
Face Authentication on Mobile Devices:

Optimization Techniques and Applications

PUN Kwok Ho

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

© The Chinese University of Hong Kong
July 2005

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in a proposed
publication must seek copyright release from the Dean of the Graduate School.

統 系 餘 書 囷 、 • ^

| r 1 8 1 i s j i j

~university
NgrXUBRARY SYSTEÎ -̂ g^

i

Abstract

Mobile devices, such as cellphones and PDAs, have become an essential part of our

daily lives. Mobile applications such as phone banking and e-commerce are

becoming increasingly popular. To protect the large amount of sensitive information

stored in and handled by these devices, more secure authentication methods such as

face recognition and fingerprint verification have been proposed to replace

traditional passwords. Unfortunately, the weak computation power of mobile

devices remains the biggest obstacle to the adoption of the less intrusive face

recognition methods. In this thesis, two representative face recognition algorithms,

Principal Component Analysis (PCA) and Elastic Bunch Graph Matching (EBGM),

are implemented and optimized for mobile devices. An optimization model and

various optimization techniques are proposed to fully exploit the computation power

of mobile devices. Experimental results show a significant improvement in

execution time. For PCA, the time for one authentication session is reduced from 30

seconds to 1.3 seconds; for EBGM, a 420 times reduction is achieved - from 553

seconds down to 1.3 seconds. Further verification experiments show that the real

time performance is achieved without any significant loss in accuracy. Our results

enable the practical use of face authentication on mobile devices. Also, the

optimization model and techniques developed in this thesis can be easily adapted to

other applications which require real time performance on constrained platforms.

ii

論文摘要

流動設備(Mobile Devices)諸如流動電話和個人數位助理(PDA)已經成爲我們日

常生活的一部份，像電話理財和電子商務之類的應用變得越來越普及°由於這

些流動設備儲存並處理大量的個人資料’ 一種安全可靠的認證方法更形重要°

傳統的密碼認證方法，容易產生用戶忘記密碼和密碼被盜等問題，未能提供足

夠的保護。與之相比’生物特徵辦識技術(Biometrics)如人臉識別(Face

Recognition)和指紋核實(Fingerprint Verification)，具有通用性、唯一性和持久性

等優點，提供了更方便和可靠的認證方法。不過由於流動設備有限的運算能力，

這些技術一直未被廣泛地應用在其上。有見及此’我們實現並優化了兩種具代

表性的人臉識別算法：主要成分分析(PCA)及彈性束圖匹配(EBGM) °我們提

出了一個針對優化的軟件工程模型以及多種優化技巧。優化後的PCA速度加快

了六倍’認證時間從原來的30秒減少至1.3秒，而EBGM的認證速度更加快

了 420倍一從553秒下降至1.3秒。實驗結果顯示，在無損認證準確性的前

提下，兩種算法在流動設備上的執行時間大幅減少，達到了實時的要求。我們

的硏究令流動設備的運算能力得到充份的發揮，使到人臉識別技術在流動裝備

上的廣泛應用變得可能。我們提出的軟件優化模型和技巧，同時適用於其他系

統資源有限的平臺上的開發。

iii

To my dearest family and friends

iv

Acknowledgment

I wish to thank my supervisor, Prof. Moon Yiu Sang, for his continuous guidance

and supervision, for supporting me to attend academic conferences and for all his

teachings in research, learning and living. I wish to express my gratitude to Prof.

Heng Pheng Ann and Prof. Wu Yu Liang for being members of my thesis committee.

I would also like to thank Prof. G. Fairweather for being my external marker.

Special thanks are due to the face recognition team at the Colorado State University

for making their Face Identification Evaluation System publicly available. Without

their contribution, this research work would not have such a good start. I gratefully

acknowledge helpful discussions with Mr. Chen Jiansheng and Dr. Gary Leung for

sharing their research insight and ideas with me. My sincere thanks to Chiu, Gary

and for doing such a wonderful job in implementation of the door access control

system. I must thank Tony, Kim, Terence, Oscar, Simon and other technical staff for

their patience with me and excellent work in maintaining a stable computing

environment. I would like to thank the Chinese University of Hong Kong for

providing such a beautiful campus, a resourceful library and excellent recreational

facilities (especially the swimming pool).

Then there is the list of friends and colleagues that deserve my deepest gratitude.

Many thanks to Walty and Leo for making our corner a happy one; Szeto, Josh, Bud,

V

Gigi, Li Gang and Zhang Kun, for creating such an enjoyable atmosphere in room

1013; Gordon and Lu Yang, for bringing us laughter via emails even after their

departure; Alan, Ken and CJ, for inviting me to join their board games while I was

writing this thesis; Hackker and Raymond, for letting me know what is meant by

efficient and hardworking; Friends in room 1026, for all the wonderful snacks and

pizzas.

And, my heartfelt thanks to those who have helped me one way or the other, even

though both you and I may not be aware of it. I wish to express my deepest gratitude

to Simon, Fai and Amanda for giving me humble advice during troubled times. My

special thanks goes to Simon, who gave me motivation to finish this thesis by telling

me that he had already finished his in April.

I would like to thank the world for being such a wonderful place to live in, to

appreciate and to explore.

And most of all, thanks to my mum and sister for giving me love and support.

vi

Table of Contents

1. Introduction 1
1.1 Background 1

1.1.1 Introduction to Biometrics 1
1.1.2 Face Recognition in General 2
1.1.3 Typical Face Recognition Systems 4
1.1.4 Face Database and Evaluation Protocol 5
1.1.5 Evaluation Metrics 7
1.1.6 Characteristics of Mobile Devices 10

1 1 Motivation and Objectives 12
1.3 Maj or Contributions 13

1.3.1 Optimization Framework 13
1.3.2 Real Time Principal Component Analysis 14
1.3.3 Real Time Elastic Bunch Graph Matching 14

1.4 Thesis Organization 15
2. Related Work 16

2.1 Face Recognition for Desktop Computers 16
2.1.1 Global Feature Based Systems 16
2.1.2 Local Feature Based Systems 18
2.1.3 Commercial Systems 20

2.2 Biometrics on Mobile Devices 22
3 • Optimization Framework 24

3.1 Introduction 24
3.2 Levels of Optimization 25

3.2.1 Algorithm Level 25
3.2.2 Code Level 26
3.2.3 Instruction Level 27
3.2.4 Architecture Level 28

3.3 General Optimization Workflow 29
3.4 Summary 31

4. Real Time Principal Component Analysis 32

vii

4.1 Introduction 32
4.2 System Overview 33

4.2.1 Image Preprocessing 33
4.2.2 PCA Subspace Training 34
4.2.3 PCA Subspace Projection 36
4.2.4 Template Matching 36

4.3 Optimization using Fixed-point Arithmetic 37
4.3.1 Profiling Analysis 37
4.3.2 Fixed-point Representation 38
4.3.3 Range Estimation 39
4.3.4 Code Conversion 42

4.4 Experiments and Discussions 43
4.4.1 Experiment Setup 43
4.4.2 Execution Time 44
4.4.3 Space Requirement 45
4.4.4 Verification Accuracy 45

5. Real Time Elastic Bunch Graph Matching 49
5.1 Introduction 49
5.2 System Overview 50

5.2.1 Image Preprocessing 50
5.2.2 Landmark Localization 51
5.2.3 Feature Extraction 52
5.2.4 Template Matching 53

5.3 Optimization Overview 54
5.3.1 Computation Optimization 55
5.3.2 Memory Optimization 56

5.4 Optimization Strategies 58
5.4.1 Fixed-point Arithmetic 60
5.4.2 Gabor Masks and Bunch Graphs Precomputation 66
5.4.3 Improving Array Access Efficiency using 1D array 68
5.4.4 Efficient Gabor Filter Selection 75
5.4.5 Fine Tuning System Cache Policy 79
5.4.6 Reducing Redundant Memory Access by Loop Merging 80
5.4.7 Maximizing Cache Reuse by Array Merging 90

viii

5.4.8 Optimization of Trigonometric Functions using Table Lookup. 97
5.5 Summary 99

6. Conclusions 103
7. Bibliography 106

ix

List of Tables

Table 1 Summary of probe categories used in the FERET test [4] 7
Table 2 Excecution time of 3 million instructions on different processors 11
Table 3 Optimization strategies employed 31
Table 4 Breakdown of execution time of one authentication session 38
Table 5 C macro definitions of fixed point operations 42
Table 6 Specification of the evaluation system 43
Table 7 Execution time of the baseline system and the optimized code 44
Table 8 Reduction in space requirement and its impact on loading time 45
Table 9 Memory optimization techniques employed 58
Table 10 Specification of the evaluation platforms 59
Table 11 Breakdown of one EBGM authentication session 60
Table 12 Function Profile (Image preprocessing) 61
Table 13 Function Profile (Landmark localization) 62
Table 14 Function Profile (Feature extraction) 62
Table 15 Function Profile (Template matching) 62
Table 16 Breakdown of one EBGM authentication session (Fixed-point) 64
Table 17 Function Profile (Image preprocessing) 64
Table 18 Function Profile (Landmark localization) 65
Table 19 Function Profile (Feature extraction) 65
Table 20 Function Profile (Template matching) 65
Table 21 Breakdown of one EBGM authentication session (Preload) 67
Table 22 Extra space requirement for precomputation 67
Table 23 Execution time breakdown (Landmark localization) 68
Table 24 Execution time breakdown (Feature extraction) 68
Table 25 Breakdown of execution time of one authentication session 73
Table 26 Line Profile (Landmark localization) 74
Table 27 Line Profile (Feature extraction) 74
Table 28 Bolme Gabor filter set 75
Table 29 Filter set configurations 76
Table 30 Authentication time using different filter sets 77
Table 31 EERs of different configurations 78

V

Table 32 Execution time for different cache policies 80
Table 33 Quantities used in analysis 81
Table 34 Complexity for ExtractGaborJet 84
Table 35 Complexity for Build Face Graph 84

Table 36 Complexity for Extract Local Features 84

Table 37 Complexity for ExtractGaborJetTwoMasks 87
Table 38 Complexity for ExtractGaborJetMultipleMasks 88
Table 39 Number ofMACC for different MaskSetSize 89
Table 40 Execution time of using different MaskSetSize 90
Table 41 Execution time using different MaskSetSize (Mobile, 1 session) 95
Table 42 Execution time using different MaskSetSize (Desktop, 100 sessions)... 95
Table 43 Function Profile (Landmark localization) 96
Table 44 Function Profile (Feature extraction) 96
Table 45 Line Profile (Landmark localization) 97
Table 46 Line Profile (Feature extraction) 97
Table 47 Execution time of different EBGM stages 98
Table 48 Storage requirement for lookup tables 99
Table 49 Execution time breakdown (Landmark localization) 99
Table 50 Summary of optimization techniques and their effects 102

xi

List of Figures

Figure 1 Examples of biometrics 1

Figure 2 Stages and tasks of a typical face recognition system 4
Figure 3 Examples of images in the FERET database[5] 6
Figure 4 Relationship between FAR, FRR and EER 8
Figure 5 A Receiver Operating Characteristics (ROC) Curve 9
Figure 6 Intel XScale PXA255 Processor Block Diagram [6] 10
Figure 7 Principal Components (eigenfaces) [13] 17
Figure 8 Elastic graphs overlaid on face images [10] 19
Figure 9 Local features selected by LFA [15] 20
Figure 10 OKAO Vision from Omron [27, 28] 23
Figure 11 Different levels of optimization 24
Figure 12 General optimization flowchart 30
Figure 13 Major stages of PCA face authentication 32
Figure 14 Original (left) and normalized (right) face image 33
Figure 15 PCA subspace training and projection 34
Figure 16 Eigenfaces (Principal Components) 35
Figure 17 Data representation of a fixed-point number 39
Figure 18 Examples of overflow and underflow 39
Figure 19 Bit requirement of Image Preprocessing Stage 41
Figure 20 Bit requirement of PCA Projection and Template Matching Stage 42
Figure 21 ROC Curves of PCA (FB probe set) 47
Figure 22 ROC Curves of PCA (dupl probe set) 47
Figure 23 ROC Curves of PCA (fc probe set) 48
Figure 24 ROC Curves of PCA (dup2 probe set) 48
Figure 25 Major stages of EBGM face authentication 49
Figure 26 Original (left) and normalized (right) face image 50
Figure 27 Gabor filters of different wavelengths and orientations 51
Figure 28 The bunch graph[10] 52
Figure 29 Face graph (only landmarks are shown here)[44] 53
Figure 30 EBGM optimization flowchart 55
Figure 31 Intel XScale PXA255 Processor Block Diagram [6] 57

xii

Figure 32 Bit requirements of different EBGM stages 63
Figure 33 Boundary conditions for Gabor mask convolution 69
Figure 34 Image/mask stored in a 2D structure 71
Figure 35 Image/mask stored in a ID structure 71
Figure 36 Original access pattern (column-major ordering) 72
Figure 37 Optimized access pattern (row-major ordering) 72
Figure 38 Memory access pattern of the original ExtractGaborJet 85
Figure 39 Memory access pattern of ExtractGaborJet after loop merging 86
Figure 40 Mask array layout (original) 90
Figure 41 Mask array layout (after merging) 92
Figure 42 Intel XScale PXA255 data path[6] 93
Figure 43 ROC Curves of EBGM (FB probe set) 100
Figure 44 ROC Curves of EBGM (dupl probe set) 100
Figure 45 ROC Curves of EBGM (fc probe set) 101
Figure 46 ROC Curves of EBGM (dup2 probe set) 101

xiii

List of Algorithms

Algorithm 1 Build Face Graph 82

Algorithm 2 Extract local features 83

Algorithm 3 ExtractGaborJet 83

Algorithm 4 ExtractGaborJetTwoMasks 87

Algorithm 5 ExtractGaborJetMultipleMasks 88

Chapter 1. Introduction 10

1. Introduction

1.1 Background

1.1.1 Introduction to Biometrics

Biometrics are measurable physiological characteristics such as face, iris and

fingerprint, or behavioural traits such as gait and handwriting, which can be

used to verify the identity of an individual[l]. Figure 1 shows some typical

examples of biometrics.

N
Biometrics

f Physiological |

圓_圓
Face Fingerprint Iris

V J
C Behavioural]

•BE3
E ^ ^ ^ ^ i s S g H ^ H I H

Gait Handwriting Voice
V J

V J
Figure 1 Examples of biometrics

Chapter 1. Introduction 10

Compared with traditional authentication methods such as password, a

biometrics-based authentication technique presents a more robust alternative

because it depends on physiological or behavioral traits which are unique,

immutable and cannot be stolen[2]. Among all forms of biometrics, the face has

an added advantage in that it can be captured easily and non-intrusively with a

low cost, off-the-shelf camera instead of expensive sensors. This is also the

reason why face authentication becomes increasingly popular, with military

applications such as border control and security access and civilian ones such

as personal computer login.

