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Submitted by LIN Wing Kai 
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Abstract: 

The notion of "peer-to-peer (P2P)" systems usually refers to a class of systems that 

connect multiple computers together to enable resources sharing. Earlier systems 

were typical file sharing platforms that rely on autonomous sharing of resources 

from peers. The proven success of these platforms leads to continuous researches 

on building formidable P2P replication systems that are based on these peers, with 

the assumption that peers need to cooperate. 

In this thesis, we identify three issues in these replication systems. We first 

review the performance of erasure code replication, a replication approach that 

is considered to achieve high data availability with low storage cost in previous 

studies. Our analysis show an opposite result may arise when deploying erasure 

code replication in P2P replication environments. The second issue is replication 

strategy in P2P replication systems. We provide a simple example to demonstrate 

the effect of heterogeneity of peer availabilities on file replication performance. We 

then propose three heuristic replication strategies, which take this heterogeneity 

into account and can be adapted in distributed manners, to replicate files in P2P 

replication systems. Our results show that these strategies can achieve promis-
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ing replication performance with different degrees of complexity. Finally, we in-

vestigate the reason for cooperation - What makes distributed participation from 

autonomous peers possible? We provide an Information Sharing Club (ISC) frame-

work to abstract peer behaviour: peers join the club because they find the club 

can provide them useful information contents. The framework explains the viabil-

ity criteria of such a club, which in turn provides a necessary condition for peers 

to participate. Putting everything together, this thesis serves as a self contained 

document to explore the performance related considerations of P2P replication 

systems. 
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摘要： 

「點對點系統」（Peer-to-peer system)是指一些以節點形式去連結使用者的資 

源分享系統。早期之點對點系統主要為植案分享網絡，並要求使用者自發性地分 

享各自的檔案資源。此等檔案分享平台之成功，引發了一連串有關建立更為完備 

的點對點資料複製系統之研究，惟這些研究均需假設了使用者之間會互相合作。 

本論文集中討論資料複製系統内的三個議題：首先，本文會研究在點對點系 

統中使用被公認為能提供低儲存成本、高效能的Erasure Code複製方法，並指出 

在點對點系統中，Erasure Code複製方法並不能如常有效地複製資料。其次，本 

文會研究在點對點系統内的資料複製策略。文中會以一實例去説明使用者連接網 

絡時間的異質性如何影響檔案傳播的效率。在假設各使用者連接時間有異質性的 

前提下，文中建議三種可以在如同點對點系統般的分佈式系統中使用，並有效 

地複製資源的資料複製策略，亦會展示這些策略如何能以不同的資源複製成功 

率或運算複雜性的情況下複製資料。最後，本文會研究各使用者合作的問題： 

即解釋令使用者自發性去參與分佈系統之原因。文中會提及「資訊分享會社」 

(Information Sharing Club)這一概念以模擬各使用者間之行為：使用者因會社 

能提供有用之資訊而加入。這一概念可用作解釋某會社能成功持續運作之因素， 

從而提供了各使用者間需要互相合作之必要條件。 ‘ 

以另一角度而論，本論文可作為研究點對點資料複製系統各方面之效能時的 

一份獨立文獻。 
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Chapter 1 

Introduction 

Summary 

Applying P2P principle to replication systems is a novel approach to achieve 

distributed replication. In this chapter we give an overview of such P2P 

replication systems, and spot out some fundamental challenges of this ap-

proach. 

1.1 "We are not alone" 

The invention of computers brings an important revolution to human civilization. 

The high level of automation and accuracy in tedious and complicated compu-

tational tasks make computers as the reliable choice. As a result, many of the 

industrial and research efforts are put to increase the performance of these compu-

tational devices. 

Similar to human endeavors, working alone is neither efficient nor reliable. 

Therefore, people started to seek ways to connect these computers together to 

form a network. The first successful and large scale work is the ARPANET [1], 

which is a packet switching network allowing computers in different universities to 
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CHAPTER 1. INTRODUCTION 2 

communicate with each other. ARPANET laid down the success of the current 

Internet, in which computers all over the globe can connect to each other, and 

most importantly, exchange information. 

When a network is created, services are deployed over it. In the early days 

where computational power was low and costly, users were required to use dumb 

terminals (which only had simple I/O capabilities) to key in commands and waited 

for results to be displayed. This form of computing was not yet distributed but 

was just another form of I /O redirection. 

Some enabling technologies like remote procedure calls (RPC) [2] and HTTP 

pushed the Internet as a platform of distributed computing. With RPC, a pro-

gram from one computer can call another program in a remote computer. RPC 

abstracts the underlying network connections such that these computers are just 

like calling local functions. RPC makes distributed computing possible by enabling 

computational power to be distributed and specialized. While two computers are 

developed to specialize on their own functionalities, RPC enables them to commu-

nicate with each other, thereby allowing a certain form of cooperation. However, 

RPC only enables pre-defined functions to be called remotely, hence it can hardly 

be customized for any arbitrary purposes. 

HTTP presents another distributed computing paradigm. In HTTP, there is a 

server serving multiple client requests. Compared with RPC, the server does not 

serve the client functional call requests but is for information retrieval. A client uses 

a program (which is usually a browser) to communicate with the server through 

HTTP protocol and requests for information stored in the server. The server then 

replies with the information requested. The early form of information retrieval is 

limited to web pages, but other media files and program files are also available 

when the bandwidth increases. Although HTTP makes information distributed 

easily, it has some operational problems. Firstly, the number of clients that can be 

served depends on the capacity and the available outgoing bandwidth of the server. 
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This undermines the scalability of the system. Secondly, this kind of information 

exchange is usually asymmetric and unidirectional — clients pull information from 

the server but give no or minimal feedback to the server. The low autonomy of this 

client-server model restricts sharing of arbitrary information. Finally, the server is 

a single point of failure to the whole system since information distribution heavily 

depends on it. 

Network up to this stage mostly consists of isolated computers. While minimal 

form of connections can be provided through client-server model, clients them-

selves are unconnected. With the increase of computational power of home-used 

computers, these clients can act as servers to serve other clients' requests also. This 

implies symmetric service provision. Every client who uses the service in turn helps 

increase the service quality^ Far more important, the increase of available band-

width makes simultaneous interconnections of several peers possible. This enables 

computers to look for more connections in order to access more information and 

services. Gradually these connections are developed and evolved into what we call 

peer to peer (P2P) systems today. 

1.2 Definition of P2P systems 

In general, P2P systems are any systems that allow computers to connect to 

each other and share resources. Napster [3] is widely agreed to be the first pub-

licly adopted music sharing system with a centralized indexing server. The later 

Gnutella [4], Kazza [5] and WinMX [6] are similar file sharing projects without 

centralized directories. These systems are usually different in terms of network 

structures and searching algorithms. Our discussions of these systems begin with 

the terminologies used in P2P systems. 
^In many cases the service quality is degraded by the presence of free riding, which is addressed in chapter 2. 

Here it can be regarded as a phenomenon to decrease the service provision. 
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1.2.1 Terminologies 

First of all, we introduce some terminologies that are commonly used in P2P sys-

tems. Details of some terms are addressed separately in the coming chapters. 

• Peers are computers or devices that have similar functional roles in a system. 

For example in music sharing system, a peer is an entity that both requests 

files and serves file requests from other peers. 

• Peer to peer or P2P system is a system that connects the peers together. 

While there exists a standalone server for peers to find out each other during 

peers' bootstrap stages, P2P system is usually considered as serverless when 

concerning its nature of connectivity. 

• Structured P2P systems are P2P systems that the connections between peers 

are based on some specific rules. Chord [7], CAN [8], Tapestry [9] fall into this 

group. Peers in these systems do not find their neighbours randomly. Based 

on the peers' IP addresses and the contents they store, they are connected in a 

structured manner, usually through a distributed hash table (DHT) algorithm. 

The DHT algorithm guarantees data or files to be searchable within a few hop 

counts. However, support for context-based query search in these systems is 

very limited. 

• Unstructured P2P systems are P2P systems that the connections between 

peers are random. Every time a peer connects to the network, the set of 

neighbours that he has direct connections is different. As a result, the system 

cannot guarantee that a connection is set up between two peers even if they 

are online at the same time. In order to increase the success rate in searching, 

a flooding algorithm is usually employed. Gnutella, Kazza, WinMX are file 

sharing systems falling into this group. Although searching efficiency is usually 

worse than that in structured P2P systems, these systems support context-

based query search very well. 
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• Peer availability is a way to characterize peers in P2P systems. There are 

many ways to model peer availability. In this thesis we define peer availability 

as an online probability measure. Therefore if a peer has an availability of 0.9, 

then there is about 90% of time that he is online. This definition separates 

peers' natural online behaviour and network connection environment. More 

about peer availability are addressed in section 2.2.3. 

• Information goods are information or data shared in these systems. The early 

P2P systems are usually file sharing applications and hence the information 

goods shared are media files like mp3. As we are going to see, information 

goods are extended to include movie stripes or processed data as P2P systems 

develop. Information goods may also be chunked and typed, which means 

that peers have interest (or demand) over a set of information goods. 

1.2.2 Principles 

The early P2P systems are simple music sharing applications. These systems have 

a common philosophy - connect peers together to enable sharing. For example, the 

former Napster music sharing network allowed peers to access and download the 

music stored by other peers. Every time a peer searched a music file in the network, 

an index server returned a list of peers who hold the requested song. Afterwards, 

the requesting peer connected to a peer in the list and started the music download. 

Gnutella is a similar music sharing system without indexing server. 

These systems work because the peers' computers provide additional processing 

power than the peers themselves have required. A normal user does not fully 

load his computer usually; simple web browsing and emailing do not use up the 

bandwidth available. As a result, the peers have excess resources to share, so peers 

with similar interests may join together and form a network to utilize these shared 

resources. 

Compared to traditional client-server architecture, it is much easier for peers 
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to find the music they want in a music sharing network. Although a single peer 

usually has low availability [10], when multiple users store different copies of the 

same file, the probability of finding a copy of that file in the network is increased. 

This is where collaboration works. 

At the same time, P2P systems grow so quickly because of their high autonomy 

and anonymity. Compared to client-server model, autonomy is high because a peer 

can control the ways he shares and requests the resources. While autonomy of a 

single peer does not have large influence to the sharing, the collaborative form does. 

For example, when it is without P2P networks, users cannot easily find the music 

files they are interested in. The low autonomy of client-server model makes it very 

unlikely to launch a public server for sharing copyrighted music files. In contrast, 

the high autonomy of P2P systems enables peers to share music whenever they 

want to. When the number of users is large, the probability of getting a music file 

is higher, and hence a P2P system is established. 

As we are going to see in section 1.3.2，high anonymity is advantageous to P2P 

systems, even though it creates free riding problem (which is addressed in details 

in chapter 2). When tracing back the history of P2P systems, we find that these 

systems are usually copyright infringing media sharing applications^. However, 

these systems usually have low user identification requirements (For example, a user 

can easily create an arbitrary username that has no relation to his real identity in 

the physical world.). As a result, it is unlikely that a user is spotted for his sharing 

activities. This increases the incentive for users to share files (when compared with 

sharing through a server). 

Finally, P2P systems are usually robust to system changes. These changes 

include storage resource changes due to joining and leaving of peers; sudden loss 

of connections between peers; or changes in network environment. Since P2P 

systems originally evolved from an environment with heterogeneous peers, they 

should inherently have mechanisms to tackle these changes. For example, when 
2The former Napster network collapsed because of the copyright lawsuit issue. 
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a peer leaves the network, how do other peers react to such a change? If peers 

need to react, then the highly dynamic nature of peer behaviour would make P2P 

systems oscillate too much. If peers do not react, then the loss of resources is not 

informed and might affect system performance. 

1.3 From sharing to replication 

The growth of P2P systems has led to proposals for building "serverless" systems 

to more economically provide traditional services. For example, [11] proposed a 

serverless file system; [12] and [13] proposed a serverless video streaming system; 

14] proposed a distributed secure information dispersal system^. Such systems may 

have varying degrees of decentralization in management, thus can be considered 

either as clusters or P2P systems depending on where they situate in the spectrum. 

In the following subsections, we first reason the use of P2P structures as replica-

tion systems. It is followed by a discussion of the advantages of this usage. We then 

point out three issues in P2P replication systems: replication approach, replication 

strategy and cooperations among peers. 

1.3.1 Replication; why and how 

The early computers did not have storage capabilities. Data created were processed 

immediately and sent to output devices. Magnetic storage devices like magnetic 

tapes later served as the first form of storage media. However, these devices are not 

100% reliable, and therefore cannot achieve 100% data availability. For example, 

when a storage device is not functioning, the data stored in that device is lost. One 

trivial solution to this problem is to create extra copies of the data, and store the 

copies at different storage devices. Hence, the loss of one (or some) replica(s) is 

compensated by the existence of other replicas. This forms the basis of replication. 

RAID is a replication system that is created to increase data availability by using 

^Details of these systems are addressed in chapter 2. 
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redundant arrays of hard disks. 

Traditionally, these redundant storage devices are located in close proximity. 

Although the data can be preserved even some (but not all) storage devices are 

malfunctioning, the data is still lost when the computer that uses these storage 

devices fails to function. Being motivated by this, people start to separate storage 

and computation. Storage Area Network (SAN) [15] and Network File System 

(NFS) [16] make this separation possible. 

However, this is not enough. While computers can access remote storage through 

NFS, NFS requires a standalone server to monitor the storage devices and do 

resource management. This limits scalability. Although SAN has better scalability, 

the operating cost is high due to its stringent requirement on the network that 

connects the remote computers and the storage devices. These limitations make 

remote storage systems only be affordable by large companies or organizations. 

The growth of P2P systems provides another paradigm for this replication prob-

lem. Sharing digital data is different from sharing objects in the physical world. 

When compared to traditional form of sharing, sharing in digital era implies repli-

cation due to the ease of duplicating digital data^. The cheap cost of home-used 

hard disks makes replication more economically viable. These reasons make P2P 

system be a possible candidate for distributed replication, provided that peers are 

cooperative in replication. We call these replication systems P2P replication sys-

tems. 

1.3.2 Advantages of P2P replication systems 

Studies of using P2P structures as replication systems are discussed in details in 

chapter 2. Here we first reason the use such approach. In general, the advantages 

of utilizing P2P systems to replicate data are: 

1. Lower operating cost 
4Digital copy protection schemes like watermarking [17] cannot fully protect the data from being replicated. 
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2. Higher anonymity 

3. Increase in mobility 

4. Higher data reliability 

P2P replication systems have lower operating cost because of their scalability. 

The increase in computational capabilities of peers in P2P systems helps share 

the cost of building a centralized server in the original client-server model. For 

example, music sharing networks usually store up to several terabytes of music. 

It is virtually impossible to build such a free network with reasonable operating 

cost. However, a typical P2P replication system usually contains thousands of peer 

nodes. An aggregation of the storage spaces of these peers makes this possible. 

Higher anonymity is closely coupled with lack of identification in P2P systems. 

