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Abstract 

Trimmed surface is one of the most commonly used elements in CAD/CAM systems. 

In general, a trimmed surface is represented by a parametric surface and a group of 

trimming curves specified in the parametric space of the surface. Because of the 

complexity in manipulating trimmed surface, some CAD processes and algorithms 

cannot be applied to trimmed surface directly. Thus, it is desirable to represent a 

trimmed surface by a group of simple regular surfaces, whose union corresponds to 

the trimmed surface. A decomposition algorithm which performs the task will be 

presented in this thesis. 

The algorithm consists of several different techniques. In the parametric space of 

the surface, Voronoi diagram is first developed so that bisectors are derived to define 

an isolated region for every trimming curve. Switching to the three-dimensional 

space, feature points are determined on every trimming curve. Correspondence will be 

established between the feature points and the bisector vertices according to the 

similarity between the shapes of the trimming curves and their bisectors. Regions of 

four- or three-sided parametric patches are then identified. Finally, regular surfaces 

are constructed by interpolating the sampled surface points on each of the identified 

regions. The result is a group of regular surfaces resembling the original trimmed 

surface. 

In this thesis, the details of each step are described and explained with worked 

examples. The strength and weakness of the algorithm are also analyzed by 

comparison with a similar tessellation algorithm. 
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摘要 

截裁曲面（Trimmed Surface)在計算機輔助設計及製造系統中被廣泛使用。一般 

而言’ 一個截裁曲面由一個參數化表面（Parametric Surface)及一組在參數化空 

間定義的截裁曲線（Trimming Curves)所代表。由於處理截裁曲面的複雜程度， 

一些有關計算機輔助設計的程序和算法不能直接應用在截裁曲面之上。因此，我 

們需要利用一組簡單而正規的曲面來代表截裁曲面，而該組曲面的倂集跟原本的 

截裁曲面是相對的。本論文會提出一個爲達到以上目的而將截裁曲面解體的算 

法 ° 

此算法由幾種技巧組成。在曲面的參數化空間裡，首先會建立一個VoronoY 

Diagram，其平分線(Bisector)會爲每一條截裁曲線界定一個隔離的區域。在三 

維空間裡，該算法會找出存在於每一條截裁曲線上的特徵點（Feature Points)� 

根據截裁曲線及其平分線在形狀上相似的程度，平分線上的點和特徵點之間的對 

應（Correspondence)從而確立。然後，由四條或三條邊劃分成的區域會被認定 

爲參數化補片（Parametric Patches)�最後，在這些區域相對的曲面區域上抽取 

的樣本點進行補插(Interpolation)，便可以建立出正規的曲面。結果是產生出一 

組用來比擬原本截裁曲面的正規曲面。 

本論文會爲每一個步驟的細節加上不同的實例進行闡釋以及描述。在論文中 

提出的算法會跟相似的密鋪(Tessellation)算法作出比較’籍此分析其利弊。 
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Chapter 1. Introduction 

Trimmed surface plays an important role in CAD/CAM technology. It is represented 

by a surface with its control data in the three-dimensional space, as well as the 

trimming curves in the parametric space. However, there is no standard representation 

for trimmed surface among different types of CAD systems. The differences between 

the systems results in difficulties for exchanging trimmed surface data. Moreover, 

there are geometric algorithms that cannot be directly applied to trimmed surface. For 

example, trimmed surfaces are usually the result of intersecting different surfaces. 

Therefore, deformation of a trimmed surface may require re-evaluating the trimming 

curves which is a time consuming process. 

For these reasons, one solution is to decompose trimmed surface into other types 

of basic standard elements which can be easily recognized by most CAD systems. 

Decomposing the trimmed surface into patches is one of the feasible solutions. The 

union of these patches resembles the original trimmed surface. The algorithm 

presented in this thesis is designed to decompose a trimmed surface into surface 

patches. The distribution and the shapes of the trimming curves are considered in the 

decomposition process. The output of the algorithm is a group of connected 

non-intersecting surface patches. The patches contain no trimming curves and can be 

represented as simple surfaces. 
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Chapter 2. Previous Works 

There are numerous researches about decomposing or tessellating trimmed surface. 

Typically, they can be classified into two main approaches. They are surface patch 

approach and triangular facet approach. 

Surface patch approach develops a group of surface patches to represent a 

trimmed surface. The patches are usually expressed in the form similar to that of the 

trimmed surface, such as Bezier, B-Spline or NURBS surfaces, but without any 

trimming curves on them. The main issue of this method is to design an algorithm that 

can reasonably divide the trimming curves in segments, which constitute parts of the 

boundaries of the patches. In this way, there is no trimming curve on the decomposed 

surface, and the union of the patches resembles the shape of the original trimmed 

surface. The algorithm presented in this thesis belongs to this category. 

By triangular facet approach, the surface is divided into a group of triangular 

facets. Usually, a physical tolerance is specified in the division process so that the 

triangular facets approximate the surface with deviation not exceeding the tolerance. 

The division is usually carried out in the 3D space or a specially defined domain so as 

to keep the approximation accurate. 

2.1. Surface Patch Approach 

Several research work on converting trimmed surface into surface patches will be 

discussed in this section. In the algorithms proposed by these work, the critical step is 

to convert the parametric trimming curves into curve segments. These segments act as 

parts of the boundaries of the surface patches. The other parts of the boundaries 

maybe composed of line segments, for example, scan-lines which are segmented at 

their intersections with the trimming curves. Every parametric patch usually consists 
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of four or three sides in its boundary. Interpolating the sampled surface points will 

form the patches in the physical space. Thus the surface patches contain no trimming 

curves in their valid region. The original trimmed surface is resembled by the patches 

union. 

Hamann and Tsai [1] proposed an algorithm which tessellates a trimmed NURBS 

surface by the union of a set of ruled surfaces. Voronoi diagram is first developed by 

triangulating the parametric space of the trimmed surface. During the triangulation, 

right-angle triangles are regularly tiled to cover the whole parametric space. Then on 

every triangle edge, a point which is equidistant from the two nearest parametric 

trimming curves is determined. Sorting and joining these points together forms 

end-to-end line segments called bisectors. The bisectors bisect the valid region 

between any two adjacent trimming curves, and thus define an independent region for 

each trimming curve in the parametric space. At the intersections with the bisectors, 

the boundary curve is broken down and connected with the bisectors so that every 

trimming curve is surrounded by the corresponding closed bisector and the boundary 

segments. 

In the above process, the valid region between each trimming curve and its 

closed bisector and boundary segment is defined as parametric tile. There is only one 

trimming curve in a tile. Extreme points of the tiles, such as trimming curve points 

with zero derivatives or local maxima and minima on the bisectors, are determined. 

Horizontal scan-lines are then emitted from these extreme points until they reach the 

bisector or the boundary segment of the tile. The tile is "cut" along these scan-lines 

and the region being divided contains no trimming curves. These regions are 

parametric patches and the boundary of a parametric patch is composed by two 

scan-lines, a bisector segment and a boundary segment. 
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After all the partitioning processes are finished, ruled parametric surfaces are 

generated by applying uniform linear interpolation to sets of points sampled within 

the parametric patches. Mapping the patches from the parameter space to the 3D 

space of the trimmed surface, ruled surface patches are developed. The union of the 

patches then resembles the valid part of the trimmed surface. 

The algorithm by Vries-Baayens and Seebregts [2] converts trimmed non-rational 

Bezier surface into composite or basic surfaces, such as coons surfaces, which are 

interpolated linearly. A technique for decomposing non-rational Bezier surface based 

on the combined 'triangulation-quadrangulation' of a trimmed surface is applied in 

the parametric space. The resulting surfaces are enclosed by the approximation of the 

boundary while the surfaces lie exactly in the original basic surface in the 3D space. 

There are cases, such as curve with inflection points and curve degeneration, that the 

interpolation may fail to keep the exactness of the resulting surfaces. Solutions to 

these problems are classified and discussed in the reference. 

2.2. Triangular Facet Approach 

In this section, a number of triangular facet approaches are listed and their approaches 

are briefly described. 

In the algorithm by Piegl and Richard [3], a physical tolerance is specified and the 

valid region of a trimmed NURBS surface is triangulated in the parametric space. The 

parametric triangles are projected onto the 3D space to evaluate the deviation between 

the approximating triangles and the real model. The triangulation is recursively by 

until the deviation is less than a preset tolerance. A piecewise planar approximation of 

the trimmed surface is obtained. 
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Cho et al. [4] converted trimmed rational B-Spline surface patches into triangular 

mesh generated by an algorithm based on the unstructured Delaunay mesh approach. 

The algorithm constructs a two-dimensional domain where the triangulation of the 

patches carries out. The domain ensures the shapes of the generated triangles to have 

sufficient preservation while mapping into the 3D space. The topological consistency 

between the original surface and the approximating mesh is thus maintained. The 

linear approximation of the boundary curves and the initial triangulation are 

performed initially. Further triangulation follows, within a given approximation 

tolerance. 

Abi-Ezzi et al. [5] made use of the graphical data compilation concept to 

dynamically tessellate a trimmed NURBS surface. The algorithm is implemented for 

fast and dynamic use. The process is divided into three stages. The data compilation 

phase accepts the surface geometry and outputs another form which is independent of 

the view. In the algorithm intensive phase, face culling, transformation and the 

tessellation step size is determined. Surface evaluations and triangular facet 

generation are performed in the compute-intensive phase. The research also studied 

how to avoid gaps between adjacent patches due to their different step sizes. 

The algorithm proposed by Liu et al. [6] splits the irregular trimmed shapes into 

regular convex regions in the parametric space. The splitting process is performed in 

the parametric space by determining the intersections between the horizontal and 

vertical scan-lines and the boundaries of the irregular trimmed shapes. The extreme 

points of the shapes are determined. According to different cases of the intersections， 

the irregular shapes are divided into segments at the intersections. The splitting 

process continues until the shapes of all regions are regular with no extreme points. 

These regions are then tessellated into triangular facets under a certain accuracy 

defined by the users. 
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A geometry-based algorithm is used by Piegl and Tiller [7]. A trimmed NURBS 

surface is tessellated into triangular facets based on its geometric characteristics. The 

surface does not have to be C' continuous. The triangulation is carried out in the 

parametric space and the subdivision is performed in the 3D space. The subdivision is 

independent of the surface's parameterization. 

Cho et al. [8] constructs an auxiliary planar domain for the triangulation of the 

parametric trimmed surface. The mapping between the triangulation domain and the 

surface domain is performed by minimizing the mapping error function. The 

algorithm also determines if any approximating triangle intersects each other. In such 

case, the triangulation is repeated until no intersection occurs. 

Triangulation gives a mesh of triangular facets ready for rendering and 

visualization. However, the triangular facets only gives an approximation to the 

trimmed surface, further editing of the surface will require manipulating the triangle 

vertices which may not be desirable. 
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Chapter 3. The Decomposition Algorithm 

Although Hamann and Tsai's method effectively decompose a trimmed surface into 

regular surface patches, the patches created are horizontal strips in the parametric 

space of the surface. This may lead to an excessive number of patches. It is because 

the partitioning of the surface does not take the shape and features of the surface and 

the trimming curves into consideration. The method introduced in this thesis extended 

Hamann and Tsai's approach to decompose a trimmed surface by considering the 

shapes and features of the surface and its trimming curves. There are four stages in 

this algorithm, namely, Voronoi diagram development, feature point determination, 

vertices correspondence establishment and surface fitting. The result is a group of 

surface patches approximating the original trimmed surface, without irregular shapes 

on their boundaries. 

