
Analysis of Distributed
Participation and Replication

Strategies in P2P Systems

LIN Wing Kai

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Information Engineering

Supervised by

Prof. CHIU Dah Ming

©The Chinese University of Hong Kong
August 2005

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intending
to use a part or whole of the materials in the thesis in a proposed publication must seek copyright
release from the Dean of the Graduate School.

,•々先！館書圓v\

u n i v e r s i t y y M / J
^̂ î LIBRARY SYSTEMy^

Abstract of thesis entitled:

Analysis of Distributed Participation and Replication Strategies in P2P Systems

Submitted by LIN Wing Kai

for the degree of Master of Philosophy

at The Chinese University of Hong Kong in August 2005

Abstract:

The notion of "peer-to-peer (P2P)" systems usually refers to a class of systems that

connect multiple computers together to enable resources sharing. Earlier systems

were typical file sharing platforms that rely on autonomous sharing of resources

from peers. The proven success of these platforms leads to continuous researches

on building formidable P2P replication systems that are based on these peers, with

the assumption that peers need to cooperate.

In this thesis, we identify three issues in these replication systems. We first

review the performance of erasure code replication, a replication approach that

is considered to achieve high data availability with low storage cost in previous

studies. Our analysis show an opposite result may arise when deploying erasure

code replication in P2P replication environments. The second issue is replication

strategy in P2P replication systems. We provide a simple example to demonstrate

the effect of heterogeneity of peer availabilities on file replication performance. We

then propose three heuristic replication strategies, which take this heterogeneity

into account and can be adapted in distributed manners, to replicate files in P2P

replication systems. Our results show that these strategies can achieve promis-

i

ing replication performance with different degrees of complexity. Finally, we in-

vestigate the reason for cooperation - What makes distributed participation from

autonomous peers possible? We provide an Information Sharing Club (ISC) frame-

work to abstract peer behaviour: peers join the club because they find the club

can provide them useful information contents. The framework explains the viabil-

ity criteria of such a club, which in turn provides a necessary condition for peers

to participate. Putting everything together, this thesis serves as a self contained

document to explore the performance related considerations of P2P replication

systems.

ii

摘要：

「點對點系統」（Peer-to-peer system)是指一些以節點形式去連結使用者的資

源分享系統。早期之點對點系統主要為植案分享網絡，並要求使用者自發性地分

享各自的檔案資源。此等檔案分享平台之成功，引發了一連串有關建立更為完備

的點對點資料複製系統之研究，惟這些研究均需假設了使用者之間會互相合作。

本論文集中討論資料複製系統内的三個議題：首先，本文會研究在點對點系

統中使用被公認為能提供低儲存成本、高效能的Erasure Code複製方法，並指出

在點對點系統中，Erasure Code複製方法並不能如常有效地複製資料。其次，本

文會研究在點對點系統内的資料複製策略。文中會以一實例去説明使用者連接網

絡時間的異質性如何影響檔案傳播的效率。在假設各使用者連接時間有異質性的

前提下，文中建議三種可以在如同點對點系統般的分佈式系統中使用，並有效

地複製資源的資料複製策略，亦會展示這些策略如何能以不同的資源複製成功

率或運算複雜性的情況下複製資料。最後，本文會研究各使用者合作的問題：

即解釋令使用者自發性去參與分佈系統之原因。文中會提及「資訊分享會社」

(Information Sharing Club)這一概念以模擬各使用者間之行為：使用者因會社

能提供有用之資訊而加入。這一概念可用作解釋某會社能成功持續運作之因素，

從而提供了各使用者間需要互相合作之必要條件。 ‘

以另一角度而論，本論文可作為研究點對點資料複製系統各方面之效能時的

一份獨立文獻。

iii

Acknowledgement

I extend my sincere gratitude and appreciation to many people who made this

thesis possible. Special thanks are due to my supervisor, Prof. Dah-Ming Chiu, for

not only his continuous suggestions and advices on this research topic and research

skills, but also for his constant attention and encouragement. I want to thank

Prof. Wai-Yin Ng for providing interesting and insightful ideas during our research

meetings and also for his support and worthy advices concerning my work.

I would like to thank Prof. John Chi-Shing Lui who gave many brilliant ideas

during study group meetings. I also want to thank Prof. Yiu-Bun Lee who discussed

his serverless video on demand architecture with me.

I cannot forget all the people who shared precious and enjoyable moments dur-

ing my research progress: Mr. Man-Ting Choy, Mr. Sai-Kit Chui, Mr. Yun Deng,

Mr. Hung-Kwong Ip, Mr. Ka-Ming Lau, Ms. Ching-Wan Yuen and colleagues

in the Advanced Internet Protocol Laboratory. A special thanks goes to

Mr. Adrian Sai-Wah Tarn, who taught me technical stuffs and had lots of intel-

lectual discussions with me.

Lastly, support from Ms. Yan-Lai Kwok requires no elaboration.

iv

This work is dedicated to my beloved parents.

V

Contents

Abstract/ 摘要 i

Acknowledgement iv

1 Introduction 1

1.1 "We are not alone" 1

1.2 Definition of P2P systems 3

1.2.1 Terminologies 4

1.2.2 Principles 5

1.3 From sharing to replication 7

1.3.1 Replication: why and how 7

1.3.2 Advantages of P2P replication systems 8

1.3.3 Typical replication approaches 10

1.3.4 Difficulties in replication: resource allocation and replication

strategy 10

1.3.5 Why do peers cooperate? 12

1.4 Contribution of this thesis 13

1.4.1 Thesis organization 13

2 Background Study 15

2.1 Introduction 15

2.2 Overview of P2P systems 16

vi

2.2.1 The original story 16

2.2.2 Switching to decentralization 16

2.2.3 Peer availability 17

2.2.4 Other than file sharing 18

2.3 Understanding replication 20

2.3.1 File availability redefined 20

2.3.2 Storage requirement analysis 21

2.3.3 MTTF analysis 22

2.3.4 Replica placement 24

2.3.5 Other performance enhancement schemes 27

2.4 Understanding cooperation 28

2.5 Discussions 30

3 Performance of erasure code replication 32

3.1 Introduction 32

3.2 Parameters definition 33

3.2.1 File availability: whole file replication 33

3.2.2 File availability: erasure code replication • 34

3.2.3 Properties of erasure code replication 35

3.2.4 Effects of replication parameters 36

3.2.5 Optimal value of b 39

3.2.6 Analytical derivation 40

3.3 Some practical considerations 42

3.3.1 Cost of erasure code replication 42

3.3.2 Sensitivity analysis 44

3.4 Concluding remarks 45

4 Distributed replication strategies 48

4.1 Introduction 48

vii

4.2 The P2P replication system 50

4.2.1 Erasure code replication 50

4.2.2 Peers modelling 51

4.2.3 Resource allocation problem 52

4.2.4 Replication goal 54

4.3 Decentralized adaptation 56

4.3.1 Neighbour discovery and parameters exchange 56

4.3.2 Storage resource estimation 57

4.4 Heuristic strategies 58

4.4.1 Random strategy 58

4.4.2 Group partition strategy 59

4.4.3 Highest available first (HAF) strategy 61

4.5 Case studies 65

4.5.1 Simulation results 66

4.6 Concluding remarks 69

5 Before cooperation: why do peers join? 72

5.1 Introduction • 72

5.2 Information sharing club (ISC) model 73

5.3 An example: music information sharing club 75

5.4 Necessary condition for ISC to grow 76

5.4.1 Music information sharing club example with simple requests 78

5.5 Concluding remarks 81

6 Conclusion 83

A Proof in this thesis 86

Bibliography 90

viii

List of Figures

2.1 A stochastic model of a peer 23

3.1 A qualitative analysis of erasure code replication. . . : 36

3.2 Effect of changing jj, on A 37

3.3 Effect of changing il on ^ 38

3.4 Optimal value of b to achieve highest file availability 39

3.5 Switching point fi' for different values of Q, 40

3.6 Tradeoff curve for file availability versus erasure code replication cost. 43

3.7 Difference in file availability due to measurement errors 45

4.1 Random strategy algorithm 60

4.2 Group partition strategy algorithm 61

4.3 HAF strategy algorithm 63

4.4 Performance of HAF strategy at different A* thresholds, (3=1. . . 64

4.5 Simulations for uniform peer availability (51.1 — 51.3) 67

4.6 Simulations for bimodal peer availability {S2.1 — 52.3) 70

5.1 The music information sharing club example 79

5.2 Phase diagram of club dynamics with direction field 80

ix

List of Tables

1.1 Three different replication methods to replicate two files by four peers. 11

3.1 Parameters used in erasure code replication • 34

4.1 The table of the system parameters 50

4.2 Simulation setups 66

5.1 Distributions of peers' private pay loads, gi{s) 75

5.2 Distributions of peers demand, h八s) 76

5.3 The supply and the popularity rank 76

X

Chapter 1

Introduction

Summary

Applying P2P principle to replication systems is a novel approach to achieve

distributed replication. In this chapter we give an overview of such P2P

replication systems, and spot out some fundamental challenges of this ap-

proach.

1.1 "We are not alone"

The invention of computers brings an important revolution to human civilization.

The high level of automation and accuracy in tedious and complicated compu-

tational tasks make computers as the reliable choice. As a result, many of the

industrial and research efforts are put to increase the performance of these compu-

tational devices.

Similar to human endeavors, working alone is neither efficient nor reliable.

Therefore, people started to seek ways to connect these computers together to

form a network. The first successful and large scale work is the ARPANET [1],

which is a packet switching network allowing computers in different universities to

1

CHAPTER 1. INTRODUCTION 2

communicate with each other. ARPANET laid down the success of the current

Internet, in which computers all over the globe can connect to each other, and

most importantly, exchange information.

When a network is created, services are deployed over it. In the early days

where computational power was low and costly, users were required to use dumb

terminals (which only had simple I/O capabilities) to key in commands and waited

for results to be displayed. This form of computing was not yet distributed but

was just another form of I /O redirection.

Some enabling technologies like remote procedure calls (RPC) [2] and HTTP

pushed the Internet as a platform of distributed computing. With RPC, a pro-

gram from one computer can call another program in a remote computer. RPC

abstracts the underlying network connections such that these computers are just

like calling local functions. RPC makes distributed computing possible by enabling

computational power to be distributed and specialized. While two computers are

developed to specialize on their own functionalities, RPC enables them to commu-

nicate with each other, thereby allowing a certain form of cooperation. However,

RPC only enables pre-defined functions to be called remotely, hence it can hardly

be customized for any arbitrary purposes.

HTTP presents another distributed computing paradigm. In HTTP, there is a

server serving multiple client requests. Compared with RPC, the server does not

serve the client functional call requests but is for information retrieval. A client uses

a program (which is usually a browser) to communicate with the server through

HTTP protocol and requests for information stored in the server. The server then

replies with the information requested. The early form of information retrieval is

limited to web pages, but other media files and program files are also available

when the bandwidth increases. Although HTTP makes information distributed

easily, it has some operational problems. Firstly, the number of clients that can be

served depends on the capacity and the available outgoing bandwidth of the server.

CHAPTER 1. INTRODUCTION 3

This undermines the scalability of the system. Secondly, this kind of information

exchange is usually asymmetric and unidirectional — clients pull information from

the server but give no or minimal feedback to the server. The low autonomy of this

client-server model restricts sharing of arbitrary information. Finally, the server is

a single point of failure to the whole system since information distribution heavily

depends on it.

Network up to this stage mostly consists of isolated computers. While minimal

form of connections can be provided through client-server model, clients them-

selves are unconnected. With the increase of computational power of home-used

computers, these clients can act as servers to serve other clients' requests also. This

implies symmetric service provision. Every client who uses the service in turn helps

increase the service quality^ Far more important, the increase of available band-

width makes simultaneous interconnections of several peers possible. This enables

computers to look for more connections in order to access more information and

services. Gradually these connections are developed and evolved into what we call

peer to peer (P2P) systems today.

1.2 Definition of P2P systems

In general, P2P systems are any systems that allow computers to connect to

each other and share resources. Napster [3] is widely agreed to be the first pub-

licly adopted music sharing system with a centralized indexing server. The later

Gnutella [4], Kazza [5] and WinMX [6] are similar file sharing projects without

centralized directories. These systems are usually different in terms of network

structures and searching algorithms. Our discussions of these systems begin with

the terminologies used in P2P systems.
^In many cases the service quality is degraded by the presence of free riding, which is addressed in chapter 2.

Here it can be regarded as a phenomenon to decrease the service provision.

CHAPTER 1. INTRODUCTION 4

1.2.1 Terminologies

First of all, we introduce some terminologies that are commonly used in P2P sys-

tems. Details of some terms are addressed separately in the coming chapters.

• Peers are computers or devices that have similar functional roles in a system.

For example in music sharing system, a peer is an entity that both requests

files and serves file requests from other peers.

• Peer to peer or P2P system is a system that connects the peers together.

While there exists a standalone server for peers to find out each other during

peers' bootstrap stages, P2P system is usually considered as serverless when

concerning its nature of connectivity.

• Structured P2P systems are P2P systems that the connections between peers

are based on some specific rules. Chord [7], CAN [8], Tapestry [9] fall into this

group. Peers in these systems do not find their neighbours randomly. Based

on the peers' IP addresses and the contents they store, they are connected in a

structured manner, usually through a distributed hash table (DHT) algorithm.

The DHT algorithm guarantees data or files to be searchable within a few hop

counts. However, support for context-based query search in these systems is

very limited.

• Unstructured P2P systems are P2P systems that the connections between

peers are random. Every time a peer connects to the network, the set of

neighbours that he has direct connections is different. As a result, the system

cannot guarantee that a connection is set up between two peers even if they

are online at the same time. In order to increase the success rate in searching,

a flooding algorithm is usually employed. Gnutella, Kazza, WinMX are file

sharing systems falling into this group. Although searching efficiency is usually

worse than that in structured P2P systems, these systems support context-

based query search very well.

CHAPTER 1. INTRODUCTION 5

• Peer availability is a way to characterize peers in P2P systems. There are

many ways to model peer availability. In this thesis we define peer availability

as an online probability measure. Therefore if a peer has an availability of 0.9,

then there is about 90% of time that he is online. This definition separates

peers' natural online behaviour and network connection environment. More

about peer availability are addressed in section 2.2.3.

• Information goods are information or data shared in these systems. The early

P2P systems are usually file sharing applications and hence the information

goods shared are media files like mp3. As we are going to see, information

goods are extended to include movie stripes or processed data as P2P systems

develop. Information goods may also be chunked and typed, which means

that peers have interest (or demand) over a set of information goods.

1.2.2 Principles

The early P2P systems are simple music sharing applications. These systems have

a common philosophy - connect peers together to enable sharing. For example, the

former Napster music sharing network allowed peers to access and download the

music stored by other peers. Every time a peer searched a music file in the network,

an index server returned a list of peers who hold the requested song. Afterwards,

the requesting peer connected to a peer in the list and started the music download.

Gnutella is a similar music sharing system without indexing server.

These systems work because the peers' computers provide additional processing

power than the peers themselves have required. A normal user does not fully

load his computer usually; simple web browsing and emailing do not use up the

bandwidth available. As a result, the peers have excess resources to share, so peers

with similar interests may join together and form a network to utilize these shared

resources.

Compared to traditional client-server architecture, it is much easier for peers

CHAPTER 1. INTRODUCTION 6

to find the music they want in a music sharing network. Although a single peer

usually has low availability [10], when multiple users store different copies of the

same file, the probability of finding a copy of that file in the network is increased.

This is where collaboration works.

At the same time, P2P systems grow so quickly because of their high autonomy

and anonymity. Compared to client-server model, autonomy is high because a peer

can control the ways he shares and requests the resources. While autonomy of a

single peer does not have large influence to the sharing, the collaborative form does.

For example, when it is without P2P networks, users cannot easily find the music

files they are interested in. The low autonomy of client-server model makes it very

unlikely to launch a public server for sharing copyrighted music files. In contrast,

the high autonomy of P2P systems enables peers to share music whenever they

want to. When the number of users is large, the probability of getting a music file

is higher, and hence a P2P system is established.

As we are going to see in section 1.3.2，high anonymity is advantageous to P2P

systems, even though it creates free riding problem (which is addressed in details

in chapter 2). When tracing back the history of P2P systems, we find that these

systems are usually copyright infringing media sharing applications^. However,

these systems usually have low user identification requirements (For example, a user

can easily create an arbitrary username that has no relation to his real identity in

the physical world.). As a result, it is unlikely that a user is spotted for his sharing

activities. This increases the incentive for users to share files (when compared with

sharing through a server).

Finally, P2P systems are usually robust to system changes. These changes

include storage resource changes due to joining and leaving of peers; sudden loss

of connections between peers; or changes in network environment. Since P2P

systems originally evolved from an environment with heterogeneous peers, they

should inherently have mechanisms to tackle these changes. For example, when
2The former Napster network collapsed because of the copyright lawsuit issue.

CHAPTER 1. INTRODUCTION 7

a peer leaves the network, how do other peers react to such a change? If peers

need to react, then the highly dynamic nature of peer behaviour would make P2P

systems oscillate too much. If peers do not react, then the loss of resources is not

informed and might affect system performance.

1.3 From sharing to replication

The growth of P2P systems has led to proposals for building "serverless" systems

to more economically provide traditional services. For example, [11] proposed a

serverless file system; [12] and [13] proposed a serverless video streaming system;

14] proposed a distributed secure information dispersal system^. Such systems may

have varying degrees of decentralization in management, thus can be considered

either as clusters or P2P systems depending on where they situate in the spectrum.

