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Abstract 

Visual servoing is a robot control method which uses visual information as control 

feedback. The research on visual servoing has been drawing extensive attention in 

recent years. To achieve high performance control, the camera intrinsic parameters 

and the homogeneous transformation matrix between the camera coordinate frame 

and the robot coordinate frame have to be calibrated accurately. However, the 

camera calibration process is tedious. Also, most research works focus only on the 

kinematics, neglecting the dynamic effects which limit the performance of 

controllers. 

To target to the problems mentioned above, we propose a new image-based 

visual servo controller. The controller assumes that the camera intrinsic parameters 

and the homogeneous transformation matrix of the camera coordinate frame with 

respect to the robot coordinate frame are totally uncalibrated. Also, to achieve high 

performance of controller, full robot dynamics has been taken into account. The 

controller is proven to be asymptotically stable in image position error for set-point 

control. Also, the uncalibrated parameters can be estimated to the true values up to a 

scale by an adaptive approach. The performance of this new controller is mainly 

analyzed by Lyapunov theory, simulations and simple experiments. However, more 

and comprehensive experiments need to be conducted to verify the performance and 

the behavior of the controller. 

The objective of this thesis is to conduct comprehensive experimental study 

on our dynamic adaptive controller for uncalibrated visual servoing. The 

experimental work is organized into two main parts. First, we compare the 

performance of the dynamic adaptive controller with a kinematic visual servo 

controller. Second, we investigate the properties of the new controller. 
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First, the properties of the proposed controller are investigated. Adjusting the 

proportional gain (P-gain) and the derivative gain (D-gain) of the controller has been 

experimented. Higher P-gain can shorten converging time, while higher D-gain can 

reduce oscillations. Varying adaptive gains are also experimented. To ensure fast 

convergence of adaptive parameters, non-unified adaptive gain should be 

implemented. Comparison between presence and absence of gravity compensator has 

been conducted. It is difficult to compare because the masses of robot links are too 

small. Comparison between controller using previous image positions and controller 

only using current position has been conducted. Theoretically, there should be at 

least seven image points to guarantee the adaptive parameters to be converged to the 

true values up to a scale. However, due to the large sampling period of the system, 

the parameters may not be converged to the true values up to a scale. 

Then, we compare the dynamic adaptive controller with a kinematic 

controller. Converging path for dynamic controller is not smooth due to friction. 

Then, a kinematics controller with the same desired trajectory in different motor 

controllers is experimented. The performances differ greatly, which show that 

performance of kinematics controller is limited by the performance of motion 

controller. 
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摘 要 

視覺伺服是一種使用視覺訊息作爲反饋的機器人控制方法。視覺伺服的硏究近 

年備受注目。攝影機的內部參數、攝影機坐標和機器人坐標之間的轉換矩陣皆 

需要校準，以達至高效能控制。視覺伺服具挑戰性的是繁複的校準過程。另 

外，大多數的硏究只集中於運動學而忽略動力學效應，這會限制控制器的性 

能。 

針對上述的問題，我們發展了新的圖像基視覺伺服控制器。這控制器是在 

攝影機的內部參數、攝影機坐標和機器人坐標之間的轉換矩陣皆沒有校準的情 

況下運作。另外，我們也考慮機器人動力學的影響，以達至高效能控制。這控 

制器已被證明圖像位置誤差可漸進收斂。同時，自適應算法可將沒有校準的參 

數估計至距離真實値有一比例。我們已透過Lyapunov理論、仿真和簡單的實 

驗來核實這控制器的效能。然而，這控制器需要更多實驗，以核實這控制器的 

性能和特性。 

這篇論文的目標是要替我們的動力學自適應控制器進行進一步實驗。實驗 

的結果展示如下。同樣的運動學控制程式在不同效能的馬達控制器上，有相當 

不同的效果。增加比例比可以增加圖像位置誤差趨近速度，而增加微分比可以 

減少震擾。爲了讓自適應參數快速趨近，應該使用非統一性的自適應比。重力 

保償可以除去常態圖像位置誤差。理論上，有七個圖像位置點可以確保自適應 

參數趨近至距離真實値有一比例；然而，實際上自適應參數可能未能趨近至距 

離真實値有一比例，因爲系統抽樣的週期時間較長。 
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Chapter 1 

Introduction 

1.1 Visual Servoing 

Visual servoing is a robot control method that uses visual information as control 

feedback. Then, the pose (position and orientation) of the robot's end-effector can be 

controlled by visual information. With the enhancement of vision capability, robots 

can perform tasks where the work environment and object placement cannot be 

accurately controlled. [1] 

The usage of vision with robots can be traced back in early 1970s. 

Traditionally, visual sensing and mechanical manipulation are arranged in open-loop 

method, "looking" and then "moving". [1] The performance of operation depends 

directly on the accuracy of the visual sensor and the manipulator. In 1973, Shirai and 

Inoue [2] proposed the use of vision as a control feedback to increase the accuracy of 

operating task, which is crucial for most applications. In 1979, the term "visual 

servoing" has been introduced by Hill and Park [3] to distinguish their approach from 

earlier “blocks world" experiments where the system alternated between photo 

taking and moving. The research progress of visual servoing has not been very fast 
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before 1990s. In 1990s, there has been a remarkable increase in published research 

works due to a rapid advancement in computational power. 
J 

1.1.1 System Architectures 

The classification of visual servoing architectures has been introduced by Sanderson 

and Weiss [4], in 1980. Visual servoing architectures are mainly classified as 

position-based visual servoing and image-based visual servoing. 

1.1.1.1 Position-based Visual Servoing 

Position-based visual servoing is a visual servoing method which converts the 

extracted image information to estimated pose of the manipulator, in 3D Cartesian 

space. The estimated pose becomes the feedback signal for the controller [1]. The 

architecture is shown in Fig. 1.1. 

Robot controller Camera 
Robot / \ r ^  

Desired 3D . \ 
3Dpose pose Cartesian Joint p i  

c = � i ：：!!!!!̂  r u X p ^ ^ - A / \ 

T — n — ^ ^ c b y 
Joint controllers Power amplifiers 

Joint angle sensors 

Estimated Image feature  
3D pose 3D pose positions Image feature Image 

estimation ^ extraction 

Figure 1.1: Architecture of position-based visual servoing. 
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The main advantage of position-based visual servoing is that the task 

information is expressed in terms of Cartesian space. Obstacle avoidance and 
t 

singularities avoidance can be easily incorporated with the system [5]. The 

disadvantage is that the estimation of the pose depends greatly on calibration of 

cameras. The system could become very sensitive to the calibration error [1]. 

1.1.1.2 Image-based Visual Servoing 

Image-based visual servoing is a visual servoing method that feedbacks directly from 

the 2D image information. The calculation of an image Jacobian or a composite 

Jacobian (the multiplication of image Jacobian and manipulator Jacobian) plays the 

crucial part of the controller. The architecture is shown in Fig. 1.2. 

Robot controller /v Camera 
Desired Robot X \ in^  

image I f ^ ^ ^ N v \ 7 
positions Image Image Jomt i—' / 

space * ^ L \ 
control _ _ ^ � ^ ^  

- ‘ law ^^^^ I I 

Joint controllers Power amplifiers 

Joint angle sensors 

Image feature  
positions Image feature Image 

extraction ^ 

Figure 1.2: Architecture of image-based visual servoing. 

The main advantage of image-based visual servoing is the positioning 

accuracy is more robust than in position-based visual servoing, as the image error is 

being used directly as the feedback of the controller. The main disadvantage is that 
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there may have singularities in calculating inverse Jacobian, which may cause the 

visual servoing system becoming unstable [1]. 

1.1.2 Camera Configurations 

In visual servoing system, there are two types of camera configurations could 

be implemented. They are the "eye-in-hand" configuration and the "eye-and-hand" 

configuration. 

