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Abstract 

Mobile devices, such as cellphones and PDAs, have become an essential part of our 

daily lives. Mobile applications such as phone banking and e-commerce are 

becoming increasingly popular. To protect the large amount of sensitive information 

stored in and handled by these devices, more secure authentication methods such as 

face recognition and fingerprint verification have been proposed to replace 

traditional passwords. Unfortunately, the weak computation power of mobile 

devices remains the biggest obstacle to the adoption of the less intrusive face 

recognition methods. In this thesis, two representative face recognition algorithms, 

Principal Component Analysis (PCA) and Elastic Bunch Graph Matching (EBGM), 

are implemented and optimized for mobile devices. An optimization model and 

various optimization techniques are proposed to fully exploit the computation power 

of mobile devices. Experimental results show a significant improvement in 

execution time. For PCA, the time for one authentication session is reduced from 30 

seconds to 1.3 seconds; for EBGM, a 420 times reduction is achieved - from 553 

seconds down to 1.3 seconds. Further verification experiments show that the real 

time performance is achieved without any significant loss in accuracy. Our results 

enable the practical use of face authentication on mobile devices. Also, the 

optimization model and techniques developed in this thesis can be easily adapted to 

other applications which require real time performance on constrained platforms. 
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論文摘要 

流動設備(Mobile Devices)諸如流動電話和個人數位助理(PDA)已經成爲我們日 

常生活的一部份，像電話理財和電子商務之類的應用變得越來越普及°由於這 

些流動設備儲存並處理大量的個人資料’ 一種安全可靠的認證方法更形重要° 

傳統的密碼認證方法，容易產生用戶忘記密碼和密碼被盜等問題，未能提供足 

夠的保護。與之相比’生物特徵辦識技術(Biometrics)如人臉識別(Face 

Recognition)和指紋核實(Fingerprint Verification)，具有通用性、唯一性和持久性 

等優點，提供了更方便和可靠的認證方法。不過由於流動設備有限的運算能力， 

這些技術一直未被廣泛地應用在其上。有見及此’我們實現並優化了兩種具代 

表性的人臉識別算法：主要成分分析(PCA)及彈性束圖匹配(EBGM) °我們提 

出了一個針對優化的軟件工程模型以及多種優化技巧。優化後的PCA速度加快 

了六倍’認證時間從原來的30秒減少至1.3秒，而EBGM的認證速度更加快 

了 420倍一從553秒下降至1.3秒。實驗結果顯示，在無損認證準確性的前 

提下，兩種算法在流動設備上的執行時間大幅減少，達到了實時的要求。我們 

的硏究令流動設備的運算能力得到充份的發揮，使到人臉識別技術在流動裝備 

上的廣泛應用變得可能。我們提出的軟件優化模型和技巧，同時適用於其他系 

統資源有限的平臺上的開發。 
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1. Introduction 

1.1 Background 

1.1.1 Introduction to Biometrics 

Biometrics are measurable physiological characteristics such as face, iris and 

fingerprint, or behavioural traits such as gait and handwriting, which can be 

used to verify the identity of an individual[l]. Figure 1 shows some typical 

examples of biometrics. 

N 
Biometrics 

f Physiological | 

圓_圓 
Face Fingerprint Iris 

V J 
C Behavioural ] 

•BE3 
E ^ ^ ^ ^ i s S g H ^ H I H 

Gait Handwriting Voice 
V J 

V J 
Figure 1 Examples of biometrics 
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Compared with traditional authentication methods such as password, a 

biometrics-based authentication technique presents a more robust alternative 

because it depends on physiological or behavioral traits which are unique, 

immutable and cannot be stolen[2]. Among all forms of biometrics, the face has 

an added advantage in that it can be captured easily and non-intrusively with a 

low cost, off-the-shelf camera instead of expensive sensors. This is also the 

reason why face authentication becomes increasingly popular, with military 

applications such as border control and security access and civilian ones such 

as personal computer login. 

1.1.2 Face Recognition in General 

Face recognition is a class of pattern recognition problems. It involves the 

automatic matching of novel face images with previous ones seen by the 

system. Just like any pattern recognition problems, the success of face 

recognition depends strongly on the solution of two problems: representation 

and matching[3]. 

A desirable representation should be both efficient and discriminating. 

Efficiency determines how compact the representation is and affects the storage 

and computational requirement. Discriminating power determines how far apart 

the faces are under the representation. A raw face image is transformed into the 

selected representation via a process called feature extraction, in which only the 
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most discriminating features are extracted, preserved and stored as a face 

template. A clearly and easily separable feature space is considered crucial to 

the final matching stage. 

After feature extraction, matching is carried out in the feature space. A majority 

of face recognition makes use of minimum distance matching, which computes 

the separation (e.g.，Euclidean distance) between the live and registered face 

template. 

Face recognition systems are often classified by the representation scheme they 

adopt. Local feature (component) based systems record and represent faces 

using useful features extracted from different locations of the face. Features 

ranging from more prominent ones like eyes, nose and mouth, to subtle ones 

like skin texture are used, either alone or in combination. Global feature based 

(holistic) systems, on the other hand, treat a face as a whole and extract 

statistical information from the entire face. Local information such as the 

relationship between different facial components is ignored. Examples of both 

classes of systems will be given in Section 2.1. 

In the following sections, the general components and tasks of a face 

recognition system are discussed. General terminologies and evaluation 

methodologies will also be introduced. 
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1.1.3 Typical Face Recognition Systems 

Enrollment Verification Identification 
(or Authentication) 

User Image Live Image & Claimed Identity Unknown Face Image 

[Ql 圆 + 圆 

Raw 
” Face Image ” 

Image Preprocessing 

Normalized 
Face Image 

> 1 > r � r 
Feature Extraction 

Face Live Face Probe Face 
Template Template Template 

_ • Claimed Face 
C Template . „ ^ 

All Face 
_ , ^ 」 Templates Registered ！ 

Templates " ” 

^ I 
J 1:1 Template Matching 1:N 

Y � r 
Accepted or Rejected "This is John" or 」?°J în 

database 

\ J V J 

Figure 2 Stages and tasks of a typical face recognition system 

As shown in Figure 2，a typical face recognition system consists of three stages: 

1) Image Preprocessing, 2) Feature Extraction and 3) Template Matching. 

Before a face recognition system can be put to use, authorized users must first 

be enrolled. During enrollment, a user's face image is first acquired. Then this 

raw image is normalized in terms of size, rotation, intensity and contrast in the 
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image preprocessing stage. Distinguishing features are then extracted from the 

normalized face image to form a face template, which is then stored into the 

template database. 

After enrollment, the face recognition system can be used for two tasks, namely 

identification and verification (or authentication). The two differ only in the 

template matching stage, in which similarities between face templates are 

computed. Identification involves a one-to-many match between the probe face 

template and all registered templates in the whole database. Verification, on the 

other hand, involves only a one-to-one match between the live template and the 

claimed identity's template. Although verification is considered a more specific 

and computationally less expensive problem, most face identification and 

verification systems make use of the same recognition technologies and share 

common stages, as shown in Figure 2. In this thesis，we will focus on the face 

verification (authentication) task but the results can be easily extended 

identification. 

1.1.4 Face Database and Evaluation Protocol 

To evaluate a biometrics verification system, large database testing is often 

done to determine the accuracy. In all our experiments, the FERET verification 

testing protocol for face recognition [4] is used. FERET is the de facto standard 

evaluation methodology in the face recognition domain. It is used in 
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conjunction with the Facial Recognition Technology (FERET) Database[5]. 

The FERET image corpus was collected and assembled under the sponsorship 

of the Department of Defense of the United States. The two are widely used by 

the face recognition community for the testing and evaluation of face 

recognition algorithms. 

For the FERET database, images of an individual were acquired in sets of 5 to 

11 images, collected under relatively unconstrained conditions. Two frontal 

views with different facial expressions were taken (fa and fb). For 200 sets of 

images, a third frontal image was taken with a different camera and different 

lighting (fc). The duplicate I (dupl) images were obtained anywhere between 

one minute and 1031 days after their respective gallery matches. The duplicate 

II (dup2) images are a strict subset of the duplicate I images; they are those 

taken at least 18 months after their gallery entries. Figure 3 shows an example 

of the different categories of images. 

•ilH 
fa fb duplicate I fc duplicate II 

Figure 3 Examples of images in the FERET database[5] 
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For evaluation, the FERET images are split into two sets: gallery and probe set. 

The gallery is the set of known individuals. An image of an unknown face 

presented to an algorithm is called a probe, and the collection of probes is 

called the probe set. For each set of images, one of the frontal images (fa or fb) 

was randomly placed in the gallery, and the other images were placed in the FB 

probe set. The dupl, fc and dup2 images form the corresponding probe sets. 

The same gallery is used for all probe sets. Table 1 shows a summary of the 

probe categories. 

Probe category Evaluation Task Gallery size Probe set size 
FB Facial expression 1196 1195 

dupl Aging of subjects 1196 722 

fc Illumination 1196 194 

dup2 Aging of subjects 1196 234 

Table 1 Summary of probe categories used in the FERET test [4] 

1.1.5 Evaluation Metrics 

When given two face templates, a biometrics verification system will output a 

binary decision - either 'accept' (the two templates come from the same person) 

or 'reject' (the templates do not match). Depending on the correctness of this 

decision, there are a total of four possible outcomes: 

1. Genuine Accept: a genuine identity is accepted. 
2. True Reject: an impostor is correctly rejected. 
3. False Accept: an impostor is accepted as a genuine. 
4. False Reject: a genuine identity is rejected as a fake. 
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For an ideal system, only cases 1 and 2 will occur, accepting all registered users 

while rejecting all impostors. For a real system, however, case 3 and 4 do occur 

and the probabilities of occurrence for these two errors are measured to 

determine how accurate a system is. False Acceptance Rate (FAR) refers to the 

probability that the system identifies an impostor as a genuine, while False 

Rejection Rate (FRR) refers to the probability that a genuine is identified as an 

imposter. As shown in Figure 4, FAR and FRR are closely related with the 

system threshold. The higher the threshold, the harder for a face template, be it 

genuine or not, to be accepted by the system. Hence when the threshold 

increases, FAR decreases and FRR increases and vice versa. The error rate at 

which the FAR equals FRR is called the Equal Error Rate (EER). It is useful for 

describing the accuracy of a system when the costs for false rejects and false 

accepts are equal. The lower the EER, the more accurate a system is. 

i k 

� Equal / 
False \ E t T O � / False 

Acceptance\ R过已 / Rejection 
Rate \ ( E E R ) / Rate 
(FAR) (FRR) 

0 — 一 ~ … … i f ^ L ^ 
• threshold 

Figure 4 Relationship between FAR, FRR and EER 

Since biometrics verification system are used in a variety of situations, each 

requiring different levels of security, it is common to tune the system threshold 
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so that a specific operating point - a particular FAR and FRR - can be obtained. 

The Receiver Operating Characteristics (ROC) curve is introduced for this 

purpose. As shown in Figure 5, the ROC curve describes the relationship 

between the Genuine Acceptance Rate (GAR or 1-FRR) and the False 

Acceptance Rate (FAR). An operating point can be chosen judging from the 

requirement of a particular application. The higher an operating point is, the 

higher will be the GAR; the more an operating point is to the left, the lower 

will be the FAR. Hence, a specific operating point can be picked from the ROC 

curve to suit ones needs. ROC curves also provide a way for easy comparison 

between different biometric systems. For the curves illustrated, system A is 

better than B which is in turn better than C. 

t寸y 
,I I I I 

0 .25 .50 .75 1.00 

False Rejection Rate (FAR) 

Figure 5 A Receiver Operating Characteristics (ROC) Curve 
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1.1.6 Characteristics of Mobile Devices 

Typical mobile devices include mobile phones and Personal Digital Assistants 

(PDAs). Due to their portability and connectivity, mobile devices have become 

an essential part of our daily lives. Thanks to the advancement in technology, 

mobile devices have become more and more powerful. Unfortunately, inherent 

limitations such as size, cost and power consumption still persists for all mobile 

devices. To conserve battery power and chip size, typical processors for mobile 

devices, such as the Intel XScale [6], have a comparatively small cache size 

(Figure 6) and do not come with a Floating Point Unit (FPU). A small cache 

size means data and instructions are swapped out of cache more frequently and 

much slower off-chip memory must be accessed. 