In the following subsections, we first reason the use of P2P structures as replica-

tion systems. It is followed by a discussion of the advantages of this usage. We then

point out three issues in P2P replication systems: replication approach, replication

strategy and cooperations among peers.

1.3.1 Replication; why and how

The early computers did not have storage capabilities. Data created were processed

immediately and sent to output devices. Magnetic storage devices like magnetic

tapes later served as the first form of storage media. However, these devices are not

100% reliable, and therefore cannot achieve 100% data availability. For example,

when a storage device is not functioning, the data stored in that device is lost. One

trivial solution to this problem is to create extra copies of the data, and store the

copies at different storage devices. Hence, the loss of one (or some) replica(s) is

compensated by the existence of other replicas. This forms the basis of replication.

RAID is a replication system that is created to increase data availability by using

^Details of these systems are addressed in chapter 2.

CHAPTER 1. INTRODUCTION 8

redundant arrays of hard disks.

Traditionally, these redundant storage devices are located in close proximity.

Although the data can be preserved even some (but not all) storage devices are

malfunctioning, the data is still lost when the computer that uses these storage

devices fails to function. Being motivated by this, people start to separate storage

and computation. Storage Area Network (SAN) [15] and Network File System

(NFS) [16] make this separation possible.

However, this is not enough. While computers can access remote storage through

NFS, NFS requires a standalone server to monitor the storage devices and do

resource management. This limits scalability. Although SAN has better scalability,

the operating cost is high due to its stringent requirement on the network that

connects the remote computers and the storage devices. These limitations make

remote storage systems only be affordable by large companies or organizations.

The growth of P2P systems provides another paradigm for this replication prob-

lem. Sharing digital data is different from sharing objects in the physical world.

When compared to traditional form of sharing, sharing in digital era implies repli-

cation due to the ease of duplicating digital data^. The cheap cost of home-used

hard disks makes replication more economically viable. These reasons make P2P

system be a possible candidate for distributed replication, provided that peers are

cooperative in replication. We call these replication systems P2P replication sys-

tems.

1.3.2 Advantages of P2P replication systems

Studies of using P2P structures as replication systems are discussed in details in

chapter 2. Here we first reason the use such approach. In general, the advantages

of utilizing P2P systems to replicate data are:

1. Lower operating cost
4Digital copy protection schemes like watermarking [17] cannot fully protect the data from being replicated.

CHAPTER 1. INTRODUCTION 9

2. Higher anonymity

3. Increase in mobility

4. Higher data reliability

P2P replication systems have lower operating cost because of their scalability.

The increase in computational capabilities of peers in P2P systems helps share

the cost of building a centralized server in the original client-server model. For

example, music sharing networks usually store up to several terabytes of music.

It is virtually impossible to build such a free network with reasonable operating

cost. However, a typical P2P replication system usually contains thousands of peer

nodes. An aggregation of the storage spaces of these peers makes this possible.

Higher anonymity is closely coupled with lack of identification in P2P systems.

While higher anonymity eases free riding, it makes the anonymous information

distribution possible. Specifically, anonymity can be further classified as sharer

anonymity and requester anonymity. Sharer anonymity means data originator

tracing is not possible while requester anonymity means one cannot be spotted

for his downloading activities. These decrease the probability of being discovered

when peers share, and hence increase sharing willingness. Freenet [18] is a high

privacy platform for information producers, holders and consumers such that any

peers can publish information to the Freenet network but originator tracing is not

possible.

Data mobility is increased because data are stored in multiple places. For ex-

ample when a song is downloaded by multiple peers, the song is copied to different

locations. This increases the mobility of the music file. The increase in mobility

means the data stored is more resilient to geographical failure by having multiple

copies stored in different locations. For example, we consider a replication system

with 5 hard disks, each has an average reliability of 0.9. If a file is copied and

duplicated to all these hard disks, then the probability of retrieving a copy of the

file successfully within these 5 hard disks is the probability that at least 1 hard

CHAPTER 1. INTRODUCTION 10

disks is functioning. That is:

P{the file is available} = 1 — (1 — 0.9)5 二 0.99999

where a file availability of 0.99999 is difficult to be achieved with reasonable cost.

1.3.3 Typical replication approaches

Normally, our notion of replication is redundancy by creating extra copies. It is a

simple tradeoff between storage overhead and availability. If you create Q copies of

a file, you increase the storage overhead by Q, but reduce the probability that none

of the copies are available (which you can calculate based on some assumptions on

the component failure model). We will refer to this as whole file replication.

It has been known for "sometime that erasure coding can be used to achieve

significantly higher availability [19]. In this case, a file is divided into b (equal size)

blocks. Erasure coding is then applied to the b blocks, producing k> b blocks (of

same size as before). We can then recover the original file from any b out of the k

encoded blocks. The storage overhead ft in this case is k/b. The file availability can

again be computed based on a suitable model for component reliability [20，21’ 22 •

We refer to this as erasure code replication.

It is commonly believed that erasure code replication can achieve higher data

availability [12, 13, 19]. However, this is based on high peer availability assumption,

which is unlikely to be true in P2P systems. Our analysis in chapter 3 is to

compare the performance of these two replication approaches in different replication

environments.

1.3.4 Difficulties in replication: resource allocation and replication strat-

egy

The difficulties in P2P replication systems are pointed out by an example. Repli-

cas (which include the original copy) of two files / i , / 2 are placed in four peers

CHAPTER 1. INTRODUCTION U

I P i I P2 I P3 I P4

了 I I X I X 一 X
•/2 I X I • I

Replication method 1

fi X X
/2 I I X I X

Replication method 2
/i I X I X

- / 2 I I X I X I

Replication method 3

Table 1.1: Three different replication methods to replicate two files by four peers.

PuP2,P3,P4 using three different replication methods, as shown in table 1.1. Each

replica is of the same size. A 'x, means a file replica is replicated by that peer. The

available storage space of four peers is limited such that each peer can only store

one file replica. Peer availabilities of peers 1,2，3，4 are 0.1,0.2,0.8,0.9 respectively.

As a file is replicated completely, the probability of successfully finding a copy of

that file in the replication system is equal to 1 一 P{all replicas are not available}.

Therefore, the average file availability in method 1 is

((1 — (1 — 0.9)(1 — 0.8)(1 一 0.2)) + (1 _ (1 — 0.1)))/2 = 0.542

while that in method 2 is

((1 _ (1 — 0.2)(1 一 0.1) + (1 - (1 - 0.9)(1 — 0.8)))/2 二 0.63

and that in method 3 is

((1 — (1 - 0.8)(1 — 0.2) + (1 -（ 1 — 0.9)(1 - 0.1))/2 = 0.875

which are much different.

The differences in the average file availabilities can be qualitatively argued as

follows: In method 1，storage allocation is not efficient: file 1 uses up too much

CHAPTER 1. INTRODUCTION 12

storage space in the system. While method 2 has a fair storage resource allocation,

replica placement is not optimal: file 2 uses up all storage space from the highly

available peers (peer 3 and 4). This makes the average file availability to be inferior

to that in method 3. As the number of peers and files gets larger, the complexities

of storage allocation and replica placement increase.

The difficulty in this problem is fundamentally due to the heterogeneity of peer

availabilities. This is in contrast to many previous studies [21’ 14] which usually

assume homogeneity. Therefore, we consider resource allocation is a crucial issue

affecting the performance of P2P replication systems under this heterogeneity con-

dition. This allocation is to determine how the system resources (the peers) should

be allocated to the system load (the files) in order to achieve an optimal replica-

tion when peer availabilities are different. One way to solve this resource allocation

problem is by using suitable replication strategies, which are series of action carried

out by peers. As exemplified, these strategies comprise of two important decisions:

the storage allocation and the replica placement.

At the same time, P2P replication systems are decentralized in nature. This

means that a peer only has a partial view of the complete system information. The

replication strategy therefore needs to cater for this decentralization requirement.

1.3.5 Why do peers cooperate?

Cooperation is the key in P2P replication systems. Peers cooperate by sharing

their storage space, at the same time replicating their files to other peers.

But where does this cooperation come from? Game theory [23] suggests that

free riding is always a dominant strategy for peers in replication systems, thus

cooperation seems to be an repelling idea.

To increase cooperation (i.e. to decrease free riding), incentives mechanisms and

micropayment approaches are suggested to be deployed in P2P systems. Basically

these schemes are to increase peers' benefits due to their sharing behaviour, and
^This optimality is defined in chapter 4.

CHAPTER 1. INTRODUCTION 13

therefore more peers are willing to share. Related studies are going to be reviewed

in chapter 2.

However, before peers cooperate, some "forces" must exist to push the peers

join together. To put it directly, what are the rationales for peers to join and form

a P2P system when peers are making their own decisions? One of the explana-

tions is the mutual sustenance between the replication system membership and

contents. This means the content provided by the system attracts peers to join,

and when they join, the peers bring in extra contents, vice versa. Statistically, the

system will converge to an equilibrium size, where peers are continually joining and

leaving. By analyzing this statistical dynamics, it is possible to understand peer

rationales of forming a replication system, and thereby providing an orthogonal

and supplementary explanation for cooperative behaviour.

1.4 Contribution of this thesis

This thesis discusses and investigates the challenges in P2P replication systems. In

particular, this thesis provides a framework to discuss:

• The basic of P2P replication systems. This fundamentally explains the chal-

lenges in these systems.

• The performance comparison between erasure code replication and whole file

replication.

• The replication strategies used to enhance file availability in P2P replication

systems.

• The origin of cooperation in P2P replication systems.

1.4.1 Thesis organization

The organization of the thesis is as follows. Chapter 2 presents a literature review

of P2P systems, the related performance studies and the cooperation issues among

CHAPTER 1. INTRODUCTION 14

peers. In chapter 3, the performance of erasure code replication is studied, and is

published as the paper "Erasure Code Replication Revisited" [24]. In chapter 4 we

analyze the replication under the heterogeneous cooperative peers situation. We

observe that optimal resource allocation is a general integer programming problem

which is virtually impossible to be solved in distributed P2P systems. Therefore we

propose three heuristic replication strategies that can be applied in P2P systems

and simulate their performance. After investigating these replication issues, we

move one step backward to review the reason for cooperation. This issue is dis-

cussed in chapter 5 and the related content is published as the paper "Statistical

Modelling of Information Sharing: Community, Membership and Content" [25]. In

each of chapter 3 to chapter 5，a concluding remark section is provided to discuss

the possible further work for the corresponding areas. Chapter 6 concludes the

whole thesis.

• End of chapter.

Chapter 2

Background Study

Summary

In this chapter, we present a literature review of studies related to the fol-

lowing areas: P2P systems, performance analysis of P2P replication systems

and cooperation among peers.

2.1 Introduction

In the introduction (chapter 1), we have reasoned the use of P2P structures as

replication systems. The target of replication is simple: to make use of peer stor-

age space to increase data availability. However, achieving this goal is complicated

by the nature of P2P systems: heterogeneity of peer availabilities and decentralized

behaviour. Furthermore, the success of P2P replication systems relies on coopera-

tion among peers. But what makes peers cooperate?

In this chapter, we present a background review of the studies related to the

addressed issues. Firstly we give an overview of P2P systems. This provides

a foundation to understand the origin of replication problem — heterogeneity of

peer availabilities. We then review the related studies of performance analysis

15

CHAPTER 2. BACKGROUND STUDY 16

in replication systems. Finally, as cooperation is needed for replication, we also

generalize the studies related to these cooperation issues.

2.2 Overview of P2P systems

2.2.1 The original story

The first prevalent P2P system was the former Napster system [3], which was

a centralized P2P system allowing music files sharing. Users could connect to

the Napster network by using a client program, which was downloaded from the

Napster website. Then, a peer could start music searching by entering a query

string. The query string was then sent to the Napster centralized server for further

processing. .

The centralized server served two purposes in the above procedures: processed

the query strings and indexed peers' shared contents. As a result, the Napster

indexing server had the complete information of the system: the number of peers

connected, the peers that were currently online and the contents they shared. The

indexing server then made a list of peers who were currently online and contained

the requested file. This successful list was then returned to the requesting peer.

The requester could finally connect to the peers on the list to start file transfer.

This hybrid form of P2P system combines the advantages of two extreme schemes:

efficient searching through centralized indexing and aggregation of content from

connected peers. However, the shutdown of Napster network forced people to de-

velop decentralized P2P systems.

2.2.2 Switching to decentralization

Gnutella [4], Kazaa [5] and WinMX [6] are decentralized networks developed to

avoid using a centralized indexing server. After launching a client program, a peer

can connect to a well known node to register himself to the networks. Through

CHAPTER 2. BACKGROUND STUDY 17

that well-known node, he can find a set of peers who are currently online and then

connects to them. As each peer only has a partial view of the whole P2P network,

a flooding algorithm is used by peers to search for a file. When a peer wants to

find a file in the network, he broadcasts the query string to his connected peers.

When the connected peers receive this query, they also broadcast this query string

to the peers they are connected to. Obviously, when there are many peers in the

network, the query strings would use up more network bandwidth. The adverse

effects of flooding on the network traffic are studied in details in [26 .

Apart from the problem due to flooding traffic, decentralization also impacts

the peer behaviour. Decentralization often means a lack of centralized user identi-

fication. This increases autonomies of peers, and hence the peers have more control

on the ways they join or leave the system. As a result, peers have different avail-

abilities. This phenomenon is often neglected in many studies, as we are going to

see in the next subsection.

2.2.3 Peer availability

The definition of peer availability depends on the underlying replication systems

considered. In this thesis, the term "peer availability" means the proportion of

time a peer is up and online. Traditional replication systems usually use magnetic

storage devices to store and replicate files. As a result, peer availability is closely

coupled with the reliability of these storage devices. As nowadays hard disks are

so reliable that achieving three-nines reliability is common, substantial high peer

availability is usually assumed, as in RAID. Gradually, when computational powers

of home-used PCs increase, the PCs can help each other replicate files. These PCs

are usually connected by reliable and high speed links in a LAN or a reliable net-

work, and hence high link availability can be guaranteed. However, these PCs may

not always be turned on. Therefore, the availabilities of these replication devices

are considerably lower than that of the traditional ones. In general, peer availabil-

CHAPTER 2. BACKGROUND STUDY 18

ity is getting lower when moving from centralized, ordered system to decentralized,

randomized systems.

There are some work in analyzing and measuring the peer availability. In [10],

the authors point out several factors in affecting peer availability in P2P systems.

The first one is IP aliasing. Since peers are distributed over the Internet, they

are connected to their own ISPs or networks. As IP addresses are limited, peers

usually are not able to have permanent IP addresses, and are required to change

their IP addresses frequently. Consequently it increases the difficulty of identifying

a peer in a replication system. The authors also spot out the diurnal pattern of

peers within P2P systems. This is a consequence of the natural behaviour of the

peers: peers stay online during evening and switch off the computers in midnight.

Therefore when deploying P2P systems over the globe, the diurnal pattern may

result in a large difference in peer availabilities. Authors in [27] also identify a

similar time-of-day effect in peer availability measurement.

The simple example in the introduction (chapter 1) demonstrates the effect of

heterogeneity of peer availabilities on the file availability distribution. As switching

to decentralized systems, the factors discussed above become more dominating

and increase the heterogeneity further more. This necessitates a good replication

strategy in P2P replication systems.

2.2.4 Other than file sharing

Although (decentralized) P2P systems seem to have inherent problems of low

searching efficiency and free riding, these systems are continuously being stud-

ied and applied to other areas in computing. In [11], the authors propose building

a serverless distributed file system over a set of connected PCs. When compared

to traditional replication systems where computers trust each other, their design

does not require trust. As a result of lacking trust, their model employs cryp-

tographic techniques to ensure data privacy and integrity. The model is divided

CHAPTER 2. BACKGROUND STUDY 19

into two steps: estimating peer availabilities and placing file replicas. In estimat-

ing the peer availabilities, the model depends on previous downtime histories of

peers to estimate their future downtime. After estimating peer availabilities, the

system needs to create data replicas and deploy the replicas over the connected

peers. Their replication approach is to maximize the minimum file availability

(Max-min approach). The replication system employs whole file replication and

assumes availability of a file is equal to the sum of the availabilities of all peers that

store a replica of that file. Simulation results show that their model can maintain

high data availability (95%) with a low storage cost per peer. Other file systems

that are built from P2P systems can be found in [28, 29, 30 .

Another work that makes use of the connected PCs is the serverless VoD archi-

tecture [31]. A set of PCs are connected together to form a video sharing network.

In contrast to traditional VoD systems, it does not have a central video streaming

server. Instead, peers help stream the video contents. Every peer in the network is

required to store one video stripe of a particular video. When a peer wants to play

a video, he downloads the video stripes from the peers (who store the stripes of the

current playback point) and starts video playing. By having multiple peers storing

the same video content, video availability is increased by avoiding the single point

of failure. To further increase video availability, erasure code is used to encode the

video stripes, and hence it is not necessary to have all peers available in order to

recover the original video file. The authors' results show that using erasure coded

stripes can increase video availabilities when compared to whole file replication.

Large scale cooperation among peers is seen in distributing computing [32’ 33],

which are prominent systems that make use of idle processing power of peer com-

puters to help searching for extraterrestrial life and understanding protein struc-

tures. This wide distributed computing is possible because the calculations involved

can be done in parallel. A peer can connect to a data server to collect the raw data,

after the peer program is launched. The peer then processes these raw data and

CHAPTER 2. BACKGROUND STUDY 20

sends the results back to the server.

The Onion project [34] is a P2P routing application to promote anonymous

communications, such that the identity of sender is hidden. Every computer that

connects to Onion network acts as an Onion router to route the data within the

Onion network. Every piece of data injected by a peer (who also acts as an Onion

router) is needed to pass a series of Onion routers before reaching the destination.