3.1. Input to the Algorithm 

The algorithm works on B-Spline surfaces but it can also be applied to other types of 

tensor product surfaces such as Bezier surfaces and NURBS surfaces. For the surfaces 

in 3D space, including the trimmed surface and the developed patches, the expression 

of a data point is given by 

S(w，v) = (x(m,v),>'(m,v),z(m,v)) 

n m 

i=0 J=0 

we[Wo,Wi]，ve[Vo，Vi] (3.1) 
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where P," = ( x � 广兄广 z , � i s a set of (« +1) x (w +1) of three-dimensional control 

points, N“p (m) is the i-th B-Spline basis function of order p in the w-direction, Wq 

and Wj are respectively, the minimum and maximum knots of the knot vector in the 

M-direction. The basis function, minimum and maximum knots in the v-direction are 

defined in a similar way. 

In the parametric space, a trimmed shape on the surface is a closed loop of curve 

segments. Such trimmed shape is called 'trim" and the curves composing the trim is 

called trimming curves. In this thesis, trimming curves are B-Spline curves but other 

types of parametric curves can also be used. Denote the /-th trim as the 7-th 

trimming curves on the /-th trim can be expressed as 

C , ⑴ ， V ⑴ ） 

Ar=0 

re[,o，,i] (3.2) 

where P众=(w众，v众)is the (« + l) two-dimensional control points of the curve, 

Nk p (0 is the 众-th B-Spline basis fiinction of order p, t^ and t̂  are respectively 

the minimum and maximum knots of the curve's knot vector. In most case, each curve 

on a trim is C' continuous and every trim must be C® continuous. Every two 

adjacent curves share only one common end point and thus every trim is closed. By 

the definition above, the boundary trim is denoted as Tq . Figure 3.1 shows an 

example of a trimmed surface in parametric space and its physical model is shown in 

Figure 3.2. It can be noticed that the curves on the boundary trim is arranged in 

anticlockwise order while the other trims are arranged in clockwise order. Every trim 

is closed and the dots on the curves in Figure 3.1 represent the end points of the curve 

8 



segment. The valid part of the trimmed surface is defined by the region between the 

boundary trim and the other trims. The number of trims and the number of trimming 

curves are arbitrary. The shapes of the trims are also arbitrary. Therefore, the 

boundary trim may not coincide with the boundary of the parametric space. In the 

parametric space of a surface, the coordinate of the left lower comer in the parametric 

space is (Wo，Vo) and that of the right upper comer is (w,,v,). The space is a 

rectangle rather than a square if the following condition holds 

M,-Mq^V,-VQ (3.3) 

Tq £0̂ 2 

( t A C3.4 

c 勿 。 c 

V 
• 

Coo 

Figure 3.1 Trimmed surface in parametric space 
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z 

Figure 3.2 Trimmed surface in three-dimensional space 

3.2. Overview of the Algorithm 

The algorithm introduced is a surface patch approach. To decompose a trimmed 

surface, four main steps and several techniques are involved. The four steps are 

Voronoi diagram development，feature point determination, vertices correspondence 

establishment and surface fitting. The first three steps partition the valid part of the 

trimmed surface into regions without any trimming curve in the parametric space. 

Although the partitioning is processed in the parametric space, the shape features of 

the surface are also considered. These surfaces approximating the regions are called 

patches, and are the final result of the algorithm. 
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3.2.1. Voronoi Diagram Development 

In the first stage, individual region must be defined for every trim, including the 

boundary trim. Therefore, Voronoi diagram is developed in the parametric space. The 

diagram consists of a series of straight line segments called bisectors. These line 

segments are connected one by one to define a closed region for every trim. The 

bisectors are midway between any two neighbouring trims. With the aid of the 

bisectors, every trim is isolated from its neighbouring trims. The valid region defined 

between a trim and its bisector loop is called a parametric tile. Further computations 

and analysis will be done on each parametric tile independently to generate the 

patches. The Voronoi' diagram for the model in Figure 3.1 is shown in Figure 3.3. 

The trims are in blue and the bisectors are in red. The dots on the bisectors in the 

figure indicate segment end points of the bisectors. They are called bisector vertices. 

Taking the boundary trim into account, there are four tiles developed for the four 

trims in the example. 

画 
Figure 3.3 Voronoi diagram 
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3.2.2. Feature Point Determination 

In the second step, the points where the trims divided are located. The divided trim 

segments will be the boundaries of the different patches. In order to minimize the 

irregularity of the patches, points with small radius of curvature are determined. These 

points are called feature points. A feature point can also be found at the junction 

between two consecutive curves with a sharp turning angle at the joint The feature 

points are determined in the three-dimensional space instead of the parametric space. 

This is because a parametric feature point may not be a physical feature point. The 

parametric coordinates of the feature points are computed and will be used in the 

subsequent stages. In Figure 3.4, the green dots represent the feature points in the 

three-dimensional space and the parametric space. The model is displayed in different 

views. 

於令 

Figure 3.4 Feature points 
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3.2.3. Vertices Correspondence Establishment 

Since the shapes of a trim and its bisector loop should have a certain degree of 

similarity, correspondence is established by applying the concept of shape blending. 

The process of establishing correspondence is to link feature points on the trims to the 

similar vertices on their bisectors. A ranking process is used to find the bisector vertex 

with highest degree of similarity. To measure the similarity, the shapes of the trims 

and their bisectors are normalized to a unit square space. The ranking method 

considers the distance between the normalized feature points and the normalized 

bisector vertices. In the ranking process, the interior angles at the bisector vertices in 

the 3D space are also considered. Thus, every feature points should finally be 

corresponded to the nearest and sharpest bisector vertices. The virtual line connecting 

a feature point to its similar bisector vertex is called a correspondence link, or simply 

link. The green lines joining the feature points and the bisector vertices in Figure 3.5 

represent the links for the model in Figure 3.1. 

_ 

Figure 3.5 Correspondence Links 
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3.2.4. Surface Fitting 

After all the partitioning computations are finished, the trims are divided into curve 

segments at the feature points. Similarly, the bisectors are divided into segments at the 

bisector vertices which are linked to the corresponding similar feature points. The 

tiles are then decomposed into regions with four sides as their boundaries. The four 

sides consist of a curve segment, a bisector segment and two links. These regions are 

known as patches in the parametric space, or called parametric patches. Interpolations 

are carried out on every two opposite sides of the patches. The control points of the 

patches in the 3D space, or called surface patches, are obtained. Each surface patch 

contains no trimming curve segments. Their union is an approximation of the original 

trimmed surface. Figure 3.6 illustrates the interpolations within the parametric 

patches. 

Nr---； .二 iz—t.;:卜—--'i—l;-- r̂ -V-i -一-L-J- • .• —；i 

M l i m 滅 _ : . _ : 

Figure 3.6 Parametric patches 
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3.3. Output of the Algorithm 

The final output of the algorithm is the surface patches in the 3D space. The patches 

are formed by interpolating between the trimming curve segments, bisector segments 

and the correspondence links. The representation of the patches is the same as the 

input, i.e., the trimmed surface. They are represented as B-Spline surfaces in the 3D 

space. The difference is that the generated patches do not contain any trimming curves 

within their valid regions. Similar to the input, the surface patches can be represented 

by other types of tensor product surfaces such as Bezier surfaces and NURBS 

surfaces. Figure 3.7 shows the final output of the model in Figure 3.2. The patches 

are coloured differently to indicate their existence. 

Figure 3.7 Final output of the algorithm 
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Chapter 4. Voronoi Diagram Development 

The Voronoi diagram is developed for the trims so that every trim will have its 

individual region defined by its closed bisector. A Bisector is actually a series of 

contiguous straight line segments. They bisect the valid region of a parametric 

trimmed surface between two neighbouring trims. The technique for developing the 

Voronoi diagram is a modification of Hamann and Tsai's algorithm. In Hamann and 

Tsai's version, the bisectors are used to bisect the valid region for all the trims but not 

the boundary trim. In this thesis, the developed bisectors bisect the valid region for the 

boundary trim as well. Taking into consideration the boundary trim, every trim will 

have their own bisectors and thus their own valid region. The reason of including the 

boundary trim will be explained in the latter part of this chapter. 

4.1. Triangulation of the Parametric Space 

To develop the Voronoi diagram, a triangulation is first constructed for the trimmed 

surface in the parametric space. Here, triangulation means a number of right-angle 

triangles tiled in the rectangular or square parametric space regularly. The triangular 

tiles should completely cover the whole space. As an example shown in Figure 4.1, 

the thin grey lines are the edges of the triangular tiles. If a bisector exists and 

intersects an edge of a triangular tile, the intersection will be determined. Since the 

intersection is also a point on the bisector, it can be determined by using the fact that 

it is equidistant between the two nearest trims. Such point on the bisector is a bisector 

vertex. The bisectors can then be constructed by sorting and grouping all the bisector 

vertices. The details of determining and finalizing bisector vertices are described in 

Section 4.2 and 4.3 respectively. 
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Figure 4.1 Triangulation of degree 4 

4.1.1. Degree of Triangulation 

For the triangulation shown in Figure 4.1, there are four pairs of triangular tiles in 

every row and column. It is referred to as a triangulation of degree 4. Triangulation of 

higher degree contains more triangular tiles, and hence more bisector vertices can be 

derived on the edges of the triangular tiles. This gives a more precise estimation of the 

bisectors. Figure 4.2 shows the effect of the triangulation degree. The bisectors in 

Figure 4.2a are developed with lower degree triangulation while those in Figure 4.2b 

are developed with higher degree. It can be noticed that the bisectors bisect the valid 

region more accurately in Figure 4.2b. These bisectors will be refined in later steps so 

that the bisector vertices are evenly distributed on the bisectors {Figure 3.3). 
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H H 
(a) (b) 

Figure 4.2 Voronoi diagrams by triangulations with different degrees 

4.2. Locating Bisectors 

After the parametric space is triangulated, the trims nearest to each vertices of every 

triangular tile are determined. Each vertex is then labelled with the index of its nearest 

trim. That is, if T. is the nearest trim to a tile vertex, then the label of that vertex is i. 

To find the nearest trim of a tile vertex, the distances between the vertex and every 

trim are calculated by the method of point projection {Figure 4.3) [10]. The trim with 

the shortest distance to the vertex thus can be identified. Its index becomes the label 

of the vertex. In Figure 4.4, the numbers on the vertices of the triangular tile are their 

labels. There are four trims in the example so that the labels areO, 1,2 or 3. 
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Figure 4.3 Point projection method 
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Figure 4.4 Labelling of triangular tiles 
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Among the three vertices of every single triangular tile, their labels can be the 

same or different. A vertex can be classified into three different types according to the 

label values. Different types of the vertices indicate the presence of bisector vertices 

on the edges of a triangular tile. The three cases are: 

1. All three labels of the vertices are the same. 

2. Two labels are different among the three of them. 

3. All three labels of the vertices are different. 

For case 1, the vertices are all nearest to the same trim. It implies that there is no 

bisector vertex exists on the edges of the triangular tile. No further process is 

necessary to be carried out on the triangular tile. An example is shown in Figure 4.5. 

The labels of the highlighted triangular tile are all equal to 0. Therefore, there is no 

bisector vertex on any of its edges. 

0 , . . . „ J 

A : 

/ T 

U T ,1 

Figure 4.5 Same labels (case 1) 

In case 2, two bisector vertices will be determined on the two edges with 

different labels at their end points. The bisector vertices are located at equal distance 

between the two nearest trims indicated by the labels. Figure is an example of 
2 0 



case 2. There are two different labels among the three labels of the highlighted 

triangular tile in the figure. They are 0 and 1. On each edge with different labels at its 

end points, there will be a bisector vertex equidistant from Tq and r,. They are 

represented by the two red dots in Figure 4.6. The red line joining the vertices is a 

segment of the bisector which bisects the valid region between Tq and T^. 