~ IRQ "RQ ^^ZZZm^ZZZZZ. 
CP14 • Branch Target Buffer 

Performance 
Monitoring 

^ • I I • Trace 
Interrupt Buffer 

CP15 Request L j _ — _ 
Conflg. • ' ' ：' " C 肺 

_ , “ Memory 
Roisters Instruction 4 Instruction Bus 

, , Cache MMU M ~ ^ ¥ 
< • Execution 32 KBytes 

Coprocessor Core 
Interface 

Data 
Address • Data Cache 

二 ， 二 Data < < • 32 KBytes 二 Write 
Multiplier/ • MMU • Buffer 

处cumulator Mini D-Cache | ' ^ | 
’ 2 KBytes 

JTAG 卜 — 二 M 二 

Figure 6 Intel XScale PXA255 Processor Block Diagram [6] 
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The lack of an FPU, on the other hand, cause floating point operations to be 

unacceptably slow since they are emulated by a software library. Table 2 shows 

a comparison between the Intel XScale PXA255 400MHz and Pentium III 

450MHz. Although the two processors have close clock rates, the performance 

for floating point arithmetic is dramatically different - the XScale is about 70 -

120 times slower than the Pentium III. The gap grows even wider for 

trigonometric functions (160 - 240 times). From these results, it is obvious that 

for any serious, floating point intensive applications to be practical on mobile 

devices, dedicated efforts must be made to optimize their performance. 

Processors Intel XScale 400MHz Pentium III 450MHz 
Integer Arithmetic 

Addition 0.138s 0.032s 

Subtraction 0.138s 0.047s 
Multiplication 0.145s 0.047s 

Division 0.698s 0.234s 
Floating Point Arithmetic 

Addition 3.87s 0.031s 

Subtraction 4.50s 0.047s 
Multiplication 4.60s 0.047s 

Division 14.0s 0.188s 
Trigonometric Functions 

sin(x) ^ 0.984s 

cos(x) 253s 1.016s 
tan(x) 197s 1.203s 

arctan(x) ^ 1.453s 
Table 2 Excecution time of 3 million instructions on different processors 
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1.2 Motivation and Objectives 

In recent years, we have seen a proliferation of mobile devices such as PDAs 

and cell phones as well as applications on them. Individuals use them for 

electronic transactions such as phone banking and stock trading, while 

enterprises issue them as a means of access to the corporate network. Security 

concerns with mobile devices have become an imminent issue as a poorly 

protected mobile device may expose sensitive data such as passwords and 

credit card information, or may become a security hole of the entire corporate 

network. 

Unfortunately, mobile devices are traditionally guarded by simple passwords 

which can be easy copied, stolen or forgotten. Clearly, a more sophisticated , 

authentication method is needed. As pointed out in Section 1.1.1， 

biometrics-based authentication presents a more robust alternative because it | 

depends on physiological or behavioral traits which are unique, immutable and 

cannot be stolen[2]. Among the better known forms of biometrics, face 

authentication is ideal for mobile devices not only because it is non-intrusive, 

but also because it requires no extra sensors like a fingerprint does. Nowadays, 

most cell phones and many PDAs already come with built-in cameras[7], 

making face authentication a cost-effective solution to the security problem. 

Traditional face recognition systems, however, involves heavy image 
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processing and are designed for powerful desktop PCs or faster machines. The 

large number of floating point calculations and memory accesses involved 

become a great obstacle to the adoption of face authentication on mobile 

devices. As discussed in Section 1.1.6’ even state-of-the-art mobile devices 

cannot satisfy these demands. Any direct porting of existing systems will only 

result in slow and unacceptable performance. Clearly, optimization is the key to 

real time face authentication on mobile devices. 

In this thesis, we will study and optimize two widely adopted face recognition 

algorithms and compare their performances in a mobile context. Our goal is to 

show that real time face authentication can be achieved on mobile devices 

without loss of accuracy. 

1.3 Major Contributions 

1.3.1 Optimization Framework 

During the optimization of PCA and EBGM, it becomes clear that a software 

engineering model dedicated to the general optimization problem is needed. In 

light of this, we propose a high level view of optimization techniques and a 

feedback oriented workflow. The high level view gives insights on how general 

optimization problems should be approached and how these techniques can be 

categorized; the workflow keeps us sensitive to changes in program behaviour 

and measures the effectiveness of a technique to a particular problem. The 
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simplicity and flexibility of the two makes them easily adaptable to other 

optimization problems. More details can be found in Chapter 3. 

1.3.2 Real Time Principal Component Analysis 

Principal Component Analysis (PCA)[8] is a widely adopted, global feature 

based face recognition technique. In this study, we investigate the feasibility of 

a real-time implementation of PCA on mobile devices. The performance of the 

un-optimized code is far from satisfactory, requiring 30 seconds for just one 

authentication session. After extensive profiling, we found that the bottleneck is 

the large amount of floating point multiplications. By using optimization 

techniques such as fixed-point arithmetic and pre-computation, the execution 

time for an authentication session reduced by 22 times - to 1.3 seconds only. 

Large database testing shows that there is no significant loss in verification 

accuracy[9]. More details can be found in Chapter 4. 

1.3.3 Real Time Elastic Bunch Graph Matching 

In contrast to PCA, Elastic Bunch Graph Matching (EBGM) [10]based on local 

features of a face and is less susceptible to lighting, face position and 

expression variations. In this study, we attempt to build a real-time 

implementation of EBGM on mobile devices. An un-optimized implementation 

takes 550 seconds (Section 4.3.1) to complete a single face authentication 
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session and is unacceptable for any practical use. To improve the execution 

time, profiling is done to pinpoint the bottlenecks. Various optimization 

techniques such as fixed-point arithmetic, table lookup, pre-computation and 

memory optimization are developed and employed. The result is a 420 times 

improvement - the optimized code now only takes 1.3s for one authentication. 

More details can be found in Chapter 5. 

1.4 Thesis Organization 

This chapter provided an overview of face recognition and characteristics of 

mobile devices. A summary of the objectives and contributions of our work 

were also given. The remaining chapters of this thesis are organized as follows: 

Chapter 2 briefly reviews related work in face recognition and in particular 

those iset in a mobile context. Chapter 3 presents a high level view of different 

levels of optimization and a proposed workflow. Chapter 4 and 5 present an 

experimental study of the optimizations of PCA and EBGM respectively. 

Finally, Chapter 6 summarizes the research performed, and describes some 

challenges encountered and possible directions for future research. 
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2. Related Work 

2.1 Face Recognition for Desktop Computers 

As discussed in Section 1.1.2，face recognition systems are often classified by 

the representation scheme they adopt. The two major classes of system are 

global feature based and local feature based systems. In this section, a brief 

description and representative examples will be given for both classes. 

2.1.1 Global Feature Based Systems 

In this class of systems, face images are treated as a whole and statistical 

information from the entire face is extracted. Most systems in this class involve 

finding an easily separable subspace. By projecting the high dimensional face 

image to a well-selected subspace of lower dimension, an efficient and possibly 

discriminating representation is acquired. Various subspace selection methods, 

including Evolution Pursuit(EP)[ll]， Independent Component 

Analysis(ICA)[12], Principal Component Analysis (PCA) [13] and Linear 

Discriminant Analysis (LDA)[14] are commonly used methods, with the latter 

two being the most popular ones due to their simplicity and reasonable 

performance. 
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Principal Component Analysis (PCA) [13] 

Principal Component Analysis (or eigenface) is a general and widely-adopted 

statistical method for dimension reduction. The covariance matrix of the face 

images is first found and then the eigenvectors for this matrix are in turn 

computed. The top eigenvector, proven to be the most efficient (but not 

necessarily discriminating) representations for the faces, is preserved for the 

construction of a transformation matrix. All face images are then transformed 

and projected to the PCA subspace, in which matching will be done. 

• _ " i f 壓 
•翻顯 

關圓圓 
Figure 7 Principal Components (eigeiifaces) [13] 

Linear Discriminant Analysis (LDA) [14] 

Despite the fact that PCA derives an efficient subspace, it treats all face 

images — even those from the same person 一 as different classes. The variations 

between face images of the same person is not addressed and results in 
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non-optimal discriminating power among persons. LDA (or fisherface) tackles 

this problem by including class specific information in determining the 

sub space. The criterion is to maximize the ratio of the interpersonal variance to 

the intrapersonal variance, so that the resultant sub space is easily separable 

between classes (persons). Usually several images of the same person are 

needed during enrollment to capture as much intra-class variation as possible. 

2.1.2 Local Feature Based Systems 

Earlier methods in this class uses purely geometry based approach. The relative 

size of and distance between various facial components like eyes, nose and 

mouth are measured and used as features. Unfortunately, this kind of methods 

is susceptible to deformation. Updated methods cater for the deformation 

problem by allowing a reasonable amount of displacement to exist between 

feature points. Local features are often extracted by means of filter convolution, 

such as Gabor filters. The most representative methods in this class include 

Elastic Bunch Graph Matching (EBGM) and Local Feature Analysis (LFA). 

Elastic Bunch Graph Matching (EBGM) [10] 

This method makes use of deformable templates which allow approximation 

rather than exact matching between the feature points in terms of relative 

location. Faces are represented as a set of local features located on an elastic 

(deformable) graph (see Figure 8). Local features are first computed by 
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convoluting the face image with 2D Gabor filters with various centre 

frequencies, bandwidths and orientations. The filter outputs are then sampled at 

different locations on the graph. During matching, the novel face graph is 

matched with the registered one. The best match is one that preserves features 

and local geometry. 

m 
Figure 8 Elastic graphs overlaid on face images [10] 

Local Feature Analysis (LFA) [15] 

Local feature analysis is a derivative of the eigenface method[16], Instead of 

the entire representation of a face, LFA utilizes specific areas of a face such as 

eyes and areas of definite bone curvature differences, such as the cheeks. The 

responses of multi-scale filters are used as local features and encoded using 

PC A to obtain a compact description. 
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Figure 9 Local features selected by LFA [15] 

2.1.3 Commercial Systems 

Technology details of commercial systems are either not disclosed or a 

combination of local/global methods is used; hence it is hard to classify them 

into any single category. The face recognition products discussed below are 

ranked among the top 3 in the Face Recognition Vendor Test 2002 

(FVRT2002)[17], a public evaluation contest of face recognition algorithms. 

FaceVACs. Cognitec Systems GmbH. [18] 

In this product, feature extraction starts with local image transforms that are 

applied at fixed image locations. These transforms capture local information 

relevant for distinguishing people, for example, the amplitudes at certain spatial 
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frequencies in a local area. The results are collected in a vector. A global 

transform is then applied to this vector. Using a large face-image database, the 

parameters of this transform are chosen to maximize the ratio of the 

inter-person variance to intra-person variance in the space of the transformed 

vectors. Multiple images are taken of each person during enrollment in order to 

better cover the range of possible appearances of that person's face. 

fR. Neven Vision, Inc. [19] 

This product makes use of a combination of Gabor wavelet and neural 

networks. The face detection modules employ a general face model to localize 

a face in the image. A 3D representation of the head copes with pose variations. 

The general face models are learned from a large database of face images and 

cover a wide variety of environmental conditions such as illumination and 

expressions. Local features such as eye-position, nose-position and 

mouth-position are used. 

Facelt. Indentix，Inc. [20] 

This product uses a combination of three technologies namely Vector Feature 

Analysis (VFA), Local Feature Analysis (LFA) and Surface Texture Analysis 

(STA). VFA is optimized for low-resolution images and runs at a very high 

speed. LFA is based on facial geometry information and is optimized for low to 

medium resolution images. STA is based on skin texture micro-features and is 
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optimized for higher resolution images. 

In one-to-one applications, VFA, LFA and STA algorithms can be used alone or 

in combination. In one-to-many applications, the three algorithms are used in 

a three-pass pipeline, where only the top percentage results of the previous pass 

are searched again in the next pass. For maximum speed and accuracy, VFA is 

used for the first pass, LFA for the second, and STA for the third. At the 

conclusion of the passes, the top scores of all three passes are fused together 

into a final set of scores. 

2.2 Biometrics on Mobile Devices 

In recent years, there has been growing interest in biometrics on mobile devices. 

Previous studies on face recognition for mobile devices mainly focus on using 

the device as a capturing tool, with most expensive computations done on PC 

servers [21, 22, 23, 24]. Some require specialized hardware which makes use of 

a multi-processor architecture to achieve real time performance[25]. Other 

attempts to implement a face recognition system on mobile devices have been 

reported, but no detailed account of the execution time was given [26, 27, 28]. 

Recently, commercial face authentication systems for mobile phones have also 

been introduced, including OK AO Vision from Omron [29, 30] and 

Genelock-light from Earth Beat [31]. 
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Figure It) OKAO Vision from Omron [27, 28] 

Due to the high demands for more secure authentication methods, researchers 

around the world have also investigated other modes of biometrics 

authentication. Real-time voice [32] and fingerprint [33, 34, 35, 36] verification 

systems have been successfully implemented on mobile devices. When 

combined with the real-time face recognition systems developed in this thesis, 

it is now possible to further enhance security on mobile devices by using 

multimodal schemes such as the one outlined in [23]. 
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3. Optimization Framework 

3.1 Introduction 

During the course of optimizing the PCA and EBGM, we have developed a 

common set of techniques and strategies which is re-applicable to other 

optimization problems. Under this unified framework, the problems of 

optimizing PCA and EBGM, though inherently different, can be described and 

approached in a similar way. 