"Eye-in-hand" configuration consists of the camera attached on the end-

effector of the manipulator (Fig. 1.3). The objective task is to move the camera so 

that the target object is appeared in a particular position in the image. In this 

configuration, the relationship between the camera frame and the end-effector frame 

is known. 

人 \ Target 
R o b o t / \ \ ^ object 

入 \ Camera 

〇 

effector 
[ I 

Figure 1.3: Eye-in-hand camera configuration. 

"Eye-and-hand" configuration consists of the camera fixed in the working 

environment (Fig. 1.4). The task is to move the manipulator so that the pose of the 

manipulator approaches to the desire image position of the image plane. In this 
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configuration, the relationship between the camera frame and the manipulator base 

frame is known. 
i 

R o b o t / ^ Camera 

I I 
Figure 1.4: Eye-and-hand camera configuration. 

For both types of camera configurations, calibrations must be preformed to 

determine the intrinsic camera parameters and the extrinsic parameters, before visual 

servoing task operations. Intrinsic parameters include focal length, pixel scaling 

factors, and the coordinate of the optical axis on the image plane. Extrinsic 

parameters include the relationship between camera frame and end-effector frame, 

for eye-in-hand configuration, or the relationship between camera frame and 

manipulator base frame, for eye-and-hand case [1]. 

1.2 Problem Definition 

For both eye-in-hand and eye-and-hand camera configurations, calibration is very 

crucial for visual servoing performance. Although image-based visual servoing, as 

described in the above section, is less sensitive to the calibration error, the Jacobian, 
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which plays a crucial part in control calculation, still depends on the intrinsic 

parameters and the extrinsic parameters. If the intrinsic and extrinsic parameters have 

not been estimated properly, the stability and the performance may be unpredictable. 

Therefore, estimating for uncalibrated parameters is important of the work of this 

thesis. 

Robot dynamics are often ignored in most development of visual servoing 

system. However, if only kinematics is considered, the performance would be limited 

due to neglecting the effects by nonlinear robot dynamics. Therefore, to achieve high 

performance for visual servo system, taking consideration for nonlinear robot 

dynamic effects is another focus of the work of this thesis. 

The depth estimation is also needed for visual servoing control. For a 

monocular visual servoing system, depth cannot be measured directly. The depth is 

included in the Jacobian for image-based controller, which is crucial for control 

calculation. As depth varies with robot manipulator movement, the estimation of 

depth becomes challenging. The estimating of depth is also a focus of the work in 

this thesis. 

1.3 Related Work 

In early research of visual servoing, the intrinsic camera parameters, the extrinsic 

parameters, and the depth, are assumed to be known and accurately calibrated [6]. 

Nowadays, there has been significant amount of research works on image-based 
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uncalibrated visual servoing control. For those works, identification of the 

parameters has to be done in an off-line process [7]. However, visual servoing 
i 

process with off-line parameter identification is not robust to noisy measurements of 

parameters. To solve this problem, some control methods with on-line parameter 

identification are proposed. Papanikolopoulos et al. [8] proposed an algorithm based 

on on-line estimation of relative distance of the target with respect to the camera. 

They also proposed an algorithm to estimate the depth related parameters [9]. 

Hosoda et al. [10] proposed the Broyden updating formula to estimate the composite 

Jacobian. Yoshimi et al. [11] proposed a method to estimate the image Jacobian by 

utilizing geometric constrains. Feddema et al. [12] proposed a method with the use of 

ARMAX model and estimated the parameters. However, the research works 

mentioned above do not consider robot dynamics effect. 

To achieve high performance in visual servoing control, consideration of 

robot dynamics effect has been introduced by Corke and Good [13，14]. Kelly et al. 

[15] developed an eye-in-hand system with set-point regulation controller. The 

approach assumes that the robot dynamics and the depth between camera and object 

are available. In [16], Kelly also designed an eye-and-hand set-point regulator which 

estimates the orientation of the camera. However, the controller requires the 

difference between the estimated orientation and the true orientation to be within 

( - f , f ) . Also, the knowledge of object depth and camera intrinsic parameters is 

required. In [17], Maruyama and Fujita developed position set-point controllers for 

eye-in-hand configuration. However, the controllers assume the camera orientation, 

the camera intrinsic parameters and the object depth are known. Zergeroglu et al. [18] 

proposed a uniformly ultimately bounded (UUB) set-point regulator for the eye-in-
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hand camera configuration. However, the camera orientation is restricted in the 

range (-90°,90°). 
i 

The unknown depths still play an important role in the image Jacobian matrix 

of visual servo control system. The visual servoing system may still achieve stability 

without the true knowledge of depth; however, depth is still important for object 

handling. Also, the depth observability determines the success of parameter 

estimation. Some researchers determine depth by using two cameras [19, 20]. Such 

method is called binocular stereo visual servoing. The variation of this approach is 

using different image positions (more than two), and then the depth is determined by 

least square technique. This is called active monocular stereo approach [21]. 

However, these methods estimate the depth off-line. To achieve high performance 

visual servoing, some researchers have proposed some methods to estimate the depth 

on-line [16, 22-23]. However, the proposed methods consider planar robot 

manipulators moving parallel to the image plane. The depth is considered as constant 

parameters. Malis et al. [24, 25] have proposed a new approach on visual servoing, 

which is called 2 1/2 D visual servoing. However, robot dynamics are ignored. 

Cheah et al [26, 27] have proposed feedback control laws for set-point control with 

uncertain kinematics, Jacobian matrix, and dynamics. In [24, 28-31], the researchers 

proposed adaptive methods to estimate depth on-line; however, the camera intrinsic 

parameters are assumed to be known. Kalman filter is another method to estimate 

depth on-line [1，32-33]; however, only depth is considered unknown in these works. 

As seen from above, most of the visual servoing methods do not consider 

totally uncalibrated conditions. Only few of these approaches estimate all camera 
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intrinsic parameters and extrinsic parameters online. Also, only few of these methods 

consider robot dynamics. 

1.4 Contribution of This Work 

The purpose of this thesis is to investigate the performance of a new dynamic 

adaptive visual servo controller by a series of experiments. The performance of the 

new proposed controller has been analyzed by Lyapunov theory, simulations and 

brief experiments. More comprehensive experiments need to be conducted to verify 

the performance and behaviour of the controller. The contributions of this thesis are 

summarized as the following: 

1. Investigate the properties of our new dynamic adaptive visual servo controller 

through a series of experiments. The properties are studied by experiments 

comparing performances 

a) among different control gains (proportional gains and derivative 

gains); 

b) among different adaptive gains; 

c) presence and absence of gravity compensator; 

d) between system using seven previous image positions and current 

image position only. 

2. We compared the performance of our new dynamic adaptive visual servo 

controller with a kinematic visual servo controller through experiments. 
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1.5 Organization of This Thesis 

J 

In Chapter 2，system model for visual servoing, including robot kinematics, robot 

dynamics and camera model are reviewed. In Chapter 3, the design of uncalibrated 

visual servoing controller is discussed. In Chapter 4，extensive experimental results 

are studied. In Chapter 5, the work done in this thesis is concluded and future work is 

suggested. 
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Chapter 2 

System Modeling 

In the computational process in visual servoing control system, several aspects, such 

as transformation between different coordinates, system kinematics, robot dynamics, 

and camera model are involved. In this chapter, the basics of the mentioned aspects 

are to be reviewed. 

2.1 Coordinate Frames 

Xc 

^ / Camera frame 

Robot manipulator ^End-effector 
base frame frame 

Figure 2.1: The coordinate in visual servoing system. 
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Fig. 2.1 shows a typical visual servoing setup with eye-and-hand configuration. The 

three coordinate frames are, 

Eg : the robot manipulator base coordinate frame, 

Y^e : the end-effector coordinate frame, 

: the camera coordinate frame. 