0 0 

：翁「 
Figure 4.6 Two different labels (case 2) 

Finally, for case 3，three different labels on the tile means that there are three 

bisectors intersecting the three edges of the triangular tile. Besides, these three 

bisectors meet at one point inside the tile. Therefore, four bisector vertices can be 

found in this case. Three of them are found on the edges of the tile. An extra one is 

found inside the tile. For example, in Figure 4.7, the labels at the vertices of the 

highlighted tile are 1, 2 and 3. Three bisector vertices are found on the edges and 

another one is found inside the tile. The three bisector vertices on the edges are 

determined by the same method as described in case 2. The bisector vertex inside the 

tile is called bisector centroid. A bisector centroid is determined by the property that it 

is equidistant from the nearest three trims. The three trims are indicated by the labels 

of the tile vertices. In Figure 4.7, the three nearest trims to the bisector centroid are 
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7\，T\ and T\. Thus, the bisector centroid is of equal distance from 7；, and 

T�• These four determined bisector vertices form three segments of the three bisectors 

meeting at the bisector centroid. In the figure, they bisect the valid regions between 

T\ and T” T\ and 7；，and T � a n d T] respectively. 

I z I 

/ T ^ / 
—— — — — — —— — - — _ 

Figure 4.7 Three different labels (case 3) 

4.2.1. Bisector Centroids 

A bisector vertex on an edge of a triangular tile can be easily located by using 

numerical methods such as the method of bisection. When case 3 is encountered, 

locating the bisector centroid within the area of the triangular tile involves recursive 

numerical computation. However, the computation of bisector centroid is more 

complicated. 

To locate the bisector centroid, the bisector vertices on the three edges of the 

triangle have to be located. Then an initial point, denoted by c�，is obtained by taking 

the average of the coordinates of the bisector vertices {Figure 4.8). The shortest 

distances between Cq and the three nearest trims are calculated. If these distances are 

all equal, or the greatest difference between them is less than a prescribed tolerance, 
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the point will be considered as the bisector centroid and thus no further recursive 

computation is required. Otherwise, if this condition is not satisfied, the recursion 

begins. 

I / I 

_ _ 2 力 ： 麵 ： 省 b 

Figure 4.8 Average of bisector vertices (Cq) 

On each of the three nearest trims, a point which is nearest to ĉ  is located. Let 

these three points be r, ’ r: a n d � 3 . As illustrated in Figure 4.9, the blue dots are 

the locations of the trim points nearest to Cq . The center of the circle passing through 

r , , � 2 and r^ is calculated {Figure 4.10). Denoting the circle center by c,, its 

distances between the three nearest trims are determined. If the distances are equal or 

with difference less than the tolerance, the terminating condition is satisfied and c, 

will be taken as the bisector centroid. If not, c! will replace Cq and the process is 

repeated for c,, / = 0，1，2...，until the terminating condition is satisfied. The final 

result of the recursion is a bisector centroid located at equal distance from the three 

nearest trims, 
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Figure 4.9 Nearest points on the trims 
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Figure 4.10 Center of circle passing through the nearest trim points (c ,) 

4.2.2. Sub-triangulation 

In the process of locating bisector vertices on the edges of a triangular tile，it is 

possible that a bisector vertex is closer to a trim other than the two trims indicated by 

the labels at the ends of the edge. Figure 4.11 shows an example of such case. The 

labels at the end points of the diagonal of the highlighted tile are 2 and 3. A bisector 2 4 



vertex between and T̂  is thus determined on the edge. However, this bisector 

vertex, i.e., the red dot in the figure, is found to be nearer to 7； rather than T\ and 

7̂ 3. This implies that the degree of initial triangulation is not high enough to derive 

the bisector vertices for the trims. 

i • . 
‘ ‘ /• 丨 
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Figure 4.11 Special bisector vertex 

Sub-triangulation means that the triangular tile encountering such special case is 

subdivided into four triangular tiles. The subdivision is applied at the computed 

bisector vertices or mid points of the three edges of the tile. For example, in Figure 

4.12, the horizontal edge of the highlighted tile is labelled by the index 2 at both of its 

end points. Then the mid point of this edge is determined. Assume this mid point's 

nearest trim is T\ and thus it is also labelled by 2. For the vertical edge in the figure, 

its end points are labelled as 2 and 3. Assume the nearest trim of the bisector vertex 

determined on this edge be T̂  or . Therefore, the label of this bisector vertex is 2 

or 3. Together with the special bisector vertex labelled by 1 on the diagonal edge, 

subdivision is carried out on the lines joining these three points. The original tile is 
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subdivided into four triangular tiles, as indicated by the grey lines across the 

highlighted tile. The determination of bisector vertices continues to be carried out on 

each of these four tiles according to the labels at their vertices. Sub-triangulation will 

be recursively applied on these tiles whenever there is a special bisector vertex. 

However, if the longest edge of the subdivided tile is shorter than a prescribed 

tolerance, the subdivision will not be carried out on that small tile. Figure 4.13 is the 

result of bisector determination for the special case in Figure 4.12. 
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Figure 4.12 Sub-triangulation 
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Figure 4.13 Bisector vertices and bisector centroid by sub-triangulation 
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4.3. Finalizing Bisectors 

After all the line segments of the bisectors are determined by triangulation, they are 

ready to be grouped and finalized. First, the line segments in the triangular tiles are 

connected at the common bisector vertices. Figure 4.14 shows the line segments 

connected to form the bisectors. This results in every trim being bounded by a closed 

loop of bisector. However, the bisector vertices on the bisector loops are not evenly 

distributed. In order to have an even distribution of bisector vertices, the bisector 

vertices are interpolated with a cubic B-Spline curve. Uniformly distributed points 

sampled on the curve will be taken as the bisector vertices. 

A 1 "1 n 
. . / •• 

/ / . 

誦 
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Figure 4.14 Bisector vertices joined to form closed bisectors 
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Because of the discontinuity at the bisector centroids, the closed bisector loops 

are divided at the bisector centroids. The segments between the bisector centroids are 

interpolated with a cubic B-Spline. Figure 4.15 is the interpolated curves between the 

bisector centriods. In order to preserve the shape of the bisector, the first derivatives at 

the ends of the curve segments are specified [10]. The final step is to sample data 

points on the curves. The number of sample points on every curve should be chosen 

such that the bisector vertices sampled on all curves are uniformly distributed. These 

points are the finalized bisector vertices. The number of sample points also affects the 

later stages such as correspondence establishment and surface approximation, and will 

be discussed in later sections. The sampling result of the model in Figure 4.15 is 

shown in Figure 4.16. 

_ 

Figure 4.15 Curve fitting of bisector vertices between bisector centroids 

2 8 



M 
Figure 4.16 Sample points on the bisector curve 

The construction of the Voronoi diagram results in a set of closed bisector loop 

defining the valid region of each trim. The valid region between a trim and its bisector 

loop is called a parametric tile. Including the boundary trim, there are four trims for 

the model in Figure 4.16. Therefore, four bisector loops and four parametric tiles are 

derived by the development of Voronoi diagram. Figure 4.17 is an illustration of 

Figure 4.16, with every parametric tile separated to indicate their existence. There is 

only one trim inside each bisector loop except the boundary trim, which is outside its 

bisector loop. 
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Figure 4.17 Parametric tiles 

According to the nature of a bisector, the shape of a trim should be roughly 

similar to the shape of its bisector loop，although the shape of its bisector maybe 

affected by the shapes of its neighbouring trims. A trimmed surface is decomposed by 

considering the shapes and features of the trims and their bisectors. 
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Chapter 5. Feature Points Determination 

Before constructing the feature-based relationship between the trims and their 

bisectors, it is necessary to analyse the shapes of the trims. Feature points refer to the 

sharp turns on the trims. It is desirable that the final products of the algorithm, i.e., the 

surface patches, are shaped as regular as possible. Therefore, it is important to locate 

the feature points on the trim so that the trimmed surface can be divided at the feature 

points to obtain the patches with regular shapes. The feature point determination is 

performed in the 3D space because a feature point in the parametric space may not be 

a feature point on the physical surface. Since the surface patches are considered, the 

feature points are determined in the 3D space rather than the parametric space. 

5.1. Definitions of Feature Points 

There are two different kinds of feature points which can be found on the trims. They 

are classified into two types according to their positions and geometric properties. The 

first type is known as continuous sharp turns and the other is called discrete sharp 

turns. Continuous sharp turns are found on the trimming curves composing a trim. To 

identify whether a trimming curve data point is a sharp turn, the ratio between the 

radius of curvature of the data point and the total arc length of the trim to which the 

trimming curve belongs is evaluated [9]. If the ratio is less than a certain threshold, 

the data point is defined as a continuous sharp turns. Unlike continuous sharp turns, 

discrete sharp turns are found at the junctions between the trimming curves of a trim. 

The interior angle of a junction is measured to test if it is small enough to be classified 

as a discrete sharp turn. 
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5.1.1. Continuous Sharp Turns 

The sharp turns found on a continuous trimming curves of the trims are called 

continuous sharp turns. A data point on a trimming curve is regarded as a sharp turn if 

the ratio between its radius of curvature and the total arc length of the trim is smaller 

than a threshold. To derive a value for the threshold, the case of a data point on a unit 

circle is considered. For any point on a unit circle, its radius of curvature is 1 unit and 

the total arc length of the unit circle is In. Therefore, the ratio e between the 

radius of the data point and the total arc length is 丄 . T h i s sharpness ratio is used as 
In 

the threshold for defining whether a curve data point is a sharp turn. In Figure 5.1, the 

difference between a sharp turn and a smooth turn is illustrated. The data point on the 

unit circle has a sharpness ratio of — . The data point on the deformed part of the 
In 

unit circle has a radius of curvature less than 1 unit and the total arc length of the 

deformed circle is larger than 2?r. Therefore, its sharpness ratio is less than 
In 

and is classified as a sharp turn, i.e., a feature point on the deformed circle. 

Radius < 1 

GAic length > In 

I £<\l2n 
Radius = 1 
Arc length = In 
s=\l2n 

Figure 5.1 Definition of continuous sharp turn 
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To identify continuous sharp turns on a trimming curve, the location of possible 

sharp turns on a curve must be estimated. This is performed by projecting the control 

vertices onto the curve [10]. It is because the shape and features of a curve is 

controlled by its control vertices. After the projection, a set of approximate trimming 

curve segments are obtained. Two further steps will be carried out on the projected 

control vertices to decide whether they are sharp turns and to locate the position of 

shape turns if they exist. 

• • : conliol vertex 

/ A • : projected contiol veitex 

Figure 5.2 Projecting the control vertices onto the trimming curve 

In Figure 5.2, the control vertices are projected on a trimming curve. Given a 

data point C,) (/) which is on the y-th trimming curve of the trim T], its radius of 

curvature can be expressed as 

Pij{t) = - . ^ — — （5.1) 
’ | c , , ( 0 x c , , ( 0 | 
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where C“乂 (/) and C, ̂  (0 denote the first and second derivatives of C,. j {t) 

respectively [11]. Assuming the total arc length of the trim T] is L{T.) , the 

sharpness ratio of C“j(f) is then 

e 身 • (5.2) 
,’广 1(7；) 、 ) 

Since the projected control vertices are also data points on the curve, their 

sharpness ratios can be calculated by equation (5.2). The sharpness ratio of a 

projected control vertex can be described by one of the following three cases: 

1 . � � 

3 . + 

where — is the threshold of a sharp turn and t^ j is a predefined positive 
2;r ’ 

tolerance. Case 1 indicates that the projected control vertex is a sharp turn. For case 2, 

although the vertex is not a sharp turn, it is possible that a sharp turn exists in its 

vicinity as shown in Figure 5.3. Assume the two projected control vertices in the 

figure are both with sharpness ratio larger than — but smaller than + r, j . By 
271 In ’ 

the nature of the control polygon, there can be a sharper data point between or near 

these two projected control vertices. It means that this data point's sharpness ratio is 

at least smaller than ^ + r , � . I t also implies that the sharpness ratio of the data point 

maybe even smaller than . In this case, the data point between that two projected 
Itt 

control vertices is defined as a sharp turn. In case 3，for those projected control 

3 4 



vertices with sharpness ratios larger than 丄 + r, , they are not considered as sharp 
In 

turns and there is no sharp turn in its vicinity. Hence，the projected control vertices 

whose sharpness ratios satisfying case 1 and 2 will be processed further for the 

identification of continuous sharp turns. 