1.1.2 Face Recognition in General

Face recognition is a class of pattern recognition problems. It involves the

automatic matching of novel face images with previous ones seen by the

system. Just like any pattern recognition problems, the success of face

recognition depends strongly on the solution of two problems: representation

and matching[3].

A desirable representation should be both efficient and discriminating.

Efficiency determines how compact the representation is and affects the storage

and computational requirement. Discriminating power determines how far apart

the faces are under the representation. A raw face image is transformed into the

selected representation via a process called feature extraction, in which only the

Chapter 1. Introduction 10

most discriminating features are extracted, preserved and stored as a face

template. A clearly and easily separable feature space is considered crucial to

the final matching stage.

After feature extraction, matching is carried out in the feature space. A majority

of face recognition makes use of minimum distance matching, which computes

the separation (e.g.，Euclidean distance) between the live and registered face

template.

Face recognition systems are often classified by the representation scheme they

adopt. Local feature (component) based systems record and represent faces

using useful features extracted from different locations of the face. Features

ranging from more prominent ones like eyes, nose and mouth, to subtle ones

like skin texture are used, either alone or in combination. Global feature based

(holistic) systems, on the other hand, treat a face as a whole and extract

statistical information from the entire face. Local information such as the

relationship between different facial components is ignored. Examples of both

classes of systems will be given in Section 2.1.

In the following sections, the general components and tasks of a face

recognition system are discussed. General terminologies and evaluation

methodologies will also be introduced.

Chapter 1. Introduction 10

1.1.3 Typical Face Recognition Systems

Enrollment Verification Identification
(or Authentication)

User Image Live Image & Claimed Identity Unknown Face Image

[Ql 圆 + 圆

Raw
” Face Image ”

Image Preprocessing

Normalized
Face Image

> 1 > r � r
Feature Extraction

Face Live Face Probe Face
Template Template Template

_ • Claimed Face
C Template . „ ^

All Face
_ , ^ 」 Templates Registered ！

Templates " ”

^ I
J 1:1 Template Matching 1:N

Y � r
Accepted or Rejected "This is John" or 」?°J în

database

\ J V J

Figure 2 Stages and tasks of a typical face recognition system

As shown in Figure 2，a typical face recognition system consists of three stages:

1) Image Preprocessing, 2) Feature Extraction and 3) Template Matching.

Before a face recognition system can be put to use, authorized users must first

be enrolled. During enrollment, a user's face image is first acquired. Then this

raw image is normalized in terms of size, rotation, intensity and contrast in the

Chapter 1. Introduction 10

image preprocessing stage. Distinguishing features are then extracted from the

normalized face image to form a face template, which is then stored into the

template database.

After enrollment, the face recognition system can be used for two tasks, namely

identification and verification (or authentication). The two differ only in the

template matching stage, in which similarities between face templates are

computed. Identification involves a one-to-many match between the probe face

template and all registered templates in the whole database. Verification, on the

other hand, involves only a one-to-one match between the live template and the

claimed identity's template. Although verification is considered a more specific

and computationally less expensive problem, most face identification and

verification systems make use of the same recognition technologies and share

common stages, as shown in Figure 2. In this thesis，we will focus on the face

verification (authentication) task but the results can be easily extended

identification.

1.1.4 Face Database and Evaluation Protocol

To evaluate a biometrics verification system, large database testing is often

done to determine the accuracy. In all our experiments, the FERET verification

testing protocol for face recognition [4] is used. FERET is the de facto standard

evaluation methodology in the face recognition domain. It is used in

Chapter 1. Introduction 10

conjunction with the Facial Recognition Technology (FERET) Database[5].

The FERET image corpus was collected and assembled under the sponsorship

of the Department of Defense of the United States. The two are widely used by

the face recognition community for the testing and evaluation of face

recognition algorithms.

For the FERET database, images of an individual were acquired in sets of 5 to

11 images, collected under relatively unconstrained conditions. Two frontal

views with different facial expressions were taken (fa and fb). For 200 sets of

images, a third frontal image was taken with a different camera and different

lighting (fc). The duplicate I (dupl) images were obtained anywhere between

one minute and 1031 days after their respective gallery matches. The duplicate

II (dup2) images are a strict subset of the duplicate I images; they are those

taken at least 18 months after their gallery entries. Figure 3 shows an example

of the different categories of images.

•ilH
fa fb duplicate I fc duplicate II

Figure 3 Examples of images in the FERET database[5]

Chapter 1. Introduction 10

For evaluation, the FERET images are split into two sets: gallery and probe set.

The gallery is the set of known individuals. An image of an unknown face

presented to an algorithm is called a probe, and the collection of probes is

called the probe set. For each set of images, one of the frontal images (fa or fb)

was randomly placed in the gallery, and the other images were placed in the FB

probe set. The dupl, fc and dup2 images form the corresponding probe sets.

The same gallery is used for all probe sets. Table 1 shows a summary of the

probe categories.

Probe category Evaluation Task Gallery size Probe set size
FB Facial expression 1196 1195

dupl Aging of subjects 1196 722

fc Illumination 1196 194

dup2 Aging of subjects 1196 234

Table 1 Summary of probe categories used in the FERET test [4]

1.1.5 Evaluation Metrics

When given two face templates, a biometrics verification system will output a

binary decision - either 'accept' (the two templates come from the same person)

or 'reject' (the templates do not match). Depending on the correctness of this

decision, there are a total of four possible outcomes:

1. Genuine Accept: a genuine identity is accepted.
2. True Reject: an impostor is correctly rejected.
3. False Accept: an impostor is accepted as a genuine.
4. False Reject: a genuine identity is rejected as a fake.

Chapter 1. Introduction 10

For an ideal system, only cases 1 and 2 will occur, accepting all registered users

while rejecting all impostors. For a real system, however, case 3 and 4 do occur

and the probabilities of occurrence for these two errors are measured to

determine how accurate a system is. False Acceptance Rate (FAR) refers to the

probability that the system identifies an impostor as a genuine, while False

Rejection Rate (FRR) refers to the probability that a genuine is identified as an

imposter. As shown in Figure 4, FAR and FRR are closely related with the

system threshold. The higher the threshold, the harder for a face template, be it

genuine or not, to be accepted by the system. Hence when the threshold

increases, FAR decreases and FRR increases and vice versa. The error rate at

which the FAR equals FRR is called the Equal Error Rate (EER). It is useful for

describing the accuracy of a system when the costs for false rejects and false

accepts are equal. The lower the EER, the more accurate a system is.

i k

� Equal /
False \ E t T O � / False

Acceptance\ R过已 / Rejection
Rate \ (E E R) / Rate
(FAR) (FRR)

0 — 一 ~ … … i f ^ L ^
• threshold

Figure 4 Relationship between FAR, FRR and EER

Since biometrics verification system are used in a variety of situations, each

requiring different levels of security, it is common to tune the system threshold

Chapter 1. Introduction 10

so that a specific operating point - a particular FAR and FRR - can be obtained.

The Receiver Operating Characteristics (ROC) curve is introduced for this

purpose. As shown in Figure 5, the ROC curve describes the relationship

between the Genuine Acceptance Rate (GAR or 1-FRR) and the False

Acceptance Rate (FAR). An operating point can be chosen judging from the

requirement of a particular application. The higher an operating point is, the

higher will be the GAR; the more an operating point is to the left, the lower

will be the FAR. Hence, a specific operating point can be picked from the ROC

curve to suit ones needs. ROC curves also provide a way for easy comparison

between different biometric systems. For the curves illustrated, system A is

better than B which is in turn better than C.

t寸y
,I I I I

0 .25 .50 .75 1.00

False Rejection Rate (FAR)

Figure 5 A Receiver Operating Characteristics (ROC) Curve

Chapter 1. Introduction 10

1.1.6 Characteristics of Mobile Devices

Typical mobile devices include mobile phones and Personal Digital Assistants

(PDAs). Due to their portability and connectivity, mobile devices have become

an essential part of our daily lives. Thanks to the advancement in technology,

mobile devices have become more and more powerful. Unfortunately, inherent

limitations such as size, cost and power consumption still persists for all mobile

devices. To conserve battery power and chip size, typical processors for mobile

devices, such as the Intel XScale [6], have a comparatively small cache size

(Figure 6) and do not come with a Floating Point Unit (FPU). A small cache

size means data and instructions are swapped out of cache more frequently and

much slower off-chip memory must be accessed.

~ IRQ "RQ ^^ZZZm^ZZZZZ.
CP14 • Branch Target Buffer

Performance
Monitoring

^ • I I • Trace
Interrupt Buffer

CP15 Request L j _ — _
Conflg. • ' ' ：' " C 肺

_ , “ Memory
Roisters Instruction 4 Instruction Bus

, , Cache MMU M ~ ^ ¥
< • Execution 32 KBytes

Coprocessor Core
Interface

Data
Address • Data Cache

二 ， 二 Data < < • 32 KBytes 二 Write
Multiplier/ • MMU • Buffer

处cumulator Mini D-Cache | ' ^ |
’ 2 KBytes

JTAG 卜 — 二 M 二

Figure 6 Intel XScale PXA255 Processor Block Diagram [6]

Chapter 1. Introduction 10

The lack of an FPU, on the other hand, cause floating point operations to be

unacceptably slow since they are emulated by a software library. Table 2 shows

a comparison between the Intel XScale PXA255 400MHz and Pentium III

450MHz. Although the two processors have close clock rates, the performance

for floating point arithmetic is dramatically different - the XScale is about 70 -

120 times slower than the Pentium III. The gap grows even wider for

trigonometric functions (160 - 240 times). From these results, it is obvious that

for any serious, floating point intensive applications to be practical on mobile

devices, dedicated efforts must be made to optimize their performance.

Processors Intel XScale 400MHz Pentium III 450MHz
Integer Arithmetic

Addition 0.138s 0.032s

Subtraction 0.138s 0.047s
Multiplication 0.145s 0.047s

Division 0.698s 0.234s
Floating Point Arithmetic

Addition 3.87s 0.031s

Subtraction 4.50s 0.047s
Multiplication 4.60s 0.047s

Division 14.0s 0.188s
Trigonometric Functions

sin(x) ^ 0.984s

cos(x) 253s 1.016s
tan(x) 197s 1.203s

arctan(x) ^ 1.453s
Table 2 Excecution time of 3 million instructions on different processors

Chapter 1. Introduction 10

1.2 Motivation and Objectives

In recent years, we have seen a proliferation of mobile devices such as PDAs

and cell phones as well as applications on them. Individuals use them for

electronic transactions such as phone banking and stock trading, while

enterprises issue them as a means of access to the corporate network. Security

concerns with mobile devices have become an imminent issue as a poorly

protected mobile device may expose sensitive data such as passwords and

credit card information, or may become a security hole of the entire corporate

network.

Unfortunately, mobile devices are traditionally guarded by simple passwords

which can be easy copied, stolen or forgotten. Clearly, a more sophisticated ,

authentication method is needed. As pointed out in Section 1.1.1，

biometrics-based authentication presents a more robust alternative because it |

depends on physiological or behavioral traits which are unique, immutable and

cannot be stolen[2]. Among the better known forms of biometrics, face

authentication is ideal for mobile devices not only because it is non-intrusive,

but also because it requires no extra sensors like a fingerprint does. Nowadays,

most cell phones and many PDAs already come with built-in cameras[7],

making face authentication a cost-effective solution to the security problem.

Traditional face recognition systems, however, involves heavy image

Chapter 1. Introduction 10

processing and are designed for powerful desktop PCs or faster machines. The

large number of floating point calculations and memory accesses involved

become a great obstacle to the adoption of face authentication on mobile

devices. As discussed in Section 1.1.6’ even state-of-the-art mobile devices

cannot satisfy these demands. Any direct porting of existing systems will only

result in slow and unacceptable performance. Clearly, optimization is the key to

real time face authentication on mobile devices.

In this thesis, we will study and optimize two widely adopted face recognition

algorithms and compare their performances in a mobile context. Our goal is to

show that real time face authentication can be achieved on mobile devices

without loss of accuracy.

1.3 Major Contributions

1.3.1 Optimization Framework

During the optimization of PCA and EBGM, it becomes clear that a software

engineering model dedicated to the general optimization problem is needed. In

light of this, we propose a high level view of optimization techniques and a

feedback oriented workflow. The high level view gives insights on how general

optimization problems should be approached and how these techniques can be

categorized; the workflow keeps us sensitive to changes in program behaviour

and measures the effectiveness of a technique to a particular problem. The

Chapter 1. Introduction 10

simplicity and flexibility of the two makes them easily adaptable to other

optimization problems. More details can be found in Chapter 3.

1.3.2 Real Time Principal Component Analysis

Principal Component Analysis (PCA)[8] is a widely adopted, global feature

based face recognition technique. In this study, we investigate the feasibility of

a real-time implementation of PCA on mobile devices. The performance of the

un-optimized code is far from satisfactory, requiring 30 seconds for just one

authentication session. After extensive profiling, we found that the bottleneck is

the large amount of floating point multiplications. By using optimization

techniques such as fixed-point arithmetic and pre-computation, the execution

time for an authentication session reduced by 22 times - to 1.3 seconds only.

Large database testing shows that there is no significant loss in verification

accuracy[9]. More details can be found in Chapter 4.

1.3.3 Real Time Elastic Bunch Graph Matching

In contrast to PCA, Elastic Bunch Graph Matching (EBGM) [10]based on local

features of a face and is less susceptible to lighting, face position and

expression variations. In this study, we attempt to build a real-time

implementation of EBGM on mobile devices. An un-optimized implementation

takes 550 seconds (Section 4.3.1) to complete a single face authentication

Chapter 1. Introduction 10

session and is unacceptable for any practical use. To improve the execution

time, profiling is done to pinpoint the bottlenecks. Various optimization

techniques such as fixed-point arithmetic, table lookup, pre-computation and

memory optimization are developed and employed. The result is a 420 times

improvement - the optimized code now only takes 1.3s for one authentication.

More details can be found in Chapter 5.

1.4 Thesis Organization

This chapter provided an overview of face recognition and characteristics of

mobile devices. A summary of the objectives and contributions of our work

were also given. The remaining chapters of this thesis are organized as follows:

Chapter 2 briefly reviews related work in face recognition and in particular

those iset in a mobile context. Chapter 3 presents a high level view of different

levels of optimization and a proposed workflow. Chapter 4 and 5 present an

experimental study of the optimizations of PCA and EBGM respectively.

Finally, Chapter 6 summarizes the research performed, and describes some

challenges encountered and possible directions for future research.

Chapter 2. Related Work 16

2. Related Work

2.1 Face Recognition for Desktop Computers

As discussed in Section 1.1.2，face recognition systems are often classified by

the representation scheme they adopt. The two major classes of system are

global feature based and local feature based systems. In this section, a brief

description and representative examples will be given for both classes.

