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ABSTRACT 

The advent of new technology inevitably filtered into various realm of 

human society, including art. In time, new technology induces new horizon for 

artists to spread their talents, thus giving rise to new forms of art. The rapid 

advance in robotics and computing technology is no different. 

In this research, we apply artificial intelligence and computer vision 

techniques for robot drawing. We use robot drawing platform supporting five 

degrees of freedom (x, y, and z translation, z-rotation, and pitch) of a brush-pen 

motion in our laboratory for the study. The degrees are independently 

commanded to do away with the kinematics problems associated with many 

other manipulator-based drawing systems. The platform is aimed at both the 

replication of existing works and rendition of new Chinese painting and 

calligraphy. This thesis is specially focusesd on visual-based capabilities for 

drawing quality enhancement and artistry imitation. For vision system, high 

accuracy projective rectification is implemented automatically via Genetic 

Algorithms-based (GA-based) homography transformation, which allows the 

readily comparison between the original line drawing and the robot executed 

drawing. Such comparison can be used to determine corrective drawing actions 

for iterative improved drawing. To start the process, a drawing plan is first 

generated by extracting the line stroke using vectorization and Bezier curve 

interpolation techniques. 

In additional to line stroke drawing, we have also carried out simulations 

and experiments on GA-based full stroke generation and real brush stroke 

characterization to demostrate the effectiveness of our proposed approach. Our 
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results show that iterative drawing process is a novel approach for robot to 

learn human artistry and practice on its own. 
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摘要 

機器人學與計算機科技的發展一日千里，新科技的出現無可避免地滲透到 
i 

社會不同領域，包括藝術。假以時日，新科技將爲藝術者帶來一個新的領域， 

以展示他們的才能，同時帶出新的藝術模式。 

在本硏究中，我們應用人工智能技術及計算機視覺技術來進行機器人繒畫。 

而我們在實驗室所開發的機器人總圖平台能支援筆桿五個軸的運動（X, y, Z軸 

的移動，Z軸的旋轉，與橫向扭動），每個自由度均直接及獨立地執行，平台式 

的五軸運動避免了很多複雜的動力學運算如其他機械手型的總畫系統。此平台 

是以硏究中國書畫爲目標的機器人，以設計用作仿製現有的及新穎的藝術作 

品。此論文會描述我們的繪畫系統，透過視覺功能裝置以提高繪畫質素及其藝 

術效果的仿真程度。在這視覺系統，由基因演算法爲基礎之對應距陣變換所自 

動履行的高準確度透視投影轉換，提供了原線條圖畫與機器人所續畫的效對。 

透過這視覺訊息的運用，繒畫的糾正動作能得以測定並用作反覆性的繒畫改 

良。爲提高其效果，書畫的方案設計以先，將會利用貝氏曲線插補法向量化來 

抽取其線條筆觸。 

除線條給畫之外，以基因演算法爲基礎的粗筆觸衍生及真實毛筆筆觸的參 

數化將會分別由模擬和實驗所履行，並展示其建議方法的成效。總括而言，我 

們的實驗示範了反覆總畫程序是新穎的門徑去仿真機器人透過自我訓練來學習 

人類藝術技巧° 

iii 



ACKNOWLEDGEMENTS 

I would like to express my most sincere thanks to my advisor, Prof. Yam, 

Yeung, for all his help during the past years. His guidance and encouragement were 

vital elements in the completion of this work. 

Moreover, I would also like to thank the thesis examiners Prof. Xu, Yang-Sheng, 

Prof. Chung, Chi-Kit Ronald and Prof. Ma, Wei-Yin as well as other faculty 

members for their patient instruction throughout my academic study at the Chinese 

University of Hong Kong. 

Besides, I would like to express greatly thanks to Lo Ka-Wah, who is the 

pioneer of the robot drawing motion platform, and other close colleagues: Dr. Yang 

Chi-Tin, Chiu Kit-Chow, Lei Kin-Fung, Wong Sheung Man, Tse Kim-Fung, Yip Wai 

Lee and Lee Wai Man, for supporting me in all these years. And I would like also to 

thank Simon Tong, Raymond Lam and Ng Yiu Ming for all their love during my 

study at the Chinese University of Hong Kong. 

Finally, I would like to thank my family for their persistent encouragement and 

support. 

Ka-Wai Kwok 

iv 



Contents 
ABSTRACT : i 

1. INTRODUCTION 1 
1.1 Artistic robot in western art 1 
1.2 Chinese calligraphy robot 2 
1.3 Our robot drawing system 3 
1.4 Thesis outline 3 

2. ROBOT DRAWING SYSTEM 5 
2.1 Robot drawing manipulation 5 
2.2 Input modes 6 
2.3 Visual-feedback system 8 
2.4 Footprint study setup 8 
2.5 Chapter summary 10 

3. LINE STROKE EXTRACTION AND ORDER ASSIGNMENT 11 
3.1 Skeleton-based line trajectory generation 12 

3.2 Line stroke vectorization 15 
3.3 Skeleton tangential slope evaluation using MIC 16 
3.4 Skeleton-based vectorization using Bezier curve interpolation 21 
3.5 Line stroke extraction 25 
3.6 Line stroke order assignment 30 
3.7 Chapter summary 33 

4. PROJECTIVE RECTIFICATION AND VISION-BASED CORRECTION34 
4.1 Projective rectification 34 
4.2 Homography transformation by selected correspondences 35 
4.3 Homography transformation using GA 39 
4.4 Visual-based iterative correction example 45 
4.5 Chapter summary 49 

5. ITERATIVE ENHANCEMENT ON OFFSET EFFECT AND BRUSH 
THICKNESS 52 
5.1 Offset painting effect by Chinese brush pen 52 

5.2 Iterative robot drawing process 53 
5.3 Iterative line drawing experimental results 56 

V 



5.4 Chapter summary 67 

6. GA-BASED BRUSH STROKE GENERATION 68 
6.1 Brush trajectory representation 69 
6.2 Brush stroke modeling 70 
6.3 Stroke simulation using GA 72 
6.4 Evolutionary computing results 77 
6.5 Chapter summary 95 

7. BRUSH STROKE FOOTPRINT CHARACTERIZATION 96 
7.1 Footprint video capturing 97 
7.2 Footprint image property 98 
7.3 Experimental results 102 
7.4 Chapter summary 109 

8. CONCLUSIONS AND FUTURE WORKS I l l 

BIBLIOGRAPHY 113 

vi 



List of figures 

Figure 1.1. The robot painter Aaron 1 

Figure 2.1. Hardware design of the Drawing Robot 5 
Figure 2.2. Gripper design of drawing robot system 6 
Figure 2.3. The writing tablet and pen system 6 
Figure 2.4. (a) Hand writing and drawing on Tablet, (b) Executed writing and 
drawing by our syste 7 
Figure 2.5. Robot execution of Chinese calligraphy captured by writing pad 7 
Figure 2.6. Camera looking down at drawing area 8 
Figure 2.7. Conceptual idea and hardware for footprint acquisition 9 
Figure 2.8. Actual hardware for footprint acquisition: (a) Video camera, (b) the 
transparent drawing setup 9 

Figure 3.1. (a) Original Chinese ink line drawing from famous ancient artist “穌仁 

山” Su Renshan, (b) Replicated with downward offsetting 11 
Figure 3.2. Preorder traversal sequence (Edges: A, D, E. Branches: B, F，C) 13 
Figure 3.3. (a) The original calligraphy in ancient Seal Character “篆書，’,(b) The 
corresponding writing execution 14 
Figure 3.4. (a) The original Chinese seal character, (b) The robot writing executed 
under improper stroke sequence and those unconnected junctions are encircled 15 
Figure 3.5. The cross strokes raster image containing its skeleton 15 
Figure 3.6. MIC forms inside the stroke centered at its skeleton pixel. 16 
Figure 3.7. (a) The vector representation by MIC shows the directional drawing 
strokes, (b) The zoom in of (a) at junction 17 
Figure 3.8. (a) The thinning skeleton distorts at junction, (b) Two MICs formed 
centered at the distorted skeleton branch pixel, (c) The distorted skeleton pixels are 
erased, (d) The zoom-in of vector representation at the junction region 18 
Figure 3.9. Positive and negative slope angles which obtained by tan"^ function 
are separated into two major levels shown in two different isometric view graph (a) 
and (b) 19 
Figure 3.10. Two opposite centroids of overlapping area determine the skeleton 
tangential slope 20 
Figure 3.11. Five connected skeleton pixels determine a sequence of control points 
for interpolating a Bezier curve 21 

vii 



Figure 3.12. The circle bubbles show the location of the skeleton pixels and such 
Bezier curve does not pass through and oscillate away from them 22 
Figure 3.13. (a) MIC and the directional stroke vector are formed inside the line 
stroke, (b). The zoom-in on one of the “T，’ junction，the red vectors which starting 
points inside MIC would be erased 24 
Figure 3.14. Four bubbles indicate the angles value in which the points are attached 
on the MIC boundary 25 
Figure 3.15. The cross strokes are recovered without any distortion 27 
Figure 3.16. (a) A Chinese character “育•” in ancient Seal style 27 
Figure 3.17. (a) The stroke skeletons are distorted at the junctions, (b) Those 
distortions are reduced by line stroke extraction 28 
Figure 3.18 (a) The original art piece -Tiger “虎”，is a ink drawing of Chinese 
Character painting ‘‘文字畫’,(source [28]), (b) The vector representation for stroke 
extraction, (c) The recovered stroke skeletons after stroke extraction process are 
shown with MIC junction 29 
Figure 3.19(a) The original art piece - “親情” in Seal Character “篆書”（source 
28]), (b) The vector representation for stroke extraction, (c) The recovered stroke 

skeletons after stroke extraction process are shown with MIC junction 30 
Figure 3.20. (a) A picture drawn in an arbitrary stroke order, (b) Proper drawing 
order given by CE-Method 31 

Figure 4.1. (a) Captured image of an executed drawing, (b) 9 points corresponding 
for generating homography matrix 35 
Figure 4.2. The original input image in pixel size 580x580 37 
Figure 4.3. The rectified robot drawing upon careful selection of 9 correspondences 

38 
Figure 4.4. Overlapping of the rectified robot drawing and original image 38 
Figure 4.5. Poor overlapping qualities of the rectified executed image in white and 
the original image in black 39 
Figure 4.6. Chromosome structure of the correspondence displacements 40 
Figure 4.7. Image in black and white (a) The original, (b) The rectified executed 
imag 41 
Figure 4.8. Exact overlapping qualities of the rectified executed image in white and 
the original image in black 44 
Figure 4.9. (a) The rectified image before GA homography correction in white, (b) 
The one after correction shows the executed stroke is thicker than the original image 
one 45 
Figure 4.10. (a) A MIC centered at the skeleton branch pixel, (b) The same size disk 

viii 



with same coordinates formed to detect the connectivity in the executed drawin 46 
Figure 4.11. Wrong drawing sequence causes improperly executed branch points 
which are encircled 46 
Figure 4.12. Second time executed image with corrective drawing sequence 47 
Figure 4.13. (a) The executed image as captured by camera in which strokes were 
executed in different z-axis value, (b) The projective rectified image for strokes 
thickness measurement 48 
Figure 4.14. The diagram of stroke thickness against the z-axis value from vision 
information obtained 48 
Figure 4.15. Four correspondence pairs are picked roughly in left side photo (a) and 
right side photo (b) 50 
Figure 4.16. Poor quality mosaicing is shown in photo (a). After GA-homography 
correction, photo (b) shows the exactly correct image mosaicing 51 

Figure 5.1. Several types of auto-ink-loading brush are used in the iterative drawing 
52 

Figure 5.2. The force exerted on the brush while pulled across the paper results the 
horizontal deformation of the bristles 53 
Figure 5.3. Two strokes are painted in same length but the below one which the 
brush is pressed more during painting indicates higher offset effect 54 
Figure 5.4. The process flow chart of visual-based iterative line drawing in finding 
the best replication drawing scheme 55 
Figure 5.5. (a) A skeleton image portion without any branch point inside the junction 
region, (b) The open end stroke would be elongated by following the vector 
direction 56 
Figure 5.6. The overlapping image of the executed drawing scheme with 
one-pixel-width skeleton lines and the original drawing, the MIC junction regions 
with labels are depicted in white 57 
Figure 5.7. First execution from preliminary drawing scheme (z=Omm). 59 
Figure 5.8. Second drawing execution: z=-0.3mm is applied on the brush pen during 
drawing and strokes are elongated at the junctions with 3 pixels unit. 59 
Figure 5.9. Third drawing execution: z=-0.6mm is applied on the brush pen during 
drawing and strokes are elongated at the junctions with 3 pixels unit. 15 junctions 
are still not recovered. 60 
Figure 5.10. Fourth drawing execution: z=-0.9mm is applied on the brush pen during 
drawing and only strokes at the unconnected junctions of the third drawing are 
elongated. Now, only junction no. 8 is still not recovered. 60 
Figure 5.11. Fifth drawing execution: z=-1.2mm is applied on the brush pen during 

ix 



drawing and strokes are elongated at the unconnected junctions with 3 pixels unit. 
All junctions are connective here. 61 
Figure 5.12. Sixth drawing execution: z=-1.5mm is applied on the brush pen during 
drawing and no stroke elongation is necessary. 61 
Figure 5.13. Seventh drawing execution: z=-1.8mm is applied on the brush pen 
during drawing. The best matching finalizes the iterative drawing process. 62 
Figure 5.14. (a) The preliminary drawing scheme is shown in skeleton pixel with 
junction regions and the original picture display, (b) First drawing execution: 
z=Omm, (c), Second drawing execution: z=-0.4mm, (d) Third drawing execution: 
z=-0.8mm, (e) Fourth drawing execution is the best which finalizes the iterative 
drawing process: z=-1.2mm 63 
Figure 5.15. (a) The preliminary drawing scheme is shown in skeleton pixel with 
junction regions and original picture display, (b) First drawing execution: z=Omm is 
applied on the brush pen 64 
Figure 5.16. (a) Second drawing execution: z=-0.3mm and junctions elongation are 
need in the next execution, (b) Third drawing execution: z=-0.6mm and some 
junctions are still disconnected 66 
Figure 5.17. Fourth drawing execution is the best which finalizes the iterative 
drawing process: z=-0.9mm. 67 

Figure 6.1. (a) Stroke painting trajectory planned by the calligraphy artist, (b) A full 
stroke painting under the trajectory designed in (a), (c) The calligraphy character 
“中” is completed from those full stroke painting 68 
Figure 6.2. (a) 121 control points from 23 groups formed in the sequence of line 
segments, (b) A bundle of Bezier curves represent various painting trajectories 69 
Figure 6.3. (a) Anatomy of a typical brush, (b) Blending string of lateral notes, (c) 
Geometric model of a brush tuft, (d) Different sample strokes are rendered by 
Nelson's brush model (Source: [41]) 71 
Figure 6.4. Two different kinds of 2D brush template under different painting 
pressure descending from up to down. 71 
Figure 6.5. (a) The centroid and front direction of the template are defined, (b) The 
brush templates chopped tangentially along the Bezier curve under different pressure 
applied 
Figure 6.6. Chromosome structure of the painting plan which represented by Bezier 
curve control point genes and painting pressure genes, where m is the total control 
point group number and n is the total number of pressure applied. 73 
Figure 6.7 The sample stroke “一” the Chinese character number “one，，in Running 
Script style “行書” 73 

V 



Figure 6.8. The image of Chinese character “見” expressed in Seal Character “篆書” 

undergoing the iterative thinning process, (a) The remaining pixels after 7 iterations, 
(b) after 10 iterations, (c) after 13 iterations. 74 

Figure 6.9. The sample stroke is divided into two regions: (a) inner region, (b) outer 
region, those are inside the stroke 75 
Figure 6.10. There are two regions colored outside the sample stroke: (a) skin region, 
(b) out-of-skin region. 75 
Figure 6.11. (a) The circles indicate the pressure points distributed along the 
trajectory, (b) Linear Interpolation of presence in before points. 76 
Figure 6.12. (a) There are ^ =23 line segments drawn manually inside the sample 
stroke, (b) The bubbles circles indicates the control points placed on the line 
segment. 78 
Figure 6.13. (a) A set of 50 circular spray paint templates, the max and min sizes are 
100x100 and 2 x 2 , (b) The diagram shows the objective cost (in log scale) of the 
best individual during evolution 80 
Figure 6.14. A stroke painting plan is being modified during evolution and the best 
individual is shown for each 10 generation past. 

