO is capable of evolving a set of classification rules 
using GP. 

Each individual is a derivation tree, which is used to represent 
a classification rule. But the search space can be very large and a 
grammar has to be designed to control the creation of derivation 
trees. All the individuals should conform to a specified grammar 
to accelerate the search for a set of classification rules. When 
a new derivation tree is generated by genetic operators such 
as crossover and mutation, it is necessary to check whether the 
produced tree still obeys a specified grammar. Users are allowed 
to specify the structure of a rule using a user-defined grammar. 

Fitness sharing [19] and token competition are employed to 
maintain the diversity of a population. In many cases, more 
than one individual is chosen as the set of classification rules. 

2.4 Applications of Evolutionary Algorithms 
to Construction of Decision Trees 

.Several decision tree algorithms employing EAs were proposed in 
the literature, including binary-tree genetic algorithm (BTGA) 
9], OCl-GA [8], OCl-ES [8], GATree [42] and so on. The fol-

lowing subsections describe these algorithms in brief. 

2.4.1 Binary Tree Genetic Algorithm 

In Binary Tree-Genetic Algorithm (BTGA), the decision func-
tion at each non-leaf node is a linear combination of all input 

•v 
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attributes. GAs are applied to find the optimal linear decision 
function at each non-leaf node. A binary string is used to repre-
sent an individual. The fitness value of a chromosome depends 
on the impurity reduction after partitioning a set of training 
samples into two disjoint subsets. The Gini index is chosen to 
evaluate the impurity of a set of training samples. A rank based 
selection is applied to select chromosomes to be replicated to 
the mating pool. The chromosomes in the mating pool undergo 
two-point crossover and mutation. The process is repeated re-
cursively until the number of training samples arriving at a node 
is less than a positive integer no or the impurity of a set of train-
ing samples is less than a threshold go. It means prepruning is 
employed to control the growth of a decision tree. Figure 2.7 
shows the algorithm of the procedure createBTGAO , which out-
lines the steps to construct a linear decision tree using BTGA. 
The procedure createBTGAO accepts the training set as the 
parameter. 

2.4.2 OCl-GA 

OCl-GA was extended from the OCl algorithm proposed by 
Murthy et al. [38]. At each non-terminal node of an oblique 
decision tree, the optimal linear decision function is found using 
GAs. OCl-GA is a RCGA because it uses a real-valued vec-
tor to represent a chromosoome. A population of chromosomes 
is initialized such that one-tenth of the population is the best 
axis-parallel hyperplane at each non-leaf node of an oblique deci-
sion tree. In OCl-GA, pairwise tournament selection is used to 
choose chromosomes to be copied to the mating pool. Uniform 
crossover is applied to the chromosomes in the mating pool. 
Postpruning is used to control the size of an oblique decision 
tree. 

� 
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PROCEDURE createBTGA 

INPUT A set of training samples Sh 

OUTPUT A new node Nh 

1. IF \SH\ is less than a positive integer tiq or the impurity of SH is less 

than a threshold go, THEN the node Nh is declared as a leaf node and 

go to step 6. 

2. Find the optimal linear decision function b^x > 7'’ where b = 

(bhh,…,bd)T is a d-dimensional column vector and 7' is a real con-

stant, using a BCGA such that the impurity reduction after partition-

ing the set Sh into two disjoint subsets is maximized. 

3. IF the impurity reduction is less than go, THEN the node Nh is declared 

as a leaf node and go to step 6. 

4. Define R'h = {xe > 7'} and L'^ = Sh\ K 

5. Invoke c r e a t e B T G A a n d createBTGA(LJ^), and go to step 7. 

6. Determine the class label associated with the node Nh. 

7. Return the node Nh. 
\ 

Figure 2.7: The Algorithm of the Procedure createBTGA() 

•v 
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2.4.3 OCl-ES 

OCl-ES was also extended from the OCl algorithm proposed by 
Murthy et al. [38]. At each non-terminal node of an oblique de-
cision tree, the optimal linear decision function is determined us-
ing a (1+1)-ES with self-adaptive mutations. The initial linear 
decision function is equivalent to the best axis-parallel hyper-
plane in the attribute space. There is a mutation coefficient for 
each coefficient of the linear decision function to be optimized. 
All mutation coefficients are initially set to 1. In OCl-ES, one 
offspring is generated from the parent by mutation. The size of 
an oblique decision tree is controlled by post pruning. 

2.4.4 GATree 

GAs are applied to construct univariate decision trees. There 
are two child nodes at each non-leaf node of the decision trees 
evolved by GATree [42]. To evolve the optimal decision tree, a 
population of minimal binary decision trees, which have the root 
node and two leaf nodes, is initialized first. When two parents 
are selected to undergo crossover, one of the nodes of each sub-
tree is selected as a crossover point. The subtrees rooted at the 
selected crossover points are then swapped. When an individ-
ual undergoes mutation, one of its nodes is selected first. If the 
selected node is a non-leaf node, the value of the corresponding 

‘decision function is changed to a random value. Otherwise, its 
class label is randomly changed to one of the possible classes. 
The fitness value fi of the 一 individual is given by: 

where nc,i is the number of training samples correctly classified 
by the i仇 individual, nT,i is its tree size and fc is a user-defined 
constant. To reduce the computational time, a modified version 

1 
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of limited error fitness (LEF) [18] is employed. When the num-
ber of misclassifications of an individual is greater than an error 
limit, all the remaining training samples will not be evaluated. 

2.4.5 Induction of Linear Decision Trees using Strong 
Typing GP 

In [5] and [4], an oblique decision tree is evolved using a strong 
typing GP. In a strong typing GP, the data type for each ele-
ment in the terminal set is specified. Moreover, each function in 
the function set specifies the data types for all arguments and 
the data type of the output returned by the function.. When 
an invalid individual is generated by crossover or mutation, it 
is modified so the the restrictions on the data types are satis-
fied. Tournament selection is used to select chromosomes to be 
replicated to. the mating pool. 

There are two possible ways to avoid the problem of code 
bloat. The fitness value of an individual is a weighted sum of 
the number of correctly classified training samples and its tree 
size in number of nodes. 

In the second method, Pareto scoring with fitness sharing 
19] is applied with two dimensions, including the number of 

misclassifications and the number of nodes of an individual. The 
advantage of this method over the first one is that there is no 
need to adjust the weights in order to produce better oblique 
decision trees. 

To reduce the computational time, limited error fitness (LEF) 
18] is employed. When the number of misclassifications of an in-

dividual is greater than an error limit, all the remaining training 
samples will not be evaluated. The error limit may be changed 
when oblique decision trees are being evolved. The error limit 
increases when the number of misclassifications of the best indi-
vidual is greater than the error limit and decreases if the number 
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of misclassifications of the worst individual is lower than the er-
ror limit. 

2.5 Spatial Data Structures and its Applica-
tions 

2.5.1 Spatial Data Structures 

k-D trees [3] and quadtrees are hierarchical data structures based 
on the principle of recursive decomposition of space [49]. Appli-
cations of these data structures include computer graphics, im-
age processing, geographic information system (GIS), database 
management system, data mining and so on. 

A k-D tree is a binary tree. There are two child nodes at 
each non-leaf node of a k-D tree. At each non-leaf node of a k-D 
tree, one of the attributes is chosen to divide a space into two 
subspaces. The choice of the attribute for partitioning a space 
at a non-leaf node depends on its depth. Each leaf node of a k-D 
tree may represent a region, a pixel or a record depending on 
its application. In my research work, each leaf node represents 
the smallest hyperrect angle containing a small subset of training 
samples. Figure 2.8 shows an example k-D tree. 

A quadtree recursively subdivides a two-dimensional space 
into four quadrants. There are at most four child nodes at each 

. ,non-leaf node of a quadtree. At each non-leaf node of a quadtree, 
two attributes are applied to divide a two-dimensional space into 
four quadrants. Each leaf node of a quadtree may represent an 
area or a pixel depending on its application. Figure 2.9 shows 
an example quadtree. -

An octree is similar to a quadtree, except that a three-dimensional 
space is partitioned into eight octants recursively. There are at 
most eight child nodes at each non-leaf node of an octree. At 
each non-leaf node of an octree, a three-dimensional space is di-> 
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Node A 

5•厂{(2，5’1)，(6，1，5)，(2，5，5)， 
(2，5,2)，(5，1，2)，(6，2，6)} 

Node B Node C 

5g={(2,5,l),(2,5,5),(2.5,2)} 5c={(6,1,5),(5,1，2)，(6，2，6)} 

. LC RC 

Node D Node E 

5o={(5,l,2)} 5£={(6,1,5),(6,2,6)} 

Figure 2.8: An Example k-D Tree 

Node A 

54={(2,5),(2,3),(6,2),(4,1), 
(3,5)} 

‘ ^A.l 厂八2 厂八3 ^A.4  

I 
NodeB N o d e C N o d e D 

知={(2’3)} �={(2，5)，(3，5)} •V={(6，2)，(4，1)} 

Figure 2.9: An Example Quadtree 
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vided into eight octants using three attributes. Each leaf node of 
an octree may represent an voxel in a three-dimensional image. 

A generalized quadtree is a generalization of a quadtree in 
a higher dimensional space. There are at most children at 
each non-leaf node of a generalized quadtree, where d is the 
dimensionality of the space to be represented. All the attributes 
are applied to divide a d-dimensional space at each non-leaf node 
of a genearlized quadtree. Each leaf node may represent a record 
having d attributes in a database. In this thesis, each leaf node 
represents the smallest hyper rectangle containing a small subset 
of training samples. 

2.5.2 Applications of Spatial Data Structures 

Spatial data structures can be applied in various fields of com-
puter science, including computer graphics, image processing, 
database management system and so on. Moreover, they can 
also be applied in geographic information systems (GIS). 

In computer graphics, curvilinear data such as polygons can 
be represented using a quadtree. A possible way to represent a 
polygon is described as follows. When a region contains more 
than one line segment, it is divided into four quadrants recur-
sively until a rectangle containing a single straight line is ob-
tained. At each leaf node of a quadtree, the information about 
the straight line passing thourgh the rectangle such as direction, 

. ” 

'intercept and intensity is stored [52 . 
An octree can be used to represent a three dimensional object. 

An object is decomposed recursively until a single vertex or a 
single edge is obtained. A leaf node of an octree represents a 
single vertex or a single edge of an object. 

In image procesing, a quadtree can be built to represent an 
image, which is a two-dimensional array of pixels. A leaf node 
correponds to a square array of one or more homogeneous pixels 

> 



Chapter 2 Related Work 43 

in an image. In addition, the color of a pixel in an image can 
be determined by considering the quadtree constructed from the 
image. To find the color of a pixel, the root node of a quadtree is 
considered first. Then the descendants containing the pixel are 
considered successively until the leaf node containing the pixel is 
found. Moreover, basic image opeartions such as dithering [28 
and windowing can be performed using the quadtree constructed 
from the image to be processed. In dithering, each pixel of 
a grayscaled image is converted to either black or white while 
maintaining as much similarity to the original image as possible. 
Windowing is the process of extracting a rectangular array of 
pixels from- an image. 

When a quadtree is constructed from an image, the image can 
be viewed at different levels of resolution. This is particularly 
useful when an image is transmitted through a communication 
channel with lower bandwitdth. In this case, a low resolution 
image can be viewed first and the more detailed one can be 
shown later. 

In data mining, a quadtree may be constructed to improve 
the efficiency of a nearest neighbor classifier. To determine the 
class label of an unseen sample using a nearest neigbor classi-
fier, say one-nearest neighbor classifier, the class label of the 
nearest training sample with respect to the unseen sample is 
determined. It is necessary to calculate the distance between 

.the unseen sample and each of the training samples. When a 
quadtree is constructed from a set of training samples, only a 
subset of the training samples are needed to be considered. 

In GIS, a power line, a cityline map or a roadline map can be 
represented by a quadtree [48]. A power line specifies the path 
of the main powerline within a region. A cityline map shows 
the border of a city. A roadway network within a region can be 
represented using a roadline map. 

*%» 
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• End of chapter. 
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Chapter 3 

Induction of Classification 
Rules using Genetic Algorithms 

3.1 Introduction 

In this chapter, a novel rule-learning algorithm, called genetic 
algorithm-based convex polytope rule learning system (GA-based 
CPRLS), is proposed by extending a rule-based expert system 
called SCION [33], [34]. In the GA-based CPRLS, genetic al-
gorithms (GAs) are applied to evolve a set of rules for classifi-
cations. The antecedent part of each rule is a conjunctive set 
of logical expressions. The possible logical expressions include 
linear inequalities with one or more continuous attributes and 
nominal attribute-value pairs. When a sample satisfies the an-
tecedent part of a rule, it is classified according to the class label 
.associated with the rule. 

Although the antecedent part of a classification rule is a con-
junctive set of logical expressions in both SCION and the GA-
based CPRLS, there is a major difference between the GA-based 
CPRLS and SCION. The possible logical expressions include 
linear inequalities involving one or more numeric attributes and 
nominal attribute-value pairs in the GA-based CPRLS. In SCION, 
each logical expression is an inequality with one numeric at-
tribute only. It means SCION cannot handle nominal attributes. 

4 5 
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In other words, the GA-based CPRLS is a generalization of 
SCION. 

3.2 Rule Learning using Genetic Algorithms 

Before learning a set of rules using GAs, a set of samples is 
partitioned into the training and the testing sets. The training 
set is applied to evolve a set of rules for classifications. A good 
set of rules should minimize the number of misclassifications on 
the testing set, rather than the training set. 

A population of chromosomes is initialized and maintained in 
the GA-based CPRLS. Each chromosome represents a conjunc-
tive set of logical expressions, which may include linear inequal-
ities with several continuous attributes and nominal attribute-
value pairs. The population is partitioned into C subpopula-
tions, where C is the number of possible classes. Each subpop-
ulation is associated with a distinct class label. In each subpop-
ulation, each chromosome classifies a sample as the same class 
if the sample satisfies the antecedent part of the corresponding 
rule. 

After a population of chromosomes is initialized, the fitness 
value of each chromosome is evaluated. The higher the fitness 
value of a chromosome is, the better the corresponding rule is. 
Token competition is applied to remove redundant chromosomes 

. -in each subpopulation. Weaker chromosomes are also removed if 
necessary. Rule migration allows a weak chromosome for a par-
ticular class to become a chromosome in another subpopulation 
provided that it is a strong chromosome for the associated class. 
Common operators of GAs including crossover and mutation are 
applied to the survived chromosomes in each subpopulation. In 
each generation, the total number of correctly classified training 
samples is evaluated in order to preserve the best-so-far set of 
rules in the next generation. The above processes are repeated 
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until the maximum number of generations G is reached. Finally, 
a set of rules for classifications is constructed from the best set 
of chromosomes. The following outlines the steps of learning 
rules in the GA-based CPRLS. 

• Initialize a population of chromosomes P. 

• FOR r = 1 TO G DO 

- F O R z = 1 TO C DO 
1. Evaluate the fitness value of each chromosome in 

the subpopulation Pi using the fitness function in 
.(3.9). 

2. Sort the chromosomes in the subpopulation Pi in 
the descending order of their fitness values. 

3. Apply token competition to the subpopulation Pi. 
4. Remove all chromosomes in the subpopulation Pi 

which fail to obtain any tokens. 
5. Remove weaker chromosomes if the number of chro-

mosomes in the subpopulation Pi is greater than the 
maximum number of parent chromosomes Qp. 

-Migrate rules among the subpopulations î i,尸2…，Pc' 
—Apply crossover and mutation to the subpopulations 

Pl,P2 …,Pc. 
• - Calculate the total number of training samples cor-

rectly classified by the population of chromosomes. 

3.2.1 Population Initialization 

A population of chromosomes are initialized before evolving a 
set of rules using GAs. The population is divided into C subpop-
ulations Pi, P2---5 Pc where C is the number of possible classes. 



Chapter 3 Induction of Classification Rules using Genetic Algorithms 48 

Each chromosome in the subpopulation Pi, i = 1,2..., C, clas-
sifies a sample as class i if the sample satisfies the antecedent 
part of the corresponding rule. 

Let Qij = i G {1,2...,C}, j G {1,2...，L}’ be a 
duple denoting the 产 chromosome in the subpopulation Pi, 
where L is the number of chromosomes in each subpopulation. 
A population of (7 x L chromosomes is maintained. 

In this chapter, is defined as the set of linear inequalities 
for the chromosome Let a;ij,k = (^y’fc’i, ̂ ^ij’fc’2..., iyi’j，fc’d+i)， 

i e {1，2..., C}, j G {1，2...，L}, k e {1,2...’ H}, be the {d + 1)-
dimensional vector specifying the coefficients of the k̂ ^ inequal-
ity in the set �j , where d is the number of continuous attributes 
and H is the number of inequalities. The inequality represented 
by the vector ĉ i丄k is given by: 

d 

y ^ m,j,k,m^m > Wi,j,k,d+1. ( 3 . 1 ) 
m=l 

Suppose y = (yi, 2/2..., Ud) and z = (^i, 2:2..., Zd), where yi and 
Zi, i = 1,2..., d^ are respectively the minimum and the max-
imum values of the i仇 numeric attribute in the training set. 
The inequality specified by the vector ct;ij，k, i E {1,2."，C}, 
j G {1，2...,L}, satisfies the following conditions: 

- 1 < 'Wiĵ k̂ m < 1 , rn = (3.2) 
. ‘ d i < Wi,j,k,d+i < (h (3.3) 

where 

山 = 亡 kufc，m|(2/m + Zm) + Wi,j,k,jjjm Zm) (3 4) 

m—l 

1 川i’j,k,m {Vm + + — Vm) /o c � 

尚 = 2 (3.5) 
m=l • 

•V 
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d 
E 秘？，从m = l (3.6) 
m=l 

On the other hand, aij = (Q;y’i, ai’j’2..., oti,j’d'�, i G {1,2..., C} , 
j E {1,2."，L}, is a cf-dimensional integer-valued vector repre-

senting the nominal attribute-value pairs for the chromosome 

队,j, where ai,j,k G {0,1,2, ...hk}, k G {1,2,d ' } ^ represents 
the value of the k*^ nominal attribute, hk is the number of pos-

sible values of the k^ nominal attribute and d' is the number 
of nominal attributes. The equivalent logical expression for the 
kfh nominal attribute is given by: 

/ if e {1,2，…，hk} 
^ k e < (3.7) 

[{1,2’ if aiĵ k = 0 

If a sample x = {xi,x2...,xd, where cci, i e 

{l，2...,c?}，is a continuous attribute and x'j^ j G is 

a nominal attribute, satisfies the logical expression represented 

by the chromosome Qi,j, or equivalently, 

H d d' 
: ^ h J A m X m > 切y’M+i)] A [/\(K^-,fc = 0)v ( 4 = ay’fc)): 
k=l m=l k=l 

(3.8) 

the sample is classified as class i. 

3.2.2 Fitness Evaluation of Chromosomes 

The fitness value of each chromosome is evaluated. The higher 
the fitness value of a chromosome is, the stronger the corre-

sponding rule is. Given Sij, i G {l,-2..., C}, j G {1,2...,L}，is 

the set of training samples satisfying the condition specified by 

the chromosome Qij and S、j is the set of training samples of 

class i in the set Sij. The fitness value of the chromosome 
i e { 1 , 2 … , C } , j e {1，2..., L}, is given by: 

、 
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八 ) = ^ (3.9) 

The numerator of the above equation equals the number of train-
ing samples correctly classified by the chromosome By . One is 
added to the denominator in order to avoid a divide by zero 
error when all the training samples cannot be classified by the 
chromosome. 

3.2.3 Token Competition 

In each subpopulation, the chromosomes tend to cover a simi-
lar set of training samples as the rule learning proceeds. This 
reduces the diversity of the chromosomes in each subpopulation. 

A similar problem is also addressed in [33], [34]. Token com-
petition can be employed to remove redundant chromosomes. 
In the GA-based CPRLS, token competition is applied inde-
pendently to each subpopulation. In the subpopulation Pi, i = 
1,2..., C, the chromosomes are sorted in the descending order of 
their fitness values first. For each training sample, one token is 
assigned to the strongest chromosome which is capable of classi-
fying it correctly. Once a token is assigned by a training sample, 
other chromosomes cannot obtain any tokens for that sample al-
though they can correctly classify it. The stronger chromosomes 
are capable of acquiring more tokens. In each subpopulation, it 
'is more difficult for weaker chromosomes similar to the stronger 
ones to receive tokens. Chromosomes which fail to obtain any 
tokens are then eliminated. A more concise set of stronger rules 
can be produced under token competition. Moreover, redundant 
rules can be eliminated and the diversity of the chromosomes in 
each subpopulation is increased. 

Given the training set S = {si,s2...sn} has n training sam-
ples, where Si = (:ri’i’0；《’2..., rr;’！’ q), i = l，2...’n’ 
is the i仇 sample in the training set, a:i’i,:ri’2."’而，d are numeric 
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attributes, 1, are nominal attributes and Ci is the 
class label of the sample Si, the following outlines the steps of 
token competition: 

• FOR 2 = 1 TO C DO 

- S o r t the chromosomes Bi,i, Bz,2---5 Oî L in the subpop-
ulation Pi according to the descending order of their 
fitness values. 

- F O R j = 1 TO L DO 
1. Set ti’j = 0, where Uj is the number of tokens ac-

-quired by the chromosome Qij. 
2. Let €)� ’�={f^i’⑴，ai’(j)}，j = 1,2...,L be the 产 

strongest chromosome in the subpopulation Pi. 
—FOR j = 1 TO \S\ DO 

FOR A: = 1 TO L DO 
IF 八二=1(E二 1 秘i，�’M’PA’P > 切 i ’ � ’m ’ d + l ) ] , THEN 

IF [八LI((AI’⑷’饥=0) V = A调 ’』] ,THEN 

1. Set ti,⑷=ti,{k) + 1-

2. Quit the innermost FOR loop. 

3.2.4 Chromosome Elimination 

If a chromosome fails to acquire any tokens under token com-
petition, it .will be eliminated. When the number of chromo-
somes in each subpopulation is still greater than Qp, weaker 
chromosomes will be eliminated and imprisoned. In order to 
include the effect of token competition, another fitness function 
should be used to evaluate the strength of a chromosome. The 
modified fitness value of the chromosome Qi,j, i G {1,2..., C} , 
j e {1’2."，L}，is given by: 

• 片 广 ‘ （3.10) 
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Note that the numerator of the above equation equals the num-
ber of tokens acquired by the chromosome, rather than the num-
ber of training samples correctly classified. The denominator of 
the above equation depends on the number of training samples 
satisfying the condition represented by the chromosome 

The survived chromosomes in each subpopulation become 
parent chromosomes. Parent chromosomes are allowed to pro-
duce their offspring using crossover and mutation. It is hoped 
that better chromosomes can be produced by these genetic oper-
ators. The imprisoned chromosomes in a subpopulation may be 
migrated to another subpopulations, depending on its strength 
for other classes. 

In each subpopulation, the probability of a parent chromo-
some selected for crossover or mutation depends on the rank 
of its fitness value calculated by (3.10). Chromosomes which 
fail to obtain any tokens are never selected. When a parent 
chromosome is in rank i, i = 1, 2..., Q P , the probability of the 
chromosome chosen for crossover or mutation is: 

(l)min(i’Qp-l) (3.11) 
2 

3.2.5 Rule Migration 

A weak chromosome for a particular class may be a strong 
chromosome for another classes. In the subpopulation Pi, i = 
'1,2..., C, the average fitness value fi of the survived chromo-
somes is calculated first. The fitness value of each imprisoned 
chromosome in the subpopulation 尸“ i = 1,2...，C，is computed 
for all classes except class i. If the fitness value of an imprisoned 
chromosome in the subpopulation Pi is greater than f j for class 
j, j e {1,2..., C} \ { i } , it will be migrated to the subpopula-
tion Pj, provided that the number of migrated chromosomes for 
the subpopulation Pj is less than the migration quota QM- The 
following outlines "the steps of rule migration. 
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• FOR z = 1 TO C DO 

1. Evaluate the average fitness value fi of the survived 
chromosomes in the subpopulation Pi. 

2. Set rrii = 0, where mi is the number of migrated chro-
mosomes for the subpopulation Pi. 

• FOR z = 1 TO C DO 

1. Set I as the number of imprisoned chromosomes in the 
subpopulation Pi. 

2. Let G)i’i, G ) i ’ 2 ， b e the imprisoned chromosomes in 
the subpopulation Pi. 

3. FOR j = 1 TO / DO 
—FOR A; = 1 TO C DO 

IF k^i, THEN 
(a) Evaluate the fitness value / 么 o f the chromo-

some Qij for class k. 
(b) IF (4)) > h ) A (m, < Qm)，then 

i. The chromosome G)y is migrated to the sub-
population Pk. 

ii. Set mk = mk-\-1. 