While higher anonymity eases free riding, it makes the anonymous information 

distribution possible. Specifically, anonymity can be further classified as sharer 

anonymity and requester anonymity. Sharer anonymity means data originator 

tracing is not possible while requester anonymity means one cannot be spotted 

for his downloading activities. These decrease the probability of being discovered 

when peers share, and hence increase sharing willingness. Freenet [18] is a high 

privacy platform for information producers, holders and consumers such that any 

peers can publish information to the Freenet network but originator tracing is not 

possible. 

Data mobility is increased because data are stored in multiple places. For ex-

ample when a song is downloaded by multiple peers, the song is copied to different 

locations. This increases the mobility of the music file. The increase in mobility 

means the data stored is more resilient to geographical failure by having multiple 

copies stored in different locations. For example, we consider a replication system 

with 5 hard disks, each has an average reliability of 0.9. If a file is copied and 

duplicated to all these hard disks, then the probability of retrieving a copy of the 

file successfully within these 5 hard disks is the probability that at least 1 hard 
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disks is functioning. That is: 

P{the file is available} = 1 — (1 — 0.9)5 二 0.99999 

where a file availability of 0.99999 is difficult to be achieved with reasonable cost. 

1.3.3 Typical replication approaches 

Normally, our notion of replication is redundancy by creating extra copies. It is a 

simple tradeoff between storage overhead and availability. If you create Q copies of 

a file, you increase the storage overhead by Q, but reduce the probability that none 

of the copies are available (which you can calculate based on some assumptions on 

the component failure model). We will refer to this as whole file replication. 

It has been known for "sometime that erasure coding can be used to achieve 

significantly higher availability [19]. In this case, a file is divided into b (equal size) 

blocks. Erasure coding is then applied to the b blocks, producing k> b blocks (of 

same size as before). We can then recover the original file from any b out of the k 

encoded blocks. The storage overhead ft in this case is k/b. The file availability can 

again be computed based on a suitable model for component reliability [20，21’ 22 • 

We refer to this as erasure code replication. 

It is commonly believed that erasure code replication can achieve higher data 

availability [12, 13, 19]. However, this is based on high peer availability assumption, 

which is unlikely to be true in P2P systems. Our analysis in chapter 3 is to 

compare the performance of these two replication approaches in different replication 

environments. 

1.3.4 Difficulties in replication: resource allocation and replication strat-

egy 

The difficulties in P2P replication systems are pointed out by an example. Repli-

cas (which include the original copy) of two files / i , / 2 are placed in four peers 
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I P i I P2 I P3 I P4 

了 I I X I X 一 X 
•/2 I X I • I 

Replication method 1 

fi X X  
/2 I I X I X 

Replication method 2 
/i I X I X 

- / 2 I I X I X I 

Replication method 3 

Table 1.1: Three different replication methods to replicate two files by four peers. 

PuP2,P3,P4 using three different replication methods, as shown in table 1.1. Each 

replica is of the same size. A 'x, means a file replica is replicated by that peer. The 

available storage space of four peers is limited such that each peer can only store 

one file replica. Peer availabilities of peers 1,2，3，4 are 0.1,0.2,0.8,0.9 respectively. 

As a file is replicated completely, the probability of successfully finding a copy of 

that file in the replication system is equal to 1 一 P{all replicas are not available}. 

Therefore, the average file availability in method 1 is 

((1 — (1 — 0.9)(1 — 0.8)(1 一 0.2)) + (1 _ (1 — 0.1)))/2 = 0.542 

while that in method 2 is 

((1 _ (1 — 0.2)(1 一 0.1) + ( 1 - ( 1 - 0.9)(1 — 0.8)))/2 二 0.63 

and that in method 3 is 

((1 — (1 - 0.8)(1 — 0.2) + (1 -（ 1 — 0.9)(1 - 0.1))/2 = 0.875 

which are much different. 

The differences in the average file availabilities can be qualitatively argued as 

follows: In method 1，storage allocation is not efficient: file 1 uses up too much 
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storage space in the system. While method 2 has a fair storage resource allocation, 

replica placement is not optimal: file 2 uses up all storage space from the highly 

available peers (peer 3 and 4). This makes the average file availability to be inferior 

to that in method 3. As the number of peers and files gets larger, the complexities 

of storage allocation and replica placement increase. 

The difficulty in this problem is fundamentally due to the heterogeneity of peer 

availabilities. This is in contrast to many previous studies [21’ 14] which usually 

assume homogeneity. Therefore, we consider resource allocation is a crucial issue 

affecting the performance of P2P replication systems under this heterogeneity con-

dition. This allocation is to determine how the system resources (the peers) should 

be allocated to the system load (the files) in order to achieve an optimal replica-

tion when peer availabilities are different. One way to solve this resource allocation 

problem is by using suitable replication strategies, which are series of action carried 

out by peers. As exemplified, these strategies comprise of two important decisions: 

the storage allocation and the replica placement. 

At the same time, P2P replication systems are decentralized in nature. This 

means that a peer only has a partial view of the complete system information. The 

replication strategy therefore needs to cater for this decentralization requirement. 

1.3.5 Why do peers cooperate? 

Cooperation is the key in P2P replication systems. Peers cooperate by sharing 

their storage space, at the same time replicating their files to other peers. 

But where does this cooperation come from? Game theory [23] suggests that 

free riding is always a dominant strategy for peers in replication systems, thus 

cooperation seems to be an repelling idea. 

To increase cooperation (i.e. to decrease free riding), incentives mechanisms and 

micropayment approaches are suggested to be deployed in P2P systems. Basically 

these schemes are to increase peers' benefits due to their sharing behaviour, and 
^This optimality is defined in chapter 4. 
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therefore more peers are willing to share. Related studies are going to be reviewed 

in chapter 2. 

However, before peers cooperate, some "forces" must exist to push the peers 

join together. To put it directly, what are the rationales for peers to join and form 

a P2P system when peers are making their own decisions? One of the explana-

tions is the mutual sustenance between the replication system membership and 

contents. This means the content provided by the system attracts peers to join, 

and when they join, the peers bring in extra contents, vice versa. Statistically, the 

system will converge to an equilibrium size, where peers are continually joining and 

leaving. By analyzing this statistical dynamics, it is possible to understand peer 

rationales of forming a replication system, and thereby providing an orthogonal 

and supplementary explanation for cooperative behaviour. 

1.4 Contribution of this thesis 

This thesis discusses and investigates the challenges in P2P replication systems. In 

particular, this thesis provides a framework to discuss: 

• The basic of P2P replication systems. This fundamentally explains the chal-

lenges in these systems. 

• The performance comparison between erasure code replication and whole file 

replication. 

• The replication strategies used to enhance file availability in P2P replication 

systems. 

• The origin of cooperation in P2P replication systems. 

1.4.1 Thesis organization 

The organization of the thesis is as follows. Chapter 2 presents a literature review 

of P2P systems, the related performance studies and the cooperation issues among 
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peers. In chapter 3, the performance of erasure code replication is studied, and is 

published as the paper "Erasure Code Replication Revisited" [24]. In chapter 4 we 

analyze the replication under the heterogeneous cooperative peers situation. We 

observe that optimal resource allocation is a general integer programming problem 

which is virtually impossible to be solved in distributed P2P systems. Therefore we 

propose three heuristic replication strategies that can be applied in P2P systems 

and simulate their performance. After investigating these replication issues, we 

move one step backward to review the reason for cooperation. This issue is dis-

cussed in chapter 5 and the related content is published as the paper "Statistical 

Modelling of Information Sharing: Community, Membership and Content" [25]. In 

each of chapter 3 to chapter 5，a concluding remark section is provided to discuss 

the possible further work for the corresponding areas. Chapter 6 concludes the 

whole thesis. 

• End of chapter. 



Chapter 2 

Background Study 

Summary 

In this chapter, we present a literature review of studies related to the fol-

lowing areas: P2P systems, performance analysis of P2P replication systems 

and cooperation among peers. 

2.1 Introduction 

In the introduction (chapter 1), we have reasoned the use of P2P structures as 

replication systems. The target of replication is simple: to make use of peer stor-

age space to increase data availability. However, achieving this goal is complicated 

by the nature of P2P systems: heterogeneity of peer availabilities and decentralized 

behaviour. Furthermore, the success of P2P replication systems relies on coopera-

tion among peers. But what makes peers cooperate? 

In this chapter, we present a background review of the studies related to the 

addressed issues. Firstly we give an overview of P2P systems. This provides 

a foundation to understand the origin of replication problem — heterogeneity of 

peer availabilities. We then review the related studies of performance analysis 

15 
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in replication systems. Finally, as cooperation is needed for replication, we also 

generalize the studies related to these cooperation issues. 

2.2 Overview of P2P systems 

2.2.1 The original story 

The first prevalent P2P system was the former Napster system [3], which was 

a centralized P2P system allowing music files sharing. Users could connect to 

the Napster network by using a client program, which was downloaded from the 

Napster website. Then, a peer could start music searching by entering a query 

string. The query string was then sent to the Napster centralized server for further 

processing. . 

The centralized server served two purposes in the above procedures: processed 

the query strings and indexed peers' shared contents. As a result, the Napster 

indexing server had the complete information of the system: the number of peers 

connected, the peers that were currently online and the contents they shared. The 

indexing server then made a list of peers who were currently online and contained 

the requested file. This successful list was then returned to the requesting peer. 

The requester could finally connect to the peers on the list to start file transfer. 

This hybrid form of P2P system combines the advantages of two extreme schemes: 

efficient searching through centralized indexing and aggregation of content from 

connected peers. However, the shutdown of Napster network forced people to de-

velop decentralized P2P systems. 

2.2.2 Switching to decentralization 

Gnutella [4], Kazaa [5] and WinMX [6] are decentralized networks developed to 

avoid using a centralized indexing server. After launching a client program, a peer 

can connect to a well known node to register himself to the networks. Through 
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that well-known node, he can find a set of peers who are currently online and then 

connects to them. As each peer only has a partial view of the whole P2P network, 

a flooding algorithm is used by peers to search for a file. When a peer wants to 

find a file in the network, he broadcasts the query string to his connected peers. 

When the connected peers receive this query, they also broadcast this query string 

to the peers they are connected to. Obviously, when there are many peers in the 

network, the query strings would use up more network bandwidth. The adverse 

effects of flooding on the network traffic are studied in details in [26 . 

Apart from the problem due to flooding traffic, decentralization also impacts 

the peer behaviour. Decentralization often means a lack of centralized user identi-

fication. This increases autonomies of peers, and hence the peers have more control 

on the ways they join or leave the system. As a result, peers have different avail-

abilities. This phenomenon is often neglected in many studies, as we are going to 

see in the next subsection. 

2.2.3 Peer availability 

The definition of peer availability depends on the underlying replication systems 

considered. In this thesis, the term "peer availability" means the proportion of 

time a peer is up and online. Traditional replication systems usually use magnetic 

storage devices to store and replicate files. As a result, peer availability is closely 

coupled with the reliability of these storage devices. As nowadays hard disks are 

so reliable that achieving three-nines reliability is common, substantial high peer 

availability is usually assumed, as in RAID. Gradually, when computational powers 

of home-used PCs increase, the PCs can help each other replicate files. These PCs 

are usually connected by reliable and high speed links in a LAN or a reliable net-

work, and hence high link availability can be guaranteed. However, these PCs may 

not always be turned on. Therefore, the availabilities of these replication devices 

are considerably lower than that of the traditional ones. In general, peer availabil-
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ity is getting lower when moving from centralized, ordered system to decentralized, 

randomized systems. 

There are some work in analyzing and measuring the peer availability. In [10], 

the authors point out several factors in affecting peer availability in P2P systems. 

The first one is IP aliasing. Since peers are distributed over the Internet, they 

are connected to their own ISPs or networks. As IP addresses are limited, peers 

usually are not able to have permanent IP addresses, and are required to change 

their IP addresses frequently. Consequently it increases the difficulty of identifying 

a peer in a replication system. The authors also spot out the diurnal pattern of 

peers within P2P systems. This is a consequence of the natural behaviour of the 

peers: peers stay online during evening and switch off the computers in midnight. 

Therefore when deploying P2P systems over the globe, the diurnal pattern may 

result in a large difference in peer availabilities. Authors in [27] also identify a 

similar time-of-day effect in peer availability measurement. 

The simple example in the introduction (chapter 1) demonstrates the effect of 

heterogeneity of peer availabilities on the file availability distribution. As switching 

to decentralized systems, the factors discussed above become more dominating 

and increase the heterogeneity further more. This necessitates a good replication 

strategy in P2P replication systems. 

2.2.4 Other than file sharing 

Although (decentralized) P2P systems seem to have inherent problems of low 

searching efficiency and free riding, these systems are continuously being stud-

ied and applied to other areas in computing. In [11], the authors propose building 

a serverless distributed file system over a set of connected PCs. When compared 

to traditional replication systems where computers trust each other, their design 

does not require trust. As a result of lacking trust, their model employs cryp-

tographic techniques to ensure data privacy and integrity. The model is divided 
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into two steps: estimating peer availabilities and placing file replicas. In estimat-

ing the peer availabilities, the model depends on previous downtime histories of 

peers to estimate their future downtime. After estimating peer availabilities, the 

system needs to create data replicas and deploy the replicas over the connected 

peers. Their replication approach is to maximize the minimum file availability 

(Max-min approach). The replication system employs whole file replication and 

assumes availability of a file is equal to the sum of the availabilities of all peers that 

store a replica of that file. Simulation results show that their model can maintain 

high data availability (95%) with a low storage cost per peer. Other file systems 

that are built from P2P systems can be found in [28, 29, 30 . 

Another work that makes use of the connected PCs is the serverless VoD archi-

tecture [31]. A set of PCs are connected together to form a video sharing network. 

In contrast to traditional VoD systems, it does not have a central video streaming 

server. Instead, peers help stream the video contents. Every peer in the network is 

required to store one video stripe of a particular video. When a peer wants to play 

a video, he downloads the video stripes from the peers (who store the stripes of the 

current playback point) and starts video playing. By having multiple peers storing 

the same video content, video availability is increased by avoiding the single point 

of failure. To further increase video availability, erasure code is used to encode the 

video stripes, and hence it is not necessary to have all peers available in order to 

recover the original video file. The authors' results show that using erasure coded 

stripes can increase video availabilities when compared to whole file replication. 

Large scale cooperation among peers is seen in distributing computing [32’ 33], 

which are prominent systems that make use of idle processing power of peer com-

puters to help searching for extraterrestrial life and understanding protein struc-

tures. This wide distributed computing is possible because the calculations involved 

can be done in parallel. A peer can connect to a data server to collect the raw data, 

after the peer program is launched. The peer then processes these raw data and 
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sends the results back to the server. 

The Onion project [34] is a P2P routing application to promote anonymous 

communications, such that the identity of sender is hidden. Every computer that 

connects to Onion network acts as an Onion router to route the data within the 

Onion network. Every piece of data injected by a peer (who also acts as an Onion 

router) is needed to pass a series of Onion routers before reaching the destination. 