Slfdas 
Figure 6.15. (a) A set of 50 water drop templates, the max and min sizes are 
100x50 and 2x1, (b) The diagram shows the objective cost (in log scale) of the 
best individual during evolution 82 
Figure 6.16. Better evolutionary result using water drop templat 83 
Figure 6.17. The best GA stroke painting scheme using water drop template 84 
Figure 6.18. (a) A Chinese calligraphy character “天” from Lan ting xu “蘭亭序” 

(source: [22]), (b) Four stroke elements extracted, (c) The control points set inside 
the corresponding strokes 85 
Figure 6.19. (a) Water drop templates with spraying effect on the boundary, (b) The 
diagram shows the objective cost (in log scale) of the best individual during 
evolution of result 3 86 
Figure 6.20. Stroke evolutionary process of result 3 87 
Figure 6.21. The diagram shows the objective cost (in log scale) of result 4 88 
Figure 6.22. Stroke evolutionary process of result 4 89 
Figure 6.23. The diagram shows the objective cost (in log scale) of result 5 90 
Figure 6.24. Stroke evolutionary process of result 5 91 
Figure 6.25. The diagram shows the objective cost (in log scale) of result 6 92 
Figure 6.26. Stroke evolutionary process of result 6 93 
Figure 6.27. (a) The calligraphy character replication formed by the four 
evolutionary strokes in result 3-6, (b) Indicated with the painting trajectories 94 

xi 



Figure 7.1. (a) A fully functioning tuft pressed against virtual paper, (b) Depicted 
result with the texture-based bristle-splitting effect turned off, (c). Recent with 
lateral spreading furthered removed, (d) Model do not handle collision with paper 
(Source: [42]) ‘ 96 
Figure 7.2. (a) The video captured frame shows the instantaneous footprint profile 
during painting, (b) Only the footprint region remained after segmentation 
performed. 97 
Figure 7.3. The full stroke form achieved by taking the union of all instantaneous 
footprint images during painting 98f 
Figure 7.4. The footprint region area is changing due to the painting manipulation 

99 

Figure 7.5. The centroids of all instantaneous footprint regions are plotted inside the 
stroke. 1 � 

Figure 7.6. The minor axis length (a) and major axis length (b) are changing during 
the painting manipulation. 101 
Figure 7.7. The footprint orientation angle from horizontal. 102 
Figure 7.8. (a) X-coordinate trajectory diagram against time, (b) Y-coordinate 
trajectory diagram against time, (c) Pressure measure during writing 103 
Figure 7.9. (a) The would-be full "painting" spiral stroke form, (b) with 
instantaneous footprint centroid indication 104 
Figure 7.10(a). The diagram of footprint area during painting, (b). The diagram of 
major axis length, (c). The diagram of minor axis length diagram, (d). The diagram 
of orientation angle 105 
Figure 7.11. (a) X-coordinate trajectory diagram against time, (b) Y-coordinate 
trajectory diagram against time, (c) Pressure measure during writing 106 
Figure 7.12 (a) The would-be full “painting,, spring stroke form, (b) with 
instantaneous footprint centroid indication 107 
Figure 7.13. (a) The diagram of footprint area during painting, (b) The diagram of 
major axis length, (c) The diagram of minor axis length diagram, (d) The diagram of 
orientation angle 卿 

Figure 7.14. The process flow chart of visual-based full stroke execution using GA 
in finding the best replication painting scheme 109 

Figure 8.1. Schematic diagram of iterative drawing process 112 

xii 



Chapter One: Introduction 

1. INTRODUCTION 

Progress in technology inevitably H ^ H H H H M I P H I ' 

permeates into the expression of art form. One �� 

example is the arrival of photography in the 

late 19th century, which helped to promote ^ ^ ^ K B S ^ ^ ^ ^ M S r - i ^ H r 
• ^ B y ^ i f 

impressionism as a painting style transcending 

over mere duplication of the world. Today, The ；: 

robot technology is the same. With the rapid ^ ^ ^ ^ ^ ^ j j m p ^ ) 泰 & 

advancement of computer and robot-related 

engineering, there has been a host of works on 

robot paintings, e.g., [1]-[10]. Based on ^ ^ ^ Q j ^ ^ 』 ： ^ ^ 

methodologies such as artificial intelligence, 

Figure 1.1. The robot painter Aaron 

genetic algorithms, fuzzy rules, and expert (source: [2]) 

systems, specially designed robots are built capable of exhibiting various painting 

styles and forms, and to some extent, creating new art as well. Some of the art works 

are so impressive that they are being displayed in museums. 

1.1 Artistic robot in western art 

The first well known case of robot drawing is the robot painter Aaron pioneered 

by Harold Cohen [2], see Figure 1.1. Following that, numerous systems have been 

constructed [3]-[4], etc. there is now a yearly show of artistic robot (ARTBOT) [5], 

featuring drawing systems which come with different sizes and shapes; some as big 

as a printing press, or as small as a toy car [6]; some use a x-y plotter to draw, some 

operate based on music [7], or just with a pen attached to a canti-levered beam [8]; 
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Chapter One: Introduction 

and some are more successful than others. Almost all of these reported drawing 

robots, however, aim for Western style of drawing, and are designed to create new art 

only. There was no attempt to replicate an existing painting or to imitate the drawing 

techniques of an artist, except for [2], which worked on the imitation part somewhat. 

Rigorously, speaking, these previous robots are merely programmed to draw as 

according to their particular designs. There was no learning of human skill in their 

operations. 

I 

1.2 Chinese calligraphy i^obrt 

The drawing robots reported so far are mostly focused on the free style drawing 

of Western art. However, the configuration of Chinese calligraphy robot has been 

designed before. Guoliang Tao et. la. [11] developed 3-R pneumatic-servo calligraphy 

robot and employed the continuous trajectory tracking control to 

electro-pneumatic-servo system. The robot is just able to track the hard-coded 

trajectory of the Chinese calligraphy under the control strategy from the mathematical 

model of electro-pneumatic-servo system and friction. In a recent work, Fenghui Yao 

et. la. [12] has developed a Chinese character calligraphy robot which is categorized 

as an art robot. The system consists of a pre-defined calligraphy dictionary of five 

styles only. However, the system does not allow users to input his/her own writing 

style. Moreover, since the robot manipulator employs an open-loop control strategy, 

trajectory tracking error was not easily compensated under the resulting inverse 

kinematics problem. 
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Chapter One: Introduction 

d t ^ j ^ c t ‘ 絶 u^^xyJ^ 

1.3 Our robot drawing system ‘ 

By contrast, our robot platform constructed with totally 5 degrees of freedom of 

the brush pen for the full emulation of hand and wrist movement, which are 

independently commanded, doing away with the kinematics problems associated with 

many other robot-based drawing systems such as [12] and the closed-loop PID motor 

control is employed for producing accurate trajectory with high repeatability 

13]-[14]. Also, Industrial grade components are used to achieve the high precision 

and repeatability need for the fine execution of brush strokes. Furthermore, to 

participate in Chinese culture heritage, the present system is developed with two 

objectives in mind. The first is that it aims at the execution of Chinese art, including 

calligraphy and painting. One needs to be pointed out here is that painting and 

calligraphy go naturally together in Chinese artistry. The spirit of a good Chinese 

painting is always accentuated if accompanied by a good poem expressed in good 

calligraphy. The second is that the machine will be applied to investigate human skill 

acquisition of drawing techniques - we will attempt both the replication of selected 

： \ 
existing pieces and also the rendition of new styles and art work. jTo this end, we \ 

\ — — 

desire a visual-based system capable of evaluating the executed robot drawing with 

the human art work and giving the correct action for the next execution. This iterative 

drawing process seems that the robot leams human artistry by the practice on its own. 
“ ) 

1.4 Thesis outline ‘ 山 、 一 

In what follows, Chapter 2 gives a detail description of the Robot Drawing 

system implemented to imitate the human artistry. 

Chapter 3 then introduces the raster-to-vector conversion for line drawing. Line 

3 



Chapter One: Introduction 

Stroke extraction is preformed using skeleton-based vectorization and Bezier curve 

interpolation are developed. The algorithm is based on eliminating the distortion at 

the junctions of the skeleton. After extraction, the stroke drawing orders would be 
i 

assigned by a TSP solver (CE-Method) for fast effective drawing. 

The vision capabilities are presented in Chapter 4. The camera system serves to 

off-line monitor the executed drawing. The system allows the captured image to be 

rectified in a full plane view as the original input image so that the camera needs not 

to be one of sight vertical to the drawing plane. This high accuracy rectification is 

implemented automatically via GA-based homography transformation. 

Thus, the rectified image of the executed drawing acts as a vision feedback to 

improve the drawing scheme designed in chapter 3. Chapter 5 describes the iterative 

line drawing process together with demonstrations such that the executed drawing 

contour becomes closer to the input-art-piece. 

For future exploration in visual-based iterative full stroke painting, Chapter 6 

and Chapter 7, respectively, present a novel calligraphy stroke replication using GA 

and a preliminary study on experimental brush stroke "footprint" model. A variety 

of stroke styles and forms are simulated by GA stroke generation based on a given 

simple 2D brush template model. A camera is installed looking up strictly under the 

transparent drawing plane and serves to capture the footprint image. The footprint 

images are then characterized upon certain measures from which we hope to 

generate the relationship between the robot commands and the resulting footprint 

for a specific brush. 

Finally, conclusions and some recommendations for future work are given in 

Chapter 8. 
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Chapter Two: Robot Drawing System 

2. ROBOT DRAWING SYSTEM 

This chapter describes the Robot ^  

drawing platform developed in our 

laboratory aims towards C h i n e s e 【 擎 | | B 

painting and calligraphy. The platform 厂:,，\| • 人 ； . . , �̂ ^ ^ , ^ i g 

utilized industrial grade components to i ； 

— t h e high precision and I 圓 

repeatability needed for the fine 

execution of brush strokes. The 

eventual goal of the platform will be on 醉 

the acquisition, learning, and execution ‘ ； 

Of human techniques in Chinese brush Figure 2.1. Hardware design of the 

pen painting and calligraphy. In Drawing Robot 

hardware construction, base on the 

existing drawing platform, I contribute mainly towards the implementation of visual 

capabilities and footprint characterization setup. 

2.1 Robot drawing manipulation 

The platform as developed consists of a x-y-z axis translational mechanism 

housing a robot gripper with a z-axis rotation and a pitching degree of freedom, 

making a total of 5-axis degrees of freedom for the pen movement, see Figure 2.1. 

The X and y-translation are executed by two AC servomotors each with an angular 

torque of 0.51 Nm and a length of travel of Im. The corresponding accuracy is 

土 0.001 mm. The z-axis AC motor has an angular torque of 0.08 Nm, and a vertical 
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support load of 50 N to provide the needed 

support for the specially designed robot gripper. 

The z-axis stroke length is 0.15 m and the l i f f iBaB^ga^^Hl^W^^^TO 

accuracy is ±0.03 mm. For safety purpose, ？ 

limit switches are installed on all three axes. ‘ j i ^ N b T ^ P f e ^ ^ ^ ^ ^ ^ 

The overall dimension of the setup is 1.1 m by M K b ^ ^ S l 

0.96 m by 1.9 m, with a drawing size of up to ^ 

0.8 m by 0.7 m. The gripper design, as shown , 《，‘该4 ‘ ^ ^ ^ ^ 
fe纖：‘ 

in Figure 2.2, embeds two more degree of 
Figure 2.2. Gripper design of 

freedom, the z-axis rotation and a pitching drawing robot system 

motion. These two degrees of freedom are 

essential to emulate hand wrist motions usually employed during Chinese painting 

and calligraphy. All the 5 degrees of freedom commands are forwarded to the 

motion controller of the drawing platform for execution. The motion driver performs 

the execution through the implementation of a PID type controller. 

2.2 Input modes 

The drawing platform 

. ‘ accommodates two possible ways to 

m ^ ^ ^ input the to-be-replicated drawing. 

^ ^ ^ m One is by direct hand drawing on a 

m m ^ — g tablet，and the other is Arough 

, , 1 � 1 For the hand drawing, we use the 
Figure 2.3. The writing tablet and pen system 。 

Intuos'2 12 by 12 Tablet and pen 
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Chapter Two: Robot Drawing System 

system as shown in Figure 2.3 to capture the drawing and writing motion of a user. 

As he/she starts to draw or write on the Tablet, the pen's time-tagged positions 

relative to a reference point are recorded and stored. The maximum rate of recording 

can be increased to once per 5ms. The data of recording include the x, y, z-motion, 

the angles of tilt, as well as some measurements of the pressure being exerted onto 

the pad. The recorded data can then be applied to conduct human skill acquisition 

15]-[16], and analyzed to extract trademarks of the drawing style and technique of 

the person. 

rmm 
Figure 2.4. (a) Hand writing and drawing on Tablet, (b) Executed writing and drawing by 

our system 

Figure 2.4 (a) and (b) compare, respectively, the hand writing on the Tablet and 

the corresponding version executed by the drawing system. Furthermore, Figure 2.5 

shows the hand calligraphy of a user as 

executed by the drawing system. This H j j H P W W S ^ ^ ^ ^ H ^ S B W I 

illustrates the ‘‘what you draw is what you ^ ^ ^ ^ ^ 殺 鑑 : 緒 g 

get" kind of ability in our system. 傲 “ �‘ ： ' } ‘ 

The other method of feeding in a 驟 聽 爽 | 激 7 戈 ^ ^ ^ ^ ^ ^ ^ 

raster pixel image would be our focus in ^gure 2.5. Robot execution of Chinese 

this thesis. A raster-to-vector conversion calligraphy captured by writing pad 
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Chapter Two: Robot Drawing System 

is then conducted. All the line strokes would be extracted under the vectorization 

information and the stroke drawing order would be assigned by a Traveling Salesman 

Problem (TSP) solver for fast effective execution. These are described in chapter 3. 

2.3 Visual-feedback system 

g m m ^ ^ *哪 Figure 2.6 shows the installed 

WKM 
r ^ p g g j ^ � ’ 二 一 camera system looking down at the 

j i n . . . . . drawing area at an angle of roughly 30 

1 / ; ， : 〜 : , d e g r e e s . The system uses a Sony 
EVI-DSO/DSI Pan/Xilt/Zoom Color 

P l ^ ^ i l I 5 Video camera. The camera system 

serves to monitor the executed drawing 
Figure 2.6. Camera looking down at drawing 

area on the drawing board and generate 

corrective actions upon comparing the executed drawing with the original image. It 

includes rectification of an angled image captured by the camera to a full plane view. 