Im 
j j sharper \ \ 
/ / data point \ \ 
} i V \ 

! I I .• 
/ I A I 

Figure 5.3 Data point sharper than the projected control vertices 

The value of the tolerance t^ j depends on the number of the projected control 

vertices on the trimming curve C,. ^ {t). The more the number of projected control 

vertices on a trimming curve, the smaller is the tolerance. This is because the 

approximate curve segments estimated by the projected control vertices is more 

accurate if the number of the projected control vertices is larger. As a comparison in 

Figure 5.4, the two trimming curves are of the same shape but with different number 

of projected control vertices. Sharp turns on the one with more projected control 

vertices can be easily located since some of the control vertices are projected nearer to 

the sharp turns {Figure 5.4b). Therefore, it is unnecessary to set the tolerance r,.̂  to 
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a large value. Otherwise, some projected control vertices which are not so close to the 

sharp turns maybe classified as location of sharp turn. Thus, fewer vertices will be 

processed in the following step and the computation effort is reduced. One way to 

define r̂  j is to divide the sharpness ratio threshold by the number of projected 

control vertices on the trimming curve C," (r)，i.e., 

(5.3) 

where n ĵ is the number of projected control vertices on the trimming curve 

• : shaip turn 

/A司 
/ V / V 
I 1 I i 
/ X ； \ 

(a) (b) 

Figure 5.4 Trimming curves with different number of projected control vertices 

The above process gives a set of possible sharp turns on the curve. The next step 

is to determine a more precise location for each of the sharp turns. For those projected 

control vertices which satisfy case 1 in the previous test, they are considered as the 

curve's sharp turns and no further process will be performed. For those satisfying case 

2，each pair of adjacent projected control vertices defines a range containing the sharp 3 6 



turns. Sample points on the curve are generated by dividing this range evenly. The 

data point with sharpness ratio less than — will be considered as the sharp turn. 
In 

The result of locating sharp turns for the example in Figure 5.2 is shown in Figure 

5.5. It consists of all the three cases. Two continuous sharp turns are determined. 

• • : shaip trail 

l^rl 
Figure 5.5 Sharp turns determined for the example in Figure 5.2 

5.1.2. Discrete Sharp Turns 

Since a trim can be composed of more than one trimming curves, sharp turns may 

exist at the junctions between any two connected trimming curves. This kind of sharp 

turns is known as discrete sharp turns. Instead of making use of the sharpness ratio, 

the interior angle at the junction is measured to define whether the junction is a sharp 

turn. The interior angle is the turn angle between the slope vectors of the two curves 
3 7 



at the junction. Consider the junction of the curves and / 

on the trim T]. In Figure 5.6, assuming the curves are C�continuous, we have 

0,’,(0 =(琳)，少(0，琳)） 

To identify the sharpness of the junction, the angle between the derivatives of ^ 

and C, (0 is evaluated. The angle is expressed as 

、川= ; r — cos-i(C'"(&C,.".+i(,�) (5.5) 

where C�)(/i) and €,’川(/。）are the slope vectors of and C'̂ O。） 

respectively. In general, if the turn a n g l e i s equal to or less than —, the 

junction is regarded as a sharp turn. 

Figure 5.6 Definition of discrete sharp turn 
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5.2. Parametric Coordinates of Feature Points 

Up to this stage, all the feature points, including the continuous and discrete sharp 

turns, are determined. And the feature points are expressed by their coordinates on the 

physical surface. The correspondence between the feature points and the bisector 

vertices will have to be established. Since this has to be performed in the parametric 

space, the parametric coordinates of the feature points must be known. To calculate 

the feature points' parametric coordinates, the method of point inversion is used [10]. 

By specifying the coordinate of a curve or surface data point, the parametric value of 

the data point can be determined by the point inversion method. Hence, the y-th 

feature point on the i-th trim T], it can be expressed as 

= (5.6) 

where (w�,v,。）is the parametric coordinate and (xf)乂，z。）is the Euclidean 

coordinate of the feature point. 

Figure 5.7 and Figure 5.8 are examples of feature points determination. The 

parametric space of the surface is shown in Figure 5.7. Figure 5.8 shows different 

views of the corresponding surface to illustrating the positions of the feature points on 

the surface. In this example, there are four trims on the surface. There are nine feature 

points found and they are indicated by the green dots in the figures. The four feature 

points found on T � a r e discrete sharp turns. The other five feature points found on 

r, are continuous sharp turns. 
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Figure 5.7 Feature points in parametric space 

I 
Figure 5.8 Feature points on physical surface 
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In the example, the indices of the feature points on the same trim are arranged in 

the same direction as the trimming curves on the trim. For example, the indices of the 

feature points on T � a r e arranged in anticlockwise direction while those on T̂  are 

arranged in clockwise direction. Besides, a feature point on the physical surface does 

not have to be a feature point in the parametric space. An obvious example is P(o on 

r, . On the physical surface, the position of P / � i s the apex of the model and hence it 

is one of the feature point. However, the point corresponding to on 7", in the 

parametric space is a smooth turn and its sharpness ratio is obviously not small 

enough to be defined as a feature point. The same situation occurs on P f � ^ n d P(3. 

Conversely, a feature point in the parametric space may not be a feature point on the 

physical surface. It is proved by the maxima and minima on and T � i n the 

v-direction of the parametric space. They are sharp turns on the trims in the 

parametric space but are not feature points on the surface in the three-dimensional 

space. Therefore, they are not regarded as the surface's feature points. 
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Chapter 6. Vertices Correspondence Establishment 

/ 

f 4̂ ^̂^ \ I : Bisector 
j J _ : Bisector vertex 

•I / T m : Feature point 

\J 
Figure 6.1 Data in a parametric tile 

After the Voronoi Diagram is developed for the surface in the parametric space, every 

trim has its own isolated valid region defined by a bisector loop. This isolated valid 

region is referred to as a parametric tile. Feature points are then determined on every 

trim. With all these data prepared in every parametric tile {Figure 6.1)， 

correspondences will be established between the feature points and the bisector 

vertices. By considering the similarity between the feature points and the bisector 

vertices, every feature point on a trim is linked to the bisector vertex with the highest 

degree of similarity. A shape blending approach is adopted to measure the similarity 

between the feature points and the bisector vertices. The process starts by normalizing 

the shapes of the trim and its bisector loop so that both of them are enclosed by a unit 

square. A ranking process is performed on the vertices of the normalized shapes. The 

interior angles of the bisector vertices and the normalized distances between the 

feature points and the bisector vertices in the 3D space are considered in the ranking 
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process. The result of the process is that a feature point on the trim is associated with 

the bisector vertex with the highest ranking. In most case, there are sharp interior 

angles at the bisector centroid where three bisectors meet. Bisector centroids are 

associated with their nearest data points on the trims. The parametric tile will later be 

divided into patches along the lines connecting feature points and their corresponding 

bisector vertices. 

6.1. Validity of Correspondences 

fM 
(a) Valid (b) Invalid 

Figure 6.2 Correspondence links 

A valid correspondence means that the straight line joining a feature point and a 

bisector vertex does not intersect the trim at points other than the feature point. It is 

because these straight lines partition the trimmed surface into patches. These straight 

lines should lie completely inside the valid region of the parametric tile. This straight 

line which represents the correspondence is called correspondence link, or link in 
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short. Only those bisector vertices with valid correspondences will be ranked in the 

ranking process. 

In Figure 6.2, lines are constructed connecting a trim's feature point to all the 

bisector vertices to test the validity of the correspondence. In Figure 6.2b, the 

correspondences of the connected bisector vertices are invalid as their correspondence 

links intersect the trim not only at the feature point. In Figure 6.2a, the 

correspondences of the connected bisector vertices are valid. They are the possible 

choices for associating with the feature point. The same identification process is 

carried out on all the feature points of the other parametric tiles. In this way, only the 

possible valid correspondences within all parametric tiles are identified and processed 

in the subsequent steps. 

6.2. Shape Normalization 

The shape blending approach by Hui and Li [9] is adopted for establishing the 

correspondence between a trim and a bisector loop. The shapes of the trim and its 

bisector loop are normalized so that they are enclosed in a unit square. A ranking 

process is carried out so that a feature point is associate with the nearest and sharpest 

bisector vertex in the normalized domain. 

In Figure 6.3，the angles of all the bisector vertices are approximately equal. 

Figure 6.3a shows the correspondence between the trim and the bisector without 

normalizing the trim and the bisector. The feature points are directly linked to the 

nearest bisector vertices, ignoring the shapes of the trim and the bisector loop. This 

results in the undesirable shapes of parametric patches. However, if normalization is 

performed before the ranking process, the feature points will be linked to the most 

similar vertex on the bisector loop, i.e., the nearest bisector vertices in the normalized 
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domain. This correspondence is established by considering the similarity between the 

shapes of the trim and its bisector loop (Figure 6.3b). 

“ Wltlionf ‘ ^^^^^ 
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w 

Figure 6.3 Effect of normalization 

The normalization is performed by computing the minimum enclosing boxes for 

the trim and its bisector loop in the same parametric tile. These boxes, together with 

the enclosed shapes by them, are normalized into a unit square. For example, if the 

maximum and minimum w-coordinates of the trim are and wi-，and the 
nidx nun 

maximum and minimum v-coordinates are v二狀 and ，the minimum enclosing 

box for the trim will have diagonal coordinates and 狀，v二狀). 

Similarly, the diagonal coordinates of the minimum enclosing box for the bisector 

loop is denoted by and (Wmax»̂ max)- ^ graphical interpretation is shown 

in Figure 6.4. 
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Figure 6.4 Minimum enclosing boxes 

To normalize the boxes into a unit square, the w and v dimensions of the boxes 

are both scaled to 1 unit. The shapes of the trim and the bisector loop are scaled 

accordingly. Moreover, the normalized boxes, together with the enclosed shapes, are 

translated so that the normalized boxes of the trim and the bisector loop 
are aligned. 

Therefore, the normalized coordinates of a data point on the trim can be 

expressed as 

( „ ) = ( f , ) (6.1) 
u —u V — v̂  

max **min m̂in 

The normalized feature points on the trim can also be expressed in this way because 

they are also the data points on the trim. Similarly, the normalized coordinates of a 

bisector vertex OAvb) can be expressed as 

OAv'b) 二 (6.2) 
u —u . V —V. 

max 竹 min max ^̂min 
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Figure 6.5 Normalization 

An example of the normalized shapes of a trims and a bisector loop can be found 

in Figure 6.5. Note that the scale of a shape in the u- and v-directions maybe different 

and the enclosing boxes may completely overlap after normalization. For each 

parametric tile, all feature points on the trim and all valid bisector vertices are 

normalized using Equation (6.1) and Equation (6.2) respectively. Correspondence 

between the feature points and the bisectors can then be established based on the 

normalized shapes and the ranking process. 

6.2.1. Normalization with Relative Position 

In some cases, the positions of the original shapes of the trims and its corresponding 

bisector loop are different. If the difference is significant compared with the sizes of 
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the shapes, the shapes of the developed patches will be undesirable, even though 

normalization is performed. Figure 6.6a shows an example of the undesirable result. 

In the example, the centers of the trims and its bisector loop do not coincide. 