As a result, eavesdropping the traffic is hardly possible as a hacker cannot track

where the information is originating from.

The systems discussed show the power of cooperation: if peers are willing to

cooperate, these P2P systems can achieve the work that requires powerful compu-

tational resources. Thus under the cooperation assumption, possibilities of building

P2P replication systems are investigated.

2.3 Understanding replication

In this section, we survey the research studies that analyze replication performance

in P2P replication systems. These research studies are divided into different areas,

and are described in separate sections. To start with, we review the fundamental

target of replication: file availability.

2.3.1 File availability redefined

The definition of file availability in simple terms, is the probability that you can

retrieve a file in a replication system. For example, a file availability of 0.9 means

the probability of downloading the file within the system is 0.9. From this de-

finition, we observe two fundamental factors that can affect the file availability:

storage overhead and peer availability. An increase in storage overhead increases

the number of replicas in the system, thus higher file availability can be obtained.

If the storage devices have higher availabilities, then it is easier to retrieve a file

from these devices.

CHAPTER 2. BACKGROUND STUDY 21

However, some other factors affect the file availability in real P2P replication

systems. One of these factors is searching efficiency. When a file is replicated in

the system, whether a peer can actually locate the file depends on the underlying

network architecture. For example, there is a TTL field in the flooding algorithm

studied in section 2.2.2 to prevent flooding algorithm from generating too much

traffic [35]. This field effectively limits the maximum searchable size within the

system, and hence not all data can be successfully queried. This implies that even

a file exists and is available, the effective file availability is low because of the

unsatisfactory searching efficiency.

While most of the work focus on using retrieving probability as a metric to

measure the file availability, other work propose to use other metrics as availability

measures. In [36, 37], the authors define quality of availability (QoA) to measure

the effective availability within a replication system. The authors decouple file

availability into two correlating factors — demand success rate and supply avail-

ability. The rate means the successful query rates of the files by the peers and

the supply availability measures the probability of retrieving a file or MTTF of a

file. The QoA is then defined as a controllable and observable quality of service

parameter to measure how well a system can replicate files.

While the definition of QoA tries to decouple file availabilities into peer request

characteristics and file reliability due to replication, the functional form of this

decoupling is still questionable. Therefore in this thesis, we adopt the most simple

definition of file availability: the probability you can find a complete file in a

replication system.

2.3.2 Storage requirement analysis

As replication requires storage, storage requirement and its impacts on file avail-

ability are crucial. Researches in [38，21, 39] focus on this aspect.

Authors in [38] propose an automatic data deployment over P2P replication

CHAPTER 2. BACKGROUND STUDY 22

systems. However, they point out that two factors make this data deployment

difficult, which are low peer availability and the low efficiency of replica searching.

Moreover, the decentralized nature of P2P systems requires independent peer repli-

cation decisions. As a result, they suggest a dynamic model driven replication in

which it can estimate the data availability, and apply the replication accordingly.

The replication scheme considered is whole file replication. Simulations are done

to verify that their model can match well with the real system performance.

In comparison with [38], work in [21, 39] focus on replication using erasure code.

Work in [21] analyzes a storage system using erasure code replication with a set of

homogenous peers. It derives a functional relationship between peer availability,

storage overhead and the resultant file availability. They experimentally show that

erasure code replication performs better than whole file replication. Work in [39

also analyzes P2P replication using erasure code, but it assumes heterogeneity of

peer availabilities. The authors argue that this heterogeneity complicates the avail-

ability analysis and hence they do their analysis by simulation. Their simulation

results show that erasure code replication, when being applied to P2P systems, can

obtain a higher data availability than that of whole file replication with the same

storage cost.

These promising results of erasure code replication are based on an important

system characteristic: high peer availabilities, which is either implicitly or explicitly

assumed. However, we believe this is not necessary true in P2P environments.

Being motivated by this, we analyze the performance of erasure code replication

under different peer availability characteristics, which are presented in chapter 3.

2.3.3 M T T F analysis

Mean time to failure (MTTF) analysis is commonly employed in many performance

modelling. Instead of analyzing the relationship between storage constraint and

data availability, MTTF analysis usually focuses on Markovian behaviour [40] of a

CHAPTER 2. BACKGROUND STUDY 23

peer within a replication system. A simple stochastic peer behaviour can be ref-

erenced in figure 2.1. From the figure, we see that a peer undergoes a continuous

change of states. Researches in [41, 31, 20] apply MTTF analysis to P2P repli-

cation systems. In these systems, the replication schemes used are erasure code

replication.

mS l ab l e Connected Disconnected

Figure 2.1: A stochastic model of a peer.

When a set of peers undergo Markovian behaviour, a replication system can be

modelled as a Markovian structure [41,31] with the numbers of peers staying online

as states of the system. Peers have three states in the model proposed in [41], a

connected (join the system) state, a temporarily unavailable (temporarily offline)

state and a disconnected (leave permanently) state. This model employs erasure

code replication, and replicates the erasure coded blocks to different peers. As a

result, the stochastic behaviour of a file block is related to the corresponding peer

behaviour. Therefore the number of file blocks of a particular file can be modelled

as a Markov chain, with the numbers of peers (who replicate a block of that file)

as states of the chain. Furthermore, the existence of disconnected state effectively

creates an absorbing state within the chain, and hence giving a MTTF limit to

the files stored. The authors analyze the MTTF of the stored files under different

peer availability situations, and find out possible cases that erasure code replication

performs worse than whole file replication through simulations.

In [31], researches are done in investigating the possibilities of using P2P systems

to provide VoD services with erasure code^ The serverless VoD system assumes

the connected peers are willing to participate and share their storage space. Also,

peers will not leave the system permanently, and hence Markov chains of the peers
iThe working principle of serverless VoD system is discussed in subsection 2.2.4.

CHAPTER 2. BACKGROUND STUDY 24

are reduced to two states: an online state and a momentarily failure state. The

online state means a peer is functioning and the failure state means a peer is down

and cannot serve the system. When a node enters the failure state, it is repaired

with exponentially distributed amount of time. By assuming homogeneity of peer

availabilities, it is analytically shown that the MTTF of files in this replication

system can be achieved very high. Another piece of work involving MTTF analysis

can be found in [20 .

Compared with the storage analysis, MTTF analysis pays more attention to

microscopic file behaviour within a system. The storage requirement analysis in

section 2.3.2 is a more general statement on resource constraints and addresses

very little on microscopic behaviour. However, MTTF analysis usually involves

Markovian model, in which exponential lifetime modelling of a node is necessary.

As indicated in subsection 2.2.3, the availability of a peer is a complex issue and

hence may not be exponentially modelled. Moreover, although MTTF analysis can

provide a precise dynamic behaviour of a replica in a replication system, it is weak

in tackling the resource allocation problem when compared with storage analysis.

At the same time, peers in real decentralization systems are highly volatile, and

their availabilities do not stay at constant values (when compared to the system

MTTF life time). As a result MTTF analysis is usually not a good candidate in

modelling real P2P systems.

2.3.4 Replica placement

The analysis in previous sections puts research focus on the system performance

under homogeneity assumption. Although this assumption allows simple analysis

of peer behaviour and system performance, peers in real P2P systems exhibit high

degree of heterogeneity. As a consequence, homogeneity is a poor assumption. The

simple example in the introduction (chapter 1) reveals the effect of peer heterogene-

ity. Therefore when heterogeneity is the key, replica placement plays a role. Work

CHAPTER 2. BACKGROUND STUDY 25

in [42, 14’ 43] focus on this area. Work in [42，43] analyze the replica placement of

whole file replication where that in [14] analyzes the effect of information disposal

through erasure code replication.

Wesley's model in [42] is to find an optimal file allocation in a distributed com-

puter system. The model tries to answer this question: upon the system storage

constraints, what is the optimal file allocation scheme that can minimize overall

operating cost? The operating cost is defined as the expected transmission time to

transmit a file over a set of connected computers. In this model, each computer is

treated as a single server queueing system with constant service time. This means

that each computer holds a copy of a distinct file and serves one computer at one

time. File request rate is assumed to be a Poisson arrival process. The model

assumes that each computer has a fixed storage capacity and is always online. It

formulates the allocation problem as a nonlinear zero-one programming problem,

with the storage overhead and transmission cost as constraints. However, the prob-

lem is inherently NP-hard and cannot be solved efficiently even in fully centralized

manner. More importantly, this model cannot be practically applied since it does

not consider peer availability issue.

Author in [14] assumes using erasure code to disperse information over a set

of connected nodes. The nodes can be any workstations or computers connected

by physical links. If a file F is to be transmitted from node A to node B over

some connected nodes, then node A needs to select a path t t which connects A

to B. Although the failure probability of a single path can assume to be small,

the failure probability of t t cannot be neglected as t t composes of many subpaths.

Hence, in transmitting an erasure coded information, path selection is crucial.

Being motivated by this, the author proposes to use IDA, Information Dispersal

Algorithm, which is an efficient algorithm to transmit files under this situation.

The algorithm firstly splits a piece of data (a packet) into n pieces, then erasure

codes them to give m pieces. A node then uses a time ticket to tag each piece and

CHAPTER 2. BACKGROUND STUDY 26

disperses these pieces to other connected nodes. Each node stores and holds the

received pieces and only sends the data pieces to other nodes when the current time

is equal to the time tickets assigned to the pieces. In his model, there are iV = 2"

nodes, which are connected using the cube-based architecture, hence there are Nn

paths within this architecture. The author shows that by assuming a uniformly

distributed subpath failure model, the proposed algorithm can achieve a very high

successful transmission probability, while maintaining low buffer usage within each

node. However, even the algorithm is simple and efficient to implement, the cube-

based topology is too restrictive for P2P systems since these systems usually form

without coordination. As a result, IDA is not very suitable to be applied in P2P

systems.

Authors in [43] address another issue in replication systems: the expected search

size (ESS) of files. In their model, decentralized P2P systems like Gnutella are

used to distribute and replicate complete copies of files. Their model does not

consider peer availability but two parameters in replication: the normalized number

of replica (pi) per file i and the normalized query rate (qi) of file i. Since in

Gnutella-like systems, flooding algorithms are used to search and locate the file

replicas, the expected search size Aq(p) is defined as the expected number of nodes

that a flooding search is required to propagate in order to locate the content, i.e.

ylq(p) = Qi/pi) at storage overhead p per peer. Their analysis shows that

using square root allocation such that Pi oc qij h q i , is optimal to minimize the

ESS. In order to achieve this square root allocation in a distributed manner, they

also propose a path replication algorithm such that the number of replicas per file

will converge to square root allocation at steady state.

Although all these studies provide profound insights in replica placement, they

usually neglect the heterogeneity of peer availabilities in their models. Our work, is

therefore to devise some replication strategies that can cater for this heterogeneity

and can be carried out in distributed manners.

CHAPTER 2. BACKGROUND STUDY 27

2.3.5 Other performance enhancement schemes

In this section, we present some other performance enhancement schemes [44，22 .

Work in [44] focuses on enhancing the search efficiency, which in turn affects file

availability. In [22], the authors analyze the bandwidth requirements of a P2P

system that is using erasure code replication.

In [44], authors propose a performance enhancement scheme to increase the

probability of locating a content in a P2P system. As mentioned in section 2.2.2,

the curse in the decentralized P2P systems is the dependency of flooding algorithms.

As a result, these P2P networks cannot scale very well, and hence the network sizes

are limited. In order to relieve the bandwidth stresses due to flooding, they propose

to use a self organizing protocol, interest based shortcuts, that makes use of interest

localities within peers. The rationale behind interest locality is that if peer A has a

particular piece of data that peer B is interested in, then it is very likely peer A will

have more pieces of data that B is also interested in. This implies that the peers

exhibit interest based locality, which allows peers of similar interest to share with

each other. The authors propose to build interest based shortcuts over any P2P

systems to facilitate searching. The shortcuts are merely lists of peers that have

successfully served some query requests of a particular peer before and can change

dynamically as the search changes. Simulation results prove that their results

could help reducing the bandwidth demand when compared to traditional flooding

algorithm. There are similar techniques in enhancing searching and locating the

content within the P2P networks, as studied in [45, 46

Work in [22] analyzes and argues that large scale replication networks are limited

by the dynamics and cross-system bandwidth - but not by the storage constraint or

the searching efficiency. The proposed model, which can be based on either whole

file replication or erasure code replication, suggests the real scalability hurdle in a

replication network is not searching, but is the bandwidth demand for data mainte-

nance. This maintenance bandwidth is a result of replica replacement: bandwidth

CHAPTER 2. BACKGROUND STUDY 28

is required to copy data away from a peer when he leaves the system. Erasure

code replication demands more bandwidth under this consideration. Therefore,

they suggest that strict admission control and load shifting should be applied in a

replication system. Furthermore, a system can also increase peer cooperation by

using some incentives schemes, which are addressed in next section.

2.4 Understanding cooperation

Cooperation is crucial in P2P replication systems. However, the presence of free

riding decreases the willingness for peers to cooperate. Free riding refers to the

behaviour that a peer gets resources from P2P systems but does not contribute.

As addressed in the introduction (chapter 1), peers enjoy high degrees of anonymity

in P2P systems. As sharing involves extra costs and peers can escape from sharing

easily, the natural tendency for a peer is to free ride, as predicted by game theory.

Whether free riding is a concern, it depends on the information goods shared

in a particular replication system. Information goods are rivalrous if the demand

for them from one peer will affect their remaining supplies for the remaining peers.

A typical example for rivalrous goods is the available bandwidth, where peers are

competing for it when using bandwidth demanding applications. Non-rivalrous

goods, on the other hand are the goods that their supplies are not affected by the

demand. In the case of P2P systems, digital contents (but not the storage) are

considered as non-rivalrous as they can be copied with negligible costs.

Hence in analyzing the free riding issues, most of the related studies are consid-

ering bandwidth as the rivalrous goods in these systems. Authors in [47] analyze

how does group size affect the chance of voluntary provision of public goods. In

their model, there exists a certain percentage of altruistic peers, the peers who are

willing to contribute the public goods. By defining a cost/benefit ratio, they derive

the number of altruistic peers required to provision the public goods at different

cost ratios.

CHAPTER 2. BACKGROUND STUDY 29

Authors in [48] take another approach in analyzing this problem. Peers in

their model try to maximize the utilities gained from unstructured P2P networks

like Gnutella. The utility is defined as the difference between the probability of

successfully getting a piece of content in the network and the cost due to sharing.

When a peer shares some resources, bandwidth cost is incurred since other peers

will download from him. However, by attracting traffic from other peers, the

bandwidth stresses of other peers (especially those peers holding the files that he

is interested in) are relieved. This forms a rationale for a peer to share: sharing

can ultimately benefit himself. The authors show that when the sharing cost is low

enough, the rational choice for all the peers in the network is to contribute. When

the sharing cost increases, some peers start to free ride and rely on the contributors

to share resources. Finally, if the sharing cost is too high, no peer is willing to

contribute and the system collapses. Ranganathan et al. take a similar approach

but use a multi-prisoner dilemma (MPD) model to analyze this problem [49 .

Buragohain et al. take another angle to model the free riding issue [50]. They

assume that an incentive mechanism exists in replication systems to encourage

sharing. With this mechanism, a peer can observe which peers are serving him,

and can penalize those who escape from sharing. As a result of this mechanism,

all peers need to determine the amount of resources they need to share in order

to retrieve the resources from other peers, while minimize their sharing costs. The

Nash equilibriums^ under different cost situations are derived.

Some other researches do not focus on the incentive mechanisms [51, 52]. In

51]，the authors devise a public goods provision P2P system which is using mi-

cropayment approach. In their model, each file is tagged with a virtual price and

payment is done whenever a file is downloaded. The price is determined such that

when peers are acting rationally, the social welfare or the sum of utilities gained

by peers is maximized. In the model of [52], each peer is not characterized by
2 A Nash equilibrium is the state in which a user cannot increase his own benefit (utility) by changing his action

alone. Interested readers can refer to [23].

CHAPTER 2. BACKGROUND STUDY 30

his availability, but by a type parameter called generosity. Peers in the system

contribute if they find their generosity levels are higher than the inverse of current

contributors ratio, and free ride otherwise. As peers are typed, a generosity distri-

bution is used to characterize the peers in this P2P system. The authors' analysis

shows that under certain peer generosity distributions, the system will have no

contributors and hence it collapses. In order to increase the contributions, the

authors proposed two mechanisms. The first one is to exclude the low generosity

peers from the network, so as to result in a higher contribution percentage. The

second one is a penalty mechanism which is similar to that in [50]. Their results

show that the first scheme can prevent the system from collapsing and the second

scheme can increase the average system contribution.

However, the studies presented so far could only provide some weak and un-

satisfactory explanations for the cooperation among peers. For example, the type

parameter (generosity) in [52] is too abstract to be measured and be realized in

practice. Peer awareness of the ultimate benefit due to his contribution is too op-

timistic in many situations [48]. At the same time, the lack of centralized server

makes peer accounting difficult, which implies the deployment of micropayment

schemes [51, 52] can hardly be possible. These weaknesses lead us to take another

approach to understand the cooperation.

2.5 Discussions

In this chapter, we first review the nature of P2P systems. This review introduces

the problem of decentralization of P2P replication systems and the peer availability

behaviour. Following is a review of research studies on replication analysis. Finally

we move on to understand the nature of cooperation. While these previous studies

can provide some profound insights for modelling, we find the followings are usually

neglected or not satisfactorily addressed:

• Peers in P2P systems usually have low availabilities.

CHAPTER 2. BACKGROUND STUDY 31

• High degree of heterogeneity exists among peers, which complicates the com-

binatoric problem in file replication.