Rectification is conducted using homography matrix generated in which the errors 

were compensated by a Genetic Algorithm (GA) -based upon initialization of 4 

selected correspondence points. This will be described in chapter 4. 

2.4 Footprint study setup 

The robot platform of Figure 2.1 also incorporates a setup to study the actual 

dynamics and footprints of a brush pen. The basic idea is shown in Figure 2.7. As 

the brush moves on the transparent glass plate upon certain command, robot, its 

brush footprint is captured by a video camera system placed below the plate and 
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Chapter Two: Robot Drawing System 

looking upwards. The caputured footprints are then be correlated with the input 

commands for non-parametric characterization. 

1 ； . . .. M ^ m 

I : i ’ : _ , 、 , ； ， T \ i # i 

Figure 2.7. Conceptual idea and hardware for footprint acquisition 

M j i i ^ ^ a 

(a) (b) 

Figure 2.8. Actual hardware for footprint acquisition: (a) Video camera, (b) the 

transparent drawing setup 

The same camera model as in Figure 2.6 is adopted here and is installed 

looking up strictly vertical under the transparent drawing plane, see Figure 2.8(a). 

Figure 2.8(b) shows that the robot in this case is drawing on the bottom of a flat 

transparent container filled with a blue liquid. The blue liquid would act as the 

background of the video captured, providing a good contrast to the yellow brush tuft 
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Chapter Two: Robot Drawing System 

that constitutes the footprint. Our goal is to determine the brush model 

experimentally, i.e., footprint, as a function of robot movement. This part will be 

also described in chapter 7. 

2.5 Chapter summary 

Here, the configuration of our drawing system is described. For the full 

emulation of hand and wrist movement in the process of Chinese art making, 5 

degrees of freedom pen motion are supported by using the high precision industrial 

grade components. Two input modes for art imitation: digital image input and direct 

hand drawing/writing input are introduced. For iterative drawing process, the 

addition of the camera system and the incorporation of visual-based capabilities to 

the platform are both implemented as the visual-feedback system. Furthermore, we 

would like to extent the techniques of line drawing quality enhancement to full 

stroke painting. The footprint study setup provides an appropriate environment to 

investigate the formation of stroke under the brush pen motion. Finally, the eventual 

goal of the system will be on the acquisition, learning, and execution of human 

techniques in Chinese brush pen painting and calligraphy. 

10 



Chapter Four: Projective Rectification and Vision-based Correction 

3. LINE STROKE EXTRACTION AND ORDER 

ASSIGNMENT 

誦^̂  I ； … . k 
% ^ 

^ ： ‘ 瑰 i i , 

• ： m 

, ‘ ：-•：•••. ： ... -.+ . . . , -'.'wv；^ 

Figure 3.1. (a) Original Chinese ink line drawing from famous ancient artist “穌仁山” Su 

Renshan, (b) Replicated with downward offsetting of inscription done by image editing 

Line drawing replication is utilized as starting point for demonstration of vision 

capabilities. The fundamental component of Chinese painting, as in Chinese 

calligraphy is the line. Due to this shared feature, these two arts have had a close 

mutual relationship since the beginning of time. Line has been used in many ways 

throughout art history, not only with contour drawing, but also with variations of the 

contour [17]. Van Gogh also did many ink drawings using line and used it in the 

form of variously shaped marks rather than limiting his use of line to contour, which 

served to create a textural effect, as well as to help delineate spatial depth. Here, we 

would like to choose some line drawings that the width of strokes forming the 

picture is quite uniform and rather thin. This kind of artistry can be found in many 

11 



Chapter Four: Projective Rectification and Vision-based Correction 

Chinese ink drawing, i.e. Figure 3.1(a). This contrasts to those with full brush 

strokes of thick and varying width, which would require pen motion control other 

than {x, y) degrees of freedom. Thus, the line trajectories and their order of execution 
i 

are only expressed in the form of (x, y) coordinate sequences. Figure 3.1(b) shows 

the robot replication art piece of a Chinese line drawing Figure 3.1(a). 

Hence, visual-based corrective actions later in this thesis will be processed for 

improved performance on the aspect of branch point associated with line drawing. 

Eventually, with the full brush capabilities, we hope to be able to use visual 

feedback to correct the thickness and line path of the brush strokes in real time and 

online in the future. 

3.1 Skeleton-based line trajectory generation 

The to-be-replicated art piece corresponding image file then passes through a 

Matlab-based library containing user-designed algorithms to analyze the input data 

and to extract feature points and lines of the image. The process involves raster to 

vector conversion, which include thresholding to grayscale image [18], image noise 

reduction filter [19], skeletonization [20] and thinning algorithm [21]. The last step 

is one of the most important preprocessing steps for feature extraction on many 

pattern recognition systems. The above process results in one-pixel-wide skeleton of 

the image foreground. For the present case of line calligraphy, the resulting 

skeletons would follow more or less the middle of the line segments, giving rise to 

the trajectories in line calligraphy. 

Assignment of the drawing sequence is then generated. As a baseline, a simple 

rule is adopted which is consistent with most Chinese calligraphy: from Up to Down 

and Left to Right. After that, the Preorder Traversal Point sequence as described 
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below is used. Figure 3.2 gives an example of the above application: 

• 化 
Figure 3.2. Preorder traversal sequence (Edges: A, D, 

E. Branches: B, F, C) 

• The edge A is first chosen as the starting point (root) of the graph 

• 1st line drawing segment: A-B-F-E. The branch list = {F，B} (the last passing 

branch placed at the head of the list) 

• 2nd line drawing segment: F-C-B (start the point from the head element of the 

branch list). The branch list = {C} (Delete F and B from the list after all possible 

ways of those branch are visited) 

• 3rd line drawing segment: C-D. The branch list = {} 

• If the branch list is empty, that means all connected skeleton in the graph are 

visit, then try to start from the edge which locates at the left-top side of another 

graph. 

• Until all graphs in the same picture are visited, the drawing/writing plan would 

be finished. 
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^ j f j J f \ 

^ ilL 丄 

^ w 巫 i - 1 

f f ？ f 
P f i 墓 f 
r ^ i 上 丄 

(a) (b) 

Figure 3.3. (a) The original calligraphy in ancient Seal Character “篆書，，，（b) 

The corresponding writing execution 

Figure 3.3(b) shows an example of the trajectory generation using preorder 

traversal point sequence and its original calligraphy is shown in Figure 3.3(a). One 

can see that the generated strokes are not all consistent to human drawing and writing 

sequences. Actually, proper order of execution would be extremely difficult to set by 

any rule especially in free style Chinese calligraphy and painting. In Chinese artistry, 

improper drawing and writing sequences will highly affect the quality of executed 

work. One such example is depicted in Figure 3.4(b), which corresponds to the third 

character of the right column in Figure 3.3(b). Note that brush tip deformation during 

the drawing process yields rather significant offset in the brush lines which may be 
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used to indicate that an improper drawing sequence has been executed by comparing 

with Figure 3.4(a). The line stroke extraction capabilities to be incorporated later aim 

at this problem. 

产 I � 一 _ _ 〜 

、 丄 一 ^ 
(a) (b) 

Figure 3.4. (a) The original Chinese seal character, (b) The robot writing executed 

under improper stroke sequence and those unconnected junctions are encircled 

3.2 Line stroke vectorization 

Vectorization [23] (raster-to-vector 

conversion) consists of analyzing a 

image and converting its pixel representation 

to a vector representation. The basic 

assumption is that a vector representation is 

more suitable for the interpretation of the 

image, which typically is a scanned graphical 

document (map, scheme, technical 

Figure 3.5. The cross strokes construction drawing). In this section, we 

raster image containing its present the algorithms for automatic 
skeleton 

transformation of raster images into the vector 

that gears toward the line stroke extraction. Such vector format would give 
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important information for directional strokes detection as well. 

However, obtaining reliable measures of 

skeleton tangential slope at a point in a thinned 

digital image is often difficult because these 

skeleton images tend to be locally ragged. 

Generally speaking, it is difficult to approximate 

the slope at a point by the discrete skeleton pixels 

without proper smoothing [24]. e.g. ^ ^ / 

(yt̂ k -^^-k) for some smoothing l l H j ^ ^ ^ ^ H I ^ I 

factor, k > 1. The choice of the value k is Figure 3.6. MIC forms inside the 
stroke centered at its skeleton 

problem-oriented and thus can not be determined 

a priori. We adopt some of the ideas from in which Chiang et. la., [25], who 

proposed a region-based method to recognize straight lines from images directly. 

The method is to use the Maximum Inscribed Circle (MIC) to detect the 

characteristic of straight line. It recognizes and extracts straight lines with junctions 

directly to eliminate the distortions at junctions. In our case, MIC is formed inside 

the strokes along the skeleton pixels to determine the characteristic of the 

corresponding slopes. This is described in the following subsections. 

3.3 Skeleton tangential slope evaluation using MIC 

Figure 3.5 shows the resulting one-pixel-width skeleton inside two crossed 

strokes. By forming a circular disk centered at skeleton point, those disks are the 

MIC inside the strokes foreground as depicted in Figure 3.6, then the two tangent 

points which touch the boundary will give sufficient information in order to assign 

all the skeleton points a slope, as well as the vector shown in Figure 3.7(a) indicates 
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the sense of direction while drawing the cross strokes. 

U / 1 \ / 

20 « 60 80 100 120 140 160 180 2 » W ' 

(a) (b) 

Figure 3.7. (a) The vector representation by MIC shows the directional drawing strokes, (b) 

The zoom in of (a) at junction 

Figure 3.7(b) depicts the wrong vector assignment obviously at the junction region. 

Those vectors will mislead the unity of the brush stroke. Thus, the distortion 

elimination at junction is necessary for brush stroke extraction. Firstly, MICs in 

Figure 3.8(b) form inside the strokes centered at two distorted skeleton branch 

point pixels shown in Figure 3.8(a). Then, the skeleton pixels inside this MICs' 

union will be erased as Figure 3.8(c), and Figure 3.8(d) shows the remaining 

skeleton vectors which around the junction provide sufficient information to recover 

the directional strokes. For further demonstration, the direction of those vectors can 

be represented in a real value such as angle. The slope can be converted to angle 

under tan'^ function. Thus, using the obtained angle throughout the disconnected 

skeleton, similar angle value strokes would level at each other, see Figure 3.9. 
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• 
(a) (b) 

/ 

• /\ 
(c) (d) 

Figure 3.8. (a) The thinning skeleton distorts at junction, (b) Two MICs formed 

centered at the distorted skeleton branch pixel, (c) The distorted skeleton pixels 

are erased, (d) The zoom-in of vector representation at the junction region 
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Figure 3.9. Positive and negative slope angles which obtained by t an ] function are 

separated into two major levels shown in two different isometric view graph (a) and (b) 
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However, using MIC to 

detect such characteristic 

accurate [26]. This method 

cannot handle arcs and dashed f̂ciî -'： 

lines well. As the two tangent 丨 

points which MIC touches the 

parallel straight boundary 

determine the slope, the arcs Figure 3.10. Two opposite centroids of 

overlapping area determine the skeleton 
and short dashed line segment 

tangential slope 

would not provide such 

boundary to obtain the correct tangent points. Those errors usually occur in the edge 

of the disconnected strokes as depicted in Figure 3.9 because the slopes found by 

the incorrect tangent points there. Moreover, iterative MIC generation is not efficient. 

For discrete pixel raster image, in case of thin stroke and small MIC formed, actually, 

the small MIC which is not a smooth circle is a 'gearwheel', and no correct tangent 

points found at all. Besides, it is difficult to locate the 'touching' point between the 

stroke boundary and MIC. We choose the area centroids as the tangent points, in 

which the MIC overlaps the two parallel boundaries, so you can see in Figure 3.10, 

in which MIC is the smallest circle formed such that the pixel overlapping occurs 

the parallel boundaries opposite to each other. Especially for low resolution line 

stroke image, such overlapping centroid is totally not helpful for precise point 

vectorization as the MIC is formed too small and rough there. 
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3.4 Skeleton-based vectorization using Bezier curve 

interpolation 
t 

Upon the above limitation and disadvantage of vectorization using MIC, we 

would like to adopt a new method, Bezier curve interpolation, which estimates the 

tangential slope of the skeleton by smoothing the discrete pixel and converts the 

skeletons into vector representation as well under the directional stroke drawing. 

Given a stroke line, all its thinning skeleton one-width-pixels would be chosen as a 

sequence of control points which determine a Bezier spine curve depicted as Figure 

3.11. 

N = 4 P�1 P/ 

J i ^ P4 

；3 

Figure 3.11. Five connected skeleton pixels determine a sequence of 

control points for interpolating a Bezier curve (source: [27]) 

The following describes the mathematics for the Bezier curve: 

N ATI 
B{U) = y p , — ~ , f o r 0 < t / < l (Eqn3.1), 

ti k\{N-k)\ 

Blending function: F , — — 卞 ( E q n 3.2) 
k\{N -k)\ 

We choose Bezier curve to represent the painting trajectory rather than B-spline 

or spline curve based on its original properties [27] as follow: 

• The curve does not pass through any of the control points except the first and 

last as shown in Figure 3.11. 

• The curve is always contained within the convex hull of the control points, it 

never oscillates wildly away from the control points, see Figure 3.12. 
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• The users need not to input any 'knots' as B-spline for determining the 

degree of curve polynomial. In Bezier curve, degree{ F^ )< the number of 

control points, e.g. 3 control points results in a parabola, 4 control points a 

cubic curve. Thus, the degree order is sufficient to let the interpolation curve 

fit the control points closely. 

• Adding multiple control points at a single position in space will add more 

weight to that point "pulling" the Bezier curve towards it. 

504 -
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500 -

" X 
498 - �� 

<2 
.1 G - ^ t s e z z ^ i . . � 
1 496 - � � ^ 
I 
t 494 - 9 

i、\ � 
492 - V9 

\ t 
490 -

488 - «> 

\ 

I I L I I 1 1 1 L 

410 412 414 416 418 420 422 424 4龙 428 

x-axIs in pixel units 

Figure 3.12. The circle bubbles show the location of the skeleton 

pixels and such Bezier curve does not pass through and oscillate 

away from them 

Similar to MIC method, the vector representation which is achieved by Bezier 

interpolation can also recognize line stroke with junctions directly to eliminate the 

distortions at junctions. For line stroke extraction, all the skeleton branch pixels 

which connect to more than two pixels were erased first and then Bezier curve 

points would interpolate over the disconnected line strokes as Figure 3.12. Here, 

MIC is just used to form inside the strokes junction to erase the distorted skeleton 

pixels and its vectors as well. Figure 3.13 shows the vectors outside MICs at 
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junctions giving sufficient information for extracting those directional strokes. As 

the vector is formed under the Bezier interpolation based on the stroke skeleton, the 

appropriate slopes are found independent of the stroke boundary even in arcs and 

dashed line segment. Figure 3.14 shows the correct and smooth slope angle values 

computed under Bezier interpolation. 
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態 
(a) 

(b) 

Figure 3.13. (a) MIC and the directional stroke vector are formed inside the line stroke, 

(b). The zoom-in on one of the "T" junction, the red vectors which starting points inside 

MIC would be erased 
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Figure 3.14. Four bubbles indicate the angles value in which the points are 

attached on the MIC boundary 

3.5 Line stroke extraction 

Line stroke reconnection can be done by using the slope values on the MIC 

boundary depicted as Figure 3.14. By comparing with Figure 3.9, the smoother slope 

angles are achieved under Bezier interpolation. Using (Eqn 3.3), non-negative cross 

slope angle G,�can be computed from two slopes m, and m�,where i and j 

are the index label of disconnected line stroke. 