However, in the normalized domain, the shapes are aligned so that their centers 

coincide. After the ranking process, some of the feature points on the trim are 

associated with the bisector vertices that are not closest to the feature points. The 

shapes of the divided patches are thus undesirable. 

+ : ( " L之） 
] t t . Normalization Without 
• "̂cen-Vcen Rcladvc Position 

o o ’ © 
- - ( a ) 
Normalization With 
Relative Position 

^̂  ^ 

Figure 6.6 Effect of relative position 

In order to take into consideration the relative position of the shapes, the distance 

between the shapes is used for positioning the normalized shapes. The centers of the 

trim and its bisector loops are respectively expressed as 
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(心,vL) = (心 x ^ :，心 x f 二“)— 

� — ,"max ~ "mill m̂ax — ̂ min� //； ox 
^"cen'^cen) 一 I ~ ， ) j 

Denotes the displacement between the shapes' centers as 

(A"，Av) = (心-(，vL-VcbeJ (6.4) 

and assuming the trim shape is inside the bisector loop, the corresponding 

displacement in the normalized domain is given by 

(A,'b，Av'b) = ( ^ _ ^ ， _ ^ _ ^ ) (6.5) 
u —u V —V• 

max mm '̂max "̂min 

All normalized bisector vertices are translated by the displacement (Aw',Av') 

relative to the normalized trim. After the translation, Equation (6.2) becomes 

= (6.6) 
u — u • V — V • max mm max mm 

Using the example in Figure 6.6a, the result of normalizing with relative positioning 

is shown in Figure 6.6b. Obviously, the shapes of the parametric patches are better 

than those in Figure 6.6a. 

The above technique can be applied to those trims lying inside the bisector loop. 

If the bisector loop is inside the trim, i.e., the parametric tile of the boundary trim, 

their roles are swapped. In this case. Equation (6.5) is rewritten as 

( A ( Av't) = ( t 如 … ) (6.7) 
u —u V —V• 

max mm max mm 

And the translation will be applied to the trim. Therefore, Equation (6.1) becomes 
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) = ( f " " " 7 + Aw", 了t-v— + Av") (6.8) 
u —u V —V 

max '̂ min 'max mm 

The normalized bisector vertices will be ranked for associating with the most 

appropriate feature points in the next step. 

6.3. Ranking Process 

Within a parametric tile, all the valid bisector vertices are identified for every feature 

point in the previous step. These valid bisector vertices will be ranked so as to 

determine the appropriate bisector vertex to be associated with the feature point. The 

ranking is based on two factors. The first one is the distances between a feature point 

and its valid bisector vertices in the normalized domain. The second one is the interior 

angles of the bisector vertices in the 3D space. A feature point will be associated with 

the closest and sharpest bisector vertex. In a parametric tile, given a trim's feature 

point (m',v') , the distance from its i-ih valid bisector vertex (mJ',vJ') in the 

normalized domain is expressed as 

c/,=|(«'t，v")-(w;b，v;b)| (6.9) 

Let the coordinates of the bisector vertex (wf,vf) in 3D space be SO,b，v,b) and its 

two adjacent bisector vertices on the same bisector loop be S(mJ'O,vJ'O) and 

S(mJ5,v)5). The interior angle (in 3D space) at the bisector vertex can be 

calculated as 

a 丁 c � c - ' ( ( S ( " ' l v ' 0 —S("> ,b) ) . (S (“> ,b)_s(心 V；；)) 
丨 |s(">;;),b，神(以,b，v,b) 一 s(以；̂，广。| • 
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Combining Equation (6.9) and Equation (6.10)，the ranking score of (wfjvJ') is 

defined as 

= "；j�+ 、，7 = 0, 1’ … , � (6.11) 

where n is the total number of valid bisector vertices being ranked with respect to the 

feature point . Obviously, the lower is the score of the bisector vertex the 

higher is the ranking of the vertex. The maximum score that a vertex could get is 2. 

Recalling from the previous definition, a bisector centroid is a bisector vertex 

which is shared by three bisectors. Since a bisector centroid is where three parametric 

tiles meet, the shapes of the tiles at the bisector centroids are irregular in most cases. 

The interior angles in 3D space at the bisector centroids are usually sharp enough so 

that the bisector centroids can be considered as the feature points on the bisectors. For 

this reason, a bisector centroid is given a higher priority in the ranking process. A 

certain amount of score is deducted from Equation (6.11) if the bisector vertex being 

ranked is a bisector centroid. This increases the tendency of a feature point to be 

associated with a bisector centroid. After the process, if there is a bisector centroid 

which is not found to associate with any feature point, it will be associated with its 

closest data point on the trim. 

6.3.1. Forward and Backward Attachment 

The process of associating a trim's feature point to its highest ranked bisector 

vertex is referred to as "forward attachment". On completion of forward attachment, 

there may exist bisector centroid not associated with any feature point. The process of 

associating an un-associated bisector centroid to its closest data point on the trim is 
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denoted as “backward attachment". The time required for the backward attachment 

process depends on the number of im-associated bisector centroids on completion of 

the forward attachment process. Consider a single parametric tile, let the number of 

feature points on the trim be and the number of bisector centroids on the bisector 

loop be n^ . The number of correspondences built in the forward attachment process 

should therefore be n\ Let the number of un-associated bisector centroids after the 

forward attachment be n'^. Then the number of correspondences needed to be built 

in the backward attachment process is n'^. The total number of correspondences 

built on the tile is thus 

„c=„t+„'bc， „'bc<„bc (6.12) 

Since the number of parametric patches produced by the parametric tile is 

proportional to the number of correspondences, it is desired to minimize n"" so as to 

minimize the number of patches. Since is fixed, minimizing n" is to minimize 

n'^, i.e., to decrease the number of un-associated bisector centroids after the forward 

attachment process. This is equivalent to maximizing the number of bisector centroids 

being associated with feature points in the forward attachment process. This is 

achieved by adjusting the amount to be deducted from Equation (6.11) for ranking 

bisector centroid. 

However, deducting a large amount will cause the feature points to be associated 

with all bisector centroids (n'^ - 0 , n" - n^). This may result in patches with 

undesirable shapes. In the proposed system, 5% of the maximum value of is 

deducted from Equation (6.11). In most cases, this gives patches with regular shapes 

and the number of patches is satisfactory. 
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An example is shown in Figure 6.7. The data required for establishing 

correspondence is prepared in all the four parametric tiles. The bisector vertices, 

including the bisector centroids, are ranked with respect to every feature point of the 

trims in the forward attachment process. On completion of the forward attachment 

process, all the feature points are associated with the bisector vertices with the highest 

ranking. Some bisector centroids are left un-associated, as shown in Figure 6.8. The 

backward attachment process associates these bisector centroids with their nearest 

data points on the trims {Figure 6.9). 

bisector "！ 

bisect >r bisecto^ J ； 
centrcid f ^jX^entroid i 

暖 
at \ bisector 

• m'^ centroid 
Figure 6.7 Data for correspondence establishment 
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M 
Figure 6.8 Forward attachment 

_ 

Figure 6.9 Backward attachment 
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6.3.2. Singly Linked Bisector Vertices 

After the forward and backward attachment, every trim feature point or bisector 

centroid should be attached to at least one correspondence link. Continuity problem 

may occur at the bisector vertices with only one correspondence link. In Figure 6.10, 

some of the parametric tiles in Figure 6.9 are divided into parametric patches along 

the links. It can be noticed that the boundary of a patch is formed by a bisector 

segment, a trim segment and two correspondence links. At those singly linked 

bisector vertices, the tiles are divided into two patches on one side of the bisector 

segment, while no division occurs on the opposite side. This means that the adjacent 

patches do not share the same set of bisector segments as their boundaries, leading to 

possible continuity problem. 

國 
令 sm^y linked 
� bisector vertex 

Figure 6.10 Patches at singly linked bisector vertex 
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To solve this problem, the singly linked bisector vertices are treated as bisector 

centroids in the process of the correspondence establishment. In the forward 

attachment process, these vertices will be given higher priority, and hence higher 

tendency for associating with the trims feature points. Similarly, in the backward 

attachment process，any singly linked bisector vertices will be associated with the 

nearest trims data point so that each of them is finally attached to two correspondence 

links on both sides of the bisector loops. The result of the example in Figure 6.7 to 

Figure 6.9 is shown in Figure 6.11 in which all the divided parametric patches share 

with their adjacent patches the same set of bisector segments as their boundaries. 

_ 

Figure 6.11 Resolving singly linked bisector vertices 
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Throughout the process of correspondence establishment, tests are performed to 

avoid cross correspondence, i.e., a link intersecting with other links. In case there is 

no feature point and bisector centroid in a parametric tile, any two bisector vertices, 

which are half the bisector perimeter apart, will be linked to the nearest data points of 

the trim. 
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Chapter 7. Surface Fitting 

V 丁. V - --I-.- 1 —- ： - . J '' 1 ； I ‘ 7 7 ‘‘ ‘ / 

Figure 7.1 Grids in all parametric patches 

Up to this stage, feature points on the trims and their corresponding bisector vertices 

are extracted. A pair of consecutive feature points defines a segment of the trimming 

curve. The bisector vertices corresponding to these feature points define a 

corresponding bisector segment. A trim segment and a bisector segment, together 

with a pair of correspondence links connecting the feature points and their 

corresponding bisector vertices define a parametric region of a regular surface. This 

parametric region is referred to as a parametric patch. In every patch region, 

parametric grid is constructed {Figure 7.1). Surface points are generated at the grid 

points for the subsequent surface fitting. Points on the surface corresponding to the 

grid points can be obtained by substituting the grid points' parametric coordinates into 

Equation (3.1). Using chord-length parameterization, a surface defined by each 
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parametric region is then constructed {Figure 7.2). Apart from the process of surface 

fitting, the factors affecting the continuity between adjacent patches will also be 

discussed in the following sections. 

圓 
Figure 7.2 Surface patches in three-dimensional space 

7.1. Parametric Patches 

Given a parametric tile with correspondence established between the shapes of the 

trim and the bisector loop, it can be broken down into a set of parametric patches by 

dividing the tile along the correspondence link. Each of these parametric patches 

represents a specific region on the valid region of the original trimmed surface. The 

union of the surface patches represented by the parametric patches approximates the 

trimmed surface. Therefore, the first step in the surface fitting process is to define the 

parametric patches inside every parametric tile. 5 9 



7.1.1. Parametric Tile and Patch 

After the establishment of correspondence between the bisector vertices and the trim's 

feature points, there are correspondence links which run across each parametric tile. 

Each parametric tile is divided into a set of parametric patches by cutting along the 

correspondence links. In the example shown in Figure 7.3, the parametric tile is 

broken down into a set of parametric patches. There are six correspondence links 

within the tile and thus six patches are developed. 

_ 

Parametric tile Parametric patches 

Figure 7.3 Division of parametric tile 

The boundary of a parametric patch is composed of four parts: a trim segment, a 

bisector segment and two adjacent correspondence links. The trim segments are 

constructed by dividing the trim at the points of correspondence. The bisector 

segments are constructed by dividing the bisector loop at the points of 

correspondence. 
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7.1.2. Local Parametric Coordinate System 

After every parametric tile is broken down into a set of parametric patches, each of 

the patches will be processed individually. First, a local parametric coordinate system 

is assigned to every patch so as to facilitate the parametric grid generation in the later 

step. The w-coordinate of the patch is aligned along the bisector segment and the trim 

segment. The v-coordinate is aligned along the two correspondence links. Figure 7.4 

shows the local parametric coordinate system of the parametric patch. 