2.1.1 Global Feature Based Systems

In this class of systems, face images are treated as a whole and statistical

information from the entire face is extracted. Most systems in this class involve

finding an easily separable subspace. By projecting the high dimensional face

image to a well-selected subspace of lower dimension, an efficient and possibly

discriminating representation is acquired. Various subspace selection methods,

including Evolution Pursuit(EP)[ll]， Independent Component

Analysis(ICA)[12], Principal Component Analysis (PCA) [13] and Linear

Discriminant Analysis (LDA)[14] are commonly used methods, with the latter

two being the most popular ones due to their simplicity and reasonable

performance.

Chapter 2. Related Work 16

Principal Component Analysis (PCA) [13]

Principal Component Analysis (or eigenface) is a general and widely-adopted

statistical method for dimension reduction. The covariance matrix of the face

images is first found and then the eigenvectors for this matrix are in turn

computed. The top eigenvector, proven to be the most efficient (but not

necessarily discriminating) representations for the faces, is preserved for the

construction of a transformation matrix. All face images are then transformed

and projected to the PCA subspace, in which matching will be done.

• _ " i f 壓
•翻顯

關圓圓
Figure 7 Principal Components (eigeiifaces) [13]

Linear Discriminant Analysis (LDA) [14]

Despite the fact that PCA derives an efficient subspace, it treats all face

images — even those from the same person 一 as different classes. The variations

between face images of the same person is not addressed and results in

Chapter 2. Related Work 16

non-optimal discriminating power among persons. LDA (or fisherface) tackles

this problem by including class specific information in determining the

sub space. The criterion is to maximize the ratio of the interpersonal variance to

the intrapersonal variance, so that the resultant sub space is easily separable

between classes (persons). Usually several images of the same person are

needed during enrollment to capture as much intra-class variation as possible.

2.1.2 Local Feature Based Systems

Earlier methods in this class uses purely geometry based approach. The relative

size of and distance between various facial components like eyes, nose and

mouth are measured and used as features. Unfortunately, this kind of methods

is susceptible to deformation. Updated methods cater for the deformation

problem by allowing a reasonable amount of displacement to exist between

feature points. Local features are often extracted by means of filter convolution,

such as Gabor filters. The most representative methods in this class include

Elastic Bunch Graph Matching (EBGM) and Local Feature Analysis (LFA).

Elastic Bunch Graph Matching (EBGM) [10]

This method makes use of deformable templates which allow approximation

rather than exact matching between the feature points in terms of relative

location. Faces are represented as a set of local features located on an elastic

(deformable) graph (see Figure 8). Local features are first computed by

Chapter 2. Related Work 16

convoluting the face image with 2D Gabor filters with various centre

frequencies, bandwidths and orientations. The filter outputs are then sampled at

different locations on the graph. During matching, the novel face graph is

matched with the registered one. The best match is one that preserves features

and local geometry.

m
Figure 8 Elastic graphs overlaid on face images [10]

Local Feature Analysis (LFA) [15]

Local feature analysis is a derivative of the eigenface method[16], Instead of

the entire representation of a face, LFA utilizes specific areas of a face such as

eyes and areas of definite bone curvature differences, such as the cheeks. The

responses of multi-scale filters are used as local features and encoded using

PC A to obtain a compact description.

Chapter 2. Related Work 16

.i •
X d X a

Hibv. ...isk：
p o s i t i o n s

a h V cl o

•••圔 ••••

Figure 9 Local features selected by LFA [15]

2.1.3 Commercial Systems

Technology details of commercial systems are either not disclosed or a

combination of local/global methods is used; hence it is hard to classify them

into any single category. The face recognition products discussed below are

ranked among the top 3 in the Face Recognition Vendor Test 2002

(FVRT2002)[17], a public evaluation contest of face recognition algorithms.

FaceVACs. Cognitec Systems GmbH. [18]

In this product, feature extraction starts with local image transforms that are

applied at fixed image locations. These transforms capture local information

relevant for distinguishing people, for example, the amplitudes at certain spatial

Chapter 2. Related Work 16

frequencies in a local area. The results are collected in a vector. A global

transform is then applied to this vector. Using a large face-image database, the

parameters of this transform are chosen to maximize the ratio of the

inter-person variance to intra-person variance in the space of the transformed

vectors. Multiple images are taken of each person during enrollment in order to

better cover the range of possible appearances of that person's face.

fR. Neven Vision, Inc. [19]

This product makes use of a combination of Gabor wavelet and neural

networks. The face detection modules employ a general face model to localize

a face in the image. A 3D representation of the head copes with pose variations.

The general face models are learned from a large database of face images and

cover a wide variety of environmental conditions such as illumination and

expressions. Local features such as eye-position, nose-position and

mouth-position are used.

Facelt. Indentix，Inc. [20]

This product uses a combination of three technologies namely Vector Feature

Analysis (VFA), Local Feature Analysis (LFA) and Surface Texture Analysis

(STA). VFA is optimized for low-resolution images and runs at a very high

speed. LFA is based on facial geometry information and is optimized for low to

medium resolution images. STA is based on skin texture micro-features and is

Chapter 2. Related Work 16

frequencies in a local area. The results are collected in a vector. A global

transform is then applied to this vector. Using a large face-image database, the

parameters of this transform are chosen to maximize the ratio of the

inter-person variance to intra-person variance in the space of the transformed

vectors. Multiple images are taken of each person during enrollment in order to

better cover the range of possible appearances of that person's face.

fR. Neven Vision, Inc. [19]

This product makes use of a combination of Gabor wavelet and neural

networks. The face detection modules employ a general face model to localize

a face in the image. A 3D representation of the head copes with pose variations.

The general face models are learned from a large database of face images and

cover a wide variety of environmental conditions such as illumination and

expressions. Local features such as eye-position, nose-position and

mouth-position are used.

Facelt. Indentix, Inc. [20]

This product uses a combination of three technologies namely Vector Feature

Analysis (VFA)，Local Feature Analysis (LFA) and Surface Texture Analysis

(STA). VFA is optimized for low-resolution images and runs at a very high

speed. LFA is based on facial geometry information and is optimized for low to

medium resolution images. STA is based on skin texture micro-features and is

Chapter 2. Related Work 16

optimized for higher resolution images.

In one-to-one applications, VFA, LFA and STA algorithms can be used alone or

in combination. In one-to-many applications, the three algorithms are used in

a three-pass pipeline, where only the top percentage results of the previous pass

are searched again in the next pass. For maximum speed and accuracy, VFA is

used for the first pass, LFA for the second, and STA for the third. At the

conclusion of the passes, the top scores of all three passes are fused together

into a final set of scores.

2.2 Biometrics on Mobile Devices

In recent years, there has been growing interest in biometrics on mobile devices.

Previous studies on face recognition for mobile devices mainly focus on using

the device as a capturing tool, with most expensive computations done on PC

servers [21, 22, 23, 24]. Some require specialized hardware which makes use of

a multi-processor architecture to achieve real time performance[25]. Other

attempts to implement a face recognition system on mobile devices have been

reported, but no detailed account of the execution time was given [26, 27, 28].

Recently, commercial face authentication systems for mobile phones have also

been introduced, including OK AO Vision from Omron [29, 30] and

Genelock-light from Earth Beat [31].

Chapter 2. Related Work 23

• H B l f l l P W

Figure It) OKAO Vision from Omron [27, 28]

Due to the high demands for more secure authentication methods, researchers

around the world have also investigated other modes of biometrics

authentication. Real-time voice [32] and fingerprint [33, 34, 35, 36] verification

systems have been successfully implemented on mobile devices. When

combined with the real-time face recognition systems developed in this thesis,

it is now possible to further enhance security on mobile devices by using

multimodal schemes such as the one outlined in [23].

Chapter 3. Optimization Framework 24

3. Optimization Framework

3.1 Introduction

During the course of optimizing the PCA and EBGM, we have developed a

common set of techniques and strategies which is re-applicable to other

optimization problems. Under this unified framework, the problems of

optimizing PCA and EBGM, though inherently different, can be described and

approached in a similar way.

Platform i i
Independent

3.3 Algorithm Level

3.4 Code Level

3.5 Instruction Level

3.5 Architecture Level

Platform [_
Dependent … 一

Problem Problem
Dependent Independent

Figure 11 Different levels of optimization

Our framework consists of a high level view and a general workflow of the

optimization problem. Figure 11 shows the four levels of optimization

(algorithm, code, instruction and architecture), with varying degrees of

platform and problem dependence. Platform dependence describes how much

Chapter 3. Optimization Framework 25

knowledge of the target platform is needed for an optimization level. For

instance, the architecture level is highly platform dependent, suggesting that a

thorough understanding of the platform specification, such as cache

configuration, is needed. Problem dependence, on the other hand, describes the

importance of the problem nature - whether it is in the image processing

domain or pattern recognition domain. For example, the algorithm level is

highly problem dependent meaning that the nature of the problem, such as its

computational complexity, is crucial at this level. A detailed account of each of

the four levels will be given in Section 3.2.

While the high level view gives us an idea of what preliminary information is

needed, the optimization flow describes the general steps involved in an

optimization task - how to pinpoint the bottleneck, develop and implement an

optimization, and evaluate its effectiveness. More details can be found in

Section 3.3.

3.2 Levels of Optimization

3.2.1 Algorithm Level

Algorithm level optimizations involve the selection of an effective algorithm

and a suitable set of input parameters for a problem. The algorithm level is

purely problem dependent, in that optimizations often aim at improving the

Chapter 3. Optimization Framework 26

intrinsic qualities of an algorithm, such as computational complexity. On the

other hand, it is completely platform independent in that the same order of

improvement can be achieved regardless of the target platform. The Algorithm

level is often the first to consider during optimization, as a well-optimized

algorithm provides a stable framework under which techniques of the other

levels can be applied.

A significant part of the EBGM optimization belongs to the algorithm level.

For instance, the invariant Gabor masks and bunch graphs are pre-computed

and removed from the authentication routine (Section 5.4.2); Gabor mask

convolutions are modified to exploit their parallel nature to reduce number of

memory access (Section 5.4.6). Finally, an efficient set of Gabor filters is

derived in an attempt to strike a balance between speed and accuracy (Section

5.4.4).

3.2.2 Code Level

Algorithmic optimizations can only be realized through efficient

implementation. The aim of code level optimization is to improve on a correct

but suboptimal implementation. At this level, a significant amount of effort is ’

often dedicated to optimizing loops, in which most execution time is spent.

Common code optimization techniques includes loop unrolling, which reduces

overhead per iteration and code motion, which saves unnecessary computations

Chapter 3. Optimization Framework 27

by moving loop invariant code out of the loop body. These techniques are

widely employed in both the optimization of PCA and EBGM.

Code level optimization is problem independent since the control structures

being optimized are common to all problems. However, as the actual

implementation depends on the programming languages available on a given

platform, code level optimizations can be slightly platform dependent.

3.2.3 Instruction Level

At the instruction level, the difference between basic operations such as integer

and floating point arithmetic must be accounted for. This is especially true

when the target platform is a mobile device, in which hardware Floating Point

Units (FPU) are absent and floating point instructions are unavailable

(Sectionl.1.6). Due to the fact that software floating point emulators are

hundreds of times slower than their hardware counterpart, floating point

avoidance is often regarded as a rule of thumb for mobile device optimizations.

To circumvent slow floating point operations, fixed point arithmetic can be

used. By representing real numbers using integers and replacing floating point

arithmetic with integer ones, the performance of real number operations can be

significantly improved. A significant portion of speedup of PCA and EBGM is

achieved by the adoption of fixed point arithmetic. The implementation details

Chapter 3. Optimization Framework 28

and speedup of fixed point arithmetic can be found in Section 4.3 and 5.4.1.

Besides basic floating point operations, a class of commonly used routines

deserves special attention. Trigonometric functions provided by the standard

math library are evaluated by floating point polynomial expansion and is

extremely slow. The use of table lookup is a fast and viable alternative, as will

be proven in the optimization of EBGM (Section 5.4.8).

The instruction level is platform dependent, as the problems tackled at this

level are often shared by the same family of processors or devices. And since

the problem nature indirectly determines the amount of floating point or

trigonometric operations used, instruction level optimizations are also

moderately problem dependent.

3.2.4 Architecture Level

Architecture level optimizations mostly deal with cache and memory

optimization. By fine tuning factors such as system cache policy and memory

page attributes, the overall throughput and efficiency of the memory hierarchy

can be maximized. Detail specification of the target platform must be known so

that a specific set of parameters can be derived for each target.

Besides being highly platform dependent, the architecture level also relies

Chapter 3. Optimization Framework 29

heavily on a thorough understanding of the problem at hand. Only if knowledge

of both worlds is combined can a feasible optimization strategy be derived. For

instance, while the processor is totally oblivious to the memory access pattern

of a program, it is predictable and known a priori by the programmer. By

utilizing information about the low level cache configuration and the high level

memory access behaviour，a programmer can derive efficient memory access

schemes such as those employed in EBGM optimization (see Section 5.4.5 and

5.4.7) 一 a hardware/software co-design effort.

3.3 General Optimization Workflow

Before an optimization strategy can be developed and tested, a feedback

mechanism must be in place for easy evaluation and refinement of a strategy.

Here we describe a general optimization flow which is used throughout the

PCA and EBGM optimizations.

Chapter 3. Optimization Framework 30

n r\
start

^ Profiling

t i m i n g \ ^ y e s \
< requirement 〉 |»(Stop j

V J

I No

Hotspot Location

^ I
Optimization

Figure 12 General optimization flowchart

As shown in Figure 12, the optimization workflow consists of four stages. In

the profiling stage, program runtime statistics such as overall execution time,

function counts and page faults are measured. Then the overall execution time

is checked against the timing requirement of the application at hand, and if it is

not satisfied, hotspot location is done to pinpoint the area which deserves the

most attention. Targeting the located hotspots, an optimization strategy is

derived and implemented in the optimization stage. Finally, the optimized

program is subjected to profiling again, and the whole process goes on until the

timing requirement is satisfied.

Here we notice a dual role assumed by the profiling stage: before each

optimization, profiling acts as a preparatory stage and provides the necessary

Chapter 3. Optimization Framework 31

information about the dynamic behaviour of a program; after optimization is

done, profiling gives feedback about the effectiveness of a strategy and more

importantly, updates of program behaviour. As optimization is a continuing

process, the program nature can shift dramatically between different extremes

(e.g., computation-bound or memory-bound). Being sensitive to these changes

is hence essential for determining the next optimization focus. Chapter 4 and 5

further describe how this optimization workflow works in practice.

3.4 Summary

Here we categorize the optimization strategies used in PCA and EBGM

optimization into different levels, as shown in Table 3:

Level Strategies Section
-Efficient Gabor Filter Selection 5.4.4

Algorithm _ Gabor Masks and Bunch Graphs Precomputation 5.4.2

-Reducing Redundant Memory Access 5.4.6

Code - Improving Array Access 5.4.3

. -Fixed-point Arithmetic 5.4.1,4.3

-Optimization of Trigonometric Functions 5.4.8
. -Fine Tuning System Cache Policy 5.4.5

Architecture
-Maximizing Cache Reuse by Array Merging 5.4.7

Table 3 Optimization strategies employed

Chapter 4. Real Time Principal Component Analysis 32

4. Real Time Principal Component Analysis

4.1 Introduction

The Principal Component Analysis (PCA) Algorithm, also known as eigenface,

is a tested and widely adopted face recognition method and was first proposed

in[13]. In our experiments, the PCA implementation of the CSU Face

Identification Evaluation System 5.0 [37] is used as the baseline system. As

shown in Figure 13, PCA authentication consists of four main stages: 1) Image

Preprocessing, 2) PCA Subspace Training, 3) PCA Subspace Projection and 4)

Template Matching. Each of these stages will be discussed in detail in Section

4.2.