As a result, eavesdropping the traffic is hardly possible as a hacker cannot track 

where the information is originating from. 

The systems discussed show the power of cooperation: if peers are willing to 

cooperate, these P2P systems can achieve the work that requires powerful compu-

tational resources. Thus under the cooperation assumption, possibilities of building 

P2P replication systems are investigated. 

2.3 Understanding replication 

In this section, we survey the research studies that analyze replication performance 

in P2P replication systems. These research studies are divided into different areas, 

and are described in separate sections. To start with, we review the fundamental 

target of replication: file availability. 

2.3.1 File availability redefined 

The definition of file availability in simple terms, is the probability that you can 

retrieve a file in a replication system. For example, a file availability of 0.9 means 

the probability of downloading the file within the system is 0.9. From this de-

finition, we observe two fundamental factors that can affect the file availability: 

storage overhead and peer availability. An increase in storage overhead increases 

the number of replicas in the system, thus higher file availability can be obtained. 

If the storage devices have higher availabilities, then it is easier to retrieve a file 

from these devices. 
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However, some other factors affect the file availability in real P2P replication 

systems. One of these factors is searching efficiency. When a file is replicated in 

the system, whether a peer can actually locate the file depends on the underlying 

network architecture. For example, there is a TTL field in the flooding algorithm 

studied in section 2.2.2 to prevent flooding algorithm from generating too much 

traffic [35]. This field effectively limits the maximum searchable size within the 

system, and hence not all data can be successfully queried. This implies that even 

a file exists and is available, the effective file availability is low because of the 

unsatisfactory searching efficiency. 

While most of the work focus on using retrieving probability as a metric to 

measure the file availability, other work propose to use other metrics as availability 

measures. In [36, 37], the authors define quality of availability (QoA) to measure 

the effective availability within a replication system. The authors decouple file 

availability into two correlating factors — demand success rate and supply avail-

ability. The rate means the successful query rates of the files by the peers and 

the supply availability measures the probability of retrieving a file or MTTF of a 

file. The QoA is then defined as a controllable and observable quality of service 

parameter to measure how well a system can replicate files. 

While the definition of QoA tries to decouple file availabilities into peer request 

characteristics and file reliability due to replication, the functional form of this 

decoupling is still questionable. Therefore in this thesis, we adopt the most simple 

definition of file availability: the probability you can find a complete file in a 

replication system. 

2.3.2 Storage requirement analysis 

As replication requires storage, storage requirement and its impacts on file avail-

ability are crucial. Researches in [38，21, 39] focus on this aspect. 

Authors in [38] propose an automatic data deployment over P2P replication 
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systems. However, they point out that two factors make this data deployment 

difficult, which are low peer availability and the low efficiency of replica searching. 

Moreover, the decentralized nature of P2P systems requires independent peer repli-

cation decisions. As a result, they suggest a dynamic model driven replication in 

which it can estimate the data availability, and apply the replication accordingly. 

The replication scheme considered is whole file replication. Simulations are done 

to verify that their model can match well with the real system performance. 

In comparison with [38], work in [21, 39] focus on replication using erasure code. 

Work in [21] analyzes a storage system using erasure code replication with a set of 

homogenous peers. It derives a functional relationship between peer availability, 

storage overhead and the resultant file availability. They experimentally show that 

erasure code replication performs better than whole file replication. Work in [39 

also analyzes P2P replication using erasure code, but it assumes heterogeneity of 

peer availabilities. The authors argue that this heterogeneity complicates the avail-

ability analysis and hence they do their analysis by simulation. Their simulation 

results show that erasure code replication, when being applied to P2P systems, can 

obtain a higher data availability than that of whole file replication with the same 

storage cost. 

These promising results of erasure code replication are based on an important 

system characteristic: high peer availabilities, which is either implicitly or explicitly 

assumed. However, we believe this is not necessary true in P2P environments. 

Being motivated by this, we analyze the performance of erasure code replication 

under different peer availability characteristics, which are presented in chapter 3. 

2.3.3 M T T F analysis 

Mean time to failure (MTTF) analysis is commonly employed in many performance 

modelling. Instead of analyzing the relationship between storage constraint and 

data availability, MTTF analysis usually focuses on Markovian behaviour [40] of a 
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peer within a replication system. A simple stochastic peer behaviour can be ref-

erenced in figure 2.1. From the figure, we see that a peer undergoes a continuous 

change of states. Researches in [41, 31, 20] apply MTTF analysis to P2P repli-

cation systems. In these systems, the replication schemes used are erasure code 

replication. 

mS l ab l e Connected Disconnected 

Figure 2.1: A stochastic model of a peer. 

When a set of peers undergo Markovian behaviour, a replication system can be 

modelled as a Markovian structure [41,31] with the numbers of peers staying online 

as states of the system. Peers have three states in the model proposed in [41], a 

connected (join the system) state, a temporarily unavailable (temporarily offline) 

state and a disconnected (leave permanently) state. This model employs erasure 

code replication, and replicates the erasure coded blocks to different peers. As a 

result, the stochastic behaviour of a file block is related to the corresponding peer 

behaviour. Therefore the number of file blocks of a particular file can be modelled 

as a Markov chain, with the numbers of peers (who replicate a block of that file) 

as states of the chain. Furthermore, the existence of disconnected state effectively 

creates an absorbing state within the chain, and hence giving a MTTF limit to 

the files stored. The authors analyze the MTTF of the stored files under different 

peer availability situations, and find out possible cases that erasure code replication 

performs worse than whole file replication through simulations. 

In [31], researches are done in investigating the possibilities of using P2P systems 

to provide VoD services with erasure code^ The serverless VoD system assumes 

the connected peers are willing to participate and share their storage space. Also, 

peers will not leave the system permanently, and hence Markov chains of the peers 
iThe working principle of serverless VoD system is discussed in subsection 2.2.4. 
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are reduced to two states: an online state and a momentarily failure state. The 

online state means a peer is functioning and the failure state means a peer is down 

and cannot serve the system. When a node enters the failure state, it is repaired 

with exponentially distributed amount of time. By assuming homogeneity of peer 

availabilities, it is analytically shown that the MTTF of files in this replication 

system can be achieved very high. Another piece of work involving MTTF analysis 

can be found in [20 . 

Compared with the storage analysis, MTTF analysis pays more attention to 

microscopic file behaviour within a system. The storage requirement analysis in 

section 2.3.2 is a more general statement on resource constraints and addresses 

very little on microscopic behaviour. However, MTTF analysis usually involves 

Markovian model, in which exponential lifetime modelling of a node is necessary. 

As indicated in subsection 2.2.3, the availability of a peer is a complex issue and 

hence may not be exponentially modelled. Moreover, although MTTF analysis can 

provide a precise dynamic behaviour of a replica in a replication system, it is weak 

in tackling the resource allocation problem when compared with storage analysis. 

At the same time, peers in real decentralization systems are highly volatile, and 

their availabilities do not stay at constant values (when compared to the system 

MTTF life time). As a result MTTF analysis is usually not a good candidate in 

modelling real P2P systems. 

2.3.4 Replica placement 

The analysis in previous sections puts research focus on the system performance 

under homogeneity assumption. Although this assumption allows simple analysis 

of peer behaviour and system performance, peers in real P2P systems exhibit high 

degree of heterogeneity. As a consequence, homogeneity is a poor assumption. The 

simple example in the introduction (chapter 1) reveals the effect of peer heterogene-

ity. Therefore when heterogeneity is the key, replica placement plays a role. Work 
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in [42, 14’ 43] focus on this area. Work in [42，43] analyze the replica placement of 

whole file replication where that in [14] analyzes the effect of information disposal 

through erasure code replication. 

Wesley's model in [42] is to find an optimal file allocation in a distributed com-

puter system. The model tries to answer this question: upon the system storage 

constraints, what is the optimal file allocation scheme that can minimize overall 

operating cost? The operating cost is defined as the expected transmission time to 

transmit a file over a set of connected computers. In this model, each computer is 

treated as a single server queueing system with constant service time. This means 

that each computer holds a copy of a distinct file and serves one computer at one 

time. File request rate is assumed to be a Poisson arrival process. The model 

assumes that each computer has a fixed storage capacity and is always online. It 

formulates the allocation problem as a nonlinear zero-one programming problem, 

with the storage overhead and transmission cost as constraints. However, the prob-

lem is inherently NP-hard and cannot be solved efficiently even in fully centralized 

manner. More importantly, this model cannot be practically applied since it does 

not consider peer availability issue. 

Author in [14] assumes using erasure code to disperse information over a set 

of connected nodes. The nodes can be any workstations or computers connected 

by physical links. If a file F is to be transmitted from node A to node B over 

some connected nodes, then node A needs to select a path t t which connects A 

to B. Although the failure probability of a single path can assume to be small, 

the failure probability of t t cannot be neglected as t t composes of many subpaths. 

Hence, in transmitting an erasure coded information, path selection is crucial. 

Being motivated by this, the author proposes to use IDA, Information Dispersal 

Algorithm, which is an efficient algorithm to transmit files under this situation. 

The algorithm firstly splits a piece of data (a packet) into n pieces, then erasure 

codes them to give m pieces. A node then uses a time ticket to tag each piece and 
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disperses these pieces to other connected nodes. Each node stores and holds the 

received pieces and only sends the data pieces to other nodes when the current time 

is equal to the time tickets assigned to the pieces. In his model, there are iV = 2" 

nodes, which are connected using the cube-based architecture, hence there are Nn 

paths within this architecture. The author shows that by assuming a uniformly 

distributed subpath failure model, the proposed algorithm can achieve a very high 

successful transmission probability, while maintaining low buffer usage within each 

node. However, even the algorithm is simple and efficient to implement, the cube-

based topology is too restrictive for P2P systems since these systems usually form 

without coordination. As a result, IDA is not very suitable to be applied in P2P 

systems. 

Authors in [43] address another issue in replication systems: the expected search 

size (ESS) of files. In their model, decentralized P2P systems like Gnutella are 

used to distribute and replicate complete copies of files. Their model does not 

consider peer availability but two parameters in replication: the normalized number 

of replica (pi) per file i and the normalized query rate (qi) of file i. Since in 

Gnutella-like systems, flooding algorithms are used to search and locate the file 

replicas, the expected search size Aq(p) is defined as the expected number of nodes 

that a flooding search is required to propagate in order to locate the content, i.e. 

ylq(p) = Qi/pi) at storage overhead p per peer. Their analysis shows that 

using square root allocation such that Pi oc qij h q i , is optimal to minimize the 

ESS. In order to achieve this square root allocation in a distributed manner, they 

also propose a path replication algorithm such that the number of replicas per file 

will converge to square root allocation at steady state. 

Although all these studies provide profound insights in replica placement, they 

usually neglect the heterogeneity of peer availabilities in their models. Our work, is 

therefore to devise some replication strategies that can cater for this heterogeneity 

and can be carried out in distributed manners. 
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2.3.5 Other performance enhancement schemes 

In this section, we present some other performance enhancement schemes [44，22 . 

Work in [44] focuses on enhancing the search efficiency, which in turn affects file 

availability. In [22], the authors analyze the bandwidth requirements of a P2P 

system that is using erasure code replication. 

In [44], authors propose a performance enhancement scheme to increase the 

probability of locating a content in a P2P system. As mentioned in section 2.2.2, 

the curse in the decentralized P2P systems is the dependency of flooding algorithms. 

As a result, these P2P networks cannot scale very well, and hence the network sizes 

are limited. In order to relieve the bandwidth stresses due to flooding, they propose 

to use a self organizing protocol, interest based shortcuts, that makes use of interest 

localities within peers. The rationale behind interest locality is that if peer A has a 

particular piece of data that peer B is interested in, then it is very likely peer A will 

have more pieces of data that B is also interested in. This implies that the peers 

exhibit interest based locality, which allows peers of similar interest to share with 

each other. The authors propose to build interest based shortcuts over any P2P 

systems to facilitate searching. The shortcuts are merely lists of peers that have 

successfully served some query requests of a particular peer before and can change 

dynamically as the search changes. Simulation results prove that their results 

could help reducing the bandwidth demand when compared to traditional flooding 

algorithm. There are similar techniques in enhancing searching and locating the 

content within the P2P networks, as studied in [45, 46 

Work in [22] analyzes and argues that large scale replication networks are limited 

by the dynamics and cross-system bandwidth - but not by the storage constraint or 

the searching efficiency. The proposed model, which can be based on either whole 

file replication or erasure code replication, suggests the real scalability hurdle in a 

replication network is not searching, but is the bandwidth demand for data mainte-

nance. This maintenance bandwidth is a result of replica replacement: bandwidth 
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is required to copy data away from a peer when he leaves the system. Erasure 

code replication demands more bandwidth under this consideration. Therefore, 

they suggest that strict admission control and load shifting should be applied in a 

replication system. Furthermore, a system can also increase peer cooperation by 

using some incentives schemes, which are addressed in next section. 

2.4 Understanding cooperation 

Cooperation is crucial in P2P replication systems. However, the presence of free 

riding decreases the willingness for peers to cooperate. Free riding refers to the 

behaviour that a peer gets resources from P2P systems but does not contribute. 

As addressed in the introduction (chapter 1), peers enjoy high degrees of anonymity 

in P2P systems. As sharing involves extra costs and peers can escape from sharing 

easily, the natural tendency for a peer is to free ride, as predicted by game theory. 

Whether free riding is a concern, it depends on the information goods shared 

in a particular replication system. Information goods are rivalrous if the demand 

for them from one peer will affect their remaining supplies for the remaining peers. 

A typical example for rivalrous goods is the available bandwidth, where peers are 

competing for it when using bandwidth demanding applications. Non-rivalrous 

goods, on the other hand are the goods that their supplies are not affected by the 

demand. In the case of P2P systems, digital contents (but not the storage) are 

considered as non-rivalrous as they can be copied with negligible costs. 

Hence in analyzing the free riding issues, most of the related studies are consid-

ering bandwidth as the rivalrous goods in these systems. Authors in [47] analyze 

how does group size affect the chance of voluntary provision of public goods. In 

their model, there exists a certain percentage of altruistic peers, the peers who are 

willing to contribute the public goods. By defining a cost/benefit ratio, they derive 

the number of altruistic peers required to provision the public goods at different 

cost ratios. 
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Authors in [48] take another approach in analyzing this problem. Peers in 

their model try to maximize the utilities gained from unstructured P2P networks 

like Gnutella. The utility is defined as the difference between the probability of 

successfully getting a piece of content in the network and the cost due to sharing. 

When a peer shares some resources, bandwidth cost is incurred since other peers 

will download from him. However, by attracting traffic from other peers, the 

bandwidth stresses of other peers (especially those peers holding the files that he 

is interested in) are relieved. This forms a rationale for a peer to share: sharing 

can ultimately benefit himself. The authors show that when the sharing cost is low 

enough, the rational choice for all the peers in the network is to contribute. When 

the sharing cost increases, some peers start to free ride and rely on the contributors 

to share resources. Finally, if the sharing cost is too high, no peer is willing to 

contribute and the system collapses. Ranganathan et al. take a similar approach 

but use a multi-prisoner dilemma (MPD) model to analyze this problem [49 . 