..1 

V “ 

vM 
§ 

Figure 7.4 Local parametric coordinate system 

7.2. Parametric Grids 

Parametric grid is generated within every parametric patch according to the local 

coordinate system defined in the previous section. To generate the grid, the following 

information is necessary to be specified or determined: 

n\ the number of sample points along the w-direction 

p: the order in the w-direction 

m: the number of sample points along the v-direction 

q: the order in the v-direction 
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Interpolating a B-Spline surface through the nxm sample points requires the 

following conditions to be satisfied 

n>p, m>q (7.1) 

7.2.1. Sample Points on the Patch Boundary 

The number of the sample points in the w-direction can be simply set equal to the 

number of the bisector vertices on the bisector segment. If the number of bisector 

vertices on the bisector segment is not sufficient for satisfying condition (7.1)，evenly 

distributed bisector vertices will be re-sampled on the bisector segment such that the 

number of the bisector vertices is at least equal to the order in the w-direction. An 

example is shown in Figure 7.5a. There are only three bisector vertices on the 

bisector segment of the parametric patch in the figure. If the specified w-order is 

greater than 3，e.g. 6，the number of bisector vertices is not enough. In this case, six 

bisector vertices are required and are re-sampled on the bisector segment as shown in 

Figure 7.5b. For the neighbouring patch which shares the same original bisector 

segment as boundary, its bisector segment will be replaced by the new bisector 

segment {Figure 7.6). 

(a) (b) 

Figure 7.5 Re-sampling of bisector vertices 
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(a) (b) 

Figure 7.6 Neighbouring patches with re-sampled bisector vertices 

Given the set of bisector vertices on the bisector segment, the same number of 

data points will be uniformly sampled on the trim segment {Figure 7.7). Each sample 

point on the trim segment corresponds to a bisector vertex on the bisector segment. 

1 
Figure 7.7 Sample points on trim segment 

7.2.2. Grid Generation 

As discussed in previous sections, a parametric grid is generated in each parametric 

patch. A point of the parametric grid represents the parametric coordinates of a data 

point on the surface patch in the 3D space. 
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Along the w-direction of the parametric patch, data points are uniformly sampled 

on the trim segment and bisector segment. As defined in the previous section, the 

numbers of sample points n on both segments are the same. A sample point on the 

bisector segment, i.e., a bisector vertex, corresponds to a sample point on the trim 

segment. For each pair of corresponding sample points, they are linearly interpolated 

to obtain the points in the v-direction of the parametric grid. Similarly, m sample 

points are generated through linear interpolation along the v-direction. 

To compute the parametric coordinates of the grid points, 

/ = 0，1，...，《-1，7 = tj e[0,l] (7.2) 

where n is the number of sample points along the patch's local w-direction, m is the 

number of sample points along the patch's local v-direction, {ufj,vfj) is the 

coordinate of the /-th and y-th grid point along the patch's u- and v-direction 

respectively, (wj,v') is the coordinate of the /-th sample point on the trim segment, 

(M,b，v,b) is the coordinate of the /-th bisector vertex on the bisector segment, and tj 

is they-th parameter value for the linear interpolation between (mJ,v') and (wJ'jvf). 

All the parametric coordinates of , and are specified 

relative to the parametric coordinate system of the original trimmed surface. The total 

number of grid points in the grids is Because of the uniform distribution of 

data points along the v-direction, tj can be easily calculated by 
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y = 0,l , . . . ,w-l (7.3) 
m-\ 

Figure 7.8 shows a result of grid generation by linear interpolation. It is an example 

with « = 14 and w = 4, and a total of 56 grid points in the patch. 

V 

« = 14 _ 

剩 
j = 13 

Figure 7.8 Grid points by linear interpolation 

Since the coordinates of the grid points (uf j^vfj) are expressed relative to the 

coordinate system of the original parametric trimmed surface, the 3D coordinates of 

the grid points on the surface patch can be obtained by substituting the parametric 

coordinates into the representation of the 3D trimmed surface in Equation (3.1). The 

grid point in 3D space is thus given by 

二 ( x K y，v y，x " 5，《),_k � ) ) = O c f j ^ y l A j ) 

/ = 0,1,... ,«-1, 7 = 0 , l , . . . ,w-l , Ge[0，l] (7.4) 

These nxm 3D grid points will then be used as the data points for the surface fitting 

process. 
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7.3 Surface Patches Construction 

In the final step of the surface fitting process, control points of the surface patch 

defined by each parametric patch region are computed. In this thesis，the surface 

patches are represented by B-Spline surfaces. 

7.3.1. Knot Vectors 

Consider the data points given by Equation (7.4). Assuming a fixed j, the n data points 

«j，Kj，zU ,(对y，少f’y，zf"),…，(x“j，}tij，z“j) will have parametric values 

U q j , u, y , . . .， a l o n g the w-direction respectively. These parametric values are 

calculated by the method of chord length parameterization [10]. The total chord 

length between the data points is denoted as 

y = 0，l，...，w-l (7.5) 

Setting Uq j = 0 and iT“ j =1, the parametric values in the other w-intervals can be 

obtained by 

- 丨 | ( 对 y , 少 少 工 u ， 之 么 u ) 
i j — "/-IJ -J , 

i = 1,2, . . . ,w-2, j = 0,1,. . . ,w-1 (7.6) 

For every fixed i’ the parametric values u^ are computed by the expression 

— 丄 £ 巧 ” / = 0，1,."，《-1 (7.7) 
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The knots of the knot vector in the w-direction are specified as 

Wo = w , = … = = 0 ， 

- "n+l = ... “ ^n+p-\ - 1， 

I k+p-2 
u“p-\ = 7 ‘ k=\,2,…，n-p (7.8) 

p - 1 ti! 

and the length of the knot vector is n + p . The knot vector in the v-direction is 

computed with a similar approach. 

Vq = V , = … = = 0， 

Vm 糾1 = … = V — 二 1， 

= r k = \, 2，…，m-q (7 .9 ) 
” 1 j=k 

where 

巧=丄 l ! X)， 7. = 0，l，“.,m_l (7.10) 

7.3.2. Control Vertices 

With the knot vectors along the u and v-directions of the patch, the data points and 

their parametric values with respect to the knot vectors, the control vertices of a 

B-Spline surface interpolating the data points are expressed as 

D = N„ P N, (7.11) 

where 
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(^0,0 ‘ ̂ 0,0 ‘ ̂ 0,0 ) (^0,1 ‘ ̂ 0,1 ‘ ̂ 0,1) ... (^0,m-l ‘ ‘ ) 

D 一 Ĉlgo，少 f’0，zf’o) C*f’l，>f’l，对丨） ... (̂ lm-1 > yf,m-l ‘ ̂ lm-1) (7 12) 
• • • • 
• • • • 

is the nxm matrix of the grid points on the surface patch, 

Po’0 Po,l • • • Po，m-l 

P,0 P , , … , 
P = 1/0 I'' . 1’："-1 (7.13) 

* « • • 
• • • • 

_P"-1’0 P”-U …Pn-l’m-l_ 

is the nxm matrix of the surface patch's control vertices, 

‘ ( " o ) N�p ( W q ) … N „ _ , p (WQ )“ 
^ � p O O … i ， p O O 
N„ = ： ： •• ： (7.14) 

• • • • 

is the fjxn matrix of the basis functions in the w-direction of the surface patch, and 

N = K C v i ) ... (7.15) 
• » • • 

is the mxm matrix of the basis functions in the v-direction of the surface patch. By 

multiplying the inverse of the basis function matrices on both side of Equation (7.12), 

the unknown control vertices of the surface patch can be solved. 

68 



(7.16) 

Figure 7.9 shows a trimmed surface in the parametric space. In the figure, parametric 

grids are generated for all parametric patches. For the highlighted patch in the figure, 

the corresponding 3D surface patch is shown in Figure 7.10. The grey wire-frame in 

the figure is the wire-frame of the original trimmed surface. The brown vertices and 

straight lines are respectively the control vertices and the control mesh of the surface 

patch. The same process is performed on all the other parametric patches of the ； 

trimmed surface to determine the corresponding surface patches defined. The union of 

all the 3D surface patches approximates the original trimmed surface {Figure 7.2). 

I 肩 ; 繩 酵 
： ； s m i ^ Jiitum難 

：：：如:之^ !•： 

：减释 

I m ^ m 
Figure 7.9 Patch in parametric space (highlighted) 
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Figure 7.10 Surface patch in 3D space 
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Chapter 8. Worked Examples 

In this chapter, some examples which are processed by the proposed algorithm are 

shown. The input to the algorithm in each case is a trimmed surfaces and the output is 

a group of surface patches whose union is the approximation of the original trimmed 

surface. In each example, the original surface and output patches of the model is 

illustrated in the 3D and the parametric space. 

8.1. Example 1: Deformed Plane 1 

n a n 
mm 

Figure 8.1 Original trimmed surface (3D space) 
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Figure 8.2 Surface patches (3D space) 

p； 

Figure 8.23 Original trimmed surface (parametric space) 
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Figure 8.4 Surface patches (parametric space) 

I: 

1 ) 
Details of Example 1: 

1. Voronoi diagram 
I 

參 Initial degree of triangulation: 8 

T, ; T, 

No. of bisector vertices 118 59 73 70 

No. of bisector centroids 3 3 3 3 

2. Feature points 

^ — T o 7； 7 ； � 3 Total 

No. of continuous sharp turns 0 2 4 0 6 

No. of discrete sharp turns 4 0 0 4 8 

Total no. of feature points 14 
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3. Surface patches 

參 w-Order: 4, v-Order: 6 

To T, T, 7； Total 

No. of surface patches 9 5 6 6 26 

(No. of degenerated surface patches) (0) (0) (0) (0) (0) 

8.2. Example 2: Deformed Plane 2 

Figure 8.29 Original trimmed surface (3D space) 
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Figure 8.6 Surface patches (3D space) 

To 

(h 力 

Figure 8.23 Original trimmed surface (parametric space) 
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Figure 8.8 Surface patches (parametric space) 

Details of Example 2: 

1. Voronoi diagram 

• Initial degree of triangulation: 8 

r � J\ T, 7； 

No. of bisector vertices 116 87 49 48 

No. of bisector centroids 4 4 2 2 

2. Feature points 

- r � r, T\ T\ Total 

No. of continuous sharp turns 0 5 0 0 5 

No. of discrete sharp turns 4 0 0 0 4 

Total no. of feature points 9 
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3. Surface patches 

• M-Order: 4，v-Order: 6 

^ ^ To J\ T\ T\ Total 

No. of surface patches 10 8 3 3 24 

(No. of degenerated surface patches) (0) (0) (0) (0) (0) 

8.3. Example 3: Sphere 

Figure 8.9 Original trimmed surface (3D space) 
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_ 

Figure 8.12 Surface patches (parametric space) 

Details of Example 3: 

1. Voronoi diagram 

參 Initial degree of triangulation: 8 

r � 7； T, T\ 

No. of bisector vertices 117 65 59 55 

No. of bisector centroids 4 2 4 2 

2. Feature points 

— r � T\ T, Total 

No. of continuous sharp turns 0 0 0 0 0 

No. of discrete sharp turns 4 4 0 3 11 

Total no. of feature points 11 

7 9 





Figure 8.14 Surface patches (3D space) 

Figure 8.15 Original trimmed surface (parametric space) 

Figure 8.16 Surface patches (parametric space) 
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Details of Example 4: 

1. Voronoi diagram 

• Initial degree of triangulation: 8 

No. of bisector vertices 80 80 

No. of bisector centroids 0 0 

2. Feature points 

— - — 7 ； r, Total 

No. of continuous sharp turns 0 0 0 

No. of discrete sharp turns 0 0 0 

Total no. of feature points 0 

3. Surface patches 

• w-Order: 4，v-Order: 6 

‘ To T\ Total 

No. of surface patches 2 2 4 

(No. of degenerated surface patches) (0) (0) (0) 
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8.5. Example 5: Hemisphere 2 

m 
Figure 8.17 Original trimmed surface (3D space) 

Figure 8.18 Surface patches (3D space) 
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Figure 8.19 Original trimmed surface (parametric space) 