、

Q) ‘~ - .1 .1 Trained PCA
I . E g r c T] imaae PCA subspace

c ~ / - A _ ^ „ 丨mage ^ Subspace
i 2 g C J J P Preprocessing Normalized Training

I — 一 Training Images Image

® Trained PCA User Face (^ ^ ^ ^
h r ^ "1 Subspace Template
2 , • Storage 一
^ User Image ，f
LU ^ — ^

> D Image. > Subspace
- r Preprocessing Projection Claimed

O Normalized I Face Template
^ Image

(V \ j 」 Template ___ . Accept/
•C ^ ^ 。 Live Face Matching ^ Reject?
0 Input Image & Template

〉 Claimed Identity

Figure 13 Major stages of PCA face authentication

Chapter 4. Real Time Principal Component Analysis 33

4.2 System Overview

4.2.1 Image Preprocessing

In the image preprocessing stage, all input face images are normalized to

reduce the variation among them. The normalization routine performs

geometric normalization, masking, histogram equalization and pixel

normalization [38, 39, 40] on the face image. Figure 14 shows a face image

before and after normalization. Dimensions of the face images are reduced

from 256 x 384 to 130 x 150 in this stage. After the preprocessing stage, the

normalized face image is then passed on to the main PC A algorithm for training,

enrollment or verification depending on the particular scenario.

• • M
Figure 14 Original (left) and normalized (right) face image

Chapter 4. Real Time Principal Component Analysis 34

4.2.2 PCA Subspace Training

PCA Subspace Training Stage , . ^ ^
C o m p i i t e I C o m p u t e J p r e s e n / e t o p 卜 .

— p - ^ eig了〔ctors — eigenvectors 一 Subspaa Z

Training images ^ ^ |

… — • •

f X — • Su巧act by Multiply by Z > Template

^ Mean Database

New face image •

PCA Subspace Projection Stage

Figure 15 PCA subspace training and projection

As shown in Figure 15, PCA consists of two stages 一 Subspace Training and

Projection. Training must be done before the system can be used. In a training

scenario, training face images are used to build a subspace which efficiently

preserves distinguishing features of face images. Then in an enrollment or

verification scenario, new face images are projected to this trained subspace

and form face templates which will be used for comparison.

During Subspace training, the rows of an N] x Âo training image are first

concatenated into a one dimensional image vector. Let the training face image

vectors be Fj, Fj, F3... Fm. Each face vector differs from the mean by the

vector (Di：

Chapter 4. Real Time Principal Component Analysis 35

where [试 (D

The MxM covariance matrix C (= (D",(D”) is constructed and its

eigenvectors v/ are found. These vectors determine the linear combinations of

the M training face images to form the eigenfaces u! (each of dimensions N] x

W/ = Xr=i、，丨k^k where I = 1,...,M �

In practice, only a subset of these eigenfaces {k = where N «M) is

retained to form a transformation matrix Z which is used in the PCA projection

stage. Only those eigenfaces which account for the most significant variations

(principal components) are used in the construction. Figure 16 shows some

examples of eigenfaces. The PCA subspace need only be trained once.

Figure 16 Eigenfaces (Principal Components)

Chapter 4. Real Time Principal Component Analysis 36

4.2.3 PCA Subspace Projection

During PCA projection, a new face image vector F is first subtracted by the

mean (4^) found in training and then multiplied by the transformation matrix Z.

F is essentially projected to a point in the PCA subspace:

吟 w h e r e Z = (3)

In this PCA subspace, the correlations among the projected images are

minimized in order to facilitate easier classification[13]. The projected image

(似yt) is then saved as the face template of the corresponding user for future

matching.

4.2.4 Template Matching

Template matching is done in the last stage of a verification scenario. After a

live face image is preprocessed and projected, the live face template is then

compared with the claimed user's face template. The comparison results in a

similarity score which is in turn compared with the system threshold. If the

score is higher than the threshold, the user is accepted; otherwise he or she will

be rejected by the system. Mahalinobis Cosine distance [38] is used as the

similarity measure in our face authentication system. Mahalinobis Cosine is the

Chapter 4. Real Time Principal Component Analysis 37

cosine of the angle between two face templates after they are normalized by the

variance estimates. For image vectors u and v with corresponding projections m

and " in Mahalinobis space, the Mahalinobis distance is defined as:

mil/? c o s (� I
A (u v) = — ^^ ⑷

4.3 Optimization using Fixed-point Arithmetic

4.3.1 Profiling Analysis

As discussed in Section 3.3, profiling analysis must first be carried out to locate

the bottlenecks in the face authentication system. Since the PCA subspace can

be trained on a PC in an offline fashion, only the image preprocessing, PCA

subspace projection and template matching stages are analyzed.

In our experiments, an open-source tool called GNU profiler (gprof) [41] is

used for profiling, gprof can monitor program statistics such as total execution

time and percentage of execution time taken by each ftinction, which are useful

for identifying and pinpointing the bottlenecks of a system. To analyze the

execution time, 170 images selected from the FERET face image database

(Section 1.1.4) are preprocessed, projected and matched. The execution time of

these 170 authentication sessions are averaged and shown in Table 4. A detailed

Chapter 4. Real Time Principal Component Analysis 38

description of the hardware testing platform will be given in Section 4.4.1.

Execution Time I Percentage

Image Preprocessing 6.877 sec (22.7%)

PCA Projection 22.933 sec (75.8%)

Template Matching 0.425 sec (1.5%)

Total 30.235 sec (100%)

Table 4 Breakdown of execution time of one authentication session

As shown in Table 4，the PCA Projection stage alone takes up over 75% of the

execution time of a typical authentication session; hence optimization effort

should be focused on this stage. Experimental results show that matrix

multiplication is the bottleneck of PCA projection and accounts for over 92% of

the execution time. The primitive operations of matrix multiplications are

floating point multiplications, which are extremely slow on mobile processors

(Section 1.1.6). To circumvent the slow floating point multiplication bottleneck,

fixed point arithmetic[42], using only integer operations, is used to optimize the

face authentication system. All floating point variables and operations in the

system are replaced with their fixed point counterparts.

4.3.2 Fixed-point Representation

A fixed point variable is implemented using a 32-bit integer (built-in C type

"int"). The fixed point representation consists of three parts: sign bit, integer

bits and fraction bits, as illustrated in Figure 17. The number of bits assigned to

Chapter 4. Real Time Principal Component Analysis 39

the integer part is called Integer Word Length (IWL). Similarly, the number of

fraction bits is called Fractional Word Length (FWL). IWL determines the

largest possible range that can be represented by a fixed-point number, while

FWL determines the precision. For instance, a real number, -1.875 in decimal

(-1.111 in binary) is represented as -122880 in decimal (-11110000000000000

in binary) in fixed point format.

000000000000001 1110000000000000
• V J V 》

八 y »
Integer Bits (IWL = 15) Fraction Bite (FWL =16)

Sign Bit

Value = -1 111(Binarv)/-1 875(Decima)

Figure 17 Data representation of a fixed-point number

4.3.3 Range Estimation

j<< Binary Point
Overflow: IWL too small :

Floating point: 1 1 1 1 0 0 0 1 | l 1 1 0 0

Sign Bit i IWL+FWL=31

VI——i ‘ ^
Fixed point： 1 0 0 0 1 | 1 1 1 0

IWL = 5j FWL = 26

Binary Point --->•： Underflow: IWL too large

0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 Floating point

Sign Bit IWL+FWL=31 i
J A j ,
Tf • 1
O M 1 1 1 0 0 Fixed point

‘ — — . — — — . .丨——,一.

IWL = 26 i FWL = 5

Figure 18 Examples of overflow and underflow

Chapter 4. Real Time Principal Component Analysis 40

As shown in Figure 18, the fixed-point representation may suffer from

overflow or underflow if the IWL is inappropriate. To prevent overflow or

underflow, care must be taken when selecting the location of the fixed point.

Range estimation is done to determine the range and precision required by

different stages of the face authentication system. A set of Perl scripts is

developed which automatically scans through the code base, assigns a unique

identifier to each floating point variable and adds a range estimation function

call after each value assignment. The range estimation function receives the

identifier and the updated value of the floating point variable, and then logs the

assignment value for further analysis. The maximum absolute value and the

number of assignments of each floating point variables are found on

completion of a face authentication.

After the code is modified for range estimation, 3368 frontal face images

collected from 1209 subjects from the FERET face database [5] are

preprocessed，trained, projected and template matched. The results are then

used to estimate the value range of the floating-point variables in the code.

Figure 19 and Figure 20 show the bit requirements of all floating point

variables in different stages of the system. Here, bit requirement of a variable is

defined as the minimum number of bits required to represent the maximum

Chapter 4. Real Time Principal Component Analysis 41

absolute value ever assigned to the variable. Range estimation results show that

the bit requirement of the image preprocessing stage is much larger than the

PCA projection and template matching stages. To safely accommodate the

largest floating point value while retaining sufficient accuracy, two IWLs are

chosen. For Image preprocessing, IWLl = 15 is chosen and for PCA projection

and template matching, IWL2 = 9. The FWLs are chosen accordingly (i.e.

FWL1=32 - IWL1-1=16, FWL2=32-IWL2-1=22). By using two stage-specific

IWL instead of a system-wide, fixed IWL[32], the largely different value

ranges of different stages can be accommodated.

Bit Requirement Distribution
n (Image Preprocessing)

10
9
8

S 7
I 6

1 ^ I = - —
j I I = ：

Q • I • I I • I I I • : I I I I • I _ I • I -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits Required

Figure 19 Bit requirement of Image Preprocessing Stage

Chapter 4. Real Time Principal Component Analysis 42

Bit Requirement Distribution
(PCA Projection, Template Matching)

6

5

J 4
•岂
ro 3 _ 一

•5

二 ̂ H
Q LBLa_H_i UHLJ i i i 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits Required

Figure 20 Bit requirement of PCA Projection and Template Matching Stage

4.3.4 Code Conversion

Once the IWLs are decided, floating point to fixed point code conversion can

be carried out. In this stage, all floating point constants and variables, including

arrays, pointers and structures, are converted to fixed point format. The fixed

point representation is complemented by a set of conversion and arithmetic

operations. Examples of the arithmetic and conversion routines are illustrated

in Table 5.

Operations C Macro Implementation

Multiplication #define fixMul(x, y) ((int) ((((long long)(x)) * (y)) » F W L))

Division #define fixDiv(x, y) ((int) ((((long long)(x)) « F W L) / y)))

Fixed point to Floating Point #define fix2Double(x) (((double)(x)) * 2 ™)

Floating Point to Fixed Point #define double2Fix(x) ((fixed) ((x)*

Table 5 C macro definitions of fixed point operations

Chapter 4. Real Time Principal Component Analysis 43

When designing this set of operations, special attention was taken to cater for

the immediate results. For instance, FWL of an addition/subtraction result is the

same but for multiplication and division, numbers with FWL'= 2 • FWL and

FWL' = 0 are yielded respectively. Thus, a scale-shift operation is needed for

multiplication and division.

4.4 Experiments and Discussions

4.4.1 Experiment Setup

Experiments were carried out to measure the effect of optimization using

fixed-point arithmetic. The execution time, space requirement and verification

accuracy of the baseline and optimized system are compared. A development

board for embedded system is used for evaluation. Table 6 shows its

specification. From simplicity, we will refer to this platform as Mobile.

Processor Intel XScale PXA255 400Mhz

Memory 64MB lOOMhz SDRAM

Storage 32MB flash ROM

OS Embedded Linux (kernel version 2.4.19)

Compiler arm-linux-gcc [43]

Compile Options -02 -mtune=xscale

Table 6 Specification of the evaluation system

Chapter 4. Real Time Principal Component Analysis 44

All face images used in the experiments were selected from the FERET face

database (Section 1.1.4). In all of the following experiments, the PCA subspace

used is trained using 1194 face images. The first 358 principal eigenvectors are

preserved.

4.4.2 Execution Time

We measured the difference in execution speed between the baseline and

optimized systems. Measurements were taken by averaging the execution time

for 120 authentication sessions.

Baseline Optimized Reduction

I. Image Preprocessing 6.88 s 0.832 s 6.05s

II. PCA Projection 22.9 s 0.492 s 22.4s

III. Template Matching 0.425 s 0.00833 s 0.417s

Total 30.2 s 1.33s 28.9s

Table 7 Execution time of the baseline system and the optimized code

As seen from Table 7, a reduction of 22 seconds is observed for the PCA

projection stage, 46 times faster than the baseline system. The image

preprocessing speed is also improved by six times. Although the reduction in

execution time for the template matching stage is comparatively insignificant to

a verification scenario, it can be crucial to identification scenarios in which the

number of matching (and hence projection) performed is directly proportional

to the number of registered users in the database. Overall, the authentication

Chapter 4. Real Time Principal Component Analysis 45

time for PCA now takes slightly more than one second, meeting the real time

requirement.

4.4.3 Space Requirement

An added benefit of using fixed point representation is the reduction in storage.

Table 8 shows the storage requirement of the PCA subspace and face templates

used in our system. Since fixed variables (32bit integers) are used instead of

floating point ones (64bit doubles), the storage requirement is halved. For

mobile devices which have limited amounts of memory and storage space, this

reduction can be beneficial in reducing the system runtime footprint as well as

the storage requirement. As the loading time of the PCA subspace dominates

the initialization time of the face authentication system, the decrease in size of

the PCA subspace means much shorter setup time, as shown in Table 8.

Baseline Optimized Reduction

Size of PCA Subspace 45Mb 23Mb 95.6%

Size of Face Template 2.3Kb 1.2Kb 91.6%

PCA Subspace loading time 32secs 16secs 100%

Table 8 Reduction in space requirement and its impact on loading time

4.4.4 Verification Accuracy

To investigate the effect of optimization on the verification accuracy, the

FERET face database and evaluation protocol were used. (Section 1.1.4). A

Chapter 4. Real Time Principal Component Analysis 46

total of 3307 frontal face images collected from 1196 subjects were used in the

experiments. 1196 images were selected to form the gallery and the remaining

images are separated into four probe sets (FB, dupl, fc and dup2). For each

test, the probe images were matched against the gallery images in a round robin

fashion. Images from the same subject were matched to calculate the False

Rejection Rate (FRR). Match results of images from different subjects were

matched to calculate the False Acceptance Rate (FAR). More details about the

face images and probe sets can be found in Section 1.1.4.