Buragohain et al. take another angle to model the free riding issue [50]. They 

assume that an incentive mechanism exists in replication systems to encourage 

sharing. With this mechanism, a peer can observe which peers are serving him, 

and can penalize those who escape from sharing. As a result of this mechanism, 

all peers need to determine the amount of resources they need to share in order 

to retrieve the resources from other peers, while minimize their sharing costs. The 

Nash equilibriums^ under different cost situations are derived. 

Some other researches do not focus on the incentive mechanisms [51, 52]. In 

51]，the authors devise a public goods provision P2P system which is using mi-

cropayment approach. In their model, each file is tagged with a virtual price and 

payment is done whenever a file is downloaded. The price is determined such that 

when peers are acting rationally, the social welfare or the sum of utilities gained 

by peers is maximized. In the model of [52], each peer is not characterized by 
2 A Nash equilibrium is the state in which a user cannot increase his own benefit (utility) by changing his action 

alone. Interested readers can refer to [23]. 
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his availability, but by a type parameter called generosity. Peers in the system 

contribute if they find their generosity levels are higher than the inverse of current 

contributors ratio, and free ride otherwise. As peers are typed, a generosity distri-

bution is used to characterize the peers in this P2P system. The authors' analysis 

shows that under certain peer generosity distributions, the system will have no 

contributors and hence it collapses. In order to increase the contributions, the 

authors proposed two mechanisms. The first one is to exclude the low generosity 

peers from the network, so as to result in a higher contribution percentage. The 

second one is a penalty mechanism which is similar to that in [50]. Their results 

show that the first scheme can prevent the system from collapsing and the second 

scheme can increase the average system contribution. 

However, the studies presented so far could only provide some weak and un-

satisfactory explanations for the cooperation among peers. For example, the type 

parameter (generosity) in [52] is too abstract to be measured and be realized in 

practice. Peer awareness of the ultimate benefit due to his contribution is too op-

timistic in many situations [48]. At the same time, the lack of centralized server 

makes peer accounting difficult, which implies the deployment of micropayment 

schemes [51, 52] can hardly be possible. These weaknesses lead us to take another 

approach to understand the cooperation. 

2.5 Discussions 

In this chapter, we first review the nature of P2P systems. This review introduces 

the problem of decentralization of P2P replication systems and the peer availability 

behaviour. Following is a review of research studies on replication analysis. Finally 

we move on to understand the nature of cooperation. While these previous studies 

can provide some profound insights for modelling, we find the followings are usually 

neglected or not satisfactorily addressed: 

• Peers in P2P systems usually have low availabilities. 
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• High degree of heterogeneity exists among peers, which complicates the com-

binatoric problem in file replication. 

• Incentives or micropayment approaches cannot provide satisfactory explana-

tions for understanding the cooperation. 

These considerations make replication is not as simple as previous researches 

regarded. Low peer availability makes erasure code replication, which is used in 

RAID, become less attractive and less feasible in P2P systems. Yet, if P2P systems 

employ erasure code replication, the heterogeneity triggers the need of devising 

some efficient replication strategies. Finally, we need a more vigorous explanation 

to understand the reason for cooperation. In the coming chapters, we focus on 

these areas. 

• End of chapter. 



Chapter 3 

Performance of erasure code 

replication 

Summary 

It is commonly believed that erasure code replication can achieve higher file 

availability than whole file replication. In this chapter we revisit the erasure 

code replication and provide further insights. 

3.1 Introduction 

In this chapter, we report some additional analysis on erasure code replication 

based on homogeneity assumption. First, we note that erasure code replication 

is not always preferable to whole file replication. This situation occurs when the 

peer availability is low relative to some thresholds (determined by the storage 

overhead). This result is relevant, particularly for some peer-to-peer systems where 

the average peer availability is low. Secondly, we note that once the threshold is 

crossed so that we prefer erasure code replication, the optimal way is to do erasure 

code replication using as many blocks as possible. In other words, there is a very 

32 
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sharp transition from preferring whole file replication to preferring replicating with 

many blocks. This sharp transition is characterized analytically, using asymptotic 

analysis. Lastly, we discuss how to decide whether to use whole file or erasure code 

replication in practice, and if erasure code replication, how to decide the number 

of blocks (6) to use. We argue that there is always some costs associated the use of 

erasure code replication, and this cost increases more than linearly with b. At some 

point, this cost becomes overwhelming in comparison to the gain in availability. So 

erasure code replication with large b is unlikely to be profitable. Furthermore, if 

the peer availability is not accurately known and can be below certain threshold, 

then the expected gain in file availability may completely disappear. 

3.2 Parameters definition 

When a file is replicated by either whole file replication or erasure code replication, 

we create replicas of the original data and place them into different peers. Each peer 

is characterized by his peer availability, as discussed in the introduction (chapter 1). 

In this chapter, we assume that peers are homogeneous and independent of each 

other, and hence all peers have the same availability fi. 

Another parameter in replication is the storage overhead Q, sometimes referred 

as the stretch factor. For whole file replication, this is simply the number of copies 

created. For erasure code replication, this is the ratio of the number of erasure 

coded blocks to the original number of blocks. With reference to section 1.3.3’ a 

file is originally divided into b blocks and erasure coded to give k blocks. Therefore, 

the storage overhead Q is k/b. Table 3.1 gives the parameters of the erasure code 

replication. 

3.2.1 File availability: whole file replication 

Assume that a file is replicated copies and placed at O peers. Since the peers 

are independent of each other, and any 1 out of the Q peers is enough to recover 
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Table 3.1: Parameters used in erasure code replication. 
Parameter Description 

Peer availability 
A, Ab, Au, File availability 

b Number of blocks a file is divided into 
Q. Storage overhead or stretch factor 

k = Q,b Number of blocks after erasure coding 

the original file, the resulting file availability A ĵ is: 

= E n ^ ^ a - M ) " " (3.1) 

3.2.2 File availability: erasure code replication 

If a file is divided into b blocks, we need to have b blocks to completely recover the 

original file. In erasure code replication with storage overhead of Q, redundancies 

are added so we have fib number of blocks in the system. 

Erasure code makes use of the dependencies between the file blocks to enhance 

the availability. These Qb blocks are dependent on each other, and we need any b 

out of these blocks to recover the original file. Therefore, the availability of a 

file Ab using erasure code replication is [21]: 

= ； £ (•” / / ( I i f “ (3.2) 

Notice that when 6 = 1, A；, = A^^ i.e. whole file replication. Therefore unless 

otherwise specified, we denote file availability simply by A. Moreover, we assume 

that the number of peers in the system is large compared with the number of 

erasure coded blocks Qb. With this assumption, each block is allocated to one peer 

and therefore availability of each block is independent of each other. 
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3.2.3 Properties of erasure code replication 

Based on equations 3.1 and 3.2, it is straightforward to compare whole file repli-

cation and erasure code replication with the same storage overhead. For example, 

plugging = 2, ^ = 0.8 in equation 3.1 gives A^ — 0.96. Using equation 3.2 with 

6 = 2 gives Ab = 0.9728. Therefore erasure code replication performs better. 

From equation 3.2, we see that erasure code replication benefits (in comparison 

to whole file replication) from the combinatorial effect. For the same storage cost, 

whole file replication requires 1 out of Q peers while erasure code requires b out of 

peers. By examining the corresponding combinatorial term for the two cases, we 

see ( �i s much larger than (^) as b increases. In other words, it is easier to have b 

out of Qb peers available than 1 out of peers. However, again from equation 3.2 

we see another term, / / ( I —..⑷仙-。，that works against erasure code replication, 

because it multiplies together a larger number of quantities smaller than 1. The 

smaller the value of peer availability, the more erasure code replication is penalized. 

We call this the peer availability effect. Therefore, the benefit of erasure code, to 

a large extent, depends on which of the above two effects is more dominant 一 the 

combinatorial effect, or the peer availability effect. -

Figure 3.1 shows a plot of two factors, the combinatorial factor ( ? ) and the 

peer availability factor - /jY^b-b for different values of b. From the plot, we see 

that the two factors are running in opposite directions, and therefore the resultant 

which is the product of the two, 力 — i i f " , depends on which factor is 

more dominant. In particular, when peer availability is low, it seems that the peer 

availability factor can be so dominant that erasure code replication would loose 

out to whole file replication. Even though erasure code replication involves more 

summation terms, we expect there are cases that erasure code replication performs 

worse than whole file replication. 



CHAPTER 3. PERFORMANCE OF ERASURE CODE REPLICATION 36 

loV  
Combinatorial effect . ̂  

1 斗 Availability effect i 
- B - Resultant of 2 \ 10" 

I ； 10-1 
套 1 0 、 X : I 

\ ::: 
1 0—2 1 1 1 1 1 1 1 1 0-9 

1 2 3 - 4 5 6 7 8 9 10 
No of blocks 

Figure 3.1: A qualitative analysis of erasure code replication. 

3.2.4 Effects of replication parameters 

Figures 3.2 and 3.3 are different plots of file availability A against changes of 

replication parameters. We are interested in the impact of peer availabilities // 

in figure 3.2, where we are interested in the storage overhead Q of replication in 

figure 3.3. 

As noticed in previous section, the replication approach is whole file replication 

when 6 = 1 , and erasure code replication when b > I. From the result in figure 3.2 

we see that when the peer availabilities are low (about 0.2 — 0.5), indeed, whole file 

replication can be better than erasure code replication. This supports our earlier 

observations when we considered the two factors that contribute to the value of file 

availability. In fact, the advantage of erasure code becomes more apparent only 

when the peer availabilities are reasonably high (greater than 0.6). At these levels, 

the overall file availabilities approach to 1 as 6 increase. 
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From the same figure, we also note that A may not be always monotonic in b. For 

example, when peer availability is 0.6, file availability (A) first decreases and then 

increases again as b increases. This implies that even erasure code replication beats 

whole file replication, for certain values of b this may not be true. However, as b 

increases, file availability {A) seems to become monotonically increasing eventually. 

Figure 3.3 shows a similar result: erasure code replication performs worse than 

whole file replication in low storage overhead regime, and vice versa. Therefore, 

based on the discussion so far, an interesting question is - what are the optimal 

values of b for different system parameters? 

1 1 ••••••••• S 
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Figure 3.2: Effect of changing fi on A. 
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Figure 3.3: Effect of changing 9, on A. 
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3.2.5 Optimal value of b 

From figure 3.2 and 3.3，we observe that A is either monotonically increasing or 

monotonically decreasing for large values of b. This leads us to postulate that the 

optimal value of b (when optimizing file availability A) is either 1 or infinity (or b 

as large as possible to exhaust all the peers in the system). The optimal b would 

equal to 1 when peer availability is small relative to the storage overhead fi; it 

would equal to infinity if peer availability is large relative to the storage overhead. 
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Figure 3.4: Optimal value of b to achieve highest file availability. 

Figure 3.4 plots the optimal value of b against peer availability /i to achieve 

highest file availability with different values of storage overhead Vl. We fixed the 

maximum value of b to be 100 in this plot. From the figure, we observe that there 

is a sharp threshold / / for each storage overhead Q. When fi is greater than fj,', we 

use erasure code replication with maximum number of blocks {b = 100) allowed. 

When IjL is smaller than //，we use whole file replication {b = 1). For example, 
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when Q is equal to 2, n' is about 0.5. When Q. increases, this threshold becomes a 

smaller value. 

3.2.6 Analytical derivation 

We can compute this threshold by brute force. That is, for each value of Q, we 

try different values of jj, to see at what value of fi' the optimal b transits from 1 

to 100 (in our example). Figure 3.5 plots the threshold ji' for different values of Ct 

(the solid circled line). The maximum number of blocks b for the file is 100. When 

= 1, there is indeed no replication. We find that we should always use whole file 

replication for all peer availability levels (notice that fi' = 1). When n increases, 

11' decreases, and it is more likely to prefer erasure code replication. In general, for 

values of (ji, 0 ) in the region above the curve, erasure code replication is preferred; 

while for values of (/x, fl) below the curve whole file replication is preferred. In fact, 

1 ~~~Q ！ . ^ ； ； ： 

0-9" u — Theoretical bound 
n ~G~ Numerical analysis 

0.8.. J 
0.7 - H -

2- i 
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Eo-5 % 

？ ：： A 
- \ 
� 2 … 

0.1 Whole file q ^ () 
Q I :: I I ……• 1 i I - J 1 i  

0 2 4 6 8 10 12 14 16 18 20 
Replication factor Q 

Figure 3.5: Switching point / / for different values of 0,. 
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we can analytically derive this dividing curve between where whole file replication 

is preferred and erasure code replication is preferred. Indeed, it is the function: 

“ > ^ (3.3) 

In [53], the authors proved an asymptotic result in a related problem. They 

considered the use of erasure codes for maximizing the reliable transmission of data 

across a large number of (lossy) communication channels in parallel. They showed 

the following (rephrased using our notations) by using Chebysbev's inequality: 

Proposition 3.2.1 (Erasure code bound). Assume ji is peer availability, b is the . 

number of blocks and Q is the storage overhead of using erasure encoding. If > 

1/n, then the probability of retrieving a file successfully tends towards I as b tends 

towards infinity，vice versa. 

We reproduce the proof in the appendix A.0.1 for both the asymptotic result 

when ^ > l/Jl as well as the inverse result when ji < l/Q.. 

Note, this is an asymptotic result that states what happens when b is large. 

When b is small, the file availability curve may not be monotonic, as shown in 

figure 3.2 and 3.3. For example in figure 3.2, when ii — 0.3, Vt = 4 such that 

fi/i�1，we see that the power of erasure code appears only when b is large. 

Figure 3.5 shows the asymptotic theoretical bound, which is very close to the 

numerical analysis when b is large enough. 

This proposition actually points out the power of erasure coding. Namely, if 

we use enough redundancy so that the expected amount of retrievable data is no 

smaller than the size of the original data (Jlji > 1), then we can achieve close to 

perfect availability by using a large b. When rtji = 1, we can only achieve file 

availability A = 0.5, asymptotically for large b [53]. When fl/j, < 1, erasure coding 

becomes counter productive for large b, since it asymptotically leads to zero file 

availability. 

This result is rather unsatisfactory in applying erasure code to P2P replication 
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systems. First, the sharp transition implies the decision for using erasure code 

replication is sensitive to system parameters. Second, the power of erasure code 

reveals only after large values of b. However, in practice, various cost factors would 

cause us to consider smaller values of b for erasure code replication or even whole 

file replication, as we argue in the next section. 

3.3 Some practical considerations 

3.3.1 Cost of erasure code replication 

Systems gain from erasure code replication because of the combinatorial effect. 