麗 
Figure 8.20 Surface patches (parametric space) 

Details of Example 5: 

1. Voronoi diagram 

參 Initial degree of triangulation: 8 

No. of bisector vertices 80 80 

No. of bisector centroids 0 0 

8 4 



2. Feature points 

r � 7 ； Total 

No. of continuous sharp turns 0 0 0 

No. of discrete sharp turns 4 0 4 

Total no. of feature points 4 

3. Surface patches 

參 w-Order: 4, v-Order: 6 

~ ~ ~ ~ ~ ~ ~ ~ ~ r � J \ Total 

No. of surface patches 4 4 8 

(No. of degenerated surface patches) (0) (0) (0) 

8.6. Example 6: Shoe 

Figure 8.21 Original trimmed surface (3D space) 
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Figure 8.22 Surface patches (3D space) 

I ^ ^ 

Figure 8.23 Original trimmed surface (parametric space) 
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Figure 8.24 Surface patches (parametric space) 

Details of Example 6: 

1. Voronoi diagram 

眷 Initial degree of triangulation: 8 

^^^^^^^^^ To T\ 

No. of bisector vertices 100 100 

No. of bisector centroids 0 0 

2. Feature points 

^ ~ — r � J \ Total 

No. of continuous sharp turns 0 0 0 

No. of discrete sharp turns 4 4 8 

Total no. of feature points 8 
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3. Surface patches 

“ — 7 ； 7； Total 

No. of surface patches 4 4 8 

(No. of degenerated surface patches) (0) (0) (0) 

8.7. Example 7: Shark Main Body 

Figure 8.25 Original trimmed surface (3D space) 
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Figure 8.26 Surface patches (3D space) 

p ^̂  I 
CD 
© 

^ ^ 

Figure 8.23 Original trimmed surface (parametric space) 

8 9 



匪 
Figure 8.28 Surface patches (parametric space) 

Details of Example 7: 

1. Voronoi' diagram 

• Initial degree of triangulation: 8 

^ ^ ^ ^ ^ ^ ^ ^ T o T, T, T, 

No. of bisector vertices 116 69 72 73 

No. of bisector centroids 3 3 3 3 

2. Feature points 

— T o T, T, Total 

No. of continuous sharp turns 0 0 2 2 4 

No. of discrete sharp turns 8 3 0 0 11 

Total no. of feature points 15 

9 0 



3. Surface patches 

• w-Order: 4，v-Order: 6 

— T , 7； T̂  T, Total 

No. of surface patches 12 6 6 6 30 

(No. of degenerated surface patches) (0) (0) (0) (0) (0) 

8.8. Example 8: Mask 1 

m 
Figure 8.29 Original trimmed surface (3D space) 
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Figure 8.30 Surface patches (3D space) 

To\ 
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W 
v j / 

Figure 8.23 Original trimmed surface (parametric space) 
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Figure 8.32 Surface patches (parametric space) 

Details of Example 8: 

1. Voronoi diagram 

參 Initial degree of triangulation: 8 

To 7] T, T\ 7； 

No. of bisector vertices 146 82 82 30 96 

No. of bisector centroids 3 4 4 3 4 

2. Feature points 

7； 7； T, T, Total 

No. of continuous sharp turns 0 2 2 0 3 7 

No. of discrete sharp turns 4 0 0 3 0 7 

Total no. of feature points 14 

9 3 



3. Surface patches 

參 w-Order: 4, v-Order: 6 

^ ^ ^ ^ ^ ^ " “ ^ T, T] T, T, T, Total 

No. of surface patches 8 5 5 3 7 28 

(No. of degenerated surface patches) (0) (0) (0) (0) (0) (0) 

8.9. Example 9: Mask 2 

Figure 8.33 Original trimmed surface (3D space) 
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Figure 8.36 Surface patches (parametric space) 

Details of Example 9: 

1. Voronoi diagram 

參 Initial degree of triangulation: 12 

To T, T\ 

No. of bisector vertices 148 135 73 74 

No. of bisector centroids 3 3 3 3 

2. Feature points 

~ r � 7 ； T \ � 3 Total 

No. of continuous sharp turns 0 10 0 0 10 

No. of discrete sharp turns 4 0 3 3 10 

Total no. of feature points 20 
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3. Surface patches 

• w-Order: 4，v-Order: 6 

T, T\ T, T, Total 

No. of surface patches 10 10 5 5 30 

(No. of degenerated surface patches) (0) (0) (1) (1) (2) 

8.10. Example 10: Toy Car 

Figure 8.37 Original trimmed surface (3D space) 
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Figure 8.38 Surface patches (3D space) 

⑤ © 乂 
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\ / Figure 8.23 Original trimmed surface (parametric space) 

9 8 



Figure 8.40 Surface patches (parametric space) 

Details of Example 10: 

1. Voronoi" diagram 

參 Initial degree of triangulation: 8 

T, T\ T, T, 7； J] 7； 7； 

No. of bisector vertices 195 88 59 56 52 54 70 70 

No. of bisector centroids 7 5 4 3 4 3 5 5 

2. Feature points 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ T , 7； T, T, T, T] T, 7； Total 

No. of continuous sharp turns 0 2 0 0 0 0 4 4 10 

No. of discrete sharp turns 4 0 2 2 2 2 0 0 12 

Total no. of feature points 22 
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3. Surface patches 

• w-Order: 4, v-Order: 6 

^ ^ ^ ^ ^ ^^^^^^^^^^ T, T\ T, T, 7； 7； 7； 7； Total 

No. of surface patches 13 7 5 5 4 4 7 7 52 

(No. of degenerated surface patches) (0) (0) (0) (0) (0) (0) (0) (0) (0) 
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Chapter 9. Result and Analysis 

In this chapter, some issues related to the continuity and degeneration of the 

decomposed patches are discussed. A comparison between the proposed algorithm 

and Hamann's algorithm will also be presented. 

9.1. Continuity between Patches 

In the establishment of correspondence and the construction of correspondence links, 

adjacent parametric patches share the same set of data points on their common edges. 

This applies to both the u- and v-directions of the parametric patches, i.e., along the 

bisector segments and the correspondence links. 

• . • r _ - _ ；. I ； i j 
X—- -. 1 1 I -'�-•"i_-**v."”i---

J I . I I • ( r- : / ^^ 
• i ' ；-|. i t-> •/ 

I • ‘ , ！ .1' \ 
..卜u ； 1 
•v.. 5 .•飞 .‘.-,.••"•/" 

L m ^ A v 

Figure 9.1 Neighbouring parametric patches 

A graphical interpretation is shown in Figure 9.1. The example in the figure is a 

set of neighbouring parametric patches which share common edges on their 

boundaries. Patches sharing the same edges share the same set of data points, in the 

101 



parametric and thus the 3D space. Provided the same knot sequence is used and the 

data points are assigned the same parametric values, C® continuity can be 

maintained. 

Although the generated patches may not be continuous, it is obvious that if 

more data points are sampled for the surface fitting process, continuity between 

the patches can be approached. This is because a larger number of sample points give 

a better approximation of the original surface which is continuous. This can be 

achieved by increasing the number of data points sampled in the local u- and 

v-directions of the patches respectively. To increase the data points along the 

M-direction, more bisector vertices are generated on the bisector segment of every 

parametric patch. Similarly, along the v-direction, the number of data points can be 

increased by increasing the points sampled on the correspondence links. 

In case it is desired to ensure the C' or even higher degrees of continuity 

between the patches, the derivatives of the surface at the sample points along the 

common boundaries can be used as constraints in the interpolation process. This 

requires estimating the derivatives at the sample points and requires special 

consideration for patches with degenerate edge. 

9.2. Special Cases 

In the establishment of vertices correspondence, if two or more bisector vertices are 

associated with the same data point on the trim, a triangular patch with a degenerated 

edge will be obtained. In addition, there may exist S-shaped features on the trim 

shapes which may lead to undesirable results in the surface fitting process as 

discussed below. 
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9.2.1. Degenerated Patches 

Figure 9.2 Degenerated patch 

A degenerated patch is a patch with one edge zero length. The shape of a degenerated 

patch is triangular in most cases. The highlighted patch in Figure 9.2 is a typical 

example. 

To avoid the generation of degenerated patches in a parametric tile, a bisector 

vertex is not allowed to be associated with more than one data point or feature point 

on the trim in the forward attachment process. In Figure 9.3, the solid green line 

represents the correspondence which is built between a feature point and a bisector 

vertex in the forward attachment process. In the subsequent process, any feature point 

attempting to associate with the same bisector vertex (e.g. the dashed green line in the 

figure) will not be allowed. 
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國 
Figure 9.3 Preventing degeneration 

However, the same technique cannot be applied in the backward attachment process, 

i.e., the process of associating an un-associated bisector centroid to its closest data 

point on the trim. This is because of the possibility of generating patches with 

irregular shape such as concave boundary as shown in Figure 9.4. The dashed line in 

Figure 9.4 represents the link which is built while degeneracy is allowed in the 

backward attachment process. The solid line directed from the same bisector vertex 

represents the link built while degeneracy is not allowed. It can be seen that the patch 

without degeneracy is concave in shape. In this case, a degenerated patch is more 

preferable than a concave patch. Therefore, bisector vertices are allowed to associate 

with the same feature point in the backward attachment process. 

画 
Figure 9.4 Concave patch 
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9.2.2. S-Shaped Feature 

••• ••• / / - Z - • • V .. - j-一. - - / / y ., 

W ^ 

Figure 9.5 Solution to S-shaped feature 

S-shaped features on the trim shape may cause the parametric grid lines generated 

inside a patch to intersect with each other and the trim segment. The corresponding 

surface patch is twisted {Figure 9.5a). This can be avoided by rearranging the 

correspondence links and making use of degenerated patches Figure 9.5b. 

9.3. Comparison 

In this section, the feature-based algorithm presented in this thesis will be compared 

with the algorithm developed by Hamann and Tsai. The comparison is based on 

several aspects. They are the total number of patches, the number of degenerated 

patches and the shapes of the patches. 

Both the feature-based and Hamann’s algorithm effectively decompose a 

trimmed surface into a set of regular B-spline surfaces. However, using Hamann's 

approach, the number of patches developed depends on the number of local maximum 

and minimum points on the bisectors and trimming curves. The number of patches 

generated by the feature-based approach depends on the number of the feature points 
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on the trims and also the number of bisector centroids on the bisectors. The maximum 

number of patches is of the order where is the total number of 

feature points on the trims, N is the total number of trims, and n^ is the total number 

of bisector centroids on the bisectors. Unlike Hamman's method, the feature-based 

method considers the boundary of a surface as a trim as well. Therefore, one more 

bisector is developed for the boundary trim. As a result, one more parametric tile has 

to be processed in the feature-based algorithm. In most cases, fewer patches are 

usually obtained by using Hamann's method. However, there are exceptional cases as 

shown in Figure 9.6’ when the number of patches obtained with the feature-based 

approach is less than that obtained with Hamann's method. This usually occurs when 

the number of extreme points is larger than the number of feature points. Figure 9.6a 

and Figure 9.6b shows the results of decomposing a surface using respectively 

Hamann's and the feature-based method. In the figure, twelve patches are obtained by 

Hamann's algorithm, while eight patches are obtained by the feature-based algorithm. 

U^i UsJ 
(a) (b) 

Figure 9.6 Comparison between (a) Hamann's and (b) feature-based algorithms 
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In the feature-based algorithm, the shapes of the patches created depend on the 

shapes of the trims and the bisectors. They also depend on the similarity between the 

shape of the trims and their bisector loops. In general, the patches are four-sided. The 

number of degenerated patches can be reduced by not allowing two or more feature 

points to associate with the same bisector vertex. Moreover, the patches with concave 

shapes can be avoided. The shapes of the patches created using Hamann's method 

depend on the distribution of the maximum and minimum points on the trimming 

curves. Patches are degenerated wherever there is a single pair of adjacent maximum 

and minimum points, as shown in Figure 9.6a. 