Platform i i 
Independent 

3.3 Algorithm Level 

3.4 Code Level 

3.5 Instruction Level 

3.5 Architecture Level 

Platform [ _ 
Dependent … 一 

Problem Problem 
Dependent Independent 

Figure 11 Different levels of optimization 

Our framework consists of a high level view and a general workflow of the 

optimization problem. Figure 11 shows the four levels of optimization 

(algorithm, code, instruction and architecture), with varying degrees of 

platform and problem dependence. Platform dependence describes how much 
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knowledge of the target platform is needed for an optimization level. For 

instance, the architecture level is highly platform dependent, suggesting that a 

thorough understanding of the platform specification, such as cache 

configuration, is needed. Problem dependence, on the other hand, describes the 

importance of the problem nature - whether it is in the image processing 

domain or pattern recognition domain. For example, the algorithm level is 

highly problem dependent meaning that the nature of the problem, such as its 

computational complexity, is crucial at this level. A detailed account of each of 

the four levels will be given in Section 3.2. 

While the high level view gives us an idea of what preliminary information is 

needed, the optimization flow describes the general steps involved in an 

optimization task - how to pinpoint the bottleneck, develop and implement an 

optimization, and evaluate its effectiveness. More details can be found in 

Section 3.3. 

3.2 Levels of Optimization 

3.2.1 Algorithm Level 

Algorithm level optimizations involve the selection of an effective algorithm 

and a suitable set of input parameters for a problem. The algorithm level is 

purely problem dependent, in that optimizations often aim at improving the 
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intrinsic qualities of an algorithm, such as computational complexity. On the 

other hand, it is completely platform independent in that the same order of 

improvement can be achieved regardless of the target platform. The Algorithm 

level is often the first to consider during optimization, as a well-optimized 

algorithm provides a stable framework under which techniques of the other 

levels can be applied. 

A significant part of the EBGM optimization belongs to the algorithm level. 

For instance, the invariant Gabor masks and bunch graphs are pre-computed 

and removed from the authentication routine (Section 5.4.2); Gabor mask 

convolutions are modified to exploit their parallel nature to reduce number of 

memory access (Section 5.4.6). Finally, an efficient set of Gabor filters is 

derived in an attempt to strike a balance between speed and accuracy (Section 

5.4.4). 

3.2.2 Code Level 

Algorithmic optimizations can only be realized through efficient 

implementation. The aim of code level optimization is to improve on a correct 

but suboptimal implementation. At this level, a significant amount of effort is ’ 

often dedicated to optimizing loops, in which most execution time is spent. 

Common code optimization techniques includes loop unrolling, which reduces 

overhead per iteration and code motion, which saves unnecessary computations 
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by moving loop invariant code out of the loop body. These techniques are 

widely employed in both the optimization of PCA and EBGM. 

Code level optimization is problem independent since the control structures 

being optimized are common to all problems. However, as the actual 

implementation depends on the programming languages available on a given 

platform, code level optimizations can be slightly platform dependent. 

3.2.3 Instruction Level 

At the instruction level, the difference between basic operations such as integer 

and floating point arithmetic must be accounted for. This is especially true 

when the target platform is a mobile device, in which hardware Floating Point 

Units (FPU) are absent and floating point instructions are unavailable 

(Sectionl.1.6). Due to the fact that software floating point emulators are 

hundreds of times slower than their hardware counterpart, floating point 

avoidance is often regarded as a rule of thumb for mobile device optimizations. 

To circumvent slow floating point operations, fixed point arithmetic can be 

used. By representing real numbers using integers and replacing floating point 

arithmetic with integer ones, the performance of real number operations can be 

significantly improved. A significant portion of speedup of PCA and EBGM is 

achieved by the adoption of fixed point arithmetic. The implementation details 
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and speedup of fixed point arithmetic can be found in Section 4.3 and 5.4.1. 

Besides basic floating point operations, a class of commonly used routines 

deserves special attention. Trigonometric functions provided by the standard 

math library are evaluated by floating point polynomial expansion and is 

extremely slow. The use of table lookup is a fast and viable alternative, as will 

be proven in the optimization of EBGM (Section 5.4.8). 

The instruction level is platform dependent, as the problems tackled at this 

level are often shared by the same family of processors or devices. And since 

the problem nature indirectly determines the amount of floating point or 

trigonometric operations used, instruction level optimizations are also 

moderately problem dependent. 

3.2.4 Architecture Level 

Architecture level optimizations mostly deal with cache and memory 

optimization. By fine tuning factors such as system cache policy and memory 

page attributes, the overall throughput and efficiency of the memory hierarchy 

can be maximized. Detail specification of the target platform must be known so 

that a specific set of parameters can be derived for each target. 

Besides being highly platform dependent, the architecture level also relies 



Chapter 3. Optimization Framework 29 

heavily on a thorough understanding of the problem at hand. Only if knowledge 

of both worlds is combined can a feasible optimization strategy be derived. For 

instance, while the processor is totally oblivious to the memory access pattern 

of a program, it is predictable and known a priori by the programmer. By 

utilizing information about the low level cache configuration and the high level 

memory access behaviour，a programmer can derive efficient memory access 

schemes such as those employed in EBGM optimization (see Section 5.4.5 and 

5.4.7) 一 a hardware/software co-design effort. 

3.3 General Optimization Workflow 

Before an optimization strategy can be developed and tested, a feedback 

mechanism must be in place for easy evaluation and refinement of a strategy. 

Here we describe a general optimization flow which is used throughout the 

PCA and EBGM optimizations. 
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Figure 12 General optimization flowchart 

As shown in Figure 12, the optimization workflow consists of four stages. In 

the profiling stage, program runtime statistics such as overall execution time, 

function counts and page faults are measured. Then the overall execution time 

is checked against the timing requirement of the application at hand, and if it is 

not satisfied, hotspot location is done to pinpoint the area which deserves the 

most attention. Targeting the located hotspots, an optimization strategy is 

derived and implemented in the optimization stage. Finally, the optimized 

program is subjected to profiling again, and the whole process goes on until the 

timing requirement is satisfied. 

Here we notice a dual role assumed by the profiling stage: before each 

optimization, profiling acts as a preparatory stage and provides the necessary 
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information about the dynamic behaviour of a program; after optimization is 

done, profiling gives feedback about the effectiveness of a strategy and more 

importantly, updates of program behaviour. As optimization is a continuing 

process, the program nature can shift dramatically between different extremes 

(e.g., computation-bound or memory-bound). Being sensitive to these changes 

is hence essential for determining the next optimization focus. Chapter 4 and 5 

further describe how this optimization workflow works in practice. 

3.4 Summary 

Here we categorize the optimization strategies used in PCA and EBGM 

optimization into different levels, as shown in Table 3: 

Level Strategies Section 
-Efficient Gabor Filter Selection 5.4.4 

Algorithm _ Gabor Masks and Bunch Graphs Precomputation 5.4.2 

-Reducing Redundant Memory Access 5.4.6 

Code - Improving Array Access 5.4.3 

. -Fixed-point Arithmetic 5.4.1,4.3 

-Optimization of Trigonometric Functions 5.4.8 
. -Fine Tuning System Cache Policy 5.4.5 

Architecture 
-Maximizing Cache Reuse by Array Merging 5.4.7 

Table 3 Optimization strategies employed 



Chapter 4. Real Time Principal Component Analysis 32 

4. Real Time Principal Component Analysis 

4.1 Introduction 

The Principal Component Analysis (PCA) Algorithm, also known as eigenface, 

is a tested and widely adopted face recognition method and was first proposed 

in[13]. In our experiments, the PCA implementation of the CSU Face 

Identification Evaluation System 5.0 [37] is used as the baseline system. As 

shown in Figure 13, PCA authentication consists of four main stages: 1) Image 

Preprocessing, 2) PCA Subspace Training, 3) PCA Subspace Projection and 4) 

Template Matching. Each of these stages will be discussed in detail in Section 

4.2. 
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Figure 13 Major stages of PCA face authentication 
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4.2 System Overview 

4.2.1 Image Preprocessing 

In the image preprocessing stage, all input face images are normalized to 

reduce the variation among them. The normalization routine performs 

geometric normalization, masking, histogram equalization and pixel 

normalization [38, 39, 40] on the face image. Figure 14 shows a face image 

before and after normalization. Dimensions of the face images are reduced 

from 256 x 384 to 130 x 150 in this stage. After the preprocessing stage, the 

normalized face image is then passed on to the main PC A algorithm for training, 

enrollment or verification depending on the particular scenario. 

• • M 
Figure 14 Original (left) and normalized (right) face image 
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4.2.2 PCA Subspace Training 
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Figure 15 PCA subspace training and projection 

As shown in Figure 15, PCA consists of two stages 一 Subspace Training and 

Projection. Training must be done before the system can be used. In a training 

scenario, training face images are used to build a subspace which efficiently 

preserves distinguishing features of face images. Then in an enrollment or 

verification scenario, new face images are projected to this trained subspace 

and form face templates which will be used for comparison. 

During Subspace training, the rows of an N] x Âo training image are first 

concatenated into a one dimensional image vector. Let the training face image 

vectors be Fj, Fj, F3... Fm. Each face vector differs from the mean by the 

vector (Di： 
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where [ 试 ( D 

The MxM covariance matrix C ( = (D",(D”) is constructed and its 

eigenvectors v/ are found. These vectors determine the linear combinations of 

the M training face images to form the eigenfaces u! (each of dimensions N] x 

W/ = Xr=i、，丨k^k where I = 1,...,M � 

In practice, only a subset of these eigenfaces {k = where N «M) is 

retained to form a transformation matrix Z which is used in the PCA projection 

stage. Only those eigenfaces which account for the most significant variations 

(principal components) are used in the construction. Figure 16 shows some 

examples of eigenfaces. The PCA subspace need only be trained once. 

Figure 16 Eigenfaces (Principal Components) 
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4.2.3 PCA Subspace Projection 

During PCA projection, a new face image vector F is first subtracted by the 

mean (4^) found in training and then multiplied by the transformation matrix Z. 

F is essentially projected to a point in the PCA subspace: 

吟 w h e r e Z = (3) 

In this PCA subspace, the correlations among the projected images are 

minimized in order to facilitate easier classification[13]. The projected image 

(似yt) is then saved as the face template of the corresponding user for future 

matching. 

4.2.4 Template Matching 

Template matching is done in the last stage of a verification scenario. After a 

live face image is preprocessed and projected, the live face template is then 

compared with the claimed user's face template. The comparison results in a 

similarity score which is in turn compared with the system threshold. If the 

score is higher than the threshold, the user is accepted; otherwise he or she will 

be rejected by the system. Mahalinobis Cosine distance [38] is used as the 

similarity measure in our face authentication system. Mahalinobis Cosine is the 
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cosine of the angle between two face templates after they are normalized by the 

variance estimates. For image vectors u and v with corresponding projections m 

and " in Mahalinobis space, the Mahalinobis distance is defined as: 

mil/? c o s ( � I 
A ( u v) = — ^^ ⑷ 

4.3 Optimization using Fixed-point Arithmetic 

4.3.1 Profiling Analysis 

As discussed in Section 3.3, profiling analysis must first be carried out to locate 

the bottlenecks in the face authentication system. Since the PCA subspace can 

be trained on a PC in an offline fashion, only the image preprocessing, PCA 

subspace projection and template matching stages are analyzed. 

In our experiments, an open-source tool called GNU profiler (gprof) [41] is 

used for profiling, gprof can monitor program statistics such as total execution 

time and percentage of execution time taken by each ftinction, which are useful 

for identifying and pinpointing the bottlenecks of a system. To analyze the 

execution time, 170 images selected from the FERET face image database 

(Section 1.1.4) are preprocessed, projected and matched. The execution time of 

these 170 authentication sessions are averaged and shown in Table 4. A detailed 
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description of the hardware testing platform will be given in Section 4.4.1. 

Execution Time I Percentage 

Image Preprocessing 6.877 sec (22.7%) 

PCA Projection 22.933 sec (75.8%) 

Template Matching 0.425 sec (1.5%) 

Total 30.235 sec (100%) 

Table 4 Breakdown of execution time of one authentication session 

As shown in Table 4，the PCA Projection stage alone takes up over 75% of the 

execution time of a typical authentication session; hence optimization effort 

should be focused on this stage. Experimental results show that matrix 

multiplication is the bottleneck of PCA projection and accounts for over 92% of 

the execution time. The primitive operations of matrix multiplications are 

floating point multiplications, which are extremely slow on mobile processors 

(Section 1.1.6). To circumvent the slow floating point multiplication bottleneck, 

fixed point arithmetic[42], using only integer operations, is used to optimize the 

face authentication system. All floating point variables and operations in the 

system are replaced with their fixed point counterparts. 