• Incentives or micropayment approaches cannot provide satisfactory explana-

tions for understanding the cooperation.

These considerations make replication is not as simple as previous researches

regarded. Low peer availability makes erasure code replication, which is used in

RAID, become less attractive and less feasible in P2P systems. Yet, if P2P systems

employ erasure code replication, the heterogeneity triggers the need of devising

some efficient replication strategies. Finally, we need a more vigorous explanation

to understand the reason for cooperation. In the coming chapters, we focus on

these areas.

• End of chapter.

Chapter 3

Performance of erasure code

replication

Summary

It is commonly believed that erasure code replication can achieve higher file

availability than whole file replication. In this chapter we revisit the erasure

code replication and provide further insights.

3.1 Introduction

In this chapter, we report some additional analysis on erasure code replication

based on homogeneity assumption. First, we note that erasure code replication

is not always preferable to whole file replication. This situation occurs when the

peer availability is low relative to some thresholds (determined by the storage

overhead). This result is relevant, particularly for some peer-to-peer systems where

the average peer availability is low. Secondly, we note that once the threshold is

crossed so that we prefer erasure code replication, the optimal way is to do erasure

code replication using as many blocks as possible. In other words, there is a very

32

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 33

sharp transition from preferring whole file replication to preferring replicating with

many blocks. This sharp transition is characterized analytically, using asymptotic

analysis. Lastly, we discuss how to decide whether to use whole file or erasure code

replication in practice, and if erasure code replication, how to decide the number

of blocks (6) to use. We argue that there is always some costs associated the use of

erasure code replication, and this cost increases more than linearly with b. At some

point, this cost becomes overwhelming in comparison to the gain in availability. So

erasure code replication with large b is unlikely to be profitable. Furthermore, if

the peer availability is not accurately known and can be below certain threshold,

then the expected gain in file availability may completely disappear.

3.2 Parameters definition

When a file is replicated by either whole file replication or erasure code replication,

we create replicas of the original data and place them into different peers. Each peer

is characterized by his peer availability, as discussed in the introduction (chapter 1).

In this chapter, we assume that peers are homogeneous and independent of each

other, and hence all peers have the same availability fi.

Another parameter in replication is the storage overhead Q, sometimes referred

as the stretch factor. For whole file replication, this is simply the number of copies

created. For erasure code replication, this is the ratio of the number of erasure

coded blocks to the original number of blocks. With reference to section 1.3.3’ a

file is originally divided into b blocks and erasure coded to give k blocks. Therefore,

the storage overhead Q is k/b. Table 3.1 gives the parameters of the erasure code

replication.

3.2.1 File availability: whole file replication

Assume that a file is replicated copies and placed at O peers. Since the peers

are independent of each other, and any 1 out of the Q peers is enough to recover

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 34

Table 3.1: Parameters used in erasure code replication.
Parameter Description

Peer availability
A, Ab, Au, File availability

b Number of blocks a file is divided into
Q. Storage overhead or stretch factor

k = Q,b Number of blocks after erasure coding

the original file, the resulting file availability A ĵ is:

= E n ^ ^ a - M) " " (3.1)

3.2.2 File availability: erasure code replication

If a file is divided into b blocks, we need to have b blocks to completely recover the

original file. In erasure code replication with storage overhead of Q, redundancies

are added so we have fib number of blocks in the system.

Erasure code makes use of the dependencies between the file blocks to enhance

the availability. These Qb blocks are dependent on each other, and we need any b

out of these blocks to recover the original file. Therefore, the availability of a

file Ab using erasure code replication is [21]:

= ； £ (•” / / (I i f “ (3.2)

Notice that when 6 = 1, A；, = A^^ i.e. whole file replication. Therefore unless

otherwise specified, we denote file availability simply by A. Moreover, we assume

that the number of peers in the system is large compared with the number of

erasure coded blocks Qb. With this assumption, each block is allocated to one peer

and therefore availability of each block is independent of each other.

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 35

3.2.3 Properties of erasure code replication

Based on equations 3.1 and 3.2, it is straightforward to compare whole file repli-

cation and erasure code replication with the same storage overhead. For example,

plugging = 2, ^ = 0.8 in equation 3.1 gives A^ — 0.96. Using equation 3.2 with

6 = 2 gives Ab = 0.9728. Therefore erasure code replication performs better.

From equation 3.2, we see that erasure code replication benefits (in comparison

to whole file replication) from the combinatorial effect. For the same storage cost,

whole file replication requires 1 out of Q peers while erasure code requires b out of

peers. By examining the corresponding combinatorial term for the two cases, we

see (�i s much larger than (^) as b increases. In other words, it is easier to have b

out of Qb peers available than 1 out of peers. However, again from equation 3.2

we see another term, / / (I —..⑷仙-。，that works against erasure code replication,

because it multiplies together a larger number of quantities smaller than 1. The

smaller the value of peer availability, the more erasure code replication is penalized.

We call this the peer availability effect. Therefore, the benefit of erasure code, to

a large extent, depends on which of the above two effects is more dominant 一 the

combinatorial effect, or the peer availability effect. -

Figure 3.1 shows a plot of two factors, the combinatorial factor (?) and the

peer availability factor - /jY^b-b for different values of b. From the plot, we see

that the two factors are running in opposite directions, and therefore the resultant

which is the product of the two, 力 — i i f " , depends on which factor is

more dominant. In particular, when peer availability is low, it seems that the peer

availability factor can be so dominant that erasure code replication would loose

out to whole file replication. Even though erasure code replication involves more

summation terms, we expect there are cases that erasure code replication performs

worse than whole file replication.

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 36

loV
Combinatorial effect . ̂

1 斗 Availability effect i
- B - Resultant of 2 \ 10"

I ； 10-1
套 1 0 、 X : I

\ :::
1 0—2 1 1 1 1 1 1 1 1 0-9

1 2 3 - 4 5 6 7 8 9 10
No of blocks

Figure 3.1: A qualitative analysis of erasure code replication.

3.2.4 Effects of replication parameters

Figures 3.2 and 3.3 are different plots of file availability A against changes of

replication parameters. We are interested in the impact of peer availabilities //

in figure 3.2, where we are interested in the storage overhead Q of replication in

figure 3.3.

As noticed in previous section, the replication approach is whole file replication

when 6 = 1 , and erasure code replication when b > I. From the result in figure 3.2

we see that when the peer availabilities are low (about 0.2 — 0.5), indeed, whole file

replication can be better than erasure code replication. This supports our earlier

observations when we considered the two factors that contribute to the value of file

availability. In fact, the advantage of erasure code becomes more apparent only

when the peer availabilities are reasonably high (greater than 0.6). At these levels,

the overall file availabilities approach to 1 as 6 increase.

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 37

From the same figure, we also note that A may not be always monotonic in b. For

example, when peer availability is 0.6, file availability (A) first decreases and then

increases again as b increases. This implies that even erasure code replication beats

whole file replication, for certain values of b this may not be true. However, as b

increases, file availability {A) seems to become monotonically increasing eventually.

Figure 3.3 shows a similar result: erasure code replication performs worse than

whole file replication in low storage overhead regime, and vice versa. Therefore,

based on the discussion so far, an interesting question is - what are the optimal

values of b for different system parameters?

1 1 ••••••••• S

0 . 9 n = I-

0.8 - • n = 2, | i = 0.4 -
^ 一 = 2,̂ 1 = 0.5

0.7- \ a = 2, n = 0.6 -
N . - e - = 2, = 0.7 I

I�.6
5 0 . 5 -

：

nl I 卿 C D � � � � � � � � � � � � � � � � �(b
0 5 10 15 20 25 30 35 40

Number of Blocks

Figure 3.2: Effect of changing fi on A.

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 38

0.8 - -e- ji = o.3, a = 3
牛 n = 0.3, n = 4
• H = 0-3,n = 5

0.7 - “

1 .. -

0.2 - V - -

0.1 _ -

o l 1 ‘ ~ I I I I I I I I I I 1 I I I I I -
0 5 10 15 20 25 30 35 40 Number of Blocks

Figure 3.3: Effect of changing 9, on A.

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 39

3.2.5 Optimal value of b

From figure 3.2 and 3.3，we observe that A is either monotonically increasing or

monotonically decreasing for large values of b. This leads us to postulate that the

optimal value of b (when optimizing file availability A) is either 1 or infinity (or b

as large as possible to exhaust all the peers in the system). The optimal b would

equal to 1 when peer availability is small relative to the storage overhead fi; it

would equal to infinity if peer availability is large relative to the storage overhead.

1 1 1 1 1 1 1 1 1
100 - ——j j ：

_ I ： £2 = 2 I
90 - < j ： o o “

, I ： i i = 3
I ！ - - = 4

w80 - I I 丨 一 = 5 |-
o I ！

蓋70 - i 丨 丨 _

260- I ； -
, I

E50 - ‘ I -
13 I 丨 -
Z I ‘ - ‘ I -
E ； I
•§30 I , -
O I I

20 - 丨 i i -

10 - I ！ ； -

Q I ». - ‘. - I..- 1 1 1 1
0 0.1 0.2 0.3 0.4 O.5.. , 0,6 0.7 0.8 0.9 1 Peer Availability

Figure 3.4: Optimal value of b to achieve highest file availability.

Figure 3.4 plots the optimal value of b against peer availability /i to achieve

highest file availability with different values of storage overhead Vl. We fixed the

maximum value of b to be 100 in this plot. From the figure, we observe that there

is a sharp threshold / / for each storage overhead Q. When fi is greater than fj,', we

use erasure code replication with maximum number of blocks {b = 100) allowed.

When IjL is smaller than //，we use whole file replication {b = 1). For example,

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 40

when Q is equal to 2, n' is about 0.5. When Q. increases, this threshold becomes a

smaller value.

3.2.6 Analytical derivation

We can compute this threshold by brute force. That is, for each value of Q, we

try different values of jj, to see at what value of fi' the optimal b transits from 1

to 100 (in our example). Figure 3.5 plots the threshold ji' for different values of Ct

(the solid circled line). The maximum number of blocks b for the file is 100. When

= 1, there is indeed no replication. We find that we should always use whole file

replication for all peer availability levels (notice that fi' = 1). When n increases,

11' decreases, and it is more likely to prefer erasure code replication. In general, for

values of (ji, 0) in the region above the curve, erasure code replication is preferred;

while for values of (/x, fl) below the curve whole file replication is preferred. In fact,

1 ~~~Q ！ . ^ ； ； ：

0-9" u — Theoretical bound
n ~G~ Numerical analysis

0.8.. J
0.7 - H -

2- i
0.6” A Erasure code replication

Eo-5 %

？ ：： A
- \
� 2 …

0.1 Whole file q ^ ()
Q I :: I I ……• 1 i I - J 1 i

0 2 4 6 8 10 12 14 16 18 20
Replication factor Q

Figure 3.5: Switching point / / for different values of 0,.

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 41

we can analytically derive this dividing curve between where whole file replication

is preferred and erasure code replication is preferred. Indeed, it is the function:

“ > ^ (3.3)

In [53], the authors proved an asymptotic result in a related problem. They

considered the use of erasure codes for maximizing the reliable transmission of data

across a large number of (lossy) communication channels in parallel. They showed

the following (rephrased using our notations) by using Chebysbev's inequality:

Proposition 3.2.1 (Erasure code bound). Assume ji is peer availability, b is the .

number of blocks and Q is the storage overhead of using erasure encoding. If >

1/n, then the probability of retrieving a file successfully tends towards I as b tends

towards infinity，vice versa.

We reproduce the proof in the appendix A.0.1 for both the asymptotic result

when ^ > l/Jl as well as the inverse result when ji < l/Q..

Note, this is an asymptotic result that states what happens when b is large.

When b is small, the file availability curve may not be monotonic, as shown in

figure 3.2 and 3.3. For example in figure 3.2, when ii — 0.3, Vt = 4 such that

fi/i�1，we see that the power of erasure code appears only when b is large.

Figure 3.5 shows the asymptotic theoretical bound, which is very close to the

numerical analysis when b is large enough.

This proposition actually points out the power of erasure coding. Namely, if

we use enough redundancy so that the expected amount of retrievable data is no

smaller than the size of the original data (Jlji > 1), then we can achieve close to

perfect availability by using a large b. When rtji = 1, we can only achieve file

availability A = 0.5, asymptotically for large b [53]. When fl/j, < 1, erasure coding

becomes counter productive for large b, since it asymptotically leads to zero file

availability.

This result is rather unsatisfactory in applying erasure code to P2P replication

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 42

systems. First, the sharp transition implies the decision for using erasure code

replication is sensitive to system parameters. Second, the power of erasure code

reveals only after large values of b. However, in practice, various cost factors would

cause us to consider smaller values of b for erasure code replication or even whole

file replication, as we argue in the next section.

3.3 Some practical considerations

3.3.1 Cost of erasure code replication

Systems gain from erasure code replication because of the combinatorial effect.

From section 3.2, we see erasure code replication will achieve near 100% file avail-

ability when the number of bjocks b is large enough. However, after dividing a file

into blocks, cost is involved in file reassembly. Moreover, if we are downloading

real time video data, this reassembly may require real time scheduling of multiple

incoming streams of data. Authors in [54] discuss real time decoding cost when

using erasure code. It is therefore natural to associate a cost function that is

monotonically increasing with the number of blocks b.

Let us define a function C{b) as the cost function for the overhead of using

erasure code replication. We assume the difficulty of scheduling the reassembly

increases more than linearly with the number of blocks b. When 6 = 1 , the repli-

cation scheme is whole file replication, and the cost is minimal. Based on these

assumptions, a simple cost function for C{b) is:

C{b) (x{b-lf = a{b-lf for some a (3.4)

Given the cost function, we have two considerations when selecting a value for

b. The problem is how to maximize the first objective function — file availability

and minimize the second objective function - the cost function. Figure 3.6 is the

tradeoff curve for the file availability A with the erasure code replication cost C(b),

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 43

taking a = The number of blocks b is again bounded to a maximum value

of 100’ with storage overhead = 3. From section 3.2, we know that erasure code

replication is preferred when Qfj, > 1. We plot the curves with different values of

satisfying this criterion.

1 ^ ^ j ^ i i i p i i i lU iM l^ l I 1 I I I n n n n n r j n i n n n n n n p n n n n n n | n n n n n n p i n n n n n|n n n n n y i n n r . n

f 广 , , I —
0.95 ° / ？ • - • • = 1.2 -

] Z — 补=1.3
J / p- n = 1.4

0.9' /' _ . -
/ ^ ̂

i 0.85丨./ ^

1 ：
0) 0.8 h

‘ /

0.75 - / -

0.7 ‘ -

0.651 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 Replication cost

Figure 3.6: Tradeoff curve for file availability versus erasure code replication cost.

The tradeoff curve in figure 3.6 defines the pareto optimal points of file availabil-

ity with erasure code replication cost. At these pareto optimal points, the system

cannot achieve higher file availability without lowering the erasure code replication

cost. From the figure, we observe that as we increase the value of b, the incre-

mental improvement in file availability decreases while the incremental increase in

cost accelerates. For example, when Qfi = 1.2，file availability A grows faster than

the replication cost C{b) when the file availability is less than 0.95. When the

file availability A exceeds this level, the gain in file availability cannot follow the

increase in replication cost. This phenomenon is more apparent when ftfi is larger.

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 44

This means that when it is profitable to do erasure code replication, it is im-

practical to achieve maximum possible availability gain due to the associated costs.

This questions the applicability of large number of blocks, i.e. large b.

3.3.2 Sensitivity analysis

In real systems, the average peer availability ji may be difficult to measure accu-

rately. At the same time, a peer (who is holding an erasure coded block) leaves the

system permanently will decrease the number of erasure coded block in the system

and hence lower the storage overhead Q. How sensitive is the selection for b to

variations of these system parameters?

If it is virtually certain that fl/j, > 1, then the choice of b can be based on

the tradeoff between file availability and cost as discussed in the last subsection.

Inaccurate estimation of the parameters ii and Q would result in slightly different

tradeoff points between these two metrics (all for Qfi > 1), which would not be a

problem.

On the other hand, if Q/j. could either be greater than 1 or smaller than 1 due

to small variations of Q and ji, then the choice of b can become very sensitive to

where the value of Qfi falls. If we select a large value for 6，trying to maximize

file availability without knowing ft/j, is actually less than 1, this could be quite

counter-productive. Imagine a system running with peer availability /i 二 0.35 and

storage overhead = 3. Since Q̂ ii > 1, we should use erasure code replication with

as many blocks as possible (as the cost function allows).

Now suppose fi can only be measured with 士 10% accuracy, then fi can be

anywhere in a range [/L l̂, I^u] with 叫=0.315 and fiy = 0.385. Plugging jii,

Hu into equation 3.2, we have the corresponding file availability curves, as shown

in Figure 3.7. From the figure, we find that the difference between two curves

(A), increases with b. Furthermore, for the most plausible distribution of fi, the

expected value of file availability would decrease with 6，starting from 6 = 1 !

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 45

This line of argument suggests that even if Qfi > 1 (for expected values of fl

and fi), the right decision may still be to select 6 = 1 (whole file replication)

because this choice is more robust against measurement errors. This may be a

plausible explanation for why erasure code replication has rarely been adopted by

P2P systems [54, 18] (which tend to have lower and unknown peer availability

values than that in computer or storage clusters).

I p ‘ ‘

0-9-： 一 -
0 8 爷 Q=3’ 一 . 385
0 . 8 + n=3, 1̂=0.315 -
0 7 J A = 0 . 8 0 - 0 . 6 3 = 0.18 ； .

:A = 0 . 9 3 - 0 . 2 2 = 0.72 ‘
^ ；！& .