From section 3.2, we see erasure code replication will achieve near 100% file avail-

ability when the number of bjocks b is large enough. However, after dividing a file 

into blocks, cost is involved in file reassembly. Moreover, if we are downloading 

real time video data, this reassembly may require real time scheduling of multiple 

incoming streams of data. Authors in [54] discuss real time decoding cost when 

using erasure code. It is therefore natural to associate a cost function that is 

monotonically increasing with the number of blocks b. 

Let us define a function C{b) as the cost function for the overhead of using 

erasure code replication. We assume the difficulty of scheduling the reassembly 

increases more than linearly with the number of blocks b. When 6 = 1 , the repli-

cation scheme is whole file replication, and the cost is minimal. Based on these 

assumptions, a simple cost function for C{b) is: 

C{b) (x{b-lf = a{b-lf for some a (3.4) 

Given the cost function, we have two considerations when selecting a value for 

b. The problem is how to maximize the first objective function — file availability 

and minimize the second objective function - the cost function. Figure 3.6 is the 

tradeoff curve for the file availability A with the erasure code replication cost C(b), 
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taking a = The number of blocks b is again bounded to a maximum value 

of 100’ with storage overhead = 3. From section 3.2, we know that erasure code 

replication is preferred when Qfj, > 1. We plot the curves with different values of 

satisfying this criterion. 

1 ^ ^ j ^ i i i p i i i lU iM l^ l I 1 I I I n n n n n r j n i n n n n n n p n n n n n n | n n n n n n p i n n n n n|n n n n n y i n n r . n 
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Figure 3.6: Tradeoff curve for file availability versus erasure code replication cost. 

The tradeoff curve in figure 3.6 defines the pareto optimal points of file availabil-

ity with erasure code replication cost. At these pareto optimal points, the system 

cannot achieve higher file availability without lowering the erasure code replication 

cost. From the figure, we observe that as we increase the value of b, the incre-

mental improvement in file availability decreases while the incremental increase in 

cost accelerates. For example, when Qfi = 1.2，file availability A grows faster than 

the replication cost C{b) when the file availability is less than 0.95. When the 

file availability A exceeds this level, the gain in file availability cannot follow the 

increase in replication cost. This phenomenon is more apparent when ftfi is larger. 
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This means that when it is profitable to do erasure code replication, it is im-

practical to achieve maximum possible availability gain due to the associated costs. 

This questions the applicability of large number of blocks, i.e. large b. 

3.3.2 Sensitivity analysis 

In real systems, the average peer availability ji may be difficult to measure accu-

rately. At the same time, a peer (who is holding an erasure coded block) leaves the 

system permanently will decrease the number of erasure coded block in the system 

and hence lower the storage overhead Q. How sensitive is the selection for b to 

variations of these system parameters? 

If it is virtually certain that fl/j, > 1, then the choice of b can be based on 

the tradeoff between file availability and cost as discussed in the last subsection. 

Inaccurate estimation of the parameters ii and Q would result in slightly different 

tradeoff points between these two metrics (all for Qfi > 1), which would not be a 

problem. 

On the other hand, if Q/j. could either be greater than 1 or smaller than 1 due 

to small variations of Q and ji, then the choice of b can become very sensitive to 

where the value of Qfi falls. If we select a large value for 6，trying to maximize 

file availability without knowing ft/j, is actually less than 1, this could be quite 

counter-productive. Imagine a system running with peer availability /i 二 0.35 and 

storage overhead = 3. Since Q̂ ii > 1, we should use erasure code replication with 

as many blocks as possible (as the cost function allows). 

Now suppose fi can only be measured with 士 10% accuracy, then fi can be 

anywhere in a range [/L l̂, I^u] with 叫=0.315 and fiy = 0.385. Plugging jii, 

Hu into equation 3.2, we have the corresponding file availability curves, as shown 

in Figure 3.7. From the figure, we find that the difference between two curves 

(A), increases with b. Furthermore, for the most plausible distribution of fi, the 

expected value of file availability would decrease with 6，starting from 6 = 1 ! 
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This line of argument suggests that even if Qfi > 1 (for expected values of fl 

and fi), the right decision may still be to select 6 = 1 (whole file replication) 

because this choice is more robust against measurement errors. This may be a 

plausible explanation for why erasure code replication has rarely been adopted by 

P2P systems [54, 18] (which tend to have lower and unknown peer availability 

values than that in computer or storage clusters). 
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Figure 3.7: Difference in file availability due to measurement errors. 

3.4 Concluding remarks 

In this chapter, we revisit erasure code replication under different scenarios. Two 

key parameters that differentiate these different scenarios are: the peer availability 

ji and the storage overhead Q,. As discussed in chapter 2, existing studies all 

implicitly or explicitly assume that the replication system has high availability 
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level, and therefore the use of erasure code is automatic. However, in this chapter 

we have shown that the benefit of erasure code replication actually depends on the 

peer availability level (relative to the storage overhead). If the peer availability 

level is low, whole file replication might perform better and have less cost. 

When erasure code replication is used, we also discuss the problem of selecting 

the optimal b. We point out that while theoretically higher values of b achieves 

higher availability, in practice smaller values of b is chosen due to reassembly and 

scheduling costs. When systems parameters {/j. and il) cannot be accurately deter-

mined, which is especially true in P2P replication environments, the conservative 

choice of using whole file replication is often the right decision. 

There are several interesting issues left for further studies. The analysis in this 

chapter assumed that all peers have the same availability level fi. The asymptotic 

studies of replication approaches and availability analysis when peers have differ-

ent availability levels are interesting directions. As pointed out in chapter 2, the 

peer availability may be correlated to each other, or to time of day [10]. This is 

another direction for further studies. From a practical point of view, there are 

many system level issues in building a P2P replication system, in particular how 

to deal with continuous joining and departure of peers and the incentives for peers 

to cooperate to achieve common system goals. Finally, BitTorrent, which is men-

tioned in section 2.2.2，is incidentally also a block based sharing system. Therefore, 

incorporating BitTorrent into the results in this chapter is also a possible future 

work. 

In the coming chapters, we are going to investigate the possibility of deploying 

erasure code to a typical P2P replication system. First we investigate the resource 

allocation problem in the P2P replication system, provided that all peers are co-

operative. We then move on to discuss the cooperative assumption through an 

abstract club model. 
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Chapter 4 

Distributed replication strategies 

Summary 

In this chapter, we introduce the notion of replication strategy in P2P repli-

cation systems, which is to address storage allocation and replica placement 

in these systems. We devise three heuristic replication schemes that can be 

adopted in distributed manners, and simulate their performance under dif-

ferent replication environments. ‘ 

4.1 Introduction 

The simple example in the introduction (chapter 1) shows how the heterogeneity 

of peer availabilities complicates replication decisions in P2P replication systems. 

Moreover, P2P replication systems usually do not require centralized management 

and therefore decentralized decision making is necessary. As motivated by these 

issues, we are interested in replication strategy that is carried out peers in P2P 

systems to replicate files. In general, the P2P systems under consideration bear 

the following properties: 

• Decentralization: Peers are connected to each other to form a P2P net-

48 
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work. However, peers usually connect to a subset of peers in the network 

only and hence they can only have partial views of the whole system. As a 

result, the replication strategies presented in this chapter have to cater for 

this decentralization. 

• Cooperation: Peers in a replication system are motivated to cooperate. As 

a consequence of cooperation, peers are willing to share their storage space 

for replication. 

• Parameters estimation: Efficient replication requires two pieces of infor-

mation: peers' storage space and peer availabilities. We assume that each 

peer can estimate his own parameters, and as a consequence of cooperation, 

neighbouring peers could access these information. 

The replication strategy comprises of two steps. The first step is storage alloca-

tion which is to determine how much storage resources should be assigned to each 

file (to be replicated). The second step is replica placement which is related to peer 

heterogeneity. As peers are usually free to join and leave a P2P replication system, 

peer availabilities exhibit high degree of heterogeneity. From the simple example 

in the introduction (chapter 1)，we know that this heterogeneity would affect the 

resultant file availability distribution. 

There are many ways to characterize file availability, and we focus on two per-

formance metrics in this chapter. The first one is expectation of file availability, 

and the second one is variance of file availability. While the expectation is trivial, 

the variance addresses a little bit more concern. In general, the variance can be 

considered as a fairness measure of the achieved file availability distribution. A 

smaller variance means that the availability of each file is more concentrated to the 

mean, and can be considered as having a better fairness. 

In the forthcoming sections, we first model a P2P replication system and for-

mulate a related resource allocation problem. We then propose three heuristic 
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Table 4.1: The table of the system parameters. 

J^i The set of files going to be replicated by peer i 
T The whole set of files in the system, J" = IJ^j 
Vi The set of peers "writable" by peer i. 
V The whole set of peers in the system, "P = (J "Pi 
N Number of peers in the system: N = \V\ 
M Number of files in the system: M = \T\ 
r Basic storage unit 

= [fii] Peer availability distribution 
s = [sj] Peer storage capacity 
f = [fj] File size of each file j 
b = [bj] Number of blocks before erasure coding of each file j , f.j = bjT 

= [Q,j] Storage overhead of each file j 
k = [kj] Number of blocks after erasure coding of each file j , kj = bjQj 

R = [vij] A feasible replica placement 
A == [Aj] File availability distribution 

strategies that can be applied to these P2P replication systems. Finally, we simu-

late the performance of these strategies under different replication environments. 

4.2 The P2P replication system 

In this section, we outline a general P2P replication system. Peers follow the ways 

as described in the introduction of this chapter: peers are cooperative in replicating 

files. Table 4.1 defines the parameters in this replication system. 

4.2.1 Erasure code replication 

Erasure code replication is used in this P2P replication system. Following similar 

procedures as discussed in chapter 3，a file is encoded into k erasure coded blocks 

and the blocks are placed in k different and independent peers. Each peer, indexed 

by i, only stores one erasure coded block and has peer availability im. Following 

the same notion as stated in chapter 3, the file availability A is then related to the 
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probabilities of getting any b out of these k blocks: 

k 
A{[iJ,i],b, k) = y^ P{h hard disks are available} (4.1) 

h=b 

where [fii] is an availability vector to describe the availabilities of all k peers. 

The probability of having h hard disks available, is equal to the sum of all 

permutations of probabilities that any h out of k peers are online and functioning: 

P{h peers are available}= 

• • • / i / i ( l — M , i + l ) ( l - l ^ n+2 ) . • . ( 1 — • 

(4.2) 

鄙 3 •. • - ^n+2)…（1 - 一糾）+ ... + 

fJ^k-h+lfJ^k-h+2 . • • - - M2)…（1 — fJ'h) 

As noted in chapter 3, whole file replication can be considered as a special case 

of erasure code replication (i.e. 6 = 1 ) . Therefore the results of this chapter can 

be generalized for replication systems using whole file replication. 

4.2.2 Peers modelling 

In real P2P systems, peers are continuously joining and leaving and so the number 

of peers in the system is changing. Here we consider a replication system composes 

of a fix set of V peers, each indexed by i. 

Peer i enters the system and wants to inject and replicate a set of J^i files. Each 

file j injected by peer i is f j large, where fj is measured in terms of a basic storage unit F. 

To achieve file replication in a distributed manner, peers rely on the storage space 

offered by other peers in the network. In this model, we do not consider bandwidth 

consumptions between peers: files are injected and transmitted in negligible time. 

At the same time, peers are cooperative in replication: peer i has available 

storage space Si to help replicate files from other peers, where Si is also measured 

in terms of F. As a result, peers in the system are self-servicing: they replicate 
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their files by utilizing the storage space offered by other peers, and at the same 

time, receiving other peers' files and replicate them. 

Putting everything together, the replication system contains this following re-

source constraint: total available storage space offered by the peers. At the same 

time, the replication system faces this storage load: total storage space required to 

replicate all the files in the system. This gives a resource allocation problem which 

is formulated in the next section. 

4.2.3 Resource allocation problem 

Before examining peers' action in replication, we start with formulating the re-

source allocation at the replication system perspective. Firstly, we consider storage 

allocation in this P2P replication system. Here we assume that the replication 

system is a closed system: a fix set of peers V join together to form a replication 

network. Each peer, indexed by i, injects a fix set of JF̂  files into the system. 

As a result, the whole set of files that the replication system needs to replicate is 

T = DiJ^i. We denote the number of peers as N = \V\ and the number of files as 

When file j with file size f j is going to be replicated, it is firstly divided into bj 

blocks, where each block is T large, and hence fj = bj T. It is assumed that all files 

use the same block size F for erasure coding, and therefore fj^ / fj^ = bj^/bj^ for any 

two files j i and j2. Erasure code is then applied to these bj blocks to give kj blocks, 

where each erasure coded block is still F large. Following the same definition in 

chapter 3，the storage overhead for this file j is = kj/bj. The replication system 

needs to find some peers to replicate these erasure coded blocks, and hence occupies 

peers' storage space. 

Without the storage constraint, the replication system can set flj of each file j 

to be very large such that Qjbj = kj = M to obtain a maximum file availability. 

However the storage capacity of each peer is limited, a large value of Qj for one file 
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occupies too much available storage space for the remaining files. As replication is 

a tradeoff between file availability and storage overhead, this invariably lowers the 

remaining file availabilities. In the extreme case, the files replicated earlier use up 

all the storage space available for remaining files and hence these files cannot be 

replicated. This triggers the need of estimating the Qj for all files j . One possible 

way of estimation is to base on fairness: guaranteeing each file j to enjoy the same 

storage overhead so that Qj = Cl for all files j. 

Apart from storage allocation, the replication system also needs to place the 

erasure coded blocks of all files to the peers in the system. Let r^j indicate that 

peer i stores an erasure coded block of file j. Then we have: • 

1 : if peer i stores a block of file j 
= .. (4.3) 

0 : otherwise 
V 

where, 

i = 1,2,…N 

j = 1 , 2 , . . . M -

Hence, we can formulate the replica placement as a replication matrix R = {rij]MxM-

Obviously, peer i cannot replicate more than what he can store: 

M 

S Si Vz (4.4) 

Also, the number of replicas of file j stored by all peers is equal to kf 
N 

Y / i ’ j = kj = b f t j Vj (4.5) 
i=l 

A replica placement R is feasible if it satisfies conditions 4.4 and 4.5. For exam-

ple, with reference to the example in the introduction (chapter 1)，the replication 
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strategy 3 can be represented as: 

/ \ 
1 0 

0 1 
R 3 = 

0 1 

li oj 
By combining the feasible replica placement R with the peer availability vector 

/X, each file, which is indexed by j, is replicated by a set of peers with availability-

vector [iJ'ilj. For example, the two peer availability vectors in the introduction . 

can be defined as [0.9,0.1] and [0.8,0.2] respectively. Following equation 4.1, file 

availability of file j is given by: 

Aj = A{[iii]j,bj,kj) 

Here we see a general relationship in this resource allocation problem. Based on the 

system available resources and the system storage load, the replication system needs 

to determine flj for all files. The replication system is assumed to use erasure code 

replication and hence needs to decide a feasible replica placement R. The blocks 

are replicated based on R, and hence a file availability distribution A is resulted. 