4.3.2 Fixed-point Representation 

A fixed point variable is implemented using a 32-bit integer (built-in C type 

"int"). The fixed point representation consists of three parts: sign bit, integer 

bits and fraction bits, as illustrated in Figure 17. The number of bits assigned to 
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the integer part is called Integer Word Length (IWL). Similarly, the number of 

fraction bits is called Fractional Word Length (FWL). IWL determines the 

largest possible range that can be represented by a fixed-point number, while 

FWL determines the precision. For instance, a real number, -1.875 in decimal 

(-1.111 in binary) is represented as -122880 in decimal (-11110000000000000 

in binary) in fixed point format. 

000000000000001 1110000000000000 
• V J V 》 

八 y » 
Integer Bits (IWL = 15) Fraction Bite (FWL =16) 

Sign Bit 

Value = -1 111(Binarv)/-1 875(Decima) 

Figure 17 Data representation of a fixed-point number 

4.3.3 Range Estimation 
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Figure 18 Examples of overflow and underflow 
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As shown in Figure 18, the fixed-point representation may suffer from 

overflow or underflow if the IWL is inappropriate. To prevent overflow or 

underflow, care must be taken when selecting the location of the fixed point. 

Range estimation is done to determine the range and precision required by 

different stages of the face authentication system. A set of Perl scripts is 

developed which automatically scans through the code base, assigns a unique 

identifier to each floating point variable and adds a range estimation function 

call after each value assignment. The range estimation function receives the 

identifier and the updated value of the floating point variable, and then logs the 

assignment value for further analysis. The maximum absolute value and the 

number of assignments of each floating point variables are found on 

completion of a face authentication. 

After the code is modified for range estimation, 3368 frontal face images 

collected from 1209 subjects from the FERET face database [5] are 

preprocessed，trained, projected and template matched. The results are then 

used to estimate the value range of the floating-point variables in the code. 

Figure 19 and Figure 20 show the bit requirements of all floating point 

variables in different stages of the system. Here, bit requirement of a variable is 

defined as the minimum number of bits required to represent the maximum 
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absolute value ever assigned to the variable. Range estimation results show that 

the bit requirement of the image preprocessing stage is much larger than the 

PCA projection and template matching stages. To safely accommodate the 

largest floating point value while retaining sufficient accuracy, two IWLs are 

chosen. For Image preprocessing, IWLl = 15 is chosen and for PCA projection 

and template matching, IWL2 = 9. The FWLs are chosen accordingly (i.e. 

FWL1=32 - IWL1-1=16, FWL2=32-IWL2-1=22). By using two stage-specific 

IWL instead of a system-wide, fixed IWL[32], the largely different value 

ranges of different stages can be accommodated. 
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Figure 19 Bit requirement of Image Preprocessing Stage 
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Bit Requirement Distribution 
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Figure 20 Bit requirement of PCA Projection and Template Matching Stage 

4.3.4 Code Conversion 

Once the IWLs are decided, floating point to fixed point code conversion can 

be carried out. In this stage, all floating point constants and variables, including 

arrays, pointers and structures, are converted to fixed point format. The fixed 

point representation is complemented by a set of conversion and arithmetic 

operations. Examples of the arithmetic and conversion routines are illustrated 

in Table 5. 

Operations C Macro Implementation 

Multiplication #define fixMul(x, y) ((int) ((((long long)(x)) * (y)) » F W L ) ) 

Division #define fixDiv(x, y) ((int) ((((long long)(x)) « F W L ) / y))) 

Fixed point to Floating Point #define fix2Double(x) (((double)(x)) * 2 ™ ) 

Floating Point to Fixed Point #define double2Fix(x) ((fixed) ((x)* 

Table 5 C macro definitions of fixed point operations 
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When designing this set of operations, special attention was taken to cater for 

the immediate results. For instance, FWL of an addition/subtraction result is the 

same but for multiplication and division, numbers with FWL'= 2 • FWL and 

FWL' = 0 are yielded respectively. Thus, a scale-shift operation is needed for 

multiplication and division. 

4.4 Experiments and Discussions 

4.4.1 Experiment Setup 

Experiments were carried out to measure the effect of optimization using 

fixed-point arithmetic. The execution time, space requirement and verification 

accuracy of the baseline and optimized system are compared. A development 

board for embedded system is used for evaluation. Table 6 shows its 

specification. From simplicity, we will refer to this platform as Mobile. 

Processor Intel XScale PXA255 400Mhz 

Memory 64MB lOOMhz SDRAM 

Storage 32MB flash ROM 

OS Embedded Linux (kernel version 2.4.19) 

Compiler arm-linux-gcc [43] 

Compile Options -02 -mtune=xscale 

Table 6 Specification of the evaluation system 
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All face images used in the experiments were selected from the FERET face 

database (Section 1.1.4). In all of the following experiments, the PCA subspace 

used is trained using 1194 face images. The first 358 principal eigenvectors are 

preserved. 

4.4.2 Execution Time 

We measured the difference in execution speed between the baseline and 

optimized systems. Measurements were taken by averaging the execution time 

for 120 authentication sessions. 

Baseline Optimized Reduction 

I. Image Preprocessing 6.88 s 0.832 s 6.05s 

II. PCA Projection 22.9 s 0.492 s 22.4s 

III. Template Matching 0.425 s 0.00833 s 0.417s 

Total 30.2 s 1.33s 28.9s 

Table 7 Execution time of the baseline system and the optimized code 

As seen from Table 7, a reduction of 22 seconds is observed for the PCA 

projection stage, 46 times faster than the baseline system. The image 

preprocessing speed is also improved by six times. Although the reduction in 

execution time for the template matching stage is comparatively insignificant to 

a verification scenario, it can be crucial to identification scenarios in which the 

number of matching (and hence projection) performed is directly proportional 

to the number of registered users in the database. Overall, the authentication 
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time for PCA now takes slightly more than one second, meeting the real time 

requirement. 

4.4.3 Space Requirement 

An added benefit of using fixed point representation is the reduction in storage. 

Table 8 shows the storage requirement of the PCA subspace and face templates 

used in our system. Since fixed variables (32bit integers) are used instead of 

floating point ones (64bit doubles), the storage requirement is halved. For 

mobile devices which have limited amounts of memory and storage space, this 

reduction can be beneficial in reducing the system runtime footprint as well as 

the storage requirement. As the loading time of the PCA subspace dominates 

the initialization time of the face authentication system, the decrease in size of 

the PCA subspace means much shorter setup time, as shown in Table 8. 

Baseline Optimized Reduction 

Size of PCA Subspace 45Mb 23Mb 95.6% 

Size of Face Template 2.3Kb 1.2Kb 91.6% 

PCA Subspace loading time 32secs 16secs 100% 

Table 8 Reduction in space requirement and its impact on loading time 

4.4.4 Verification Accuracy 

To investigate the effect of optimization on the verification accuracy, the 

FERET face database and evaluation protocol were used. (Section 1.1.4). A 
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total of 3307 frontal face images collected from 1196 subjects were used in the 

experiments. 1196 images were selected to form the gallery and the remaining 

images are separated into four probe sets (FB, dupl, fc and dup2). For each 

test, the probe images were matched against the gallery images in a round robin 

fashion. Images from the same subject were matched to calculate the False 

Rejection Rate (FRR). Match results of images from different subjects were 

matched to calculate the False Acceptance Rate (FAR). More details about the 

face images and probe sets can be found in Section 1.1.4. 

Figure 21 to Figure 24 show the Receiver Operating Characteristic (ROC) 

curves of the optimized code and the baseline system for different probe sets. 

The overlapping curves indicate that verification accuracies of both systems are 

essentially identical. 
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Figure 21 ROC Curves of PCA (FB probe set) 
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Figure 22 ROC Curves of PCA (dupl probe set) 
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Figure 23 ROC Curves of PCA (fc probe set) 
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Figure 24 ROC Curves of PCA (dupl probe set) 
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5. Real Time Elastic Bunch Graph Matching 

5.1 Introduction 

Elastic Bunch Graph Matching [10] represents faces using a set of local 

features located on an elastic (deformable) graph. Responses to a set of Gabor 

filters is collected for each node on the graph and stored in the face template. 

Both graph configuration and local Gabor features are taken into account 

during matching. Due to its local and flexible nature, EBGM is in general less 

susceptible to variations in lighting，face position and expression. 

In our experiments, the EBGM implementation of the CSU Face Identification 

Evaluation System 5.0 [37] is used as the baseline system. As shown in Figure 

25, EBGM authentication consists of four main stages: 1) Image Preprocessing, 

2) Facial Landmark Localization, 3) Gabor Feature Extraction and 4) Template 

Matching. Each of these stages will be briefly described in Section 5.2. 
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Figure 25 Major stages of EBGM face authentication 
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5.2 System Overview 

5.2.1 Image Preprocessing 

In this stage，face images are normalized to reduce the variations among them. 

The normalization routine performs mean centering, edge smoothing, 

geometric normalization, masking and pixel normalization on the face 

image[44]. Figure 26 shows a face image before and after normalization. 

Dimensions of the face images are reduced from 256 x 384 to 128 x 128 in this 

stage. After the preprocessing stage, the normalized face image is then passed 

on to the main EBGM algorithm for landmark localization and feature 

extraction. 

HRteifll IHIHI 

Figure 26 Original (left) and normalized (right) face image 
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5.2.2 Landmark Localization 

In this stage, locations of facial landmarks such as eyes, nose and mouth are 

found. The landmark localization stage contains two steps. First, rough 

estimates of the landmark locations are obtained based on known landmarks, 

such as the eyes. Then this estimate is refined by Gabor jet comparisons. 

A Gabor jet refers to a set of Gabor wavelet convolutions values obtained at a 

specific point. By varying the wavelet function parameters, frequency 

characteristics about the local image region around the extraction point can be 

captured. For the EBGM algorithm, 40 complex Gabor wavelets (or 80 

real/imaginary pairs) of different sizes, wavelengths and orientations are used. 

Figure 27 shows examples of some of the Gabor filters used. 

Jl^j^ • • Q D 

Figure 27 Gabor filters of different wavelengths and orientations 

The landmark location is refined by extracting a novel jet from the estimated 

location of the landmark in the novel image. Then a model jet (the most similar 

one) is selected from a data structure called the bunch graph. Figure 28 shows a 

graphical illustration of the bunch graph, containing collections of sample jets at 

each landmark location, all extracted from training images. Using the phase 
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information stored in the novel and model jets, the displacement of the novel jet 

from the true landmark location can be calculated. After all the landmark 

locations are found, they are passed on to the feature extraction stage. 

Figure 28 The bunch graph[10] 

5.2.3 Feature Extraction 

In the feature extraction stage, Gabor jets are extracted from the normalized face 

image at the landmark locations found in the previous stage. These Gabor 

features, together with the locations, are stored in a structure called face graph. 

This face graph is stored in the template database for future recognition use and 

the original face image is then discarded. Figure 29 shows a sample face graph. 
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圓 
Figure 29 Face graph (only landmarks are shown here)[44] 

5.2.4 Template Matching 

After a face graph is created for a novel face image, its similarity with another 

registered face graph (template) can be computed. Given two face graphs, G 

and G ’, their similarity L can be computed as: 

1 M 

where M is the number of landmarks, and J, and 山 ’ are jets from the 产 

landmarks of graphs G and G ’. So is a similarity measure for Gabor jets defined 

by: 

似 J , r ) =〜 . V • — (6) 

仏 M ) � . / 

where N is the number of Gabor filters, and a, {a, ’）and d)人 O/) are the 
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magnitudes and phases of the产 filter response from Gabor jets J{J'). d is the 

estimated displacement between the two jets and k) is the spatial frequency of 

thefh filter. The term d . kj is used to compensate the phase shifts caused by 

the displacement, leading to a phase sensitive similarity function. A more 

detailed discussion on the EBGM algorithm can be found in[3]. 

5.3 Optimization Overview 

The optimization process of EBGM is much more complicated than PCA. For 

PCA, fixed-point arithmetic (Section 4.3) alone is sufficient to bring real time 

performance but for EBGM, other techniques such as memory optimization are 

needed. For clarity, all optimization techniques adopted and the order they are 

implemented are summarized in Figure 30. As one can see clearly from the 

diagram, optimization efforts start out with fixed-point arithmetic and 

pre-computation, but soon turn to memory optimization techniques. This shift 

in focus is due to the fact that optimization is a dynamic process; program 

behaviour can switch from computation-bound to memory-bound and vice 

versa. Optimization strategies must be sensitive to these changes and adjust 

accordingly, otherwise efforts may be wasted in premature optimization. This is 

exactly the same reason why optimization techniques are applied in the specific 

order shown in the diagram. To cater for the changing nature of the program, 

various computation optimization and memory optimization techniques have 
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been developed and will be discussed in Section 5.3.1 and 5.2.2 respectively. 