Generally, transformation relationship between coordinates is represented by a 4 x 4 

homogeneous transformation matrix. The matrix ^T^ e SH^x*，which denotes the 

transformation of the robot manipulator base frame with respect to the camera frame, 

has the following form: 

cj = CRB c PB 
厂 0 1 

where ^R^ e SR̂""̂  denotes the rotational matrix of the robot base frame with respect 

to the camera frame, ^ p^ e 91 denotes the position of the origin of the robot base 

frame with respect to the camera frame. Position in camera coordinate frame can be 

expressed as: 

X X (2.1) 
1 1 

where ^X e SĤxi and ^X e are the position vectors with respect to the camera 

coordinate frame and the robot manipulator base frame, respectively. 
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2.2 System Kinematics 

Kinematics is the science of motion which refers to all the geometrical and time-

based properties of the motion, without regarding to the forces and torques that cause 

the motion. The forward kinematics of a robot manipulator: 

'X,=f{q) (2.2) 

where ^X^ = ^Je ^^e ^Ye ^Pe represents the position and 

orientation of the end-effector with respect to the base frame, and q G ST î represents 

the joint-space coordinates of the robot manipulator with n joints. The first three 

components of ^X^ represents the position vector, and the other three represents the 

orientation. 

The velocity relationships between joint-space coordinates and Cartesian-

space coordinates (with respect to robot manipulator base frame) can be obtained by 

taking derivative on both sides of (2.2): 

义 = / ( 咖 (2.3) 

where ^X^ is the velocity of the end-effector with respect to the robot manipulator 

base frame, q is the joint velocities, and J(q) is the robot Jacobian matrix of the 

robot manipulator. 

The velocity of end-effector with respect to the camera frame can be 

expressed as: 

CXe: CRb 0 八 參 A 八 彻 （2.4) 

L 0 尺 i J 
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Then 

一 咖 (2.5) 
i 

where J(q) is assumed to be square and nonsingular. 

2.3 System Dynamics 

Dynamics is the science on the forces and torques which cause the motion. The 

dynamics of a frictionless serial n-link manipulator is expressed as: 

T = H(q)q + C(q, q) + G(q) (2.6) 

where r e 91 represents input joint torques, represents the inertia 

matrix, C(q,q)e SR”xi represents the vector of centripetal and Coriolis torques, and 

G(q) e represents the torques caused by gravitational force. 

The visual servoing controller presenting in the later chapters is based on 

some properties of robot manipulator dynamic equation in (2.6). The properties are 

as follows: 

Property 1 The inertia matrix H{q) is symmetric and positive definite which is 

both upper bounded and below bounded: 

where a and P are any scalars satisfying 0<a < j3. 

Property 2 The centripetal and Coriolis torque vector C{q,q) can be rewritten as: 
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where H{q) is the time derivative of the inertia matrix and S{q,q)e ST""” is 

a skew-symmetric matrix. 

Property 3 The gravitational torque G{q) verifies 

\G(q)\\ < go 

for some hounded constant < 0. 

Property 4 The dynamic equation in (2.6) can be linearized as follows : 

H(q)q + C{q, q) + G{q) 二 (仏么 q)^ 

where e SR敝i represents a vector of m uncertain physical dynamics 

parameters and W^(q,q,q)E represents the regressor matrix that 

contains known functions which depend on q ’ q and q. 

2.4 Camera model 

The study of the relationships between the robot frame and the camera image frame 

is important for performing visual servoing. In computer vision communities, variety 

camera projection models are being used. For example, perspective projection is the 

model which is most commonly used. Affine projection model is an approximation 

of perspective projection model. Orthographic, parallel, weak-perspective and 

paraperspective projection models are derived from affine projection model. The 
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visual servoing controller presenting in later part of this thesis is based on the 

perspective projection, which is presented in the following. 
t 

Z 

C y Z 

/V , Z ^  
Q A一一’’ Physical retina 

Camera 一一 ^ 
coordinate frame ^ ^ ^ h ‘ ‘ 

^ ^ ^ r V ^ • 
•^c r A： 

Normalized World coordinate 
，r image plane frame 

Figure 2.2: Perspective projection 

Define position P in the real world with respect to the camera frame 

as ^X = [xc yc Zc] • The relationship between position P and its projected 

position in the image plane as described by the perspective projection model (Fig. 2.2) 

can be expressed as the following: 

Xc 
"w] J _ r A - JK �" o 0 (2 7) 

_ v � Z c L 0 A / s 却 Vq 0 �Z c 
1 

where the vector [u vf represents the projected image position, u^ and v � a r e the 

coordinates of the principal axis, f is the focal length, k^ and k^ are the 
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magnification factors in u and v directions respectively, and (p is the angle between 

the image axes u and v . Re-arrange equation (2.7) becomes: 
t 

Xc 
— A ^ c o s 叫 ^^ (2 8) 

Define � =J K , a^ 二 and y = -fk^ cos(p, for simplicity. Usually, 

the image axes can be assumed to be perpendicular with each other. Then (2.8) 

becomes: 

_叫二卜•] Zc (2.9) 
A � L o «vj 

Take time derivative on both sides of equation (2.9): 

p ^ Z c - ^ c ^ c ] 「丄 0 � i / 
叫 zi 二卜。pc ^c 夕： (2.10) 

V 0 a, yc^c -yc^c 0 a, ^ 1 _ . 
_ � L V� L —‘ li ““ '7 

_ Ĉ J L ^C ^c J 

Equation (2.10) describes the relationships between velocity on image plane and 

velocity on real world, with respect to the camera coordinate. 
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2.4.1 Eye-in-hand Configuration 

In eye-in-hand camera configuration, the camera frame moves with the end-effector 

as the environment is static. The velocity of a point with respect to the camera frame 

is expressed as [8]: 

c x = - T - Q x C x (2.11) 

where T and Q are the translational velocity and the angular velocity of the camera, 

respectively, with respect to the camera frame. Qx^X can be rewritten as: 

_ 0 Zc -ycJ^x 
Qx'^X = k C X ) a = - Z c 0 jCc 0)� (2.12) 

_ Jc --^c 0 � [ _ ( 

where k{-) is a function which performs cross product. Then equation (2.11) can be 

re-written as: 

yc = - Ty-ZcCO,+XcCO^ (2.13) 

J c j [̂ z 

Substitute equation (2.13) into equation (2.10) and re-arrange becomes: 

� • 1 � — 0 \T.+ZcC0y-yc(0~ 
u a^ 0 ^^ Zr rr. 
V 0 以V A 1 ' 
L 」 L "TT T\+yc�rXcCOy 

_ ĉ ĉ J*-

丄 0 Ĉ̂ C 1 + _ >V Ty 
0 ] Zc 4 气 ^c ( (2.14) 

_0 a J 丄 _ _ h . Zc ^c^c ^ �X 
2 2 2 

一 Ĉ Ĉ V ) ^C ^C J �y 
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Then, equation (2.14) can be re-written as: 

「 〜 n 氏 B“BV B^ a^Bl T^ 
� " 1 0 -a^ T 
" 二 Zc ^c 以 V � � “ = J c ‘ (2.15) 

L � U a^ + 
_ Zc Zc ^U ^U �OJy 0)y 

Now transform the camera velocity from with respect to camera frame to with 

respect to the manipulator base frame. The transformation can be expressed as: 

•T: 
Ty 

T , J ' R b � 3 x 3 ]卜 3 - k C R / X , ) j T , l ( 2 1 6 ) 

where『丑=[r份 T̂ ^ T^^^ and = S u b s t i t u t e equation 

(2.16) into equation (2.15): 

. v j " IO3.3 h l ^ J l ^ J • 

where J^ is the image Jacobian matrix. 