By applying the technique of shape blending, the feature-based algorithm 

establishes vertices correspondence by considering the shapes of the trims and the 

bisector loops. The shapes of the patches are thus more regular. For Hamann's 

method, narrow patches may be obtained as shown in Figure 9.6a. This is caused by 

closeness of the scan lines passing through the maximum and minimum points. These 

scan lines are close to each other but are not close enough to be regarded a single scan 

line. Narrow stripes patches will thus be generated. These kinds of patches usually 

have their shapes and area very different from the other patches. It can be concluded 

that the patches created by the feature-based method are more regular in shape and 

size. 

Figure 9.7 to Figure 9.16 shows the ten examples in Chapter 8 developed by 

both Hamann's method and the feature-based method in part (a) and (b) of the figures 

respectively. In the figures, the degenerated patches generated in each method is 

coloured in grey. The comparison is mainly based on: 

1. The total number of surface patches generated 

2. The number of degenerated surface patches 

3. The area of the parametric patches 
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The results of the comparison are listed in the table below the figure of each example. 

For the area comparison, the data is expressed in the percentage between the area of a 

specific patch and the total area of all patches. For example, the data "Max." is the 

percentage of the patch with maximum area compared with the total area of all 

patches. 

By observing the statistics of the comparison, the number of patches generated 

by Hamann’s method is smaller than that by the feature-based method. However, 

regarding the number of degenerated patches, the feature-based method has an 

advantage over Hamann’ s method. The area variation of the patches obtained by the 

feature-based method is smaller too. This can be proved by the difference between the 

maximum and minimum patches areas, and also the areas standard deviation (S.D.) in 

the tables. The shapes and regularity of the patches generated by both methods can 

also be compared by observation. 

In the examples, the patch areas are measure by a free image processing and 

analysis program called ImageTool [12]. The measurement is done by defining a 

region in an image file and the area is equal to the total number of pixel in that region. 
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9.3.1. Example 1: Deformed Plane 1 

B M 
^ w 

Figure 9.7 Example 1 by (a) Hamann's and (b) feature-based method 

~~~~ Hamann's Feature-based 

No. of surface patches 22 26 

No. of degenerated surface patches 3 0 

No. of extreme/feature points 13 14 

Max. 16.43% 8.72% 

Area of patch Min. 0.19% 1.59% 
Total area of patches ^ ^ 

S.D. 4.55% 1.83% 
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9.3.1. Example 1: Deformed Plane 1 

H H 
^ w 

Figure 9.8 Example 2 by (a) Hamann's and (b) feature-based method 

— H a m a n n ' s Feature-based 

No. of surface patches 16 24 

No. of degenerated surface patches 3 0 

No. of extreme/feature points 9 9 

Max. 30.33% 6.12% 

Area of patch Min. 0.84% 2.16% 

Total area of patches ^ 4.I70/0 

S.D. 7.52% 1.33% 
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9.3.4. Example 4: Hemisphere 1 

I I I I [YFpf] 

_遷 
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Figure 9.9 Example 3 by (a) Hamann's and (b) feature-based method 

— H a m a n n ' s Feature-based 

No. of surface patches 19 20 

No. of degenerated surface patches 5 1 

No. of extreme/feature points 16 11 

Max. 19.49% 9.91% 

Area of patch Min. 0.17% 2.37% 
Total area of patches ^ ^ 

S.D. 5.28% 2.05% 
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9.3.4. Example 4: Hemisphere 1 

W ^ 

Figure 9.10 Example 4 by (a) Hamann's and (b) feature-based method 

‘""““~~~~““ — Hamann's Feature-based 

No. of surface patches 4 4 

No. of degenerated surface patches 2 0 

No. of extreme/feature points 4 0 

Max. 31.90% 31.14% 

Area of patch Min. 18.22% 18.90% 
Total area of patches " ^ ^ ^ 

S.D. 7.83% 6.92% 
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9.3.4. Example 4: Hemisphere 1 

w i a 
� w 

Figure 9.11 Example 5 by (a) Hamann's and (b) feature-based method 

“ “ ^ ^ “ - • — Hamann's Feature-based 

No. of surface patches 6 8 

No. of degenerated surface patches 2 0 

No. of extreme/feature points 8 4 

Max. 30.91% 19.93% 

Area of patch Min. 6.92% 9.94% 
Total area of patches 

S.D. 10.95% 5.07% 

113 



9.3.7. Example 7: Shark Main Body 

^ w 

Figure 9.12 Example 6 by (a) Hamann's and (b) feature-based method 

~ —-— Hamann's Feature-based 

No. of surface patches 7 8 

No. of degenerated surface patches 0 0 

No. of extreme/feature points 5 8 

Max. 40.16% 20.69% 

Area of patch Min. 0.59% 5.78% 
Total area of patches ^ ^ ^ ^ 

S.D. 17.35% 5.58% 
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9.3.7. Example 7: Shark Main Body 

^ w 

Figure 9.13 Example 7 by (a) Hamann's and (b) feature-based method 

~ Hamann's Feature-based 

No. of surface patches 18 30 

No. of degenerated surface patches 0 0 

No. of extreme/feature points 10 15 

Max. 18.60% 9.02% 

Area of patch Min. 1.17% 1-24% 
Total area of patches ^ 

S.D. 5.89% 2.04% 
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9.3.7. Example 7: Shark Main Body 

闺國 
(a) (b) 

Figure 9.14 Example 8 by (a) Hamann's and (b) feature-based method 

“ • — - — H a m a n n ' s Feature-based 

No. of surface patches 27 28 

No. of degenerated surface patches 6 0 

No. of extreme/feature points 18 14 

Max. 22.53% 10.78% 

Area of patch Min. 0.04% 0.36% 

Total area of patches ^ OT 

S.D. 5.87% 3.27% 
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93.9. Example 9: Mask 2 

(a) (b) 

Figure 9.15 Example 9 by (a) Hamann's and (b) feature-based method 

‘ — — H a m a n n ' s Feature-based 

No. of surface patches 30 30 

No. of degenerated surface patches 12 2 

No. of extreme/feature points 23 20 

Max. 28.78% 9.42% 

Area of patch Min. 0.11% 0.57% 
Total area of patches ^ ^ 

S.D. 6.46% 2.74% 
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93.10. Example 10: Toy Car 

(a) (b) 

Figure 9.16 Example 10 by (a) Hamann's and (b) feature-based method 

“ — ^̂ ^̂ ^ Hamann's Feature-based 

No. of surface patches 43 52 

No. of degenerated surface patches 8 0 

No. of extreme/feature points 31 22 

Max. 11.16% 8.61% 

Area of patch Min. 0.37% 0.95% 

Total area of patches ^ 隱 

S.D. 2.38% 1.18% 
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Chapter 10. Conclusion 

In this thesis, an algorithm for decomposing a trimmed surface into a set of regular 

B-Spline surfaces is presented. The method considers the features and the shapes of 

the surface and the trims. This eliminates the irregularity of the patches produced in 

the process. 

Voronoi diagram is developed in the parametric space of a trimmed surface. 

Bisectors in the Voronoi diagram, which are midway between the trims, isolate the 

trims from each other in the parametric space. In the 3D space, feature points are 

detected by locating sharp turns on the trimming curves. Feature points can also be 

located at the junctions between the trimming curves. Then, correspondence between 

the feature points on the trims and the bisector vertices of the Voronoi diagram are 

established in the parametric space. By considering the similarity between the trims 

and their bisector loops, correspondence between feature points and bisector vertices 

is established by applying the shape matching technique in shape blending. 

Connecting feature points and the corresponding bisector vertices partitions the valid 

region between the trims and the bisectors into regions for the surface fitting process. 

A set of surface points related to points lying in each of the parametric regions is 

generated. A B-Spline surface interpolating the surface points in each parametric 

region is constructed. The result is a set of surface patches of which union 

approximates the original trimmed surface. 

A series of examples and results are shown demonstrating the performance of the 

algorithm. Special cases are discussed and the solutions to the problems are proposed. 

Comparing with the Hamann's approach, the feature-based method generates larger 

number of patches in most cases. However, the feature-based method has the 

advantages that the patches obtained are more regular in shape and size. 
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There are rooms for the algorithm to improve. As the result of the algorithm is a 

set of surface patches in 3D space, the decomposition algorithm should be performed 

in 3D space as far as possible. This will increase the accuracy of the decomposition 

and the regularity of the patches obtained. For example, Voronoi' diagram can be 

developed on the surface so that the bisectors divide the valid region between the 

trims more evenly in 3D space (Figure 10.1). This is because the distance between the 

trims in the parametric and the 3D space maybe different such that bisectors in the 

parametric space may not be bisectors in the 3D space. 

麗 
Figure 10.1 Voronoi diagram in 3D space 

In the establishment of vertices correspondence, the distance between the feature 

points and the bisector vertices is measured in parametric space. Measuring the 

distance in 3D space will give a more accurate result. Besides, in the normalization of 

the trims and the bisector loops, the actual shapes of the trims and the bisector loops 

in 3D space can be used. This requires the use of three-dimensional enclosing boxes 

of the shapes in the normalization process {Figure 10.2). 
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Figure 10.2 Enclosing boxes for normalization in 3D space 

121 



References 

1. Hamann, B and Tsai, P Y 'A tessellation algorithm for the representation of 

trimmed NURBS surfaces with arbitrary trimming curves' Computer-Aided 

Design Vol 28 No 6 (1996) pp 461-472. 

2. Vries-Baayens, A E and Seebregts C H 'Exact Conversion of a trimmed 

nonrational Bezier surface into composite or basic nonrational Bezier surfaces' in 

Hagan, H (Ed.) Topics in Surface Modeling SIAM, Philadelphia, PA (1992) pp 

115-143. 

3. Piegl, L A and Richard, A M Tessellating trimmed NURBS surfaces' 

Computer-Aided Design Vol 27 Nol (1995) pp 16-26. 

4. Cho, W, Maekawa, T, Patrikalakis, N M and Peraire, J 'Robust tessellation of 

trimmed rational B-spline surface patches' Proceedings of Computer Graphics 

International CGI '98 (1998) pp 543-555. 

5. Abi-Ezzi, S S and Subramaniam, S ‘Fast dynamic tessellation of trimmed NURBS 

surfaces' Eurographics '94 Vol 13 No 3 (1994) pp 107-126. 

6. Liu, D, Dong, J and Tong R 'A new approach for tessellating trimmed parametric 

surfaces，The Fifth International Conference for Young Computer Scientists Aug. 

1999 Nanjing, P.R.China. 

7. Piegl, L A and Tiller, W ‘Geometry-based triangulation of trimmed NURBS 

surfaces' Computer-Aided Design Vol 30 No 1 (1998) pp 11-18. 

8. Cho, W, Patrikalakis, N M and Peraire, J 'Approximate development of trimmed 

patches for surface tessellation' Computer-Aided Design Vol 30 No 14 (1998) pp 

1077-1088. 

9. Hui, K C and Li, Y ‘A feature-based shape blending technique for industrial 

design' Computer-Aided Design Vol 30 No 10 (1998) pp 823-834. 

122 



10. Piegl, L A and Tiller, W The NURBS Book (2nd Ed.) Springer-Verlag, New York 

(1997). 

11. Farin, G Curves and Surfaces for Computer Aided Geometric Design (3rd Ed.) 

Academic Press, San Diego (1993). 

12. http://ddsdx.uthscsa.edu/dig/itdesc.html 

123 

http://ddsdx.uthscsa.edu/dig/itdesc.html




CUHK L i b r a r i e s 

IIIH 
0 0 4 2 7 9 2 9 2 