3.2.6 Crossover 

In each subpopulation, a pair of chromosomes are selected from 
the survived ones after chromosome elimination. The migrated 
chromosomes are not selected for crossover and mutation. Sup-
pose two parent chromosomes Bî u — c»;i’u) and Qî y = 
(flî v, Q;i’v) are selected to undergo crossover. The elements of 
Qî u and Qî y are exchanged using two-point crossover. On the 
other hand, the elements of ai’u and ai’v are swapped using 
one-point crossover. The following outlines the steps when two 
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parent chromosomes Oî u and Qi,y are selected to exchange their 
genes. 

1. Let pu = (Pw，i,Pw’2...,Pu’H(d+i)), where 
Pu,k =秘i’t4结」+i’(fc-I)m�d(d+1)+1，^ = 1,2...,H{d+ 1). 

2. Let pv = {Pv,i,Pv,2-^Pv,H{d+i)), where 
Pv,k = /c = 1，2...，丑(d+1). 

3. Generate two random integers x and y such that 1 < x < 
y<H[d+l)-l. 

4. Let Qu = (qu’i, qu,2-'-, qu,H{d+i)) and qv = (qv,i, qv,2--', qv,H(d+i)), 
where ‘ 

Pu,k i f 於 — 1 , 2 . . . , 

qu,k 二 \ Pv,k ifk = x + l,x + 2...,y, (3.12) 
‘ , P u , k if k = y + l,y-j-2...,H(d-hl), 

and 

Pv,k if k = 1,2..., x^ 
qv,k = Pu,k if /c = xH- (3.13) 

,Pv,k if k = y + l,y + 2...,H{d-\-l), 

5. Generate a random integer x' such that 1 < x' < d' — I. 

. . . 6 . Let = (A’n’i，/W", A " ' ) and A.v = ( / W / W " , / W ) ， 
where 

F 
o —J ai,u，k if A; = 1,2,.., 

and 

p. ^ _ I if /c = 1,2..., (3 15) 
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7. Set the offspring chromosomes ©- ̂  = "i’u) and ^ = 
(n;’w/?i,v) such that 

= M u ’ i , � 2 - " ’ < u ’ h } and 
= M ’ v ’ i ’ � 2 " . , K v ’ h }，w h e r e 

<̂ i,u,k = (^U,(k-I)(d+1)+1, Qu,(k-i)(d+i)+2---, Qu,k(d+1)) and 
=(如，(A；—I)(d+1)+1,如’(fc-i)(d+i)+2...,如,fc(d+i)), k = 1,2...，if. 

Suppose QR is the maximum number of chromosomes pro-
duced by rule migration and crossover. The above processes are 
repeated until the total number of chromosomes produced by 
rule migration and the crossover operator equals . 

3.2.7 Mutation 

In each subpopulation, one of the parent chromosomes is se-
lected and replicated first. Suppose the parent chromosome 
©y = i e {1,2 . . . ,C}, j e {1,2...,(3p}, is selected 
to undergo mutation, each element of Qij and aij is modified 
by uniform mutation with a probability pm. 

When the value of Wi’j’k’m, k G {1,2..., H}, m E {1,2…,d}, is 
selected to mutate, it is replaced by a random real number within 
the range [—1,1]. When the value of Wi’j,k,d+i is selected to 
mutate, it is replaced by a random real number within the range 
A,而],where the values of di and d) are calculated using (3.4) 
and (3.5) respectively. Moreover, the values of Wi’j,k,i,切ij，fc’2 ..., 

, •切y,fc’d+i are normalized so that the condition (3.6) is satisfied. 
When the value of ay’^, k G {1,2..., d'}^ is selected to mutate, 
it is replaced by a random integer in the set {0，1."，hk}, where 
hk is the number of possible values of the k*̂  nominal attribute. 

The above processes are repeated until each subpopulation 
fills up with chromosomes. 
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3.2.8 Calculating the Number of Correctly Classified 
Training Samples in a Rule Set 

A population of chromosomes are maintained and evolved in 
the GA-based CPRLS. It is necessary to calculate the num-
ber of correctly classified training samples for the population of 
chromosomes because a population having the set of best chro-
mosomes does not necessarily have the best set of chromosomes 
for classifications. In each subpopulation, only the Qp strongest 
chromosomes are used to calculate the number of correctly clas-
sified samples and to construct the set of rules for classifications. 

It is possible that a pair of chromosomes from subpopulations 
Pi and Pj, i ^ j , classify the same sample because the sample 
satisfies the conditions specified by both of the chromosomes, 
even though they are not identical. This causes inconsistency 
of the set of classification rules derived from the population. To 
solve the problem of inconsistency in the GA-based CPRLS, the 
sample is classified as unknown. 

It is possible that a sample does not satisfy the condition 
specified by each chromosome. In this case, the sample is also 
classified as unknown because there is no suitable rule to classify 
the sample. 

3.3 Performance Evaluation 

The performance of the GA-based CPRLS is evaluated in terms 
of validation accuracy and execution time in this section. Four 
sets of experiments were performed. In the first set of experi-
ments, the performance of the GA-based CPRLS is compared 
with that df various data mining algorithms. The second set of 
experiments compares the performance of the GA-based CPRLS 
and that of Random Search-based Convex Polytope Rule Learn-
ing System (RS-based CPRLS). The third set of experiments 
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investigate the effects of token competition in the GA-based 
CPRLS. In the last set of experiments, the effects of rule migra-
tion are studied. 

All the experiments were executed on a dual Intel Xeon 2.2GHz 
machine. 

3.3.1 Performance Comparison of the GA-based CPRLS 
and Various Supervised Classification Algorithms 

In this subsection, the performance of the GA-based CPRLS is 
compared with that of various data mining algorithms, includ-
ing C4.5 [44], OCl [38], NDT [26]，OCl-GA, OCl-ES [8], BTGA 
9] and SCION. C4.5 is a univariate decision tree algorithm [44 . 
OCl constructs oblique decision trees [38], [7]. A quadratic de-
cision tree can be constructed by NDT [26]. In OCl-GA and 
BTGA, GAs are employed to search for the optimal hyperplane 
at each non-terminal node of oblique decision trees [8], [9]. In 
OCl-ES, a (1+1) evolution strategy with self-adaptive muta-
tions is applied to find the optimal hyperplane at each non-leaf 
node of oblique decision trees [8]. Six artificial datasets are cho-
sen to compare the performance of the GA-based CPRLS with 
that of the others. 

The first dataset, called ADSl, is an artificial dataset with 
1000 samples. ADSl is a two-class problem. Two straight lines 
are used to separate the samples into two classes. Each sample 

•is a two-dimensional vector (xi,x2), where Xi G [0,1000] and 
X2 G [0,2000]. A sample is labeled as class 1 if one of the 
following conditions is satisfied: 

. 2xi + X2> 2000 A 2x1 < (3.16) 
2xi + X2< 2000 A 2xi > X2 (3.17) 

Otherwise, the sample is labeled as class 2. Figure 3.1 shows 
the dataset ADSl. 

>J • 
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Figure 3.2: The Dataset ADS2 

The second dataset, called ADS2, is also an artificial dataset 
with 1000 samples. Two parallel straight lines are used to sep-
arate the samples into three classes. Each sample is a two-
dimensional vector (xi,0:2), where xi,xi G [0,1000]. A sample 
is labeled as class 1 if (3.18) is satisfied. If (3.18) is violated but 

., (3.19) is satisfied, the sample is labeled as class 2. If neither 
(3.18) nor (3.19) is satisfied, the sample is classified as class 3. 
Figure 3.2 shows the dataset ADS2. 

0；1 + 2X2 < 1000 (3.18) 
‘ xi + 2x2 < 2000 (3.19) 

The third dataset, called ADS3, is an artificial dataset with 
1000 samples. ADS3 is a two-class problem. Each sample is a 
two-dimensional vector (a;i,0:2), where Xi G [0,5000] and X2 G 

“ 
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Figure 3.3: The Dataset ADS3 

0,2000]. A sample is labeled as class 1 if one of the following 
conditions is satisfied: 

5X2 > IXX AXI > 2500 (3.20) 

2x1 + 5x2 < 10000 AX2 > 1000 (3.21) 
... 5X2 < 2X1 AXI < 2500 (3.22) 

‘ 2 X 1 + > 10000 A x 2 < 1000 (3.23) 

Otherwise, the sample is labeled as class 2. Figure 3.3 shows 
the dataset ADS3. 

The fourth dataset, called ADS4, is an artificial dataset with 
1000 samples. ADS4 is a four-class problem. Each sample is a 
two-dimensional vector (xi,X2), where xi G [0,1000] and X2 G 
[0,2000]. The samples are labeled according to the following 
rules 

•V 
• .7 .. • 
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Figure 3.4: The Dataset ADS4 

• IF 2xi + X2> 2000 A x 2 < 2xi, THEN class = 1. 

• IF 2xi + X2< 2000 t\X2> 2x1, THEN class = 2. 

• IF 2xi + X2 < 2000 八:r2 g 2xi, THEN class = 3. 

• IF 2X1 + 工2〉2000 AX2> 2X1, THEN class = 4. 
\  

Figure 3.4 shows the dataset ADS4. 
The fifth dataset, called ADS5, is an artificial dataset with 

1000 samples. ADS5 is a four-class problem. Each sample 
has two numeric attributes xi, X2 and one nominal attribute 0:3, 
where xi e [0,1000], X2 G [0,2000] and 0:3 e {red, green}. The 
samples are labeled according to the following rules: 

• I F 2x1 + ^2 > 2000 A 0：2 < 2XIAX3 = red, T H E N class = 1. 
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• IF 20；1 + 0；2 > 2000 A 0；2 < 2:̂ 1八0；3 = green, THEN class = 
2. 

• IF 2x1-^x2 < 2000 A 3：2 < 2:riAa;3 二 red, THEN class = 3. 

• IF 2xi-\-X2 < 2000 八:r2 < 2:riA:r3 = green, THEN class = 
4. 

• IF 2xi-{-X2 < 2000 A 0；2 > 2:riA:r3 = red, THEN class = 1. 

• IF 2xi-\-X2 < 2000 八:r2 > 2:r;iA:r3 green, THEN class = 
2. 

• IF 2X1^X2 > 2000 A 0：2 > 2:riA:r3 = red, THEN class = 3. 

• IF 2X1^X2 > 2000 A > 2a;iAa:3 = green, THEN class = 
4. 

The sixth dataset, called ADS6, is an artificial dataset with 
1000 samples. ADS6 is a four-class problem. Each sample has 
two numeric attributes xi,x2 and one nominal attribute 0:3, 
where xi e [0,1000], X2 G [0, 2000] and xs e {apple, orange, 
banana, grape}. The samples are labeled according to the fol-
lowing rules: 

• IF 2XI-\-X2 > 2OOOAX2 < 2xiAxs = apple, THEN class = 1. 

• IF 2xi + X2 > 2000 八：r2 g 2x1 八 2:3 = orange, THEN 
class = 2. 

• IF 2x[ -\-X2 > 2000 八:r2 S 2xi A xs ^ banana, THEN 
class 二 3. 

• IF 2x1 + 0:2 > 2000 A 0；2 < 2a;iAa;3 二 grape, THEN class = 
4 . . ‘ 

• IF 2XI-\-X2 < 2000Aa:2 < 2xiAxs = apple, THEN class = 3. 

• IF 2x1 X2 < 2000 Ax2 < 2xi A xs = orange, THEN 
class — 4. 

> » 
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• IF 2X1 + < 2000 Ax2 < 2xi A X3 = banana, THEN 
class = 1. 

• IF 2xi + X2 < 2000 A 0；2 < 2xiAa:3 : grape, THEN class = 
2. 

• IF 2x1-^x2 < 2OOOAX2 > 2xiAx3 = apple, THEN class = 1. 

• IF 2xi + X2 < 2000 A X2 > 2xi 八:r3 二 orange, THEN 
class — 2. 

• IF 2x1 + 0；2 < 2000 Ax2 > 2xi t\xz 二 banana, THEN 
class = 3. 

• IF 2xi-\-X2 < 2000 A0：2 > 2xl^x^ = grape, THEN class = 
4. 

• IF 2xi-\-X2 > 2000Aa;2 > Ix^Nx^ = apple, THEN class = 3. 

• IF 2xi + 工 2 � 2 0 0 0 Ax2 > 2xi A X3 = orange, THEN 
class = 4. 

• IF 2xi + X2 > 2000 t\X2�2^1 A 0:3 = banana, THEN 
class — 1. 

• IF 2xi-{-X2 > 2000 A > 2xiAx3 = grape, THEN class = 
2. 

A (1+1) evolution strategy with self-adaptive mutations is 
‘applied in the OCl-ES algorithm [8]. Table 3.1 shows the num-
ber of generations for the OCl-ES algorithm on ADSl, ADS2, 
ADS3 and ADS4. Note that OCl-ES cannot handle the datasets 
ADS5 and ADS6 because they have one nominal attribute. 

The implementation of the OCl-GA algorithm in this set of 
experiments is different from that in [8]. No mutation is applied 
for all the experiments reported in [8], while non-uniform mu-
tation [35] is applied for all the experiments in this subsection. 
The purpose of adding mutation to the OCl-GA algorithm is to 

、 ‘ 
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Dataset Number of Generations 

ADS1~ 100,000 

ADS2~ 200,000 

ADS3 110,000 

ADS4~ 98,000 

Table 3.1: Number of Generations for OCl-ES on ADSl, ADS2, ADS3 and 

ADS4 

— P a r a m e t e r s ADSl | ADS2 | ADS3 | AlS^T 

Population Size 100 

Number of Generations 2000 1000 25000 22000 

Crossover Probability 0.7 0.8 0.8 0.9 

Mutation Probability 0.1 0.05 0.1 0.1 

Table 3.2: Parameters of OCl-GA on ADSl, ADS2, ADS3 and ADS4 

improve the quality of the decision trees constructed by it. Table 
3.2 shows the parameters of the OCl-GA algorithm so that its 
validation accuracy is maximized on ADSl, ADS2, ADS3 and 
ADS4. Note that OCl-GA cannot handle datasets with nominal 
attributes, including ADS5 and ADS6. 

Prepruning is employed in BTGA [9]. If the number of train-
ing samples at a node is less than a positive integer no or the 
impurity reduction is less than a threshold go, no child node is 

.created. Table 3.3 shows the parameters of the BTGA algorithm 
and its validation accuracy is maximized on ADSl, ADS2, ADS3 
and ADS4. Note that BTGA cannot construct a tree classifier 
for datasets with nominal attributes. 

Tables 3.4 and 3.5 show the parameters of SCION and that 
of the GA-based CPRLS respectively. Standard parameter set-
tings are applied in C4.5, OCl and NDT. C4.5 can handle both 
nominal and continuous attributes, while OCl and NDT can 
handle continuous attributes only. 
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— P a r a m e t e r s ADSl | ADS2 | ADS3 | A D ^ 

Population Size 100 

Number of Generations "~5Q00 1000 63000 55655" 

Crossover Probability 0.7 0.9 0.9 0.9 

Mutation Probability 0.05 0.05 0.2 0.1 

no 15— 100 —10 100 “ 

go 0.01 0.2 0.1 0.2 

Table 3.3: Parameters of BTGA on ADSl, ADS2, ADS3 and ADS4 

‘Parameters ADSl | ADS2 | ADS3 | ADS4 

Number of Chromosomes L 100 

Number of Generations G 10000 | 125000 | 110000 

Parent Quota QP 30 

Crossover Quota Qc 40 

Migration Quota QM 5 5 5 6 

Mutation Probability 0.2 0.1 0.1 0.15 

Table 3.4: Parameters of SCION on ADSl, ADS2, ADS3 and ADS4 

Parameters ADSl 丨 ADS2 ADS3 ADS4 | ADS5 ADS6 

Number of Chromosomes L 10 20 10 12 

• . Number of Hyperplanes H 3 

Number oTGenerations G 10000 100000 | 10000 100000 

Parent Quota Qp 3 6 3 4 

Crossover Quota Qc 4 8 4 

Migration Quota QM 2 1, 3 2 

Mutation Probability 0.2 0.1 0.2 0.1 

Table 3.5: Parameters of GA-based CPRLS on ADSl, ADS2, ADS3, ADS4, 

ADS5 and ADS6 . 
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Table 3.6 shows the average and the standard deviation of 
the validation accuracy of various supervised classification algo-
rithms when 10-fold cross-validation is applied over 10 runs. 

According to the one-sided t-tests, the GA-based CPRLS out-
performs the others on ADSl in terms of validation accuracy 
at 95% confidence interval. The performance of the GA-based 
CPRLS is better than that of OCl, NDT, OCl-GA, OCl-ES 
and BTGA because impurity reduction is used to determine the 
decision function at each non-leaf node of a decision tree. Al-
though the concept of impurity reduction makes these decision 
tree algorithms to work well in many cases, but it is not the case 
on ADSl.. 

On the other hand, OCl-GA, OCl-ES and BTGA outper-
form the others (including the GA-based CPRLS) on ADS2 in 
terms of validation accuracy at 95% confidence interval using 
the one-sided t-tests. Less parameters are required to specify a 
classifier using OCl-GA, OCl-ES and BTGA when compared 
with the GA-based CPRLS. For OCl-GA, OCl-ES and BTGA, 
the decision functions at non-leaf nodes are sufficient to model 
the class boundaries of ADS2. 

BTGA and the GA-based CPRLS outperforms the others on 
ADS3 in terms of validation accuracy at 95% confidence interval, 
according to the one-sided t-tests. On the other hand, BTGA 
outperforms the others (including the GA-based CPRLS) on 

. .ADS4 in terms of validation accuracy at 95% confidence interval 
using the one-sided t-tests. 

The GA-based CPRLS outperforms C4.5 on ADSl, ADS2, 
ADS3, ADS4, ADS5 and ADS6 in terms of validation accu-
racy at 95 % confidence interval. Although C4.5 is capable of 
handling toth numeric and nominal attributes, the GA-based 
CPRLS produces a better classifier on datasets with non-axis 
parallel boundaries. 

The GA-based CPRLS outperforms SCION on ADSl, ADS2, 
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Algorithm ADSl ADS2 ADS3 ADS4 ADS5 ADS6 

Ci^ 94.1 士 0.5 —95.2 士 0.3 93.6 土 0.6 "^.3 士 0.4 92.0 土 0.5 88.6 士 0.5 

0C1 96.5 士 1.2 99.1 士 0.4 93.2 士 0.8 98.4 士 0.3 Cannot be determined 

NDT 96.5 士 0.6 98.4 士 0.3 93.1 土 0.5 98.3 士 0.3 Cannot be determined 

OCl-GA 95.5 士 0.5 99.7 土 0.2 93.0 士 0.8 95.8 士 0.5 Cannot be determined 

OCl-ES 95.8 士 0.4 99.6 士 0.3 94.8 士 0.8 98.6 士 0.6 Cannot be determined" 

BTGA 97.7 士 0.4 99.7 ±0.1 96.7 土 0.4 99.5 士 0.2 Cannot be determined 

SCION 93.2 士 0.4 94.5 土 0.3 92.1 土 0.3 92.5 士 o i Cannot be determined— 

GA-based CPRLS 98.8 士 0.3 99.3 士 0.2 97.0 士 0.6 99.1 士 0.2 98.1 士 0.6 | 96.3 士 0.5 

Table 3.6: Average and Standard Deviation of Validation Accuracy (%) of 

Various Supervised Classification Algorithms on ADSl, ADS2, ADS3, ADS4, 

ADS5 and ADS6 based on 10 Independent Runs 

ADS3 and ADS4 because the antecedent part of a classification 
rule may include linear inequalities involving several numeric 
attributes in the GA-based CPRLS. In SCION, the antecedent 
part of a rule is restricted to a conjunctive set of linear inequal-
ities involving one continuous attribute only. It is more difficult 
for SCION to produce a better set of rules on datasets with 
non-axis parallel class boundaries. 

Table 3.7 shows the average and the standard deviation of the 
execution time of various supervised classification algorithms on 
ADSl, ADS2 and ADS3 when 10-fold cross-validation is applied 
over 10 runs. Table 3.8 shows the average and the standard 
deviation of the execution time of various supervised classifica-
tion algorithms on ADS4, ADS5 and ADS6 when 10-fold cross-
validation is applied over 10 runs. The execution time of the 
GA-based CPRLS on ADSl is longer than that of C4.5, OCl 
and NDT/ A large number of generations are required to con-
struct a better set of rules for classifications using the GA-based 
CPRLS. The execution times of OCl-GA, OCl-ES and BTGA 
on ADSl, ADS3 and ADS4 are longer than that of the GA-based 
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Algorithm ADSl ADS2 ADS3 

C4.5 — < 1 — < 1 < 1 

O ^ 20.8 士 2.3 9.8 ±1.9 12.4 ±0.7 

NDT —24.7 士 2.1 16.6 士 1.1 _ 45.6 士 1.8 

OCl-GA _752.5 士 11.0 125.2 土 1.3 8841.2 士 112.5 

OCl-ES 811.2 士 39.8 123.0 士 2.4— 8853.8 士 189.3 

BTGA 708.3 士 6.1 “ 44.8 土 1.9 8765.2 士 85.9 

SCION 711.5 士 12.8 955.8 士 11.2 8812.5 士 

GA-based CPRLS 672.0 士 12.4 "933.7 士 14.1 "8605.2 士 102.5— 

Table 3.7: Average and Standard Deviation of Execution Time (in Seconds) 

of Various Supervised Classification Algorithms on ADSl, ADS2 and ADS3 

based on 10 Independent Runs 

CPRLS to investigate whether the GA-based CPRLS is capable 
of constructing a better classifier in a shorter period of time. 

On the other hand, the execution time of the GA-based CPRLS 
on ADSl, ADS2, ADS3 and ADS4 is shorter than that of SCION 
to investigate whether the GA-based CPRLS is capable of pro-
ducing a better set of rules than SCION in a shorter period of 
time. 

3.3.2 Performance Comparison of the GA-based CPRLS 
and RS-based CPRLS 

“ • In this part, the performance of the GA-based CPRLS is com-
pared with that of the RS-based CPRLS (Random Search-based 
Convex Polytope Rule Learning System). In the RS-based CPRLS, 
100,000 candidate rules are randomly generated for each class. 
This value equals the total number of chromosomes generated in 
the GA-based CPRLS for the experiments in the previous sub-
section. Each candidate rule has a conjunctive set of H' linear 
inequalities. 

Table 3.5 shows the parameters of the GA-based CPRLS for 
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Algorithm ADS4 ADS5 ADS6 

Ci^ < 1 < 1 < 1 
OCl 7.3 士 1.1 Cannot be determined 

NDT 28.1 士 1.4 Cannot be determined 

OCl-GA 7915.2 士 170.2 Cannot be determined 

OCl-ES 7912.3 士 169.3 Cannot be determined 

BTGA 7902.0 士 78.3 Cannot be determined 

SCION 7851.3 士 152.4 Cannot be determined 

GA-based CPRLS —7681.6 士 121.4_ 626.3 士 14.0 | 4904.6 士 60.4 

Table 3.8: Average and Standard Deviation of Execution Time (in Seconds) 

of Various Supervised Classification Algorithms on ADS4, ADS5 and ADS6 

based on 10 Independent Runs 

the experiments in this subsection. Note that H' = H on each 
dataset to evaluate the performance of the RS-based CPRLS. 