Figure 21 to Figure 24 show the Receiver Operating Characteristic (ROC)

curves of the optimized code and the baseline system for different probe sets.

The overlapping curves indicate that verification accuracies of both systems are

essentially identical.

Chapter 4. Real Time Principal Component Analysis 47

Receiver Operating Characteristic (ROC) Curve
100 r ^ » $

- r 令 Baseline PCA
90 • + Optimized PCA 1 !• *

I
令60-

S
！ u
5 40 -
C

A o
30 •

•i
2a f

10”
\ h
H

ra i 1 1 1 I I 1 1 1 1 ‘
10 20 30 40 50 60 70 80 90 100

False Accept Rate (%)

Figure 21 ROC Curves of PCA (FB probe set)

Receivei Operating Characteristic (ROC) Curve
100 r _____ Hi _

____ I
> + Baseline PCA

_ ^ + Optimized PCA

80 - T

e 7
芸 60-' c:
S 50. ^ 0 <
O)
1 40. t
c

e 3�”
H \

20 -
H \

10" fc • \

Q ； I I I I I I 1 1 1 ‘
^ ^ ^ ^ 40 60 60 70 80 90 100

False Accept Rate (%)

Figure 22 ROC Curves of PCA (dupl probe set)

Chapter 4. Real Time Principal Component Analysis 48

Receivei Operating Characteristic (ROC) Cui\'e
100「 -寺 « * « ~ »

f " ^ + Baseline P C A “
90 • / Optimized PCA

80

•i
70 •

I O
S 60 •
TO cr
I叫 I
a’
I 40 •
c
O

30 •

20”
H h

10 _
1卜

rt E I I I I I I 1 1 -I 1
10 ^ S 40 M W 70 80 90 100

False Accept Rate (%)

Figure 23 ROC Curves of PCA (fc probe set)

Receiver Operating Characteristic (ROC) Curve
100「

90 - - jH- Baseline PCA
^ ^ ^ + Optimized PCA

80 - ir

广 /

r /
S 60 -f
！
•§ 40 I •
c o
“ 3 0 -

‘i-
20 •

H t-
1�“

Q! ： I I 1 I I 1 1 1 —' ‘
10 ^ ^ 40 50 60 70 80 90 100

False Accept Rate (%)

Figure 24 ROC Curves of PCA (dupl probe set)

Chapter 5. Real Time Elastic Bunch Graph Matching 49

5. Real Time Elastic Bunch Graph Matching

5.1 Introduction

Elastic Bunch Graph Matching [10] represents faces using a set of local

features located on an elastic (deformable) graph. Responses to a set of Gabor

filters is collected for each node on the graph and stored in the face template.

Both graph configuration and local Gabor features are taken into account

during matching. Due to its local and flexible nature, EBGM is in general less

susceptible to variations in lighting，face position and expression.

In our experiments, the EBGM implementation of the CSU Face Identification

Evaluation System 5.0 [37] is used as the baseline system. As shown in Figure

25, EBGM authentication consists of four main stages: 1) Image Preprocessing,

2) Facial Landmark Localization, 3) Gabor Feature Extraction and 4) Template

Matching. Each of these stages will be briefly described in Section 5.2.

Enrollmen. ^ ^
J Q ^ User Face

r ^ " I Template • storage

UseMmag6 ^

^ ^ Imagt ^ Landmar1< w Gabor Feature J
^ Preprocessing , Localizatiot , Extractioi claimec

Normalized Landmark - J Face Template
— Imagt locations •

rt^」 Template _ . Accept
^ • n ^ Live Face Matchinc ~ ^ Rejecri

Input lmag(i Template
Claimed Identity VerificatiOf

V ,

Figure 25 Major stages of EBGM face authentication

Chapter 5. Real Time Elastic Bunch Graph Matching 50

5.2 System Overview

5.2.1 Image Preprocessing

In this stage，face images are normalized to reduce the variations among them.

The normalization routine performs mean centering, edge smoothing,

geometric normalization, masking and pixel normalization on the face

image[44]. Figure 26 shows a face image before and after normalization.

Dimensions of the face images are reduced from 256 x 384 to 128 x 128 in this

stage. After the preprocessing stage, the normalized face image is then passed

on to the main EBGM algorithm for landmark localization and feature

extraction.

HRteifll IHIHI

Figure 26 Original (left) and normalized (right) face image

Chapter 5. Real Time Elastic Bunch Graph Matching 51

5.2.2 Landmark Localization

In this stage, locations of facial landmarks such as eyes, nose and mouth are

found. The landmark localization stage contains two steps. First, rough

estimates of the landmark locations are obtained based on known landmarks,

such as the eyes. Then this estimate is refined by Gabor jet comparisons.

A Gabor jet refers to a set of Gabor wavelet convolutions values obtained at a

specific point. By varying the wavelet function parameters, frequency

characteristics about the local image region around the extraction point can be

captured. For the EBGM algorithm, 40 complex Gabor wavelets (or 80

real/imaginary pairs) of different sizes, wavelengths and orientations are used.

Figure 27 shows examples of some of the Gabor filters used.

Jl^j^ • • Q D

Figure 27 Gabor filters of different wavelengths and orientations

The landmark location is refined by extracting a novel jet from the estimated

location of the landmark in the novel image. Then a model jet (the most similar

one) is selected from a data structure called the bunch graph. Figure 28 shows a

graphical illustration of the bunch graph, containing collections of sample jets at

each landmark location, all extracted from training images. Using the phase

Chapter 5. Real Time Elastic Bunch Graph Matching 52

information stored in the novel and model jets, the displacement of the novel jet

from the true landmark location can be calculated. After all the landmark

locations are found, they are passed on to the feature extraction stage.

Figure 28 The bunch graph[10]

5.2.3 Feature Extraction

In the feature extraction stage, Gabor jets are extracted from the normalized face

image at the landmark locations found in the previous stage. These Gabor

features, together with the locations, are stored in a structure called face graph.

This face graph is stored in the template database for future recognition use and

the original face image is then discarded. Figure 29 shows a sample face graph.

Chapter 5. Real Time Elastic Bunch Graph Matching 53

圓
Figure 29 Face graph (only landmarks are shown here)[44]

5.2.4 Template Matching

After a face graph is created for a novel face image, its similarity with another

registered face graph (template) can be computed. Given two face graphs, G

and G ’, their similarity L can be computed as:

1 M

where M is the number of landmarks, and J, and 山 ’ are jets from the 产

landmarks of graphs G and G ’. So is a similarity measure for Gabor jets defined

by:

似 J , r) =〜 . V • — (6)

仏 M) � . /

where N is the number of Gabor filters, and a, {a, ’）and d)人 O/) are the

Chapter 5. Real Time Elastic Bunch Graph Matching 54

magnitudes and phases of the产 filter response from Gabor jets J{J'). d is the

estimated displacement between the two jets and k) is the spatial frequency of

thefh filter. The term d . kj is used to compensate the phase shifts caused by

the displacement, leading to a phase sensitive similarity function. A more

detailed discussion on the EBGM algorithm can be found in[3].

5.3 Optimization Overview

The optimization process of EBGM is much more complicated than PCA. For

PCA, fixed-point arithmetic (Section 4.3) alone is sufficient to bring real time

performance but for EBGM, other techniques such as memory optimization are

needed. For clarity, all optimization techniques adopted and the order they are

implemented are summarized in Figure 30. As one can see clearly from the

diagram, optimization efforts start out with fixed-point arithmetic and

pre-computation, but soon turn to memory optimization techniques. This shift

in focus is due to the fact that optimization is a dynamic process; program

behaviour can switch from computation-bound to memory-bound and vice

versa. Optimization strategies must be sensitive to these changes and adjust

accordingly, otherwise efforts may be wasted in premature optimization. This is

exactly the same reason why optimization techniques are applied in the specific

order shown in the diagram. To cater for the changing nature of the program,

various computation optimization and memory optimization techniques have

Chapter 5. Real Time Elastic Bunch Graph Matching 55

been developed and will be discussed in Section 5.3.1 and 5.2.2 respectively.

Details of the eight optimization techniques will be given in Section

5.4.1-5.4.8.

广 Computation Optimization " Y Memory Optimization

5.3.1 Fixed-point Arithmetic

‘ 二
5.3.2 Gabor masks / Bunch Graphs \ 5.3.3 improving Array Access Locality

Precomputation /

r I
5.3.4 Efficient Gabor Filter Selection

5.3.5 Fine Tuning System Cache Policy

4
5.3.6 Reducing Redundant Memory Access

I
5.3.8 Optimization of Trigonometric Functions ‘ 5.3.7 Maximizing Cache Reuse by Array Merging

l \ n H
V A)

Figure 30 EBGM optimization flowchart

5.3.1 Computation Optimization

Besides the fixed-point arithmetic and pre-computation techniques already

introduced in PCA implementation, an important addition is the optimization of

trigonometric functions. As discussed in Section 1.1.6, trigonometric functions

can be several hundred times slower on mobile devices than on PCs. In Section

5.4.8, we use table lookup to improve their performance.

Chapter 5. Real Time Elastic Bunch Graph Matching 56

In Section 5.4.4, we attempt to reduce the number of computations by using

only a subset of the original Gabor filter sets and investigate the tradeoff

between speed and accuracy. Since the reduction in the number of Gabor filters

used directly leads to a reduction in memory access, this technique is both a

computation and a memory optimization technique, as shown in 5.4.4.

Unfortunately, since this technique is accuracy non-preserving, it is not adopted

in the final implementation as will be explained in Section 5.4.4.

5.3.2 Memory Optimization

While computation optimization tries to reduce execution time by reducing or

replacing the arithmetic operations going on inside the processing core,

memory optimization does it by improving the communication efficiency

between the core, on-chip cache and off-chip memory. This requires a thorough

understanding of the memory hierarchy of the target processor as well as the

memory access behaviour of the application to be optimized.

Here we will give a brief description of the Intel XScale core[45], a high

performance and low power processor specifically designed for mobile

applications. It will be used in all our testing and experiments. Figure 31 shows

its internal architecture. XScale uses separate caches for instruction and data,

both 32-way set associative and of size 32Kbytes. These on-chip caches, while

Chapter 5. Real Time Elastic Bunch Graph Matching 57

relatively small in size, can be accessed in the same clock speed (i.e. 400 MHz)

as the execution core. Larger but slower main memory (100 MHz SDRAM) can

be accessed via the Memory Management Unit (MMU) and the core memory

bus. The large difference in clock rate means that a cache miss will result in

undesirably long memory access latency. Hence improving cache performance

is the main goal of memory optimization.

Z I IRQ ""RQ z i z i z i i i i i z z i z i
CP14 ^ Branch "fiarget 日 uffer

Performance
Monitoring

“ i I • Trace
Interrupt Buffer

CP15 Request p 〜办
Conflfl. • t ^ ^ M

„ , “ Memory
A s t e r s Instruction ^ Instruction 日us

” Cache MMU ~ ^ ¥
^ • Execution 32 KBytes

Coprocessor ^ ^ 旧 L
Interface

Data
Address • Data Cache

二 / 二 Data ^ • 32 KBytes ^ Write
Multiplier/ • MMU • „ „ . , ^ Buffer Accumulator ... , _ ^ .

』‘ Mini D-Cache
2 KBytes

^ r

System
漏 ^ • Debug Management

^ ^ 个 I

Figure 31 Intel XScale PXA255 Processor Block Diagram [6]

Cache performance is determined by factors such as cache size and

associativity, block size, block replacement policy and cache write policy[46].

Chapter 5. Real Time Elastic Bunch Graph Matching 60

5.4.1 Fixed-point Arithmetic

Pre-Profiling and Hotspot Location

Table 11 shows the execution time of one EBGM authentication session on

Mobile. It is obvious that the execution time is far from satisfactory - over nine

minutes on average. Note that the im-optimized implementation of EBGM is

also 18 times slower than the im-optimized PCA, which takes only 30 seconds

for one session (Section 4.3.1). Optimization is clearly needed and focus should

be put on the landmark localization and feature extraction stage, which together

take up over 98.1% of the total execution time.

Stage Execution Time Percentage

1) Image Preprocessing 8.335s 1.51%
2) Landmark Localization 218.2s 39.4%

3) Feature Extraction 324.8s 58.7%
4) Template Matching 1.849s 0 .334%

Total 553.2s 100%

Table 11 Breakdown of one EBGM authentication session

To study and measure the behaviour of each EBGM stage, they are profiled

separately. Table 12 shows the gprof profiling results of the image

preprocessing stage. On Mobile, functions that involve a large amount of

floating point operations (1, 2, 3，and 5) take up over 70% of execution time.

Similar results were collected on Desktop, except that the matrix multiplication

function takes up only one third of the execution time as in Mobile. As matrix

Chapter 5. Real Time Elastic Bunch Graph Matching 61

multiplication involves a large amount of memory access, the differences may

be due to a difference in cache size or memory access efficiency.

Function Name Description Mobile Desktop

1 • ZeroMeanOneStdPevMasked Pixel normalization 38.96% 37.22%
2. multiplyMatrix Matrix multiplication 17.77% 5.65%
3. interpLinear Linear interpolation 15.16% 18.85%
4. writePGMImage Write output image 9.00% 7.43%
5. transformlmage Geometric transformation 6.88% A.91%

6. smoothlmageEdge Edge smoothing 4.25% 5.04%
Table 12 Function Profile (Image preprocessing)

Table 13 shows the result for the landmark localization stage. Here we see a

large difference between the results collected from Mobile and Desktop.

Distance estimation, which occupies no more than 4% of execution time on

Desktop, takes up over 43% of time on Mobile. It turns out that this function

contains trigonometric functions besides simple floating point arithmetic. As

mentioned in Section 1.1.6, trigonometric functions can be a serious bottleneck

for mobile devices.

The image element access takes up more than 15% of the time on Mobile,

while it is insignificant on Desktop. This may be due to slower memory access

on Mobile. Similar observations can be found in the feature extraction stage.

(See Table 14).

Chapter 5. Real Time Elastic Bunch Graph Matching 62

Function Name Description Mobile Desktop

1. DEPredictivelter Distance estimation 43.06% 3.27%

2. convolvePoint Filter convolution 40.43% 95.91%

3. ie Image element access 15.38% -0 .0%
Table 13 Function Profile (Landmark localization)

Function Name Description Mobile Desktop
1 • convolvePoint Filter convolution 68.03% 99.54%
2. ie Image element access 30.50% -0 .0%

Table 14 Function Profile (Feature extraction)

Table 15 shows that distance estimation dominates the execution time of the

template matching stage. Given that the only task in template matching is to

calculate the distance between pairs of input images, the result is reasonable.

Function Name Description Mobile Desktop
1. DEPredictivelter Distance estimation 99.73% 99.62%

Table 15 Function Profile (Template matching)

To summarize, the hotspots of the EBGM algorithm are floating point

arithmetic, memory access and trigonometric functions. Taking into account the

dominance of the landmark localization and feature extraction stage, the

common bottleneck is floating point arithmetic. Hence in this section, we will

reuse the fixed-point arithmetic technique as in PCA optimization (Section 4.3).