/ \ 
m. — m 

0 " = t a n - i (Eqn 3.3) 
J 1 + m.m, 

V J J 

The symmetric matrix 众々 is as follows shows all the cross angles among n slopes 

at the junction A:: 
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• —I 

0 

^21 0 • 

炉 = 没 3 1 3̂2 • (Eqn 3.4) 

• 眷 • • 

There are — — cross angle Ô j would computed, where =没力. 

Under the condition: = 二 〒 ( E q n 3.5), 

where k = l,...,n-\, k<z<n, stroke k and z should be originally connected and 

acts as the threshold angle value to allow this connection. Thus, the unity of 

line stroke will be recovered with this connection. Like example in Figure 3.14, the 

only cross angle matrix in degree unit is as follow: 
- 0 ‘ 

1 78.0985 0 . n + i n � Ŝ  = , and we usually set G—�二 

0.4681 78.5672 0 
77.6487 0.4504 78.1167 0 

. = min(6>2i ^thre 

，I.e.，1 3̂1 <^43 

and, 6̂42 二 min(6>32, 6̂ 42) < ^thre, stroke 1 would be connected to stroke 3 under the 

condition suggested in (Eqn 3.5), similar for stroke 2 to stroke 4. 

Somestimes the performance of the line extraction is much dependent on the 

edge slope angles of the disconnected strokes, and is sensitive to the threshold angle 

(9,"广它 that allows those connections. In what follows, the fuzzy set concept provides 

us with an intuitive method of representing on form of uncertainty, vagueness. This 

is useful in our decision-making situation where it is not possible to draw crisp 

boundaries in deciding if the change of vectors direction is rapid at the junctions. It 

is envisioned that fuzzy identification may be available to recognize directional 
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Stroke and avoid the wrong stroke connection. 

In our case, such junction region is 

always small and short straight line \ / 

‘ \ / 

segment is enough to fill the gap between \ / 

two connected strokes at the junction / \ 

without any distortion as Figure 3.15. / \ 

Another two line stroke extraction results / \ 

are shown in Figure 3.16(b) and Figure 
3.17(b) accompanied their distorted Figure 3.15. The cross strokes are 

recovered without any distortion 

junction skeleton image in Figure 3.16(a) 

and Figure 3.17(a) respectively. 

I 

(a) (b) 

Figure 3.16. (a) A Chinese character "龍” in ancient Seal style, (b) processed by line 

extraction 

In detail, we demonstrate the Chinese line drawing and calligraphy respectively 

with higher artistic value shown in Figure 3.18(a) and Figure 3.19(a), those 

strokes are vectorized depicted in Figure 3.18(b) and Figure 3.19(b), and the final 

line extraction result overlapped with the original and junction regions is shown in 

Figure 3.18(c) and Figure 3.19(c). 
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m 
(a) 

爲 ) 
(b) 

Figure 3.17. (a) The stroke skeletons are distorted at the junctions, (b) Those distortions 

are reduced by line stroke extraction 

These results will act as the preliminary drawing schemes discussed in chapter 5. 

Obviously, the stroke connectivity at some junction especially “丁” and "Y" junction 

is not completed yet. This kind of disconnection will be modified by the 

visual-based iterative drawing process discussed latter in Chapter 4 and 5. 

28 



Chapter Four: Projective Rectification and Vision-based Correction 

(a) 

(b) 

• • 

, 吸 々 、 G v ！ 

(C) 

Figure 3.18 (a) The original art piece -Tiger "虎’，，is a ink drawing of Chinese Character 

painting “文字畫” (source [28])，（b) The vector representation for stroke extraction, (c) The 

recovered stroke skeletons after stroke extraction process are shown with MIC junctions 
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一 _ I 瞬 鋼 
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Mm 徵--' 

(a) (b) (c) 

Figure 3.19 (a) The original art piece 一 “親情” in Seal Character “篆書” (source [28])，（b) The 

vector representation for stroke extraction, (c) The recovered stroke skeletons after stroke 

extraction process are shown with MIC junction 

3.6 Line stroke order assignment 
When a beginner learns how to write his/her name, he/she will probably be 

taught to write the letters in a certain order and direction. That's because it is more 

efficient to write western languages from left to right. For similar reasons, the 

strokes in the drawing and Chinese character as well are to be drawn in a certain 

defined order. Thus, using the same principle, "efficiency" can be also defined in the 

aspect of robot drawing such that the robot should save most time to draw all the 

strokes. This efficiency reminded us of thinking about the well known problem 

called TSP (Traveling Salesman Problem). 
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r v ^ � 

� ^ ^ 〜 ） / 

(a) 

纖 
(b) 

Figure 3.20. (a) A picture drawn in an arbitrary stroke order, (b) Proper 

drawing order given by CE-Method 

TSP is a deceptively simple combinatorial problem. It can be stated very simply: 

A salesman spends his time visiting n cities (or nodes) cyclically. In one tour he 

visits each city just once, and finishes up where he started. The problem is that, in 
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what order he should visit them to minimize the distance traveled. Similar to our 

robot efficient drawing, the robot should spend least time to draw n strokes, once 

for each except return to first stroke after drawing all. In contrast to TSP, the stroke 
i 

drawn is not one dimensional node, which acts as a two dimensional city with 

entrance and exit. That implies the distance matrix would not be symmetric at all. 

Here, we introduce one of the TSP solvers called the Cross-Entropy Method 

(CE-Method) which is relatively new method for the estimation of rare-event 

probabilities reported in [29]-[30]. The CE-Method provides a simple, efficient and 

general method for solving such problem. It involves an iterative procedure where 

each iteration can be broken down into two phase: first, generate a random data 

sample such as TSP tour according to a specific mechanism. Second, update the 

parameters of the random mechanism based on the data to produce a "better" sample 

in the next iteration. In our drawing mechanism, the stroke distance should be 

defined in (Eqn 3.6), where d,̂  is the shortest Cartesian distance from the end 

point of stroke i (P'-,” pLi,y�to the starting point of stroke； {pU..PL,y) 

on the drawing plane. For example, given a tour path that the stroke sequence are 

5 4 _> 6 7 , the tour distance cost would be T— =^54 +^46 +^67-

d, = (pU^ — Pi一y + (PUy — PUyf (Eqn 3.6) 

- 0 . din 

d̂ x 0 (̂ 23 . 
D= 3̂1 《2 . . . (Eqn 3.7)， 

. . . . ^(n-l)n 
-式 1 2 . ^n(n-l) 0 _ 

which is non-symmetric distance cost matrix such that d” 本 d�* • 

Now, we choose Figure 3.17(b) for the demonstration example. For 
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CE-Method, we set the number of sample to generate each round 7V=1000, the 

fraction of best samples to take r/zo=0.05, the smoothing parameter cdpha=Q.8 and 

node placements setting is adopted. In Figure 3.20(a)，the arbitrary stroke drawing 
i 

order is assigned in which “0” and "x" indicate the start and the end point 

respectively belongs to the line stroke and the drawing order number placed near the 

bubbles “0”. The tour distance cost is computed such that 

r^.^ =1,211,533 (pixelf .After using CE-Method, the proper stroke drawing order 

depicted as Figure 3.20(b) is assigned such that the tour cost is reduced about 75% 

to r彻=297,242 

3.7 Chapter summary 

Line drawing technique seems to be simple and natural that a child can more or 

less handle. The process, however, actually requires pattern recognition, machine 

intelligence, learning and knowledge acquisition even if an accurate drawing 

mechanism is available. In this chapter, line stroke extraction is describes. It is 

shown that skeleton-based vectorization with Bezier curve interpolation is accurate 

enough to recover the directional stroke in the case that the junction skeleton is 

distorted by the preceding thinning algorithm. For low resolution raster input, 

smooth and correct vector slopes computed by Bezier interpolation rather than MIC 

method is highly preferred in eliminating skeleton distortions at line junctions. After 

a proper extraction of the strokes, the CE-Method is adjusted to yield the appropriate 

stroke drawing ordering in the time saving sense. Specifically, it is efficient to 

replicate the drawing/writing containing large number of strokes. A valuable 

masterpiece such as Chinese calligraphy epigraph “碑文” is an example. 
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4. PROJECTIVE RECTIFICATION AND 

VISION-BASED CORRECTION 
J 

This chapter describes the addition of vision-based capabilities in the platform. 

This includes projective rectification [31] of the executed work by an overlooking 

camera, and generation of corrective drawing actions for iterative improved drawing. 

As a first version [32], projective rectification is conducted using homography matrix 

computed upon 9 selected correspondence points on the drawing plane. The rectified 

version of the executed drawing is then readily compared to the original image with 

the intention to generate corrective actions for enhancement in the next iterative 

execution. To further enhance performance, a high accuracy automatic rectification 

scheme via GA-based homography transformation is also implemented. A 

demonstration of how the vision information can be used to evaluate and improve 

drawing is then given. 

4.1 Projective rectification 

As mention before，an image of the executed work captured by the camera and 

the executed image first undergoes a projective rectification. The aim of the 

rectification is to remove the projective distortion in the perspective image of the 

drawing plane, to the extent that similarity properties such as angles or relative ratios 

of lengths can be visualized at the original plane. In theory, projective distortion can 

be completely removed by selecting at least four reference points (8 degrees of 

freedom) on the drawing plane to compute the homography transformation. Figure 

4.1(a) shows the angled image captured in a case study, and Figure 4.1(b) shows 
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the 9 (over minimum 4) crosses drawn by the robot are selected for homography 

transformation. 

M M 
(a) (b) 

Figure 4.1. (a) Captured image of an executed drawing, (b) 9 points corresponding for 

generating homography matrix 

4.2 Homography transformation by selected 

correspondences 

In other to compare the executed drawing with the original image, the captured 

image needs to be transformed into a full plane view as if observed from atop. The 

well known Direct Linear Transformation (DLT) [33] algorithm is adopted to this 

effect. The algorithm determines a 3x3 homography matrix upon given at least four 

2D to 2D point correspondences, X,. ^ X , . ' . The equation can be expressed as 

X/xffiC. = 0. In the present case，the equation involves non-homogeneous vectors 

t 

as all correspondences are in the image coordinates. Hence, the 3-vectors X, and 

HX* are equal. Specifically, given n correspondence pairs, X, 二 (x,,兄,1) and 

X.'= (X,'，少/’,1)T for i= 1 to n , the cross product equation is: 
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X/xHX, = =0, (Eqn4.1), 

K1 
2 T 

where H = h 
h灯 

V / 

With hJTxi = x j y , (Eqn 4.1) can be written as: 

- - X f Yh'^ 

X f -x . 'X f ĥ  二 0， (Eqn 4.2). 

叉 / X T 0' 

The third equation in (Eqn 4.2) can be omitted as it is linearly dependent. Each 

correspondence hence yields two linearly independent equations: 

T � 

； 5 ； 二 二 0 , 4 / ^ = 0 , (Eqn 4.3) 

V / 

where 為 is the 2x9 matrix and /z is 9x1 vector. Then, putting the n 2x9 

matrices 4 into a single 2nx9 matrix A and generating the singular value 

decomposition (SVD) of A, the unit singular vector corresponding to the smallest 

singular value then yields h, and hence H. Figure 4.1(b) shows the n =9 

correspondences picked for generating the rectifying matrix. 

The homography matrix allows the captured image to be rectified in a full 

plane view with proper scaling so that the rectified image has the same pixel 

resolution as the original (see Figure 4.2) before the two can be compared. Using 

homography transformation also increases the flexibility that the installed camera 

needs not be always looking down at the drawing plane. Figure 4.3 shows the 
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homography transformation result of the image in Figure 4.1(a) based on the 

selection of the 9 correspondences of Figure 4.1(b). For explicit demonstration, 

Figure 4.4 shows the rectified image of the executed drawing which is overlapped 
i 

the original image in the same pixel resolution image. 

Figure 4.2. The original input image in pixel size 

580x580 

( � 
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4.3 Homography transformation using GA 

The above homography transformation relies on manual picked of the 

correspondence points. Presumably, one can pick more correspondence points in a 

quest to reduce the overlapping errors by, e.g., SVD technique [33]. However, it is 

quite exhausting to precisely pick too many points in the image. Figure 4.5 shows 

the overlapping between the rectified image of the executed drawing in Figure 

4.1(a) and the original image via a homography transformation computed using 

inaccurately selected points. As can be observed，the overlapping result is far from 

desirable. This problem is due to the fact that the homography transformation is 

highly sensitive to the exact correspondence of the selected points in Figure 4.1(b). 

As such, only manual selection is extremely difficult to produce overlapping 

performance to guarantee useful corrective drawing actions in our application. 

_ 

Figure 4.5. Poor overlapping qualities of the rectified 

executed image in white and the original image in black 

In what follows, Genetic Algorithm (GA) is introduced to arrive at high 

39 



Chapter Four: Projective Rectification and Vision-based Correction 

performance homography transformation upon the initialization of only 4 roughly 

selected correspondences in the image [34]. The various elements of GA are first 

described. 

(i) GA Representation 

We pick parametric genes (Ai^! 4) as fine tunings in the displacements of the 

manually selected correspondence points. The chromosome comprising of the 

parametric genes is as shown in Figure 4.6. 

f ^ i . I APiy I A/^ I 丨 A/ j I I t^�X I A P ^ 

Figure 4.6. Chromosome structure of the correspondence displacements 

(ii) Objective and Fitness Evaluation 

The objective function serves to provide a measure of how individuals have 

performed in the problem domain [35]. In the case of a minimization problem, the 

most fitted individual will have the lowest numerical value of the associated 

objective function. This raw measure of fitness is usually used as an intermediate 

stage in determining the relative performance of the individuals in GA [36]. Figure 

4.7 shows the original image and rectified image converted to black and white, 

where the foreground pixels are taken as 1 s and the background pixels as 0 s. The 

objective cost value can then be defined as: 
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mm 
(a) (b) 

Figure 4.7. Image in black and white (a) The original, (b) The rectified 

executed image 

m n  

Objective: minimize o{H) = pI (E^n 4.4), 
j i 

where i is the row number, j is the column number, p； is the pixel value of 

nxm original image, p； is the pixel value in nxm rectified executed image, 

and the conjugate pixel value, (0 — 1 and 1 — 0). Upon a 3x3 matrix H 

calculated based on displaced correspondences induced by the given chromosome, 

an inverse value of the objective cost function oiH) ' ' which represents the 

overlapping quality of two images can be computed. 

The fitness function serves to transform the objective function value into a 

measure of relative fitness. This mapping is necessary as the objective function is to 

be lowered in the quest of a "fitter" individual in the next generation. In this paper，a 

non-linear fitness assignment is adopted to prevent premature convergence. 

Individuals are assigned fitness values according to their rankings in the population 

rather than their raw performance. The fitness of a individual in the population is 

calculated as, 
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Fitness: F(x) = 2-PRS + 2(PRS-\) — (Eqn 4.5), 
凡厂 1 

where = ranking{o{His the position in the ordered population of the /仇 

individual, /=1, and is a population size in each generation. As 

suggested in [37], the variable PRS is typically chosen within the interval [1.1, 2.0]. 

The fitness assignment ensures that each individual has a probability of 

reproducing according to its relative fitness. Note that the fitness assignment is 

always positive. 

(iii) Evolutionary Computing 

The following genetic parameters and operations are adopted for the projective 

rectification problem at hand. 