4.2.4 Replication goal 

For a closed replication system, different replication goals can be considered. Here 

we exemplify three different replication strategies to achieve different goals: 

1. A replication strategy that targets at allocating more storage resources to some 

files, while scarifying the availabilities of other files. This might be because 

those files with more storage allocated are more important to the replication 

system. 

2. A replication strategy that targets at replicating all files, while putting little 
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focus on the file availabilities. The replication goal is to replicate all files in a 

closed replication system. 

3. A replication strategy that requires availability of each file to reach a certain 

target threshold. In some environments, this strategy may be infeasible if the 

threshold is set too high. 

As to generalize these replication goals, we focus on two metrics in evaluating 

the performance: the expectation E[A] and the variance var[A] of the resultant 

file availability distribution, which are mentioned in section 4.1. 

These two metrics are measured over all files in the set ！F, Therefore, if some files • 

are left unreplicated, these files are considered as having 0 file availabilities. Formu-

lating the replication goal in this way enables a fair comparison between different 

replication strategies. For example, while replication strategy 1 can achieve con-

siderably high file availabilities for some files, other files acquire 0 file availabilities, 

thus the expectation of file availability distribution is lowered. While strategy 2 

aims at replicating all files, it might be inferior due to the higher variance of file 

availability distribution. 

Therefore, we formulate the resource allocation problem as the following integer 

programming problem: 

max E[A] — (3 var[A 

s.t. R is feasible (4.6) 

where /? is a system parameter to indicate system sensitivity to the variance of file 

availability distribution. 

This is a standard integer programming problem, which is generally time con-

suming to solve. Similar file allocation problems are shown to be NP-complete 

55, 56, 42]. The cost of exhaustive search increases exponentially (in terms of 

combinatorics) with both N and M. While techniques like simulating annealing 
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56] are able to solve this problem to some extent, they are difficult to be deployed 

in decentralized P2P replication systems. Therefore, instead of solving it analyt-

ically, we present three heuristic replication strategies to solve this problem and 

investigate their performance in the coming sections. 

4.3 Decentralized adaptation 

Section 4.2 formulates the resource allocation problem at the replication system 

perspective. However, peer autonomies and the lack of a centralized server in P2P 

systems make centralized replication strategy hardly be possible： Therefore, we . 

need to seek a decentralized solution. In this section, we outline the action carried 

out by peers in order to solve the resource allocation problem. This outline serves 

as a basis for the heuristic strategies proposed in section 4.4. 

4.3.1 Neighbour discovery and parameters exchange 

Peers connect together and form a P2P replication system. Unlike traditional 

centralized replication systems like RAID, peers in a P2P replication system are 

not aware of the presence of all other peers in the system. This is due to the fact 

that peers are usually randomly connected to each other, hence peers only have 

partial views of the system. As addressed in chapter 2，the TTL field limits the 

system view of each peer, and therefore each peer can only access a subset of peers 

in the system. 

We model this phenomenon conceptually as degree of peer connectivity. This 

degree does not describe the physical connectivities between peers in a replication 

system but the logical connectivities. In other words, it describes how much storage 

space a peer can utilize to replicate. The higher degree of connectivity, the larger 

number of cooperative peers a peer can find to help replicate his own. files. For 

example, a replication system with an indexing server, which allows peers to repli-

cate files to all other peers, can be considered as a replication system with 100% 
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of (logical) connectivity, despite the fact that peers may not be directly connected 

to each other. 

Peers are required to exchange parameters with other peers to facilitate file 

replication. As one of the fundamental problems in the resource allocation is the 

storage allocation, the following parameters are necessary for efficient replication, 

albeit it is difficult to estimate some of them in real systems. The first one is the 

available storage space offered by peer i for other peers to replicate (si). This is 

trivial and can be easily estimated by peer i himself. The second one is the total 

storage space required by peer i before applying erasure code replication {^j访 fj). 

These two parameters help estimate storage allocation efficiently. The last one is • 

the availability of the peer himself With reference to the example in the 

introduction (chapter 1), peer availability is an important parameter in the replica 

placement. However, this availability is difficult to be measured usually, even by 

the peer himself [57 . 

4.3.2 Storage resource estimation 

In cooperative replication, peers in a system cannot exhaust all available storage 

space for replicating their files only. In determining how much storage resources 

that peer i can use to replicate his file set J^i, he needs to know how much storage 

space is available, and how large the system load (i.e. sum of file sizes of all the 

files) is. 

At a particular degree of connectivity, peer i can find a portion of peers in the 

system (which includes peer i himself) to replicate his own files. We define this 

as the writable peer set^ Vi of peer i. If there is no peer left unconnected in the 

system, then: 

V = UiPi (4 .7) 

1 Notice that we separate the concepts of “writable” and “readable” here. Once a file is replicated (or “written”） 

to some peers in this writable peer set, the file replicas are then accessible (or “readable") with probabilities equal 
to the availabilities of replicated peers to all peers in the system, even to peers that are not in the "writable" peer 
set. 
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As peers are cooperative in replication, peer i can utilize the storage space offered 

by all the peers in this writable peer set. Therefore with respect to peer z, the 

potential storage space Si that he can use to replicate is the sum of storage space 

offered by all the peers in the writable peer set: 

s � （4.8) 
iieVi 

In cooperative replication, peers cannot use up all the storage space offered. In 

determining how much storage space peer i can use, he needs to estimate the sum 

of file sizes Fi of all files injected by all the peers ii in this writable peer set Vi: . 

^ ^ - E E fj (4.9) 
.. UeVijeTi. 

These two pieces of information are then adopted by the peers to estimate the 

storage space available for replication. 

4.4 Heuristic strategies 

Here we present three different replication strategies: random strategy, group par-

tition strategy and highest available first strategy. Random and group strategies 

compose of two steps, which are the storage allocation and the replica placement^. 

In highest available first strategy, peers do no explicitly carry out the storage allo-

cation process, but keep increasing the storage overhead of each file such that each 

file can achieve a target file availability threshold. 

4.4.1 Random strategy 

Each peer who follows random strategy requires two parameters as stated in sec-

tion 4.3.1: the total storage space available and the sum of file sizes of all the files 
^Although the term "replica" is used, it is used to refer any erasure coded blocks. 
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in his writable peer set. Random strategy aims at solving the storage allocation 

problem in a distributed manner. 

Storage allocation: The first step in this replication strategy is storage es-

timation. Peer i firstly estimates Si and Fi of his writable peer set Vi. Since 

availability of a file is related to its storage overhead, random strategy aims at 

allocating each file a "fair" storage overhead. As a consequence of cooperation, 

peer i estimates a storage overhead Qi for all files he wants to replicate by: 

^ = § (4.10) 

Therefore, if all peers follow this estimation, it is likely that each file in the system 

can enjoy a similar storage overhead. Peer i uses this storage overhead Oj to 

replicate all files J^i by erasure coding and therefore file j with file size fj requires 

kj = Qibj storage space (which is measured in F). 

Replica placement: The next step is erasure coded blocks placement. As no 

peer availability information is acquired, peer i uses a random blocks placement 

approach. For each file j peer i going to replicate, peer i firstly selects a set of kj 

peers with available storage space out of his writable peer set Vi randomly. Erasure 

coded blocks of file j are then replicated to these peers. Peer i stops the replication 

process when all files have been replicated, or peers in the writable peer set do not 

have enough storage space to replicate. Figure 4.1 summarizes the action carried 

out by each peer in random strategy. 

4.4.2 Group partition strategy 

Random strategy can only solve the storage allocation problem by estimating stor-

age overhead of all peers (and hence all files). However, the replica placement is 

still random in principle. As a result, some files are more "lucky" in the sense that 

their erasure coded blocks are placed in highly available peers, while some "un-

lucky" ones have the opposite fates. Consequently, the luckier files enjoy higher 
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Random strategy algorithm: 
For each peer i in the network: 

(1) Estimates the potential storage space Si = Y^i.^-p. Si- and the file size of all files in the writable 
peer set Fi = E j g j . . . fi- ‘ ‘ 

(2) Calculates the storage overhead: Cli = ^ . 

(3) Replicates for each file j stored: 

(3.1) Each file is divided into bj blocks such that f j = bj F. 

(3.2) Erasure code is applied to create kj = Cljbj erasure coded blocks. 

(3.3) IF peer i cannot find kj peers with available storage space, skip replicate this file. 
(3.4) ELSE peer i randomly selects kj peers from the writable peer set to store these blocks. The 

available storage space of these peers are updated. 

Figure 4.1: Random strategy algorithm. 

file availabilities and vice versa. This phenomenon introduces a high variance in 

the file availability distribution. 

Group partition strategy-stresses the need of minimizing the variance of the file 

availability distribution. One way to achieve this is to guarantee a fair "luckiness". 

Peers following group partition strategy firstly collect precise peer availability in-

formation [fii] from their writable peers. Each peer then partitions his writable 

peer set into several groups, and places the erasure coded blocks to one peer in 

each group. By guaranteeing similar number of high (and low) available peers are 

used to replicate the blocks of different files, this scheme can replicate files with a 

smaller variance. 

Storage allocation: Peers following group partition strategy apply the same 

storage estimation as that in the random strategy. Therefore file j injected by 

peer i with file size fj requires kj = Qibj storage space, where Qi is obtained from 

equation 4.10. 

Replica placement: Peer i collects the peer availability information [fii] from 

all the peers in his writable peer set Vi. All peers U in the set with available storage 

space are then sorted in descending order according to their availabilities /Zj.. The 

sorted peer set is then partitioned into kj groups if the file going to be replicated 

is divided into kj blocks. For each erasure coded block, peer i iteratively selects a 
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Group partition strategy algorithm: 
For each peer i in the network： 

(1) Estimates the potential storage space Si = J^i ^-p Sij and the file size all files in the writable peer 
set Fi = E i . gT - , ^ i e ^ i , f i - ‘ , 

(2) Calculates the storage overhead: fli — ^ . 

(3) Replicates for each file j stored: 

(3.1) Each file is divided into bj blocks such that f j = bj r . 
(3.2) Erasure code is applied to create kj = i l j b j erasure coded blocks. 
(3.3) IF peer i cannot find kj peers with available storage space, skip replicate this file. 
(3.4) ELSE: 

(3.5) Orders and sorts the peers in the writable peer set in descending order according to their 
availabilities. Partitions the peers into kj groups. 

(3.6) For each erasure coded block: 
(3.6.1) Iteratively find a random peer in a distinct group to replicate that erasure coded block. 

Figure 4.2: Group partition strategy algorithm. 

random peer in a distinct group to replicate that block. Peer i stops the replication 

process when all files have been replicated, or peers in writable peer set do not have 

enough storage space to replicate. Figure 4.2 summarizes the action carried out by 

each peer in group partition strategy. 

4.4.3 Highest available first (HAF) strategy 

Compared with the previous two strategies, HAF strategy does not separate the 

resource allocation problem into storage allocation and replica placement. It is 

a greedy algorithm to replicate files such that each file can achieve a certain file 

availability threshold A*. There are many replication methods to achieve this 

threshold A*. HAF achieves this by keeping increase the storage overhead flj of 

each file j until the target threshold is reached. The following steps are carried out 

by peers to replicate each file in the system: 

Start of replication: To begin with, peer i collects peer availability informa-

tion from the writable peer set Vi, and sorts the peers in descending order according 

to their availabilities. File j with size fj is divided into bj blocks where fj — b/T. 

These blocks are iteratively stored in the writable peers (who have available storage 
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space) one by one, starting with the highest available peer first. A file availability 

Aj is then computed according to equation 4.1, where kj = bj. 

Availability checking: If Aj < A*, then peer i increases the storage overhead 

for file j and adds erasure code redundancies to create kj = + 1 blocks. The 

blocks are again replicated by peers one by one, starting with the highest available 

peer first. This computes a new file availability Aj which is checked against the 

threshold again. If the availability threshold is not reached, peer i further increases 

the storage overhead to create kj = bj-^ 2 blocks and repeats this checking process. 

Optimizing: Optimizing is needed because the replication system will reach a 

state that the file availability exceeds the threshold availability too much. Consider 

this example: file j with bj = 4 and target threshold of A* = 0.7. Currently the 

replication strategy stops at a state with kj = 5 and with peer availability vector 

0.95,0.94,0.93,0.92,0.91]. Putting these parameters into equation 4.1 gives file 

availability of 0.9578, which satisfies the threshold A*. However, the replication 

scheme can also achieve the same target threshold by replacing the peer of 0.91 

availability with a peer of 0.2 availability. This gives a new file availability of 

0.7144 > A*. One unit of storage space of a highly available peer (peer with 

availability of 0.91) is thus saved, thereby allowing more files to utilize the storage 

space of this highly available peer. 

Therefore when a file enters this replication stage, the lowest available peer at 

the current replication state (e.g. peer with availability of 0.91 in previous example) 

is replaced with the lowest available peer in the writable peer set, and a new file 

availability is calculated. If the target threshold is reached, replication process of 

this file is completed, otherwise keeps increasing the storage overhead. This time 

the second lowest available peer is used to replicate the newly created block and 

the availability checking process will be repeated. Figure 4.3 summarizes the action 

carried out by each peer in HAF strategy. . 

There are several issues related to the performance of HAF strategy. The first 
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Highest avai lable first s t rategy a lgor i thm: 
For each peer i: 

(1) Divides the file into bj blocks such that fj = bjV. 

(2) Does not apply erasure code yet and hence kj bj. 

(3) Repeats the following: 

(3.1) For each block: 

(3.1.1) Iteratively find the highest available peer with available storage space to replicate. Up-
date the available storage space of that peer. 

(3.2) Calculate file availability Aj with these kj peers. 
(3.3) IF file availability Aj exceeds A*: 

(3.3.1) Replace the lastly used peer with the lowest available peer in the writable peer set. 
(3.3.2) Calculate a new file availability Aj. 
(3.3.3) IF the new file availability A j satisfies the threshold A* , this file is replicated success-

fully. Replicates next file. 
(3.3.4) ELSE increases storage overhead, codes one more erasure coded block and finds one more 

distinct peer with second lowest availability to store the newly coded block. Calculate 
a new file availability Aj. Repeat this process until the new file availability Aj exceeds 

(3.4) ELSE increases the storage overhead, codes one more erasure coded block, i.e. kj kj + 1. 

(4) Repeats this process until all files are replicated or there is no enough storage to replicate the 
remaining files. 

Figure 4.3: HAF strategy algorithm. 

one is a much higher computational complexity when compared with the previous 

two strategies. This limits the applicability when the network topology is changing 

too quickly. The second one is the uncertainty of the number of files replicated. 

As HAF strategy does not give a maximum bound to the storage overhead, files 

that are replicated later may not have sufficient storage space for replication. This 

implies HAF strategy cannot guarantee how many files can be replicated. 

Also, the performance of HAF strategy depends on the setting of the threshold 

value. In HAF strategy，replication for a file stops only when the file availability 

reaches the target A*. Therefore, a high threshold of A* obviously incurs a high 

storage overhead fl j for each file and hence limits the number of files replicated. 