Table 3.9 reports the average and the standard deviation of 
the classification accuracy of the GA-based CPRLS and the RS-
based CPRLS when 10-fold cross-validation is applied over 10 
runs. According to the one-sided t-tests, the GA-based CPRLS 
outperforms the RS-based CPRLS on ADSl, ADS2, ADS3, ADS4, 
ADS5 and ADS6 at 95% confidence interval. The GA-based 
CPRLS is usually more capable of finding a better set of rules 
for classifications than the RS-based CPRLS because there is 
a fitness value for each candidate rule to guide the search for 

‘ better ones in the GA-based CPRLS. Moreover, crossover and 
mutation improve the search for better rules because more com-
putational effort is allocated to potentially more promising re-
gions of the search space. 

3.3.3 Effects of Token Competition 

In order to investigate the effect of token competition in the GA-
based CPRLS, the validation accuracy of the best set of rules on > 
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Dataset GA-based CPRLS RS-based CPRLS 

ADSl 98.8 土 0.3 — 93.2 士 0.5 

~ADS2 99.3 士 0.2 95.3 士 0.3 

~ADS3 97.0 土 0.6 “ 92.8 士 0.7 

“ADS4 — 99.1 士 0.2 — 95.5 士 0.4 

ADS5 98.1 士 0.6 93.1 土 0.3 

~ADS6 96.3 士 0.5 92.6 士 0.4 

Table 3.9: Average and Standard Deviation of Validation Accuracy (%) of 

the GA-based CPRLS and RS-based CPRLS on ADSl, ADS2, ADS3, ADS4, 

ADS5 and ADS6 based on 10 Independent Runs 

ADSl is evaluated as the number of generations increases from 
100 to 10000. Table 3.5 shows the values of the other parameters 
of the GA-based CPRLS. In each subpopulation, only the Qp 
strongest rules are considered. 

Table 3.10 reports the average and the standard deviation of 
the validation accuracy of the best set of rules on ADSl as the 
number of generations increases from 100 to 10000. 

From Table 3.10, the validation accuracy of the GA-based 
CPRLS with token competition is much higher than that with-
out token competition. The GA-based CPRLS with token com-
petition is capable of constructing a better set of rules than that 
without token competition. Token competition is capable of re-
moving redundant chromosomes in the GA-based CPRLS. This 

‘increases the diversity of the chromosomes in a subpopulation 
because a less similar set of parent chromosomes is constructed, 
producing a less similar set of offspring chromosomes. 

3.3.4 Effects of Rule Migration 

In this subsection, the effect of rule migration on the perfor-
mance of the GA-based CPRLS is investigated. This can be 
achieved by adjusting the migration quota QM. Note that no 

> » 
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Number of Generations Token Competition Without Token Competition 

i S 61.7 士 2.2 41.3 士 2.2 

^ 70.3 士 3.7 42.9 士 1.9 一 

300 — 75.5 士 2.5 43.5 土 2.1 

400 78.6 ±2.1 43.9 士 3.0 一 

500 81.0 士 2.4 44.3 士 3.4 

600 83.2 ±2.1 44.8 士 3.2 ~ ~ 

700 84.3 士 2.2 44.7 士 2.5 ~ ~ 

800 85.6 士 2.5 45.0 ± 2.7 

m 86.8 士 1.9 45.2 士 2.9 

87.4 士 2.5 45.4 士 3.2 

2000 94.4 土 1.7 45.8 士 3.1 

3000 95.9 ±1.1 46.6 ±2.5 

4000 96.8 士 0.8 47.1 士 2.6 

5000 97.8 士 0.3 47.7 士 2.1 一 

6000 98.1 士 0.2 47.9 士 2.5 

7000 98.3 ±0.3 48.6 士 2.3 一 

8000 98.5 士 0.5 49.2 土 2.5 

9000 — 98.7 士 0.3 49.6 士 3.1 

.. 10000 98.8 士 0.3 50.5 ±3.5 

Table 3.10: Average and Standard Deviation of Validation Accuracy (%) of 

the GA-based CPRLS with and without Token Competition on ADSl based 

on 10 Independent Runs 

I • 
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Migration Quota QM Validation Accuracy (%) 

0 — 96.5 士 1.0 

1 — 97.6 士 0.6 

2 98.8 土 0.3 

^ 98.2 士 0.5 

4 — 97.2 士 0.8 

5 95.2 ±1.2 

Table 3.11: Average and Standard Deviation of Validation Accuracy (%) of 

the GA-based CPRLS versus Migration Quota QM on ADSl based on 10 

Independent Runs 

rule migration occurs when QM = 0. The experiments in this 
subsection investigates the effect of token competition as the 
migration quota QM varies. Table 3.5 shows the values of the 
other parameters of the GA-based CPRLS. 

Table 3.11 reports the average and the standard deviation of 
the validation accuracy of the best set of rules on ADSl as the 
migration quota Q m increases from 0 to 5. 

Prom Table 3.11，the validation accuracy of the GA-based 
CPRLS increases for 0 < QM < 2 but decreases for 2 < QM < 5. 
The GA-based CPRLS performs better with a suitable value of 
QM because a weak chromosome for a particular class may be a 
good chromosome for another classes. When a subpopulation ac-
cepts a good chromosome from another subpopulation where the 
chromosome is regarded as a weak one for its original subpop-
ulation, the quality of the best offspring chromosome is greater 
than the average fitness of the parent chromosomes. However, 
common genetic operators including crossover and mutation do 
not guarantee that such a chromosome can be produced. 

On the other hand, too large a value of QM does not improve 
the performance of the GA-based CPRLS because it is possible 
that no chromosomes can be reproduced by crossover because 
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too many chromosomes are migrated from another subpopula-
tions. 

3.4 Chapter Summary 

In this chapter, a novel rule-learning system called GA-based 
CPRLS has been proposed by extending SCION. The antecedent 
part of a classification rule is a conjunctive set of logical expres-
sions, which may include linear inequalities with several numeric 
attributes and nominal attribute-value pairs. 

The algorithm to evolve a set of rules using the GA-based 
CPRLS has been discussed. The processes of token competition 
and rule migration have also been described. Moreover, the 
performance of the GA-based CPRLS has been compared with 
that of various supervised classification algorithms. 

Token competition and rule migration improve the perfor-
mance of the GA-based CPRLS in terms of validation accuracy. 
The GA-based CPRLS provides an alternative algorithm to in-
duce a set of classification rules. Experiments show that the 
GA-based CPRLS provides a better set of rules than SCION on 
datasets with non-axis parallel class boundaries. 

• End of chapter. 
’、 * 



Chapter 4 

Genetic Algorithm-based 
Quadratic Decision Trees 

4.1 Introduction 

In this chapter, a novel multivariate decision tree algorithm, 
called Genetic Algorithm-based Quadratic Decision Tree (GA-
based QDT) [40], is proposed. At each non-leaf node of a GA-
based QDT, the decision criterion is of the form: 

x^Ax + b'^x > 7 (4.1) 

where A = (aj^k) is a symmetric matrix of order d,h = (61,62.-., 
is a c/-dimensional column vector, and 7 is a real constant. The 
decision criterion in (4.1) is equivalent to a quadratic hyper-
surface in a ci-dimensional attribute space. GAs are employed 

‘ to find the optimal quadratic hypersurface to partition a set of 
training samples into two disjoint subsets. At each leaf node 
of a GA-based QDT, there is a class label to classify an input 
sample arriving at that node. Figure 4.1 shows an example GA-
based QDT. In this example, an input sample x = (6’ 0.5)了 is 
classified as class 2 because + 0.5 < 38 and 6 — 2 x 0.5^ > 5. 

Although the proposed algorithm extends the original work 
of Chai et al [9], there are some major differences between Bi-
nary Tree Genetic Algorithm (BTGA) and the GA-based QDT. 

n * 
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xj +X2 >38 

Xj >5 Class 3 

Class 1 Class 2 

Figure 4.1: An Example GA-based Q D T 

Firstly, the decision criterion at each non-leaf node of BTGA 
is equivalent to a hyperplane while that of the GA-based QDT 
is equivalent to a quadratic hypersurface in the attribute space. 
Secondly, the coefficients of a hyperplane are encoded by a fi-
nite binary string in BTGA. In the GA-based QDT, the coef-
ficients of a quadratic hypersurface are encoded by a vector of 
real numbers. The number of coefficients required to represent 
a quadratic hypersurface is [d + + 2)/2 (including the con-
stant term 7 in (4.1)), therefore the search space is continuous 
and high-dimensional. It is not suitable to encode a solution to 
a high-dimensional problem as a finite binary string. Thirdly, 

‘ B T G A uses linear normalization technique [11] to assign the fit-
ness value of each chromosome, while an absolute fitness value 
is assigned to each chromosome in the GA-based QDT. Exper-
imental results show that linear normalization technique is less 
capable of finding better quadratic hypersurfaces. 

-
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4.2 Construction of Quadratic Decision Trees 

Before constructing a decision tree, a set of input samples is di-
vided into two disjoint subsets, called training set and testing 
set. The training set is applied to construct a decision tree. A 
constructed decision tree should minimize the number of mis-
classifications on the testing set, instead of the training set. 

In order to construct a quadratic decision tree using the train-
ing set, the root node is created first. Descendants of the root 
node may be created if necessary. When a new node Nh is 
created, the GA-based QDT searches for the optimal quadratic 
hypersurface if: 

• the impurity of the set Sh of training samples arriving at 
the node Nh is not less than a threshold go; and 

• is not less than a positive integer no. 

Otherwise, the node Nh is declared as a leaf node and the as-
sociated class label is the class with the maximum number of 
training samples arriving at that node. 

In this chapter, the impurity of a set of samples is measured 
by the Gini-index. The impurity of Sh is defined as: 

仍二 1 — ) 2 (4.2) 

i=l 
\ 

where C is the number of classes and Sh,i, i = 1,2..., C, is the set 
of training samples of class i arriving at node Nh. Suppose Rh is 
the set of training samples arriving at node Nh such that (4.1) 
is satisfied and Lh = Sh \ Rh, the weighted average impurity of 
the subsets Lh and Rh is defined as: 

(4.3) 

丄 I 一 丄 

•V 
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where Rh,i, z = 1,2..., C, is the set of training samples of class i 
arriving at node Nh such that (4.1) is satisfied and Lh’i = Sh,i \ 
Rh,i, i = 1, 2..., C. The impurity reduction after partitioning the 
set Sh into two disjoint subsets L^ and Rh is defined as: 

g' = 91- 92. (4.4) 

Note that G [0,1] for all cases. 
When a new node Nh is created, the GA-based QDT searches 

for the optimal quadratic hypersurface, maximizing the impu-
rity reduction after splitting the set Sh into two disjoint subsets. 
The algorithm to find the optimal quadratic hypersurface is de-
scribed in the next subsection. If the impurity reduction after 
partitioning the set Sh into two disjoint subsets is less than the 
threshold go, the node Nh is declared as a leaf node and the 
associated class label is the class with the maximum number of 
training samples arriving at that node. Otherwise, the optimal 
quadratic hypersurface is applied to partition the set Sh into 
two disjoint subsets. A child node is created for each subset. 

Figure 4.2 shows the algorithm of the procedure createQDTO. 
The procedure createQDTO outlines the steps to create a new 
node and its descendants of a GA-based QDT. To construct a 
GA-based QDT, the procedure createQDTO accepts the train-
ing set as the parameter. 

4.3 Evolving the Optimal Quadratic Hyper-
surface using Genetic Algorithms 

At each non-leaf node of a GA-based QDT, there is an associated 
quadratic 'hypersurface for partitioning the training samples ar-
riving at that node into two disjoint subsets. In this section, D is 
defined as the number of terms required to represent a quadratic 
hypersurface when each sample has d input attributes. From 

、、 * 
•J — 
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PROCEDURE CREATEQDI 

INPUT A set of training samples Sh 

OUTPUT A new node Nh 

1. IF \SH\ is less than a positive integer no or the impurity of SH is less 

than a threshold go, THEN the node Nh is declared as a leaf node and 

go to step 6. 

2. Find the optimal quadratic hypersurface x'^^'x + b'^x > 7'’ where 

A' = (a'j^k) is a symmetric matrix of order d, b' = 62, ...’％)『is a 

d-dimensional column vector and 7' is a real constant, using GAs such 

that the impurity reduction after dividing the set Sh into two disjoint 

subsets is maximized. 

3. IF the impurity reduction is less than 卯’ THEN the node Nh is declared 

as a leaf node and go to step 6. 

4. Define = {x G + b'^x > 7'} and L； = Sh\ R'h-

5. Invoke createQDT(i?^) and createQDT(L'"), and go to step 7. 

6. Determine the class label associated with the node Nh. 

••• . 7. Return the node Nh. 
\ 

Figure 4.2: The Algorithm of the Procedure createQDTO 
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(4.1), the relation between D and d is given by: 

I ) 二 华 + “ l = ( " + i y + 2 ) ’ (4 .5) 

since 咖广)terms are required to represent a symmetric matrix 
of order d. For example, 10 terms are required to represent 
a quadratic hypersurface in a 3-dimensional attribute space. 
When a new node Nh is created, a GA is applied to evolve 
the optimal quadratic hypersurface if the impurity of the set 
Sh of training samples arriving at that node is not less than 
a threshold go and \Sh\ is not less than a positive integer no. 
The following outlines the steps to evolve the optimal quadratic 
hypersurface using a GA: 

1. Initialize a population of chromosomes P = {̂ I,没2...，没L}, 

where L is the population size. 

2. Evaluate the fitness values of all chromosomes in P. 

3. Let 没best be the best chromosome in the population P, T 
be the number of generations, r be the current generation 
number. 

4. FOR T = 1 TO r 

(a) Select L chromosomes from P (with replacement) us-
, ‘ ing the roulette wheel selection method. The selected 

cfiromosomes are replicated to the mating pool M. 
(b) Set M = Crossover(M). 
(c) Set M = Mutation(M). 
(d) Evaluate the fitness values of all chromosomes in M. 
(e) Let "worst be the worst chromosome in M. 
( f ) Set P = M \ { ^ w o r s t } U { ^ b e s t } . 

(g) Let 没best be the best chromosome in P. 
•V 
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5. The chromosome 没best is chosen to divide the set Sh of train-
ing samples arriving at node Nh into two disjoint subsets, 
provided that the fitness value of the chromosome is not 
less than the threshold go. 

An elitist strategy is employed to ensure the best chromosome 
in the current generation is preserved in the next generation. 

4.3.1 Population Initialization 

Given a population of L chromosomes P = {̂ i,没2.-.,没l}. The 
chromosome i = 1 ,2."，L, represents the following quadratic 
hypersurface: 

x^AiX + hfx > (4.6) 
where Ai = (a ĵ̂ jt), i = 1，2...，L, is a symmetric matrix of order 
d, bi = (6i，i, bi�2…,�)T, 2 = 1,2..., L , is a c?-dimensional column 

vector and '7“ i = 1,2..., L, is a real constant. The chromosome 
9i = i = 1,2..., L, is encoded such that: 

if j — 1 ,2 . . . , (i， 

2ai,i’j_d+i iij = d-\-l,d + 2..., 2d - 1， 

2ai,2j-(2d-i)+2 if j = 2d + I.", M - 3, 
切 id = : 

2ai,d-i,d if j = ( i (d+l ) /2 , 
. kj-d{d+i)/2 if j = d{d + l ) /2 + 1 …,d(d + 3)/2, 

�7i if j = D. 
(4.7) 

The value of i = 1,2..., L , j = 1,2..., D — 1, is initialized 
with a uniform random number within the range [-1, 1]. The 
following outlines the steps to initialize the value of Wi,D, i = 
1,2…，L'. 

1. Two training samples x = (xi, Xd)^ and y = (yi, VdV 
belonging to different classes are randomly chosen. 

•V. 
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2. Set z = rx + (1 — r)y where r G [0,1] is a uniform random 
number. 

3. Set Wi,D = z^AiZ + hfz. 

Each chromosome represents a candidate quadratic hypersurface 
which passes through a randomly generated point on the line 
segment joining a pair of randomly selected training samples of 
two different classes. Moreover, the values of Wî î  ...，切i’D, 
i = 1, 2..., L, are normalized such that the following condition is 
satisfied: 

D 

“ i=l 

Each chromosome represents a candidate quadratic hypersur-
face in a d-dimensional attribute space. It is hoped that the 
quality of each chromosome is improved by selection, crossover 
and mutation. 

4.3.2 Fitness Evaluation 

The fitness value fi of the chromosome 屯 i = 1,2...，L, equals 
the impurity reduction when the corresponding quadratic hy-
persurface is applied to divide a set of training samples into 
two disjoint subsets. The impurity reduction is evaluated using 
(4.2)，(4.3) and (4.4). 

4.3.3 Selection 

After the fitness value of each chromosome is evaluated, L chro-
mosomes are selected (with replacement) using the roulette wheel 
selection method. The selected chromosomes are replicated to 
the mating pool. The chromosome ^i, i = 1,2..., L, is selected 
with a probability pi, where 

. • = (4.9) 
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where / “ i = 1,2..., L, is the fitness value of the chromosome 
9i. Chromosomes with higher fitness values are more likely to 
be replicated to the mating pool because they are more likely to 
generate offspring of higher quality. 

4 .3 .4 Crossover 

L/2 pairs of chromosomes are selected from the mating pool 
without replacement. After a pair of parent chromosomes are 
selected, they undergo crossover with a fixed probability pc. Let 
M = {^i,没'2…,^i,} be the mating pool. The following describes 
the steps of the crossover applied to the chromosomes in the 
mating pool M. A new population M' of offspring chromosomes 
is generated. 

1. Set M' = 

2. FOR i = 1 TO L/2 

(a) A pair of chromosomes and 没v are selected from the 
mating pool M. 

(b) Set M = M\{(9u,6>v}. 

(c) Generate a uniform random number r G [0,1 . 
(d) IF r < Pc, THEN generate two uniform random num-

bers ri,r'2 G [-0.5,1.5]; 
. ELSE set ri = r2 = 0. 

« 

(e) IF e j ^ < 0, THEN set Q �= 
(f) Generate two offspring chromosomes ^21-1 and 0么 such 

that: 

二 n0u + ( l - n )没 V (4.10) 
蛇 i =厂2没V + (1 - r2)没u (4.11) 

(g) SetM' = M'U{^—1，^}. 
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4.3.5 Mutation 

After the crossover operator is applied to the chromosomes in 
the mating pool, the offspring chromosomes undergo mutation. 
When the chromosome 6{ = w î’2."，切i’_D),�二 1,2..., L, rep-
resenting the quadratic hypersurface in (4.6) undergoes muta-
tion, the value of Wi,j, j — 1,2..., D, is modified with a fixed 
probability pm- When the value of Wi’j, j = 1,2..., D — is 
mutated, it is set to zero or modified by non-uniform mutation 
35]. Suppose r is the current generation number and T is the 

number of generations. The following describes the steps of the 
mutation applied to the chromosome 没i，i = 1,2..., L: 

1. FOR j = 1T0 D-1 

(a) Generate a uniform random number ri G [0,1 . 
( b ) I F ' n C P m ， T H E N 

i. Generate a uniform random number r2 G [0,1 . 
ii. IF Wij + 0 and r̂  < Pm, THEN set Wij = 0; ELSE 

A. Generate a random integer k G {—1，1}. 
B. Generate a uniform random number r^ G [0,1 . 
C. Set Wij = Wij ~h (k — Wij)(l — rp 『）). 

iii. IF Wij = 0 and 厂2 < Pm, THEN 
A. Generate a random integer k G {—1,1}. 

‘ . B . Generate a uniform random number rs e [0,1 . 

C. Set Wij = Wij + (A; - Wij)(I - r î—T)). 

2. Generate a uniform random number ri G [0,1. 

3. IF r {<pm, THEN 

(a) Let Uhj, j = 1,2..., d, be the minimum value of the 
产 input attribute in the set Sh of training samples 
arriving at node Nh. 

、 
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(b) Let Zh,j, j = 1,2..., d, be the maximum value of the 
产 input attribute in the set Sh of training samples 
arriving at node Nh. 

(c) Set mi = I Ylf=i '^iA^hjil + sgn{wij)) + phj{l -
sgn{wij))] and m2 ^ | • [ 入 — sgn—tj)�+ 
Ph,j{l + sgn{wij))], where 

ylj i f j = 1,2".,d, 
yh,iyh,j-d+i if j = ci + 1, d + 2..., 2d — 1, 

. _ yh,2yhj-{2d-i)+2 if i = 2d, 2d-\- 3, 
入 h,j = . 

yh,d-iyh,d if j = d{d + l) /2, 
�yh,j-d{d+i)/2 if j = d{d + l ) /2 + 1".，d{d + 3)/2, 

and 

Zh,iZhj-d+i if j = d+l,d-\- 2...，2d - 1, 

Zh,2Zh,j-{2d-i)+2 if i = 2d, 2d-\- 3, 
Ph,j = : 

Zh,d-iZh,d if j = d{d+ l) /2, 
�Zhj-d{d+i)/2 if j = d{d + l ) /2 + 1..., d{d + 3)/2. 

(d) Generate a random integer k G {0，1}. 
... (e) Generate a uniform random number rs E [0,1 • 

(f) IF /c = 0, 
THEN set Wi,D = Wi,D + (爪2 — Wî D){l — ̂ 丄̂―承))； 

ELSE set Wij) = m,D — (Wi,D — m i ) ( l — rg—⑷). 

4.4 Performance Evaluation 

In this section, the performance of the GA-based QDT is evalu-
ated in terms of validation accuracy, number of nodes and exe-

• if . 
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cution time. Four sets of experiments were performed. The first 
set of experiments compares the performance of the GA-based 
QDT with that of various supervised classification algorithms. 
The second set of experiments compares the performance of the 
GA-based QDT and that of Random Search-based Quadratic 
Decision Tree (RS-based QDT). In the third set of experiments, 
the effect of changing one of the parameters of the GA-based 
QDT is investigated. In the last set of experiments, the effect of 
adding noise in a dataset on the performance of the GA-based 
QDT is studied. All the experiments were executed on a dual 
Intel Xeon 2.2GHz machine. 

4.4.1 Performance Comparison of the GA-based QDT 
and Various Supervised Classification Algorithms 

In this subsection, the performance of the GA-based QDT is 
compared with that of various supervised classification algo-
rithms, including C4.5, OCl, NDT, OCl-GA, OCl-ES and BTGA. 
Two artificial and two public domain datasets from the UCI ma-
chine learning repository are chosen to compare the performance 
of the GA-based QDT with that of the others. 

The first dataset, called ADS7, is an artificial dataset with 
100 samples. ADS7 is a two-class problem. A straight line is 
used to separate the samples into two classes. Each sample is 
a two-dimensional vector (0:1,0:2), where xi,x2 G [0,1000]. A 
sample is labeled as class 1 if 0.8xi — 0.6x2 > 150. Otherwise, 
the sample is labeled as class 2. Figure 4.3 shows the dataset 
ADS7. 

The second dataset, called ADS8, is an artificial dataset with 
1000 samples. ADS8 is a three-class problem. Each sample is 
a two-dimensional vector X2), where Xi^X2 G [0,1000]. If 
a sample satisfies (4.12), it is labeled as class 1. If a sample 
violates (4.12) but satisfies (4.13), it is labeled as class 2. If a 

•V 
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‘ 、 Figure 4.3: The Dataset ADS7 
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Figure 4.4: The Dataset ADS8 

sample violates both (4.12) and (4.13)，it is labeled as class 3. 
Figure 4.4 shows the dataset ADS8. 

2 0 2 5 0 0 + 1 2 2 5 0 0 > ( 4 . 丄 

( 工 5 0 0 ) 2 (巧 - 5 1 0 ) 2 

• . , 90000 + 62500 〉丄.。 （4.id) 

The third dataset, called ECOLI, is a public domain dataset 
from the UCI machine learning repository. Each sample has 7 
numeric input attributes. This dataset has 336 samples and 8 
classes. 