1) Displacement resolution: d” pixel unit. 

2) Displacement r a n g e :[心心 J in pixel unit. 

3) Chromosome length: 4 correspondences points; 8 degree of freedoms. 

‘ ^ - d 
7 _ O 1 / max min , -j\ 

Chromosome length in binary coded, I bit 二 石 & 2 V ~ 卞” 

4) Crossover method: 

One-point crossover with probability of crossover p � 

5) Mutation method: 

New individuals take the current population and mutate each element with 

probability of mutation；?^ 二 0.7//办" . 

6) Selection method: Stochastic Universal Sampling with population selection 

=90%. 

7) Replacement: Fitness-base reinsertion to current population. 

8) Population size : between 40-100, based on the length of the chromosome. 
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9) Number of generation past: 

10) Initial population: randomly generated within the displacement range 

according to displacement resolution. ‘ 

The GA homography estimation is performed on a PC with Pentium 4 

(3.06GHz) CPU, 1GB RAM, and using Windows XP operating system. 

Computation time for finding the optimal homography transformation is roughly 

45-60mins. This computation time (averaged over multiple runs) is for reference 

only since the program is nmning in the debug mode ofMatLab. The actual speed 

should be much faster. As corrective actions are to be generated off-line, the 

computational cost here is actually not too important. Moreover, computation is 

needed to be performed only once after each adjustment to camera orientation. 

Result 1 

The overlapping result as produced by the evolutionary computing is shown in 

Figure 4.8. Marked improvement over that of Figure 4.5 is observed. Here, the 

pixel size is 580x580 image. The parameters are: ^,=0.5 pixel units,心狀=20 

pixel units, pixel units, =56, p, =0.7, P . =0.0125, and 

y评”二80. The objective cost oiH) of the executed image upon rectification by the 

manually selected correspondence points, depicted in Figure 4.5, is =12091. After 

GA homography estimation, the objective cost decreases to o(5)=854 in Figure 

4.8. The corresponding offset displacement and overlapping quality are AP=[\9, 

4.5，-13, 9.5, -4, 0, -3, -5.5] pixel units. 
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Figure 4.8. Exact overlapping qualities of the rectified 

executed image in white and the original image in black 

Result 2 

Figure 4.9 shows another overlapping result. The pixel size in this case is 

580x400. The parameters are d=Q2 pixel units,心狀=15 pixel units, 

pixel units, /秘=64, A«=0.0109, and iV炉广60. Figure 4 . 9 � 

shows the case of homography transformation based on manually selected points. 

The corresponding objective cost is =10546. Figure 4.9(b) shows the case of 

GA homography transformation, and the objective cost is o{H) =4176. The cost is 

not reduced as much as previously because the executed stroke is thicker than the 

original image. The offset displacement AP 二[1.2, -5, -8.6, 4, -1, -8.8, -0.2, -11.2] 

pixel units. 
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(a) (b) 

Figure 4.9. (a) The rectified image before GA homography correction in white, (b) The 

one after correction shows the executed stroke is thicker than the original image one 

4.4 Visual-based iterative correction example 

The overlapping results using GA homography transformation in Figure 4.8 is 

now applied to generate corrective actions in the execution of branch points. This is 

possible because brush tip deformation during the drawing process usually yields 

rather significant offset in the brush lines (discussed latter in section 5.1) should 

improper drawing sequence be executed. 
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(a) (b) 

Figure 4.10. (a) A MIC centered at the skeleton branch pixel, (b) The same size disk with 

same coordinates formed to detect the connectivity in the executed drawing 

Figure 4.11. Wrong drawing sequence causes 

improperly executed branch points which are encircled 

Focusing on the branch point regions, Figure 4.10(a) shows a circular disk 

centered in the stroke skeleton branch point of the original image, and Figure 

4.10(b) shows the same disk formed with same coordinates in the rectified executed 

image. It can be seen that the stroke connectivity inside the disks of the two cases do 

not agree with each other. This indicates that the branch point decision needs to be 

corrected. Figure 4.11 shows five encircled branch points on the executed drawing 
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image on which drawing sequences have been identified to be improperly executed. 

This provides the needed information for correct branch point drawing in the second 

robot execution. The result is depicted in Figure 4.12. The encircled branch points 
I 

are now properly executed. More iteration may be conducted if the branch points are 

of more complicated nature than that of the present case. 

齒 
Figure 4.12. Second time executed image with 

corrective drawing sequence 

Besides the branch point decision, other drawing and writing performance may 

also be measured using the vision information. Figure 4.13(a) depicts the stroke 

lines executed under difference z-axis (vertical to the drawing plane) values as 

captured by the camera at an angle. Analysis of projective rectified image in Figure 

4.13(b) actually allows the calibration of executed stroke width as function of the 

z-axis command. The calibration curve is shown in Figure 4.14. 
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(a) (b) 

Figure 4.13. (a) The executed image as captured by camera in which strokes 

were executed in different z-axis value, (b) The projective rectified image for 

strokes thickness measurement 

The relationship between z-axis value and stroke width 
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Figure 4.14. The diagram of stroke thickness against the z-axis value 

from vision information obtained 

Application of the overlapping information to generate corrective action in 

branch point decision and other performances is very useful in analyzing and 

executing the calligraphy painting, especially for one kind of ancient Chinese font 

called Seal Character “篆書”. 
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4.5 Chapter summary 

This Chapter describes the development of visual-based capabilities for 

corrective action on improving the executed drawing by comparing with the origin. 

By manual picking numerous correspondences {n = 9) in the image, homography 

transformation errors may be minimized under SVD-based methods in the solutions 

for a constrained linear optimization problem. However, the manually and precisely 

picking the correspondences is difficult and frustrating at times. For close comparison 

as desired, a GA-based homography transformation to automatically generate a high 

performance overlapping upon the coarse manual selection of 4 correspondence 

points is developed. The result shows that the process can be successful applied in 

actually pinpointing incorrectly executed branch points, which are then modified in 

the next execution of the drawing. It is envisioned that visual-based capabilities would 

be expanded in the future to conduct real time online closed loop correction in 

thickness and trajectory control of albeit simple painting and calligraphy with full 

brush strokes. Also, the robot can follow the varying thickness along the stroke upon 

the vision feedback with image high resolution. 

The concept of error compensation in homography transformation can have 

other applications e.g., in image mosaicing. The user just has to select four 

correspondence pairs roughly as Figure 4.15 (a) and (b). The superior performance 

of GA-homography correction over that of SVD-based homography correction is 

clearly shown by comparing Figure 4.16 (a) and (b). 
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• 1 
‘ (a) 

(b) 

Figure 4.15. Four correspondence pairs are picked roughly in left side photo (a) and 

right side photo (b) 
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(a)  

歸 • 警 ， . -、 ’- ^ ‘ ^ ： 、 

(b) 

Figure 4.16. Poor quality mosaicing is shown in photo (a). After GA-homography 

correction, photo (b) shows the exactly correct image mosaicing 
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5. ITERATIVE ENHANCEMENT ON OFFSET 

EFFECT AND BRUSH THICKNESS 

For Chinese black ink painting，the brush, 

the ink, the ink stone and paper are referred to 考專? 

as the "four treasures in a Chinese study". ， : 

Among the four, the ink brush plays an ^ 

important role. Usually, the traditional bristles ^ r M ^ ^ ^ B ^ B 

are made from the soft hair of animals such as " ^ m f f l n ^ H 

black rabbit's hair，white goat's hair, and I- Y二 • - ^ ^ B m H B m ‘ 

yellow weasel's hair. They measure from 5 to 6 Tv^ ̂ ^ ^ • ^ H ^ E _ 

centimeter long and are starched to form a -

pointed tip [39]. The brushes are classified into 零 Y詈擎置 
three groups: "Hard", "Soft" and "Both". If the ^ ^ . M M 

tips do not have the proper elasticity and shape, Figure 5.1. Several types of 

丄1 1 1 ^ .1 1 1 . .1 auto-ink-loading brush are used the brush cannot provide stroke lines with 
in the iterative drawing 

adequate quality. For our robot drawing, the 

brushes with automatic ink loading are used, see Figure 5.1. 

5.1 Offset painting effect by Chinese brush pen 

Referring to Figure 5.2, as the pressure exerted on the brush increases during 

drawing, the elastic brush tip is deformed. The bristles spread out such that their 

contact area widens to maintain a constant total volume. As a result, the brush draws 

a thicker line on the paper. Moreover, when the position or running direction of the 
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brush changes, the brush reaches its 

equilibrium shape only after some time delay 

dependent on the bristles' elasticity. This offset 
|i|I •|||丨1丨丨|||||||丨|| !| I'lil li'i" '|'||ii jl 

effect is significant for higher exerted pressure 

and mostly obvious at the end of the stroke as 

depicted in Figure 5.3. For numerous existing ^ ^ ^ ^ ^ ^ 

works on 3D virtual brush model reported in ^ ^ ^ ^ ^ 

[39H42]，the bristles are simulated as long， 

thin, elastic rods and the theory of elasticity is 

applied to model their deformation and 鬆 恕 i l 藝 S i & H 这 S ^ S 
j j „ 丄 . Figure 5.2. The force exerted on stifmess. However, all these qualities are not 

the brush while pulled across the 

easy to measure for real brush as they vary paper results the horizontal 

• 1 1 . . - ^ . , J 1 deformation of the bristles with different bristles materials used, number 

of hairs and size of the bristle bundle. In our robot drawing, the stroke thickness and 

the offset quality are nearly unpredictable due to all these uncertainties. 

In what follows, without any precise realistic brush model we will apply, 

visual-based technique of chapter 4 to iteratively determine a drawing scheme to 

overcome the offset effect, and to determine the appropriate z-axis commands to 

match the actual stroke thickness of the original piece. 

5.2 Iterative robot drawing process 

Figure 5.4 shows the schematic diagram of the visual-based enhancement 

technique adopted in this section upon the input of the to-be-replicated line drawing. 

The robot is commanded to execute a drawing without concerning the stroke 

thickness and junction connectivity due to the offset effect. The executed image is 
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then captured and the image rectified via the high accuracy GA-based homography 

transformation. The following steps are then carried out by comparing the rectified 

image and the origin. 

A. Stroke thickness checking 

The total stroke thickness correction can be determined based on the resulting 

high accuracy overlapping between the original and rectified image. For this 

comparison, the exact thickness quality is not necessary to computed. There are just 

two parameters needed to be considered: O, is the number of rectified image 
m n  

foreground pixels out of the original image foreground, i.e., O 厂 [ [ p - j p ^ , and 
； I 

凡 is the number of original foreground pixel out of the rectified image foreground, 
m n  

i.e., = X S p'uPI ‘ where i is the row number, j is the column number, p.j 
J i 

is the pixel value of the nxm original image, is the pixel value of the nxm 

rectified executed image, and 凡） t h e conjugate pixel value, (0 1 and 1 -> 0). 
D 

For — < 30%, the z-axis value for the next drawing should be to exert more 
Or 

pressure (add a negative Az) in other to enhance the stroke thickness as the 

original. 

Figure 5.3. Two strokes are painted in same length but the below one which 

the brush is pressed more during painting indicates higher offset effect 
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Figure 5.4. The process flow chart of visual-based iterative line drawing in finding the 

best replication drawing scheme 

B. Junction connectivity and stroke end checking 

The disconnection at junctions is explicit in the preliminary drawing. Figure 

5.5(a) is the skeleton image of an executed drawing after the iterative thinning 

process. There is no branch pixel inside the junction region. Hence, this junction is 

treated as disconnected and stroke elongation A/ will be performed on the open 

end stroke in the next iterative execution. After all junctions are verified to be 

connected, elongation of stroke edges is then considered. Moreover, if the end of a 

stroke in the executed image does not cover the edge of drawing trajectory, this 
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Stroke would be also elongated next. All the stroke elongation at junctions or at the 

end of stroke would follow the vector direction, see Figure 5.5(b), which has been 

achieved by vectorization using Bezier interpolation described in chapter 3. 

R 
Eventually, the iterative drawing process will terminate when — > 30% and 

also no disconnection that are found at junctions. Then, the last executed drawing 

will become the final replication output. 

(a) (b) 

Figure 5.5. (a) A skeleton image portion without any branch point inside the junction 

region, (b) The open end stroke would be elongated by following the vector direction 

5.3 Iterative line drawing experimental results 

Case study 1 

The first study is on the line drawing as shown in Figure 4.2. Projective 

rectification is conducted using the GA-based homography matrix 

A.1245^-003 -2.3463^-004 -7.1173^-001' 
H = 8.7572^-005 1.2376^-003 -7.0245^-001 . The correspondences 

^2.8468-008 -3.7785^-007 -1.058e-003 ) 

selected which initiate the rectification are: [(731, 506), (88, 550), (84, 54), (630, 25)] 

in the captured image and they are corrected by GA process as [(727.6, 506.2), (84.8, 

551.4), (79.5，49.7), (628.4, 23.1)] corresponding to four vertices [(10, 10), (590, 10), 

56 



Chapter Five: Iterative Drawing Quality Enhancement on Offset Effect and Brush Thickness 

(590, 590), (10, 590)] in the original image. The picture dimension is 

17.4cmX 17.4cm. Figure 5.6 shows the preliminary drawing scheme as generated 

by stroke extraction method introduced in chapter 3 overlapped with the original 

drawing, and the junction labels serve to indicate which junction we are referring to. 

Here, Az =-3mm, A/ =3 pixel units are adopted. 

I { \ - ‘ X \ -

I / • 气 • 

f . 氣 / . \ 
/ . v V . �& 

) 广： 
z ( 广 ： ： 

Figure 5.6. The overlapping image of the executed drawing scheme with 

one-pixel-width skeleton lines and the original drawing, the MIC junction 

regions with labels are depicted in white 

Figure 5.7 shows the drawing trajectories overlapped (white traces) with original 

image strokes in black. As the z-axis value (z=Omm) applied on the pen is just 

touching on the paper, the white drawing traces are not clear due to uneven paper 

flatness. Upon the feedback mechanism described in section 5.2, the robot will 

increase the brush pen pressure and elongate the stroke at all junctions in next 

execution. The second execution is depicted as Figure 5.8. The white traces are 

now clearer, but the brush tip still cannot contact with the paper in some portion of 

the picture. Also, no connectivity at junctions is observed at all. More pressure and 
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elongation are thus needed for the next execution. In third execution Figure 5.9, the 

white traces appear and 11 junction connectivity (at no. 2, 4，6, 7- 9, 15, 17, 19-21) 

are recovered. Thus, the strokes at junction no. 1，3，5, 10-14, 16, 18, 22-26 need to 

be elongated and press more against paper during the next drawing. Figure 5.10 

shows the fourth execution drawing in which nearly all junctions are recovered 

except junction no. 8 (which was connected in the previous execution). The 

explanation for this is that the larger the force exerted to the brush tip, the stronger 

the offset effect can be. For next drawing execution, both incrementing of the brush 

pressure and stroke elongation at junction no.8 are thus applied. The fifth execution 

is shown in Figure 5.11，all the junctions are recovered as in the original picture, 

but the stroke thickness still has to be increased for better matching. This yields the 

sixth execution depicted in Figure 5.12. Finally, the seventh execution in Figure 

5.13, indicates that both stroke thickness and junction connectivity are nearly the 

same as the original drawing. 

a* 
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_ 

Figure 5.7. First execution from preliminary drawing scheme (z=Omm). 