•0 5 10 15 20 25 30 35 40
No of blocks

Figure 3.7: Difference in file availability due to measurement errors.

3.4 Concluding remarks

In this chapter, we revisit erasure code replication under different scenarios. Two

key parameters that differentiate these different scenarios are: the peer availability

ji and the storage overhead Q,. As discussed in chapter 2, existing studies all

implicitly or explicitly assume that the replication system has high availability

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 46

level, and therefore the use of erasure code is automatic. However, in this chapter

we have shown that the benefit of erasure code replication actually depends on the

peer availability level (relative to the storage overhead). If the peer availability

level is low, whole file replication might perform better and have less cost.

When erasure code replication is used, we also discuss the problem of selecting

the optimal b. We point out that while theoretically higher values of b achieves

higher availability, in practice smaller values of b is chosen due to reassembly and

scheduling costs. When systems parameters {/j. and il) cannot be accurately deter-

mined, which is especially true in P2P replication environments, the conservative

choice of using whole file replication is often the right decision.

There are several interesting issues left for further studies. The analysis in this

chapter assumed that all peers have the same availability level fi. The asymptotic

studies of replication approaches and availability analysis when peers have differ-

ent availability levels are interesting directions. As pointed out in chapter 2, the

peer availability may be correlated to each other, or to time of day [10]. This is

another direction for further studies. From a practical point of view, there are

many system level issues in building a P2P replication system, in particular how

to deal with continuous joining and departure of peers and the incentives for peers

to cooperate to achieve common system goals. Finally, BitTorrent, which is men-

tioned in section 2.2.2，is incidentally also a block based sharing system. Therefore,

incorporating BitTorrent into the results in this chapter is also a possible future

work.

In the coming chapters, we are going to investigate the possibility of deploying

erasure code to a typical P2P replication system. First we investigate the resource

allocation problem in the P2P replication system, provided that all peers are co-

operative. We then move on to discuss the cooperative assumption through an

abstract club model.

r . (.
r -

CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 47

^ • End of chapter. � .

I • : : . : : -
I .

e D i s t - r i b u t e ： ' ； • … … ； . . , . : " � : : . . " (• : � .
卜 f • kk

^ “ 。 •

KV •I .JV.. ‘ ‘ . .. • •
fi- … ‘ . . t — 一 . •
I ！•； ！

Y J -
• ir ••

f ！ . ’

r / . • .
於 ...• •

ifî•巧 i ’ T̂ŷl ‘ 1 n t I c J f" ' <; • • ‘ ^

、…• 气- ‘ . ； • “

： -̂ iJ：：!̂!T̂ ÎH：' ^ ；. .. ,
• • • r •) ••

r 、 . : : : “ : , : " . ， . .

i - . ' ^ ‘ … • • .

Tiî ； lixâ fî }̂ in � “ -v- r.' •.. .
；T ^ . f .、.. .:、？.;... ； • ,
沙> or&^rr in磁febiMi紛、‘口斤 ‘ . 'e�.，.. ‘

.、 : -二工y . . / : . � .

fi^^ -^.-^xmrnkm dternifi^liv ； ; : . : : • ? : ， ； ‘ ’ . .

- : 掛 . . “ . ； , ‘；

h V ： ： 一"‘ - ‘.. - . . 、

•• , . ‘ • .. •

I . . . — — . • ；：‘ J
I- “ .. . 二 . ， ‘
^ ‘ • ‘ .。-. . . . • 、

^ . “ - , ” • 十 >
p .� . 老” i -

I： .. ： ‘ . ^ ， : : : : . : : : ： ， ： ’ . . ‘ , : 漏

Chapter 4

Distributed replication strategies

Summary

In this chapter, we introduce the notion of replication strategy in P2P repli-

cation systems, which is to address storage allocation and replica placement

in these systems. We devise three heuristic replication schemes that can be

adopted in distributed manners, and simulate their performance under dif-

ferent replication environments. ‘

4.1 Introduction

The simple example in the introduction (chapter 1) shows how the heterogeneity

of peer availabilities complicates replication decisions in P2P replication systems.

Moreover, P2P replication systems usually do not require centralized management

and therefore decentralized decision making is necessary. As motivated by these

issues, we are interested in replication strategy that is carried out peers in P2P

systems to replicate files. In general, the P2P systems under consideration bear

the following properties:

• Decentralization: Peers are connected to each other to form a P2P net-

48

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 49

work. However, peers usually connect to a subset of peers in the network

only and hence they can only have partial views of the whole system. As a

result, the replication strategies presented in this chapter have to cater for

this decentralization.

• Cooperation: Peers in a replication system are motivated to cooperate. As

a consequence of cooperation, peers are willing to share their storage space

for replication.

• Parameters estimation: Efficient replication requires two pieces of infor-

mation: peers' storage space and peer availabilities. We assume that each

peer can estimate his own parameters, and as a consequence of cooperation,

neighbouring peers could access these information.

The replication strategy comprises of two steps. The first step is storage alloca-

tion which is to determine how much storage resources should be assigned to each

file (to be replicated). The second step is replica placement which is related to peer

heterogeneity. As peers are usually free to join and leave a P2P replication system,

peer availabilities exhibit high degree of heterogeneity. From the simple example

in the introduction (chapter 1)，we know that this heterogeneity would affect the

resultant file availability distribution.

There are many ways to characterize file availability, and we focus on two per-

formance metrics in this chapter. The first one is expectation of file availability,

and the second one is variance of file availability. While the expectation is trivial,

the variance addresses a little bit more concern. In general, the variance can be

considered as a fairness measure of the achieved file availability distribution. A

smaller variance means that the availability of each file is more concentrated to the

mean, and can be considered as having a better fairness.

In the forthcoming sections, we first model a P2P replication system and for-

mulate a related resource allocation problem. We then propose three heuristic

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 50

Table 4.1: The table of the system parameters.

J^i The set of files going to be replicated by peer i
T The whole set of files in the system, J" = IJ^j
Vi The set of peers "writable" by peer i.
V The whole set of peers in the system, "P = (J "Pi
N Number of peers in the system: N = \V\
M Number of files in the system: M = \T\
r Basic storage unit

= [fii] Peer availability distribution
s = [sj] Peer storage capacity
f = [fj] File size of each file j
b = [bj] Number of blocks before erasure coding of each file j , f.j = bjT

= [Q,j] Storage overhead of each file j
k = [kj] Number of blocks after erasure coding of each file j , kj = bjQj

R = [vij] A feasible replica placement
A == [Aj] File availability distribution

strategies that can be applied to these P2P replication systems. Finally, we simu-

late the performance of these strategies under different replication environments.

4.2 The P2P replication system

In this section, we outline a general P2P replication system. Peers follow the ways

as described in the introduction of this chapter: peers are cooperative in replicating

files. Table 4.1 defines the parameters in this replication system.

4.2.1 Erasure code replication

Erasure code replication is used in this P2P replication system. Following similar

procedures as discussed in chapter 3，a file is encoded into k erasure coded blocks

and the blocks are placed in k different and independent peers. Each peer, indexed

by i, only stores one erasure coded block and has peer availability im. Following

the same notion as stated in chapter 3, the file availability A is then related to the

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 51

probabilities of getting any b out of these k blocks:

k
A{[iJ,i],b, k) = y^ P{h hard disks are available} (4.1)

h=b

where [fii] is an availability vector to describe the availabilities of all k peers.

The probability of having h hard disks available, is equal to the sum of all

permutations of probabilities that any h out of k peers are online and functioning:

P{h peers are available}=

• • • / i / i (l — M , i + l) (l - l ^ n+2) . • . (1 — •

(4.2)

鄙 3 •. • - ^n+2)…（1 - 一糾）+ ... +

fJ^k-h+lfJ^k-h+2 . • • - - M2)…（1 — fJ'h)

As noted in chapter 3, whole file replication can be considered as a special case

of erasure code replication (i.e. 6 = 1) . Therefore the results of this chapter can

be generalized for replication systems using whole file replication.

4.2.2 Peers modelling

In real P2P systems, peers are continuously joining and leaving and so the number

of peers in the system is changing. Here we consider a replication system composes

of a fix set of V peers, each indexed by i.

Peer i enters the system and wants to inject and replicate a set of J^i files. Each

file j injected by peer i is f j large, where fj is measured in terms of a basic storage unit F.

To achieve file replication in a distributed manner, peers rely on the storage space

offered by other peers in the network. In this model, we do not consider bandwidth

consumptions between peers: files are injected and transmitted in negligible time.

At the same time, peers are cooperative in replication: peer i has available

storage space Si to help replicate files from other peers, where Si is also measured

in terms of F. As a result, peers in the system are self-servicing: they replicate

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 52

their files by utilizing the storage space offered by other peers, and at the same

time, receiving other peers' files and replicate them.

Putting everything together, the replication system contains this following re-

source constraint: total available storage space offered by the peers. At the same

time, the replication system faces this storage load: total storage space required to

replicate all the files in the system. This gives a resource allocation problem which

is formulated in the next section.

4.2.3 Resource allocation problem

Before examining peers' action in replication, we start with formulating the re-

source allocation at the replication system perspective. Firstly, we consider storage

allocation in this P2P replication system. Here we assume that the replication

system is a closed system: a fix set of peers V join together to form a replication

network. Each peer, indexed by i, injects a fix set of JF̂ files into the system.

As a result, the whole set of files that the replication system needs to replicate is

T = DiJ^i. We denote the number of peers as N = \V\ and the number of files as

When file j with file size f j is going to be replicated, it is firstly divided into bj

blocks, where each block is T large, and hence fj = bj T. It is assumed that all files

use the same block size F for erasure coding, and therefore fj^ / fj^ = bj^/bj^ for any

two files j i and j2. Erasure code is then applied to these bj blocks to give kj blocks,

where each erasure coded block is still F large. Following the same definition in

chapter 3，the storage overhead for this file j is = kj/bj. The replication system

needs to find some peers to replicate these erasure coded blocks, and hence occupies

peers' storage space.

Without the storage constraint, the replication system can set flj of each file j

to be very large such that Qjbj = kj = M to obtain a maximum file availability.

However the storage capacity of each peer is limited, a large value of Qj for one file

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 53

occupies too much available storage space for the remaining files. As replication is

a tradeoff between file availability and storage overhead, this invariably lowers the

remaining file availabilities. In the extreme case, the files replicated earlier use up

all the storage space available for remaining files and hence these files cannot be

replicated. This triggers the need of estimating the Qj for all files j . One possible

way of estimation is to base on fairness: guaranteeing each file j to enjoy the same

storage overhead so that Qj = Cl for all files j.

Apart from storage allocation, the replication system also needs to place the

erasure coded blocks of all files to the peers in the system. Let r^j indicate that

peer i stores an erasure coded block of file j. Then we have: •

1 : if peer i stores a block of file j
= .. (4.3)

0 : otherwise
V

where,

i = 1,2,…N

j = 1 , 2 , . . . M -

Hence, we can formulate the replica placement as a replication matrix R = {rij]MxM-

Obviously, peer i cannot replicate more than what he can store:

M

S Si Vz (4.4)

Also, the number of replicas of file j stored by all peers is equal to kf
N

Y / i ’ j = kj = b f t j Vj (4.5)
i=l

A replica placement R is feasible if it satisfies conditions 4.4 and 4.5. For exam-

ple, with reference to the example in the introduction (chapter 1)，the replication

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 54

strategy 3 can be represented as:

/ \
1 0

0 1
R 3 =

0 1

li oj
By combining the feasible replica placement R with the peer availability vector

/X, each file, which is indexed by j, is replicated by a set of peers with availability-

vector [iJ'ilj. For example, the two peer availability vectors in the introduction .

can be defined as [0.9,0.1] and [0.8,0.2] respectively. Following equation 4.1, file

availability of file j is given by:

Aj = A{[iii]j,bj,kj)

Here we see a general relationship in this resource allocation problem. Based on the

system available resources and the system storage load, the replication system needs

to determine flj for all files. The replication system is assumed to use erasure code

replication and hence needs to decide a feasible replica placement R. The blocks

are replicated based on R, and hence a file availability distribution A is resulted.

4.2.4 Replication goal

For a closed replication system, different replication goals can be considered. Here

we exemplify three different replication strategies to achieve different goals:

1. A replication strategy that targets at allocating more storage resources to some

files, while scarifying the availabilities of other files. This might be because

those files with more storage allocated are more important to the replication

system.

2. A replication strategy that targets at replicating all files, while putting little

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 55

focus on the file availabilities. The replication goal is to replicate all files in a

closed replication system.

3. A replication strategy that requires availability of each file to reach a certain

target threshold. In some environments, this strategy may be infeasible if the

threshold is set too high.

As to generalize these replication goals, we focus on two metrics in evaluating

the performance: the expectation E[A] and the variance var[A] of the resultant

file availability distribution, which are mentioned in section 4.1.

These two metrics are measured over all files in the set ！F, Therefore, if some files •

are left unreplicated, these files are considered as having 0 file availabilities. Formu-

lating the replication goal in this way enables a fair comparison between different

replication strategies. For example, while replication strategy 1 can achieve con-

siderably high file availabilities for some files, other files acquire 0 file availabilities,

thus the expectation of file availability distribution is lowered. While strategy 2

aims at replicating all files, it might be inferior due to the higher variance of file

availability distribution.

Therefore, we formulate the resource allocation problem as the following integer

programming problem:

max E[A] — (3 var[A

s.t. R is feasible (4.6)

where /? is a system parameter to indicate system sensitivity to the variance of file

availability distribution.

This is a standard integer programming problem, which is generally time con-

suming to solve. Similar file allocation problems are shown to be NP-complete

55, 56, 42]. The cost of exhaustive search increases exponentially (in terms of

combinatorics) with both N and M. While techniques like simulating annealing

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 56

56] are able to solve this problem to some extent, they are difficult to be deployed

in decentralized P2P replication systems. Therefore, instead of solving it analyt-

ically, we present three heuristic replication strategies to solve this problem and

investigate their performance in the coming sections.

4.3 Decentralized adaptation

Section 4.2 formulates the resource allocation problem at the replication system

perspective. However, peer autonomies and the lack of a centralized server in P2P

systems make centralized replication strategy hardly be possible： Therefore, we .

need to seek a decentralized solution. In this section, we outline the action carried

out by peers in order to solve the resource allocation problem. This outline serves

as a basis for the heuristic strategies proposed in section 4.4.

4.3.1 Neighbour discovery and parameters exchange

Peers connect together and form a P2P replication system. Unlike traditional

centralized replication systems like RAID, peers in a P2P replication system are

not aware of the presence of all other peers in the system. This is due to the fact

that peers are usually randomly connected to each other, hence peers only have

partial views of the system. As addressed in chapter 2，the TTL field limits the

system view of each peer, and therefore each peer can only access a subset of peers

in the system.

We model this phenomenon conceptually as degree of peer connectivity. This

degree does not describe the physical connectivities between peers in a replication

system but the logical connectivities. In other words, it describes how much storage

space a peer can utilize to replicate. The higher degree of connectivity, the larger

number of cooperative peers a peer can find to help replicate his own. files. For

example, a replication system with an indexing server, which allows peers to repli-

cate files to all other peers, can be considered as a replication system with 100%

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 57

of (logical) connectivity, despite the fact that peers may not be directly connected

to each other.

Peers are required to exchange parameters with other peers to facilitate file

replication. As one of the fundamental problems in the resource allocation is the

storage allocation, the following parameters are necessary for efficient replication,

albeit it is difficult to estimate some of them in real systems. The first one is the

available storage space offered by peer i for other peers to replicate (si). This is

trivial and can be easily estimated by peer i himself. The second one is the total

storage space required by peer i before applying erasure code replication {^j访 fj).

These two parameters help estimate storage allocation efficiently. The last one is •

the availability of the peer himself With reference to the example in the

introduction (chapter 1), peer availability is an important parameter in the replica

placement. However, this availability is difficult to be measured usually, even by

the peer himself [57 .

4.3.2 Storage resource estimation

In cooperative replication, peers in a system cannot exhaust all available storage

space for replicating their files only. In determining how much storage resources

that peer i can use to replicate his file set J^i, he needs to know how much storage

space is available, and how large the system load (i.e. sum of file sizes of all the

files) is.

At a particular degree of connectivity, peer i can find a portion of peers in the

system (which includes peer i himself) to replicate his own files. We define this

as the writable peer set^ Vi of peer i. If there is no peer left unconnected in the

system, then:

V = UiPi (4 .7)

1 Notice that we separate the concepts of “writable” and “readable” here. Once a file is replicated (or “written”）

to some peers in this writable peer set, the file replicas are then accessible (or “readable") with probabilities equal
to the availabilities of replicated peers to all peers in the system, even to peers that are not in the "writable" peer
set.

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 58

As peers are cooperative in replication, peer i can utilize the storage space offered

by all the peers in this writable peer set. Therefore with respect to peer z, the

potential storage space Si that he can use to replicate is the sum of storage space

offered by all the peers in the writable peer set:

s � （4.8)
iieVi

In cooperative replication, peers cannot use up all the storage space offered. In

determining how much storage space peer i can use, he needs to estimate the sum

of file sizes Fi of all files injected by all the peers ii in this writable peer set Vi: .

^ ^ - E E fj (4.9)
.. UeVijeTi.

These two pieces of information are then adopted by the peers to estimate the

storage space available for replication.

4.4 Heuristic strategies

Here we present three different replication strategies: random strategy, group par-

tition strategy and highest available first strategy. Random and group strategies

compose of two steps, which are the storage allocation and the replica placement^.

In highest available first strategy, peers do no explicitly carry out the storage allo-

cation process, but keep increasing the storage overhead of each file such that each

file can achieve a target file availability threshold.