Details of the eight optimization techniques will be given in Section 

5.4.1-5.4.8. 

广 Computation Optimization " Y Memory Optimization 
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4 
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Figure 30 EBGM optimization flowchart 

5.3.1 Computation Optimization 

Besides the fixed-point arithmetic and pre-computation techniques already 

introduced in PCA implementation, an important addition is the optimization of 

trigonometric functions. As discussed in Section 1.1.6, trigonometric functions 

can be several hundred times slower on mobile devices than on PCs. In Section 

5.4.8, we use table lookup to improve their performance. 



Chapter 5. Real Time Elastic Bunch Graph Matching 56 

In Section 5.4.4, we attempt to reduce the number of computations by using 

only a subset of the original Gabor filter sets and investigate the tradeoff 

between speed and accuracy. Since the reduction in the number of Gabor filters 

used directly leads to a reduction in memory access, this technique is both a 

computation and a memory optimization technique, as shown in 5.4.4. 

Unfortunately, since this technique is accuracy non-preserving, it is not adopted 

in the final implementation as will be explained in Section 5.4.4. 

5.3.2 Memory Optimization 

While computation optimization tries to reduce execution time by reducing or 

replacing the arithmetic operations going on inside the processing core, 

memory optimization does it by improving the communication efficiency 

between the core, on-chip cache and off-chip memory. This requires a thorough 

understanding of the memory hierarchy of the target processor as well as the 

memory access behaviour of the application to be optimized. 

Here we will give a brief description of the Intel XScale core[45], a high 

performance and low power processor specifically designed for mobile 

applications. It will be used in all our testing and experiments. Figure 31 shows 

its internal architecture. XScale uses separate caches for instruction and data, 

both 32-way set associative and of size 32Kbytes. These on-chip caches, while 
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relatively small in size, can be accessed in the same clock speed (i.e. 400 MHz) 

as the execution core. Larger but slower main memory (100 MHz SDRAM) can 

be accessed via the Memory Management Unit (MMU) and the core memory 

bus. The large difference in clock rate means that a cache miss will result in 

undesirably long memory access latency. Hence improving cache performance 

is the main goal of memory optimization. 
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Figure 31 Intel XScale PXA255 Processor Block Diagram [6] 

Cache performance is determined by factors such as cache size and 

associativity, block size, block replacement policy and cache write policy[46]. 
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5.4.1 Fixed-point Arithmetic 

Pre-Profiling and Hotspot Location 

Table 11 shows the execution time of one EBGM authentication session on 

Mobile. It is obvious that the execution time is far from satisfactory - over nine 

minutes on average. Note that the im-optimized implementation of EBGM is 

also 18 times slower than the im-optimized PCA, which takes only 30 seconds 

for one session (Section 4.3.1). Optimization is clearly needed and focus should 

be put on the landmark localization and feature extraction stage, which together 

take up over 98.1% of the total execution time. 

Stage Execution Time Percentage 

1) Image Preprocessing 8.335s 1.51% 
2) Landmark Localization 218.2s 39.4% 

3) Feature Extraction 324.8s 58.7% 
4) Template Matching 1.849s 0 .334% 

Total 553.2s 100% 

Table 11 Breakdown of one EBGM authentication session 

To study and measure the behaviour of each EBGM stage, they are profiled 

separately. Table 12 shows the gprof profiling results of the image 

preprocessing stage. On Mobile, functions that involve a large amount of 

floating point operations (1, 2, 3，and 5) take up over 70% of execution time. 

Similar results were collected on Desktop, except that the matrix multiplication 

function takes up only one third of the execution time as in Mobile. As matrix 
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multiplication involves a large amount of memory access, the differences may 

be due to a difference in cache size or memory access efficiency. 

Function Name Description Mobile Desktop 

1 • ZeroMeanOneStdPevMasked Pixel normalization 38.96% 37.22% 
2. multiplyMatrix Matrix multiplication 17.77% 5.65% 
3. interpLinear Linear interpolation 15.16% 18.85% 
4. writePGMImage Write output image 9.00% 7.43% 
5. transformlmage Geometric transformation 6.88% A.91% 

6. smoothlmageEdge Edge smoothing 4.25% 5.04% 
Table 12 Function Profile (Image preprocessing) 

Table 13 shows the result for the landmark localization stage. Here we see a 

large difference between the results collected from Mobile and Desktop. 

Distance estimation, which occupies no more than 4% of execution time on 

Desktop, takes up over 43% of time on Mobile. It turns out that this function 

contains trigonometric functions besides simple floating point arithmetic. As 

mentioned in Section 1.1.6, trigonometric functions can be a serious bottleneck 

for mobile devices. 

The image element access takes up more than 15% of the time on Mobile, 

while it is insignificant on Desktop. This may be due to slower memory access 

on Mobile. Similar observations can be found in the feature extraction stage. 

(See Table 14). 
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Function Name Description Mobile Desktop 

1. DEPredictivelter Distance estimation 43.06% 3.27% 

2. convolvePoint Filter convolution 40.43% 95.91% 

3. ie Image element access 15.38% -0 .0% 
Table 13 Function Profile (Landmark localization) 

Function Name Description Mobile Desktop 
1 • convolvePoint Filter convolution 68.03% 99.54% 
2. ie Image element access 30.50% -0 .0% 

Table 14 Function Profile (Feature extraction) 

Table 15 shows that distance estimation dominates the execution time of the 

template matching stage. Given that the only task in template matching is to 

calculate the distance between pairs of input images, the result is reasonable. 

Function Name Description Mobile Desktop 
1. DEPredictivelter Distance estimation 99.73% 99.62% 

Table 15 Function Profile (Template matching) 

To summarize, the hotspots of the EBGM algorithm are floating point 

arithmetic, memory access and trigonometric functions. Taking into account the 

dominance of the landmark localization and feature extraction stage, the 

common bottleneck is floating point arithmetic. Hence in this section, we will 

reuse the fixed-point arithmetic technique as in PCA optimization (Section 4.3). 
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Optimization 

As discussed in Section 4.3, range estimation must first be carried out to 

estimate the Integer Word Length (IWL) requirement. Figure 32 shows the 

minimum IWL for all four EBGM stages. It is found that the range of all four 

stages can be safely accommodated using an IWL of 13. After the IWL is 

chosen, code conversion is done following the steps outlined in Section 4.3.4. 
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Figure 32 Bit requirements of different EBGM stages. 

Table 16 shows the improvement in execution time after fixed-point arithmetic 

is used. As predicted, stages 2 and 3, which depend heavily on floating point 

calculations, show dramatic improvement as their execution times are now 

reduced by around 14 and 11 times respectively. Stage 4, on the other hand. 
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shows a moderate improvement. Overall, the execution time reduces by a factor 

of 11. 

Stage Baseline* Fixed-point 

1) Image Preprocessing 8.335s 1.93s 
2) Landmark Localization 218.2s 15.07s 

3) Feature Extraction 324.8s 29.45s 
4) Template Matching 1.849s 0 .2812s 

Total 553.2s 46.73s 

Table 16 Breakdown of one EBGM authentication session (Fixed-point) 

Post-profiling 

Table 17 shows the change in execution time distribution after fixed-point 

arithmetic is used. Here we see a general decrease in the amount of time spent 

in functions which include a large number of floating point operations (rows 

2,3,5). One exception is the pixel normalization function, for which a relative 

increase is observed. One possible reason for this is that besides floating point 

operations, it also uses trigonometric functions heavily. 

Function Name Description Before After 
1. ZeroMeanOneStdPevMasked Pixel normalization 38.96% 43.61% 

2. multiplyMatrix Matrix multiplication 17.77% 4.14% 

3. interpLinear Linear interpolation 15.16% Q.92% 
4. writePGMImage Write output image 9.00% 5.20% 

5. transformlmage Geometric transformation 6.88% 1.44% 

6. smoothlmageEdge Edge smoothing 4.25% 18.23% 
Table 17 Function Profile (Image preprocessing) 
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For landmark localization and feature extraction, a significant portion of 

execution time is relocated to image element access, as shown in Table 18 and 

Table 19. This suggests a shift in program behaviour from computation-bound 

to memory-bound. Efficient memory access may be the key to further 

optimization. 

Function Name Description Before After . 
1. DEPredictivelter Distance estimation 43.06% 10.17% 
2. convolvePoint Filter convolution 40.43% 36.33% 

3. ie Image element access 15.38% 49.44% 
Table 18 Function Profile (Landmark localization) 

Function Name Description Before After 
1. convolvePoint Filter convolution 68.03% 44.56% 

2. ie Image element access 30.50% 53.35% 
Table 19 Function Profile (Feature extraction) 

For template matching, distance estimation remains the only dominant time 

consumer, as shown in Table 20. But since template matching takes up a mere 

1% of execution time, its optimization is not of much significance at this stage. 

Function Name Description Before After 
1. DEPredictivelter Distance estimation 99.73% 94.81% 

Table 20 Function Profile (Template matching) 

To summarize, fixed-point arithmetic dramatically reduces the time spent in 

computation, and memory access arises as the new bottleneck of EBGM. Fewer 
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and more efficient memory access should be the new goal for optimization. In 

light of this, various memory optimization techniques will be studied in the 

following sections. 

Besides memory optimization, some improvements can be done at a higher 

level. In the beginning, one single Gabor filter set is read and created during 

runtime for both the landmark localization and feature extraction stages. Since 

we use a predetermined set of filters, the filters can be pre-calculated and then 

preloaded at system startup. In addition, the bunch graph structure (Section 

5.2.2) is extracted every time before the landmark localization stage. Assuming 

that the set of model images remains invariant, pre-calculation can also be 

applied. This will be covered in the next section. 

5.4.2 Gabor Masks and Bunch Graphs Precomputation 

Optimization 

As suggested in the previous section, invariant input such as Gabor filters and 

bunch graphs can be pre-calculated and loaded at system startup. An extension 

was implemented for the pre-computation, storing and retrieval of the 

pre-calculated data. Modifications are done to the original implementation such 

that Gabor filters and bunch graphs were now loaded from file instead of 

generated on demand. 
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Table 21 shows the timing breakdown of one authentication session. PI and P2 

are the times required for Gabor masks/bunch graph building (before) and 

loading (after). If preloading is done at setup time, the execution time for one 

authentication session reduces to around 36s. This reduction in computation 

time comes at the expense of extra storage space. Table 22 shows the extra files 

generated for preloading. A total of 2.1Mb extra space is required, which is a 

reasonable tradeoff. 

Stage Before After 

PI) Build/load Gabor Masks 216 .45s 1.15s 

P2) Build/load Bunch Graph 631.93s 2.21s 

1) Image Preprocessing 1.93s 1.93s 

2) Landmark Localization 12.91s 12.91s 

3) Feature Extraction 20.97s 20.97s 

4) Template Matching 0.2812s 0.2812s 

Total 884.5s 39.45s 
Total (Preloaded) 36.09s 36.09s 

Table 21 Breakdown of one EBGM authentication session (Preload) 

Filename Description Number Unit Size 
GaborMaskBolme.params Mask Parameters 1 ^ 

GaborMaskBolmeXX.fpi Gabor masks 80 4K/8K/12K/24K 

GaborMaskBolme.bunchgraph Bunch Graph 1 ^ 

GaborMaskBolmeXX.jetbunch Jet bunches 25 48K 
Table 22 Extra space requirement for precomputation 
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Post-profiling 

As the other stages are not affected by pre-computation, only the profiling 

results of landmark localization and feature extraction stages are discussed here. 

As shown in Table 23, the dominance of image element access further increases 

to over 60%. As for feature extraction, filter convolution and image element 

access remain the most time consuming parts, both involving large amount of 

memory accesses. In the next few sections, we will discuss the various memory 

optimization techniques used. 