Figure 5.8. Second drawing execution: z=-0.3mm is applied on the brush pen 

during drawing and strokes are elongated at the junctions with 3 pixels unit. 
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• i m H B i i i H m m m H m H i m m H K i ^ s i 

Figure 5.9. Third drawing execution: z=-0.6mm is applied on the brush pen 

during drawing and strokes are elongated at the junctions with 3 pixels unit. 15 

junctions are still not recovered. 

tti^ 
Figure 5.10. Fourth drawing execution: z=-0.9mm is applied on the brush pen 

during drawing and only strokes at the unconnected junctions of the third drawing 

are elongated. Now, only junction no. 8 is still not recovered. 
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I , ：. ^ 為 • • ？ ' ？敏” ：-• r 知么…二, 

Jr.......…、丄-乂A. ‘ - - J^：/^.'^^,. . «： . - - ‘ 无 

Figure 5.11. Fifth drawing execution: z=-1.2mm is applied on the brush pen during 

drawing and strokes are elongated at the unconnected junctions with 3 pixels unit. 

All junctions are connective here. 

\ . ： V ) S �• ' l i p ^ l 

： • 丨 . 纖 

Figure 5.12. Sixth drawing execution: z=-1.5mm is applied on the brush pen during 

drawing and no stroke elongation is necessary. 
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Figure 5.13. Seventh drawing execution: z=-1.8mm is applied on the brush pen 

during drawing. The best matching finalizes the iterative drawing process. 

Case study 2 

The second study is on the line drawing as shown in Figure 3.19(a). Projective 

rectification is conducted using the GA-based homography matrix 

n . l876e - 003 -3.004^ - 004 - 5.5933^ — 001� 

H = 1.5969^-004 1.4208卜 003 -8.2894^-001 . The correspondences 
^4.7932^-008 -1.0846^-007 -1.0725^-003^ 

selected which initiate the rectification are: [(588，507), (337, 536), (227, 45), (463, 

21)] in the captured image and they are corrected by GA process as [(592.23, 

509.13), (342.17，537.13), (226.53, 40.67)，（467.4, 20.57)] corresponding to four 

vertices [(10, 10), (284, 10), (284, 689), (10, 689)] in the original image. The picture 

dimension is 8.15cmx 3.29cm. Figure 5.14(a) shows the preliminary drawing 

scheme overlapped with the original drawing. Here, Az 二-0.4mm and A/=4 pixel 

units are adopted. In this case, we set z二0mm such that the brush tip is pressed more 

on the paper to reduce the iteration, see the first execution in Figure 5.14(b). 
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_ _ _ 

M i 
(a) (b) (c) 

Mltifl 
(d) (e) 

Figure 5.14. (a) The preliminary drawing scheme is shown in skeleton pixel with 

junction regions and the original picture display, (b) First drawing execution: z=Omm, 

(c), Second drawing execution: z=-0.4mm, (d) Third drawing execution: z=-0.8mm, 

(e) Fourth drawing execution is the best which finalizes the iterative drawing process: 

z=-1.2mm 
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In the second execution Figure 5.14(c)，z=-0.4mm is applied on the brush and only 

cross-junction regions are connected. The third execution is shown in Figure 

5.14(d), z=-0.8mm is applied and all junctions are recovered expect its stroke 

thickness. The fourth execution are shown in Figure 5.14e) which is the iterative 

final drawing result for z二-1.2mm. 

Case study 3 

^ 一丄 .. .. . ^ - .山… ^ … -

(a) 

隱 
(b) 

Figure 5.15. (a) The preliminary drawing scheme is shown in skeleton pixel with junction 

regions and original picture display, (b) First drawing execution: z=Omm is applied on the 

brush pen 
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The third study is on the line drawing as shown in Figure 3.18(a). Projective 

rectification is conducted using the GA-based homography matrix 

‘ - 1 . 1 7 6 k 一 003 3.699k - 004 7.2985e - 001� 

H = 1.13156e-004 -1.13727e-003 6 .836k-004 . The correspondences 
、一 2 . 1 3 4 2 它 - 0 0 8 2 . 7 3 3 7 ^ - 0 0 7 7 . 2 6 9 5 ^ - 0 0 4 夕 

selected which initiate the rectification are: [(747，419), (64, 485), (35, 223), (671, 

173)] in the captured image and they are corrected by GA process as [(745.80, 

420.50)，(60.23, 485.97), (36.80, 222.70), (668.10, 171.67)] corresponding to four 

vertices [(10, 10), (977, 10), (977, 474), (10, 474)] in the original image. The picture 

dimension is 7.89cm x 16.4cm. Figure 5.15(a) shows the preliminary drawing 

scheme overlapped with the original drawing as well as the junction regions. 

Here,Az=-0.3mm and A/ =3 pixel units are adopted. In this case, we also set 

z=Omm so that the brush tip is pressed on the paper, see the first execution in Figure 

5.15(b). In the second execution Figure 5.16(a), z=-0.3mm is applied on the brush 

and some junction regions are connected. The third execution is shown in Figure 

5.16(b), z=-0.6mm is applied. Only one stroke end at junction is disconnected and 

the stroke thickness still needs to be increased. The fourth execution are shown in 

Figure 5.17 which is the iterative final drawing result for z=-0.9mm. 

65 



Chapter Five: Iterative Drawing Quality Enhancement on Offset Effect and Brush Thickness 

—BBaMMMBB—Mff iB—MMB1——a—i i^ f f i r v fej^jfT^ HBHilfVillBF 

(a) 

(b) 

Figure 5.16. (a) Second drawing execution: z=-0.3mm and junctions elongation are need 

in the next execution, (b) Third drawing execution: z=-0.6mm and some junctions are still 

disconnected 
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Figure 5.17. Fourth drawing execution is the best which finalizes the iterative drawing 

process: z=-0.9mm. 

5.4 Chapter summary 

In this chapter, we extent the iterative enhancement to more details of the 

drawing; namely, brush width and offset effects. The method depends on the high 

overlapping quality as resulted in our visual capabilities. Even without adopting a 

brush model, iterative drawing produces a better and better fine tuning in replicating 

the original drawing. The results hence show that our approach can improve the total 

stroke thickness as well as the stroke connectivity. Our future goal is to modify the 

iterative drawing algorithm such that the robot can follow the varying thickness 

along the strokes upon the projective rectification of high pixel resolution. At the 

same time, however, we are also in the process of experimentally determining a 

simple brush pen model to be used for qualify robot drawing. 
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6. GA-BASED BRUSH STROKE GENERATION 

All Chinese characters are built up from basic strokes. Unlike other visual art 

techniques, all calligraphy strokes are permanent and incorrigible, demanding 

careful planning and confident execution. One example of such a complex process is 

shown in Figure 6.1. 

7 • 、 售 ^ 

I 懷 

1 f 
(a) (b) (c) 

Figure 6.1. (a) Stroke painting trajectory planned by the calligraphy artist, (b) A full 

stroke painting under the trajectory designed in (a), (c) The calligraphy character 

“中” is completed from those full stroke painting 

Inevitably, good stroke control contributes highly artistic quality of the calligraphy. 

By controlling the concentration of ink, the thickness and adsorptivity of the paper, 

and the flexibility of the brush, an artist is free to produce an infinite variety of 

styles and forms [43]. This chapter introduces a novel brush stroke generation 

scheme using Genetic Algorithm (GA) under a pre-defined brush stroke model. For 

now, we let the brush stroke be defined only by (x, y, pressure) commands. While all 

degree of freedom will be attempted in the future, nevertheless, such kind of 

information will still give us certain perspectives about robot manipulator 

kinematics control for full stroke painting. This artistic stroke generation also 

provides future exploration about the extension of our project main theme to full 

stroke painting incorporating with a real bmshsince，and different OA's painting 
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scheme would be executed and evaluated iteratively until the best painting solution 

outcome. 

i 

(a) 

160 1 1 1 1 1 1 1 1 
140 - -

120 - _ 

8�- -
6 0 - -

40 - -

2 0 - -

I 1 I 1 I 1 1 1  
50 100 150 200 250 300 350 400 

(b) 

Figure 6.2. (a) 121 control points from 23 groups formed in the sequence of line 

segments, (b) A bundle of Bezier curves represent various painting trajectories 

6.1 Brush trajectory representation 

The study of Bezier curves falls under the general topic of curve fitting. 

However, these curves really do not have many scientific purposes. That is, given 

some data points, a scientist would not use Bezier curves to approximate a function 

definition for the data. Rather, Bezier curves have more of an artistic purpose. 

Originally used by car designers to create pleasant looking curves, these methods are 

now used by graphics artists in many fields where the generation of curved shapes is 

a necessity. In this case, it provides us a simple representation model for the brush 
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Stroke painting trajectory. We describe the trajectory as a sequence of 2D discrete 

control points shown in Figure 3.11. In Figure 6.2(a), those control points which 

are grouped into various length line segments drawn manually determine a Bezier 

spine curve, and a set of pre-defined brush template centered along to the curve to 

model a brush. For fully automatic process, we would like to simulate the stroke 

rendering in finding the painting scheme by just given the sample stroke image. 

Thus, it is envisioned that the sequence of line segments inside the stroke for Bezier 

curve control point constraints are necessary to be generated rather than manually 

pre-defined. 

Similar to section 3.4, we choose Bezier curve to represent the painting 

trajectory rather than B-spline or spline curve based on its original properties as 

mentioned before. By varying the control point, different Bezier curves will be 

formed as the painting trajectory which varies with different combination of control 

points depicted in Figure 6.2(b). Totally, there are astronomical sums of trajectory 

combinations (1.9508x10^^ 2D trajectories) can be achieved in this case. The 

complexity of this representation is low rather than using the connected pixels to 

represent it. 

6.2 Brush stroke modeling 

In addition to brush trajectory, the brush stroke model is another vital factor to 

achieve good painting result. Recently, Nelson S,H. Chu et. la. [41]-[42] developed 

a 3D brush model consisting of a brush skeleton and surface. Such brush model, 

shown in Figure 6.3’ is capable to simulate the brush flattening and bristle 

spreading due to brush bending and lateral friction exerted by the paper surface. By 

simulating the deformation of Chinese brushes and the ink decomposition during the 
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painting process, a virtual painting can be generated with different 

effects. 

MarSiJe Outer layer ‘ j5, Pi 
— X . ' y ‘ / Lateral r.odes 

R e s e r v o i r S p i n e n o d e s 
R o o t B e U y  

(a) (b) 

InaiaMIIIIIIBHHIIlBMiiMiiMNĤ,, Vertical-Brush 

N o d e D ( root n o d e ! 

S e g r n e n i ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 
} S l a n t e d - B r u s h 

i Lateral :Modes 
^ ^ Flying.White 

'如 S e g m e n t n 

P u s h e d 
N o d e n ^ ^ ^ ^ 

(c) (d) 

Figure 6.3. (a) Anatomy of a typical brush, (b) Blending string of lateral notes, (c) 

Geometric model of a brush tuft, (d) Different sample strokes are rendered by Nelson's 

brush model (Source: [41]) 

In Chapter 7, we will describe a preliminary 

experiment which tries to obtain stroke model using ' ^ ^ B B ^ 

a real brush tuft. As part of the overall study, we 

would like to use a very simple brush 2D template - ^ H v V 

model here to generate the brush trajectory. 

In our case, brush pen models can be i f P ^ 華 

simplified as brush 2D template. By following the 

basic painting phenomenon, greater the writing �jgure 6.4. Two different kinds 

pressure, larger the footprint painted on the paper. of 2D brush template under 

different painting pressure 

The 2D brush templates s h o種 in F igure 6.4 are descending from up to down. 

pre-defined. A totally 50 different sizes are stored in 
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our template library. Figure 6.5 shows that the brush templates in different sizes as 

according to the pressure applied along the Bezier curve trajectory, assuming that 

the size of the template is proportional to the pressure evaluated. 

lOOp-—~——I 1 1 1 1 1 

§ 身 : 
零 、- � � ° o 

^50 i 150 200 300 400 

(a) (b) 

Figure 6.5. (a) The centroid and front direction of the template are defined, (b) The brush 

templates chopped tangentially along the Bezier curve under different pressure applied 

6.3 Stroke simulation using GA 

Unlike line stroke drawing, there is no trivial solution for full stroke painting. 

In what follows, we proposed GA to determine the (x, y) trajectory and z-direction 

pressure for a given brush stroke serves to simplify the searching process rather than 

studying the geometry of the brush and sample stroke given. Furthermore, one can 

use various kinds of 2D brush template and study how they would achieve the 

corresponding stroke generation. At the same time, one may judge how different 

brush templates would affect the chromosome resulting artistic quality. 

(i) GA Representation for stroke generation 

In GA representation, the chromosome can be regarded as the brush painting 

solution that p i c k s a s the Bezier curve control point genes and P丨=�…，„ 

tangential pressure genes, see Figure 6.6. 

72 



Chapter Six: GA-based Brush Stroke Generation 

I I Q I I I C , II P, I 尸2 I I I Pn I 
Control point genes Pressure genes 

Figure 6.6. Chromosome structure of the painting plan which represented by Bezier curve 

control point genes and painting pressure genes, where m is the total control point group 

number and n is the total number of pressure applied. 

(ii) Objective and Fitness Evaluation 

Similar to section 4.3, the objective function is defined to measure how the 

individuals performed in stroke generation. Under our scheme, the stroke generated 

should clearly resemble i.e., fully painted with in bound the sample stroke given, 

the sample stroke in our study is shown in Figure 6 7 . It is in Running Script style 

“行書”,which is one of the major categories of Chinese calligraphy. 

Figure 6.7 The sample stroke "一” the Chinese character 

number "one" in Running Script style "行書” 

The principle of the objective function is thus designed according to the above 

painting scheme. In the case of a minimization problem, the most fitted individual 

will have the lowest numerical value of the associated objective function. There are 

three objectives in our consideration as presented in the following. The fitness 

function transformation will be a non-linear one similar to (Eqn 4.5). 
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Iteration no = 7 Iteration no = 10 Iteration no = 13 

I I I 
v.-i < « y \ 5 . -1 

> ； V \ îe "力 
； ： 卞 ^ …�V" ，〜 ： ” ’ 

'̂t i : I “ K 老备i < ^ 考 及 .x? i 
(a) (b) (c) 

Figure 6.8. The image of Chinese character "見” expressed in Seal Character “篆書” 

undergoing the iterative thinning process, (a) The remaining pixels after 7 iterations, (b) after 

10 iterations, (c) after 13 iterations. 

Objective 1: Painting inside the stroke boundary. 

Figure 6.8 depicts the thinning algorithm which is the procedure to iteratively 

remove of region boundary pixels. Removal is repeated until a pixel set with 

maximum thickness of one or two is obtained [21]. Thus, the more the iterative 

removal, the thinner the image skeleton. By using such thinning property, we can 

divide the sample stroke into two regions automatically. This is shown in Figure 

6.9(a), where the sample stroke is thinned iteratively until the remaining region is 

reduced to 35% of its original. 
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(a) (b) 

Figure 6.9. The sample stroke is divided into two regions: (a) inner region, (b) outer region, 

those are inside the stroke 

Minimize objective 1: ObjV^ = w^p^ -^^iPi (Eqn 5.1), 

where is the number of unpainted pixels within the region i and ŵ  is the 

corresponding cost weighting of the region. The region 1 and region 2 are shown in 

Figure 6.9. As the aim is to have the brush tuft painting inside the stroke, usually 

we would set ŵ  > W2 during the GA evolution. 