The fourth dataset, called BALANCE, is also a public domain 
dataset from the UCI machine learning repository. Each sample 
has 4 numeric input attributes. This dataset has 625 samples 
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Dataset Number of Generations 

ADS7 300,000 

ADS8 60,000 ~ 

ECOLI 300,000 

BALANCE 150,000 

Table 4.1: Number of Generations for OCl-ES on ADS7, ADS8, ECOLI and 

BALANCE 

Parameters ADS7 | ADS8 | ECOLI | B A L A N C ^ 

Population Size 100 

Number of Generations 2500 1000 4000 2000 — 

Crossover Probability 1.0 0.8 0.9 0.9 

Mutation Probability 0.25 0.3 0.3 0.15 

Table 4.2: Parameters of OCl-GA on ADS7, ADS8, ECOLI and BALANCE 

and 3 classes. 
The number of generations for the OCl-ES algorithm is mod-

ified on each dataset so that the execution time of the OCl-ES 
algorithm is longer than that of the GA-based QDT. Table 4.1 
shows the number of generations for the OCl-ES algorithm on 
each dataset. 

The implementation of the OCl-GA algorithm in this set of 
experiments is identical to that described in Section 3.3.1. The 

‘number of generations for the OCl-GA algorithm is modified 
on each dataset so that the execution time of the OCl-GA algo-
rithm is longer than that of the GA-based QDT. Table 4.2 shows 
the parameters of the OCl-GA algorithm so that its validation 
accuracy is maximized on each dataset. 

If the number of training samples at a node is less than a pos-
itive integer no or the impurity reduction is less than a threshold 
go, no child node is created in BTGA. The number of generations 
for the BTGA algorithm is modified on each dataset so that the 

I 
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Parameters ADS7 | ADS8 | ECOLI | B A L A N ^ 

Population Size 100 

Number of Generations 2500 1000 4000 2000 — 

Crossover Probability 1.0 0.8 0.8 ^ 

Mutation Probability 0.25 0.15 0.15 0.1 

no 50 10 15 10 

go 0.4 0.01 0.1 ~~ 0.1 

Table 4.3: Parameters of BTGA on ADS7, ADS8, ECOLI and BALANCE 

Parameters ADS7 | ADS8 | ECOLI | BALANCE" 

Population Size 100 

Number of Generations 1000 

Crossover Probability 0.9 1.0 0.9 0.9 一 

Mutation Probability 0.15 0.15 0.1 0.1 

no 50 —100 20 30 “ 

^ 0.3 0.3 0.15 0.1 

Table 4.4: Parameters of the GA-based QDT on ADS7, ADS8, ECOLI and 

BALANCE 

execution time of the BTGA algorithm is longer than that of the 
GA-based QDT. Table 4.3 shows the parameters of the BTGA 
algorithm so that its validation accuracy is maximized on each 
dataset. 

. . Table 4.4 shows the parameters of the GA-based QDT so as 
to maximize its validation accuracy. The value of no specifies 
the minimum number of training samples and that of go specifies 
the minimum impurity reduction. Standard parameter settings 
are applied in various decision tree algorithms including C4.5, 
OCl and NDT. 

Table 4.5 shows the average and the standard deviation of 
the validation accuracy of various supervised classification algo-
rithms when 10-fold cross-validation is applied over 10 runs. 
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According to the one-sided t-tests, the GA-based QDT out-
performs the others on ADS8, ECOLI and BALANCE in terms 
of validation accuracy at 95% confidence interval. The deci-
sion criterion at each non-leaf node of a GA-based QDT usually 
provides a better approximation to non-linear class boundaries 
when compared with that of univariate and oblique decision tree 
algorithms. Although both NDT and GA-based QDT construct 
quadratic decision trees, the GA-based QDT outperforms NDT 
on all of the datasets. When a new node is created, GA-based 
QDT is more capable of finding a better quadratic hypersurface 
than NDT because GA-based QDT is more capable of escaping 
from local optima. 

On the other hand, BTGA outperforms the others (including 
the GA-based QDT) on ADS7 in terms of validation accuracy 
at 95% confidence interval using the one-sided t-tests. Suppose 
each input sample has d numeric input attributes. The number 
of parameters required to specify a hyperplane is •⑷，while the 
number of terms required to specify a quadratic hypersurface is 
0{(P). Since the class boundary of ADS7 is linear, a hyperplane 
can be used to divide the samples into two classes completely. It 
is much faster to find the optimal hyperplane than the optimal 
quadratic hypersurface using GAs when the training samples 
to be partitioned are linearly separable. Moreover, a quadratic 
hypersurface tends to overfit the training samples when they are 
linearly separable. 

Univariate decision tree algorithms should outperform the 
others (including the GA-based QDT) on datasets whose class 
boundaries are axis-parallel hyper planes. Again, a quadratic hy-
persurface tends to overfit the training samples in such datasets. 
It is more*suitable to use univariate decision tree algorithms to 
construct decision trees for such datasets than the GA-based 
QDT. 

Table 4.6 shows the average and the standard deviation of the 
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Algorithm ADS7 ADS8 ECOLI BALANCE— 

045 87.4 士 2.0 93.6 士 0.6 81.6 士 1.2 77.6 士 0.7 

O a 94.0 士 1.6 93.2 土 0.8 "^0.7 士 1.8 士 0.6 

NDT 93.8 士 1.5 93.1 士 0.5 士 1.8 91.8 士 1.1 

0C1-GA 93.4 ± 1.2 93.0 ±0.5 83.6 ±1.3 93.9 士 1.2 

0C1-ES 98.1 士 1.3 ~94.8 士 0.8 "80.6 士 2.0 90.7 土 0.9 

BTGA 99.4 士 0.7 ~96.0 士 0.3 "83.6 士 1.4 93.1 士 1.0 

GA-based QDT 98.3 士 0.8 98.9 士 0.3 84.9 97.2 士 0.5 

Table 4.5: Average and Standard Deviation of Validation Accuracy (%) of 

Various Supervised Classification Algorithms on ADS7, ADS8, ECOLI and 

BALANCE based on 10 Independent Runs 

tree size (in number of nodes) of various supervised classification 
algorithms when 10-fold cross-validation is applied over 10 runs. 
The time required to classify an input sample depends on the 
number of non-leaf nodes visited and the number of parameters 
required to specify the decision criterion at each non-leaf node of 
a decision tree. Although the GA-based QDT usually constructs 
decision trees with fewer nodes, the decision trees constructed 
by the GA-based QDT do not necessarily classify input samples 
more quickly than those constructed by the others. 

Table 4.7 shows the average and the standard deviation of 
the execution time of various supervised classification algorithms 
when 10-fold cross-validation is applied over 10 runs. The exe-

‘ c u t ion time of the GA-based QDT is longer than that of C4.5, 
OCl and NDT. The number of coefficients required to specify 
a quadratic hypersurface in a d-dimensional attribute space is 
0[ (P� , a sufficiently large number of generations is required to 
find an acceptable quadratic hypersurface using GAs. The num-
ber of generations for OCl-ES, OCl-GA and BTGA is modified 
so that the execution times of these algorithms are longer than 
that of the GA-based QDT (except for BTGA on ADS7). The 
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Algorithm ADS7 ADS8 ECOLI BALANCE— 

C ^ 5.7 ±0.1 33.6 ±0.9 18.6 ± 1 . 0 4 1 . 8 ±1.1 

OCl 3.1 士 0.2 12.3 士 3.1 4.6 士 1.0 5.5 士 1.2 

NDT 3.2 ±0.3 "10.5 士 2.3 17.9 土 0 . 9 7 . 6 土 1.5 

OCl-GA 3.2 土 0.4 16.0 士 3.1 5.0 士 i 6.1 士 1.2 

0C1-ES 3.0 士 0.1 11.5 士 2"T 4.9 士 0.8一 5.5 士 1.5 

BTGA 士 0.0 25.9 士 0.6 6.7 士 厂 7.0 士 0.5 

GA-based QDT 士 0.0 5.0 土 0.0 6.1 土 5 T " 5.1 士 0.1 

Table 4.6: Average and Standard Deviation of Tree Size (in Number of 

Nodes) of Various Supervised Classification Algorithms on ADS7, ADS8, 

ECOLI and BALANCE based on 10 Independent Runs 

reason for this is to investigate whether the GA-based QDT 
constructs a better decision tree in a shorter period of time. 

However, the execution time of BTGA on ADS7 is shorter 
than that of the GA-based QDT because BTGA can find a hy-
perplane such that the weighted average impurity of the training 
samples in ADS7 is zero in less than 1000 generations. In other 
words, the impurity reduction is maximized. In this case, BTGA 
finishes the construction of oblique decision trees for the dataset 
ADS7. 

4.4.2 Performance Comparison of the GA-based QDT 
and RS-based QDT 

* 

In this part, the performance of the GA-based QDT is com-
pared with that of Random Search-based Quadratic Decision 
Tree (RS-based QDT). At each non-leaf node of a RS-based 
QDT, 100，000 candidate quadratic hypersurfaces are randomly 
generated using the same way as the chromosomes in the GA-
based QDT are initialized. This number is equal to the num-
ber of chromosomes generated by the GA-based QDT when a 
new node is created. The impurity reduction of each candidate 
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Algorithm ADS7 ADS8 ECOLI B A L A N C ^ 

C4.5 < 1 — < 1 < 1 — < 1 

OCl < 1 44.0 士 0.8 73.7 士 2.1 57.8 士 0.6 

NDT 1.7 土 0.5 102.6 土 4.5 142.0 士 2.7 90.3 士 2.6 

0C1-GA 47.6 ±4.6 417.9 士 18.0 1015 士 27 471.2 士 30.0 

0C1-ES 36.0 士 3.9 264.0 士 1021 士 38 476.1 士 12.9 

BTGA 3.4 士 2.0 717.3 士 s d X 1254 土 i f 485.7 士 67.3 

GA-based Q D ^ 31.5 士 0.5 246.5 士 21"^ 959.9 士 54.0 366.7 士 ^ 

Table 4.7: Average and Standard Deviation of Execution Time (in Seconds) 

of Various Supervised Classification Algorithms on ADS7, ADS8, ECOLI 

and BALANCE based on 10 Independent Runs 

quadratic hypersurface is evaluated and the quadratic hypersur-
face with the maximum impurity reduction is chosen to partition 
a set of samples into two disjoint subsets if the minimum number 
of samples is not less than a positive integer no and the impurity 
reduction is not less than a threshold QQ. In this case, a child 
node is created for each subset. 

Table 4.4 shows the minimum number of samples no and the 
minimum impurity reduction go required to create child nodes 
on each dataset. Table 4.8 reports the average and the stan-
dard deviation of the validation accuracy of the GA-based QDT 
and the RS-based QDT when 10-fold cross-validation is applied 
over 10 runs. According to the one-sided t-tests, the GA-based 

• QDT outperforms the RS-based QDT on ADS8, ECOLI and 
BALANCE at 95% confidence interval. The GA-based QDT is 
usually more capable of finding a better quadratic hypersurface 
than the RS-based QDT when a new node is created. 

4.4.3 Effects of Changing Parameters of the GA-based 
QDT 

There are several parameters in the GA-based QDT, including: 
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Dataset GA-based QDT RS-based QDY^ 

ADS7 98.3 士 0.8 98.3 ± 1 . 3 ^ 

^ A D S 8 98.9 士 0.3 52.1 士 3.8 

^ E C O L I 84.9 士 0.7 83.8 ± 0 . 3 ^ 

BALANCE 97.2 士 0.5 89.2 士 1.0 

Table 4.8: Average and Standard Deviation of Validation Accuracy (%) of 

the GA-based QDT and RS-based QDT on ADS7, ADS8, ECOLI and BAL-

ANCE based on 10 Independent Runs 

• Crossover Probability (pc)； 

• Mutation Probability (Pm); 

• Number of Generations (T); 

• Minimum Number of Training Samples (no); and 

• Minimum Impurity Reduction (仍). 

The first three parameters are common parameters of GAs. 
The last two parameters specify the necessary and sufficient con-
ditions of creating child nodes. Table 4.4 shows that the optimal 
values of these parameters (except for the number of genera-
tions) are different on each dataset. The BALANCE dataset is 
applied to illustrate the effect of changing one of these parame-
ters. 

Number of Generations (T) 

In this part, the number of generations increases from 100 to 
5000 while the values of the other parameters are shown in Table 
4.4. . ‘ 

Table 4.9 reports the average and the standard deviation of 
the validation accuracy, the execution time and the tree size (in 
number of nodes) based on 10 independent runs when the num-
ber of generations T equals 100，200.",900,1000,2000"., 5000. 

•V 
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The results reported in Table 4.9 are used to plot Figures 4.5, 
4.6 and 4.7. 

Although the validation accuracy tends to increase as the 
number of generations increases, the validation accuracy and 
the number of generations may not be related by an increas-
ing function. For example, the validation accuracy for T = 800 
is greater than that for T = 900. Although the quality of the 
quadratic hypersurface at each non-leaf node can be improved as 
the number of generations increases, producing better quadratic 
hypersurfaces during the training stage does not necessarily con-
struct better decision trees. 

On the other hand, the execution time is not directly propor-
tional to the number of generations. The number of nodes varies 
as the number of generations varies. When a larger GA-based 
QDT is constructed, more candidate quadratic hypersurfaces 
are initialized, evaluated and evolved using GAs. At the root 
node, all the samples in the training set are considered when 
GAs are applied to find the optimal quadratic hypersurface. 
Nevertheless, a different subset of samples in the training set 
is considered to search for the optimal quadratic hypersurface 
at each non-root node of a GA-based QDT. As a result, the time 
required to find the optimal quadratic hypersurface is different 
for each non-leaf node. 

Crossover Probability (pc) 
S 

In this part, the crossover probability increases from 0.0 to 1.0 
while the values of the other parameters are shown in Table 4.4. 

Table 4.10 shows the average and the standard deviation of 
the validation accuracy, the execution time and the tree size 
(in number of leaf nodes) based on 10 independent runs when 
the crossover probability pc equals 0.0,0.1...’ 1.0. The results 
reported in Table 4.10 are used to plot Figures 4.8, 4.9 and 
4.10. The maximum validation accuracy is attained when the 

•V 
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T Validation Accuracy (%) Execution Time (s) Tree Size 

100 95.06 士 0.83 45.3 士 5.6 5.93 士 0.28 

200 96.02 士 0.56 90.1 士 9.9 5.81 士 0.17 

~m 96.28 士 0.68 122.0 士 2.3 " ^ 士 0.14 

400 — 96.25 士 0.85 — 159.8 士 3.1 5.57 士 0.19 

96.34 士 0.66 199.8 士 4.0 " ^ 士 0.19 

600 — 97.06 士 0.75 233.8 士 2.3 5.51 士 0.17 

700 — 96.78 士 0.92 268.7 士 5.5 5.55 士 0.2"^ 

800 - 96.98 士 0.44 310.5 士 4.9 5.47 士 o i T 
"~900 96.73 士 0.75 347.3 ± 3.6 5.39 士 0.19 

1000 97.23 士 0.49 — 366.7 士 5.1 5.13 士 0.11 

2000 97.13 ±0.81 741.0 士 7.1 5.16 ±0.11 

3000 — 97.08 士 0.84 1110.5 士 11.4 5.19 士 0.19 

4000 — 97.40 士 0.61 1459.2 士 6.1 5.17 士 0.12 

5000 97.50 士 0.65 1885.2 ± 7.2 5.13 ±0.09 

Table 4.9: Average and Standard Deviation of Validation Accuracy (%), Exe-

- . c u t i o n Time (in Seconds) and Tree Size (in Number of Nodes) on BALANCE 

based on id Independent Runs as the Number of Generations T Varies 
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‘ Figure 4.7: Tree Size (in Number of Nodes) of GA-based QDT on BALANCE 

versus Number of Generations T 

crossover probability is 0.9. However, the confidence intervals 
“ of the validation accuracy for different crossover probabilities do 
： overlap. 
•i • 

^ Mutation Probability (p饥） 

� In this part, the mutation probability increases from 0.0 to 1.0 
、广- while the values of the other parameters are shown in Table 4.4. 
V . Table 4.11 reports the average and the standard deviation 
、丨: of the validation accuracy, the execution time and the tree size 
JK" (in number of leaf nodes) based on 10 independent runs when the 

mutation probability prn equals 0.0,0.05,0.1,…，0.25’ 0.3，0.4..., 1.0. 
The results reported in Table 4.11 are used to plot Figures 4.11, 

f 4.12 and "4.13. 
u The maximum validation accuracy is attained when the mu-
； tation probability is 0.05. The execution time tends to be longer 
.� as the mutation probability increases because non-uniform mu-

k ‘ 
i- "‘ 

I,. 
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Pc Validation Accuracy (%) Execution Time (s) Tree Size 

~aO 96.45 土 0.99 369.4 土 6.6 3.30 士 0.16 

0.1 96.82 士 0.98 — 364.1 士 5.2 3.15 士 0.12 

0.2 96.80 士 0.71 — 362.8 士 5.0 3.14 士 0.11 

0.3 ~ ~ 97.07 士 0.67 367.8 士 4.8 3.18 士 0.12 

" M 96.80 士 0.86 364.8 士 4.0 3.18 士 O.li" 

~05 97.04 土 1.03 367.8 士 5.1 3.22 ±0.10 

0.6 — 97.20 士 0.81 — 369.7 土 6.3 3.21 士 0.11 

0.7 96.83 士 0.86 367.5 ± 5.5 3.19 士 0.13 

"08 97.07 士 0.82 365.3 士 5.7 3.11 土 o.of 
"O^ 97.23 士 0.49 366.7 士 5.1 3.13 士 0.1厂 

1.0 , 96.50 士 0.42 — 368.4 士 8.1 3.14 士 0.10 

Table 4.10: Average and Standard Deviation of Validation Accuracy (%), 

Execution Time (in Seconds) and Tree Size (in Number of Leaf Nodes) on 

BALANCE based on 10 Independent Runs when the Crossover Probability 

Pc Varies 
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Figure 4.8: Validation Accuracy (%) of GA-based QDT on BALANCE versus 

Crossover Probability Pc 
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Figure 4.11: Validation Accuracy (%) of GA-based QDT on BALANCE 

versus Mutation Probability pm 

tation is applied to each chromosome in the GA-based QDT. 
The computation of r f (gee Section 4.3.5) is a bottleneck of 
non-uniform mutation. As the mutation probability increases, 
the expected number of mutations increases. Therefore, the ex-
ecution time is longer. 

The minimum number of leaf nodes is attained when the mu-
tation probability is 0.05. When the mutation probability equals 

. 0 . 0 5 , GA-based QDT has its greatest capability of evolving the 
optimal quadratic decision function at each internal node on 
BALANCE. The impurity reduction after partioning a set of 
training samples for this value of mutation probability is much 
higher than that for other values of mutation probability. There-
fore, less nodes are generated when the mutation probability is 
0.05. 

ij . . . 
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Pm Validation Accuracy (%) Execution Time (s) Tree Size 

0.0 89.44 士 0.81 381.2 土 5.4 4.23 士 0.58 

97.23 士 0.49 366.7 ± 5 . 1 3.13 士 0.11 

96.56 ± 0.50 379.9 士 8.4 5.54 士 0.23 

0.15 — 96.32 士 0.59 — 386.3 士 10.4 5.74 土 0.23 

0.2 — 96.32 士 0.47 390.2 士 10.3 5.90 士 0.38 

0.25 一 95.66 土 1.19 413.8 土 15.0 6.04 士 0.48 

0.3 95.23 士 0.99 438.3 士 17.7 —6.12 土 0.44 

0.4 一 94.93 士 1.05 439.8 士 11.4 3.80 士 0.35" 

0.5 93.22 士 1.04 471.6 士 20.3 3.97 士 0.41 

0.6 — 91.92 士 1.06 497.7 士 10.4 4.08 士 0.3『 

0.7 90.74 士 0.75 505.6 士 12.7 —4.2 8 士 

0.8 89.57 ± 1 . 0 1 514.0 士 16.1 4.22 士 0.55 

0.9 — 89.42 士 1.65 540.4 士 15.7 4.54 士 0.71 

1.0 89.30 士 1.02 565.8 ± 10.5 4.55 ± 0.73 

Table 4.11: Average and Standard Deviation of Validation Accuracy (%)， 

Execution Time (in Seconds) and Tree Size (in Number of Leaf Nodes) on 

‘ BALANCE based on 10 Independent Runs when the Mutation Probability 

Pm Varies 
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no Validation Accuracy (%) Execution Time (s) Tree Size 

To 97.20 ±0.51 367.3 ±6.1 5.17 士 0.16 

"Is 97.20 士 0.51 367.6 士 5.9 5.17 士 0.16 

97.23 士 0.49 366.9 土 4.8 5.13 士 0.11 

25 97.23 士 0.49 366.8 士 4.7 5.13 士 0.11 

97.23 士 0.49 366.7 士 5.1 5.13 士 0.11 

"35 97.09 土 0.56 — 367.1 士 4.5 5.11 士 0.10 

97.09 士 0.56 — 364.9 士 3.3 5.11 士 0.10 

"45 97.04 士 0.54 366.2 士 7.5 5.08 士 0.09 

97.10 ±0.62 363.7 士 5.3 5.00 士 0.00 

Table 4.12: Average and Standard Deviation of Validation Accuracy (%), 

Execution Time (in Seconds) and Tree Size (in Number of Nodes) on BAL-

ANCE based on 10 Independent Runs when the Minimum Number of Train-

ing Samples no Varies 

Minimum -Number of Training Samples (no) 

In this part, the minimum number of training samples increases 
from 10 to 50 while the values of the other parameters are shown 
in Table 4.4. 

Table 4.12 shows the average and the standard deviation of 
the validation accuracy, the execution time and the tree size 
(in number of nodes) based on 10 independent runs when the 
minimum number of training samples no equals 10，15..., 50. The 
results reported in Table 4.12 are used to plot Figures 4.14, 

‘ 4.15 and 4.16. The maximum validation accuracy is attained 
when the minimum number of training samples is 20, 25 or 30. 
As expected, the number of nodes decreases as the minimum 
number of training samples increases. 

Minimum Impurity Reduction (^o) 

In this part, the minimum impurity reduction is increased from 
0.05 to 1.0 while the values of the other parameters are shown 

"V 
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Figure 4.14: Validation Accuracy (%) of GA-based QDT on BALANCE 
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3741 1 1 1 1 1 1 1 1 1  
T T 

372 - -

370 - -

^368 - T -

I 一 \ 一 一 \ 

•. ^ 364 - \ 
* 

362 - 丄 丄 丄 _ 

360 - -

3 5 8 I I I ' I I I I I 
. 5 10 15 20 25 30 35 40 45 50 55 

Minimum Number of Samples 
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Figure 4.16: Tree Size (in Number of Nodes) of GA-based QDT on BAL-

ANCE versus Minimum Number of Samples no 

in Table 4.4. 
Table 4.13 reports the average and the standard deviation of 

the validation accuracy, the execution time and the tree size (in 
number of nodes) based on 10 independent runs when the min-
imum impurity reduction go equals 0.05,0.1..., 0.25,0.3,0.4..., 1. 
The results reported in Table 4.13 are used to plot Figures 4.17, 
4.18 and 4.19. The maximum validation accuracy is attained 

‘ when thq minimum impurity reduction is 0.1. As the minimum 
impurity reduction increases from 0.1 to 0.5, the validation ac-
curacy decreases. But the validation accuracy remains stable as 
the minimum impurity reduction increases from 0.5 to 1.0. 