To ensure the vector [r^ Q ^ f can be fully determined, at least three image 

feature points are required. With n image feature points, redefine 

/ ... Then, equation (2.17) becomes: 
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Vj 「 1 「 1 
. ^Ex r 7 1 Tex 
u) J “ 

L rri 51 rrt 

V. ；、人 2 7 
ii, = J , '' = 均 (2.18) 

V3 : 
： � J � 
• J sn , � 
. -�El-

Combine equation (2.18) and equation (2.3)，becomes: 

i = j / x , = j j ( q ) q (2.19) 

where i = [ui v̂  ... u^ denotes velocities on image feature space. Joint-

space velocities can be obtained by taking pseudo-inverse of the image Jacobian J^ 

and the robot Jacobian J(q): 

q = J\q)J：̂  (2.20) 

where J: and J^(q) denote pseudo-inverse of 人 and /⑷，respectively• 

The image Jacobian matrix J^ consists of the unknown camera intrinsic 

parameters such as focal length, magnification factors, principal axis position, 

distortion coefficients, and consists of the extrinsic parameters such as the translation 

and rotation between the camera coordinate frame and the robot base coordinate 

frame. 

Equations (2.19) and (2.20) show the velocity relationships between image 

feature space and the joint space. The image Jacobian matrix J^ is highly nonlinear 

due to perspectivity, radial lens distortion, and quantization between camera and end-

effector frame. The robot Jacobian J{q) is a highly coupled and nonlinear function 

2 0 



of joint angles. Some researchers have proposed to estimate a constant matrix on-line 

to approximate the composite Jacobian matrix by adaptive schemes. 
I 

2.4.2 Eye-and-hand Configuration 

Assume the end-effector moves in a translational velocity T^ and an angular velocity 

Q^e with respect to the robot base frame. Suppose there is a point P in the end-

effector, where ^r is the coordinate of point P with respect to the origin of the end-

effector frame. The velocity of point P with respect to the base frame can be 

expressed as: 

= + (2.21) 

Substitute equation (2.21) into equation (2.10): 

- ' ] = 丄 [ : “ 。 ( 2 . 2 2 ) 
_ V � Z c L O 万V」 B之 

Similar as the previous sub-section, equation (2.22) can be re-arranged as: 

� _ ! � —I � n � _ 
" = 丄 ^ 0 B̂  c 尺 . . - T e Te 

J ) �小 “ V 民 」 LQe� 

To have the velocity vector [r^ Q ^ J being observed fully, three or more image 

feature points are required to attach on the end-effector. For visual servoing system 

with multiple image feature points, equation (2.23) is expressed as follows: 
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� 

Vo r- —1 J f^ 1— —I 
L rji S L r-p 

u, 二 Js 二 = 人 3 ‘ (2.24) 

V3 ： 

: J 
• L/ sn _ 

< 

Define: 

Then, the image Jacobian matrix J^ becomes: 

丄 � a „ 0 u, -MQI 

Zcil^ V i - V o �1 
0 u ^ - u J 

Js = 0 (2.26) 
ZcsLo v̂ V 3 - V o �3 

1 pu 0 Û  -MoL 

Combine equations (2.3) and (2.24), velocities in image feature space can be 

expressed in terms of joint velocities: 

i = j / X , = J J ( q ) q (2.27) 

where ^ = [û  Vj ... u^ v^J denotes velocities on image feature space. The 

joint velocities can be obtained by taking pseudo-inverse of the image Jacobian 

matrix and the robot Jacobian matrix: 

q = r { q ) r j (2.28) 
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where and •/ + � denote pseudo-inverse of 人 and 7(g), respectively. 

Similar as the previous sub-section, the image Jacobian matrix J^ consists of 

uncalibrated camera intrinsic parameters and extrinsic parameters, which are to be 

estimated by some adaptive schemes. 
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Chapter 3 

Adaptive Visual Servoing Control 

3.1 Controller Design 

The controller design in this thesis is based on position control. The objective of the 

robot task is to move the robot manipulator so that the feature points attached with 

the end-effector approach to the given desired points, in image plane. In this work, 

feedback information mainly relies on the image error, which is the difference 

between the current image feature position and the desired image feature position. 

L e t � d 二 ["d ^d f be the desired position with respect to the image frame， 

the controller is to compute and generate torques for robot joints to move the end-

- - 丁 

effector, so that the image points attached to the end-effector <̂  = [u vj reach the 

desired image position. Notice that the desired joint positions are not available in 

image-based visual servoing. 

The following control law is inspired by the concept of transpose Jacobian 

control [34, 35]. For a robot manipulator with m degree of freedom and n image 

feature points, the following control law is proposed: 
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T 二 G{q) - K,q — KpjT (q{ J：D{z) + (3.1) 
V 1 J 

where the hat sign “八，，denotes estimated parameter or the matrix contains estimated 

parameter, G{q) is the gravity compensator, K^ and K^ are mxm symmetric 

positive definite matrix or positive scalars for proportional (position) gain and 

derivative (velocity) gain, J^ (q) is the transposed robot Jacobian matrix, Af is the 

feature image position error where Af = f— &，D ( z ) is a 2nx2n diagonal matrix 

which contains the estimated depth of each image feature point in the following form: 

A 

yv 1々 
A 

A 

DCz) = ZC3 (3-2) 
A 

/V 
^Cn 

A 
_ 乙 Cn _ 

then recall equation (2.26): 

- _ —J — 
毛 0 U, - Mo ^ 

[_0 â  Vi-Vo� 

p “ 0 û -uo)̂  
八 A 八 2 
0 â  V2 -Vq 

IdCz) = 0 (3.3) 
S1 0/V A j 

「\ 0 û  -Mol-
0/s n 

_ ‘— —' 

where 左,二c及 J j kCRn^O]- The diagonal matrix D(z) cancels the perspective 

/V 
scaling effect of the image Jacobian matrix Also, 
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「0 0 Mi-M^ 
[0 0 Vi—v丄 

「0 0 Mr 〜2]力 
. |_0 0 v̂ -v̂ J 2 
Je = fo 0 (3.4) 

|_0 0 V�v们」3 

「0 0 MrM^ 

_Lo 0 V„-V,J : 

where u^. and v .̂ are the desired image position of feature image point i in u and v 

coordinates, respectively. 

It is worth noticing that the proposed controller computes the transpose of the 

robot Jacobian matrix and the transpose of image Jacobian matrix, and its variations. 

The advantage of such controller over the traditional inverse Jacobian controller is 

the transpose Jacobian controller can avoid computing inverse of Jacobian matrices 

in singularity configurations. 
Besides the image error A^，the controller also requires the measurement of 

joint positions and velocities, the gravitional torque vector G(<7), and the estimated 

( 1 � 
/V J, 丄 A r 

non-scaled image Jacobian matrix J^ D(z) + — • 

V 2 y 

Substitute the control torque vector T of the controller in equation (3.1) into 

the robot manipulator dynamic equation (2.6)，then the closed-loop dynamic equation 

becomes: 
H{q)q + C{q,q) = -K^q - K{q)( J：DCz)^^^^ (3.5) 

V 丄 J 

The above robot dynamics equation contains unknown parameters which are to be 

determined online. 
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3.2 Parameter Estimation 

广- 1 A � 

As the image Jacobian matrix iJ"D(z) + - i J contains unknown camera intrinsic 

V 2 y/ 

parameters, and the unknown extrinsic parameters, which must be determined. Then 

the following proposition is proposed: 

Proposition 1: Arrange the m unknown elements of the product of the image 

Jacobian matrix and the depth matrix by a mxl vector 0 . The term 

( 1 A 

J]D{Z) + — J ] A ^ can be represented as: 
V 2 / 

J ] D ( z ) + - J ] = u, V, q)Q ( 3 . 6 ) 
V 2 

where W(A^,u,v,q) is a regressor matrix with elements independent by the 

unknown parameters. Then 

j ] D { z ) + - J] - [ j ] D(z) + … A 0 ( 3 . 7 ) 

V 2 y V 2 乂 

/V 
where © is the vector of real parameter, 0 is the vector of estimated parameter, 

A 

and AG 二 G) - G) is the vector of parameter error. 