Objective 2: Not painting out of stroke boundary 

Contrast to the thinning algorithm, dilation is a morphological operation to 

expand image object. The iterative procedure effectively sticks a pixel "layer" on the 

image object. Figure 6.10 shows the sample stroke being dilated iteratively until the 

added "layer" constitutes 85% area of the sample stroke. 

(a) (b) 

Figure 6.10. There are two regions colored outside the sample stroke: (a) skin region, (b) 

out-of-skin region. 
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(b) 

Figure 6.11. (a) The circles indicate the pressure points distributed along the trajectory, 

(b) Linear Interpolation of presence in before points. 

Minimize objective 2: ObjV: = w^p^'+W^p^' (Eqn 5.2), 

where 凡 is the number of painted pixel within the white region i as shown in 

Figure 6.10. Similarly, we set ŵ  > w � t o enforce the desire of not painting far off 

from the stroke boundary. 

Objective 3: Painting with smooth pressure change. 

In real calligraphy painting, the force applied on the brush pen usually increases or 

decrease gently for smooth painting. It is thus necessary to design a penalty scheme 

for handling the pressure change along the trajectory. 
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max-l 
Minimize Objective 3: ObjV^ = J ! P厂烈/+i ' P^es\ (Eqn 5.3), 

i=\ 

where pres^ is the pressure levels applied on the i ̂ ^ pressure point as depicted in 

Figure 6.11(b). Note that the actual applied pressure over the Bezier curve is the 

linear interpolation over the presence values at the pressure points shown in Figure 

6.11(a). 

6.4 Evolutionary computing results 

The following genetic parameters and operations are adopted for the stroke 

generation problem at hand. 

1) No. of control point groups defined: m , the control points are grouped into line 

segment drawn inside the stroke manually. The control points are located on the 

line segment in every inv =3 pixels, see the example of Figure 6.12. 

2) No. of control points in group i: n_cp, 

3) Total no. of control points inside the stroke: cpn 

4) No. of pressure level applied: There are n=20 pressure levels ranging from 1 

to 50, i.e., pressure value are defined [pres^^^, pres^^J 

5) Stroke region division: the area of region 1, 2 and 3 as relation to that of the 

sample stroke in percentage 及,=1，3 =[35, 65, 85] 

6) Objective value weighting: 

7) Chromosome length in binary coded: 
m _ -1 

=5]� l og2 ( " -CA)1+" l o g 2 ( P � �a x � �n +1) (Eqii 5.4) 
Z = 1 

8) Crossover method: Multi-point crossover with probability of crossover p^ 
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9) Mutation method: New individuals are generated by taking the current 

population and mutating each element with mutation probability p^ =0.7//如. 

10) Selection method: Stochastic Universal Sampling with population selection p ̂ . 

11) Replacement: Fitness-base reinsertion to current population. 

12) Population size N : between 40-100, depending on the length of the 

chromosome. 

13) Number of generation past: N^^^ 

14) Initial population: randomly generated within the groups of control point and 

range of pressure value. 

(a) 

(b) 

Figure 6.12. (a) There are m =23 line segments drawn manually inside the sample 

stroke, (b) The bubbles circles indicates the control points placed on the line 

segment. 

The GA stroke generation result is performed on a notebook PC with Centrino 

(1.6G) CPU, 512 MB RAM, using Windows XR The computation time for 

generating the stroke solution is roughly 20-50mins. This computation time 
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(averaged by multiple runs) is for reference only since the program is running in the 

debug mode of MatLab environment. The actual speed should be much faster. 

In result 1, a set of circular spray paint templates is adopted and depicted in 

Figure 6.13(a). The objective cost diagram during the GA evolution is shown in 

Figure 6.13(b), and Figure 6.14 shows the best resulting strokes for each 10 

generation past during the evolution. In result 2, the water drops templates are used 

as depicted in Figure 6.15(a). The objective cost diagram and the resulting strokes 

respectively are shown in Figure 6.15(b) and Figure 6.16. By comparing two 

experimental GA results, water drop template performed better and the final best 

outcome indicated with a painting trajectory is depicted as Figure 6.17. 

For further demonstration, we would like to replicate a Chinese calligraphy 

character by a very famous ancient calligrapher, Wang Xianzhi (王羲之)• One 

character, see Figure 6.18(a), is chosen from his well known masterpiece called 

Lan ting xu (蘭亭序).Figure 6.18(b) shows the stroke elements extracted manually 

using image editor software and the corresponding stroke control points are set as 

depicted in Figure 6.18(c). In this time, another brush template shown in Figure 

6.19(a) is adopted which is more or less combined the two previous templates used 

such that there is spraying effect on its boundary. The evolutionary computing 

results are demonstrated from result 3 to 6 with the input parameters. The 

evolutionary objective cost diagrams are shown in Figure 6.19(b), Figure 6.21, 

Figure 6.23 and Figure 6.25 respectively. Also, the strokes evolution processes are 

respectively shown in Figure 6.20, Figure 6.22, Figure 6.24 and Figure 6.26. 

Finally, the recombination of evolutionary strokes is shown in Figure 6.27(a), and 

the corresponding painting trajectories are shown in Figure 6.27(b) as well. 

Similarly, TSP solver (CE-Method) can be performed in this case for fast-effective 

calligraphy painting. 
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Result 1 
The 2D brush template used as Figure 6.13(a). 

No. of sub population: iV— =60 

Max. generations past: TV^⑶=151 

New individuals created per one reproduction: x 凡=60x70%=42 

Chromosome length: 182 (in binary coding) 
Mutation rate: = 3.8462e-3 

Crossover rate: p,=0.7 
Total group no. of control points: m =23 

Total no. of control points: cpn=121 

No. of pressure levels: n =20 

Max. and Min. pressure: [preŝ ^̂  50] 

Objective value weighting: w = [3^^3 3] 

No. of point interpolated in the Bezier curve: 200 

No. of choice of Bezier curve trajectories: 1.9508e+16 
Time usage: 25mins 43s 

f H p \ 
• J 3.5 - ^ -

5 • % i 
I 3.4 -

•+ . . . , 、 ： X . , 

‘ 3.2 - _ _ -

^gUll 3.1 - ^^^mmmmrnm _ 
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^ ^ ‘ 20 ‘ 40 60 » 80 ‘ 100 120 140 160 

、：二 generation ,„> 

(a) (b) 

Figure 6.13. (a) A set of 50 circular spray paint templates, the max and min sizes 

are 100x100 and 2 x 2 , (b) The diagram shows the objective cost (in log scale) 

of the best individual during evolution 
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Gen=1 Gen-H ^^Hite&j^ 

i 

Gen-21 Gen=31 

Gen=41 一、..... Gen=51 „丨丨丨細睡！丨 

Gen=61 Gen=71 

Gen=101 Gen=71 

Gen=141 Gen=151 

Figure 6.14. A stroke painting plan is being modified during evolution and the best 

individual is shown for each 10 generation past. 
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Result 2 
The 2D brush template used as Figure 6.15(a). 

No. of sub population: TV— =60 

Max. generations past: A/̂职” =151 

New individuals created per one reproduction: N^^^ x />^=60x70%=42 

Chromosome length: 182 (in binary coding) 
Mutation rate: p^ - 3.8462e-3 

Crossover rate: 

Total group no. of control points: m =23 

Total no. of control points: cp2=121 

No. of pressure levels: n =20 

Max. and Min. pressure: [pres^^ ；̂厂以max]=[1 50] 

Objective value weighting: w尸[3 1 1 3 3] 

No. of point interpolated in the Bezier curve: 200 

No. of choice of Bezier curve trajectories: 1.9508e+16 

Time usage: 25mins 10s 

cost 
3.71 1 1 r — 1 1 1 I 
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• , 
3.4 1 ) -

% -
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(a) (b) 

Figure 6.15. (a) A set of 50 water drop templates, the max and min sizes are 

100x50 and 2 x 1 , (b) The diagram shows the objective cost (in log scale) of 

the best individual during evolution 
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Figure 6.16. Better evolutionary result using water drop template 
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Figure 6.17. The best GA stroke painting scheme using water drop template 
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(a) 

(b) 

(C) 

Figure 6.18. (a) A Chinese calligraphy character “天” from Lan ting xu "蘭亭序” (source: 

[22])，（b) Four stroke elements extracted, (c) The control points set inside the 

corresponding strokes 
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Result 3 
The 2D brush template used as Figure 6.19(a). 

No. of sub population: TV⑷=60 

Max. generations past: A^聊=151 

New individuals created per one reproduction: TV,”̂  x p^=60x70%=42 

Chromosome length: 172 (in binary coding) 
Mutation rate: p^ = 4.0698e-3 

Crossover rate: 

Total group no. of control points: m =17 

Total no. of control points: cpn-M^ 

No. of pressure levels: n =20 

Max. and Min. pressure: [preŝ -̂  Ĵ 厂〜aJ=[1 50] 

Objective value weighting: w尸[3 1 1 3 1] 

No. of point interpolated in the Bezier curve: 200 

No. of choice of Bezier curve trajectories: 1.0904e+14 

Time usage: 47mins 44s 

I^^^K 4.2 r 1 1 1 1 1 ‘ ‘ 
' � Generation 151 Best = 1797 time= 47mins 43.96s 

• • 
_ 3 . 7 - -

- 3 . 6 - % -

3.5 • \ > -

3.4 - -

20 40 60 80 100 120 140 160 
generation 

(a) (b) 

Figure 6.19. (a) Water drop templates with spraying effect on the boundary, (b) The 

diagram shows the objective cost (in log scale) of the best individual during 

evolution of result 3 
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W G e n = l ^ ^ G e n = l l Gen=21 Gen=31 

Gen=41 Gen=51 Gen=61 Gen=71 

W W 
Gen=81 Gen=91 Gen=101 G e n = l l l 

W W 
Gen=121 Gen=131 Gen=141 Gen=151 

W W 
Figure 6.20. Stroke evolutionary process of result 3 
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Result 4 
The 2D brush template used as Figure 6.19(a). 

No. of sub population: TV— =60 

Max. generations past: TV^⑶=151 

New individuals created per one reproduction: N^^^ xp^=60x70%=42 

Chromosome length: 171 (in binary coding) 
Mutation rate: 4.0936e-3 

Crossover rate: p,=OJ 

Total group no. of control points: m =14 

Total no. of control points: cpn ="150 

No. of pressure levels: n =20 

Max. and Min. pressure: [pres^^ 50] 

Objective value weighting: w = [3 1 1 3 1] 

No. of point interpolated in the Bezier curve: 200 

No. of choice of Bezier curve trajectories: 8.4224e+13 

Time usage: 37mins 54s 

3.9 e 1 T ‘ r- ‘ ‘ ‘ 

；2) Generation 151 Best =1195 timG= -37mins 53.719s 

3.8 - _ 

3.7 -

3.6 - _ 
CO 

r.5 - \ _ 
o 

3.4 - % -
— 雜 

3.3 - -

3.2 - _ 

3.1 - ‘ 

20 40 60 80 100 120 140 160 

generation 

Figure 6.21 • The diagram shows the objective cost (in log scale) of result 4 
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G e n = l G e n = l l Gen=21 Gen=31 

Gen=41 Gen=51 Gen=61 Gen=71 

Gen=81 Gen=91 Gen=101 G e n = l l l 

Gen=121 Gen=131 Gen=141 Gen=151 

Z Z Z Z 
Figure 6.22. Stroke evolutionary process of result 4 
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Result 5 
The 2D brush template used as Figure 6.19(a). 

No. of sub population: N̂ ^̂  =60 

Max. generations past: =151 

New individuals created per one reproduction: N^^^ x j9^=60x70%=42 

Chromosome length: 224 (in binary coding) 
Mutation rate: = 3.125e-3 

Crossover rate: p,=OJ 

Total group no. of control points: m =17 

Total no. of control points: cpn =179 

No. of pressure levels: n =27 

Max. and Min. pressure: [preŝ .̂  50] 

Objective value weighting: = [3 1 1 3 1] 

No. of point interpolated in the Bezier curve: 200 

No. of choice of Bezier curve trajectories: 7.1824e+16 

Time usage: 28mins 29s 

4.3 1 r- 1 1 ‘ ‘ ‘ 
。 Generation 151 Best = 3274 time= -28mins 28.917!； 
D 
o _ 

4.1 -
% 

4 - O -

1 3.9 - 气 -

‘3.8 - % -

3 7 - ® -
( ^ ^ ^ ^ ^ ^ _ 

20 40 60 80 100 120 140 160 

generation 

Figure 6.23. The diagram shows the objective cost (in log scale) of result 5 
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Gen=l 羞 Gen= l l ^ f t Gen=21 ^ Gen=31 ^ 

JjJj JJJJ 
JJJJ 
JJJJ 

Figure 6.24. Stroke evolutionary process of result 5 
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Result 6 
The 2D brush template used as Figure 6.19(a). 

No. of sub population: TV— =60 

Max. generations past: TV咖=151 
o 

New individuals created per one reproduction: x p,=60x70%=42 

Chromosome length: 224 (in binary coding) 
Mutation rate: = 3.8043e-3 

Crossover rate: p,=0.7 

Total group no. of control points: m =10 

Total no. of control points: cpn=^Z2 

No. of pressure levels: n =24 

Max. and Min. pressure: [preŝ -̂  [‘\ 50] 

Objective value weighting: w = [3113 1] 

No. of point interpolated in the Bezier curve: 200 

No. of choice of Bezier curve trajectories: 5_0035e+10 

Time usage: 36mins 53s 

3.9R 1 1 1 r- 1 1 1 
'5 Generation 151 Best = 1226 time=-36mms 52.761!: 

3.8 - -

" o _ 

-

受 3 . 5 - O -

营 9、 

1 • ® _ 

3.3 - -

31 _ -

20 40 60 80 100 120 140 160 

generation 

Figure 6.25. The diagram shows the objective cost (in log scale) of result 6 
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G e n = l G e n = l l Gen=21 Gen=31 

Gen=41 Gen=51 Gen=61 Gen=71 

^ ^ 身 ^ 
Gen=81 Gen=91 Gen=101 G e n = l l l 

^ ^ ^ ^ 
Gen=121 Gen=131 Gen=141 Gen=151 

^ ^ ^ ^ 
Figure 6.26. Stroke evolutionary process of result 6 
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天 
(a) 

人 
(b) 

Figure 6.27. (a) The calligraphy character replication formed by the four 

evolutionary strokes in result 3-6，（b) Indicated with the painting trajectories 
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6.5 Chapter summary 

Good painting trajectory and stroke thickness control are essential for high 

artistic quality in Chinese calligraphy. In this chapter, a novel method of stroke 

painting plan generation using GA is presented. We decretize the brush model as 2D 

brush template of different sizes and represent the painting trajectory by the control 

points of Bezier curve. Depending on the pressure applied, templates of different 

size would be applied along the brush trajectory to trace out the stroke. Using GA to 

determine a brush stroke solution enhances the flexibility and freedom for obtaining 

desirable match with the given sample，rather than having to analyze the geometric 

information. The results are promising which show that GA is sufficient to generate 

a full stroke by using the appropriate brush template, and the calligraphy can be 

replicated successfully in simulation. The performance of GA so far is quite 

dependent on some of the input parameters. Sometimes, its computational results 

and time may not be as good as we would expect. It is envisioned that heristic 

Genetic Algorithms (HGA) will be proposed to enhance the computational 

performance by the new heuristic crossover and mutation operators which based 

upon the domain-specific characteristics of the sample stroke and brush model. 