As expected, the number of nodes of a GA-based QDT de-
creases as the minimum impurity reduction increases. When the 
impurity reduction equals 0.5, every constructed decision tree 
has the root node only because GAs fails to find a quadratic 
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go Validation Accuracy (%) Execution Time (s) Tree Size 
97.20 士 0.40 402.6 士 9.8 T i ^ 士 0.15 

0.1 — 97.23 士 0.49 366.7 士 5.1 5.13 士 0.11 

0.15 97.04 士 0.52 362.5 士 3.1 5.00 士 0.05 

0.2 96.67 士 0.81 — 455.1 士 6.2 4.92 ± 0 . 0 8 

0.25 91.82 士 0.47 290.5 士 4.5 4.12 士 0.10 

0.3 91.26 士 0.32 232.1 土 0.7 3.00 土 0.00 

0.4 91.39 士 0.42 218.2 士 4.9 3.00 士 ^ ^ 

~ 0 5 41.30 ± 1 . 5 6 215.3 士 3.8 1.00 土 0.00 

0.6 — 41.30 士 1.56 0.0 士 0.0 1.00 士 0.00 

~ 0 7 41.30 ± 1.56 0.0 士 0.0 1.00 士 0.00 

~ 0 8 41.30 ± 1.56 0.0 ± 0 . 0 1.00 士 0.00 

0.9 — 41.30 士 1.56 0.0 士 0.0 1.00 士 0.00 

T o 41.30 士 1.56 0.0 士 0.0 1.00 士 0.00 

Table 4.13: Average and Standard Deviation of Validation Accuracy (%)’ Ex-
ecution Time (in Seconds) and Tree Size (in Number of Nodes) on BALANCE 
based on 10 Independent Runs when the Minimum Impurity Reduction go 
Varies 

hypersurface such that the impurity reduction is greater than or 
equal to 0.5. 

When the minimum impurity reduction is greater than or 
equal to 0.6，the execution time is almost zero and every con-
structed decision tree has the root node only. The GA-based 
QDT algorithm does not attempt to find the optimal quadratic 
hypersurface because the impurity of every possible training set 
of the BALANCE dataset is less than the minimum impurity 
reduction. The impurity of the BALANCE dataset should lie 
between the range 0.5 and 0.6. 
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Figure 4.17: Validation Accuracy (%) of GA-based QDT on BALANCE 
versus Minimum Impurity Reduction QQ 
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Figure 4.18: Execution Time (in Seconds) of GA-based QDT on BALANCE 
versus Minimum Impurity Reduction go 



Chapter 4 Genetic Algorithm-based Quadratic Decision Trees 109 

61 ! 1 1 1 1  

卜 \ • 

^ 3.5 - \ -

I \ _ ^ 
•E 3- ^ \ -

\ -

： \ ^ 
1 - ^ _ 

• 0.51 ‘ ‘ ‘ ‘ ‘ ~ ： ~ 

0 0.2 0.4 0.6 0.8 1 

Minimum Impurity Reduction 

Figure 4.19: Tree Size (in Number of Nodes) of GA-based QDT on BAL-
ANCE versus Minimum Impurity Reduction go 

4.5 Chapter Summary 

In this chapter, a novel multivariate decision tree algorithm 
called GA-based QDT has been proposed by extending the BTGA 
algorithm. The algorithm to construct a GA-based QDT has 
been discussed. The performance of the GA-based QDT is com-

... pared with that of various supervised classification algorithms. 
When a new node of a quadratic decision tree is created, the 

‘ performance of searching for the optimal quadratic hypersurface 
using random search has been compared to that using GAs. The 
effects of changing one of the parameters of the GA-based QDT 
have been studied. 

Experiments show that the GA-based QDT provides a bet-
ter approximation to non-linear class boundaries when com-
pared with other univariate and linear decision tree algorithms. 
Moreover, GAs are more capable of searching for the optimal 
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quadratic decision function than random search at each internal 
node of a quadratic decision tree. 

• End of chapter. 



Chapter 5 

Induction of Linear and 
Quadratic Decision Trees using 
Spatial Data Structures 

5.1 Introduction 

In this chapter, two spatial data structures, including k-D trees 
and generalized quadtrees, are applied to speed up the construc-
tion of oblique and quadratic decision trees on datasets with 
sufficiently large number of training samples. When a new node 
of an oblique or a quadratic decision tree is created, either a k-D 
tree or a generalized quadtree is constructed using the training 
samples arriving at that node. 

.. k-D trees are binary trees. There are two child nodes at each 
non-leaf node of a k-D tree. At each non-leaf node of a k-D tree, 

‘ one of the input attributes is chosen to divide a set of training 
samples into two disjoint subsets. 

There are at most child nodes at each non-leaf node of a 
generalized quadtree, where d is the number of input attributes 
of a sample. At each non-leaf node of a generalized quadtree, 
all the input attributes are applied to divide a set of training 
samples into at most disjoint subsets. 

Both oblique and quadratic decision trees are usually con-• • 

111 
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structed using a top-down approach. At each non-leaf node of 
an oblique decision tree, the optimal linear decision function is 
determined. The linear decision function at a non-leaf node is 
of the form: 

wixi + W2X2 + . . . + WdXd > Wo, (5.1) 

where WQ, WI... ,WD are the coefficients of a linear decision func-
tion. A linear decision function is equivalent to a hyperplane in 
a (^-dimensional attribute space. On the other hand, the optimal 
quadratic decision function is determined at each non-terminal 
node of a quadratic decision tree. The quadratic decision func-
tion at a non-leaf node is specified in (4.1). At each leaf node of 
an oblique or a quadratic decision tree, there is a class label to 
classify a sample arriving at that node. 

The optimality of a hyperplane or a quadratic hypersurface 
at a non-terminal node is determined using the impurity reduc-
tion after partitioning a set of training samples into two disjoint 
subsets. The impurity of a set of samples can be measured 
by the Gini-index, entropy and so on. To measure the impu-
rity reduction after dividing a set of training samples into two 
disjoint subsets, it is required to find the number of training 
samples for each class such that either (4.1) or (5.1) is satisfied, 
depending on whether a quadratic or an oblique decision tree is 
being constructed. An intuitive way to determine the number of 

. . training samples satisfying (4.1) or (5.1) for each class is to con-
sider each of these training samples. However, this approach is 
time consuming on large or high-dimensional datasets because 
the computational time required to evaluate the impurity re-
duction is 0{dn) for a hyperplane and 0{(Pn) for a quadratic 
hypersurface, where n is the number of training samples being 
considered. 

Alternatively, either a k-D tree or a generalized quadtree is 
constructed before searching for the optimal linear or quadratic 
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decision function at each internal node of an oblique or a quadratic 
decision tree. At each node of a k-D tree or a generalized 
quadtree, there is the associated smallest hyperrectangle con-
taining all the training samples arriving at that node. If a 
quadratic (or a linear) decision function does not intersect the 
hyperrectangle, all the training samples inside the hyperrectan-
gle either satisfy or violate (4.1) (or (5.1)). In this case, there is 
no need to determine whether (4.1) or (5.1) is satisfied for each 
of these training samples. Figures 5.1 and 5.2 respectively illus-
trate a linear and a quadratic decision functions which do not 
intersect the smallest hyperrectangle containing a set of train-
ing samples. Otherwise, all of the descendants are considered 
until the decision function in (4.1) or (5.1) does not intersect 
the smallest hyperrectangle of a non-leaf node or a leaf node 
is being considered. If a leaf node is being processed and the 
decision function in (4.1) or (5.1) intersects the smallest hyper-
rectangle containing all the training samples arriving at that 
node, it is necessary to calculate the sign for each of these train-
ing samples. Figures 5.3 and 5.4 respectively illustrate a linear 
and a quadratic decision functions which intersect the smallest 
hyperrectangle containing a set of training samples. 

5.2 Construction of k-D Trees 

. When a new node Nh of an oblique or a quadratic decision tree 
is created, either a k-D tree or a generalized quadtree is con-
structed and the optimal decision function is determined if the 
impurity of the set Sh of training samples arriving at that node 
is not less than a threshold GO and \SH\ is greater than or equal 
to a positive integer no. In this section, the structure of a k-D 
tree is described first. The algorithm to construct a k-D tree is 
then discussed. 

A k-D tree is a binary tree. There are two child nodes at each 

IJ 
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the Smallest Rectangle Containing a Set of Training Samples 
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Figure 5.3: An Example that a Linear Decision Function Intersects the Small-
est Rectangle Containing a Set of Training Samples 

1000「 / / + class 1 / A class 2 900 - / O class 3 
800 - .- • •4 ^ X / O 

7。。- 会 A O / 。 〜 ： 

6�� - 、 。；； 
K~ 500 - q-. /a \ 

PAAA /A . A ^ 400- o O ... * ° y/o & A A . 
‘ « 300 - L / �O 丛 + O 

^ o o o + � 

100 -

QI I I I 1 1 L_ 1 I I I 
0 100 200 300 400 500 600 700 800 900 1000 

Figure 5.4: An Example that a Quadratic Decision Function Intersects the 
Smallest Rectangle Containing a Set of Training Samples 
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non-leaf node of a k-D tree. Suppose each sample has d input 
attributes, a non-leaf node NQ of a k-D tree has the following 
attributes as shown in Figure 5.5: 

1. A set SQ of training samples arriving at the node NQ of a 
k-D tree. 

2. A set SQ,i, i = 1,2."，C, of training samples of class i arriv-
ing at the node NQ, where C is the number of classes. 

3. A (i-dimensional vector yq = (2/Q’i，yQ’2"., 2/Q’d), where yen, 
i = 1,2...,d, is the minimum value of the i力"input attribute 
of the set SQ of training samples. 

4. A o?-dimensional vector z q = ( : q ’ i , 2 ; q ’ 2 . . . , 2 ; Q ’ d ) , where ZQ�i� 

i = 1,2..., d, is the maximum value of the i认 input attribute 
of the set SQ of training samples. 

5. A positive integer kq e {1,2..., d}, denoting the kq input 
attribute is chosen to divide the set SQ of training samples 
into two disjoint subsets. 

6. A real number 7g representing the threshold for dividing 
the set SQ of training samples into two disjoint subsets 
using the /cg input attribute. 

7. A pointer LQ pointing to the left child node of the node 
. . . . NQ. 

8. A pointer RQ pointing to the right child node of the node 
NQ. 

A leaf node of a k-D tree has the first four attributes only. Note 
that ZQ^I] x z q ’ 2 ] … x [VQ.D,么q’d] represents the smallest 
hyperrectangle containing the set SQ of training samples arriving 
at the node NQ of a k-D tree. Figure 5.5 shows an example k-D 
tree used in this chapter. To construct a k-D tree using the set 
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Node A 

yA=(i , i ) 
Za=(6,5) 

Y 厂 3.2 
�={(1,5，1)，(2,3，1)，(6，2，2)， 

. (4 ’1，2)，(3 ’5，2)} 

^ ^ 〜 尸 { ( 1 ， 5 ’ 1 ) ’ ( 2 ， 3 ， 1 ) } ^ 

5*a2={(6，2，2)，(4，1’2)，(3，5，2)} 

Node B Node C 

yB=(l,3) yc=(4，l) 

z b = ( 3 , 5 ) z c = ( 6 , 2 ) 

‘ �= { ( 1 ; 5 ， 1 ) ， ( 2 ， 3 ’ 1 ) ， ( 3 ’ 5 ， 2 ) } ^ 5 c = { ( 6 , 2 , 2 ) , ( 4 , l , 2 ) } 

知 = { ( 1 ， 5 ’ 1 ) , ( 2 ， 3 , 1 ) } 尸 m m 

s b ， 2 = { ( 3 , 5 , 2 ) } - 、，2= { ( 6 , 2 , 2 ) , ( 4 , 1 ， 2 ) } 

Figure 5.5: An Example k-D Tree 

• • • 

‘J .. . 

I 
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Sh of training samples arriving at node Nh of a decision tree, the 
root node of a k-D tree is created first. At node NQ of a k-D tree, 
two new child nodes are created when the number of training 
samples arriving at that node is not less than a positive integer 
nq and there exists kq G {1,2..., d} such that yq^kq + zq̂ kq• 

When a new node NQ of a k-D tree is created, the attributes 
are initialized using the set SQ of training samples arriving at 
that node. If node NQ is the root node of a k-D tree, the small-
est positive integer kq G {1,2..., d} such that yq^kq ^Q.kq is 
determined and the kg input attribute is chosen to partition the 
set SQ of training samples into two disjoint subsets. If node NQ 
is a non-root node of a k-D tree, the following outlines the steps 
to determine the value of kq G {1,2..., d}: 

1. Determine the value of kp G {1,2..., d} such that the /cp in-
put attribute is chosen to divide the set of training samples 
arriving at the parent of the node NQ. 

2. Set kq — {kp mod d) + 1. 

3. WHILE YQ,KQ 二 句’fcg DO 
Set kq = {kq mod d) + 1. 

Given the set SQ = of training samples ar-
riving at the node NQ of a k-D tree, the threshold 7q for dividing 

” the set SQ into two disjoint subsets is given by: 

‘ 1 

= (5.2) 

where XQ J^^, i = 1,2..., \SQ\, is the value of the kq input at-
tribute of the sample xq^ 

Figure 5.6 shows the algorithm of the procedure createkDTree(), 
which outlines the steps of creating a new node of a k-D tree. To 
create the root node of a k-D tree, the procedure createkDTree() 

J 
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accepts the set Sh of training samples arriving at node Nh of a 
decision tree as a parameter. 

5.3 Construction of Generalized Quadtrees 

In this section, the structure of a generalized quadtree is de-
scribed first. After that, the algorithm to construct a generalized 
quadtree is discussed. 

When a sample has d input attributes, there are at most 
child nodes at each non-leaf node of a generalized quadtree. A 
non-leaf node NQ of a generalized quadtree has the following 
attributes as shown in Figure 5.7: 

1. A set SQ of training samples arriving at the node NQ of a 
generalized quadtree. 

2. A set SQ�i, i 二 1，2."，C, of training samples of class i arriv-
ing at the node NQ, where C is the number of classes. 

3. A d-dimensional vector yq = (yQ，i, 2/q’2...，yQ,d), where yQ,i, 
z = 1,2..., d, is the minimum value of the input attribute 
of the set SQ of training samples. 

4. A c?-dimensional vector Z Q = {ZQ^I, where ZQ’̂ , 
i = 1，2..., d, is the maximum value of the input attribute 
of the set SQ of training samples. 

• • 5. A o^-dimensional vector 7q = (7Q’i, 7Q’2…，7Q’d), where 7Q’i, 
i = 1,2..., c?, is the threshold for the i认 input attribute to 
partition the set SQ of training samples. 

6. Aset of pointers rQ，i,r(5’2...,rQ’2d’ where rQ’i, i = 1 ,2 . . . ,2� 

is the pointer pointing to the i认 child node of the node NQ 
of a generalized quadtree. 

A leaf node of a generalized quadtree has the first four attributes 
only. If node NQ is a non-leaf node, it is possible that there 
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PROCEDURE createkDTree 

INPUTS — A set of training samples SQ - {xĵ )，x[̂ )...，xĴ ŜqI)}’ where xj^)= 
(工仏，喊I2.••，工仏’ c^j))?’ I — 1,2..., \SQ\, Q̂̂ d are the 
input attributes and C^Q is the class label of the sample X q . 

- A positive integer k G {1,2...,0?}. If the root node of a k-D tree is 
being created, set k = 1. 

OUTPUT A pointer to a new node NQ of a k-D tree. 

1. Initialize the vector yq = ( 2 / q ’ i， 2 / Q， 2 . . . ’ 2 / Q ’ d ) ’ where yQ�i, i = 1’ 2...,<i, is 
the minimum value of the I仇 input attribute of the set SQ of training 
samples. 

2. Initialize the vector Z q = ( 2 ; q ’ i ’ 免 2 . "，： Q ’ d ) ’ where ZQ’i, i = 1,2..., d, is 
the maximum value of the I仇 input attribute of the set SQ of training 
samples. 

3. Initialize the set SQ,i, i = 1, 2..., C, of training samples of class i arriving 
at the node NQ. 

4. IF \SQ\ < RIQ OR yq = zq, THEN the node NQ is declared as a leaf 
node and go to step 10. 

5. Set kq = {k mod d) + 1. 

6. WHILE yQ�kQ = ZQ̂ Q̂ DO 
Set kQ = (fcg mod d) + 1. 

“ 7. Set 7(5 = EIJi' ^Q.kq-

“ . 8. S e t . L q = createkDTree(5^,kq), where S^ = {x e SqlxkQ < 7q}， 

where rci, i = l,2...,(i, is the value of the i仇 input attribute of a sample 
X € SQ. 

9. Set RQ = createkDTree ( 路 /cq), where = SQ\ S^. 

10. Return the pointer to the node NQ. 

Figure 5.6: The Algorithm of the Procedure createkDTree ( ) 

•V 

“ 
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exists i G {1,2..., 2^} such that Fĝ j is a null pointer. Note 
that [YQ^I, ZQ^I] x z q ’ 2 ] " . x [YQ,D, zq ’d] represents the smallest 
hyperrectangle containing the set SQ of training samples arriving 
at the node NQ of a generalized quadtree. Figure 5.7 shows an 
example generalized quadtree used in this chapter, where d = 2. 
To construct a generalized quadtree using the set Sh of training 
samples arriving at node Nh of a decision tree, the root node of a 
generalized quadtree is created first. At node NQ of a generalized 
quadtree, at most child nodes are created when the number 
of training samples arriving at that node is greater than or equal 
to a positive integer nq and there exists kq G {1,2..., d} such 
that yQ,kQ + ZQ,kQ. 

When a new node NQ is created, the attributes are initial-
ized using the set SQ of training samples arriving at that node. 
All the input attributes are applied to partition the set SQ 
of training samples into at most disjoint subsets. Suppose 
SQ = Xq -̂--? ̂ Q QI)}，where X q = ( 工 � 2 - . . ， � d , c ? , ， 

1 < z < \SQ\̂  ^g^j d are the input attributes and C^Q is 
the class label of the sample Xq\ the value of j = 1, 2...’ d, 
is given by: 

彻 = ( 5 . 3 ) 

1 
Figure 5.8 shows the algorithm of the procedure createQuadtree(), 

. . which outlines the steps of creating a new node of a generalized 
quadtree. To create the root node of a generalized quadtree, 
the procedure createQuadtree() accepts the set Sh of training 
samples arriving at node Nh of a decision tree as the parameter. 

•t� 
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Node A 

y A = ( U ) 

ZA=(6,5) 

V (3 .2，3 .2 ) 

(4，1，2)，(3，5，2)} 

^ ； = { ( ! , 5 , 1 ) , ( 2 , 3 , 1 ) } ^ 

5•八 2={(6，2，2)，(4，1，2)，(3，5，2)} 

I 
Node B Node C Node D 

yB=(2,3) y c = ( l , 5 ) yD=(4 , l ) 

Zb=(2，3) ZC=(3,5) ZD=(6，2) 

... 知 = { ( 2 ， 3 ， 1 ) } 5 c = { ( l , 5 , l ) , ( 3 , 5 , 2 ) } 5^={ (6 ,2 ,2 ) , (4 ,1 ,2 ) } 

^ 、 尸 { ( 2 ， 3 ， 1 ) } ^ 知 = { ( 1 ， 5 ， 1 ) } ^ 

� 2 =丨 ⑴ 知={(3，5，2)} |知，尸{(6，2，2),(4，1，2)} 

, Figure 5.7: An Example Generalized Quadtree 

� • 
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PROCEDURE createQuadtree 

INPUT A set of training samples SQ = {XSJ)’X5^)...，X[^SQ1)}，where x j ^ ) = 
(a;仏’ a:么…，a:仏’ c?)T，I = 1,2..., \SQ\, 仏，•，工[？Id 祉e the input 
attributes and Cq is the class label of the sample XQ. 

OUTPUT A pointer to a new node NQ of a generalized quadtree. 

1. Initialize the vector yq = (jjQ,hyQ，2.",yQ,d)’ where yq^i, i = 1，2…,d, is 
the minimum value of the I仇 input attribute of the set SQ of training 
samples. 

2. Initialize the vector z q = (-^q.i, where ZQ^I, i = 1,2…,D, is 
the maximum value of the I仇 input attribute of the set SQ of training 
samples. 

3. Initialize the set SQ��, i = 1,2...’ C, of training samples of class i arriving 
at the node NQ. 

4. IF \SQ\ < RIQ OR yQ = Zq, THEN the node NQ is declared as a leaf 
node and go to step 9. 

5. FOR i = lTOdDO 
Set f 丄•丨丨7•� bet; 7q,2 - |5q| 

6. FOR i - 1 TO DO 

Set XQ�i = {(f)}. 

7. FOR i = 1 TO Î SqI d o 

(a) Set k = 0. 
(b) FOR j = 1 TO d DO 

•• , i. Set k = k X 2. 
‘ i i . IF x̂ q]̂  > JQJ, THEN set A; = A: + 1. 

(c) Set XQ,k = XQ,k U {x[i)} 

8. FOR i = 1 TO 2 �O 
IF.|xq,i| — 0，THEN set TQ^I = createQuadtree(Xq,J 
ELSE set rQ’i as a null pointer. 

9. Return the pointer to the node NQ. 

^Figure 5.8: The Algorithm of the Procedure createQuadtree ( ) 
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5.4 Induction of Oblique Decision Trees us-
ing Spatial Data Structures 

An oblique decision tree is usually constructed using a top-down 
approach. The optimal hyperplane is determined at each non-
leaf node of an oblique decision tree. The optimality of a hyper-
plane is defined as the impurity reduction after dividing a set 
of training samples into two disjoint subsets. To measure the 
impurity reduction after partitioning a set of training samples 
into two disjoint subsets, it is required to find the number of 
training samples for each class such that (5.1) is satisfied. 

In this chapter, the Gini-index is used to measure the impu-
rity of a set of training samples. Suppose Sh is the set of training 
samples arriving at node Nh of an oblique decision tree. Recall 
that the impurity of the set Sh is defined as: 

‘ 仍 = 1 _ (5.4) 

i=l 

where Sh�i, i = 1,2..., C, is the set of training samples of class i 
arriving at the node Nh and C is the number of classes. Suppose 
Rh is the set of training samples arriving at the node Nh such 
that (5.1) is satisfied and Lh = Sh\ Rh, the weighted average 
impurity of the subsets Lh and Rh is defined as: 

• ‘ 徵(1 —B 靜 2) +靜 (傲 2) ( 5 , ) 
%一1 2-—i. 

where Rh,i, i = 1,2...，(7, is the set of training samples of class 
i arriving at the node Nh such that (5.1) is satisfied and Lh,i 二 

Sh,i \ Rh,i, i = 1,2…,C. Recall that the impurity reduction after 
partitioning the set Sh into the subsets Lh and Rh is defined as: 

g' = gi- 92' (5.6) 
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Therefore, it is necessary to find the values of \Sh,i\, \Rh,i\ and 
L"’i|, i = 1,2...，C，before evaluating the impurity reduction 

after dividing the set Sh into two disjoint subsets. The value of 
Sh,iI, i = 1,2...，C，can be found using the set Sh. Note that 
Lh^i\ = |iSy — \Rh,i\, i = 1,2..., C. Therefore, the most time-

consuming task before evaluating the impurity reduction is to 
find the values of |i4’i|, |/4’2|…，|丑/i’c • 

In this section, rh’i, i = 1,2..., C, is defined as the number of 
elements in the set Rh,i. The values of rh,i, n i ’ 2-"， can be in-
tuitively determined by considering each of the training samples 
in the set Sh. Let û o，切i.",扮d be the coefficients of the linear 
decision function in (5.1). Suppose Sh = 

1 (i) _ / (i) {%) � • _ i 0 Q ii) (i) 
wnere Xĵ  = ) , 2 =丄，2 …’ ^h , ^h,!̂  
… ， a r e the input attributes and cĵ ) is the class label of the 
sample xĵ i), the sign of the following expression is evaluated for 
each training sample x̂ ^ G Sh: 

d 
(5.7) 

j=i 

The following outlines the steps to find the values of r"’i, 7\2..., 
when the linear decision function in (5.1) is used to partition the 
set Sh of training samples into two disjoint subsets: 

1. Set rh,i 二 0, i = 1，2."，C. 

2. FOR z = l T O I別 DO 

(a) Set 5i = ^hj'^j — 
(b) IF 5i>0 THEN, r,̂ ,̂) = r^^^ + 1. 