The transformation relationship between the camera coordinate frame and the 

robot base coordinate can be expressed as follows: 

“C �Sv"1 �Cp C P c P T""r1�Cr)-
X ^fiii 八 B12 PBx 

C y = C R B C 尺 C 尺们 3 + C � ( 3 . 8 ) 

C ” B ” C n c p c p B C 
z z _ ^B32 八 S33�L Z � L Pbz_ 
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Define A ’ - [ c ^ " j ， �尺 ” 二 h^zni J , and 

t 

. Rearrange equation (3.8) and becomes: 

叫 〜 ( 3 . 9 ) 
y PBy 

‘― —' L —J —I 

Zc 二 � (3.10) 
L 

From the perspective projection model in equation (2.9)，the following approach of 

estimating unknown parameters to reach to the actual parameters up to a scale is 

proposed. The equation is defined as the following: 

. ' A � p“ 0 ] � X c ] � i ^ o ] 

L v �| _ | _ 0 “v�bc：」 1 3 丄 

r n r r n 卜1一 
W -^c , 以 0 

一 H +Zc . 

W L L>v」 Lvo 丄 
— — —I -n — 

p —I p —I — C N 
r -J U U A 广 X r ^ R P Bx A 

= — H CRbi b C: / 
V V y PBy 

— -J — —' _ I— —J L_ �� _ 
— — _ —I —j 一 

t u] r ^X R Pbx 
+ H CRbi b c ‘ 

V」L L L y」 L〜」」 
r— r— I— —, —1 一 

p— —I 广 — —I 
B C A A 

A c A ^ , CA 5 Pbx p "0 —H KbI B + ^ + c - 十 Zc A y PBy _ L I- -J u. J � J 

IvJ I y」 
.丄〜1 /̂ �"̂口 丄 KI-7�"M 

Psy PBy 
一 L 」 ‘― —'—I 
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= Y^{u,v,q)AQ (3.11) 

Here, A0 can be arranged as follows: 
i 

K CRbu + u, ) - cRBU + u, c叙严) 

(以M CRm3 + "0 C及S33 ) 一 (^u CRm3 + "0 ) 

(以《 c Pbx + "0 c 尸bJ 一（毛 c Pbx + ẑ o C p，) 

i^v^^Bll + �C/?则）-(先 C 穴们 2 (3.12) 
+ Vo ) - (^v + ) ‘ 

c p _c D 
� 3 1 一 八 B 3 1 

^B32~ RB32 
C D —C n 
r r /V 

_ Pbz- PB. _ 

For the visual servoing system with n feature points and m unknown parameters, 

equation (3.11) can be extended to: 

Zci^i yci Zci^o 

Zc2"2 「々  0 0 ... 0 
Zc2̂ 2 0 H 0 … 0 yc2 
乏C3"3 - 0 0 ^ ••• 0 + =Y{u,v,q)Ae (3.13) 

： ： ： ： y C 3 

: 0 0 0 ... hJ ; ： 

Zcn^n ^Cn ^CnK 
A « � � L 卜 o j IJoA 丄 

where 二 ；K(M,v，g) is a 2nxm regressor matrix which is independent of the unknown 

parameters. In order to guarantee the parameter can be fully estimated, n>m/2 

image feature points are required. 
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Proposition 2: If seven points, which are not coplanar in space, are selected， 

the equation 
i 

Y(u,v,q)Ae = 0 

is equivalent to that the parameters can be estimated up to a scale 

e-ie 
where X is a scalar. 

The above result is well known in computer vision. For details, please refer to the 

book [36]. 

Here, the adaptive estimation scheme is proposed as the following: 

Ae^ (q)W(A^,w,v,q)K；' - AG^Y"^ (u,v,q)Y(u,v,q)K^ 
(3.14) 

where K̂  and K: are either positive scalars or positive definite diagonal matrices. 

3.3 Stability Analysis 

The following section presents the stability analysis of the proposed controller (3.1) 

and the adaptive estimation method (3.14). Details of the control theories used in 

stability analysis can be referred to Appendix A. 

Define the function as the following: 

V + + (3.15) 2 2 2 
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From Property 1 of robot dynamics, H{q) is positive definite, D{z) is positive 

definite for z > 0 , and also \ therefore, V is a positive definite function. 

Differentiate the above equation (3.15) becomes: 

= 作 ( 咖 + 去 作 � ―�A ‘ + 去 �A … 白 

(3.16) 

From Property 2 of robot dynamics: 

q'Hiq)q+-q'H(q)q = q'H{q)q + (3.17) 

Then, substitute the closed-loop dynamic equation (3.5) into equation (3.17) becomes: 

� � / /⑷ h i r " (咖 = ⑷⑵ + (3-18) 
2 V ^ ) 

From equation (2.27) and & = 0，the followings are obtained: 

A f ⑴ Af = i丁 K =々丁 KpjT(q)JXz�Ag (3.19) 

and 

= 去〜讽 A 饼 f = 去 作 , � ( 3 . 2 0 ) 

Z •Z Z 

From the adaptive updating formula (3.14), the following is obtained: 

(3.21) 

Substitute equations (3.18), (3.19), (3.20), and (3.21) into (3.16): 

= 一伐 4 - 4〜、)〔i;附+去 i; 

+ Kp^T JT � J : K p j T (q�J:Xg 
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V 2 J V 丄 J 

(3.22) 

From equation (3.7)，equation (3.22) becomes: 

— A 0 r y r O , V，q)Y{u,v, q)K^K,Ae 
= (3.23) 

Then, V is a non-positive function, and Vis a positive function. Therefore, V 

is said to be a Lyapunov function. From LaSalle theorem, it is known that \imq -> 0 

and \imY(u,v,q)AQ -> 0 . It also implies that the estimated parameters will be 

/—CO 

asymptotically converged to the actual values up to a scale. Also, the image error 

/V ™ 1 A 

Af will asymptotically converge to zero if the matrix J^ + is non-
V 2 y 

singular. 
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Chapter 4 

Experimental Studies 

This chapter presents the extensive experimental results of the controller proposed in 

Chapter 3. The presentation of experimental work is arranged in the following 

sections: 

a) Setup of experimental platform; 

b) Comparison of different proportional gains and derivative gains; 

c) Comparison among different adaptive gains; 

d) Comparison between the presence and absence of gravity compensator; 

e) Comparison between current image position only and including previous 

image positions. 

f) Comparison between the proposed controller and the kinematic controllers; 

3 3 



4.1 Experimental Setup 

J 

4.1.1 Hardware Setup 

An experimental platform of visual servoing system consists of visual image 

processing part and motion control part. Both parts are cooperated by a visual 

servoing program in a PC which contains an Intel Pentium III 733 MHz processor. 

The visual image processing part is implemented by placing a camera 

approximately 1.8 metres away from the robot manipulator (Fig. 4.1), in order to 

obtain visual information to control the manipulator. The camera is a Pulnix TMC-76 

high-resolution 2/3" CCD camera. The image is in PAL format with 

768(//)x576(y) pixel array. Then the image is captured by Matrox Pulsar frame 

grabber which has a frame rate of 25 frames per second (the sampling period is 40 

milliseconds). The captured image is then processed and control signal is generated. 

In the motion control part, the control output register (16-bit) from the 

controller program is converted to DAC voltage signal by a motion control board, 

which is made by Googol Technology Limited. The DAC voltage signal is then 

converted to motor current by Maxon servo-amplifiers. The current then drives the 

motors of the robot manipulator. The robot manipulator is developed by the Robot 

Control Laboratory in the Chinese University of Hong Kong. It has three degree-of-

freedom in Puma configuration. The motors are Maxon DC motors with encoders 

attached. 
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Figure 4.1: Setup of experimental platform. 

4.1.2 Image Pattern Recognition 

The image feature position can be extracted by an image pattern recognition 

algorithm, which is implemented using an image pattern recognition toolbox from 

the Matrox Imaging Library (MIL). 
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First, the image feature point is placed under a black square. Then, the feature 

point is recorded as a reference image template. When the manipulator is moving, the 
； 

image recognition function would search the corresponding image feature point. 