Function Name Description Before After 
1. DEPredictivelter Distance estimation 10.17% 1.82% 

2. convolvePoint Filter convolution 36.33% 32.84% 

3. ie Image element access 49.44% 61.1% 
Table 23 Execution time breakdown (Landmark localization) 

Function Name Description Before After 
1. convolvePoint Filter convolution 44.56% 57.84% 

2. ie Image element access 53.35% 41.36% 
Table 24 Execution time breakdown (Feature extraction) 

5.4.3 Improving Array Access Efficiency using ID array 

As mentioned in 5.4.1 and 5.4.2, efficient memory access is the new 

optimization goal. In this section, three techniques are explored to improve the 

efficiency of image element access. 
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Optimization 1: Predetermining boundary conditions 

The filter convolution function, convolvePoint, was implemented following the 

basic definition. The Gabor mask is first offset to a landmark on the face image, 

and then the sum-of-product of the overlapping pixels are calculated and 

returned as the filter response at the landmark position. In other words, 

convolvePoitil consists mainly of additions, multiplications and access to the 

face image and Gabor masks. Unnecessary operations can be reduced by 

making use of the boundary conditions. 
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Figure 33 Boundary conditions for Gabor mask convolution 

Figure 33 illustrates the boundary conditions that must be considered during 

Gabor filter convolution. As the filter response outside the face image is 

ignored and regarded as zero, only the overlapped areas between the offset 
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Gabor mask and the face image are valid. In the original implementation, this 

boundary check is carried out on a per pixel basis — each access to an image 

pixel is validated by checking the requested coordinates against the image 

dimensions. If an out-of-bounds condition occurs, a zero is returned. This 

approach has two problems. First, unnecessary checks are done even for pixels 

that lie within the boundaries. Since Gabor masks are stored and accessed in the 

same manner as images, the same problem exists for access to both. Secondly, 

multiplications for the invalid area are carried out even though the result must 

be zero. To reduce these unnecessary checks and multiplications, the boundary 

conditions (i.e. the valid areas) can be calculated in advance so that only the 

pixels within the overlapped area are accessed during convolution. 

Optimization 2: Reducing pointer indirection 

For flexibility, the size of face images and Gabor filters are determined at 

runtime, which means that storage is allocated on demand. Figure 34 shows the 

original memory allocation scheme for an image/Gabor filter. The logically 2D 

structure is represented by an array of pointers and one dimensional pixel 

arrays. The problem with this scheme is that two pointer indirections are 

needed to access one image pixel, creating a heavy burden on the memory 

system. To reduce this overhead, one ID array is used to store the whole image 

(Figure 35). Rows of pixels are now packed sequentially, which means that 

nearby pixels can now be accessed with only one pointer indirection and one 

increment, effectively reducing the burden on the memory system. 
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Figure 34 Image/mask stored in a 2D structure 
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Figure 35 Image/mask stored in a ID structure 

Optimization 3: Improving access locality 

With the ID structure in place, memory access locality for image pixels can be 

further improved. In contrast to scientific languages such as FORTRAN, array 

in C language follows row-major ordering. This means that array elements 

adjacent to each other in memory differ in the second subscript instead of the 

first; 'B(5,10)' immediately follows 'B(5,9)', whereas with column-major 

ordering it would follow 'B(4,10y. In the original implementation, arrays are 
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accessed in column-major order，which results in a non-sequential access 

pattern (Figure 36), meaning that the program will not be able to take 

advantage of the nearby pixels brought in by the same memory read. Access 

locality can be improved by accessing the image array using row-major 

ordering. By interchanging the loop order and using row-major access order, a 

sequential access pattern is obtained (Figure 37). Image pixels brought in to 

cache by the same memory read can be fully utilized before being evicted, 

essentially reducing the possibility of cache miss and page faults. 

^ ^ — ^ Row 1 Row 2 Row 3 

Gabor Mask 1 4 | � ] ~ | “ | ~ | ” | ~ | 2 | 5 | 8 | “ 3 | 6 | 9 | ” | 

for (j=0； j < ^ 

{ for (i=0： i < 

丨 Access mask(l,j); Non-sequential access 
} 

Figure 36 Original access pattern (column-major ordering) 

"X Row 1 Row 2 Row 3 

Gabor Mask 2 丨 3 | 4 | 5 | 6 | 7 [ s ] 9 | . | . I . • | • 「 | I I I " [ 

Sequential access { 
for (j=0; j < mask-Width; j++) 
{ 

Access mask(l’j); 
} 

} 

Figure 37 Optimized access pattern (row-major ordering) 
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Overall Results 

The three optimization techniques are implemented and evaluated. Table 25 

shows the improvement in execution time. Except the template matching stage, 

which contains no image access, there is a general reduction in execution time 

for all other stages. The improvement is especially significant for the feature 

extraction and landmark localization stages. The overall execution time for one ！ 

authentication session is reduced by over three times to around 11 seconds. 

Stage Before After 

PI) Load Gabor Masks 1.15s 0.81s 

P2) Load Bunch Graph 2.21s 1.95s 

1) Image Preprocessing 1.93s 0.882s 
2) Landmark Localization 12.91s 7.026s 

3) Feature Extraction 20.97s 2.989s 

4) Template Matching 0.2812s 0.2970s 

Total 39.45s 13.954 

Total (Preloaded) 36.09s 11.194 
Table 25 Breakdown of execution time of one authentication session 

Post-profiling 

While the reduction in execution time proves that the memory optimization 

techniques are effective, post profiling is done to check whether memory access 

is still the bottleneck. Since individual boundary checks are no longer necessary, 

image access are not longer implemented as a function (ie). Hence instead of 

the function profiling option, the line profiling function of gprof is used for 
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analysis. The percentage of execution time spent in each statement rather than 

functions are recorded and output by this function. 

Statement Percentage 
1. Filter element access 37.03% 
2. Image element access 31.99% 

3. Fixed-point multiplication 9.88% 

4. Loop overhead 4.68% 
Table 26 Line Profile (Landmark localization) 

Statement Percentage 
1. Filter element access 26.90% 
2. Image element access 23.42% 

3. Fixed-point multiplication 6.95% 

4. Loop overhead 3.70% 
Table 27 Line Profile (Feature extraction) 

Table 26 and Table 27 show the execution time breakdown for landmark 

localization and feature extraction. It is obvious that the two stages remain 

memory-bound, with over 60% of time spent in image or filter element access. 

Another observation is that the top four time consuming statements are 

identical for both stages, and they all reside in the filter convolution function 

(convolvePoint). Clearly, optimization efforts should continue to focus on 

memory optimization, with special emphasis put on filter convolutions by using 

a subset of filters. 
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The memory optimization techniques employed in this section mainly deal with 

individual pixel access. In the next few sections, focus will be put on 

optimizing access efficiency on a higher level by making use of the relationship 

between Gabor filter masks and across procedures. In the next section, we will 

focus on reducing the number of convolutions. 

5.4.4 Efficient Gabor Filter Selection 

As discussed in the previous section, filter convolution is the bottleneck of both 

stages. The time needed for filter convolution depends on the number of filters 

and filter sizes, which is in turn determined by the filter set selection. The 

Bolme set[44] is used in the original implementation and its configuration is 

shown in Table 28. There are a total of 80 real valued filters (eight orientations, 

five wavelengths and two phases), each generated using the general Gabor 

wavelet equation: 

M<x,_y;<9,̂ i9，;i，o") = exp - - ^ { x ^ + y^) c o s ( 与 〜 ( 7 ) 
_ 2(7 � 

Parameter Symbol Values 
Orientation 6 {0,7i/8, 27t/8, 37t/8,4兀/8，5兀/8, 6兀/8’ 7兀/8} 

Wavelength X { 4 , 4 ^ 2 , 8 , 8 7 2 , 16} 

Phase (p {-71/4，7c/4} 

Gaussian Radius a 3*^74 

Aspect Ratio y 1 
Table 28 Bolme Gabor filter set 
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As feature extractors, Gabor filters capture the frequency-space properties of a 

confined area. When designing a set of Gabor filters, the orientations and 

wavelengths are chosen so that the resultant filters provide uniform and 

efficient coverage of the frequency space. The frequency coverage of a filter set 

is determined by the orientations and wavelengths chosen, and affects the filter 

number and filter size. In this section, we investigate the tradeoff between 

speed and accuracy when only a subset of the Bolme set is used. Table 29 

shows the configuration of the four filter sets used in this study. By choosing 

different subsets of orientations and wavelengths, the number of filters varies 

from the original 80 to 24. 

Set Orientation (6) Wavelength (?.) Filters 
Bolme {0，兀/8，271/8，371/8, {4，4 V^，8, 8 V^，16} 80 

471/8，571/8, 671/8, 771/8} 

Bolme_8d3f {0，7i/8,2兀/8，3兀/8， {4，8,16} 48 
471/8，571/8, 671/8，771/8} 

Bolme_4d5f {0，7t/8，37r/8, 5兀/8,1%!%) {4，4V^’ 8’ 8 16} 40 
Bolme_4d3f {0，7i/8，37i/8，5兀/8,77i/8} {4,8,16} 24 — 

Table 29 Filter set configurations 
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Results 

Table 30 shows the authentication times using different filter sets. As expected, 

execution time reduces as number filters decreases. However, the reduction in 

timing must be justified by accuracy verification. 

Set 2) Landmark 3) Feature 4) Template Total 
Localization Extraction Matching 

Bolme 7.026s 2.989s 0.2970s 10.312 

Bolme—8d3f 5.003s 2.571s 0.1787s 7.753s 

Bolme_4d5f 4.093s 1.949s 0.1481s 6.190s 

Bolme_4d3f 1.464s 0.845s 0.0466s 2.356s 
Table 30 Authentication time using different filter sets 

Here, the verification accuracy is evaluated using the FB probe set following 

the FERET verification protocol[4]. Three sets of experiments were conducted. 

Experiment 1 investigated the effect of different filter schemes when they are 

used in both landmark localization and feature extraction. As the reduction in 

number of filters may affect the accuracy of the localization process， 

experiment 2 was performed to investigate the sole effect of the new filter sets 

on the feature extraction stage only. The localization is done using the original 

Bolme wavelet sets. Finally, the effect on localization was investigated in 

experiment 3. After the landmarks were located using the new filter schemes, 

the features are extracted using the original Bolme scheme. 
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The Equal Error Rates (EER) of different configurations are shown in Table 31. 

Here we see that the Bolme_4d5f and Bolme_4d3f sets cause a dramatic 

increase in the EER. This renders them unusable for any useful authentication. 

The Bolme一8d3f set, however, displays only a slight increase in EER, from 

4.11% to 4.59%. The filter subsets in general lead to similar degradation in 

accuracy when they are applied to either landmark localization or feature 

extraction. 

Stage(s) using new filter set 
Feature Extraction Landmark 

Set All , 
+ Template Matching Localization only 

Bolme 4.11% 

Bolme_8d3f ~4.59% 4.17% 4.52% 

Bolme_4d5f 20% ^ 10.5% 

Bolme_4d3f 25% 11% 10.5% 
Table 31 EERs of different configurations 

Conclusion 

In this study, it is shown that by using a subset of Gabor filters, slight 

improvement in execution time (around two seconds) can be achieved at the 

expense of a slight drop in verification accuracy. However, this technique 

should be used with restraint as verification accuracy comes first for most 

authentication applications. As a result, this improvement is not incorporated 

into the final implementation. In the following sections, we will continue to 

investigate other accuracy preserving techniques. 
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5.4.5 Fine Tuning System Cache Policy 

On a system wide level, cache and memory access efficiency are governed by 

the cache policy. Modern operating systems allow the configuration of cache 

policy by changing kernel settings. For Linux, one can enable/disable the Write 

Through (WT) and Write Allocate (WA) options. If write-through is enabled, 

the new data is written to both cache and main memory on every write; if it is 

disabled, the new data is only written to the cache only. Later, if another 

memory location needs to use the cache line where this data is stored, it is 

saved (write-back) to the system memory. On the other hand, write-allocate 

determines if a whole cache line worth of data is brought in (allocate) on a 

write miss. Depending on the nature of applications running on a system, the 

cache policy can be fine tuned to suit specific needs. In this section, the effects 

of various cache policy settings are investigated. 

Results 

The execution time of EBGM was measured using kernels configured with 

different cache policies. Table 32 shows the results. Set 0 is the default setting 

for Mobile. Results show that set 2 (write-through and write-allocate) is the 

best combination, resulting in total a one second reduction in authentication 

time. This is probably due to the fact that memory accesses in the two EBGM 

stages are largely sequential. By using a write-back policy, subsequent writes to 

nearby memory locations can be buffered and reduce slow memory writes. On 
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the other hand, write-allocate ensures that the first write to a memory location 

brings in nearby content, so that subsequent writes require no extra memory 

read. 

Cache Policy Timing 
Set WT? WA? Landmark Localization Feature Extraction 
0 Y Y 

1 Y Y 3 m 

2 N Y 

3 N N 

4 " Y I N I 6.22s 2.74s 
Table 32 Execution time for different cache policies 

5.4.6 Reducing Redundant Memory Access by Loop Merging 

In the previous sections, the efficiency of individual memory access (Section 

5.4.3) and system-wide cache policy (Section 5.4.5) have been investigated. 

While these techniques provided considerable speed up in execution time, they 

are general techniques which do not make use of application specific 

knowledge. In this section, a detailed analysis of the EBGM algorithm will be 

given, which will give insight into possible optimization opportunities. 