4.4.1 Random strategy

Each peer who follows random strategy requires two parameters as stated in sec-

tion 4.3.1: the total storage space available and the sum of file sizes of all the files
^Although the term "replica" is used, it is used to refer any erasure coded blocks.

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 59

in his writable peer set. Random strategy aims at solving the storage allocation

problem in a distributed manner.

Storage allocation: The first step in this replication strategy is storage es-

timation. Peer i firstly estimates Si and Fi of his writable peer set Vi. Since

availability of a file is related to its storage overhead, random strategy aims at

allocating each file a "fair" storage overhead. As a consequence of cooperation,

peer i estimates a storage overhead Qi for all files he wants to replicate by:

^ = § (4.10)

Therefore, if all peers follow this estimation, it is likely that each file in the system

can enjoy a similar storage overhead. Peer i uses this storage overhead Oj to

replicate all files J^i by erasure coding and therefore file j with file size fj requires

kj = Qibj storage space (which is measured in F).

Replica placement: The next step is erasure coded blocks placement. As no

peer availability information is acquired, peer i uses a random blocks placement

approach. For each file j peer i going to replicate, peer i firstly selects a set of kj

peers with available storage space out of his writable peer set Vi randomly. Erasure

coded blocks of file j are then replicated to these peers. Peer i stops the replication

process when all files have been replicated, or peers in the writable peer set do not

have enough storage space to replicate. Figure 4.1 summarizes the action carried

out by each peer in random strategy.

4.4.2 Group partition strategy

Random strategy can only solve the storage allocation problem by estimating stor-

age overhead of all peers (and hence all files). However, the replica placement is

still random in principle. As a result, some files are more "lucky" in the sense that

their erasure coded blocks are placed in highly available peers, while some "un-

lucky" ones have the opposite fates. Consequently, the luckier files enjoy higher

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 60

Random strategy algorithm:
For each peer i in the network:

(1) Estimates the potential storage space Si = Y^i.^-p. Si- and the file size of all files in the writable
peer set Fi = E j g j . . . fi- ‘ ‘

(2) Calculates the storage overhead: Cli = ^ .

(3) Replicates for each file j stored:

(3.1) Each file is divided into bj blocks such that f j = bj F.

(3.2) Erasure code is applied to create kj = Cljbj erasure coded blocks.

(3.3) IF peer i cannot find kj peers with available storage space, skip replicate this file.
(3.4) ELSE peer i randomly selects kj peers from the writable peer set to store these blocks. The

available storage space of these peers are updated.

Figure 4.1: Random strategy algorithm.

file availabilities and vice versa. This phenomenon introduces a high variance in

the file availability distribution.

Group partition strategy-stresses the need of minimizing the variance of the file

availability distribution. One way to achieve this is to guarantee a fair "luckiness".

Peers following group partition strategy firstly collect precise peer availability in-

formation [fii] from their writable peers. Each peer then partitions his writable

peer set into several groups, and places the erasure coded blocks to one peer in

each group. By guaranteeing similar number of high (and low) available peers are

used to replicate the blocks of different files, this scheme can replicate files with a

smaller variance.

Storage allocation: Peers following group partition strategy apply the same

storage estimation as that in the random strategy. Therefore file j injected by

peer i with file size fj requires kj = Qibj storage space, where Qi is obtained from

equation 4.10.

Replica placement: Peer i collects the peer availability information [fii] from

all the peers in his writable peer set Vi. All peers U in the set with available storage

space are then sorted in descending order according to their availabilities /Zj.. The

sorted peer set is then partitioned into kj groups if the file going to be replicated

is divided into kj blocks. For each erasure coded block, peer i iteratively selects a

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 61

Group partition strategy algorithm:
For each peer i in the network：

(1) Estimates the potential storage space Si = J^i ^-p Sij and the file size all files in the writable peer
set Fi = E i . gT - , ^ i e ^ i , f i - ‘ ,

(2) Calculates the storage overhead: fli — ^ .

(3) Replicates for each file j stored:

(3.1) Each file is divided into bj blocks such that f j = bj r .
(3.2) Erasure code is applied to create kj = i l j b j erasure coded blocks.
(3.3) IF peer i cannot find kj peers with available storage space, skip replicate this file.
(3.4) ELSE:

(3.5) Orders and sorts the peers in the writable peer set in descending order according to their
availabilities. Partitions the peers into kj groups.

(3.6) For each erasure coded block:
(3.6.1) Iteratively find a random peer in a distinct group to replicate that erasure coded block.

Figure 4.2: Group partition strategy algorithm.

random peer in a distinct group to replicate that block. Peer i stops the replication

process when all files have been replicated, or peers in writable peer set do not have

enough storage space to replicate. Figure 4.2 summarizes the action carried out by

each peer in group partition strategy.

4.4.3 Highest available first (HAF) strategy

Compared with the previous two strategies, HAF strategy does not separate the

resource allocation problem into storage allocation and replica placement. It is

a greedy algorithm to replicate files such that each file can achieve a certain file

availability threshold A*. There are many replication methods to achieve this

threshold A*. HAF achieves this by keeping increase the storage overhead flj of

each file j until the target threshold is reached. The following steps are carried out

by peers to replicate each file in the system:

Start of replication: To begin with, peer i collects peer availability informa-

tion from the writable peer set Vi, and sorts the peers in descending order according

to their availabilities. File j with size fj is divided into bj blocks where fj — b/T.

These blocks are iteratively stored in the writable peers (who have available storage

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 62

space) one by one, starting with the highest available peer first. A file availability

Aj is then computed according to equation 4.1, where kj = bj.

Availability checking: If Aj < A*, then peer i increases the storage overhead

for file j and adds erasure code redundancies to create kj = + 1 blocks. The

blocks are again replicated by peers one by one, starting with the highest available

peer first. This computes a new file availability Aj which is checked against the

threshold again. If the availability threshold is not reached, peer i further increases

the storage overhead to create kj = bj-^ 2 blocks and repeats this checking process.

Optimizing: Optimizing is needed because the replication system will reach a

state that the file availability exceeds the threshold availability too much. Consider

this example: file j with bj = 4 and target threshold of A* = 0.7. Currently the

replication strategy stops at a state with kj = 5 and with peer availability vector

0.95,0.94,0.93,0.92,0.91]. Putting these parameters into equation 4.1 gives file

availability of 0.9578, which satisfies the threshold A*. However, the replication

scheme can also achieve the same target threshold by replacing the peer of 0.91

availability with a peer of 0.2 availability. This gives a new file availability of

0.7144 > A*. One unit of storage space of a highly available peer (peer with

availability of 0.91) is thus saved, thereby allowing more files to utilize the storage

space of this highly available peer.

Therefore when a file enters this replication stage, the lowest available peer at

the current replication state (e.g. peer with availability of 0.91 in previous example)

is replaced with the lowest available peer in the writable peer set, and a new file

availability is calculated. If the target threshold is reached, replication process of

this file is completed, otherwise keeps increasing the storage overhead. This time

the second lowest available peer is used to replicate the newly created block and

the availability checking process will be repeated. Figure 4.3 summarizes the action

carried out by each peer in HAF strategy. .

There are several issues related to the performance of HAF strategy. The first

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 63

Highest avai lable first s t rategy a lgor i thm:
For each peer i:

(1) Divides the file into bj blocks such that fj = bjV.

(2) Does not apply erasure code yet and hence kj bj.

(3) Repeats the following:

(3.1) For each block:

(3.1.1) Iteratively find the highest available peer with available storage space to replicate. Up-
date the available storage space of that peer.

(3.2) Calculate file availability Aj with these kj peers.
(3.3) IF file availability Aj exceeds A*:

(3.3.1) Replace the lastly used peer with the lowest available peer in the writable peer set.
(3.3.2) Calculate a new file availability Aj.
(3.3.3) IF the new file availability A j satisfies the threshold A* , this file is replicated success-

fully. Replicates next file.
(3.3.4) ELSE increases storage overhead, codes one more erasure coded block and finds one more

distinct peer with second lowest availability to store the newly coded block. Calculate
a new file availability Aj. Repeat this process until the new file availability Aj exceeds

(3.4) ELSE increases the storage overhead, codes one more erasure coded block, i.e. kj kj + 1.

(4) Repeats this process until all files are replicated or there is no enough storage to replicate the
remaining files.

Figure 4.3: HAF strategy algorithm.

one is a much higher computational complexity when compared with the previous

two strategies. This limits the applicability when the network topology is changing

too quickly. The second one is the uncertainty of the number of files replicated.

As HAF strategy does not give a maximum bound to the storage overhead, files

that are replicated later may not have sufficient storage space for replication. This

implies HAF strategy cannot guarantee how many files can be replicated.

Also, the performance of HAF strategy depends on the setting of the threshold

value. In HAF strategy，replication for a file stops only when the file availability

reaches the target A*. Therefore, a high threshold of A* obviously incurs a high

storage overhead fl j for each file and hence limits the number of files replicated.

On the other hand，a low A* makes replication stop too early and hence lowers the

average availability E[A]. Meanwhile，a lower A* guarantees all files can reach the

target A* easily, and hence the system can enjoy a lower variance.

Figure 4.4 depicts the system performance (the mean, the variance, and the

difference of the two) of HAF strategy at different A* for a replication system

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 64

0.75 厂 I I • I I - 0.25「 I I • I I -^^Wv-VvS^ var�A]

V ：: / :
•.55 - /

0.5 - -。_。5 - -

E[A] ~I~
0.45 I—" 1 1 1 ‘ ~ 0 1 1 1_

0.55 0.65 0.75 0.85 0.95 0.55 0.65 0.75 0.85 0.95

A* A-
(a) E[A] (b) var[A]

0.7 r I I Âŵi ‘ I -
0,5 - \ -
0.6 Z X - .
0.55 . - \ -

0.5 -

0,45 - \

0.4 -

..0.35 - •

0.3 - -E[A] - var[A] ~i~ 0.25 l—'~~ 1 "-J-
0.55 0.65 0.75 0.85 0.95

A*
(c) E [A] - var[A]

Figure 4.4: Performance of HAF strategy at different A* thresholds, (3=1.

with 100 peers at 100% of connectivity. This means that peers are-fully writable

to any peers. Peer availability /x follows an uniform distribution with mean 0.5.

Each peer tries to replicate 100 files, each with the same size of 5 blocks large.

From the result, we observe that A* = 0.85 gives the optimal HAF performance

when considering the expectation alone (figure 4.4(a)). However, A* = 0.75 is the

optimal threshold when we consider the difference of the two (figure 4.4(c)). This

result demonstrates that a high accuracy in HAF parameter estimation is required

in order to achieve the optimal file replication.

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 65

4.5 Case studies

In this section, we investigate the performance of the proposed heuristic strategies

under different replication system environments. In particular, we are interested

in modelling the following situations:

• Peer availabilities follow different distributions. We model two distributions.

Peer availabilities in the first distribution are uniformly distributed in [0,1.

Peer availabilities in the second availability distribution are bimodal uniformly

distributed in two groups: peer availabilities are either uniformly distributed

in [0’ 0.2] or uniformly distributed in [0.8,1]. Therefore, these two distributions •

give the same expectation of peer availability of 0.5, but bimodal distribution

has a larger variance.

• The replication system operates at different degrees of connectivity. We model

the degree of connectivity by a single parameter m e [0’ 1] and assume that

peers in the replication system are uniformly and randomly connected. For

example, if m = 0.2，then each peer is randomly connected to about 20% of

peers in the system and hence can utilize about 20% of peers' storage space.

• Peers have different storage capabilities. We define average stretch factor 0*

as a ratio of total storage space offered by peers to the sum of file sizes of all

files going to be replicated:

E f f j

We simulate a replication system with N = 100 peers. Each peer on average injects

100 files, one at a time. There is no difference between the files so the sequence of

injection will have no effect on the resultant file availability distribution. Each file

is 5 r large and hence all files occupy about 50000 T of storage. We simulate six

different replication environments, as shown in table 4.2. For simulations involving

HAF strategy, we assume that peers are using the optimal threshold A* as indicated

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 66

Simulations Peer availability Average stretch factor Degree of connectivity

51.1 Uniform in [0,1] Q* = 1.5 m G [0,1]
51.2 Uniform in [0,1] Q* — 2.0 m G [0,1]
51.3 Uniform in [0’ 1] n* = 2.5 m G [0’ 1]
52. 1 Bimodal Q* = 1.5 “ m € [0,1]
52. 2 Bimodal ft* = 2.0 m G [0,1]
52.3 Bimodal n* = 2.5 m e [0’ 1]

Table 4.2: Simulation setups.

in section 4.4.3. For simplicity, we take the system variance sensitivity (3 as 1. Each

simulation is averaged over 20 runs. ..

4.5.1 Simulation results

Figure 4.5 shows the simulation results using uniform peer availability distributions.

In the low storage overhead regime (figure 4.5(a)), HAF strategy outperforms the

other two schemes in terms of expectation of file availability distribution. This

is because HAF tries to guarantee a portion of files in the replication system to

satisfy the threshold availability, leaving other files to be replicated by the lower

available peers. This is revealed by a higher variance of file availability distribution

in figure 4.5(a).

Expectations of file availability distribution 丑[A] for all strategies increase when

their storage overheads increase, with HAF strategy always performs the best (As

depicted in the first column of figures (4.5(a)-4.5(c)).). In particular, group parti-

tion strategy uses the same storage allocation technique as that in random strategy,

thus the two strategies achieve similar expectations in file availability distribution.

When we consider the variance of file availability distribution, systems employ-

ing group or random strategy cannot be benefited much by increasing the storage

overhead alone. This can be explained by the replication schemes themselves: these

replication schemes place no file availability target requirement, therefore the vari-

ance is insensitive to the change of storage overhead. However, as HAF strategy

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 67

()_6 厂 I I I I I I I I I 1 I �i f i „
random ~ i ~ „ » 0.45

group — ^ ^ . m * - * - * - * - * - * ™Kli>m — ^ 鉴 random
0.5 - - 0.14 - Ŝ；̂：*：：̂：：*-*"* * " " ' - (».4 - group - - - x - n . « . . » . .

0.12 - - 0.35 - I -
()-4 - ... - ,、， «»• — f 0.1 - / - < 0.3 •,. -

E 0.3 - i X - I 0.08 -f - > . ^ -

-l̂ ^ îK^c：：^^ ̂ : i - ^ :
"•‘ I “ _ f \ - 0.05 I -

0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 ().« 0.9 I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O.y I
Degree of conncclivily Degree of connectivily IX'grce of connectivity

(a) Simulation 51.1.

() - 8 � • ， （ U 2 � , , , ， 0 . 7 � . , ‘ , • ,

^ 劣 random ~ i ~ 豪 晕 *

0. ： 二―嫩〜…：。 .丨」 a 7 - "6 - ^ ^ ^ f f t r r r r r _

„ , - 4 random — h ~ 0.02 - \ - „ l - f rantlom
"•‘ il I!…up —X— - X � � � � "•‘ gniup —X— _
oil " 八 I „lii . . . >x，x-"卞-〜X . .

() 0 . 1 0.2 0.3 0.4 0.5 0.6 0.7 ().« 0.9 1 (I 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1 (> 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O.'J I
Degree of connectivily Degree of conncclivily Dcgrei; of conncclivily

(b) Simulation 51.2. .

�I I <' '4� (”）� J , ' '1
0 8 - random ~ i ~ .. j. x m '

0.7 - X - () .丨 -^ ha 丨了 0.7 -
0.6 - _ 0.1 - ； [̂ V - 0.6 - T̂ -

< 0.5 -i - < _ -Im - f 二 • i -
W 0 4 . ; _ ¥ 卜 \ \ 二 （>.4 - ; -

： "0.06 -；/ \ \ - < ot -：
0.3 -f - W；!：：；--...̂ 3 0.3 J -

二 ： 二 - 0.02 I \ - "•‘ rf rand(’„, 一 "
口- 二… f V - - - - - - ” ^ = -

~ I ~ I ~ I ~ I I I ~ I I » 0 U—I~I~I~i__I_I_I_I_I .0.1 I_I_ 1 >
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 丨 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.H 0.9 1

Degree of conncclivily Degree of connectivity Degnic o f connectivity
(c) Simulation 51.3.

Figure 4.5: Simulations for uniform peer availability (51.1 — 51.3).

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 68

tries to use the highest available peers to replicate files, an increase in the storage

overhead means those peers have more storage space for replication. Therefore,

more files can achieve higher availabilities, thereby the variance of file availability

distribution is lowered.

An increase in degree of connectivity betters the replication system performance

by allowing peers to have more complete view of the replication system. The initial

sharp increase in the expectation of file availability distribution suggests that peers

need to have enough view of system (> 15%) such that the size of the writable

peer sets can provide enough storage space to replicate files. With about 15% of

connectivity, each peer on average have 100 x 15% = 15 peers in his writable peer ‘

sets. Since each file at least occupies storage space from 5 peers, having 15 peers

in an writable peer set can result in a good guarantee of finding enough peers (to

replicate files). Moreover, group partition strategy and HAF strategy require peer

availability information for blocks placement, therefore increasing the connectivity

can make these schemes perform better in terms of the variance.

Figure 4.6 shows the simulation results using bimodal uniform peer availability

distributions. When compared with the previous cases, simulations involving bi-

modal peer availabilities can achieve higher expectation file availability distribution

than the counterparts with uniform peer availabilities (Refer to the first column of

figures in Figure 4.6). This can be explained qualitatively: in bimodal peer distri-

bution, more percentage of peers are highly available. As a result, it is more likely

that files can be replicated by more highly available peers, and therefore higher data

availabilities can be achieved. Finally, as bimodal uniform peer availability exhibits

a higher peer availability variance, higher variances in file availability distribution

are seen from the results.