Alternatively, spatial data structures including k-D trees and 
generalized quadtrees can be applied to determine the values 
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of rh,i,rh,2-'-,rh,c by considering a subset of the training sam-
ples in the set Sh- When node NQ of a k-D tree or a general-
ized quadtree is being considered, it is necessary to determine 
whether the linear decision function in (5.1) intersects the small-
est hyperrectangle HQ = [2/Q’i，ZQ’i] x [2/Q’2, zq’2]... x ZQ^D 
containing the set SQ of training samples arriving at that node. 

If the linear decision function in (5.1) intersects the hyper-
rectangle HQ and the node NQ is a non-leaf node of a k-D tree 
or a generalized quadtree, the children of the node NQ are con-
sidered instead. The process is repeated recursively until a leaf 
node of a k-D tree or a generalized quadtree is considered, or 
the smallest hyperrectangle formed by a node is not. intersected 
by the linear decision function. 

If the linear decision function in (5.1) intersects the hyper-
rectangle HQ and the node NQ is a leaf node of a k-D tree or 
a generalized quadtree, the sign of the following expression is 
evaluated for each training sample Xq G SQ: 

d 

There are two possible scenarios that the linear decision func-
tion in (5.1) does not intersect the smallest hyperrectangle HQ 
containing the set SQ of training samples arriving at node NQ of 

., a k-D tree or a generalized quadtree. The first scenario is that all 
‘ t h e training samples in the set SQ satisfy the linear decision func-

tion in (5.1). In this case, the minimum value of the following 
expression is greater than zero for all x = (xi, x^) G HQ: 

d 

Y ^ x j w j - w o . (5.9) 
i=i 

Note that Sq^i C Rh�i, i 二 1,2..:, C. The minimum value of the 
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expression in (5.9) within the hyperrect angle HQ is given by: 

1 ^ 
T^^'^AvqA^ + sgn(Wj)) + ZQj{l - sgn{wj))] - wq, (5.10) 
〜 = 1 

where 
if a; > 0, 

sgn{x) = 0 ifa: = 0’ （5.11) 
- 1 if X < 0. 

\ 

The second scenario is that the linear decision function in 
(5.1) is violated for all training samples in the set SQ. Note that 
Rh n ^Q = The maximum value of the expression in (5.9) is 
less than zero for all x = (xi,0:2..., XD) G HQ. The maximum 
value of the expression in (5.9) within the hyperrect angle HQ is 
given by: 

1 ^ 
^ Y l ^AvqA^ - sgniwj)) + ZQj{l + s"n(秘力)]-^o- (5.12) 
� = 1 
The time required to calculate the minimum and the maxi-

mum values of the expression in (5.9) is about twice the time 
required to determine whether a sample satisfies the linear deci-
sion function in (5.1). It is more time-consuming to determine 
whether the linear decision function in (5.1) intersects the small-
est hyperrectangle containing at most two training samples be-
fore testing whether the linear decision function is satisfied for 

. e a c h of these training samples. When a node NQ of a k-D tree 
or a generalized quadtree contains at most two training samples, 
neither (5.10) nor (5.12) is evaluated. 

Figure 5.9 shows the algorithm of the procedure processkDTree(), 
which outlines the steps to determine the values of r/̂ î, rh,c 
using a constructed k-D tree. On the other hand, Figure 5.10 
shows the algorithm of the procedure processQuadtree(), which 
outlines the steps to perform the same task using a constructed 
generalized quadtree. 
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PROCEDURE processkDTree 

INPUTS 1. A node NQ of a k-D tree. 

2. A set of training samples SQ = { x q \ Xq\.., Xq®* '̂̂ }, where X q = 
/ (i) (i) (i) {i)\T • _ -I 9 IQ I ( 0 ( 0 (i) , i Q̂ ) ’ ^ = 丄 ， 丄 . . ’ 丨 � ^ q I ， a r e tiie 
input attributes and C^Q is the class label of the sample X q . 

3. A [d + l)-dimensional vector w = {WQ^WI^ where 
Wo, wi..., Wd axe the coefficients of the linear decision function in 
(5.1). 

INPUT/OUTPUT A C-dimensional vector R^ = {RH,I,RH,2-, RH,C), where r̂ I，I = 1，2...，C, 
is the number of training samples of class i arriving at node Nh of an 
oblique decision tree such that (5.1) is satisfied. 

1. IF the node NQ is the root node of a k-D tree, THEN set RH’I = 0， 

i ^^ 1，2.. .J C• 

2. IF S 2，THEN 

(a) 'FOIU = l T O |Sq| DO 
i f TU > 切。，then set r,̂ ,̂) = r,̂ ,̂) + 1. 

(b) Return. 

3- IF I + sgniwj)) + ZQJ[1 — sgn(wj))l > WQ, 
THEN set rh,i = r^ + \SQ^ i = l,2,...’ C 
ELSE IF i y^AVQA^ - sgn(wj)) + ZQj{l + sgn{wj))] < Wo, THEN 
IF the node NQ is a non-leaf node, THEN 

(a) Set SQ = {x G SQLXKQ < 7q } , where XKQ is the value of the KQ 
... input attribute of a training sample x G SQ. 

’ (b) SetS^ = SQ\S^. 

(c) Invoke the procedure processkDTree(LQ, SQ, w, fh). 

(d) Invoke the procedure processkDTree(i?Q, SQ, w, fh). 

ELSE FOR i = 1 TO \SQ\ DO 

IF EU �帅 ， t h e n set r^ cg) = + 1. 

Figure 5.9: The Algorithm of the Procedure processkDTree() 
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PROCEDURE processQuadtree 

INPUTS 1. A node NQ of a generalized quadtree. 

2. A set of training samples SQ = { x q \ X q ^ ^ ' ^ } , where X q = 
(̂ Q̂ n Q̂̂ d' i ~ 1,2..., |5q|, :e|j)’i, : r [ j : 2 . . .，are the 
input attributes and C^Q is the class label of the sample Xg . 

3. A {d + l)-dimensional vector w = {wq̂  Wi^WdY, where 
WQ̂  Wi..., Wd axe the coefficients of the linear decision function in 
(5.1). 

INPUT/OUTPUT A C-dimensional vector FH = (r̂ i，7̂ 2...’ rh,c), where r̂ .i, i = 1’ 2...，C, 
is the number of training samples of class i arriving at node Nh of an 
oblique decision tree such that (5.1) is satisfied. 

1. If the node NQ is the root node of a generalized quadtree, set RH’I = 0， 

i — 1,2..., C. 

2. IF s 2 ， t h e n 

(a) FOR i = lTO |Sq| DO 
IF EU ^i^QJ > 鄉’ t h e n set r,^^,) = r,^^,) + 1. 

(b) Return. 

3. IF 1 + sgn{wj)) + ZQJ{1 - sgn{wj))] > WQ, 
t h e n set rh,i = r ^ + l^g.il, i 二 1，2，…，C 
ELSE IF i ^AVQA'^ - sgn{wj)) + ZQj(l + sgn(wj))] < w^, THEN 
IF the node NQ is a non-leaf node, THEN 

(a) Let XQ�i, i = 1,2...’2"，be the set of training samples arriving at 
the i认 child node of the node NQ. 

(b) FOR i = 1 TO 2 �O 
IF rQ’i is not a null pointer, THEN invoke the procedure 
processQuadtree(rQ，i，XQ^i, w, Fh). 

ELSE FOR z = 1 TO \SQ\ DO 
IF TU 巧 趟 > 鄉 ， t h e n set = + 1. 

Figure 5.10: The Algorithm of the Procedure processQuadtree ( ) 



Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 130 

5.5 Induction of Quadratic Decision Trees us-
ing Spatial Data Structures 

At each non-leaf node of a quadratic decision tree, the optimal 
quadratic hypersurface is found. The optimality of a quadratic 
hypersurface is defined as the impurity reduction after parti-
tioning a set of training samples into two disjoint subsets. To 
evaluate the impurity reduction after dividing a set of training 
samples into two disjoint subsets, it is necessary to find the num-
ber of training samples for each class such that (4.1) is satisfied. 

The impurity reduction after dividing the set Sh of training 
samples into two disjoint subsets is calculated using (4.2), (4.3) 
and (4.4). From (4.2)，（4.3) and (4.4), it is required to find 
the values of \Sh,i\^ and i = 1,2...，C, before eval-
uating the impurity reduction. The most time-consuming task 
before evaluating the impurity reduction is to find the values of 
Rh,i\, \Rh,2\"-, because the values of \Sh,i\, |5̂ /i’2|".，\Sh,c 

can be determined using the set Sh and \Lh,i\ = — \Rh,i\̂  
I = 1，2..., C. 

In this section, rh’i is defined such that rh,i = \Rh,i\^ i = 
1,2. . ,C. Suppose Sh = {x|̂ i),x|f)...，x||Shl)}，where x|；) 二 {x f , , 

(i) (i) {i)\T _ 19 o (i) (i) (i) , i 
J ， 2 = 丄 , 2 ••., ^h ，工/i’i， ...，工h’d are tne 

input attributes and cj^�is the class label of the sample , the 
following outlines the steps to calculate the values of r�i，r"’2 …， 

. r h , c when the decision function in (4.1) is applied to partition 
the set Sh of training samples into two disjoint subsets: 

1. Set rh,i = 0, 2 = 1,2..., C. 

2. FOR i = 1 TO I况 DO 

(a) Set Ci =(交L i ) ) T屈 1!) + bT^i) — 7’ where 
Xh 一 I丄h,l，丄/i’2...,丄/i’d/ . 

(b) IF 0 > 0 THEN, r^^^ = r^^^ + 1. 
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Alternatively, spatial data structures including k-D trees and 
generalized quadtrees can be applied to find the values of 厂/̂山 

r/i’2 …，rh,c by considering a subset of the training samples in the 
set SH- When node NQ of a k-D tree or a generalized quadtree 
is being considered, it is necessary to determine whether the 
quadratic decision function in (4.1) intersects the smallest hy-
perrectangle HQ = [ ？ X [2/q’2，似2]... X ZQ^D] con-
taining the set SQ of training samples arriving at that node. 

If the quadratic decision function in (4.1) intersects the hy-
perrectangle HQ and the node NQ is a non-leaf node of a k-D 
tree or a generalized quadtree, the children of the node NQ are 
considered instead. The process is repeated recursively until a 
leaf node of a k-D tree or a generalized quadtree is considered, or 
the smallest hyperrectangle formed by a node is not intersected 
by the quadratic decision function. 

If node NQ is a leaf node of a k-D tree or a generalized 
quadtree, and the corresponding hyperrectangle HQ is inter-
sected by the quadratic decision function in (4.1), the sign of 
the following expression is evaluated for each training sample 
XJ^) E SQ: 

(xii^rAx^i^ + bTxI^^-T, (5.13) 

where Xq = (̂ g^u ^gld)^-
There are two possible scenarios that the quadratic decision 

function in (4.1) does not intersect the smallest hyperrectan-
• gle HQ containing the set SQ of training samples arriving at 

node NQ of a k-D tree or a generalized quadtree. The first 
scenario is that all the training samples in the set SQ satisfy 
the quadratic decision function in (4.1). In this case, the min-
imum value of the following expression is greater than zero for 
all X = ( x i , X2-..,XD) G HQ: 

x^Ax + b^x - 7. (5.14) 

Three methods of estimating the minimum value of the above 
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quadratic expression within a hyperrectangle will be described 
later. 

The second scenario is that the quadratic decision function in 
(4.1) is violated for all training samples in the set SQ. The maxi-
mum value of the expression in (5.14) within the hyperrectangle 
HQ is less than zero. 

Three methods of estimating the minimum and the maximum 
values of the expression in (5.14) will be introduced. In most 
cases, all of these methods tend to overestimate the maximum 
value of the expression in (5.14) but underestimate the minimum 
value of this expression. Therefore, it is possible that a quadratic 
hypersurface is regarded as cutting a hyperrectangle but this 
actually does not occur. 

However, all of these methods neither underestimate the max-
imum value of the expression in (5.14) nor overestimate the min-
imum value of this expression. If the estimated maximum value 
of the expression in (5.14) is less than zero, its actual value is also 
less than zero. If the estimated minimum value of the expression 
in (5.14) is greater than zero, its actual value is also greater than 
zero. If the estimated maximum value of the expression in (5.14) 
within a hyperrectangle is less than zero or the estimated min-
imum value is greater than zero, the corresponding quadratic 
hypersurface cuts the hyperrectangle. The impurity reduction 
due to a quadratic hypersurface is evaluated accurately and the 
classification accuracy of a constructed quadratic decision tree is 

‘ preserved even k-D trees or generalized quadtrees are employed. 
Given the hyperrectangle HQ = [VQ^UZQ^I] x [yq,2, x 

yQ,(ji, ZQ̂ d], where d is the number of input attributes of a sample, 
the following describes the first algorithm estimating the maxi-
mum value (max and the minimum value (min of the expression 
in (5.14) within the hyperrectangle HQ: 

1. Set (max = E t i s"n(ai，i)) + z ^ / 1 + sgn(ai,i)). 
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2. Set Cmm = E t i + + — sgn(ai,i)).. 

3. FOR i = 1 TO d - 1 DO 
FOR j = i + l TO d DO 

• IF ay > 0, THEN 
( a ) S e t ^max — Cmax + • 

( b ) S e t Cmm = Cmin + '^CLhjVQ.iyQJ• 

ELSE 

(a) Set Cmax = Cmax + • 

( b ) S e t (min — Cmin + 

4. Set Crnax = Cmax+Etl |["Q,“1 — 几 ⑷ ) + 似 几 ⑷ ) : . 

5. Set Cmin = Cmm + E» l l + + -sc/n(6i))". 

6 . S e t ..(^max — Cmax — 7 a n d (^rnin ~ Cmin — T* 

In the first algorithm, the maximum value î̂ max and the 
minimum value “min of the following quadratic expression for 
Xi E [yq^i, ZQ^i], i = l,2...,d, are estimated: 

. a ^ x f + biXi (5.15) 

The following outlines the steps to estimate the values of î̂ max 
and î̂ rniri) ^ 二 1,2..., d. 

- . 1. Set ^i^max = - sgn{ai,i)) + + sgn{a^))'. 

2. Set�,min =字["5，i(l + sgn(ai,i)) + z ^ / 1 — sgn(ai^i)) • 
3. S e t 《 丽 = “ 丽 + + sgn{bi)) + ？/Q,i(l - sgn{bi))]. 

4. Set�,min = Ci,min + ！ — sgn(bi)) + yQ,i(l + sgn{bi)). 

Note that the maximum value “marc, i : l,2...，d，of the ex-
pression in (5.15) within the hyperrectangle HQ may be over-
estimated. However, the minimum value &，min, ^ = 1,2..., d, 



Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 134 

of the expression in (5.15) within the hyperrectangle HQ may 
be underestimated. The impurity reduction due to a quadratic 
decision function can be evaluated accurately. 

Example 1 Estimate the maximum value (max and the minimum value 
Cmin of the quadratic function f{xi^ x^) = 2x\ — x2 — 2xix2 — 
8x1 + 10x2 within the hyperrectangle [1，3] x [1，2] using the 
first algorithm. 

C,max = 2 x 3 2 - 1 2 — 2 x 1 x 1 — 8 x 1 + 1 0 x 2 = 27 

(min = 2 x 1 2 - 2 2 - 2 x 3 x 2 — 8 x 3 + 1 0 x 1 = - 2 8 

In the second algorithm estimating the maximum and the 
minimum values of the expression in (5.14) within the hyper-
rectangle HQ, the maximum value ^I^MAX and the minimum value 
^i,min of the expression in (5.15) for xi G [yq^i, , i = 1,2..., d, 
are calculated rather than estimated. Figure 5.11 outlines the 
steps to calculate the values of ^i^max and “ 她 ， i = 1,2..., d. 
Although the estimation time is increased when compared with 
the first algorithm, but the second algorithm provides the same 
or better estimated maximum and minimum values. 

The second algorithm estimating the maximum value (max 
and the minimum value (rnin of the expression in (5.14) within 
the hyperrectangle HQ is described as follows: 

1. Set (^MAX — ^I,MAX )— 7 , where is the maximum 
value of the expression in (5.15) for xi G [yQ’i’：Q’i], i = 
1，2 • • • ’ d • 

2. Set Cmin = {J2i=i ^i,min) — 7, where IS the minimum 
value of the expression in (5.15) for Xi G [2/Q’i,之Q’i], i = 
1，2••” D • 

3. FOR z = 1 TO d - 1 DO , 
FOR j = z + 1 TO d DO 
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1. S e t ” - 老 . 

2. IF ai�i > 0’ THEN 

• IF p < yQ,i’ THEN 
(a) Set = + KZQ’i. 
(b) Set “min 二 (k’iyl�i + kyq^i. 
ELSE IF p > ZQ’i, THEN 
(a) Set = 0'i,iyQ,i + hyQ,i-

(b) Set Ci.mm = + kZQ’i. 
ELSE IF p < 卿 ; '如’ THEN 

(a) Set = cii’izl + biZQ’i. 
(b) Set =-易. 
ELSE 
(a) Set = ai,iyQ,i + kycu. 

(b) Set = - 4 ^ -

ELSE IF ai’i < 0，THEN 

• IF p < 2/Q,i, THEN 
(a) Set “max = HiVQA + ~2/Q’i. 

(b) Set 二 fli’减i + biZQ’i. 
ELSE IF p > ZQ’i, THEN 
(a) Set ̂ i,max = i + biZQ，i. 
( b ) Set = CLi成、i + % Q ’ i . 

— ELSE IF p < 叫 ‘ ， T H E N 

(a) Set max = - i ^ . 
(b) Set iî min = + biZQ’i. 
ELSE 

(a) Set î̂ rnax =―备 . 

(b) Set î̂ rnax = ( k 成 + &i2/Q’i. 

ELSE 

(a) Set = + sgn{bi)) + yQ’i(l - sgn(bi))]. 

(b) Set Ci.min = - sgn(bi)) + yQ’i(l + sgn(bi))]. 

Figure 5.11: An Algorithm to Calculate the Maximum and the Minimum 
Values of the Quadratic Expression in (5.15) for Xi G [？/i, Zi], i = 1，2..., d 
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• IF aij > 0，THEN 
( a ) S e t (max — Cmax + 

(b) Set Cmin = (min + 2ai,jyQ,iyQ,j. 
ELSE 
(a) Set Cmax = Cmax + '̂ CLijVQ̂ iVQJ-
( b ) S e t � m i n — Cmin + 

Example 2 Estimate the maximum value (max and the minimum value 
(min of the quadratic function f(xi, X2) = 2xi — x2 — 2xix2 — 
8x1 + 10x2 within the hyperrectangle [1,3] x [1,2] using the 
second algorithm. 

.•. max = 2X 1 2 - 8 x l = - 6 , mm = ^ = " 8 

. .•端 = 5〉2 八 - 1 < 0 

...6,max = -22 + 10 X 2 = 16, 6,mm 二 + 10 X 1 = 9 

Cmax = - 6 + 16 - 2 X 1 X 1 = 8 

(min =-8 + 9-2x3x2 = -11 

The expression in (5.14) can be written as: 

E t i + 2 E t i E U + 1 工 i 工 j + E t i biXi - 7 
=Etl — Etl Yfj=i+1 - + xj) + biXi — 7 

= E t i E^li CiiĴ i + E t i H U + I aiA工i - �) 2 + E t i biOCi - 7 
= HtM^l + biXi) + EtI Ej=i+i aiA 工 i —工 j)2 - 7 

where a- — ^ij- In the third algorithm estimating the 
maximum value (max and the minimum value (rnin of the ex-
pression in (5.14) within the hyperrectangle HQ, it is necessary 
to calculate: 
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• The maximum v a l u e � ’醒工 and the minimum value《爪 

of the following quadratic expression for xi € [yi, Zi], i = 
1，2 • • •, d • 

a[xl + biXi (5.16) 

• The maximum value Îĵ rnax and the minimum value Îĵ rnin 
of the following quadratic expression for Xi G [ŷ , ẑ ], i = 
1,2..., d — I, j = 2 + + 2 , d . 

{xi - Xj f (5.17) 

The algorithm to calculate the values of îĵ rnax and îĵ min is 
described as follows: 

1. Set Pi = 0.5(ZQ’i + VQ̂ i) and p2 = 0.5{zqj + yqj). 

2. IF Pi > p2, THEN set vi = z q � �- yq ĵ ELSE set vi = 
yQ,i ^Qj-

3. IF ZQ�i < THEN set v̂  = ZQ,i - yqj 
ELSE IF YQ,I > ZQJ, THEN set 仍= Y Q , I — ZQJ 
ELSE set V2 = 0. 

4. IF dij > 0, THEN 

(a) S e t � ’丄賺 z = a i jv l 

(b) Set ‘ j — = 

� ELSE 

(a) Set�’j’爪az = a i jv l 3 
(b) Set = 

The following describes the third algorithm estimating the 
maximum value (max and the minimum value (min of the ex-
pression in (5.14) within the hyperrectangle HQ： 
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1. Set (max = (Ei=i ^i,max) — 7, wheie C’賺T is the maximum 
value of the expression in (5.16) for Xi G [yg.i, zq^i]^ i = 
1，2 • • • ̂  DJ • 

2. Set Crnin = ( E t i 蘇min) _ 7，where C'i,min is the minimum 
value of the expression in (5.16) for Xi G |i/Q’i, ZQ’i]，i = 
1 ’ 2 •..， 

3. FOR i = lTOd-lDO 
FOR j = TO dDO 

� Set Cmaa; 二 Cmax + 

( b ) S e t (min = Cmin + 

Example 3 Estimate the maximum value (max and the minimum value 
Cmin of the quadratic function / (x i , 0:2) = 2a;卜工$ —20：1工2 — 
8xi + 10x2 within the hyper rectangle [1,3] x [1，2] using the 
third algorithm. 

2X1 ~ ~ 20；10：2 - 8x1 + 10x2 

= 2 X 1 — XL — XI-\- {XI — 2XIX2 + ^2) — XL — 8x1 + 10X2 

= x\- 8x1 - 2x1 + 10工2 + — 0；2)2 

0.5 X (1 + 2) < 0.5 X (1 + 3) A 3 > 1 A 1 < 2 

...̂ i,2,max — (1 - 3)2 = 4,仏2’min = • 

• . . • 端 = 4 � 3 / \ l � 0 

...《’醒工=12 — 8 X 1 = —7’ 仏 饥 二 32 — 8 X 3 = - 1 5 

V ^ = 2 . 5 > 2 A - 2 < 0 

...？2,max = -2x22+10x2 = 12,线爪‘，=-2XI^+IOX1 = 8 

Cmax = - 7 + 1 2 + 4 = 9 ‘ 
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Cmm = -15 + 8 + 0 = - 7 

Figure 5.12 shows the algorithm of the procedure 
processkDTreeCurve(), which outlines the steps to determine 
the values of using a constructed k-D tree. On 
the other hand, Figure 5.13 shows the algorithm of the procedure 
processQuadtreeCurve(), which outlines the steps to perform 
the same task using a generalized quadtree. 

5.6 Performance Evaluation 

In this section, the performance of applying spatial data struc-
tures to the induction of oblique and quadratic decision trees 
is evaluated. Two oblique decision tree algorithms, called Bi-
nary Tree-Genetic Algorithm with k-D trees (BTGA with k-
D Trees) and Binary-Tree Genetic Algorithm with Quadtrees 
(BTGA with Quadtrees), are proposed by extending BTGA. In 
the BTGA with k-D Trees and the BTGA with Quadtrees, a k-
D tree and a generalized quadtree are respectively constructed 
before finding the optimal hyperplane at each non-leaf node of 
a linear decision tree. 

Similarly, two quadratic decision tree algorithms, called Ge-
netic Algorithm-based Quadratic Decision Tree with k-D Trees 
(GA-based QDT with k-D Trees) [41] and Genetic Algorithm-
based Quadratic Decision Tree with Quadtrees (GA-based QDT 

‘ w i t h Quadtrees), are introduced by extending the GA-based 
QDT. In the GA-based QDT with k-D Trees and the GA-based 
QDT with Quadtrees, a k-D tree and a generalized quadtree 
are respectively built before searching for the optimal quadratic 
decision function at each internal node of a quadratic decision 
tree. 