Complexity Analysis 

As pointed out in Section 5.4.3, filter convolution (convolvePoint) consists 

mainly of addition, multiplication and image element access. For brevity, 

'complexity' of an algorithm will only refer to the number of two basic 
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operations, namely Data Access (DACC)，and Multiply and Add (MADD). 

Several important quantities and their values are also defined in Table 33. 

Quantity Value(s) 
Mask size(mx/?j) m = {19, 29, 39,53,77} 

Face image size (NxN) N= 128 

NumOJMasks 80 (40 pairs) 

NumOfNodes 25 (Landmark localization), 
80 (Feature extraction) 

Table 33 Quantities used in analysis 

The core of the EBGM algorithms consists of two stages, namely landmark 

localization and feature extraction. The most time consuming operations in both 

stages is Gabor jet extraction, involving finding the convolution responses to a 

set of Gabor masks (filters) at a specific location. 

The goal of landmark localization is to automatically locate the feature points 

of interest (nodes) in a novel face. Initial guesses are made and Gabor jets are 

extracted from them. The similarity between these Gabor jets and those in a 

bunch graph, which contains Gabor jets extracted from different training faces, 

are then computed. Displacement between the initial guess locations and the 

real ones are estimated by moving the guess location around until a point of 

highest similarity is found. After all nodes are found, their locations are stored 

as a face graph. A total of 25 nodes are extracted (Algorithm 1). 
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Build Face Graph 
1: Load BunchGraph 

2: Load GaborMasks 

3: Load Facelmage 

4: Make initial guess of NodeLocations 

5: for i ^ 1 to NumOfNodes do 
6: Gabor Jet (i) = ExtractGaborJet(NodeLocation(i), Facelmage, GaborMasks) 

7: for j 1 io NumOfBunchJets do 
8: Find similarity between BunchJet(j) and Gabor Jet (i) 

9: end for 
10: Estimate displacement of NodeLocation(i) from best matching BunchJet 

11: Update NodeLocation(i) with displacement 
12: end for 
13: Save NodeLocations to Face Graph 

Algorithm 1 Build Face Graph 

For local feature extraction, the face graph built in the previous stage is loaded. 

Gabor jets are then extracted from the original 25 nodes and an additional 55 

interpolated ones. These Gabor jets are incorporated with the face graph and 

forms the final face template (Algorithm 2). 
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Extract local features 

1: Load Facelmage 

2: Load FaceGraph 

3: Load GahorMasks 

4: Interpolate new NodeLocatkms from NodeLocatiom stored in face graph 

5: for/ <- 1 to NumOfNodes do 

6: GahorJet(i) = ExtractGaborJet(NodeLocatkm(i), Facelmage, GaborMasks) 

7: end for 
8: Save interpolated NodeLocatiom and GaborJeis to FctceTemplale 

Algorithm 2 Extract local features 

At the heart of both landmark localization and feature extraction is Gabor jet 

extraction. Given a face image, a landmark location and a set of Gabor filters, 

Gabor jet extraction computes the filter responses of all the filters and the 

landmark. Standard convolution is used to compute the response and is 

implemented in the function comolvePowt (the shaded lines in Algorithm 3). 

ExtractGahorJet(NodeLocatiofh Image, Masks) 

1: for /• — / to NumOfMasks do 
2: for j 1 to MaskHeight(j) do 
3: for A: ^ J to MaskWidthO) do 

4: Load Facelmage(j, k) 

5: Load GaborMaskO, J, k) 

6: Sum(i) = Sum(i) + Facelmage (j, k) x GaborMask(i, j, k) 

7: end for 

8: end for 

9: end for 

Algorithm 3 ExiractGaborJet 

^ ^ 产 
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General Original 
No. of DACC 2 X NumOJMasks x m^ 278240 
No. of MADD NumOfMasksxm^ 139120 

Table 34 Complexity for ExtractGaborJet 

General Original 

No. of DACC NumOfNodes x DACC {ExtractGaborJet) 6956000 
No. of MADD NumOJNodes x MADD{ExtractGaborJet) 3478000 

Table 35 Complexity for Build Face Graph 

General Original 

No. of DACC NumOfNodes x DACC {ExtractGaborJet) 22259200 
No. of MADD NumOJNodes x MADD{ExtractGaborJet) 11129600 

Table 36 Complexity for Extract Local Features 

Table 34，Table 35 and Table 36 show the complexity of the three algorithms 

and the number of DACC and MADD for the standard configuration. It is 

obvious that the complexity of Build Face Graph and Extract Local Features 

are directly proportional to the complexity of ExtractGaborJet. We will focus 

on this algorithm for the rest of the analysis. 

For each call to ExtractGaborJet, the function convolvePoint (Algorithm 3， 

lines 2-8) is called 80 times to convolve with the Gabor filter sets (40 pairs). 

Since the node location is identical in all 80 calls, the area of interest in the face 

image, and hence the image pixels loaded should be the same for filters of the 

same size. This high redundancy causes unnecessary image element access 

(Figure 38)，and can be avoided by loop merging. By convolving several masks 
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in parallel, the same image pixel need only be accessed once only (Figure 39). 

This parallelism can be achieved at two levels. The first and the most 

straightforward one is the combination of real and imaginary part of each filter. 

The second level is combining multiple filters of the same size. 

q � � ^ 
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Image \ / 

( Acc ) = MADD , 
V. J I Loof 1 rteratior 1 

、、\ 

\ , Mash ： 

( Acc： ) = MADC , 

V : J I LOOF 5 rteratior 1 

Q � � ^ 
\ 

\ / Mask h 
Image \ / 

( A c c * ^ ) = I MADC f j Loop 卜 iteration 1 

Figure 38 Memory access pattern of the original ExtractGaborJet 
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Figure 39 Memory access pattern of ExtroctGoborJet after loop merging 

Optimzation 1: Two masks in parallel 

For this optimization, the real and imaginary pairs are convolved together. 

Algorithm 4 shows the complete algorithm and Table 37 shows the complexity 

analysis. 
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ExtractGaborJetTwoMasks(NodeLocation, Image, Masks) 

1: for / 一 / to NumOfMasks/2 do 
2: forj 一 1 to MaskHeight(i) do 
4: for 众— I to MaskWidth(i) do 

5: Load Face Image (j, k) 

6: Load GaborMask(2i, j, k) 

7: Load GaborMask(2i+l,j, k) 

8: Sum(2i) = Sum(2i) + Facelmage (j, k) x GaborMask(2i, j, k) 

9: Sum(2i+1) = Sum(2i+I) + Facelmage (j, k) x GaborMask(2i+1, j, 

k) 

10: end for 
11: end for 
12: end for 

Algorithm 4 ExtractGaborJetTwoMasks 

General Standard 

No. of DACC 3 , , M l , 2 208680 
—X NumOjMasks x m 

No. of MADD NumO/Masksxm^ 139120 

Table 37 Complexity for ExtractGaborJetTwoMasks 

Optimization 2: Multiple Masks in parallel 

For this optimization, all filters in a mask set are convolved at once. Here we 

define the quantity MaskSetSize, which means the number of masks convolved 

simultaneously. Note that ExtractGaborJet (Algorithm 3) and 

ExtractGaborJetTwoMasks (Algorithm 4) are in fact special case of 

ExtractGaborJetMulipleMasks (Algorithm 5)，for which MaskSetSize = 1 and 2 

respectively. Table 38 shows the complexity analysis. 
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ExtractGaborJetMultipleMasks(NodeLocation, Image, Masks) 

1: for i — J to NumOfMasks/MaskSetSize do 
2: for j I to MaskHeight(i) do 
4: fork 一 1 toMaskWidth(i) do 
5: Load Facelmage(j, k) 

6: for / 1 to MaskSetSize do 
7: Masklndex = i x MaskSetSize+1 

8: Load GaborMask(MaskIndex, j, k) 

9: Sum(Masklndex) += Facelmage (j, k) x 
GaborMask(MaskIndex, j, k) 

10 end for 
11: end for 
12: end for 
13: end for 

Algorithm 5 ExtractGaborJetMultipleMasks 

General Standard 

No. ofDACC r 1 ^ , , n … 2 147815 1 + X NumOfMasks x m 
\ MaskSetSize y 

No. ofMADD NumOfMasks ^m^ 139120 
Table 38 Complexity for ExtractGaborJetMultipleMasks 

Theoretically, the more masks convoluted simultaneously, the more the saving. 

As shown in the above analysis, the number of memory access reduces from 

the original 2 x NumOfMasksx m to i+ x NumOfMasks xm^- It is 

MaskSetSize J 

obvious that the more masks in a mask set, the more the saving. The table 

below shows the projected memory access for the three algorithms. Note that 

when MaskSetSize equals 16, the number of access is nearly halved (Table 39). 



Chapter 5. Real Time Elastic Bunch Graph Matching 89 

MaskSetSize 1 2 U 

MACC (Ratio) 229,215,200 21,911,400(1.5) 15,520,575 (1.06) 

Table 39 Number of MACC for different MaskSetSize 

Results 

To validate the above finding, the proposed algorithms were implemented and 

timing information was collected. Table 40 shows the execution time and page 

faults of each algorithm. It is found that execution times of Algorithm 4 

{MaskSetSize = 2) and Algorithm 5 {MaskSetSize =16) are slightly better than 

the original one {MaskSetSizse =1) . When MaskSetSize increases from 2 to 16, 

a mild decrease in performance is observed, suggesting that the more 

complicated implementation outweighs its benefit. 

The number of page faults is largely the same for all settings, which means the 

memory access efficiency is not improved by the change in access pattern. Also, 

the large reduction in number of memory accesses (halved) does not directly 

lead to corresponding decrease in execution time, suggesting that the bottleneck 

may resides at the architecture level Cache misses which result in slow 

memory access, may be the root of the problem and will be investigated in the 

next section. 
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MaskSetSize 
Stage Statistics 1 2 16 

,、， J . Time 6.06s 5.87s 6.00s 
2)Landmark 
Localization Page faults (major) 759 760 760 

Page faults (minor) 1476 1476 1476 
, � ^ Time 2.78s 2.12s 2.56s 
3) Feature ~r 
^ . Page faults (major) 755 755 756 
Extraction 

Page faults (minor) 1326 1326 1326 
1 I 1 I 

Table 40 Execution lime of using mQrciW MaskSetSize 

5.4.7 Maximizing Cache Reuse by Array Merging 

As discussed in the last section, although the number of memory access is cut 

by half using loop merging, execution time shows no major improvement. This 

suggests that data access is still far from efficient, and a more in-depth analysis 

of the memory access pattern of EBGM is needed. 

歸 1 ^ " i | 5 | 9 | I I I I i - . - r r r 

Mask 2 +2 |e | \ | \ I • . . p p p 

Mask 3 1 3 7 1/ 1/ I • • • p T T " 

Mask4 � 4 / 8 / 1 I I j ~ n . . . [ ~ n ~ 

• • _ 

Figure 40 Mask array layout (original) 
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Figure 40 shows the memory access pattern for ExtractGaborJetMultipleMask 

(Algorithm 5) using a MaskSetSize of 4. Since the Gabor masks are allocated 

dynamically, there is no guarantee on their relative locality and they may 

occupy separate memory locations. Hence, accessing pixels from different 

masks will result in extremely poor locality, causing frequent 'jumps' in access 

locations. This explains why simply convoluting several masks together cannot 

bring about the predicted improvement - the long stalls between each mask 

pixel accesses outweigh any benefits brought about by the parallelism. In 

addition, the rapidly changing access address may increase the probability of a 

cached data being evicted before being reused. 

Optimization 

To alleviate this problem, a new memory layout is derived for Gabor masks 

using array merging to increase the access locality and cache reuse. Array 

merging and reordering were first proposed in [47] for compiling data intensive 

applications for an embedded device. During compilation, data dependencies 

among different arrays used in the same program are first analyzed, and then 

efficient storage schemes are derived to improve memory access performance 

at runtime. With prior knowledge about the EBGM memory access pattern, it is 

also possible to apply the same idea to our optimization problem. 
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Figure 41 Mask array layout (after merging) 

Figure 41 shows the proposed layout. Suppose a MaskSetSize of 8 is used; the 

eight masks in the set will be merged and stored in one single array. The pixels 

from each mask are stored in an alternate manner - pixel one from mask one, 

pixel two from mask two ... and so on. Using this scheme, mask pixels 

accessed within each iteration of ExtractGahorJelMuhipIeMasks now have a 

sequential order. In addition to the improvement in access locality, this scheme 

also allows maximum cache data reuse as will be explained below. 
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Figure 42 Intel XScale PXA255 data path[6] 

Figure 42 shows the data path of the XScale processor. At the architecture level, 

every pixel read corresponds to a data request. The execution core handles this 

request by first checking all data registers for requested data. If it is not found, 

the fast on-chip data cache is checked. If the data is found in one of the cache 

entries, it is returned to the core; otherwise, the memory management unit is 

invoked and a request is sent to the main memory (cache miss). The memory 

page containing the requested data is then brought in and the data is forwarded 

to cache and then back to the core. In fact, a cache line size worth of data is 

sent to the cache, so neighbours of the requested data are brought in even if 

only one bit is requested. 