Assume the moving speed of manipulator is not very fast, the searching range can be 

narrowed down as some neighbourhood around the previous image position. As a 

hundred percent match of the moving image feature with the feature in the template 

is almost impossible, a threshold match score is set for comparing the similarity 

between both moving image on the end-effector and the reference image template. If 

the similarity is higher than the threshold match score, a match is considered and the 

position of the image feature point is extracted. The extracted image feature position 

will feedback to the visual servoing system. 

4.1.3 Experimental Task 

The task in the following experiments is to move the manipulator so that the feature 

points attached at the end-effector reach the desired positions (Fig. 4.2(a) and 4.2(b)). 

First, move the manipulator to a particular position. Then, mark the position of 

feature points in the image screen. These image positions are desired image positions. 

Then, move the manipulator to another position, which will be the initial position for 

experiments. Finally, run the controller program to evaluate the performance of the 

controller. 
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(c) (d) 

Figure 4.2: The robot manipulator move from the initial position (a & c) to the 

desired position (b & d). 

For the following experiments, the initial joint position vector is 

二 [1.2 0.8 0.4f (radian) which gives the initial image position vector at 

4 = [456.75 276.50 400.27 222.56 376.05 269.08f (pixels) 

( 4 二 [456.75 276.50f (pixels) for single image feature point); and the desired 

joint position vector is q^ = [1.5 1.0 0.5f (radian) which gives the desired image 

position vector at ^ = [480 155 405 120 395 170f (pixels) 
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( ( = [ 4 8 0 155f (radian) for single image feature point). For reference, the real 

camera intrinsic and extrinsic parameters are shown in Table 4.1; and the dynamic 

parameters of the robot manipulator are shown in Table 4.2: 

Parameter Real Value 

�0.997 -0.083 0 ] 
CRb 0 0 - 1 

[0.083 0.997 0 � 

c Pb [-0.15 0 l.Sf 

^ 4763 

^ 4515 

Mo 550 

^̂  300 

Table 4.1: Real values of the camera intrinsic and extrinsic parameters 

Link Length (m) Mass (kg) 

2 0.145 0 . 1 6 7 ^ 

3 0.1285 0.096 

Table 4.2: Dynamic parameters of the robot manipulator 

The true values of adaptive parameter vector then become: 

0 = [4792.27 151.17 0 - 1 6 6 . 3 6 25 298.96 - 4 5 1 5 540 0.083 0.997 0 l . S f 
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4.2 Control Performance with Different 
Proportional Gains and Derivative Gains 

I 

For the experiment of different proportional gain, the control gains are set as the 

following: K^=50N-m-s/rad , K, =20 and K^ = 0.025 . The initial estimated 

" 1 0 0 " 

parameters are set as follows: ^R^ = 0 0 - 1 , ^p^ - [O 0 3 �， a ^ =4763, 
0 1 0 

a^ =4515 , Wo =550 , and Vq = 300 . Using two different K^ , which are 

0.000liV. m /pixels and 0.00005A/̂ . m/pixels, the results are shown in Figure 4.3. 

200 I 1 1 1 . 1 I I I I -
\ ——Kp = 1 0x10-^ N m/pixels 

180 j 一 Kp = 6 0x10"' N m/pixels “ 

160-丨丨 -

^ 140- -

1： 120 -1 -

巨 

- 1 0 0 - \ -

E 8 0 - i \ � . � -
ro \ s. 

-i 60- \ -

4 � . -

2 4 6 8 10 12 14 16 18 20 
time (seconds) 

Figure 4.3: Experimental result with two different 

From Figure 4.4, it is shown that with larger Kp , the image position error A^ 

converges faster. 
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For the experiment with different derivative gain K^, the control gain and the 

parameters are almost the similar as in the proportional gain experiment, except 

Kp = 0.000 W -ml pixels , and K^ is set as 5QN. m • s I rad and 2>5N -m- s I rad . 

The result is shown in Figure 4.4. 

200 I 1 . 1 I • I 
， ——= 50 N m s/rad 

180 - — K‘: = 35 N m s/rad " 

1 6 0 - -

2 140 - -
•s \ 
3 120 - r -

巨 I 

2 100- -

I 8 � - \ -
.i 60- K -

4 � _ _ 

0' ‘ 1 ‘ 1 — 
0 2 4 6 8 10 12 

time (seconds) 

Figure 4.4: Experimental result with two different . 

From the above figure, it is shown that a smaller K” gain will give more oscillation 

in the trajectory converging to the desired image position. 
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4.3 Control Performance with Different 
Adaptive Gains 

J 

For the following experiment using single image feature point, the control gains are 

set as the following: K^ = 0.0003A^• m/pixels , K^ = 90N-m'slrad , and 

' 1 0 0 " 

K^ = 0.05 . The initial estimated parameters are set as follows: = 0 0 一 1 ， 

0 1 0 

0 3f = 4763, a, = 4515 , Wo = 550, and v̂  = 300. With varying ^^, 

which has values of 12, 16, and 20; the controller performance is shown as follows 

(Fig. 4.5): 

1401 i 1 . 1 - n 
——K^ =2 0 

——K. = 16 
1 2 � — K ; = 12 -

.一 100 -
irt 

Q-
80 - -

1 I 
譲 SO- -

I \ 
- 4 0 - \ -

-

o' 1 丨 T •••. I •••H 
0 5 10 15 20 25 30 

time (seconds) 

Figure 4.5: Control performances with varying K� 
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As seen from the above figure, the performance does not differ greatly. However, 

there could be difference in the converging response of adaptive parameters. The 

convergences of adaptive parameters are shown in Figure 4.6 (a) and (b). 

4763 1 , , , I —I 550 0021 , , , , , 
— K, = 20 — K, = 20 

4762 995 - 一 = 16 . — = 16 " 

X：；；；̂：：；̂̂̂^̂̂  I— = 549 998 - | — K; = 12 
4762 99- - 54 3 996 - " 

4762 985. _ ""败 _ . 
549 992 - � � � -

搬-. 泌--

4762 375- - 549 988- � � . � : 
54S 986 - -

4762 97 - \ 
54S 984 • -

4762 965 1 1 1 1 1 549 982 ‘ ‘ ‘ ‘ ‘ 
0 10 20 30 40 SO 60 0 10 20 30 40 50 £0 

fiiTis (seconds) time (secondsi 

0 14 丨， I 1 1 . 1 ^ 6S8 81 • . — . 1 1 1  
I -——K̂  = — Ki = 20~1 

012. — »<1”6 Z - 6B8 6- — = . 
I — K;=叫 Z I — = I 

0 1 - y / " z , ' - 4 • ^ ^ -

0 08 - y / " Z , 668 2 -

0 06 . ^ - 698 - -

0 04 - - 697 8 • ‘ 

0 02 - - 697 6 • -

Z . . . . . . . . 
0 1 ‘ 1 1 1 6S7 4 1 1 1 ‘ ‘ 
0 10 20 30 40 50 60 0 10 20 30 40 50 60 

time (seconds) lime (seconds) 

0 1 1 1 , 1 1 300 OS 1 1 1 1 1  
I — K,=20 z I — "S =叫 

, , ,一 Ki = lS 300 05- 一 = 广 
• _ Ki = 12 . — K, = IS 

300 04 • 

0 广 - -

OS I ‘ 1 ‘ 1 ‘ 1 ifie 1 ‘ ‘ ‘ ‘ ‘ 
0 10 iO 30 40 60 60 0 10 20 30 40 50 60 

tirrifi (seconds) time (secondsi 

Figure 4.6a: Updating behavoir of first six adaptive parameters of varying K� 

4 2 



•4514 95, • — — - — — , , , , 1126 I , , , , , 

-4S15 \ I— ><, = 20 I— K, = 20 
— K, = 16 1126 5- — K, = 16 -

•4516 05 • — K, = 12 — K, = 12 

- - ” - , ” 
•4516 15- • -

： ： ： ： ： \ 冬 、 ： 
-4516 35 - -

-4515 4 -

4515 451 ‘ ‘ ‘ ‘ ‘ 1 1122 I ‘ ‘ ‘ ‘ ‘ 
0 10 20 30 40 50 60 0 10 20 30 40 50 60 

time (seconds) lime (seconds) 