To summarize, simulation results reveal the followings: First, HAF strategy in

general can achieve better performance, especially in low storage overhead regimes.

However the gain in performance diminishes when average stretch factor increases.

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 69

This gives us a surprising result, and implies that when replication systems have

higher storage capabilities, perhaps choosing random strategies would be good

enough. At the same time, group partition strategy can achieve similar expecta-

tion as those in random strategy, but with considerably lower variance. Second,

an increase in connectivity helps peers to have better views of the replication sys-

tem. Therefore, HAF and group partition strategies, which require peer availability

information, perform better when degree of connectivity increases. Finally, an in-

crease in variance of peer availability, as demonstrated by bimodal peer availability

simulations, would affect the variance of file availability in random strategy greatly.

4.6 Concluding remarks

In this chapter, we address two important issues in P2P replication systems: the

storage allocation and the replica placement. Heterogeneity in peer availabilities,

which is usually unaddressed in previous studies, is a fundamental cause of the

replica placement difficulty. The resource allocation problem, is therefore a problem

involving these issues. We formulate the resource allocation problem as a standard

integer programming problem and point out that it is difficult to solve in efficient

amount of time.

As to solve resource allocation problem, we propose three heuristic strategies for

peers to follow. The performance of the algorithms under different replication envi-

ronments are evaluated through simulations. The results show that HAF strategy

outperforms the other schemes in most cases.

There are some areas opened for further work. In this paper, we assume a closed

replication system: fix set of peers join to replicate fix sets of files. In real systems,

peers continuously join and leave, thereby removing old files and replicating new

files. This dynamics brings in extra considerations: when peers join and leave the

system, how do other peers react to such changes? How to detect the lost replicas

in a distributed manner?

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 70

(),7� I • I I I I I I I 1 ,,
rundoni ~ i ~ f • • ' » i • ‘ i • n 0.5 r i •

/ � ‘ group - - - X — • 准 冰 . • * , m ‘ random + ~ .*••»•.*•••»•. .*•
0-6 _ W 0.14 - - 貧 - (� -g r o u p 9 * * �

0.5 - - 0.12 - ^ - *

/ „ �j - — - / -
^ 0-4 _ - 一 . " i 1 0.3 - -
sr J ¥ _ ！ 0.25 - /

0 J*- "~1~I~1~ ‘―J~ ‘― '~0 tf _ 丨 _ 丨 卞 - 卡 0 J/
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 丨 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 丨 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 ().') 1

Degree of connectivity Degree of connccliviiy Dtgree of connecliviiy .

(a) Simulation 52.1.

(>.()� "_i8�，，，，，，，，，， （)•«「 1
0.8 - « « » . . » • - • » • - • * • - * - . , 、 ， ， „ random ~ i ~ _ . »•«••»• “ *

^ * - group — X — — 0.7 - ^ ^

(>.7 - 托 一 二 - — - - 芒 a,4 . H A丨 . . . 06 . .‘；：：.-.--̂ --- .

c f :，： I � ： 卜

" • - I - _ - 、 ： 〜 - ^ ^ (、.[I -
0.2 -i - „,,4 .； ...» <>.2 -j/ -

'•ancloni ~ i ~ ‘ fj random i ~
jf 霞 I � 1 TO::-

0 1*-'—I—I—I—I—I—I—I—I——I 0 w—<~I~I~I_I_I__I_I_I I 0 MM ' ' ' ' I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 丨 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 丨 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

Dcgrte of connccliviiy Degree of conni»:livily Degree of connectivity
(b) Simulation 52.2. .

I �I I ‘ L “.�.._&-�--i.-i "-25 "I i � t，
- random — ^ «：»：«：：̂：：31 •"-X group —X--- „•» JJ.-x-x-x

I I I I J - I IIAI: - 0,8 - -

丨 丨 ： 门
random — " (>.(« M _ 0.2 -J 哪 “ 隱 一 “

腳 二：： - ： "•‘ 4 = 二二 -
_ I _ _ _ 1 _ I 0» I I I ‘ V _.*.1 袋.’.-.»--.丨 o n/ "A.I •

(> 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0.9 I
Degree of connectivity Degree of connccliviiy Degree of connccliviiy

(c) Simulation 52.3.
Figure 4.6: Simulations for bimodal peer availability (52.1 - 52.3).

CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 71

Another possible extension work is to model file importance. Peers in a replica-

tion system can assign different importance values to different files. Qualitatively,

more important files should acquire higher file availabilities than the less important

ones. One possible way to model this extension work is to use effective availabil-

ity, which is a composite parameter of file availability due to replication and the

related file importance, in the resource allocation problem 4.6. Consequently, the

three proposed strategies need to cater for this new modelling.

A final question is left for discussion. What makes peers cooperate? Rather

than discussing the motivation of cooperation through incentives approaches, we

discuss the necessary criterion of cooperation — why peers are willing to join in the

first place? The answer of this question can provide supplementary arguments that

are neglected in many previous studies.

• End of chapter.

Chapter 5

Before cooperation: why do peers
join?

Summary

Cooperation is a fundamental assumption in P2P replication systems. We

propose an information sharing club to explain the rationale behind peers'

joining decisions, which can account for the necessary condition of cooper-

ation among peers.

5.1 Introduction

The basic assumption in P2P replication systems is cooperation. However, the

cost due to sharing invariably distracts users from sharing cooperatively. In this

chapter, we focus on this cooperation assumption.

We have discussed the weaknesses of some cooperation studies in chapter 2. In

comparison, our model brings in a new angle that is complementary and somewhat

orthogonal to these studies. Our work attempts to explain the "joining forces"

of peers. Peers are characterized by their contributions and demands for different

72

CHAPTER 5. BEFORE COOPERATION: WHY DO PEERS JOIN? 73

types of information goods. A peer's decision to join a club can then be related

to the extent the club can satisfy the peer's interest (demand). This sheds more

(at least different) insights to what brings peers together in the first place. Since

cooperation is just a plain talk if peers are not willing to join, the results in this

chapter provide a necessary condition for peers to cooperate. It is noteworthy

that this condition is a direct consequence of peers' joining tendencies, which are

intrinsic to any P2P systems.

5.2 Information sharing club (ISC) model

In general, P2P systems, emails, web bulletin boards and newsgroups can all be

modelled as an information sharing club (ISC). In these systems, an information

sharing platform must exist for peers to communicate and share. For example,

Internet can be considered as such a platform for peers to exchange emails.

A set of N peersi join the system. When a peer joins, lie brings in some

information goods and is also able to access the information shared by the others.

Compared with other studies [52, 51] which model the information goods as a

single type of content, information goods in our model are typed and chunked,

the same way that versions of different files are served in a file sharing system,

or messages of various topics are hosted in a forum. Information chunks of the

same type are not differentiated: an instance of information demand specifies the

chunk type only and is satisfied by any chunks of that type, as when a request

for a file is satisfied with any copies of it, or when information query returns any

pieces of information of the specified class (e.g. as implied by the query criteria,

for instance).

As a result, each peer is characterized by the ways he demands and supplies the

information goods. Here we denote the demand distribution function of any goods

with type s of peer i as hi{s) and the corresponding supply distribution function
iNote that we try to generalize the term peers here. For example, "peer" can be a single user in a bulletin

board, or can be a computer that downloads files in a typical P2P system.

CHAPTER 5. BEFORE COOPERATION: WHY DO PEERS JOIN? 74

as gi(s), where «setS = {l’2，...} and S is the set of all types. If peer i brings in

Ki information goods, then on average, peer i would bring in Kig {s) information

goods with type s. As a result, for a club with membership Q C M, the total

supply is:

卯 ⑷ 会 Q c N (5.1)

Without loss of generality, we assume the aggregate supply function g{s) = gj^{s)

to be monotonically non-increasing. The type variable s may then be interpreted

as a supply rank (s-rank). In other words, s = 1 and s = \S\ denote the most and

the least supplied chunk types respectively.

Likewise, we define the aggregate demand function h{s) = hj^{s) where

M ^) ^ 〒 ！ ; f s) , g c N
l^ieg Mi

as peer i generates demand instances at a rate of Mi chunks per unit time, drawn

from distribution hi(s), s e S.

Hence, for the current club membership C, the expected number of chunks of

type s being shared would be given by iic(s) = n kc gc{s) where n = \C\ is the

current membership size and kc = J2iec is the payload size averaged over

the current club membership. Conditioning on the membership size, we have

= nk g(s) (5.2)

where k = KijN > 0 and N = |A/"| is the payload size averaged over all peers.

We assume further that members' contents are drawn independently, which

implies a Poisson distribution for the actual total number of type s chunks being

shared. Subsequently demand instances for chunk type s have an average failure

rate of e一如⑷=^-nkg(s)^ The average success rate of peer i,s demand being

satisfied in a club of size n is therefore the success request rate, taken over all the

CHAPTER 5. BEFORE COOPERATION: WHY DO PEERS JOIN? 75

information goods s:

M n) (5 . 3)

We make the non-rivalrous goods assumption here, as addressed in the intro-

duction (chapterl). This means that the demand from a peer will not reduce the

overall information goods supply.

5.3 An example: music information sharing club

Tables 5.1 and 5.2 depict an example of six peers sharing music information of five

different types. For simplicity, we assume identical payload sizes (identical Kis)

and demand rates (identical M，s) so that the aggregate distributions are simple

unweighted averages of the peers' distributions. Table 5.3 gives the resulting s-ranks

(the rank of information goods according to aggregate supply g(s)) and p-ranks (the

rank of information goods according to aggregate demand h{s)) of the five music

types. The information may be news and messages about the different music types

when the club is a discussion forum in nature, or musical audio files when it is a

file sharing platform.

Table 5.1: Distributions of peers' private pay loads, gi{s).

P ^ Classical Oldies World Alternative

Alfred 0.4 0.3 | 0.1 0.1 Q.i
Bob 0.4 0.2 — 0.15 005

Connie 0.3 0.3 ~02 o l o l
David 0.2 0.3 0.3 0.15 005

Eric 0.5 0.05 " 0 2 015 0 1
Florence 0.1 0.4 0.1

“aggregate supply, g(s) 0.317 0.258 0.18 0.125 0.12

CHAPTER 5. BEFORE COOPERATION: WHY DO PEERS JOIN? 76

Table 5.2: Distributions of peers demand, hi{s).

Pop Classical Oldies World Alternative

Alfred 0.1 0.4 0.3 0.1 0.1
Bob 0.05 0.5 0.1 0.3

Connie 0.1 0.2 0.3 ~02 ^
David 0.1 0.3 0.15 ^

Eric 0.1 ^ ^ o l
Florence 0.2 0.3 0.1 0 2

aggregate demand, h(s) 0.108 0.367 0.217 0.192 0.117

Table 5.3: The supply and the popularity rank. •. .
一 I 1 I 2 I 3 I 4 I 5

Supply rank (s) Pop Classical Oldies World Alternative
Popularity rank (r) Classical Oldies World Alternative Pop

A peer's success rate would depend on the types of goods he demands on one

hand, viz. hi(s), and the aggregate supply g{s) on the other. For instance, Alfred's

average success rate is given by:

PAl f red = 1 - (0 . 1 (e — 6 (0 . 3 1 7)) + 0 . 4 (e — 6 (0 . 2 5 8)) + … + (U (e — 6 (0 .12))•) = q . G Q

5.4 Necessary condition for ISC to grow

Generally speaking, peer joining decision is related to the probability of successfully

find a content with ISC. We make two simplifying statements here: (1) a peer would

join as long as a single current request is met, and leave otherwise; and (2) any

request comprises d> 1 instances of demand. In this chapter, we focus on the

case d = 1, i.e. peers evaluate their joining decisions based on simple instances of

demand. Further work on d > 1 can be referenced in [25 .

The probability that peer i would join when membership is C is then Pq^i = pc,i

CHAPTER 5. BEFORE COOPERATION: WHY DO PEERS JOIN? 77

where pc,i is the probability that an instance of peer i's demand is satisfied when

membership is C.

Conditioning on the membership size n, the expected joining probability of peer

i is

Pi(n) = Pi(n) (5.4)

Membership dynamics and content dynamics are closely coupled: as peers join

and leave, they alter the total shared content, inducing others to revise their

join/leave decisions. The membership size changes always unless the two-way flows

between members and non-members are statistically balanced.

Consequently, we may define a statistical equilibrium membership size Ueq as the

solution of the balance condition

{N - n e q) P { n e g) = � (1 - P(jleq))

^ Hne,) = ^ (5.5)

where P(n)=去 J^Z^i ^iM is the joining probability averaged over all peers and

all possible memberships of size n. Note that equation (5.5) is in the form for a

fixed point equation which is indicative of the coupled dynamics of membership

and content. Further, followed from equation 5.5, the stability condition for a fixed

point Ueq is simply
dP(n) 1

< (5.6)

Note that an empty membership n = 0 is always a fixed point because P(0) = 0

according to equation 5.3. The following theorem indicates the necessary condition

for this empty club to be unstable.

CHAPTER 5. BEFORE COOPERATION: WHY DO PEERS JOIN? 78

Theorem 5.4.1 (Empty Membership Instability). Empty membership is not stable

and autonomous club growth is induced if:

n = Nk Y,h(s)g{s) > 1 • (5.7)
s

In our model, we regard empty membership instability as a necessary condition

for autonomous growth from an empty or small club membership. The above the-

orem (The proof can be referenced in appendix A.0.2) implies that favourable con-

ditions are large k (contribution from members) and a large value of ^ ^ h(s)g{s),

an inner product of h{s) and g{s). Note that

风 � =I H I ll^ll • {h{s),g{s))
s

where \\h\\ and are the 2-norms of h{s) and g{s) respectively, and (h{s),g(s))

is their normalized inner product which measures their similarity, or goodness of

match. Other favourable conditions are therefore a good match between aggregate

demand and supply, and skewness — or small spread - of their distributions over

the chunk types.

5.4.1 Music information sharing club example with simple requests

Figure (5.1) shows P{n) for the music information sharing club example in sec-

tion 5.3 for four different k values.

For k = 2, the model predicts that an empty club is unstable. Any disturbance,

e.g. voluntary sharing or contribution, would trigger it to grow. The club would

stagger rapidly towards the fixed point n = 5.1 — where P{x) — 5.1/6 = 0.85 and

sustain itself around there. The peers are active members for over 80% of the time

on average. For /c = 1, an empty club is again unstable but the club sustains itself

at a smaller average size of n = 1.9. With less supply and/or less efficient search

CHAPTER 5. BEFORE COOPERATION: WHY DO PEERS JOIN? 79

1 I 1 1 1 ！ 7

0 8 — - , 2 ^ (5 . 1 ’ 0.845丄

• - — -

I fc = 2.0 I X ^

I / I X
I � . 6 - — p T ^ J ：： ^ : ; : :—
o / 丨 y K ^ k = d . 8 0 8

£ / I Z ^ Z 广
iS： / / y f z , 丨 z

0 . 4 y ••••••i S...,..̂ . i. ；

/4(1.9’0.315i^,Z i J-"-'" .

/ z r ' I
�.2 -7翼:I t I — -
身 I I i

0 i i I i i
0 1 2 3 4 5 6

Number of peers N

Figure 5.1: The music information sharing club example.

function, peers are active only around 30% of the time on average. For k = 0.5，

an empty club now becomes stable. The number of joining peers are always more

than that of leaving members such that a positive membership is always transient.

Peers are almost always inactive. Finally k = {N ^^ h(s)g(s))~^ = 0.808 is the

critical case when an empty club is just stable/unstable.

It is important to note that the above analysis is of the average case. The

actual dynamics of a realization of the club membership over time as C{t) C M

would sketch a sample path (| C � |，_Pc⑷⑷）that staggers around the corresponding

P(n)2. However, the family of P{n) curves for all tt values define a direction field

^The staggering, or departure from the average case, would depend on the extent and rate of mixing, viz., the
stochasticity of the club membership. Generally speaking, a large number of active peers with strong flows both
in and out of the club would stay close to the average case with less staggering. Otherwise a sample path may

CHAPTER 5. BEFORE COOPERATION: WHY DO PEERS JOIN? 80

of average directions of the forces that act upon any sample paths. The average

direction is towards growth above the n/N diagonal, and towards shrinkage below,

as shown in figure (5.2). In other words, the n/N diagonal is a boundary between

two phases of the club dynamics, a growth phase for the club states above it and

a shrinkage phase for those below. This is a powerful way to visualize the club

dynamics, especially when t t may vary over time in more complex cases.

1 I I 1 1 7

\ f / ^ ^ ^ _ - - 一

Growth Phase /
0.8 一 i A J / _ . " / / - - z ,

^ o.e J Z / , - Z , �

i " / � ‘ 广 ^ -
0.4 , / -

/ / Shrinkage Phase

/ / / /

0 V 一 ± _ l _ i : îJ 二 L ^ t̂ ^
0 0.2 0.4 0.6 0.8 1

Normalized number of peers n j N

Figure 5.2: Phase diagram of club dynamics with direction field,

actually get stuck with a niche self-sufficient club that sees neither peers joining nor members leaving.

CHAPTER 5. BEFORE COOPERATION: WHY DO PEERS JOIN? 81

5.5 Concluding remarks

In this chapter, we have presented an ISC to model peers' join and leave behaviour:

peers join to bring in extra information goods to the club and demand the goods

at the same time. By analyzing peers' dynamics as a statistical process, the club

membership dynamics can be treated as an osmosis of peers joining and leaving

the club. When the club membership is too large, the leaving force of the club, as

determined in equation 5.5, would push the club to a smaller size and vice versa.

As a result, the club will statistically stabilize at a club size n^q.