Our proposed scheme makes use of this fact and maximizes data reuse by 

packing pixels accessed in the same iteration together (Figure 41). The 

MaskSetSize of 8 is chosen since the cache line size in the XScale processor is 

32 bytes, or 8 fixed-point pixels. Ideally, when a request is sent for the first 

pixel, the following seven pixels are brought in by the same memory read and 

occupy one cache line. The latency of one memory access is shared among the 
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eight mask pixels, effectively reducing the average memory stall time. 

Note that care must be taken when allocating the masks arrays. Since the data 

cache is 32-way set associative, the first pixel must be aligned at a 32-byte 

boundary so that it and the following seven pixels are allocated to the same 

cache line. Otherwise, useless pixels in front of the first pixel are brought in 

and subsequent pixels may cause an extra memory read. This memory 

alignment requirement can be enforced by allocating all arrays with allocation 

function calls that guarantee alignment. Array merging can be done offline at 

the same time when Gabor masks are pre-computed (Section 5.4.2)，so no 

overhead is incurred. 

Results 

The array merging scheme was implemented and evaluated. Table 41 shows the 

execution time for one authentication session on the Mobile platform. For 

comparison, we also conducted the experiment on the Desktop platform, and 

the execution time for one hundred sessions is shown in Table 42. 

For Mobile, the improvement for the feature extraction is dramatic - a 2.5 times 

reduction in time for a MaskSetSize of 8. However, there is no significant 

improvement for the landmark localization stage. Note that there is almost the 

same reduction in the number of minor page faults in both stages; hence further 

analysis is needed to find out why the discrepancy can be so large. The result 
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on Desktop is much more reasonable, in the sense that significant improvement 

is shown in both stages. A similar reduction in number of minor page faults is 

also observed. This shows that an efficient data mapping can be beneficial to 

both mobile and desktop performance, despite their inherent differences in 

memory architecture and configuration. 

MaskSetSize 
Stage Statistics 1 2 8 

Time 6.06s 5.87s 5.85s 
Build Face 

Page faults (major) 759 760 761 
Graph 

Page faults (minor) 1476 1476 1219 
Time 2.78s 2.12s 1.08s 

Extract local "；: “ “ “ ： ~ ： ZT： rrz rr^ 
Page faults (major) 755 755 756 

features 
Page faults (minor) 1326 1326 1072 

Table 41 Execution time using different MaskSetSize (Mobile, 1 session) 

MaskSetSize 
Stage Statistics 1 2 8 

Time 6.87s 7.39s 4.62s 
Build Face — — ： 

Page faults (major) 0 0 0 
Graph 

Page faults (minor) 1560 1543 1323 
Time 11.85s 12.71s 3.96s 

Extract local ""；： ^ , , . ： ： “ “ ；: Page faults (major) 0 0 0 
features 

Page faults (minor) 1314 1309 1098 

Table 42 Execution time using different MaskSetSize (Desktop, 100 sessions) 
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Post-profiling 

As pointed out above, the landmark localization stage does not show 

improvement as feature extraction does. Post-profiling results reveal the cause. 

As shown in Table 43 and Table 44，filter convolution remains the most time 

consuming function in the feature extraction stage, while its significance drops 

to around 14% for the landmark localization stage. The distance estimation and 

trigonometric functions become the new bottlenecks. Array merging improved 

the memory access efficiency, resulting in a change of program behaviour -

from memory-bound back to computation bound once again. 

Function Name Description Before After 
1. convolvePoint Filter convolution 71.03% 14.76% 
2. DEPredictivelter Distance estimation 9.29% 27.63% 

3. sin, cos, atan Trigonometric fiinctions 18.79% 25.87% 

Table 43 Function Profile (Landmark localization) 

Function Name Description Before After 
1. convolvePoint Filter convolution 97.59% 75.75% 

Table 44 Function Profile (Feature extraction) 

Line level profiling further confirms this observation. As shown in Table 45 and 

Table 46，the effect of memory optimization becomes even more prominent and 

agrees with our analysis at the function level. For landmark localization, the 

most time consuming lines do not include any memory access operations. For 

feature extraction, however, the percentage of time devoted to memory access 

is still over 70%. 
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Overall, the profiling results show that memory access remains the key to 

optimizing the feature extraction stage. For landmark localization, however, 

focus should be put on distance estimation and trigonometric functions. 

Statement Percentage 
1. Trignometric functions 30.06% 

2. Fixed-point multiplication 7.77% 
Table 45 Line Profile (Landmark localization) 

Statement Percentage 
1. Filter element access 64.97% 

2. Image element access 5.61% 
Table 46 Line Profile (Feature extraction) 

5.4.8 Optimization of Trigonometric Functions using Table Lookup 

Optimization 

Trigonometric functions were implemented using polynomial series. A large 

amount of floating point multiplications is involved in the series expansion and 

can result in poor execution time on mobile devices. To solve this problem, the 

table look up technique is used. Values of trigonometric functions are 

pre-computed, stored and loaded into arrays on program startup. Making use of 

the periodic nature of and relationship between trigonometric functions, only 

two tables are required to implement the sine, cosine, tangent and arctangent 

functions. All calls to trigonometric functions are then modified to array 

accesses. 
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Results 

As shown in Table 47，we see a dramatic improvement in execution time for 

both landmark localization and template matching. This can be explained by 

the fact that both stages involve intensive use of distance estimation, in which 

most trigonometric functions are invoked. The feature extraction stage also 

shows a moderate improvement. Post-profiling results further confirm the 

effectiveness of our approach. As shown in Table 49, the significance of 

trigonometric functions virtually falls to zero. The significant performance gain 

strongly justifies the 1.5Kb extra storage introduced by table lookup (Table 48). 

Note that the time for one face authentication session now requires only 1.3 s, 

meeting our real-time requirement. In the next section, the accuracy of the 

optimized system will be verified. 

Stage Before After 
Time 5.85s 0.52s 

2) Landmark p^^^ faults (major) 761 1J2 

Localization p^ge faults (minor) 1219 ~ 

Time 1.08s 0.31s 
3) Feature p^gg faults (major) 756 ^ 

Extraction page faults (minor) 1068 

Time 0.2263s 0.0062s 

4) Template page faults (major) ^ 709 
Matching 

Page faults (minor) 2259 2259 

Table 47 Execution time of different EBGM stages 
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Name Size Description 

_cos_tbl[] 1Kb (256 * 4 bytes) Common table for Sine and Cosine (Half cycle) 
�an—tbl[] 0.5Kb (128 * 4 bytes) Table for Tangent and Arc Tangent. (1/4 cycle) 

Table 48 Storage requirement for lookup tables 

Function Name Description Before After 
1. convolvePoint Filter convolution 14.76% 25.50% 

2. DEPredictivelter Distance estimation 27.63% 45.01% 

3. sin, cos, atan Trigonometric functions 25.87% -0.0% 
Table 49 Execution lime breakdown (Landmark localization) 

5.5 Summary 

In this section, the verification accuracy of the optimized EBGM 

implementation will be evaluated and a summary of the optimization 

techniques and their effects will be given. 

Similar to Section 3.4, the FERET face database and evaluation protocol was 

used to investigate the verification accuracy. Figure 43 to Figure 46 show the 

Receiver Operating Characteristic (ROC) curves of the optimized code and the 

baseline system for different probe sets. The overlapping curves indicate that 

verification accuracies of both systems are essentially identical. 
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Figure 43 ROC Curves of EBGM (FB probe set) 
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Figure 44 ROC Curves of EBGM (dupl probe set) 
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Figure 46 ROC Curves of EBGM (dup2 probe set) 
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Table 50 summarizes the optimization techniques employed and their effects. 

Figures shown in bold indicated that the particular stage is improved. Note that 

only accuracy preserving techniques are included here, so the effect of 

optimization by efficient Gabor filter set selection (Section 5.4.4) is omitted 

here. 

Execution Time 

Technique I ； ^ F e a t u r e Template ^̂ ^̂ ^ 

(Section) 
Original 8 335s 218.2s 324.8s 1.849s 553.2s 

(N/A) 1 
Fixed-point ^ 9 3 s 15.07s 29.45s 0 .2812s 46.73s 

(5.4.1) ‘ —— 
Pre-computation 丨 ^^^ 12.91s 20.97s 0.2812s 36.09s 

(5.4.2) ‘ —— 

ID A r r a y ^ gg2s 7.026s 2.989s 0.2970s 11.19s 
(5.4.3) ‘ ———— 

Cache Policy ‘ o.882s 6.06s 2.78s 0.2263s 9.948s 
(5.4.5) ‘ 

LoopMerginT" o.882s 5.87s 2.12s 0.2263s 9.098s 
(5.4.6) ‘ 

Array M e r g i ^ ; r o .882s 5.85s 1-08 

(5.4.7) 

Table L o o k ^ ^ r o.48s 0.52s 
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6. Conclusions 

Despite the growing importance of mobile devices and increasing demand for 

more secure authentication methods, the adoption of reliable and affordable 

schemes such as face authentication is slow to keep up with the demand. Mobile 

devices, due to their scarce computation and storage resources, have never been 

the real target of traditional face recognition systems. 

In this thesis, we investigate the feasibility of real time face authentication on 

mobile devices. In particular, two representative and fundamentally different 

face recognition algorithms, Principal Component Analysis (PCA) and Elastic 

Bunch Graph Matching (EBGM), are implemented and optimized. Various 

computation and memory optimization techniques such as fixed-point arithmetic 

and array merging are also developed and employed. Experimental results show 

a significant improvement in execution time for both PCA and EBGM. For PCA, 

the time for one authentication session reduces from 30 seconds to 1.3 seconds. 

For EBGM, a 420 times reduction is achieved - from 553 seconds down to 1.3 

seconds. Further verification experiments show that the real time performance is 

achieved without any significant loss in accuracy. Sub-second performance may 

be possible by making use of architecture specific techniques, such as cache 

mapping[53], programmable page attributes[45], preload instructions[54], and 

DSPextension[45]. 
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At the beginning of the PCA and EBGM optimization, we encounter the problem 

of not having a formal optimization model to follow. There may be tips, hints 

and advice for some facets of the optimization problem, but not one simple and 

general enough to be adapted to our particular problem. The arsenal of tools and 

techniques developed by the software community over the years has only added 

to the confusion. Optimization, then, becomes more a personal artistry than a 

science that anyone can follow, adapt and extend. It soon became clear to us that 

a software engineering model dedicated to the general optimization problem is 

needed. In light of this, we proposed a high level view of optimization 

techniques and a feedback oriented workflow. The high level view gives insights 

on how general optimization problems should be approached and how 

techniques can be categorized; the workflow keeps us sensitive to changes in 

program behaviour and measure the effectiveness of a technique to a particular 

problem. The merit of the two lies in their simplicity and flexibility, and they 

may serve as a basis for a full-fledged model. 

Our real time, accuracy preserving implementations of PCA and EBGM show 

that by combining suitable optimization techniques and adequate knowledge of 

the target platform and application at hand, the computational power of 

constrained devices can be flilly exploited. The same optimization approach, 

techniques and workflow can be applied generally to other problems which 

demands fast execution time on slow devices. On the other hand, our real time 

PCA and EBGM implementations may serve as parts of a larger evaluation 
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framework for mobile authentication methods. Possible addition to this 

framework includes a face database which consists of images collected from 

mobile devices, so that the mobile face authentication problem can be more 

accurately modeled. 

Real time face authentication on mobile devices makes a myriad of applications 

possible, for instance, the combination of difference face recognition 'experts' 

(e.g. PCA, EBGM) to improve accuracy. Previous efforts in other biometric 

modalities such as voice [32] and fingerprint [33, 34，35, 36] can also be 

combined to construct a multimodal authenticator similar to the scheme in [55]. 

However, such extensions would involve derivation of sophisticated 

combination rules which are non-trivial and are beyond the scope of this thesis. 

In conclusion, we believe that our experience will be useful to software 

optimization on such devices so mobile phones, and PDAs. Such devices share 

one common set of characteristics: relatively slow CPU, fixed hardware platform, 

support multiple programs, and multimedia applications. For such machines, 

traditional hardware-software co-design is not applicable because of the 

diversified programs to be supported. Under such conditions, our techniques will 

be dominant for their performance optimization. 
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