Hopefully, we can use this kind of technique to replicate the masterpieces by 

some famous passed away calligraphers e.g. Wang Xianzhi (王羲之)，all their 

writing style will be collected and recovered in the computational sense. Such 

evolutionary painting idea will be entended to execution in our robot drawing 

platform that will be dicussed in the next chapter. 
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1. BRUSH STROKE FOOTPRINT 

CHARACTERIZATION 
i 

Unlike western painting style, the spiritual depiction in Chinese calligraphy is to 

large extent expressed by the brush stroke rather than the outward appearance of the 

painted subjects. It is thus worthy to study the Chinese brush model more deeply. 

� ^ ^ W 
‘ - • • ： ‘ - ' I P ^ : � 

,‘,% 、X ™ • 
Figure 7.1. (a) A fully functioning tuft pressed against virtual paper, (b) Depicted result with 

the texture-based bristle-splitting effect turned off, (c). Recent with lateral spreading 

furthered removed, (d) Model do not handle collision with paper (Source: [42]) 

Specially, Xu. et la. [38] and Lee [39] worked on the modeling aspects of the 

computer generated artistic Chinese calligraphy in simulation, and Wong et la. [40] 

on a virtual brush stroke model. In the recent works of Nelson S.-H. Chu et. la. 

[41].[42], a 3D virtual brush model is developed to produce stroke rendering during 

brush painting. The instantaneous tuft footprints under different painting condition 

are shown in Figure 7.1. The work so far, however, did not deal with the actual 

production of Chinese artistic stroke. In what follows, we describe an experiment to 

determine experimentally a realistic brush model. The experimental setup for this 

investigation is described in chapter 2. Basically, it consists of a video camera, 5 

degree of freedoms robot manipulation, a brush pen with high elasticity tuft and a 

flat transparent container filled with a blue liquid instead of drawing on the paper. It 

involves the real-time capturing and data analysis of the brush footprint using the 
96 
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newly developed capabilities in the platform. This chapter provides the future 

exploration in visual-based decision for full stroke painting and perspective on the 

brush stroke characterization based on some footprint image properties. Hopefully, 

the brush model can be established first through an object-oriented analysis such that 

the variation of footprint profile, a 5-dimensional brush motion, and also the 

ink-depositing process in real paper painting can be modeled in a hierarchical 

structure with well-defined object-oriented operations and attributes. Besides, the 

future development of GA-based full stroke painting system is also introduced. 

f v ' . . . 

� 

(a) (b) 

Figure 7.2. (a) The video captured frame shows the instantaneous footprint profile during 

painting, (b) Only the footprint region remained after segmentation performed. 

7.1 Footprint video capturing 

By using the video camera shown in Figure 2.8(a), it can capture 20-30 frames 

per second. The instantaneous footprints in one stroke are captured in video file 

during painting. For our purpose, those video frames will be indexed with the 

corresponding instant time and brush motion commands. After the process of 

footprint characterization, the footprint profile will vary as a function of robot 

manipulation. Figure 7.2(a) shows a video frame captured during stroke painting, 

and then a simple image processing such as footprint region segmentation is 

performed; see Figure 7.2(b). The appropriate setting of color, contrast and 
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brightness are adjusted to ease this segmentation process. 

I I I I i I 1 1 1 

100- j ^ g y -

150- ^ ^ ^ -

^ -

250- 、 . . -
, 1 1 1 ‘ ‘ 

50 100 150 200 250 300 350 

Figure 7.3. The full stroke form achieved by taking the union of all 

instantaneous footprint images during painting 

Even though the brush tuft does not contain any ink and the captured image is 

an instantaneous form of the footprint, we can take the union of these footprints 

along the video frames to acquire the would-be full "painting" stroke, as shown in 

Figure 7.3. 

7.2 Footprint image property 

By varying only the x-，y- and z-translation of the brush pen motion, a wide 

variety of brush footprints are produced. The motion of the changing footprint can 

be captured by a video camera. Our challenge here is to characterize the 

instantaneous footprint image and try to derive its relations with the kinematics 

control of the robot. As a start, the following properties are studied as 

representatives of the resulting footprint. 

A. Footprint area 
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The first property is the area, which constitutes the actual number of pixels in 

the footprint region. The area measured depends on the brush surface exerting on the 

paper. When the artist exerts the brush pen more toward the paper, greater tuft 

bending will enlarge the area value. Figure 7.4 shows the corresponding area 

produced in the stroke depicted in Figure 7.3 as a function of the video frame 

number. 

Footprint Area during painting 
1200 r 1 1 -r 1 ‘ 

1000 h , -

(C 

^ 600 - _ 
1 
f 
I 400 - -

200 - I \ 

, , ^ . I . 
° 0 50 100 150 200 250 300 

video frame numeber 

Figure 7.4. The footprint region area is changing due to the painting 

manipulation 

B. Footprint centroid 

The centroid of the image region provides information on the separation 

between the center of the footprint and the commanded (x, y) coordinate at any time 

instant. 
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I 1 I I I 1 1 — 

50 - ^ -

15�. ^ -

2 0 0 - -

250 - -

1 1 1 1 1 1 1  
50 100 150 200 250 300 350 

Figure 7.5. The centroids of all instantaneous footprint regions are 

plotted inside the stroke. 

C. Major and minor length 

Major and minor axes are the length (in pixels) of the major axis and minor 

axis of the approximate ellipse that has the same second-moments as the footprint 

region. Upon determination of the major length a and minor length b , the 

eccentricity is defined as e = 小 一 w h i c h the property can be investigate as a 

function of velocity and acceleration during painting. Figure 7.6.(a) and Figure 

7.6.(b) show the major and minor length respectively during painting the stroke 

depicted in Figure 7.3. 
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Major axis length during painting 
45 1 1 1 1 1  

广 广 〜 , \ _ 
i35- r -

I3D 
E 30 - -
芒 

^ 25 - j ~ 

1 -.!2 k 
X I < 

15 - -

10 1 1 1 1 1  
0 50 100 150 200 250 300 

video frame numeber 

(a) 

Minor axis length during painting 
40 1 1 1 1 1 

？ 35- f� -

i^o- A -
1 I 乂 、 , 力 乂 
2 25 - \ � \ -
I \ 
t 20 - \ -

I \ 
f 15- � -

^ 1 0 - -

c I I I I 1 1  
0 50 100 150 200 250 300 

video frame numeber 
(b) 

Figure 7.6. The minor axis length (a) and major axis length (b) are changing 

during the painting manipulation. 

D. Orientation 

Orientation is the angle (in degrees from -90 to 90) between the x-axis and the 

major axis of the elliptical approximation of the footprint. By computing the 

changing rate of orientation angle, the brush tuft plasticity can be reflected. Figure 

7.7 shows the diagram of footprint orientation angle that is changing during the 

painting. We can observe the orientation of the approximation ellipse is relatively 
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Steady during intermediary brush running. 

Orientation angle from horizontal 
100 1 1 1 1 1  
80 - J -

, 6 0 - -

I -
^ 20 - -
OJ 

• g o - -

t W I 
I I -
I -60 • -

o 
- 8 0 - -

-100 1 ‘ -L 1 ‘ 
0 50 100 150 200 250 300 

video frame numeber 

Figure 7.7. The footprint orientation angle from horizontal. 

7.3 Experimental results 

In this section, we will show the characterization results on two strokes 

painting in different form. To create the variation of stroke form user-friendly, we 

use the Intuos""2 12 by 12 Tablet and pen system as shown in Figure 2.3 to 

capture the painting motion. Since full stroke characterization was utilized as 

starting point, the x- and y- translation painting motion as well as the writing 

pressure are just captured. 

Result 1 

A spiral form painting trajectory is input through the tablet system. The (x, y) 

trajectory against time is shown in Figure 7.8(a) and Figure 7.8(b). As the writing 

pressure is captured, the z-axis painting command is mapped from 1 pressure unit to 

1mm and the diagram of Figure 7.8(c) shows the writing pressure (limited ranging 

from 0 to -2 pressure units) measure on the tablet system. Upon the x-, y-, z-
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trajectory input, the would-be stroke painting stroke in spiral form is shown in 

Figure 7.9(a), and Figure 7.9(b) indicates all the instantaneous footprint centroid. 

After the footprint characterization process, the function of footprint area, major axis 

length, minor axis length and orientation angle are shown in Figure 7.10(a), Figure 

7.10(b), Figure 7.10(c) and Figure 7.10(d) respectively. 

X-coordinate trajectory on the tablet system Y-coordinate trajectory on the tablet system 
叨 Jy ‘ ‘ ‘ ‘ -20 1 1 1 1 r- 

7�. / 1 r \ - -4�_ I \ -

n \/V ：丨::、l/v : 
？ 40 - \ / - ? -70 - Y j v y -

30- I v y -80 - \ -

20 - j -90 • \ j -
in ‘ I I I I 1 -100 1 1 1 ‘ 1  

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 
time units time units 

(a) (b) 
Writing pressure on the tablet system 

Op 1 . 1 1  
-0.5 • -

n -
^ -1.5 -j -

-2 - J -

1000 2000 3000 4000 5000 6000 

time units 

(C) 

Figure 7.8. (a) X-coordinate trajectory diagram against time, (b) Y-coordinate trajectory 

diagram against time, (c) Pressure measure during writing 
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I I I I I I 1 1 1 
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(a) 
I I I I I I 1 1 

50- -

100- _ 

250 - "‘ _ 

50 100 150 200 250 300 350 

(b) 

Figure 7.9. (a) The would-be full "painting" spiral stroke form, (b) with 

instantaneous footprint centroid indication 
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Footprint Area during painting Major axis length during painting 
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Minor axis length during painting Orientation angle from horizontal 
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(c) (d) 

Figure 7.10(a). The diagram of footprint area during painting, (b). The diagram of major 

axis length, (c). The diagram of minor axis length diagram, (d). The diagram of orientation 

Result 2 

A spring form painting trajectory is input through the tablet system. The (x, y) 

trajectory against time is shown in Figure 7.11(a) and Figure 7.11(b). Same as the 

precious result, the z-axis painting command is mapped from 1 pressure unit to 1mm 

and the diagram of Figure 7.11(c) shows the writing pressure measure on the tablet 

system. Upon the x-, y-, z- trajectory input, the would-be stroke painting stroke in 

spring form is shown in Figure 7.12(a), and Figure 7.12(b) indicates all the 
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instantaneous footprint centroid. After the footprint characterization process, the 

function of footprint area, major axis length, minor axis length and orientation angle 

are shown in Figure 7.13(a), Figure 7.13(b), Figure 7.13(c) and Figure 7.13(d) 

respectively. 

X-coordinate trajectory on the tablet system Y-coordinate tiajectoiy on the tablet system 
120 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1  
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nl I I I 1 1 1 1 -120 I 1 1 1 1 1 1 1  
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(C) 

Figure 7.11. (a) X-coordinate trajectory diagram against time, (b) Y-coordinate trajectory 

diagram against time, (c) Pressure measure during writing 
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(b) 

Figure 7.12 (a) The would-be full "painting" spring stroke form, (b) with 

instantaneous footprint centroid indication 
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Footprint Area during painting Major axis length during painting 
BOO 1 1 1 , , , , , 45 1 1————1 1 1 1 1 1  

§ 500 - ^ - .i 30 - I -
霞 『 / 
5 400 - - ' l 25 - -
S g 

300 - ^ 20 - -

I I 
200 - ^ 15- -

1 0 0 - ‘ - 10 - -

100 200 300 400 500 600 700 BOO 900 100 200 300 400 500 600 700 800 900 
video frame numeber video frame numeber 

(a) (b) 

Minor axis length during painting Orientation angle from horizontal 
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(c) (d) 

Figure 7.13. (a) The diagram of footprint area during painting, (b) The diagram of major 

axis length, (c) The diagram of minor axis length diagram, (d) The diagram of orientation 
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7.4 Chapter summary 

—r , n\v “〒•产；B" 
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Bezier curve GA population 
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Robot Painting 

execution 
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Video Capture 

I N O 
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Stroke painting End of 

Quality Evaluation Evolution?  

f Y E S 
Best PauUing 

Scheme Outcome 

Figure 7.14. The process flow chart of visual-based full stroke execution using 

GA in finding the best replication painting scheme 

By analyzing the brush stroke footprint, one hopes to obtain the realistic 

dynamic model of the brush pen motion. The camera system and the robot platform 

here provide us with a good environment (such as clean footprint image 

segmentation from the video captured and accurate brush manipulation) to study 
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about this possibility. Here, footprint region area, centroid, major and minor axis 

length and orientation, those variety image region properties are introduced as basic 

representatives of the much complicated footprint resulted. These property 

parameters will be studied for their approximation relation to the brush movement. It 

is envisioned that the well known universal approximation theorem may be able to 

leam the behaviors of a dynamic model through training the input-output relations. 

In our future work, we would like to develop the GA-based full stroke painting 

system in which the full strokes will be executed incorporating a real brush without 

its model knowledge. It extends the idea of visual-based iterative process that using 

GA painting to find the best painting scheme specific to given stroke input, except 

that the strokes are now generated by the robot on the paint container of Figure 

2.8(b) or real paper rather than simulation. Thus, all GA individual's objective cost 

will be evaluated by those visial capabilities. The procedure as envisioned is shown 

in Figure 7.14. 
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8. CONCLUSIONS AND FUTURE WORKS 
i 

This chapter presents the conclusions of this thesis. Main ideas on the goals and 

motivation, to the approach we adopt, and to the implementation of the drawing 

system and experimental results are described in summary. Possible areas for future 

research are also outlined. 

We have developed an intelligent drawing system which operated based on 

visual information, much like a child leams to write and draw by sight. The results 

demonstrate that capabilities developed can be successful in pinpointing the proper 

branch points of a line drawing over that generated merely by skeleton-based 

vectorization (using Bezier curve interpolation) and TSP solver (CE-Method). 

Branch point decision is important as it is related to the order of stroke formation 

and execution, which plays a vital role in Chinese calligraphy. The present iterative 

drawing approach is able to automatically recover the stroke thickness and 

connectivity, as well as compensating the offset effect due to the bristles' 

deformation. To facilitate this process, a vision feedback mechanism is installed 

which allows a captured image to be rectified in full plane view as the original input 

image. This high accuracy rectification is implemented automatically via GA-based 

homography transformation. The iterative drawing process as developed is shown in 

Figure 8.1. 

For future exploration in full stroke calligraphy replication and execution, 

GA-based stroke generation is to be studied. All painting factors such as trajectory 

and pressure applied are to be regarded as chromosome. Upon the objective assigned, 

an appropriate painting scheme is to be found using the evolutionary computing. 

This is one topic for future direction. A second topic is the determination of a 

realistic brush tuft model. Such model is to be established experimentally by another 
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camera system which captures the brush tuft "footprint" without ink depositing. By 

"footprint" image analysis, we hope to obtain the relationship between the robot 

brush kinematics control and the tuft deformation. An understanding on how the 

brush kinematics would affect the tuft "footprint" formation will be of great 

importance in our future work. 

. 4 � ^ ^ f r - - — ^ - t n c 
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Figure 8.1. Schematic diagram of iterative drawing process 

In the present research, various algorithms have been developed and several 

new approaches have been proposed for tackling relevant technical problem. We 

demonstrated the effectiveness and practiccality of our proposed method on the 

acquisition and imitation of human artistry and the promising results. For future 

work, we will work on using 5 DOFs brush pen manipulation, combining with high 

accuracy visual feedback capabilies, appropriate brush and ink diffusion model, and 

GA evolutionary computing. We aim to execute full stroke calligraphy on paper with 

the objective of imitating the personalized drawing and calligraphy style of some 

famous artists. 
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