GA-based QDT with k-D Trees VI, GA-based QDT with k-D 
Trees V2 and GA-based QDT with k-D Trees V3 are respectively 
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PROCEDURE processkDTreeCurve 

INPUTS 1. A node NQ of a k-D tree. 

2. A set of training samples SQ = where X q = 

(喊:i ’ 工么 . . .， I 仏， I ~ 1,2..., \SQ\, ^ ^ q j , a r e the 
input attributes and Cq is the class label of the sample X q . 

3. The symmetric matrix A = (aj^k) of order d specified in (4.1). 
4. The d-dimensional vector b = (BI，L)2...’BD)T specified in (4.1). 
5. The real constant 7 specified in (4.1). 

i n p u t / o u t p u t a C-dimensional vector fh 二 (rh,i, 7\2."’ r\c)，where rh,i, i = 1，2...’ C, 
is the number of training samples of class i arriving at node Nh of a 
decision tree such that (4.1) is satisfied. 

1. If the node NQ is the root node of a k-D tree, set RH’I = 0, i = 1,2..., C. 

2. IF < 2，THEN 

(a) FOR i = 1 TO Î SqI DO 
• ； Spt 5 � —f r �T � T �F 

ii. IF + b^xSj) > 7, THEN set r,^^,) = r � � § ) + 1. 

(b) Return. 

3. Estimate the maximum value Cmax and the minimum value (min of 
the expression in (5.14) within the hyperrectangle HQ = [2/q,i, ZQ^I] x 

[2/q，2，句,2]…X [YQ,D,ZQ,D]-

4. IF (min > 0, 
THEN set r ^ = r ^ + {SQ^I i = 1，2’..., C 

“ , ELSE IF Cmax < 0，THEN 
IF the node NQ is a non-leaf node, THEN 

(a) Set Sq = { k e Sqlxkg < 7q}，where XkQ is the value of the kq 
input attribute of a training sample x G SQ. 

(b) Set 功 = 
(c) Invoke the procedure processkDTreeCurve(LQ, 5q , A, b, 7, fh). 

(d) Invoke the procedure processkDTreeCurve(i?Q, SQ, A, b, 7, fh). 

E L S E F O R i = lTO |5q| D 0 ' 

(a) Set Xq = (xq^j, XQ 2---I ^Q^d)̂ -

(b) IF + b^xSj) > 7’ t h e n set r e g ) = VSj) + 1. 

Figure 5.12: The Algorithm of the Procedure processkDTreeCurve ( ) 
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PROCEDURE processQuadtreeCurve 

INPUTS 1. A node NQ of a generalized quadtree. 

2. A set of training samples SQ = where xj^)= 
(xq^j, ^qY^ 1 ^ ~ 1,2..., IS'qI, ^qV " ' are the 
input attributes and Cq is the class label of the sample X q . 

3. The symmetric matrix A = {aj^k) of order d specified in (4.1). 
4. The c?-dimensional vector b = (&i，62..., 了 specified in (4.1). 
5. The real constant 7 specified in (4.1). 

i n p u t / o u t p u t a C-dimensional vector r^ = {rh,i,rh,2-, rh’c), where rh,i, i = 1，2...，C, 
is the number of training samples of class i arriving at node Nh of a 
decision tree such that (5.1) is satisfied. 

1. If the node NQ is the root node of a generalized quadtree, set RH,I = 0, 
i — 1，2..., C, 

2. IF S 2, THEN 

(a). FOR i = \ TO \SQ\ DO 
；CPF YCO — (J^ J^ J^ \T 
丄-oei Xq _〈丄Q’1，丄Q’2...，丄. 

ii. IF + b ^ x l j ) > 7’ t h e n set r.̂ ^g) = r,^^,) + 1. 

(b) Return. 

3. Estimate the maximum value (̂ max and the minimum value ^min of 
the expression in (5.14) within the hyperrectangle HQ = [YQ,I, ZQ^I] X 
feQ’2 内’ 2]…X [2/Q’d’:Q，d]. 

4 IP c饥切 > 0， 

•“ . t h e n set rh,i = r^i + |知i|，i = 1，2,…’ C 
ELSE IF Cmax < 0’ THEN 
IF the node NQ is a non-leaf node, THEN 

(a) Let XQ’i, i = 1,2...，2�be the set of training samples arriving at 
the I仇 child node of the node NQ. 

(b) FOR i = 1 TO 2化O 
IF Tq î is not a null pointer, THEN invoke the procedure 
processQuadtreeCurve(rQ,i, XQ’�A, b, 7，rh). 

ELSE FOR i = 1 TO \SQ\ DO 

(a) Set Xq = (̂ Q̂ u Q̂̂ d)̂ -

(b) IF + b^xlj) > 7, THEN set r … � � =r … � � + 1. 

Figure 5.13: The Algorithm of the Procedure processQuadtreeCurve() 
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the GA-based QDT with k-D Trees algorithms using the first, 
the second and the third method of estimating the maximum 
and the minimum values of the expression in (5.14) within a 
hyperrectangle. GA-based QDT with Quadtrees VI, GA-based 
QDT with Quadtrees V2 and GA-based QDT with Quadtrees 
V3 are respectively the GA-based QDT with Quadtrees algo-
rithms using the first, the second and the third method of esti-
mating the maximum and the minimum values of the expression 
in (5.14) within a hyperrectangle. 

In this chapter, the experiments are divided into four parts: 

• The performance of the BTGA with k-D Trees, the BTGA 
with Quadtrees, and all versions of the GA-based QDT 
with k-D Trees and the GA-based QDT with Quadtrees 
is compared with that of various supervised classification 
algorithms in terms of validation accuracy and execution 
time. 

• The effects of modifying the minimum number of training 
samples at each leaf node of a k-D tree are investigated. 

• The effects of changing the minimum number of training 
samples at each leaf node of a generalized quadtree are 
studied. 

• The effects of changing the size of datasets are investigated. 

‘ All the experiments were executed on a dual Intel Xeon 2.2GHz 
machine. 

5.6.1 Performance Comparison with Various Super-
vised Classification Algorithms 

In this subsection, the performance of the BTGA with k-D 
Trees, the BTGA with Quadtrees, and all variants of the GA-
based QDT with k-D Trees and the GA-based QDT with Quadtrees 
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is compared with that of various supervised classification algo-
rithms, including C4.5, OCl, NDT, OCl-GA, OCl-ES, BTGA 
and GA-based QDT. 

The first dataset, called ADS9, is an artificial dataset with 
300 samples. ADS9 is a three-class problem. Two straight lines 
are used to separate the samples into three classes. Each sample 
is a two-dimensional vector (xi,x2), where xi, X2 G [0,1000]. If 
a sample satisfies (5.18)，it is labeled as class 1. If a sample 
violates (5.18) but satisfies (5.19), it is labeled as class 2. If a 
sample satisfies neither (5.18) nor (5.19), it is labeled as class 3. 
Figure 5.14 shows the dataset ADS9. 

-0.1a:i +0.9x2 > 400 (5.18) 
0.2x1 - 0.8x2 < 350 (5.19) 

The second dataset, called ADSIO, is an artificial dataset 
with 1000 samples. ADSIO is a three-class problem. Each sam-
ple is a two-dimensional vector (xi, X2), where xi, X2 G [0,1000 . 
If a sample satisfies (5.20), it is labeled as class 1. If a sample 
violates (5.20) but satisfies (5.21), it is labeled as class 2. If a 
sample satisfies neither (5.20) nor (5.21), it is labeled as class 3. 
Figure 5.15 shows the dataset ADSIO. 

fa - 500)2 (0；2 - 500)2 

202500 + 122500 〉丄.。 （ .̂？。） 

• (rri - 500)2 (幻 _ 510)2 
90000 + 62500 〉工.。 卿 

The third dataset, called ADSll, is also an artificial dataset 
with 1000 samples. ADSll has three possible classes. Each sam-
ple is a two-dimensional vector (XI, X2), where XI, X2 G [0’ 1000 . 
If a sample satisfies (5.22), it is labeled as class 1. If a sample 
violates (5.22) but satisfies (5.23), it is labeled as class 2. If a 
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1000� + + + + + + + + + 
+ + 本 + + + 十 十 + class 1 

, + . . . , + ^ class 2 
900 - + , 十 卞 十 十 + 十 + + o class 3 

++ + + 补 + ‘ + =r+ 
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‘ Figure 5.14: The Dataset ADS9 
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1000�++ + ++++++ + +. +++4.+-IV+ + + ~ 
++ ++ 本 + + + + + + + + + 主 本 "i + class 1 
•h. , + + , ^ + +J=+ +, A class 2 

9。。广:+ + + + 、 + 1:+++ +,+ + ̂  +++:+++++ V : 

4 � � . + + + + � : + { i f � J . +++: 
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< Figure 5.15: The Dataset ADSIO 
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Figure 5.16: The Dataset ADSll 

sample satisfies neither (5.22) nor (5.23), it is labeled as class 3. 
Figure 5.16 shows the dataset ADSll. 

. ( x i - 550)2 - 500)2 
1 2 2 5 0 0 + 1 4 4 0 0 0 〉 丄 . 。 （。.‘之） 

工2 > 6 0 0 s m ( ^ ) (5.23) 

The fourth dataset, called ECOLI, is a public domain dataset 
from the UCI machine learning repository. This dataset has 
336 samples and 8 classes. Each sample has 7 numeric input 
attributes. 

The fifth dataset, called BALANCE, is also a public domain 
dataset from the UCI machine learning repository. This dataset 
has 625 samples and 3 possible classes. Each sample has 4 nu-
meric input attributes. 
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Dataset Number of Generations 
^ A D S 9 ^ 60,000 

A D S I O ~ 60，OOP 
ADSll 60,000 
ECOLI — 300,000 

BALANCE 150,000 

Table 5.1: Number of Generations for OCl-ES on ADS9, ADSIO, ADSll , 
ECOLI and BALANCE 

Parameters ADS9 | ADSIO | ADSll | ECOLI | BALANCE 
Population Size 100 

Number of 
Generations 6000 2000 5000 4000 2000  

Crossover 
Probability 0.6 0.9 1.0 0.9 0.9 
Mutation -

Probability 0.1 0.1 0.1 0.3 0.15 

Table 5.2: Parameters of OCl-GA on ADS9, ADSIO, ADSll , ECOLI and 
BALANCE 

The implementation of the OCl-ES algorithm is same as that 
in [8]. Table 5.1 shows the number of generations for the OCl-
ES algorithm on each dataset. 

The implementation of the OCl-GA algorithm in this section 
‘ is same as that in Section 3.3.1. Table 5.2 shows the parame-

ters of the OCl-GA algorithm so as to maximize its validation 
accuracy on each dataset. 

Table 5.3 shows the parameters of the BTGA and all of its 
variants so that their validation accuracies are maximized on 
each dataset. If the number of training samples at a node is less 
than a positive integer no or the impurity reduction is less than 
a threshold go, no child node is created in the BTGA. 
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Parameters ADS9 | ADSIO | ADSll | ECOLI | BALANCE 
Population Size 100 

Number of 
Generations 1000 1000 1000 4000 2000 

Crossover 
Probability 0.7 0.9 0.9 0.8 0.8 
Mutation 

Probability 0.05 0.05 0.1 0.15 0.1 
^ 50 15 10 15 — 10 
go 0.3 0.01 0.01 0 . 1 0 . 1 

Table 5.3: Parameters of BTGA and its Variants on ADS9, ADSIO, ADSll , 
ECOLI and BALANCE 

Table 5.4 shows the parameters of the GA-based QDT and all 
of its variants so as to maximize their validation accuracies. The 
value of no specifies the minimum number of training samples 
at each node of a quadratic decision tree and the value of go 
specifies the minimum impurity reduction. Standard parameter 
settings are used in various supervised classification algorithms 
including C4.5, OCl and NDT. 

Table 5.5 shows the average and the standard deviation of 
the validation accuracy of various supervised classification algo-
rithms on ADS9, ADSIO and ADSll when 10-fold cross-validation 
is applied over 10 runs. On the other hand, Table 5.6 reports the 

. average and the standard deviation of the validation accuracy 
of various supervised classification algorithms on ECOLI, BAL-
ANCE when 10-fold cross-validation is applied over 10 runs. 

According to the one-sided t-tests, the GA-based QDT and 
all of its variants outperform the others on ADSIO, ADSll, 
ECOLI and BALANCE in terms of validation accuracy at 95% 
confidence interval. The decision function at each non-terminal 
node of a GA-based QDT and its variants usually provides a 
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Parameters ADS9 丨 ADSIO | ADSll | ECOLI | BALANCE 
Population Size 100 

Number of 
Generations 1000 

Crossover 
Probability 0.9 0.9 0.9 0.9 0.9 
Mutation 

Probability 0.1 0.15 0.15 0.1 0.1 
no 50 一 100 80 20 30 — 
go 0.3 0.2 0.3 0.15 0.1 

Table 5.4: Parameters of the GA-based QDT and its Variants on ADS9, 
ADSIO, ADSll , ECOLI and BALANCE 

better approximation to non-linear class boundaries when com-
pared with that of univariate and oblique decision tree algo-
rithms. When a new node is created, the GA-based QDT and 
its variants are more capable of finding a better quadratic deci-
sion function than NDT because they have better capability of 
escaping from local optima. 

On the other hand, the BTGA and all of its variants outper-
form the others on ADS9 in terms of validation accuracy at 95% 
confidence interval using the one-sided t-tests. Since the class 
boundaries of ADS9 are linear, two straight lines can be used to 
partition the samples into three classes completely. Moreover, 

• a quadratic hypersurface tends to overfit the training samples 
when they are linearly separable. 

The validation accuracy of BTGA is same as that of the 
BTGA with k-D Trees and the BTGA with Quadtrees. The 
main difference between the BTGA and its variants is that dif-
ferent algorithms are used to evaluate the impurity reduction 
after partitioning a set of training samples into two disjoint sub-
sets, although the same result is obtained using either the BTGA 
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- Algorithm ADS9 ADSIO ADSl l 
C4.5 95.6 士 0.7 95.1 士 0.3 94.0 士 o i 
OCi 97.4 士 0.8 95.3 土 0.8 95.5 土 0.7 

- NDT " ^ 士 0.5 95.5 士 0.6 95.1 士 oTT 
一 0C1-GA 95.9 士 0.9 94.6 士 0.7 94.8 土 o "T 

OCl-ES 98.3 士 0.4 95.7 士 0.6 95.2 士 0.7 
BTGA 98.7 士 0.5 96.5 95.9 士 oT" 

GA-based QDT 98.1 士 0.5 —99.2 士 0.3 "^8.6 士 0.4 
- BTGA with k-D Trees " ^ 土 0.5 96.5 士 0.7 95.9 士 0.4 
- BTGA with Quadtrees 98.7 士 0.5 96.5 士 0.7 95.9 士 0.4 
~GA-based QDT with k-D Trees VI 98.1 士 0.5 99.2 士 0.3 98.6 士 d T 

GA-based QDT with k-D Trees V2 98.1 士 0.5 99.2 士 0.3 98.6 士 0.4 
“GA-based QDT with k-D Trees V3 "98.1 土 0.5 99.2 士 0.3 98.6 士 0.4 

GA-based QDT with Quadtrees VI 98.1 士 0.5 99.2 士 0.3 98.6 士 0.4 
GA-based QDT with Quadtrees V2 98.1 士 0.5 99.2 士 0.3 98.6 士 0.4 
GA-based QDT with Quadtrees V3 98.1 士 0.5 99.2 土 0.3 98.6 士 0.4 

Table 5.5: Average and Standard Deviation of Validation Accuracy (%) of 
Various Supervised Classification Algorithms on ADS9, ADSIO and ADSl l 
based on 10 Independent Runs 

or one of its variants. On the other hand, the GA-based QDT 
and all of its variants construct the same quadratic decision tree 
when the same set of parameters is applied. 

Table 5.7 shows the average and the standard deviation of the 
. execution time of various supervised classification algorithms on 

ADS9, ADSIO and ADSll when 10-fold cross-validation is ap-
plied over 10 runs. Table 5.8 shows the average and the standard 
deviation of the execution time of various supervised classifica-
tion algorithms on ECOLI and BALANCE when 10-fold cross-
validation is applied over 10 runs. 

The BTGA with k-D Trees and the BTGA with Quadtrees 
run faster than the BTGA on all datasets. Note that the maxi-
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Algorithm ECOLI BALANCE 
C4.5 81.6 士 1.2 77.6 士 0.7 

OCl ~ 80.7 士 1.8 91.1 士 0.6 
NDT 81.1 士 1.8 91.8 士 1.1 

OCl-GA 83.6 士 1.3 93.9 士 1.2 

OCl-ES 80.6 士 2.0 9 0 7 士 0.9 

BTGA ~ 83.6 士 1.4 93.1 士 1.0 
GA-based QDT 84.9 士 0.7 97.2 士 0.5 

BTGA with k-D Trees 83.6 士 1 . 4 9 3 . 1 士 1.0 
BTGA with Quadtrees 83.6 士 1.4 93.1 ± 1.0 

GA-baged QDT with k-D Trees v F " 84.9 士 0.7 97.2 士 0.5 
GA-based QDT with k-D Trees V2 84.9 士 0 7 97.2 土 0.5 
GA-baged QDT with k-D Trees V3 84.9 士 0.7 97.2 ± 0.5 
GA-based QDT with Quadtrees VI 84.9 士 0 . 7 9 7 . 2 士 0.5 
GA-based QDT with Quadtrees V2 84.9 士 0.7 97.2 ± 0 . 5 
GA-baged QDT with Quadtrees V3 84.9 土 0.7 97.2 士 0.5 

Table 5.6: Average and Standard Deviation of Validation Accuracy (%) 
‘ of Various Supervised Classification Algorithms on ECOLI and BALANCE 

based on 10 Independent Runs 
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mum and the minimum values of the expression in (5.9) within 
a hyperrectangle can be calculated accurately. The time re-
quired to calculate these values within a hyperrectangle is ap-
proximately equal to twice the time required to find the sign of 
the expression in (5.9) for a training sample. When there are 
not too few training samples at all leaf nodes of a k-D tree or a 
generalized quadtree, the BTGA with k-D Trees and the BTGA 
with Quadtrees run faster than the BTGA. Among the BTGA 
and its variants, the BTGA with k-D Trees run the fastest on 
ECOLI and BALANCE. The BTGA with Quadtrees run the 
fastest on ADS9, ADSIO and ADSll. 

All versions of the GA-based QDT with k-D Trees run faster 
than the GA-based QDT on ADS9, ADSIO, ADSll and ECOLI. 
The execution time of the GA-based QDT with k-D Trees V3 
is longer than that of the other versions of the GA-based QDT 
with k-P Trees on ADS9, ECOLI and BALANCE. On the other 
hand, all versions of the GA-based QDT with Quadtrees run 
faster than the GA-ba^ed QDT on ADS9, ADSIO and ADSll. 
The execution time of the GA-based QDT with Quadtrees V3 
is longer than that of the other versions of the GA-based QDT 
with Quadtrees on ADS9, ECOLI and BALANCE. 

Among the GA-based QDT and all of its variants, the GA-
based QDT with k-D Trees V2 run the fastest on ADSIO and 
BALANCE. The GA-based QDT with Quadtrees VI run the 
fastest on ADS9. The GA-based QDT with Quadtrees V2 run 

‘ t h e fastest on ECOLI. The GA-based QDT with Quadtrees V3 
run the fastest on ADSll. The validation accuracy of each vari-
ant of the GA-based QDT is identical to that of each other for 
all datasets. 
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Algorithm ADS9 ADSIO ADSl l 
C4.5 < 1 — < 1 ^ 

“ OCl 4.1 士 1.0 士 1.8 33.2 士 1.8 
NDT 2.4 ± 0 . 5 2 4 . 2 士 1.2 25.0 士 2.4 

OCl-GA 21.5 土 1.4 265.1 士 5 . 1 2 9 2 . 3 士 3.2 

0 C 1 - E S 24.9 士 0.3 256.8 士 5.8 286.5 土 2.1 

— BTGA 士 1.3 士 6.2 265.7 士 1.6 
— BTGA with k-D Trees 12.0 士 0.5 " ^ . 4 士 2.7 1 3 1 . 8 士 1.2 

BTGA with ^Quadtrees 11.0 士 0.1 i . 2 士 2.5 129.6 土 1.5 
GA-based QDT 41.0 士 0.9 219.1 土 1.2 216.5 士 1.0 

GA-based QDT with k-D Trees VI ~19A 士 1.0 163.4 士 5 . 2 1 7 0 . 0 士 5.7 
—GA-baaed QDT with k-D Trees V2 l 9 . 3 士 0.8 士 2.3 117.8 士 3.6 
—GA-baged QDT with k-D Trees V3 21.8 士 6.3 103.6 士 3.0 102.6 士 1.8 
GA-based QDT with Quadtrees VI 18.1 士 0.6 " i ^ . 4 土 1.4 157.1 士 2.5 

"GA-based QDT with Quadtrees V2 19.8 士 1.5 96.2 士 5.8 124.5 士 11.2 
~GA-based QDT with Quadtrees V3 22.0 士 2.1 94.8 土 5.2 94.8 土 2.0 

Table 5.7: Average and Standard Deviation of Execution Time (in Seconds) 
‘ of Various Supervised Classification Algorithms on ADS9, ADSIO and ADSl l 

based on 10 Independent Runs 
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Algorithm ECOLI BALANCE 
C4.5 < 1 < 1 
OCl 73.7 士 2.1— 57.8 土 0.6 
NDT 142.0 ± 2 . 7 9 0 . 3 士 2.6 

OCl-GA - 1015 士 27 471.2 士 30.0 
OCl-ES 1021 士 38 476.1 士 12.9 
BTGA - 1007 士 28 485.7 士 67.3 

GA-based QDT —891.6 士 14.0 366.7 土 5.1 
BTGA with k-D TVees 一 665.2 士 14.9 218.6 士 7.4 
BTGA with Quadtrees 783.4 士 19^" 222.0 土 7.9 

GA-based QDT with k-D lYees V l " 837.3 士 13.1" 284.4 士 9.6  
GA-based QDT with k-D Trees V2 840.8 土 12.5 300.1 士 11.5  
GA-based QDT with k-D Trees V3 861.5 ± 1 3 . 5 3 7 1 . 6 士 8.9 
GA-based QDT with Quadtrees v f 784.4 士 16.0 310.2 士 12.2 
GA-based QDT with Quadtrees V2_ 778.6 士 16 .7 308.5 士  

GA-based QDT with Quadtrees V3 915.6 土 15.2 372.3 士 21.2 

Table 5.8: Average and Standard Deviation of Execution Time (in Seconds) 
‘ of Various Supervised Classification Algorithms on ECOLI and BALANCE 

based on 10 Independent Runs 
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NQ Execution Time (s) 
4 22.2 士 0.7 

~ 8 18.3 士 0.8 
" U " 14.9 士 0.6 

12.8 士 0.6 

12.0 士 0.5 
128 12.3 士 0.5 
256 14.2 士 0.6 

Table 5.9: Average and Standard Deviation of Execution Time (in Seconds) 
of BTGA with k-D Trees on ADS9 based on 10 Independent Runs when 
the Minimum Number of Training Samples NQ at Each Node of a k-D Tree 
Varies 

5.6.2 Effects of Changing the Minimum Number of 
Training Samples at Each Node of a k-D Tree 

In this subsection, the effect of changing the minimum number 
of training samples at each node of a k-D tree is investigated in 
terms of execution time. 

B T G A with k-D Trees 

ADS9 is chosen to investigate the effect of changing the mini-
mum number of training samples NQ at each node of a k-D tree 
in the BTGA with k-D Trees. Table 5.9 shows the average and 
the standard deviation of the execution time of the BTGA with 
k-D Trees as the minimum number of training samples NQ at 
each node of a k-D tree varies. The minimum execution time is 
attained when NQ = 64. The execution time of the BTGA with 
k-D Trees is longer than that of BTGA when NQ = 4,8. (See 
Table 5.7) However, the validation accuracy of BTGA with k-D 
trees is same as that of BTGA for all values of NQ. 



Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 156 

NQ GA-based QDT with k-D Trees — 
VI I V2 I V3 一 

4 294.4 士 9.2 323.6 士 15.6 570.4 士 23.2 

~ ~ 8 2 8 4 . 4 ± 9 . 6 3 0 0 . 1 士 11.5 498.0 士 20.1 

16 311.2 土 11.1 309.6 士 15.2 404.1 土 16.6 

~ ~ 3 3 0 . 4 ± 1 2 . 2 ~ ~ 3 1 3 . 8 士 9 . 4 ~ ~ 3 8 0 . 2 士 15.8 

6 4 343.0 土 10.5 351.8 士 10.1 371.6 士 8.9 

Table 5.10: Average and Standard Deviation of Execution Time (in Seconds) 
of all Versions of the GA-based QDT with k-D Trees on BALANCE based 
on 10 Independent Runs when the Minimum Number of Training Samples 
NQ at Each Node of a k-D Tree Varies 

GA-based QDT with k-D Trees 

The BALANCE dataset is selected to investigate the effect of 
modifying the minimum number of training samples NQ at each 
node of a k-D tree in all versions of the GA-based QDT with k-D 
Trees. Table 5.10 shows the average and the standard deviation 
of the execution time of all versions of the GA-based QDT with 
k-D Trees as the minimum number of training samples NQ at 
each node of a constructed k-D tree varies. The minimum execu-
tion time is attained when NQ = S for the GA-based QDT with 
k-D Trees VI and the GA-based QDT with k-D Trees V2 and 
NQ = 64 for the GA-based QDT with k-D Trees V3. The exe-
cution time of the GA-based QDT with k-D Trees V3 is longer 

• than that of the GA-based QDT. (See Table 5.8) The reason is 
that the time required to estimate the maximum and the mini-
mum values of the expression in (5.14) using the third algorithm 
is so long that the computational overhead caused by processing 
a k-D tree cannot be completely compensated by reducing the 
number of tests on the decision function in (4.1). Nevertheless, 
the validation accuracy of the GA-based QDT is same as that 
of all variants of the GA-based QDT with k-D Trees. 
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5.6.3 Effects of Changing the Minimum Number of 
Training Samples at Each Node of a Generalized 
Quadtree 

In this subsection, the effect of modifying the minimum number 
of training samples at each node of a generalized quadtree is 
investigated in terms of execution time. 

BTGA with Quadtrees 

ADS9 is chosen to investigate the effect of changing the mini-
mum number of training samples NQ at each node of a general-
ized quadtree in the BTGA with Quadtrees. Table 5.11 shows 
the average and the standard deviation of the execution time of 
the BTGA with Quadtrees as the minimum number of training 
samples NQ at each node of a generalized quadtree varies. The 
minimum execution time is attained when NQ = 128. The exe-
cution time of the BTGA with Quadtrees is longer than that of 
the BTGA when NQ = 4. (See Table 5.7) However, the valida-
tion accuracy of the BTGA with Quadtrees is same as that of 
BTGA no matter what the value of NQ is. 

GA-based QDT with Quadtrees 

The BALANCE dataset is selected to study the effect of chang-
ing the minimum number of training samples NQ at each node of 

. a generalized quadtree in all versions of the GA-based QDT with 
Quadtrees. Table 5.12 shows the average and the standard devi-
ation of the execution time of all versions of the GA-based QDT 
with Quadtrees as the minimum number of training samples NQ 
at each node of a generalized quadtree varies. The minimum ex-
ecution time is attained when NQ = 32 for the GA-based QDT 
with Quadtrees VI and the GA-based QDT with Quadtrees V2 
and NQ = 128 for the GA-based QDT with Quadtrees V3. The 
execution time of the GA-based QDT with Quadtrees V3 is 
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NQ Execution Time (s) 
"~4 21.9 ± 0 . 8 

8 17.1 士 0.3 
" U " 15.1 土 0.7 

12.0 士 0.5 
64 11.3 士 0.5 
128 11.0 士 0.1 

11.1 ±0.1 

Table 5.11: Average and Standard Deviation of Execution Time (in Seconds) 
of BTGA with Quadtrees on ADS9 based on 10 Independent Runs when the 
Minimum Number of Training Samples NQ at Each Node of a Generalized 
Quadtree Varies 

longer than that of the GA-based QDT. (See Table 5.8) Never-
theless, the validation accuracy of the GA-based QDT is same 
as that of all versions of the GA-based QDT with Quadtrees. 

5.6.4 Effects of Changing the Size of Datasets 

In this subsection, the effect of changing the size of datasets is 
investigated in terms of execution time. 

B T G A and its Variants 

In this part, ADS9 is replicated Nc times. Table 5.13 shows the 
, average and the standard deviation of the execution time of the 

BTGA and its variants as the number of replications Nc varies. 
The execution time of the BTGA with k-D Trees and the BTGA 
with Quadtrees is lower than that of the BTGA. The BTGA 
with Quadtrees runs faster than the BTGA with k-D Trees. The 
percentage decrease in the execution time of the BTGA with k-
D Trees and that of the BTGA with Quadtrees when compared 
with that of the BTGA increases as the number of replications 
Nc increases. When the size of a dataset is increased, the BTGA 



Chapter 5 Induction of Linear and Quadratic Decision Trees using Spatial Data Structures 159 

NQ GA-ba^ed QDT with Quadtrees — 
VI I V2 I V3  

329.8 士 10.2 324.6 土 9.4 “ 420.0 士 11.1" 

~ 8 322.6 士 10.1 318.1 士 9.8 412.8 土 10.5 

319.2 士 9.8 314.6 士 9.1 409.8 士 11.4— 

310.2 士 12.2 308.5 士 14.5 385.8 士 9.5— 

318.2 士 9.3 “ 312.9 土 8.9 378.6 士 10.3" 

128 322.6 士 9.5 316.6 ± 8 . 6 372.3 士 21.2 

Table 5.12: Average and Standard Deviation of Execution Time (in Seconds) 
of all Versions of the GA-based QDT with Quadtrees on BALANCE based 
on 10 Independent Runs when the Minimum Number of Training Samples 
NQ at Each Node of a Generalized Quadtree Varies 

with k-D Trees and the BTGA with Quadtrees are more likely 
to run faster than the BTGA. The validation accuracy of BTGA 
is same as that of the BTGA with k-D trees and the BTGA with 
Quadtrees for all possible values of NQ-

GA-based QDT and its Variants 

In this part, the BALANCE dataset is replicated N�t imes. Ta-
ble 5.14 shows the average and the standard deviation of the 
execution time of the GA-based QDT and all versions of the 
GA-based QDT with k-D Trees as the number of replications 
Nc varies. Table 5.15 reports the average and the standard de-

‘ viation of the execution time of all versions of the GA-based 
QDT with Quadtrees as the number of replications Nc varies. 
The percentage change in the execution time of all versions of 
the GA-based QDT with k-D Trees when compared with that 
of the GA-based QDT decreases as the number of replications 
Nc increases. Similarly, the percentage change in the execution 
time of all versions of the GA-based QDT with Quadtrees when 
compared with that of the GA-based QDT decreases as the num-
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Nc BTGA BTGA with k-D Trees BTGA with Q u a d t r ^ 
17.2 士 1.3 12.0 土 0.5 11.0 士 0.1 

一1 26.9 ± 0 . 6 16.1 士 0.5 14.5 士 0.5 

38.8 士 1.3 18.6 士 0.7 17.2 士 0.4 

50.1 士 0.9 21.7 士 0.7 19.4 士 0.5 

~ 5 6 0 . 9 士 1.0 22.9 士 0.6 20.4 士 0.5 

6 73.2 士 1.4 25.6 士 0.7 ~ 21.9 士 0.7 
7 84.8 士 2.7 26.9 士 0.9 23.0 士 0.8 

~ 8 9 6 . 3 士 2.5 27.5 士 1.0 — 23.9 士 1.0 
9 107.1 士 2.5 27.7 士 0.7 24.7 士 0.7 

~ T o 1 1 7 . 6 士 2.0 - 28.8 士 0.7 25.4 士 0.9 

Table 5.13: Average and Standard Deviation of Execution Time (in Seconds) 
of BTGA and its Variants based on 10 Independent Runs when the Number 
of Replications Nc on ADS9 Varies 

ber of replications Nc increases. Although the GA-based QDT 
with k-D Trees V3 runs slower than the GA-based QDT when 
Nc = 1, this is not the case when Nc > 1. The validation accu-
racy of the GA-based QDT is same as that of all of its variants 
no matter what the value of Nc is. 

5.7 Chapter Summary 

Spatial data structures, including k-D trees and generalized quadtrees, 
‘ can be used to speed up the construction of an oblique or a 

quadratic decision tree when the size of a dataset is sufficiently 
large, without deteriorating the quality of a constructed decision 
tree. 

In this chapter, the structures of a k-D tree and a generalized 
quadtree have been introduced. Several possible algorithms to 
construct oblique and quadratic decision trees using k-D trees 
and generalized quadtrees have been proposed. 
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N c GA-baged QDT with k-D Trees GA-baaed QDT 

V I I V2 I V3  
1 354.0 士 9.6 士 10.5 387.2 士 10.5 366.7 士 5.1 
2 588.1 士 13.9 574.2 士 12.3 668.4 士 13.5 —718.4 士 12.5 “ 

~ 3 8 0 6 . 6 士 22.5 779.2 士 23.厂 926.8 士 27.1 1092.6 士 33.9 

4 1001.2 士 21.5 957.8 士 18.8 H i 9 . 8 士 20.3 1418.9 士 25.9 — 

~ ~ 5 1 1 5 4 . 3 士 15.6 1109.2 士 14.3 1354.1 士 1 1 . 6 1 7 4 1 . 9 士 25.1 

6 1285.3 士 18.2 "1^5.6 士 18.7 1545.7 士 19.8 2118.0 士 

7 1421.1 土 12.8 1 ^ 1 . 2 士 25.2 1721.6 士 20.1 2440.8 土 33.8 

~~81548 .4 士 20.1 1491.2 士 16.9 1870.6 士 20.1 2746.5 士 25.4 

~ 9 1 6 8 8 . 2 士 26.2 1608.6 士 23.1 2047.8 士 1 7 . 8 3 1 6 4 . 5 士 51.3 

10 1780.1 士 39.2 1692.5 土 33.4 ^ 8 . 6 士 36.1 ~^572.9 士 129.3 

Table 5.14: Average and Standard Deviation of Execution Time (in Seconds) 
of the GA-based QDT and all Versions of the GA-based Q D T with k-D Trees 
based on 10 Independent Runs when the Number of Replications N�on 
BALANCE Varies — 

N c GA-based QDT with Quadtrees GA-baged Q D T 
V I I V2 I V3 — 

320.4 士 1 1 . 8 3 1 1 . 0 土 7 . 5 3 5 8 . 2 ± 10.1 366.7 土 5.1 
2 500.1 士 10.9 ^ 6 . 8 士 9.5 — 士 8.5 718.4 土 1 2 ^ ~ 

3 538.2 士 12.3 543.2 士 13.2 830.2 士 12.5 ^ 0 9 2 . 6 士 33.9 “ 

615.8 士 1 0 . 5 6 1 5 . 4 士 8.6 .1006.3 士 20.4 1418.9 士 25.9 

~ 5 667.8 士 9.9 .647.3 士 12.5 1076.0 士 1741.9 士 25.1 

" 6 7 5 0 . 8 士 11.4 734.2 士 10.8 1133.6 士 1 6 " ^ 2118.0 士 30.3 

‘ 846.6 士 15.3 833.0 士 16.0 1220.2 士 21.3 2440.8 土 33.8 

~ ~ 8 9 0 7 . 4 士 12.1 884.8 士 12.6_ 1322.0 士 15.0 2746.5 士 25.4 

9 933.6 士 12.4 924.2 士 13.8 Y377.6 士 18.7 . 3164.5 士 5 1 ^ 
10 942.6 士 17.2 935.8 士 17.3 " 1 1 ^ . 6 士 15.6 "T572.9 士 129.3 “ 

Table 5.15: Average and Standard Deviation of Execution Time (in Seconds) 
of the GA-based QDT and all Versions of the GA-based Q D T with Quadtrees 
based on 10 Independent Runs when the Number of Replications N c on 
BALANCE Varies 
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Binary Tree-Genetic Algorithm (BTGA) is chosen to evalu-
ate the performance when an oblique decision tree is constructed 
with the aid of k-D trees and generalized quadtrees.On the other 
hand, Genetic Algorithm-based Quadratic Decision Tree (GA-
based QDT) is selected to evaluate whether it is suitable to con-
struct a quadratic decision tree using k-D trees and generalized 
quadtrees. 

To construct a quadratic decision tree for classifications, it 
is necessary to estimate the maximum and the minimum values 
of a quadratic function within a hyperrectangle when the op-
timality of a quadratic decision function is determined using a 
k-D tree or a generalized quadtree. Three methods to estimate 
the maximum and the minimum values of a quadratic function 
within a hyperrectangle are introduced. The execution time of 
the variants of the GA-based QDT depends on the quality of the 
estimated maximum and minimum values of a quadratic func-
tion within a hyperrectangle and the time required to estimate 
these values. Although all of these methods may overestimate 
its maximum value and underestimate its minimum value, they 
neither underestimate its maximum value nor overestimate its 
minimum value, and therefore we can preserve the classification 
accuracy of the constructed quadratic decision tree. To design 
a suitable algorithm to estimate the maximum and the mini-
mum values of a quadratic function within a hyperrectangle, it 
is necessary to strike the right balance between the quality of 

‘ the estimated values and the estimation time. 
The effects of modifying the minimum number of training 

samples at each node of a k-D tree and a generalized quadtree 
on the execution time of the variants of the BTGA and that of 
the GA-based QDT have been investigated. Experiments show 
that the minimum number of training samples at each node of 
a k-D tree or a generalized quadtree should not be too small or 
too large in order to minimize the execution time. Moreover, the 
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effects of increasing the size of datasets on the execution time of 
the variants of the BTGA and that of the GA-based QDT have 
been studied. Experiments show that the variants of the BTGA 
and that of the GA-based QDT are more effective in reducing 
their computational time as the size of datasets increases. 

• End of chapter. 



Chapter 6 

Conclusions 

In this chapter, the contributions of the thesis are concluded. In 
addition, we provide the possible future research directions of 
the thesis. 

6.1 Contributions 

A rule induction algorithm called SCION was introduced by Le-
ung et al. [33], [34]. The antecedent part of a classification rule 
is equivalent to a hyperrectangle in the attribute space. A ge-
netic algorithm-based rule induction algorithm, called Genetic 
Algorithm-based Convex Polytope Rule Learning System (GA-
based CPRLS), has been proposed by extending SCION. In the 
GA-based CPRLS, the antecedent part of a classification rule 
is a conjunctive set of logical expressions. The possible logical 

• expressions include linear inequalities with several continuous 
attributes and nominal attribute-value pairs. The GA-based 
CPRLS provides an alternative rule learning algorithm. Ex-
periments show that the GA-based CPRLS generates a better 
set of classification rules than SCION on datasets with non-axis 
parallel class boundaries. GAs are more capable of finding a 
better rule set than random search. Token competition and rule 
migration improves the performance of the GA-based CPRLS. 

164 
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A genetic-algorithm based quadratic decision tree algorithm, 
called Genetic Algorithm-based Quadratic Decision Tree (GA-
based QDT), has been proposed by extending Binary Tree-Genetic 
Algorithm (BTGA) [9]. At each non-leaf node of a quadratic de-
cision tree, GAs are applied to search for the optimal quadratic 
decision function. A linear function is a special case of a quadratic 
function. Experiments show that the GA-based QDT provides a 
better decision tree classifier than univariate and linear decision 
trees on datasets with non-linear class boundaries. In addition, 
GAs have higher capability of searching for a better quadratic 
decision function than random search at each internal node of a 
quadratic decision tree, and therefore a better quadratic decision 
tree can be constructed. 

We have proposed to construct a k-D tree or a generalized 
quadtree before searching for the optimal linear or quadratic de-
cision function at each internal node of a linear or a quadratic 
decision tree. The time required to construct an oblique or a 
quadratic decision tree can be reduced when the size of a dataset 
is sufficiently large, without deteriorating the quality of a con-
structed decision tree. 

In order to construct a linear or a quadratic decision tree 
with the aid of k-D trees or generalized quadtrees, it is neces-
sary to calculate the maximum and the minimum values of a 
linear or a quadratic function within a hyperrectangle. We can 
accurately calculate the maximum and the minimum values of 

‘ a linear function within a hyperrectangle. However, it is dif-
ficult to evaluate the maximum and the minimum values of a 
quadratic function within a hyperrectangle accurately. In this 
thesis, we have suggested three methods to estimate the maxi-
mum and the minimum values of a quadratic function within a 
hyperrectangle. Although the overall execution time can only be 
reduced significantly when a quadratic decision tree is built with 
the aid of k-D trees or generalized quadtrees provided that the 
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data size is large, the classification accuracy of the constructed 
decision tree is not sacrificed because the impurity reduction is 
still evaluated accurately. 

Two linear decision tree algorithms, called Binary Tree-Genetic 
Algorithm with k-D trees (BTGA with k-D Trees) and Binary-
Tree Genetic Algorithm with Quadtrees (BTGA with Quadtrees), 
have been proposed by extending BTGA. In the BTGA with k-D 
Trees and the BTGA with Quadtrees, a k-D tree and a general-
ized quadtree are respectively constructed before searching for 
the optimal linear decision function at each internal node of a 
linear decision tree. Experiments show that the classification 
accuracy of BTGA is same as that of the BTGA with k-D trees 
and the BTGA with Quadtrees. 

Similarly, two quadratic decision tree algorithms, called Ge-
netic Algorithm-based Quadratic Decision Tree with k-D Trees 
(GA-based QDT ‘with k-D Trees) and Genetic Algorithm-based 
Quadratic Decision Tree with Quadtrees (GA-based QDT with 
Quadtrees), have been introduced by extending the GA-based 
QDT. In the GA-based QDT with k-D Trees and the GA-based 
QDT with Quadtrees, a k-D tree and a generalized quadtree 
are respectively constructed before searching for the optimal 
quadratic hypersurface at each non-terminal node of a quadratic 
decision tree. Three methods of estimating the maximum and 
the minimum values of a quadratic function within a hyperrect-
angle have been introduced. GA-based QDT with k-D Trees 

‘ V I , GA-based QDT with k-D Trees V2 and GA-based QDT 
with k-D Trees V3 are respectively the GA-based QDT with 
k-D Trees algorithms using the first, the second and the third 
method of estimating the maximum and the minimum values of 
a quadratic function within a hyperrectangle. GA-based QDT 
with Quadtrees VI, GA-based QDT with Quadtrees V2 and GA-
based QDT with Quadtrees V3 are respectively the GA-based 
QDT with Quadtrees algorithms using the first, the second and 
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the third method of estimating the maximum and the mini-
mum values of a quadratic function within a hyperrectangle. To 
design a suitable algorithm to estimate the minimum and the 
maximum values of a quadratic function within a hyperrectan-
gle, it is necessary to strike the balance between the quality of 
the estimated values and the estimation time. Nevertheless, the 
classification accuracy of the GA-based QDT is same as that of 
all of its variants. 

The effects of changing the minimum number of training sam-
ples at each node of a k-D tree and a generalized quadtree of 
the variants of BTGA and the GA-based QDT have been in-
vestigated. The minimum number of training samples at each 
node of a k-D tree or a generalized quadtree should be carefully 
adjusted in order to minimize the execution time. However, the 
validation accuracy of all variants of BTGA and the GA-based 
QDT remains unchanged when the minimum number of train-
ing samples at each node of a k-D tree or a generalized quadtree 
is changed. The effects of increasing the size of datasets on 
the execution time of the variants of BTGA and the GA-based 
QDT have been studied. Experiments show that the variants 
of BTGA and that of the GA-based QDT are more effective in 
reducing their execution time as the size of datasets increases. 

6.2 Future Work 

In the GA-based CPRLS, the number of linear inequalities in 
the antecedent part of a classification rule needs to be speci-
fied. However, the optimal number of linear inequalities in a 
classification rule varies from problem to problem. When the 
number of linear inequalities is too small, two or more classifica-
tion rules may be required to represent a cluster in the attribute 
space. When there are too many linear inequalities to represent 
a classification rule, the classification rule may overfit the train-
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ing samples. An inappropriate number of linear inequalities may 
result in poor generalization. The determination of the optimal 
number of linear inequalities in a classification rule is a possible 
research direction of the GA-based CPRLS. 

The experiments in Section 4.4.1 show that a quadratic hy-
persurface tends to overfit the training samples with linear class 
boundaries, although a hyperplane is a special case of a quadratic 
hypersurface. It is needed to study the possible ways to evolve 
the optimal quadratic hypersurface so that the impurity reduc-
tion after dividing a set of training samples into two disjoint 
subsets is maximized while the number of non-zero coefficients 
is minimized. In other words, the number of terms of a decision 
function should be minimized. 

To evaluate the optimality of a quadratic hypersurface using 
a k-D tree or a generalized quadtree, it is necessary to estimate 
the maximum and the minimum values of a quadratic function 
within the smallest hyperrectangle containing a set of training 
samples. In order to estimate its maximum and minimum values 
more accurately, more computational time is usually required. 
New algorithms estimating the maximum and the minimum val-
ues of a quadratic function within a hyperrectangle can be ex-
plored so that the quality of these estimated values is improved 
while the computational time is minimized. 

In all of the variants of BTGA and the GA-based QDT, the 
minimum number of training samples at each leaf node of a con-

‘structed k-D tree or a generalized quadtree is defined in advance. 
The experiments reported in Section 5.6.3 conclude that it is 
necessary to carefully choose the minimum number of training 
samples at each leaf node of a k-D tree or a generalized quadtree. 
It is worthwhile to study the possible ways to determine the op-
timal minimum number of training samples at each leaf node 
of a k-D tree or a generalized quadtree so as to minimize the 
execution time. 
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In all of the proposed algorithms in the thesis, the values of 
all of the input attributes of each sample need to be specified. 
When the value of an input attribute of a sample is unspecified, 
the GA-based CPRLS cannot determine whether the sample 
satisfies the antecedent part of a classification rule. Both the 
GA-based QDT and BTGA are incapable of choosing the ap-
propriate terminal node when a sample with one or more missing 
attribute values is encountered. However, most real life datasets 
contain one or more samples whose values of one or more of the 
input attributes are missing. It is necessary to investigate how 
to handle a sample with one or more missing values in the pro-
posed algorithms. 

• End of chapter. 



Appendix A 

Implementation of Data Mining 
Algorithms Specified in the 
Thesis 

In order to evaluate the performance of the proposed algorithms 
in the thesis, it is necessary to compare the performance of other 
data mining algorithms with that of the proposed algorithms. 
This part describes how to implement other data mining algo-
rithms mentioned in the Thesis. 

C4.5 The source code of the C4.5 algorithm can be downloaded 
in the following website: 
http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/c4.5r8.tar.gz 

OCl The source code of the OCl algorithm can be downloaded in 
the website http://www.tigr.org/%7Esalzberg/0Cl.tar.gz. 

« 

NDT Since NDT is extended from OCl, it was implemented by 
modifying the source code of the OCl algorithm down-
loaded in the Internet 

OCl-ES Since OCl-ES is extended from OCl, it was implemented 
by modifying the source code of the OCl algorithm down-
loaded in the Internet. 
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http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/c4.5r8.tar.gz
http://www.tigr.org/%7Esalzberg/0Cl.tar.gz


OCl-GA Since OCl-GA is extended from OCl, it was implemented 
by modifying the source code of the OCl algorithm down-
loaded in the Internet. 

SCION A program for SCION was written. 

BTGA A program for BTGA was written. 

• End of chapter. 
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