On the other hand，a low A* makes replication stop too early and hence lowers the 

average availability E[A]. Meanwhile，a lower A* guarantees all files can reach the 

target A* easily, and hence the system can enjoy a lower variance. 

Figure 4.4 depicts the system performance (the mean, the variance, and the 

difference of the two) of HAF strategy at different A* for a replication system 
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Figure 4.4: Performance of HAF strategy at different A* thresholds, (3=1. 

with 100 peers at 100% of connectivity. This means that peers are-fully writable 

to any peers. Peer availability /x follows an uniform distribution with mean 0.5. 

Each peer tries to replicate 100 files, each with the same size of 5 blocks large. 

From the result, we observe that A* = 0.85 gives the optimal HAF performance 

when considering the expectation alone (figure 4.4(a)). However, A* = 0.75 is the 

optimal threshold when we consider the difference of the two (figure 4.4(c)). This 

result demonstrates that a high accuracy in HAF parameter estimation is required 

in order to achieve the optimal file replication. 
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4.5 Case studies 

In this section, we investigate the performance of the proposed heuristic strategies 

under different replication system environments. In particular, we are interested 

in modelling the following situations: 

• Peer availabilities follow different distributions. We model two distributions. 

Peer availabilities in the first distribution are uniformly distributed in [0,1. 

Peer availabilities in the second availability distribution are bimodal uniformly 

distributed in two groups: peer availabilities are either uniformly distributed 

in [0’ 0.2] or uniformly distributed in [0.8,1]. Therefore, these two distributions • 

give the same expectation of peer availability of 0.5, but bimodal distribution 

has a larger variance. 

• The replication system operates at different degrees of connectivity. We model 

the degree of connectivity by a single parameter m e [0’ 1] and assume that 

peers in the replication system are uniformly and randomly connected. For 

example, if m = 0.2，then each peer is randomly connected to about 20% of 

peers in the system and hence can utilize about 20% of peers' storage space. 

• Peers have different storage capabilities. We define average stretch factor 0* 

as a ratio of total storage space offered by peers to the sum of file sizes of all 

files going to be replicated: 

E f f j 

We simulate a replication system with N = 100 peers. Each peer on average injects 

100 files, one at a time. There is no difference between the files so the sequence of 

injection will have no effect on the resultant file availability distribution. Each file 

is 5 r large and hence all files occupy about 50000 T of storage. We simulate six 

different replication environments, as shown in table 4.2. For simulations involving 

HAF strategy, we assume that peers are using the optimal threshold A* as indicated 
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Simulations Peer availability Average stretch factor Degree of connectivity 

51.1 Uniform in [0,1] Q* = 1.5 m G [0,1] 
51.2 Uniform in [0,1] Q* — 2.0 m G [0,1] 
51.3 Uniform in [0’ 1] n* = 2.5 m G [0’ 1] 
52. 1 Bimodal Q* = 1.5 “ m € [0,1] 
52. 2 Bimodal ft* = 2.0 m G [0,1] 
52.3 Bimodal n* = 2.5 m e [0’ 1] 

Table 4.2: Simulation setups. 

in section 4.4.3. For simplicity, we take the system variance sensitivity (3 as 1. Each 

simulation is averaged over 20 runs. .. 

4.5.1 Simulation results 

Figure 4.5 shows the simulation results using uniform peer availability distributions. 

In the low storage overhead regime (figure 4.5(a)), HAF strategy outperforms the 

other two schemes in terms of expectation of file availability distribution. This 

is because HAF tries to guarantee a portion of files in the replication system to 

satisfy the threshold availability, leaving other files to be replicated by the lower 

available peers. This is revealed by a higher variance of file availability distribution 

in figure 4.5(a). 

Expectations of file availability distribution 丑[A] for all strategies increase when 

their storage overheads increase, with HAF strategy always performs the best (As 

depicted in the first column of figures (4.5(a)-4.5(c)).). In particular, group parti-

tion strategy uses the same storage allocation technique as that in random strategy, 

thus the two strategies achieve similar expectations in file availability distribution. 

When we consider the variance of file availability distribution, systems employ-

ing group or random strategy cannot be benefited much by increasing the storage 

overhead alone. This can be explained by the replication schemes themselves: these 

replication schemes place no file availability target requirement, therefore the vari-

ance is insensitive to the change of storage overhead. However, as HAF strategy 
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-l̂ ^ îK^c：：^^ ̂  : i - ^ : 
"•‘ I “ _ f \ - 0.05 I -

0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 ().« 0.9 I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O.y I 
Degree of conncclivily Degree of connectivily IX'grce of connectivity 

(a) Simulation 51.1. 

( ) - 8 � • ， （ U 2 � , , , ， 0 . 7 � . , ‘ , • , 

^ 劣 random ~ i ~ 豪 晕 * 

0. ： 二―嫩〜…：。 .丨」 a 7 - "6 - ^ ^ ^ f f t r r r r r _ 

„ , - 4 random — h ~ 0.02 - \ - „ l - f rantlom 
"•‘ il I!…up —X— - X � � � � "•‘ gniup —X— _ 
oil " 八 I „lii . . . >x，x-"卞-〜X . . 

( ) 0 . 1 0.2 0.3 0.4 0.5 0.6 0.7 ().« 0.9 1 (I 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1 (> 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O.'J I 
Degree of connectivily Degree of conncclivily Dcgrei; of conncclivily 

(b) Simulation 51.2. . 

�I I <' '4� (”）� J , ' '1 
0 8 - random ~ i ~ .. j. x m ' 

0.7 - X - ( ) .丨 -^ ha 丨了 0.7 -
0.6 - _ 0.1 - ； [̂ V - 0.6 - T̂ -

< 0.5 -i - < _ -Im - f 二 • i -
W 0 4 . ; _ ¥ 卜 \ \ 二 （>.4 - ; -

： "0.06 -；/ \ \ - < ot -： 
0.3 -f - W；!：：；--...̂  3 0.3 J -

二 ： 二 - 0.02 I \ - "•‘ rf rand(’„, 一 " 
口- 二… f V - - - - - - ” ^ = -

~ I ~ I ~ I ~ I I I ~ I I » 0 U—I~I~I~i_\_I_I_I_I_I .0.1 I_I_ 1 > 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 丨 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.H 0.9 1 

Degree of conncclivily Degree of connectivity Degnic o f connectivity 
(c) Simulation 51.3. 

Figure 4.5: Simulations for uniform peer availability (51.1 — 51.3). 
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tries to use the highest available peers to replicate files, an increase in the storage 

overhead means those peers have more storage space for replication. Therefore, 

more files can achieve higher availabilities, thereby the variance of file availability 

distribution is lowered. 

An increase in degree of connectivity betters the replication system performance 

by allowing peers to have more complete view of the replication system. The initial 

sharp increase in the expectation of file availability distribution suggests that peers 

need to have enough view of system (> 15%) such that the size of the writable 

peer sets can provide enough storage space to replicate files. With about 15% of 

connectivity, each peer on average have 100 x 15% = 15 peers in his writable peer ‘ 

sets. Since each file at least occupies storage space from 5 peers, having 15 peers 

in an writable peer set can result in a good guarantee of finding enough peers (to 

replicate files). Moreover, group partition strategy and HAF strategy require peer 

availability information for blocks placement, therefore increasing the connectivity 

can make these schemes perform better in terms of the variance. 

Figure 4.6 shows the simulation results using bimodal uniform peer availability 

distributions. When compared with the previous cases, simulations involving bi-

modal peer availabilities can achieve higher expectation file availability distribution 

than the counterparts with uniform peer availabilities (Refer to the first column of 

figures in Figure 4.6). This can be explained qualitatively: in bimodal peer distri-

bution, more percentage of peers are highly available. As a result, it is more likely 

that files can be replicated by more highly available peers, and therefore higher data 

availabilities can be achieved. Finally, as bimodal uniform peer availability exhibits 

a higher peer availability variance, higher variances in file availability distribution 

are seen from the results. 

To summarize, simulation results reveal the followings: First, HAF strategy in 

general can achieve better performance, especially in low storage overhead regimes. 

However the gain in performance diminishes when average stretch factor increases. 
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This gives us a surprising result, and implies that when replication systems have 

higher storage capabilities, perhaps choosing random strategies would be good 

enough. At the same time, group partition strategy can achieve similar expecta-

tion as those in random strategy, but with considerably lower variance. Second, 

an increase in connectivity helps peers to have better views of the replication sys-

tem. Therefore, HAF and group partition strategies, which require peer availability 

information, perform better when degree of connectivity increases. Finally, an in-

crease in variance of peer availability, as demonstrated by bimodal peer availability 

simulations, would affect the variance of file availability in random strategy greatly. 

4.6 Concluding remarks 

In this chapter, we address two important issues in P2P replication systems: the 

storage allocation and the replica placement. Heterogeneity in peer availabilities, 

which is usually unaddressed in previous studies, is a fundamental cause of the 

replica placement difficulty. The resource allocation problem, is therefore a problem 

involving these issues. We formulate the resource allocation problem as a standard 

integer programming problem and point out that it is difficult to solve in efficient 

amount of time. 

As to solve resource allocation problem, we propose three heuristic strategies for 

peers to follow. The performance of the algorithms under different replication envi-

ronments are evaluated through simulations. The results show that HAF strategy 

outperforms the other schemes in most cases. 

There are some areas opened for further work. In this paper, we assume a closed 

replication system: fix set of peers join to replicate fix sets of files. In real systems, 

peers continuously join and leave, thereby removing old files and replicating new 

files. This dynamics brings in extra considerations: when peers join and leave the 

system, how do other peers react to such changes? How to detect the lost replicas 

in a distributed manner? 
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Figure 4.6: Simulations for bimodal peer availability (52.1 - 52.3). 



CHAPTER 4. DISTRIBUTED REPLICATION STRATEGIES 71 

Another possible extension work is to model file importance. Peers in a replica-

tion system can assign different importance values to different files. Qualitatively, 

more important files should acquire higher file availabilities than the less important 

ones. One possible way to model this extension work is to use effective availabil-

ity, which is a composite parameter of file availability due to replication and the 

related file importance, in the resource allocation problem 4.6. Consequently, the 

three proposed strategies need to cater for this new modelling. 

A final question is left for discussion. What makes peers cooperate? Rather 

than discussing the motivation of cooperation through incentives approaches, we 

discuss the necessary criterion of cooperation — why peers are willing to join in the 

first place? The answer of this question can provide supplementary arguments that 

are neglected in many previous studies. 

• End of chapter. 



Chapter 5 

Before cooperation: why do peers 
join? 

Summary 

Cooperation is a fundamental assumption in P2P replication systems. We 

propose an information sharing club to explain the rationale behind peers' 

joining decisions, which can account for the necessary condition of cooper-

ation among peers. 

5.1 Introduction 

The basic assumption in P2P replication systems is cooperation. However, the 

cost due to sharing invariably distracts users from sharing cooperatively. In this 

chapter, we focus on this cooperation assumption. 

We have discussed the weaknesses of some cooperation studies in chapter 2. In 

comparison, our model brings in a new angle that is complementary and somewhat 

orthogonal to these studies. Our work attempts to explain the "joining forces" 

of peers. Peers are characterized by their contributions and demands for different 

72 
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types of information goods. A peer's decision to join a club can then be related 

to the extent the club can satisfy the peer's interest (demand). This sheds more 

(at least different) insights to what brings peers together in the first place. Since 

cooperation is just a plain talk if peers are not willing to join, the results in this 

chapter provide a necessary condition for peers to cooperate. It is noteworthy 

that this condition is a direct consequence of peers' joining tendencies, which are 

intrinsic to any P2P systems. 

5.2 Information sharing club (ISC) model 

In general, P2P systems, emails, web bulletin boards and newsgroups can all be 

modelled as an information sharing club (ISC). In these systems, an information 

sharing platform must exist for peers to communicate and share. For example, 

Internet can be considered as such a platform for peers to exchange emails. 

A set of N peersi join the system. When a peer joins, lie brings in some 

information goods and is also able to access the information shared by the others. 

Compared with other studies [52, 51] which model the information goods as a 

single type of content, information goods in our model are typed and chunked, 

the same way that versions of different files are served in a file sharing system, 

or messages of various topics are hosted in a forum. Information chunks of the 

same type are not differentiated: an instance of information demand specifies the 

chunk type only and is satisfied by any chunks of that type, as when a request 

for a file is satisfied with any copies of it, or when information query returns any 

pieces of information of the specified class (e.g. as implied by the query criteria, 

for instance). 

As a result, each peer is characterized by the ways he demands and supplies the 

information goods. Here we denote the demand distribution function of any goods 

with type s of peer i as hi{s) and the corresponding supply distribution function 
iNote that we try to generalize the term peers here. For example, "peer" can be a single user in a bulletin 

board, or can be a computer that downloads files in a typical P2P system. 
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as gi(s), where «setS = {l’2，...} and S is the set of all types. If peer i brings in 

Ki information goods, then on average, peer i would bring in Kig {s) information 

goods with type s. As a result, for a club with membership Q C M, the total 

supply is: 

卯 ⑷ 会 Q c N (5.1) 

Without loss of generality, we assume the aggregate supply function g{s) = gj^{s) 

to be monotonically non-increasing. The type variable s may then be interpreted 

as a supply rank (s-rank). In other words, s = 1 and s = \S\ denote the most and 

the least supplied chunk types respectively. 

Likewise, we define the aggregate demand function h{s) = hj^{s) where 

M ^ ) ^ 〒 ！ ; f s ) , g c N 
l^ieg Mi 

as peer i generates demand instances at a rate of Mi chunks per unit time, drawn 

from distribution hi(s), s e S. 

Hence, for the current club membership C, the expected number of chunks of 

type s being shared would be given by iic(s) = n kc gc{s) where n = \C\ is the 

current membership size and kc = J2iec is the payload size averaged over 

the current club membership. Conditioning on the membership size, we have 

= nk g(s) (5.2) 

where k = KijN > 0 and N = |A/"| is the payload size averaged over all peers. 

We assume further that members' contents are drawn independently, which 

implies a Poisson distribution for the actual total number of type s chunks being 

shared. Subsequently demand instances for chunk type s have an average failure 

rate of e一如⑷=^-nkg(s)^ The average success rate of peer i,s demand being 

satisfied in a club of size n is therefore the success request rate, taken over all the 
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information goods s: 

M n ) ( 5 . 3 ) 

We make the non-rivalrous goods assumption here, as addressed in the intro-

duction (chapterl). This means that the demand from a peer will not reduce the 

overall information goods supply. 

5.3 An example: music information sharing club 

Tables 5.1 and 5.2 depict an example of six peers sharing music information of five 

different types. For simplicity, we assume identical payload sizes (identical Kis) 

and demand rates (identical M，s) so that the aggregate distributions are simple 

unweighted averages of the peers' distributions. Table 5.3 gives the resulting s-ranks 

(the rank of information goods according to aggregate supply g(s)) and p-ranks (the 

rank of information goods according to aggregate demand h{s)) of the five music 

types. The information may be news and messages about the different music types 

when the club is a discussion forum in nature, or musical audio files when it is a 

file sharing platform. 