Chapter 5. Real Time Elastic Bunch Graph Matching 63

Optimization

As discussed in Section 4.3, range estimation must first be carried out to

estimate the Integer Word Length (IWL) requirement. Figure 32 shows the

minimum IWL for all four EBGM stages. It is found that the range of all four

stages can be safely accommodated using an IWL of 13. After the IWL is

chosen, code conversion is done following the steps outlined in Section 4.3.4.

Bit Requirement Distribution (EBGM)
19 , ——：~• - - rT-—~ …- : . - . - — • ；

、-' _ 丨丨.丨•," •‘ • • — — -—I I

18 ―“： • _ . , . ~ — — ~ • Image Preprocessing —丨
17 -^―———”..：； - • B . ~ -. ：• -；
16 ； • ；, .'. P •: • ..:. . ： B Landmark Localization
15 '• ； ‘ .:-�• '.'•• —.:..:•�•.-I,..:“.'. j ...’. I. '...�.. B Feature Extraction 一i
1 4 _ . I . . • - 1 -.- ‘ • r _ — : —： ； ： ； • . , . 一;

13 ...,.’ ； .. .1, ;...:‘ D Template Matching [_i
« 12 - - - '、’ • . 1，_. — 1
5 11 1 ——i H
. [1 Q —— .• • • • • • • • : ••… ： ^ • -.…- .• ..,丨 r
； 9 一. . .. ‘__、： ^ _ r ’ ， ； ^ j^J^I； ： = ！
0 8 • ..•-… ‘‘ ； 6 7 - ：； ： • , y ！ / • ‘ . i Z ‘ .,.- ： :�--,: ‘ I g � ‘ ： JTTT： • - - “ “ ' i^ ' ' ‘ • — J

5 : 1 - . - i

1 2 3 4 5 6 7 8 9 10 11 12 13

Bits Requ i red

Figure 32 Bit requirements of different EBGM stages.

Table 16 shows the improvement in execution time after fixed-point arithmetic

is used. As predicted, stages 2 and 3, which depend heavily on floating point

calculations, show dramatic improvement as their execution times are now

reduced by around 14 and 11 times respectively. Stage 4, on the other hand.

Chapter 5. Real Time Elastic Bunch Graph Matching 64

shows a moderate improvement. Overall, the execution time reduces by a factor

of 11.

Stage Baseline* Fixed-point

1) Image Preprocessing 8.335s 1.93s
2) Landmark Localization 218.2s 15.07s

3) Feature Extraction 324.8s 29.45s
4) Template Matching 1.849s 0 .2812s

Total 553.2s 46.73s

Table 16 Breakdown of one EBGM authentication session (Fixed-point)

Post-profiling

Table 17 shows the change in execution time distribution after fixed-point

arithmetic is used. Here we see a general decrease in the amount of time spent

in functions which include a large number of floating point operations (rows

2,3,5). One exception is the pixel normalization function, for which a relative

increase is observed. One possible reason for this is that besides floating point

operations, it also uses trigonometric functions heavily.

Function Name Description Before After
1. ZeroMeanOneStdPevMasked Pixel normalization 38.96% 43.61%

2. multiplyMatrix Matrix multiplication 17.77% 4.14%

3. interpLinear Linear interpolation 15.16% Q.92%
4. writePGMImage Write output image 9.00% 5.20%

5. transformlmage Geometric transformation 6.88% 1.44%

6. smoothlmageEdge Edge smoothing 4.25% 18.23%
Table 17 Function Profile (Image preprocessing)

Chapter 5. Real Time Elastic Bunch Graph Matching 65

For landmark localization and feature extraction, a significant portion of

execution time is relocated to image element access, as shown in Table 18 and

Table 19. This suggests a shift in program behaviour from computation-bound

to memory-bound. Efficient memory access may be the key to further

optimization.

Function Name Description Before After .
1. DEPredictivelter Distance estimation 43.06% 10.17%
2. convolvePoint Filter convolution 40.43% 36.33%

3. ie Image element access 15.38% 49.44%
Table 18 Function Profile (Landmark localization)

Function Name Description Before After
1. convolvePoint Filter convolution 68.03% 44.56%

2. ie Image element access 30.50% 53.35%
Table 19 Function Profile (Feature extraction)

For template matching, distance estimation remains the only dominant time

consumer, as shown in Table 20. But since template matching takes up a mere

1% of execution time, its optimization is not of much significance at this stage.

Function Name Description Before After
1. DEPredictivelter Distance estimation 99.73% 94.81%

Table 20 Function Profile (Template matching)

To summarize, fixed-point arithmetic dramatically reduces the time spent in

computation, and memory access arises as the new bottleneck of EBGM. Fewer

Chapter 5. Real Time Elastic Bunch Graph Matching 66

and more efficient memory access should be the new goal for optimization. In

light of this, various memory optimization techniques will be studied in the

following sections.

Besides memory optimization, some improvements can be done at a higher

level. In the beginning, one single Gabor filter set is read and created during

runtime for both the landmark localization and feature extraction stages. Since

we use a predetermined set of filters, the filters can be pre-calculated and then

preloaded at system startup. In addition, the bunch graph structure (Section

5.2.2) is extracted every time before the landmark localization stage. Assuming

that the set of model images remains invariant, pre-calculation can also be

applied. This will be covered in the next section.

5.4.2 Gabor Masks and Bunch Graphs Precomputation

Optimization

As suggested in the previous section, invariant input such as Gabor filters and

bunch graphs can be pre-calculated and loaded at system startup. An extension

was implemented for the pre-computation, storing and retrieval of the

pre-calculated data. Modifications are done to the original implementation such

that Gabor filters and bunch graphs were now loaded from file instead of

generated on demand.

Chapter 5. Real Time Elastic Bunch Graph Matching 67

Table 21 shows the timing breakdown of one authentication session. PI and P2

are the times required for Gabor masks/bunch graph building (before) and

loading (after). If preloading is done at setup time, the execution time for one

authentication session reduces to around 36s. This reduction in computation

time comes at the expense of extra storage space. Table 22 shows the extra files

generated for preloading. A total of 2.1Mb extra space is required, which is a

reasonable tradeoff.

Stage Before After

PI) Build/load Gabor Masks 216 .45s 1.15s

P2) Build/load Bunch Graph 631.93s 2.21s

1) Image Preprocessing 1.93s 1.93s

2) Landmark Localization 12.91s 12.91s

3) Feature Extraction 20.97s 20.97s

4) Template Matching 0.2812s 0.2812s

Total 884.5s 39.45s
Total (Preloaded) 36.09s 36.09s

Table 21 Breakdown of one EBGM authentication session (Preload)

Filename Description Number Unit Size
GaborMaskBolme.params Mask Parameters 1 ^

GaborMaskBolmeXX.fpi Gabor masks 80 4K/8K/12K/24K

GaborMaskBolme.bunchgraph Bunch Graph 1 ^

GaborMaskBolmeXX.jetbunch Jet bunches 25 48K
Table 22 Extra space requirement for precomputation

Chapter 5. Real Time Elastic Bunch Graph Matching 68

Post-profiling

As the other stages are not affected by pre-computation, only the profiling

results of landmark localization and feature extraction stages are discussed here.

As shown in Table 23, the dominance of image element access further increases

to over 60%. As for feature extraction, filter convolution and image element

access remain the most time consuming parts, both involving large amount of

memory accesses. In the next few sections, we will discuss the various memory

optimization techniques used.

Function Name Description Before After
1. DEPredictivelter Distance estimation 10.17% 1.82%

2. convolvePoint Filter convolution 36.33% 32.84%

3. ie Image element access 49.44% 61.1%
Table 23 Execution time breakdown (Landmark localization)

Function Name Description Before After
1. convolvePoint Filter convolution 44.56% 57.84%

2. ie Image element access 53.35% 41.36%
Table 24 Execution time breakdown (Feature extraction)

5.4.3 Improving Array Access Efficiency using ID array

As mentioned in 5.4.1 and 5.4.2, efficient memory access is the new

optimization goal. In this section, three techniques are explored to improve the

efficiency of image element access.

Chapter 5. Real Time Elastic Bunch Graph Matching 69

Optimization 1: Predetermining boundary conditions

The filter convolution function, convolvePoint, was implemented following the

basic definition. The Gabor mask is first offset to a landmark on the face image,

and then the sum-of-product of the overlapping pixels are calculated and

returned as the filter response at the landmark position. In other words,

convolvePoitil consists mainly of additions, multiplications and access to the

face image and Gabor masks. Unnecessary operations can be reduced by

making use of the boundary conditions.

Image Width
A .

f \
Legenc

Mask offset X
� i
I 1 Mask
j I V\Adth

rqJ W E1 sin
Mash i / 丨 I

offset V i I J
i TTH J Gabor mask
i w 參 (他er)

一 i f ^ m A m___ f
Unused area \

Face Image \ . r a
� tl�—‘：卞

"；1 ^pr^l^ J 轉
X Valid Area ,

Figure 33 Boundary conditions for Gabor mask convolution

Figure 33 illustrates the boundary conditions that must be considered during

Gabor filter convolution. As the filter response outside the face image is

ignored and regarded as zero, only the overlapped areas between the offset

Chapter 5. Real Time Elastic Bunch Graph Matching 70

Gabor mask and the face image are valid. In the original implementation, this

boundary check is carried out on a per pixel basis — each access to an image

pixel is validated by checking the requested coordinates against the image

dimensions. If an out-of-bounds condition occurs, a zero is returned. This

approach has two problems. First, unnecessary checks are done even for pixels

that lie within the boundaries. Since Gabor masks are stored and accessed in the

same manner as images, the same problem exists for access to both. Secondly,

multiplications for the invalid area are carried out even though the result must

be zero. To reduce these unnecessary checks and multiplications, the boundary

conditions (i.e. the valid areas) can be calculated in advance so that only the

pixels within the overlapped area are accessed during convolution.

Optimization 2: Reducing pointer indirection

For flexibility, the size of face images and Gabor filters are determined at

runtime, which means that storage is allocated on demand. Figure 34 shows the

original memory allocation scheme for an image/Gabor filter. The logically 2D

structure is represented by an array of pointers and one dimensional pixel

arrays. The problem with this scheme is that two pointer indirections are

needed to access one image pixel, creating a heavy burden on the memory

system. To reduce this overhead, one ID array is used to store the whole image

(Figure 35). Rows of pixels are now packed sequentially, which means that

nearby pixels can now be accessed with only one pointer indirection and one

increment, effectively reducing the burden on the memory system.

Chapter 5. Real Time Elastic Bunch Graph Matching 71

Mask Width

Gabor Mask

； “ V Mask
I I I ~ I ~ I ~ I ~ I • ~ “ I (Height

I I I I I I i__j__j 夕

Figure 34 Image/mask stored in a 2D structure

"X Row Rovk ^ Row h

1 I � 1 I I I••…mi I I I I • • • … m I I I I I I I • •…m
Gabor Mask 众

Accea
Pointei

Figure 35 Image/mask stored in a ID structure

Optimization 3: Improving access locality

With the ID structure in place, memory access locality for image pixels can be

further improved. In contrast to scientific languages such as FORTRAN, array

in C language follows row-major ordering. This means that array elements

adjacent to each other in memory differ in the second subscript instead of the

first; 'B(5,10)' immediately follows 'B(5,9)', whereas with column-major

ordering it would follow 'B(4,10y. In the original implementation, arrays are

Chapter 5. Real Time Elastic Bunch Graph Matching 72

accessed in column-major order，which results in a non-sequential access

pattern (Figure 36), meaning that the program will not be able to take

advantage of the nearby pixels brought in by the same memory read. Access

locality can be improved by accessing the image array using row-major

ordering. By interchanging the loop order and using row-major access order, a

sequential access pattern is obtained (Figure 37). Image pixels brought in to

cache by the same memory read can be fully utilized before being evicted,

essentially reducing the possibility of cache miss and page faults.

^ ^ — ^ Row 1 Row 2 Row 3

Gabor Mask 1 4 | �] ~ | “ | ~ | ” | ~ | 2 | 5 | 8 | “ 3 | 6 | 9 | ” |

for (j=0； j < ^

{ for (i=0： i <

丨 Access mask(l,j); Non-sequential access
}

Figure 36 Original access pattern (column-major ordering)

"X Row 1 Row 2 Row 3

Gabor Mask 2 丨 3 | 4 | 5 | 6 | 7 [s] 9 | . | . I . • | • 「 | I I I " [

Sequential access {
for (j=0; j < mask-Width; j++)
{

Access mask(l’j);
}

}

Figure 37 Optimized access pattern (row-major ordering)

Chapter 5. Real Time Elastic Bunch Graph Matching 73

Overall Results

The three optimization techniques are implemented and evaluated. Table 25

shows the improvement in execution time. Except the template matching stage,

which contains no image access, there is a general reduction in execution time

for all other stages. The improvement is especially significant for the feature

extraction and landmark localization stages. The overall execution time for one ！

authentication session is reduced by over three times to around 11 seconds.

Stage Before After

PI) Load Gabor Masks 1.15s 0.81s

P2) Load Bunch Graph 2.21s 1.95s

1) Image Preprocessing 1.93s 0.882s
2) Landmark Localization 12.91s 7.026s

3) Feature Extraction 20.97s 2.989s

4) Template Matching 0.2812s 0.2970s

Total 39.45s 13.954

Total (Preloaded) 36.09s 11.194
Table 25 Breakdown of execution time of one authentication session

Post-profiling

While the reduction in execution time proves that the memory optimization

techniques are effective, post profiling is done to check whether memory access

is still the bottleneck. Since individual boundary checks are no longer necessary,

image access are not longer implemented as a function (ie). Hence instead of

the function profiling option, the line profiling function of gprof is used for

Chapter 5. Real Time Elastic Bunch Graph Matching 74

analysis. The percentage of execution time spent in each statement rather than

functions are recorded and output by this function.

Statement Percentage
1. Filter element access 37.03%
2. Image element access 31.99%

3. Fixed-point multiplication 9.88%

4. Loop overhead 4.68%
Table 26 Line Profile (Landmark localization)

Statement Percentage
1. Filter element access 26.90%
2. Image element access 23.42%

3. Fixed-point multiplication 6.95%

4. Loop overhead 3.70%
Table 27 Line Profile (Feature extraction)

Table 26 and Table 27 show the execution time breakdown for landmark

localization and feature extraction. It is obvious that the two stages remain

memory-bound, with over 60% of time spent in image or filter element access.

Another observation is that the top four time consuming statements are

identical for both stages, and they all reside in the filter convolution function

(convolvePoint). Clearly, optimization efforts should continue to focus on

memory optimization, with special emphasis put on filter convolutions by using

a subset of filters.