0 031 J r • • •' ‘ 1 1 1 1 1 07 I 1 1 1 T — I 1 1 1  
1= 二 I I— K, = 20| 

�025� - 106 • 一 Ki = 16 -
I 一 — K, = 12 

0 0:2 1 05 ] -

0 015 1 04 ： 

0 01 ^̂  - 1 03 : -

0 005 1 02 -

o | 1 01 -

-0 005 ‘ 1 1 1 1 1 1 1 1 1 1 1 ‘ 1 1  
0 5 10 15 20 25 30 0 1 2 3 4 5 6 7 8 S 10 

time (seconds) lime (sscondsi 

0| 1 1 1 1 . 1 1——I I I —[ 31 . 1 1 1 1 1 . . 1  
一 Ki : 20 I — K, = 20 

-0 05 — K, : 16 . 一 K, = 16 
—Ki = 2 5 — � = 12 -

- 0 1 -

— 一 ‘‘ Ih = 
-0 25 I -

1 • 
-0 3 -

05 --0 36 I - I 
I 

.Q A I I I I I 1 1 1 1 I I 0 I I I 1 1 I I I 1 1  
0 1 2 3 4 5 6 7 8 S 1 0 0 1 5 3 4 6 £ 7 8 S 10 

time (seconds) time (ascondst 

Figure 4.6b: Updating behavoir of last six adaptive parameters of varying K� 

From Figure 4.11, it is shown that different K�cou ld result in different 

converging response in adaptive parameters. Faster converging rate of adaptive 

parameters is obtained by smaller AT,. Oscillation in adaptive parameters may also 
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happen in smaller K �. Eventually, the parameters may converge to different values 

with different K �. 

Similar result could be obtained in the experiment of K: in adaptive 

algorithm. The control gains and adaptive parameters are similar as above 

except K,=20 , K^ = 0.0004N - m/pixels . With K^ equals to 0.025, 0.0025, 

0.00025, and 0.000025, the result is shown as follows (figure 4.7): 
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1 6 0 - 1 -
<CD 11 

‘ : 

Q I I I I I • ' 

0 2 4 6 3 10 12 14 16 18 20 
Time (seconds) 

Figure 4.7: Control performances with varying K^ 

Similar as the experiment on adaptive gain K^, from the above figure, the control 

performance does not affect much by different AT:. Also, similar as the experiment on 

, different K: can make different converging rate of the adaptive parameters, the 

result is shown in Figure 4.8 (a) and (b). 
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Figure 4.8b: Updating behavoir of last six adaptive parameters of varying K: 

From the above figure, it is shown that for larger 火2, the converging rate of adaptive 

parameters is faster. Also, oscillation may be generated in the converging of adaptive 

parameters with larger K^. Again, with different K^，the adaptive parameters may 

have converged to different values. 
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From the experiment results shown before, for the uniformed K � a n d K^, 

some adaptive parameters may have faster converge rate, and some of them may 
I 

have slower converge rate. To ensure the parameters can be converged to some 

values, the adaptive parameters are changed to the following: 

K, =t//<3g[2.0xl0-5，2.0xl0—5,2.0x10—5,2.0x10-5，2.0xl(r5,2.0x10—5， 

2.0x10"',2.0x10"',2.0,2.0,2.0,2.0] 

K^ = (i/ag[12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5, 

1.25x10—4,1.25x10-4,1.25 X 10-4,1.25x10-4] 

The control performance is shown in the following figure (Fig. 4.9): 
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Figure 4.9: Control performance of non-unified K � a n d K^ 
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The convergences of adaptive parameters are shown as follows (Fig. 4.10 (a) and (b)): 
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Figure 4.10a: Convergence of first six adaptive parameters 

with non-unified K̂  and K^ 
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Figure 4.10b: Convergence of last six adaptive parameters 

with non-unified K � a n d K: 

From the above figure, it is shown that the adaptive parameters are converged 

to the following values: 

0 = [3484.71,780.05，41.06,1880.00,33.22,429.97, 

-6162.60，1329.45，- 0.014,1.05,0.23,3.7lf 
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Here the adaptive parameters are updated on-line by the algorithm 

©0 + At) = 6(r) + AB(OA/. The parameters may not have converged to the true 
J 

value up to a scale, as At is large (40 milliseconds). 

4.4 Gravity Compensator 

For the experiment of gravity compensator, the control gains are set as the following: 

Kp = 0.000057^ .ml pixels，K^ = lOOiV-m-s/rad, K, =20 and K^ = 0.0025 • The 

" 1 0 0 " 

initial estimated parameters are set as follows: '̂ Rg = 0 0 - 1 , ^Pg = [O 0 3f , 
0 1 0 

a^ = 3500, a^ = 6000 , u^ = 800, and Vq 二 400. To enhance the effect by gravity 

compensator, the mass of link 3 has been increased to 0.325 kg. The result of the 

controller including and excluding gravity compensator is shown in Figure 4.16. 

From Figure 4.11, it is shown that the controller including gravity 

compensator will lead the feature image position error converge to zero. By contrast, 

there is a significant steady state error in feature image position if the gravity 

compensator is excluded. 
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Figure 4.11: Experimental result for the presence and absence 

of gravity compensator. 

4.5 Control Performance with Previous Image 
Positions 

Multiple feature points can also be obtained by a single feature point in motion. 

During motion, several previous positions of feature points are selected for the 

feedback control. According to Proposition 2, the adaptive parameters can be 

estimated to the true value up to a scale. For the following experiment, the control 

gains are set as follows: K^ = 0.0003A^ • m/pixels , K^ = \20N m slrad ； the 

adaptive gains are set as: 
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K, = X10—5,2.0 X10—5，2.0 X10—5,2.0 X10—5，2.0xl 0—5，2.0x 10-5, 

2.0 X10—5,2.0 X10_5 ,2.0，2.0,2.0，2.0] 

K^ = 12.5,12.5,12.5,12.5,12.5,12.5,12.5, 

1.25 X10-4，l.25 X10—4,1.25 X10—4，l .25x10—4]， 

• 1 0 0 " 

and the initial estimated parameters are set as follows: R^ = 0 0 - 1 , 
0 1 0 

cpB =[0 0 37，先=3500 , a^ = 6000 , u^ = 800 , and Vo = 400 . The control 

performance is shown in the following figure (Fig. 4.12): 
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Figure 4.12: Control performance of controller using previous image positions and 

controller using current image position only. 
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In terms of control performance, it seems that there is not much difference in 

single feature point and multiple feature points. The adaptive parameters of system 

using previous image positions are converged to the following values: 

0 = [3486.21,776.29,65.19,2015.28,14.35,435.11, 

-6166.90,1378.02, - 0.000720,1.04,0.27，3.99广 

and the adaptive parameters of system using current image point only are converged 

to the following values: 

0 = [3484.71，780.05,41.06,1880.00,33.22,429.97, 

-6162.60,1329.45，- 0.014，1.05,0.23,3.7 i f 

The convergences of adaptive parameters are shown in Fig. 4.13 (a) and (b). 