Table 5.1: Distributions of peers' private pay loads, gi{s). 

P ^ Classical Oldies World Alternative 

Alfred 0.4 0.3 | 0.1 0.1 Q.i 
Bob 0.4 0.2 — 0.15 005 

Connie 0.3 0.3 ~02 o l o l 
David 0.2 0.3 0.3 0.15 005 

Eric 0.5 0.05 " 0 2 015 0 1 
Florence 0.1 0.4 0.1 

“aggregate supply, g(s) 0.317 0.258 0.18 0.125 0.12 
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Table 5.2: Distributions of peers demand, hi{s). 

Pop Classical Oldies World Alternative 

Alfred 0.1 0.4 0.3 0.1 0.1 
Bob 0.05 0.5 0.1 0.3 

Connie 0.1 0.2 0.3 ~02 ^ 
David 0.1 0.3 0.15 ^ 

Eric 0.1 ^ ^ o l 
Florence 0.2 0.3 0.1 0 2 

aggregate demand, h(s) 0.108 0.367 0.217 0.192 0.117 

Table 5.3: The supply and the popularity rank. •. . 
一 I 1 I 2 I 3 I 4 I 5 

Supply rank (s) Pop Classical Oldies World Alternative 
Popularity rank (r) Classical Oldies World Alternative Pop 

A peer's success rate would depend on the types of goods he demands on one 

hand, viz. hi(s), and the aggregate supply g{s) on the other. For instance, Alfred's 

average success rate is given by: 

PAl f red = 1 - ( 0 . 1 ( e — 6 ( 0 . 3 1 7 ) ) + 0 . 4 ( e — 6 ( 0 . 2 5 8 ) ) + … + ( U ( e — 6 (0 .12) )•) = q . G Q 

5.4 Necessary condition for ISC to grow 

Generally speaking, peer joining decision is related to the probability of successfully 

find a content with ISC. We make two simplifying statements here: (1) a peer would 

join as long as a single current request is met, and leave otherwise; and (2) any 

request comprises d> 1 instances of demand. In this chapter, we focus on the 

case d = 1, i.e. peers evaluate their joining decisions based on simple instances of 

demand. Further work on d > 1 can be referenced in [25 . 

The probability that peer i would join when membership is C is then Pq^i = pc,i 
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where pc,i is the probability that an instance of peer i's demand is satisfied when 

membership is C. 

Conditioning on the membership size n, the expected joining probability of peer 

i is 

Pi(n) = Pi(n) (5.4) 

Membership dynamics and content dynamics are closely coupled: as peers join 

and leave, they alter the total shared content, inducing others to revise their 

join/leave decisions. The membership size changes always unless the two-way flows 

between members and non-members are statistically balanced. 

Consequently, we may define a statistical equilibrium membership size Ueq as the 

solution of the balance condition 

{N - n e q ) P { n e g ) = � ( 1 - P(jleq)) 

^ Hne, ) = ^ (5.5) 

where P(n)=去 J^Z^i ^iM is the joining probability averaged over all peers and 

all possible memberships of size n. Note that equation (5.5) is in the form for a 

fixed point equation which is indicative of the coupled dynamics of membership 

and content. Further, followed from equation 5.5, the stability condition for a fixed 

point Ueq is simply 
dP(n) 1 

< (5.6) 

Note that an empty membership n = 0 is always a fixed point because P(0) = 0 

according to equation 5.3. The following theorem indicates the necessary condition 

for this empty club to be unstable. 
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Theorem 5.4.1 (Empty Membership Instability). Empty membership is not stable 

and autonomous club growth is induced if: 

n = Nk Y,h(s)g{s) > 1 • (5.7) 
s 

In our model, we regard empty membership instability as a necessary condition 

for autonomous growth from an empty or small club membership. The above the-

orem (The proof can be referenced in appendix A.0.2) implies that favourable con-

ditions are large k (contribution from members) and a large value of ^ ^ h(s)g{s), 

an inner product of h{s) and g{s). Note that 

风 � =I H I ll^ll • {h{s),g{s)) 
s 

where \\h\\ and are the 2-norms of h{s) and g{s) respectively, and (h{s),g(s)) 

is their normalized inner product which measures their similarity, or goodness of 

match. Other favourable conditions are therefore a good match between aggregate 

demand and supply, and skewness — or small spread - of their distributions over 

the chunk types. 

5.4.1 Music information sharing club example with simple requests 

Figure (5.1) shows P{n) for the music information sharing club example in sec-

tion 5.3 for four different k values. 

For k = 2, the model predicts that an empty club is unstable. Any disturbance, 

e.g. voluntary sharing or contribution, would trigger it to grow. The club would 

stagger rapidly towards the fixed point n = 5.1 — where P{x) — 5.1/6 = 0.85 and 

sustain itself around there. The peers are active members for over 80% of the time 

on average. For /c = 1, an empty club is again unstable but the club sustains itself 

at a smaller average size of n = 1.9. With less supply and/or less efficient search 
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Figure 5.1: The music information sharing club example. 

function, peers are active only around 30% of the time on average. For k = 0.5， 

an empty club now becomes stable. The number of joining peers are always more 

than that of leaving members such that a positive membership is always transient. 

Peers are almost always inactive. Finally k = {N ^^ h(s)g(s))~^ = 0.808 is the 

critical case when an empty club is just stable/unstable. 

It is important to note that the above analysis is of the average case. The 

actual dynamics of a realization of the club membership over time as C{t) C M 

would sketch a sample path ( | C � |，_Pc⑷⑷）that staggers around the corresponding 

P(n)2. However, the family of P{n) curves for all tt values define a direction field 

^The staggering, or departure from the average case, would depend on the extent and rate of mixing, viz., the 
stochasticity of the club membership. Generally speaking, a large number of active peers with strong flows both 
in and out of the club would stay close to the average case with less staggering. Otherwise a sample path may 
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of average directions of the forces that act upon any sample paths. The average 

direction is towards growth above the n/N diagonal, and towards shrinkage below, 

as shown in figure (5.2). In other words, the n/N diagonal is a boundary between 

two phases of the club dynamics, a growth phase for the club states above it and 

a shrinkage phase for those below. This is a powerful way to visualize the club 

dynamics, especially when t t may vary over time in more complex cases. 

1 I I 1 1 7 

\ f / ^ ^ ^ _ - - 一 

Growth Phase / 
0.8 一 i A J / _ . " / / - - z , 

^ o.e J Z / , - Z , � 

i " / � ‘ 广 ^ -
0.4 , / -

/ / Shrinkage Phase 

/ / / / 

0 V 一 ± _ l _ i : îJ 二 L ^ t̂ ^ 
0 0.2 0.4 0.6 0.8 1 

Normalized number of peers n j N 

Figure 5.2: Phase diagram of club dynamics with direction field, 

actually get stuck with a niche self-sufficient club that sees neither peers joining nor members leaving. 
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5.5 Concluding remarks 

In this chapter, we have presented an ISC to model peers' join and leave behaviour: 

peers join to bring in extra information goods to the club and demand the goods 

at the same time. By analyzing peers' dynamics as a statistical process, the club 

membership dynamics can be treated as an osmosis of peers joining and leaving 

the club. When the club membership is too large, the leaving force of the club, as 

determined in equation 5.5, would push the club to a smaller size and vice versa. 

As a result, the club will statistically stabilize at a club size n^q. 

In particular, we are interested in the threshold condition when the club is in 

empty state, i.e. n = 0. If the control parameter is strictly above the threshold of 

1，this empty club is not stable, and hence induces an autonomous club growth. 

This implies this threshold'governs a necessary condition of such a club to start up 

and hence provides supplementary explanations for understanding cooperation. 

Notice that ISC is a statistical analysis of club formation and growth process. 

In contrast to other incentive based analysis [51，50, 52], we are not interested in 

a single peer's instant join and leave decision. As a result, a club at different snap 

shots of time may consist of different membership C. The direct consequence is 

the existence of deadlock situation. For example, a club satisfying t t > 1 may still 

not be able to form and grow because the set of peers at a particular instant do 

not have enough interest overlap (while the average of all the peers is enough). 

However, as the original population size of the club J\f gets large, we would expect 

probabilistically, there is a certain high chance that enough peers could come up 

together at certain point of time, and converge to the average case analysis. 

Another issue in this ISC model is its non-rivalrous goods assumption. As a 

result, free riding is no longer the curse of P2P systems as peers are not harmed by 

the existence of those free riders. In cases where the non-rivalrous assumption is 

not appropriate due to significant sharing costs, e.g. in processing, storage and/or 

network bandwidth, penalizing free-riding would be more necessary in order to 
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reduce loadings of free riders on the system and the contributing peers. A possible 

corresponding extension of the ISC model is to incorporate the natural reduction 

in availability of information goods as their demand increases. Remaining issues 

like incorporating social cost due to sharing [58] and searching cost [26] are opened 

for further studies. 

• End of chapter. 



Chapter 6 

Conclusion 

Summary 

Concluding remarks. 

This thesis studies three issues in P2P replication systems: performance of erasure 

code replication, distributed replication strategies and cooperation among peers. 

To start with, a literature review of P2P replication systems is presented. From 

the development of these systems, we understand heterogeneity of peer availabil-

ities. This heterogeneity makes replication difficult, as different permutations of 

replica placements will result in different file availability distributions. This is ex-

emplified in the introduction. We also review the performance related studies of 

replication. Meanwhile, P2P replication systems require peers to be cooperative. 

As incentive mechanisms and micropayment approaches are the common schemes 

to increase cooperation, related studies are presented. 

After reviewing these studies, we begin the discussions of our work. Firstly, we 

review and compare two replication approaches: whole file replication and erasure 

code replication. Many previous studies show that erasure code replication can 

obtain higher file availability with lower storage cost than whole file replication. 

However, this result is based on high peer availability assumption. Our in-depth 
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analysis shows that when the peer availability is low enough, whole file replication 

performs better. Under homogeneous peer availability condition, we obtain a sharp 

transition threshold such that when (storage overhead - peer availability) product 

is less than 1, erasure code replication performs worse and vice versa. Furthermore, 

even if the threshold is satisfied, our sensitivity analysis reveals that erasure code 

replication is too sensitive to the parameter variations. These results provide some 

careful arguments for judging the use of erasure code replication in P2P replication 

systems. 

We then move on to the second part of our study: replication strategies in P2P 

replication systems. The difficulty of the resource allocation fundamentally origi-

nates from the heterogeneity of peer availabilities, in which many related studies 

fail to account for. We formulate this allocation problem as a standard integer 

programming problem, and point out that it is difficult to solve in feasible amount 

of time. Being motivated by this, we propose three heuristic replication strate-

gies, random strategy, grouping partition strategy and highest available first (HAF) 

strategy to solve this problem. These strategies can be carried out by peers in 

P2P replication systems in distributed manners, under the assumption that peers 

are cooperative in replication. Performance of these strategies are studied through 

simulations and we find that HAF strategy performs the best in many replication 

environments. 

Finally, the cooperation assumption in P2P replication systems is reviewed. We 

do not follow the incentive mechanisms or micropayment approaches because the 

assumptions behind these studies are too restrictive. Instead, we investigate the 

origin of P2P systems: why would peers join together and share in the first place? 

We answer this question by proposing an information sharing club (ISC) model. In 

the model, the probability of a peer joining the club is related to the probability that 

he can successfully obtain the information goods from the club. By establishing 

this relation, we obtain a composite control parameter such that the club grows 
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when this control parameter is above a sharp threshold of 1，and shrinks otherwise. 

This result provides a necessary condition for explaining the formation of such a 

club, and provides a supplementary explanation for cooperation behaviour. 

P2P systems draw much attention in these years. The P2P replication system is 

one of these systems that exploits the power of connected peers. While the idea is 

promising, many challenges exist. This thesis serves as a self contained document 

to answer many questions that are neglected in previous studies, if not all. 

• End of chapter. 



Appendix A 

Proof in this thesis 

Summary 

This is a summary of the proof in the thesis. 

Proposition A.0.1 (Erasure code bound). 

Proof. Case I: ij, > l / Q 

From [53], define the loss probability of a file with b erasure coded block L5 as: 

L � p y ( i i 广 (A.i) 

where, 

A + � = 1 (A.2) 

Let X be a binomial random variable having mean j2 = Qhfi and variance 

cr2 = Qbfi{l - 11). Then Lt is the sum probabilities of the random variable X with 

values 0 to 6 — 1. Similarly, A^ is the sum of probabilities of random variable X 
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with values b to Qb. Then: 

Lb = E P W l 严 (A.3) 

=P[X - 0) + P[X = 1) + . . . + P{X = 6 - 1 ) (A.4) 

=P[X < b) (A.5) 

=P{X<li-{fi-b)) (A.6) 

fi > l/Q flbfj, — b>0=^fL-b>0, then by Chebysbev inequality [59]: 

< 叫 ; 2 - 的 2 • ( A . 7 ) . 

QbjLi(l — ji) 
= r ^ i 1 ) + - 6)2 ( .8) 

‘ = (A 9 � 

0 — o o (A.IO) 

Therefore, if > 1 /0 , A；, 1 as 6 ^ oo. 

Case II: /Li < l / n 

From Case I, converge to 1 as /i > 1/0. We are going to prove A^ converge to 

0 as /i < 1 / a 

Similarly, 

^ = E ( r ) 务“广 （A.ii) 

= P { x = b) + P{X = 6 + 1 ) + . . . + P(X = nb) (A.12) 

= P { x > b) (A.13) 

= + (A.14) 
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/i < 1/Q b — Qb/j, > 0 = > 6 - / 2 > 0 , then by Chebysbev inequality: 

阶 " + ( " ) ) ^ ？ ( A . 1 5 ) 

= 嚇 1 ) /A 16) 
_ - fi) + {b - nbiiY 

= � 1 ) /A 17) 

— 0 as 6 oo (A.18) 

Therefore, if ^ < l/r2, ^ 0 as 6 —̂  oo. • 
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Proposition A.0.2 (Empty Membership Instability). 

Proof. Consider: 

飞 N AT 

H n ) = J j ^ m = ^ E p . W . (A.19) 
1=1 i=l 

(A.20) 

Differentiating with respect to n: 

N 学 = f (A.21) 
on ^ on . 

1=1 • 

^ ？警=fx � � ] (A.22) 

i—l 

Therefore, conditioning on n = 0, we have: 

— N 
= [9(s)] = N j 2 h { s ) g ( s ) (A.23) 

？ 1 = 0 1 = 1 s 
o ^ - 秘 (A.24) 

n==0 5 . 

Recall that, the stability condition for a fixed point rieq = 0 is given by equation 5.6 

in chapter 5: _ 
dP{n) 1 , � 

是 。 < I (A.25) 

Hence a club at n = 0 is not stable if: 

7T = N k g(s) > 1 . (A.26) 
S 

• 

• End of chapter. 
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