Chapter 5. Real Time Elastic Bunch Graph Matching 75

The memory optimization techniques employed in this section mainly deal with

individual pixel access. In the next few sections, focus will be put on

optimizing access efficiency on a higher level by making use of the relationship

between Gabor filter masks and across procedures. In the next section, we will

focus on reducing the number of convolutions.

5.4.4 Efficient Gabor Filter Selection

As discussed in the previous section, filter convolution is the bottleneck of both

stages. The time needed for filter convolution depends on the number of filters

and filter sizes, which is in turn determined by the filter set selection. The

Bolme set[44] is used in the original implementation and its configuration is

shown in Table 28. There are a total of 80 real valued filters (eight orientations,

five wavelengths and two phases), each generated using the general Gabor

wavelet equation:

M<x,_y;<9,̂ i9，;i，o") = exp - - ^ { x ^ + y^) c o s (与 〜 (7)
_ 2(7 �

Parameter Symbol Values
Orientation 6 {0,7i/8, 27t/8, 37t/8,4兀/8，5兀/8, 6兀/8’ 7兀/8}

Wavelength X { 4 , 4 ^ 2 , 8 , 8 7 2 , 16}

Phase (p {-71/4，7c/4}

Gaussian Radius a 3*^74

Aspect Ratio y 1
Table 28 Bolme Gabor filter set

Chapter 5. Real Time Elastic Bunch Graph Matching 76

As feature extractors, Gabor filters capture the frequency-space properties of a

confined area. When designing a set of Gabor filters, the orientations and

wavelengths are chosen so that the resultant filters provide uniform and

efficient coverage of the frequency space. The frequency coverage of a filter set

is determined by the orientations and wavelengths chosen, and affects the filter

number and filter size. In this section, we investigate the tradeoff between

speed and accuracy when only a subset of the Bolme set is used. Table 29

shows the configuration of the four filter sets used in this study. By choosing

different subsets of orientations and wavelengths, the number of filters varies

from the original 80 to 24.

Set Orientation (6) Wavelength (?.) Filters
Bolme {0，兀/8，271/8，371/8, {4，4 V^，8, 8 V^，16} 80

471/8，571/8, 671/8, 771/8}

Bolme_8d3f {0，7i/8,2兀/8，3兀/8， {4，8,16} 48
471/8，571/8, 671/8，771/8}

Bolme_4d5f {0，7t/8，37r/8, 5兀/8,1%!%) {4，4V^’ 8’ 8 16} 40
Bolme_4d3f {0，7i/8，37i/8，5兀/8,77i/8} {4,8,16} 24 —

Table 29 Filter set configurations

Chapter 5. Real Time Elastic Bunch Graph Matching 77

Results

Table 30 shows the authentication times using different filter sets. As expected,

execution time reduces as number filters decreases. However, the reduction in

timing must be justified by accuracy verification.

Set 2) Landmark 3) Feature 4) Template Total
Localization Extraction Matching

Bolme 7.026s 2.989s 0.2970s 10.312

Bolme—8d3f 5.003s 2.571s 0.1787s 7.753s

Bolme_4d5f 4.093s 1.949s 0.1481s 6.190s

Bolme_4d3f 1.464s 0.845s 0.0466s 2.356s
Table 30 Authentication time using different filter sets

Here, the verification accuracy is evaluated using the FB probe set following

the FERET verification protocol[4]. Three sets of experiments were conducted.

Experiment 1 investigated the effect of different filter schemes when they are

used in both landmark localization and feature extraction. As the reduction in

number of filters may affect the accuracy of the localization process，

experiment 2 was performed to investigate the sole effect of the new filter sets

on the feature extraction stage only. The localization is done using the original

Bolme wavelet sets. Finally, the effect on localization was investigated in

experiment 3. After the landmarks were located using the new filter schemes,

the features are extracted using the original Bolme scheme.

Chapter 5. Real Time Elastic Bunch Graph Matching 78

The Equal Error Rates (EER) of different configurations are shown in Table 31.

Here we see that the Bolme_4d5f and Bolme_4d3f sets cause a dramatic

increase in the EER. This renders them unusable for any useful authentication.

The Bolme一8d3f set, however, displays only a slight increase in EER, from

4.11% to 4.59%. The filter subsets in general lead to similar degradation in

accuracy when they are applied to either landmark localization or feature

extraction.

Stage(s) using new filter set
Feature Extraction Landmark

Set All ,
+ Template Matching Localization only

Bolme 4.11%

Bolme_8d3f ~4.59% 4.17% 4.52%

Bolme_4d5f 20% ^ 10.5%

Bolme_4d3f 25% 11% 10.5%
Table 31 EERs of different configurations

Conclusion

In this study, it is shown that by using a subset of Gabor filters, slight

improvement in execution time (around two seconds) can be achieved at the

expense of a slight drop in verification accuracy. However, this technique

should be used with restraint as verification accuracy comes first for most

authentication applications. As a result, this improvement is not incorporated

into the final implementation. In the following sections, we will continue to

investigate other accuracy preserving techniques.

Chapter 5. Real Time Elastic Bunch Graph Matching 79

5.4.5 Fine Tuning System Cache Policy

On a system wide level, cache and memory access efficiency are governed by

the cache policy. Modern operating systems allow the configuration of cache

policy by changing kernel settings. For Linux, one can enable/disable the Write

Through (WT) and Write Allocate (WA) options. If write-through is enabled,

the new data is written to both cache and main memory on every write; if it is

disabled, the new data is only written to the cache only. Later, if another

memory location needs to use the cache line where this data is stored, it is

saved (write-back) to the system memory. On the other hand, write-allocate

determines if a whole cache line worth of data is brought in (allocate) on a

write miss. Depending on the nature of applications running on a system, the

cache policy can be fine tuned to suit specific needs. In this section, the effects

of various cache policy settings are investigated.

Results

The execution time of EBGM was measured using kernels configured with

different cache policies. Table 32 shows the results. Set 0 is the default setting

for Mobile. Results show that set 2 (write-through and write-allocate) is the

best combination, resulting in total a one second reduction in authentication

time. This is probably due to the fact that memory accesses in the two EBGM

stages are largely sequential. By using a write-back policy, subsequent writes to

nearby memory locations can be buffered and reduce slow memory writes. On

Chapter 5. Real Time Elastic Bunch Graph Matching 80

the other hand, write-allocate ensures that the first write to a memory location

brings in nearby content, so that subsequent writes require no extra memory

read.

Cache Policy Timing
Set WT? WA? Landmark Localization Feature Extraction
0 Y Y

1 Y Y 3 m

2 N Y

3 N N

4 " Y I N I 6.22s 2.74s
Table 32 Execution time for different cache policies

5.4.6 Reducing Redundant Memory Access by Loop Merging

In the previous sections, the efficiency of individual memory access (Section

5.4.3) and system-wide cache policy (Section 5.4.5) have been investigated.

While these techniques provided considerable speed up in execution time, they

are general techniques which do not make use of application specific

knowledge. In this section, a detailed analysis of the EBGM algorithm will be

given, which will give insight into possible optimization opportunities.

Complexity Analysis

As pointed out in Section 5.4.3, filter convolution (convolvePoint) consists

mainly of addition, multiplication and image element access. For brevity,

'complexity' of an algorithm will only refer to the number of two basic

Chapter 5. Real Time Elastic Bunch Graph Matching 81

operations, namely Data Access (DACC)，and Multiply and Add (MADD).

Several important quantities and their values are also defined in Table 33.

Quantity Value(s)
Mask size(mx/?j) m = {19, 29, 39,53,77}

Face image size (NxN) N= 128

NumOJMasks 80 (40 pairs)

NumOfNodes 25 (Landmark localization),
80 (Feature extraction)

Table 33 Quantities used in analysis

The core of the EBGM algorithms consists of two stages, namely landmark

localization and feature extraction. The most time consuming operations in both

stages is Gabor jet extraction, involving finding the convolution responses to a

set of Gabor masks (filters) at a specific location.

The goal of landmark localization is to automatically locate the feature points

of interest (nodes) in a novel face. Initial guesses are made and Gabor jets are

extracted from them. The similarity between these Gabor jets and those in a

bunch graph, which contains Gabor jets extracted from different training faces,

are then computed. Displacement between the initial guess locations and the

real ones are estimated by moving the guess location around until a point of

highest similarity is found. After all nodes are found, their locations are stored

as a face graph. A total of 25 nodes are extracted (Algorithm 1).

Chapter 5. Real Time Elastic Bunch Graph Matching 82

Build Face Graph
1: Load BunchGraph

2: Load GaborMasks

3: Load Facelmage

4: Make initial guess of NodeLocations

5: for i ^ 1 to NumOfNodes do
6: Gabor Jet (i) = ExtractGaborJet(NodeLocation(i), Facelmage, GaborMasks)

7: for j 1 io NumOfBunchJets do
8: Find similarity between BunchJet(j) and Gabor Jet (i)

9: end for
10: Estimate displacement of NodeLocation(i) from best matching BunchJet

11: Update NodeLocation(i) with displacement
12: end for
13: Save NodeLocations to Face Graph

Algorithm 1 Build Face Graph

For local feature extraction, the face graph built in the previous stage is loaded.

Gabor jets are then extracted from the original 25 nodes and an additional 55

interpolated ones. These Gabor jets are incorporated with the face graph and

forms the final face template (Algorithm 2).

Chapter 5. Real Time Elastic Bunch Graph Matching 83

Extract local features

1: Load Facelmage

2: Load FaceGraph

3: Load GahorMasks

4: Interpolate new NodeLocatkms from NodeLocatiom stored in face graph

5: for/ <- 1 to NumOfNodes do

6: GahorJet(i) = ExtractGaborJet(NodeLocatkm(i), Facelmage, GaborMasks)

7: end for
8: Save interpolated NodeLocatiom and GaborJeis to FctceTemplale

Algorithm 2 Extract local features

At the heart of both landmark localization and feature extraction is Gabor jet

extraction. Given a face image, a landmark location and a set of Gabor filters,

Gabor jet extraction computes the filter responses of all the filters and the

landmark. Standard convolution is used to compute the response and is

implemented in the function comolvePowt (the shaded lines in Algorithm 3).

ExtractGahorJet(NodeLocatiofh Image, Masks)

1: for /• — / to NumOfMasks do
2: for j 1 to MaskHeight(j) do
3: for A: ^ J to MaskWidthO) do

4: Load Facelmage(j, k)

5: Load GaborMaskO, J, k)

6: Sum(i) = Sum(i) + Facelmage (j, k) x GaborMask(i, j, k)

7: end for

8: end for

9: end for

Algorithm 3 ExiractGaborJet

^ ^ 产

Chapter 5. Real Time Elastic Bunch Graph Matching 84

General Original
No. of DACC 2 X NumOJMasks x m^ 278240
No. of MADD NumOfMasksxm^ 139120

Table 34 Complexity for ExtractGaborJet

General Original

No. of DACC NumOfNodes x DACC {ExtractGaborJet) 6956000
No. of MADD NumOJNodes x MADD{ExtractGaborJet) 3478000

Table 35 Complexity for Build Face Graph

General Original

No. of DACC NumOfNodes x DACC {ExtractGaborJet) 22259200
No. of MADD NumOJNodes x MADD{ExtractGaborJet) 11129600

Table 36 Complexity for Extract Local Features

Table 34，Table 35 and Table 36 show the complexity of the three algorithms

and the number of DACC and MADD for the standard configuration. It is

obvious that the complexity of Build Face Graph and Extract Local Features

are directly proportional to the complexity of ExtractGaborJet. We will focus

on this algorithm for the rest of the analysis.

For each call to ExtractGaborJet, the function convolvePoint (Algorithm 3，

lines 2-8) is called 80 times to convolve with the Gabor filter sets (40 pairs).

Since the node location is identical in all 80 calls, the area of interest in the face

image, and hence the image pixels loaded should be the same for filters of the

same size. This high redundancy causes unnecessary image element access

(Figure 38)，and can be avoided by loop merging. By convolving several masks

Chapter 5. Real Time Elastic Bunch Graph Matching 85

in parallel, the same image pixel need only be accessed once only (Figure 39).

This parallelism can be achieved at two levels. The first and the most

straightforward one is the combination of real and imaginary part of each filter.

The second level is combining multiple filters of the same size.

q � � ^
\ / MasI*

Image \ /

(Acc) = MADD ,
V. J I Loof 1 rteratior 1

、、\

\ , Mash ：

(Acc：) = MADC ,

V : J I LOOF 5 rteratior 1

Q � � ^
\

\ / Mask h
Image \ /

(A c c * ^) = I MADC f j Loop 卜 iteration 1

Figure 38 Memory access pattern of the original ExtractGaborJet

Chapter 5. Real Time Elastic Bunch Graph Matching 86

\ \ \ / _
Image \ \ \ /

\ \] / , 一 r n
\ V Mas‘ ^

r A a i J = . MADC ,

V̂ V - " f ~

\ • Z Mask h

I Acch) = MADC J

V y ^ Iteration 1
Figure 39 Memory access pattern of ExtroctGoborJet after loop merging

Optimzation 1: Two masks in parallel

For this optimization, the real and imaginary pairs are convolved together.

Algorithm 4 shows the complete algorithm and Table 37 shows the complexity

analysis.

Chapter 5. Real Time Elastic Bunch Graph Matching 87

ExtractGaborJetTwoMasks(NodeLocation, Image, Masks)

1: for / 一 / to NumOfMasks/2 do
2: forj 一 1 to MaskHeight(i) do
4: for 众— I to MaskWidth(i) do

5: Load Face Image (j, k)

6: Load GaborMask(2i, j, k)

7: Load GaborMask(2i+l,j, k)

8: Sum(2i) = Sum(2i) + Facelmage (j, k) x GaborMask(2i, j, k)

9: Sum(2i+1) = Sum(2i+I) + Facelmage (j, k) x GaborMask(2i+1, j,

k)

10: end for
11: end for
12: end for

Algorithm 4 ExtractGaborJetTwoMasks

General Standard

No. of DACC 3 , , M l , 2 208680
—X NumOjMasks x m

No. of MADD NumO/Masksxm^ 139120

Table 37 Complexity for ExtractGaborJetTwoMasks

Optimization 2: Multiple Masks in parallel

For this optimization, all filters in a mask set are convolved at once. Here we

define the quantity MaskSetSize, which means the number of masks convolved

simultaneously. Note that ExtractGaborJet (Algorithm 3) and

ExtractGaborJetTwoMasks (Algorithm 4) are in fact special case of

ExtractGaborJetMulipleMasks (Algorithm 5)，for which MaskSetSize = 1 and 2

respectively. Table 38 shows the complexity analysis.