In particular, we are interested in the threshold condition when the club is in

empty state, i.e. n = 0. If the control parameter is strictly above the threshold of

1，this empty club is not stable, and hence induces an autonomous club growth.

This implies this threshold'governs a necessary condition of such a club to start up

and hence provides supplementary explanations for understanding cooperation.

Notice that ISC is a statistical analysis of club formation and growth process.

In contrast to other incentive based analysis [51，50, 52], we are not interested in

a single peer's instant join and leave decision. As a result, a club at different snap

shots of time may consist of different membership C. The direct consequence is

the existence of deadlock situation. For example, a club satisfying t t > 1 may still

not be able to form and grow because the set of peers at a particular instant do

not have enough interest overlap (while the average of all the peers is enough).

However, as the original population size of the club J\f gets large, we would expect

probabilistically, there is a certain high chance that enough peers could come up

together at certain point of time, and converge to the average case analysis.

Another issue in this ISC model is its non-rivalrous goods assumption. As a

result, free riding is no longer the curse of P2P systems as peers are not harmed by

the existence of those free riders. In cases where the non-rivalrous assumption is

not appropriate due to significant sharing costs, e.g. in processing, storage and/or

network bandwidth, penalizing free-riding would be more necessary in order to

CHAPTER 5. BEFORE COOPERATION: WHY DO PEERS JOIN? 82

reduce loadings of free riders on the system and the contributing peers. A possible

corresponding extension of the ISC model is to incorporate the natural reduction

in availability of information goods as their demand increases. Remaining issues

like incorporating social cost due to sharing [58] and searching cost [26] are opened

for further studies.

• End of chapter.

Chapter 6

Conclusion

Summary

Concluding remarks.

This thesis studies three issues in P2P replication systems: performance of erasure

code replication, distributed replication strategies and cooperation among peers.

To start with, a literature review of P2P replication systems is presented. From

the development of these systems, we understand heterogeneity of peer availabil-

ities. This heterogeneity makes replication difficult, as different permutations of

replica placements will result in different file availability distributions. This is ex-

emplified in the introduction. We also review the performance related studies of

replication. Meanwhile, P2P replication systems require peers to be cooperative.

As incentive mechanisms and micropayment approaches are the common schemes

to increase cooperation, related studies are presented.

After reviewing these studies, we begin the discussions of our work. Firstly, we

review and compare two replication approaches: whole file replication and erasure

code replication. Many previous studies show that erasure code replication can

obtain higher file availability with lower storage cost than whole file replication.

However, this result is based on high peer availability assumption. Our in-depth

83

CHAPTER 6. CONCLUSION 84

analysis shows that when the peer availability is low enough, whole file replication

performs better. Under homogeneous peer availability condition, we obtain a sharp

transition threshold such that when (storage overhead - peer availability) product

is less than 1, erasure code replication performs worse and vice versa. Furthermore,

even if the threshold is satisfied, our sensitivity analysis reveals that erasure code

replication is too sensitive to the parameter variations. These results provide some

careful arguments for judging the use of erasure code replication in P2P replication

systems.

We then move on to the second part of our study: replication strategies in P2P

replication systems. The difficulty of the resource allocation fundamentally origi-

nates from the heterogeneity of peer availabilities, in which many related studies

fail to account for. We formulate this allocation problem as a standard integer

programming problem, and point out that it is difficult to solve in feasible amount

of time. Being motivated by this, we propose three heuristic replication strate-

gies, random strategy, grouping partition strategy and highest available first (HAF)

strategy to solve this problem. These strategies can be carried out by peers in

P2P replication systems in distributed manners, under the assumption that peers

are cooperative in replication. Performance of these strategies are studied through

simulations and we find that HAF strategy performs the best in many replication

environments.

Finally, the cooperation assumption in P2P replication systems is reviewed. We

do not follow the incentive mechanisms or micropayment approaches because the

assumptions behind these studies are too restrictive. Instead, we investigate the

origin of P2P systems: why would peers join together and share in the first place?

We answer this question by proposing an information sharing club (ISC) model. In

the model, the probability of a peer joining the club is related to the probability that

he can successfully obtain the information goods from the club. By establishing

this relation, we obtain a composite control parameter such that the club grows

CHAPTER 6. CONCLUSION 85

when this control parameter is above a sharp threshold of 1，and shrinks otherwise.

This result provides a necessary condition for explaining the formation of such a

club, and provides a supplementary explanation for cooperation behaviour.

P2P systems draw much attention in these years. The P2P replication system is

one of these systems that exploits the power of connected peers. While the idea is

promising, many challenges exist. This thesis serves as a self contained document

to answer many questions that are neglected in previous studies, if not all.

• End of chapter.

Appendix A

Proof in this thesis

Summary

This is a summary of the proof in the thesis.

Proposition A.0.1 (Erasure code bound).

Proof. Case I: ij, > l / Q

From [53], define the loss probability of a file with b erasure coded block L5 as:

L � p y (i i 广 (A.i)

where,

A + � = 1 (A.2)

Let X be a binomial random variable having mean j2 = Qhfi and variance

cr2 = Qbfi{l - 11). Then Lt is the sum probabilities of the random variable X with

values 0 to 6 — 1. Similarly, A^ is the sum of probabilities of random variable X

86

APPENDIX A. PROOF IN THIS THESIS 87

with values b to Qb. Then:

Lb = E P W l 严 (A.3)

=P[X - 0) + P[X = 1) + . . . + P{X = 6 - 1) (A.4)

=P[X < b) (A.5)

=P{X<li-{fi-b)) (A.6)

fi > l/Q flbfj, — b>0=^fL-b>0, then by Chebysbev inequality [59]:

< 叫 ; 2 - 的 2 • (A . 7) .

QbjLi(l — ji)
= r ^ i 1) + - 6)2 (.8)

‘ = (A 9 �

0 — o o (A.IO)

Therefore, if > 1 /0 , A；, 1 as 6 ^ oo.

Case II: /Li < l / n

From Case I, converge to 1 as /i > 1/0. We are going to prove A^ converge to

0 as /i < 1 / a

Similarly,

^ = E (r) 务“广 （A.ii)

= P { x = b) + P{X = 6 + 1) + . . . + P(X = nb) (A.12)

= P { x > b) (A.13)

= + (A.14)

APPENDIX A. PROOF IN THIS THESIS 88

/i < 1/Q b — Qb/j, > 0 = > 6 - / 2 > 0 , then by Chebysbev inequality:

阶 " + (")) ^ ？ (A . 1 5)

= 嚇 1) /A 16)
_ - fi) + {b - nbiiY

= � 1) /A 17)

— 0 as 6 oo (A.18)

Therefore, if ^ < l/r2, ^ 0 as 6 —̂ oo. •

APPENDIX A. PROOF IN THIS THESIS 89

Proposition A.0.2 (Empty Membership Instability).

Proof. Consider:

飞 N AT

H n) = J j ^ m = ^ E p . W . (A.19)
1=1 i=l

(A.20)

Differentiating with respect to n:

N 学 = f (A.21)
on ^ on .

1=1 •

^ ？警=fx � �] (A.22)

i—l

Therefore, conditioning on n = 0, we have:

— N
= [9(s)] = N j 2 h { s) g (s) (A.23)

？ 1 = 0 1 = 1 s
o ^ - 秘 (A.24)

n==0 5 .

Recall that, the stability condition for a fixed point rieq = 0 is given by equation 5.6

in chapter 5: _
dP{n) 1 , �

是 。 < I (A.25)

Hence a club at n = 0 is not stable if:

7T = N k g(s) > 1 . (A.26)
S

•

• End of chapter.

Bibliography

1] "History of ARPANET." [Online]. Available:

http: / / www.dei.isep.ipp.pt/docs/arpa.html

2] “RFC 1050 - RPC: Remote Procedure Call Protocol specification," April

1988. [Online]. Available: http://www.faqs.org/rfcs/rfcl050.html

3] "Napster." [Online]. Available: http://www.napster.com/

4] "Gnutella." [Online]. Available: http://www.gnutella.com/

5] "Kazaa." [Online]. Available: http://www.kazaa.com/

6] "WinMX." [Online]. Available: http://www.winmx.com/ .

7] 1. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,

and H. Balakrishnan, "Chord: A scalable peer-to-peer lookup protocol for

internet applications," in Proceedings of A CM SIG CO MM, 2001.

8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A scalable

content-addressable network," in Proceedings of ACM SIGCOMM, 2001.

9] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubi-

atowicz, "Tapestry: A resilient global-scale overlay for service deployment,"

IEEE Journal on Selected Areas in Communications, vol. 22(1), January 2004.

90

http://www.dei.isep.ipp.pt/docs/arpa.html
http://www.faqs.org/rfcs/rfcl050.html
http://www.napster.com/
http://www.gnutella.com/
http://www.kazaa.com/
http://www.winmx.com/

BIBLIOGRAPHY 91

10] R. Bhagwan, S. Savage, and G. Voelker, "Understanding availability," in Pro-

ceedings of Second International Workshop on Peer-to-Peer Systems (IPTPS

,03), Feb. 2003.

11] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer, "Feasibility of a

serverless distributed file system deployed on an existing set of desktop PCs,"

in Proceedings of ACM SIGMETRICS, 2000.

12] J. Y. B. Lee and W. T. Leung, "Study of a server-less architecture for video-

on-demand applications." in Proceedings of IEEE International Conference on

Multimedia and Expo 2002 (ICME), 2002. •

13] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, "Resilient peer-to-peer

streaming," in Proceedings of IEEE ICNP, 2003.

14] M. 0 . Rabin, "Efficient dispersal of information for security, load balancing,

and fault tolerance," Journal of the ACM^ vol. 36，pp. 335-348, 1989.

15] T. Clark, Designing Storage Area Networks. Addison-Wesley Professional;

1st edition, 1999.

16] "RFC 1094 - NFS: Network File System Protocol specification," March 1989.

Online]. Available: http://www.faqs.org/rfcs/rfcl094.html

17] J. M. Acken, "How watermarking adds value to digital content," Communica-

tions of the ACM, vol. 41, pp. 75-77, July, 1998.

18] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, "Freenet: A distributed

anonymous information storage and retrieval system," Lecture Notes in Com-

puter Science, vol. 2009, pp. 46+, 2001.

19] D. A. Patterson, G. A. Gibson, and R. H. Katz, "The case for RAID: redundant

arrays of inexpensive disks," in Proceedings of ACM SIGMOD, 1988.

http://www.faqs.org/rfcs/rfcl094.html

BIBLIOGRAPHY 92

20] H. Weatherspoon and J. Kubiatowicz, "Erasure coding vs. replication: A quan-

titative comparison," in Proceedings of First International Workshop on Peer-

to-Peer Systems (IPTPS '02), March, 2002.

21] R. Bhagwan, D. Moore, S. Savage, and G. M. Voelker, "Replication strategies

for highly available peer-to-peer storage," in Proceedings of FuDiCo: Future

Directions in Distributed Computing, June, 2002.

22] C. Blake and R. Rodrigues, "High availability, scalable storage, dynamic peer

networks: Pick two," in Proceedings of the Ninth Workshop on Hot Topics in

Operating Systems (HotOS-IX), 2003. •

23] M. J. Osborne and A. Rubinstein, A course in game thoery. The MIT Press,

1994.

24] W. K. Lin, D. M. Chiu, and Y. B. Lee, "Erasure code replication revisited,"

in Proceedings of the Fourth International Conference on Peer-to-Peer Com-

puting, 2004.

25] W.-Y. Ng, W. K. Lin, and D. M. Chiu, "Statistical modelling of information

sharing: community, membership and content," in Proceedings of Performance

2005, October, 2005.

26] S. Saroiu, P. K. Gummadi, and S. D. Gribble, "A measurement study of peer-

to-peer file sharing systems," in Proceedings of Multimedia Computing and

Networking, 2002.

'27] J. Chu, K. Labonte, and B. Levine, "Availability and locality measurements

of peer-to-peer file systems," in Proceedings of ITCom: Scalability and Traffic

Control in IP Networks, 2002.

28] E. K. Lee and C. A. Thekkath, "Petal: Distributed virtual disks," in Pro-

ceedings of the Seventh International Conference on Architectural Support for

Programming Languages and Operating Systems, 1996.

BIBLIOGRAPHY 93

29] C. A. Thekkath, T. Mann, and E. K. Lee, "Frangipani: A Scalable Distributed

File System," in Proceedings of Symposium on Operating Systems Principles,

1997.

30] R. J. J. Bayardo, R. Agrawal, D. Gruhl, and A. Somani, "YouServ: A Web-

Hosting and Content Sharing Tool for the Masses," in Proceedings of Interna-

tional WWW Conference, 2002.

31] J. Y. B. Lee and W. T. Leung, "Design and analysis of a fault-tolerant mecha-

nism for a server-less video-on-demand system," in Proceedings of International

Conference on Parallel and Distributed Systems, 2002. •

32] "seti."

33] "Folding@home." [Online]. Available: http://folding.stanford.edu/

34] "Onion routing." [Online]. Available: http://www.onion-router.net/

35] A. Klemma, C. Lindemanna, M. K. Vernonb, and 0 . P. Waldhorsta, "Charac-

terizing the query behavior in peer-to-peer file sharing systems," in Proceedings

of the Fourth ACM SIGCOMM conference on Internet measurement, 2004.

36] G. On, J. Schmitt, and R. Steinmetz, "The Quality of Availability: Tackling

the Replica Placement Problem," Darmstadt University of Technology, Tech.

Rep., 2001.

37] ，"The effectiveness of realistic replication strategies on quality of avail-

ability for peer-to-peer systems," in Proceedings of the Third International

Conference on Peer-to-Peer Computing, 2003.

38] K. Ranganathan, A. lamnitchi, and I. Foster, "Improving data availability

through dynamic model-driven replication in large peer-to-peer communities,"

in Proceedings of the Second IEEE/ACM International Symposium on Cluster

Computing and the Grid, 2002.

http://folding.stanford.edu/
http://www.onion-router.net/

BIBLIOGRAPHY 94

39] Francisco Matias Cuenca-Acuna and Richard P. Martin and Thu D. Nguyen,

"Autonomous Replication for High Availability in Unstructured P2P Sys-

tems," in Proceedings of The 22nd IEEE Symposium on Reliable Distributed

Systems (SRDS-22), 2003.

40] L. Kleinrock, Queueing system, volume I. Wiley-Interscience Publication,

1975.

41] G. Utard and A. Vernois, "Data Durability in Peer-to-Peer Storage Systems,"

in Proceedings of the Fourth Workshop on Global and Peer to Peer Computing,

2004. •

42] W. W. Chu, "Optimal file allocation in a multiple computer system," IEEE

Transactions on Computers, vol. 18’ pp. 885-889, 1969.

43] E. Cohen and S. Shenker, "Replication strategies in unstructured peer-to-peer

networks," in Proceedings of ACM SIGCOMM, 2002.

44] K. Sripanidkulchai, B. Maggs, and H. Zhang, "Efficient Content Location

Using Interest-Based Locality in Peer-to-Peer Systems," in Proceedings of IN-

FOCOM, 2003.

45] K. Sripanidkulchai, "The popularity of gnutella queries and

its implications on scalability," Whitepaper. [Online]. Available:

http://www.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html

46] E. Cohen, A. Fiat, and H. Kaplan, "A case for associative peer-to-peer over-

lays," in Proceedings of Workshop on Hot Topics in Networks, 2002, 2002.

47] J. Hindriks and R. Panes, "Free riding on altruism and group size," Queen

Mary College, University of London, Department of Economics, Tech. Rep.

wp-436, 2001.

http://www.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html

BIBLIOGRAPHY 95

48] R. Krishnan, M. D. Smith, Z. Tang, and R. Telang, "The virtual commons:

Why free-riding can be tolerated in file sharing networks," in Proceedings of

International Conference on Information Systems, 2002.

49] K. Ranganathan, M. Ripeanu, A. Sarin, and I. Foster, "To share or not to

share: An analysis of incentives to contribute in collaborative file sharing

environments," in Proceedings of Workshop on Economics of P2P Systems,

June 2003.

50] C. Buragohain, D. Agrawal, and S. Suri, "A game theoretic framework for in-

centives in P2P systems," in Proceedings of the Third International Conference

on Peer-to-Peer Computing, 2003.

51] P. Antoniadis, C. Courcoubetis, and R. Weber, "An asymptotically optimal

scheme for P2P file sharing," in Proceedings of Second Workshop on the Eco-

nomics of Peer-to-Peer Systems, 2004.

52] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, "Free-riding and

whitewashing in peer-to-peer systems," in Proceedings of ACM SIGCOMM

Workshop on Practice and Theory of Incentives in Networked Systems, 2004.

53] T. T. Lee, S. C. Liew, and Q. L. Ding, "Parallel communications for ATM

network control and management," Performance Evaluation, vol. 30, pp. 243-

264, 1997.

54] L. Rizzo, "Effective erasure codes for reliable computer communication proto-

cols," ACM Computer Communication Review, vol. 27, pp. 24-36, 1997.

55] K. P. Eswaran, "Placement of records of a file and file allocation in a computer

network," in Proceedings of IFIP Conference, 1974.

56] S. Sen, "File placement over a network using simulated annealing," in Pro-

ceedings of the 1994 ACM symposium on Applied computing, 1994.

BIBLIOGRAPHY 108

57] J. W. Mickens and B. D. Noble, "Predicting node availability in peer-to-peer

networks," in Proceedings of the ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, 2005.

58] H. R. Varian, "The social cost of sharing," in Proceedings of Workshop on

Economics of P2P Systems, June 2003.

59] S. M. Ross, Introduction to probability models. Academic Press, 1997.

、.y:、：
v:‘，
f-,...力

C U H K L i b r a r i e s

004280547