Theoretically, for the adaptive algorithm with seven or more image feature points, 

the adaptive parameters can be estimated to the true values up to a scale. Due to the 

large sampling period, the parameters may not be adapted to the true values up to a 

scale. However, the controller still retains asymptotic stability in image position error. 
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Figure 4.13a: Convergence of first six adaptive parameters with controller using 

previous image positions and controller using current image position only. 
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Figure 4.13b: Convergence of last six adaptive parameters with controller using 

previous image positions and controller using current image position only. 
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4.6 Kinematic Controller 

i 

The kinematic controller used in the following experiments is proposed by Hosoda 

and Asada [10]. For a system with m image feature points and n degree-of-freedom 

robot manipulator, the control equation is shown as follows: 

— 人 + ( , ” - ) 力 灸 - 欢 A f (4.1) 

A 

where q is the desired manipulator joint velocity vector; J^ is the 2mxn estimated 

/S /V • 

composite Jacobian matrix, and J^ is the pseudo-inverse of J^ ； ‘ is the desired 

image velocity (for set-point control, ^ =02mxi); is an nxn identity matrix; k is 

an arbitrary vector; iiT is a positive gain matrix; and A^ is the image position error. 
/N 

The updating algorithm for J^ is shown as follows: 

i ⑴一 i (r -AO J [ 伪 ) - 执 - _ 卜 喝 、 } A / (0Q(0 If 11 11 丰 0 

or 人 ( 0 - l i t - A O = O2膚，if ||A |̂| 二 0 (4.2) 

where Aq{t) = q{t) - q{t - At) ； Q(t) is a full rank weighting matrix; and p is the 

forgetting factor, which is 0 < p < 1. 

The control scheme mentioned above only concerns the desired trajectory of 

the robot manipulator joints. It does not control the joint motor torques directly. 

The following experiment is to compare the performances of both the 

kinematic controller and the proposed dynamic adaptive controller. For the kinematic 

controller, the controller parameters are set as follows: 

= 1.0x10-5 1.0x10-5j，1 二O�、！ ； and for the estimator, the 
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. �194 -160 97 1 ^ 
parameters are set as follows: J(0) = , Q{t) = L^.，and p = Q. 

‘ 0 - 5 0 7 - 2 5 4 3x3， “ 

For the proposed dynamic adaptive controller, the control gains are set as follows: 

Kp = 0.00037V. m / pixels, K^ = diag[20 150 1 50]N-m-s/rad; and the adaptive 

gains are set as follows: K^ = 20 and K: = 0.025. The initial estimated parameters 

' 1 0 0 " 

are set as follows: "̂ R̂  = 0 0 - 1 , � >忍 = [ 0 0 3f , a^ =3500, a^ = 6000 , 
0 1 0 

Wq = 800，and v̂  二 400. The experiment result for comparing both controllers is 

shown as the following (Fig. 4.14 and 4.15): 
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Figure 4.14: Control performances of the kinematic controller 

and the dynamic adaptive controller 
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Figure 4.15: Steady state performances of the kinematic controller 

and the dynamic adaptive controller 

To enhance the difference in control performance of the proposed dynamic 

adaptive controller and the kinematic controller, the mass of link 3 of manipulator is 

been increased up to 0.325 kg. The experimental result is shown in Figure 4.16. 

The control performance of the proposed dynamic adaptive controller may 

not be so smooth, due to the frictional forces in robot joints. Also, as the kinematic 

controller is implemented by using embedded function of the motion controller card 

which has a much shorter sampling period (0.162 milliseconds), the performance of 

kinematic controller appears to be smooth. However, for steady state, there are 

ripples in the kinematic controller, while the ripples in the dynamic controller are 

significantly smaller. 
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Figure 4.16: Control performances of the kinematic controller 

and the dynamic adaptive controller with increased manipulator weight 

Another experiment is preformed on the motion control board which enables 

velocity regulation. Without changing the gains and parameters in the controller 

algorithm, only some parameters are changed in the motion control board to simulate 

two different motor velocity regulators. Parameters for the kinematic controller and 

estimator are the same as the above experiment. The result is shown in Figure 4.17. 
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Figure 4.17: Performance of a kinematics visual servo controller 

with two different motor controllers. 

From Figure 4.17, it is shown that the performance of different motor 

controller could affect visual servoing performance for the same desired trajectory. It 

is because different motor controllers have different response in reaching the same 

desired trajectory. 
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Chapter 5 

Conclusions 

5.1 Conclusions 

In this thesis, the performance of the proposed visual servoing controller has been 

studied with extensive experimental investigation. The work of this thesis is 

summarized as follows: 

1. Investigate the properties of our new dynamic adaptive visual servo controller 

through a series of experiments. The properties are studied by experiments 

comparing performances 

a) among different control gains (proportional gains and derivative 

gains); 

b) among different adaptive gains; 

c) presence and absence of gravity compensator; 

d) between system using seven previous image positions and current 

image position only. 

2. We compared the performance of our new dynamic adaptive visual servo 

controller with a kinematic visual servo controller through experiments. 
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5.2 Future Work 

In this thesis, the performance of the proposed image-based visual servoing 

controller has been experimentally investigated. The future work will be focused on 

the following issues: 

1. The controller is only functioned in point-to-point position control. Trajectory 

tracking visual servo controller should be developed further. 

2. The true robot dynamics in this work is assumed to be known. However, in 

practice, there are uncertainties in dynamics such as frictions. The controller 

considering uncertainties in dynamics should be developed. 

3. The work in this thesis is only focused on eye-and-hand system. The control 

algorithm can also be applied on eye-in-hand systems. This should be 

developed further. 

4. The measurement of visual velocity is subjected to big noises due to the low 

sampling rate of system. This problem should be taken account in future. 
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Appendix 

A. Control Theory 

Here, the basics of control theory are briefly reviewed. For details, please refer to the 

book by Slotine and Li [37]. 

Definition 1 (Stability) 

The equilibrium state x = 0 is said to be stable if, for any R>0, there exists r > 0 , 

such that if ||x(0)|| <r, then ||x(0|| < for all r > 0. Otherwise, the equilibrium point 

is unstable. 

Definition 2 (Asymptotic Stability) 

An equilibrium point 0 is asymptotic stable if it is stable, and if in addition there 

exists some r � 0 such that ||x(0)|| < r implies that x{t) 0 as f ^ . 

6 3 



DeHnition 3 (Locally Positive Definite) 

A scalar continuous function V{x) is said to be locally positive definite if V(0) = 0 

and, in a ball BR� 

if V(0) = 0 and the above property holds over the whole state space, then V(x) is 

said to be globally positive definite. 

Definition 4 (Lyapunov Function) 

If，in a ball 5尺。，the function V{x) is positive definite and has continuous partial 

derivatives, and if its time derivative along any state trajectory of system x 二 f(x) is 

negative semi-definite, i.e.， 

V{x) < 0 

then V(x) is said to be a Lyapunov function of the system x 二 f(x). 

Theorem 1 (Local Stability) 

If in a ball B �, there exists a scalar function with continuous first partial 

derivatives such that 

• V(x) is positive definite (locally in BR�) 

• y(x) is negative semi-definite (locally in 5尺�) 
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then the equilibrium point 0 is stable. If, actually, the derivative V(x) is locally 

negative definite in 5&，then the stability is asymptotic. 

Theorem 2 (Global Stability) 

Assume that there exists a scalar function V of the state x, with continuous first order 

derivatives such that 

• V(jc) is positive definite 

• V{x) is negative definite 

• y(x) oo as X -^oo 

then the equilibrium at the origin is globally asymptotically stable. 

Definition 5 (Invariant Set) 

A set G is an invariant set for a dynamic system if every system trajectory which 

starts from a point in G remains in G for all future time. 

Theorem 3 (Global Invariant Set Theorem) 

Consider the system i = / ( x ) , with / continuous, and let V{x) be a scalar function 

with continuous first partial derivatives. Assume that 

• y(x) —> oo as JSC — oo 

• y (jc) < 0 over the whole state space 
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let R be the set of all points where V(x) = 0，and M be the largest invariant set in R’ 

then all solutions globally asymptotically converge to Mas r oo • 
； 

Theorem 4 (Barbalat's Lemma) 

If a scalar function V(x,t) satisfies the following conditions: 

• V{x,t) is lower bounded 

• V{x,t) is negative semi-definite 

• V(jc,0 is uniformly continuous in time 

then V{xj) 0 as r oo. 
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