Chapter 5. Real Time Elastic Bunch Graph Matching 88

ExtractGaborJetMultipleMasks(NodeLocation, Image, Masks)

1: for i — J to NumOfMasks/MaskSetSize do
2: for j I to MaskHeight(i) do
4: fork 一 1 toMaskWidth(i) do
5: Load Facelmage(j, k)

6: for / 1 to MaskSetSize do
7: Masklndex = i x MaskSetSize+1

8: Load GaborMask(MaskIndex, j, k)

9: Sum(Masklndex) += Facelmage (j, k) x
GaborMask(MaskIndex, j, k)

10 end for
11: end for
12: end for
13: end for

Algorithm 5 ExtractGaborJetMultipleMasks

General Standard

No. ofDACC r 1 ^ , , n … 2 147815 1 + X NumOfMasks x m
\ MaskSetSize y

No. ofMADD NumOfMasks ^m^ 139120
Table 38 Complexity for ExtractGaborJetMultipleMasks

Theoretically, the more masks convoluted simultaneously, the more the saving.

As shown in the above analysis, the number of memory access reduces from

the original 2 x NumOfMasksx m to i+ x NumOfMasks xm^- It is

MaskSetSize J

obvious that the more masks in a mask set, the more the saving. The table

below shows the projected memory access for the three algorithms. Note that

when MaskSetSize equals 16, the number of access is nearly halved (Table 39).

Chapter 5. Real Time Elastic Bunch Graph Matching 89

MaskSetSize 1 2 U

MACC (Ratio) 229,215,200 21,911,400(1.5) 15,520,575 (1.06)

Table 39 Number of MACC for different MaskSetSize

Results

To validate the above finding, the proposed algorithms were implemented and

timing information was collected. Table 40 shows the execution time and page

faults of each algorithm. It is found that execution times of Algorithm 4

{MaskSetSize = 2) and Algorithm 5 {MaskSetSize =16) are slightly better than

the original one {MaskSetSizse =1) . When MaskSetSize increases from 2 to 16,

a mild decrease in performance is observed, suggesting that the more

complicated implementation outweighs its benefit.

The number of page faults is largely the same for all settings, which means the

memory access efficiency is not improved by the change in access pattern. Also,

the large reduction in number of memory accesses (halved) does not directly

lead to corresponding decrease in execution time, suggesting that the bottleneck

may resides at the architecture level Cache misses which result in slow

memory access, may be the root of the problem and will be investigated in the

next section.

Chapter 5. Real Time Elastic Bunch Graph Matching 90

MaskSetSize
Stage Statistics 1 2 16

,、， J . Time 6.06s 5.87s 6.00s
2)Landmark
Localization Page faults (major) 759 760 760

Page faults (minor) 1476 1476 1476
, � ^ Time 2.78s 2.12s 2.56s
3) Feature ~r
^ . Page faults (major) 755 755 756
Extraction

Page faults (minor) 1326 1326 1326
1 I 1 I

Table 40 Execution lime of using mQrciW MaskSetSize

5.4.7 Maximizing Cache Reuse by Array Merging

As discussed in the last section, although the number of memory access is cut

by half using loop merging, execution time shows no major improvement. This

suggests that data access is still far from efficient, and a more in-depth analysis

of the memory access pattern of EBGM is needed.

歸 1 ^ " i | 5 | 9 | I I I I i - . - r r r

Mask 2 +2 |e | \ | \ I • . . p p p

Mask 3 1 3 7 1/ 1/ I • • • p T T "

Mask4 � 4 / 8 / 1 I I j ~ n . . . [~ n ~

• • _

Figure 40 Mask array layout (original)

Chapter 5. Real Time Elastic Bunch Graph Matching 91

Figure 40 shows the memory access pattern for ExtractGaborJetMultipleMask

(Algorithm 5) using a MaskSetSize of 4. Since the Gabor masks are allocated

dynamically, there is no guarantee on their relative locality and they may

occupy separate memory locations. Hence, accessing pixels from different

masks will result in extremely poor locality, causing frequent 'jumps' in access

locations. This explains why simply convoluting several masks together cannot

bring about the predicted improvement - the long stalls between each mask

pixel accesses outweigh any benefits brought about by the parallelism. In

addition, the rapidly changing access address may increase the probability of a

cached data being evicted before being reused.

Optimization

To alleviate this problem, a new memory layout is derived for Gabor masks

using array merging to increase the access locality and cache reuse. Array

merging and reordering were first proposed in [47] for compiling data intensive

applications for an embedded device. During compilation, data dependencies

among different arrays used in the same program are first analyzed, and then

efficient storage schemes are derived to improve memory access performance

at runtime. With prior knowledge about the EBGM memory access pattern, it is

also possible to apply the same idea to our optimization problem.

Chapter 5. Real Time Elastic Bunch Graph Matching 92

_
•
•

— ^ Pixe 1 (from different masks)

I ^ I V — ‘ — ^
^ 1 | 2 | 3 | 4 | s [e [7 [e | • • •

• • •

� J
V

Pixel N • •
•

Figure 41 Mask array layout (after merging)

Figure 41 shows the proposed layout. Suppose a MaskSetSize of 8 is used; the

eight masks in the set will be merged and stored in one single array. The pixels

from each mask are stored in an alternate manner - pixel one from mask one,

pixel two from mask two ... and so on. Using this scheme, mask pixels

accessed within each iteration of ExtractGahorJelMuhipIeMasks now have a

sequential order. In addition to the improvement in access locality, this scheme

also allows maximum cache data reuse as will be explained below.

Chapter 5. Real Time Elastic Bunch Graph Matching 93

Core

Execution
广 … Bus

如 ~ f — — » Main
n-t. . T Memory
� ^ — — • 32 KBytes ^ Write

圓 ~ ~ • Buffer
Mini D-Cache

2 KBytes

Figure 42 Intel XScale PXA255 data path[6]

Figure 42 shows the data path of the XScale processor. At the architecture level,

every pixel read corresponds to a data request. The execution core handles this

request by first checking all data registers for requested data. If it is not found,

the fast on-chip data cache is checked. If the data is found in one of the cache

entries, it is returned to the core; otherwise, the memory management unit is

invoked and a request is sent to the main memory (cache miss). The memory

page containing the requested data is then brought in and the data is forwarded

to cache and then back to the core. In fact, a cache line size worth of data is

sent to the cache, so neighbours of the requested data are brought in even if

only one bit is requested.

Our proposed scheme makes use of this fact and maximizes data reuse by

packing pixels accessed in the same iteration together (Figure 41). The

MaskSetSize of 8 is chosen since the cache line size in the XScale processor is

32 bytes, or 8 fixed-point pixels. Ideally, when a request is sent for the first

pixel, the following seven pixels are brought in by the same memory read and

occupy one cache line. The latency of one memory access is shared among the

Chapter 5. Real Time Elastic Bunch Graph Matching 94

eight mask pixels, effectively reducing the average memory stall time.

Note that care must be taken when allocating the masks arrays. Since the data

cache is 32-way set associative, the first pixel must be aligned at a 32-byte

boundary so that it and the following seven pixels are allocated to the same

cache line. Otherwise, useless pixels in front of the first pixel are brought in

and subsequent pixels may cause an extra memory read. This memory

alignment requirement can be enforced by allocating all arrays with allocation

function calls that guarantee alignment. Array merging can be done offline at

the same time when Gabor masks are pre-computed (Section 5.4.2)，so no

overhead is incurred.

Results

The array merging scheme was implemented and evaluated. Table 41 shows the

execution time for one authentication session on the Mobile platform. For

comparison, we also conducted the experiment on the Desktop platform, and

the execution time for one hundred sessions is shown in Table 42.

For Mobile, the improvement for the feature extraction is dramatic - a 2.5 times

reduction in time for a MaskSetSize of 8. However, there is no significant

improvement for the landmark localization stage. Note that there is almost the

same reduction in the number of minor page faults in both stages; hence further

analysis is needed to find out why the discrepancy can be so large. The result

Chapter 5. Real Time Elastic Bunch Graph Matching 95

on Desktop is much more reasonable, in the sense that significant improvement

is shown in both stages. A similar reduction in number of minor page faults is

also observed. This shows that an efficient data mapping can be beneficial to

both mobile and desktop performance, despite their inherent differences in

memory architecture and configuration.

MaskSetSize
Stage Statistics 1 2 8

Time 6.06s 5.87s 5.85s
Build Face

Page faults (major) 759 760 761
Graph

Page faults (minor) 1476 1476 1219
Time 2.78s 2.12s 1.08s

Extract local "；: “ “ “ ： ~ ： ZT： rrz rr^
Page faults (major) 755 755 756

features
Page faults (minor) 1326 1326 1072

Table 41 Execution time using different MaskSetSize (Mobile, 1 session)

MaskSetSize
Stage Statistics 1 2 8

Time 6.87s 7.39s 4.62s
Build Face — — ：

Page faults (major) 0 0 0
Graph

Page faults (minor) 1560 1543 1323
Time 11.85s 12.71s 3.96s

Extract local ""；： ^ , , . ： ： “ “ ；: Page faults (major) 0 0 0
features

Page faults (minor) 1314 1309 1098

Table 42 Execution time using different MaskSetSize (Desktop, 100 sessions)

Chapter 5. Real Time Elastic Bunch Graph Matching 96

Post-profiling

As pointed out above, the landmark localization stage does not show

improvement as feature extraction does. Post-profiling results reveal the cause.

As shown in Table 43 and Table 44，filter convolution remains the most time

consuming function in the feature extraction stage, while its significance drops

to around 14% for the landmark localization stage. The distance estimation and

trigonometric functions become the new bottlenecks. Array merging improved

the memory access efficiency, resulting in a change of program behaviour -

from memory-bound back to computation bound once again.

Function Name Description Before After
1. convolvePoint Filter convolution 71.03% 14.76%
2. DEPredictivelter Distance estimation 9.29% 27.63%

3. sin, cos, atan Trigonometric fiinctions 18.79% 25.87%

Table 43 Function Profile (Landmark localization)

Function Name Description Before After
1. convolvePoint Filter convolution 97.59% 75.75%

Table 44 Function Profile (Feature extraction)

Line level profiling further confirms this observation. As shown in Table 45 and

Table 46，the effect of memory optimization becomes even more prominent and

agrees with our analysis at the function level. For landmark localization, the

most time consuming lines do not include any memory access operations. For

feature extraction, however, the percentage of time devoted to memory access

is still over 70%.

Chapter 5. Real Time Elastic Bunch Graph Matching 97

Overall, the profiling results show that memory access remains the key to

optimizing the feature extraction stage. For landmark localization, however,

focus should be put on distance estimation and trigonometric functions.

Statement Percentage
1. Trignometric functions 30.06%

2. Fixed-point multiplication 7.77%
Table 45 Line Profile (Landmark localization)

Statement Percentage
1. Filter element access 64.97%

2. Image element access 5.61%
Table 46 Line Profile (Feature extraction)

5.4.8 Optimization of Trigonometric Functions using Table Lookup

Optimization

Trigonometric functions were implemented using polynomial series. A large

amount of floating point multiplications is involved in the series expansion and

can result in poor execution time on mobile devices. To solve this problem, the

table look up technique is used. Values of trigonometric functions are

pre-computed, stored and loaded into arrays on program startup. Making use of

the periodic nature of and relationship between trigonometric functions, only

two tables are required to implement the sine, cosine, tangent and arctangent

functions. All calls to trigonometric functions are then modified to array

accesses.

Chapter 5. Real Time Elastic Bunch Graph Matching 98

Results

As shown in Table 47，we see a dramatic improvement in execution time for

both landmark localization and template matching. This can be explained by

the fact that both stages involve intensive use of distance estimation, in which

most trigonometric functions are invoked. The feature extraction stage also

shows a moderate improvement. Post-profiling results further confirm the

effectiveness of our approach. As shown in Table 49, the significance of

trigonometric functions virtually falls to zero. The significant performance gain

strongly justifies the 1.5Kb extra storage introduced by table lookup (Table 48).

Note that the time for one face authentication session now requires only 1.3 s,

meeting our real-time requirement. In the next section, the accuracy of the

optimized system will be verified.

Stage Before After
Time 5.85s 0.52s

2) Landmark p^^^ faults (major) 761 1J2

Localization p^ge faults (minor) 1219 ~

Time 1.08s 0.31s
3) Feature p^gg faults (major) 756 ^

Extraction page faults (minor) 1068

Time 0.2263s 0.0062s

4) Template page faults (major) ^ 709
Matching

Page faults (minor) 2259 2259

Table 47 Execution time of different EBGM stages

Chapter 5. Real Time Elastic Bunch Graph Matching 99

Name Size Description

_cos_tbl[] 1Kb (256 * 4 bytes) Common table for Sine and Cosine (Half cycle)
�an—tbl[] 0.5Kb (128 * 4 bytes) Table for Tangent and Arc Tangent. (1/4 cycle)

Table 48 Storage requirement for lookup tables

Function Name Description Before After
1. convolvePoint Filter convolution 14.76% 25.50%

2. DEPredictivelter Distance estimation 27.63% 45.01%

3. sin, cos, atan Trigonometric functions 25.87% -0.0%
Table 49 Execution lime breakdown (Landmark localization)

5.5 Summary

In this section, the verification accuracy of the optimized EBGM

implementation will be evaluated and a summary of the optimization

techniques and their effects will be given.

Similar to Section 3.4, the FERET face database and evaluation protocol was

used to investigate the verification accuracy. Figure 43 to Figure 46 show the

Receiver Operating Characteristic (ROC) curves of the optimized code and the

baseline system for different probe sets. The overlapping curves indicate that

verification accuracies of both systems are essentially identical.

Chapter 5. Real Time Elastic Bunch Graph Matching 100

Receiver Opeiating Characteristic (ROC) Cuive 1 0 0 � ^ » $ $ $

90 7 Baseline E B G M “
.^ Optimized EBGM

80 •

70 •

i 60-
cc
•El H
S 50 • 0 <

1 40-
c o
0

30 •

2 0 ”

10 •

Of 1 ‘ 1 1 1 I I I I I

10 20 30 40 50 60 70 80 90 100
False Accept Rate (%)

Figure 43 ROC Curves of EBGM (FB probe set)

Receivei Opetatmg Chatactenstic (ROC) Curve

90 • Baseline EBGM
^ ^ - 0 - Optimized EBGM

80 -

1 ' ' j

I H
O
5 4 0 -
c
O

30 •
兮

20 -

(jj t 1 1 1 — 1 I I I I I 1
10 20 30 40 60 60 70 80 90 100

False Accept Rate (%)

Figure 44 ROC Curves of EBGM (dupl probe set)

Chapter 5. Real Time Elastic Bunch Graph Matching 101

Receiver Operating Characteristic (ROC) Curve
100 r 一 » $ — —

QQ 产 ‘ Baseline E B G M “
/ - 6 - Optimized EBGM

80 - J

70 -
g
S 60 •
fO cr
Q.

S 60

1 40..
c ‘
a> O

30 •

20 •

1 0 •

^ 1 1 1 1 1 I I I 1 I
10 20 30 40 50 60 70 80 90 100

False Accept Rate (%)
Figure 45 ROC Curves of EBGM (fc probe set)

Receiver Operatinq Characteristic (ROC) Curve
100 r ‘ $

90 - 千 Baseline EBGM
+ Optimized EBGM

8 � . Z
70 - J

I /
芸 60-/
S / S 60 -0 <
1 4 0 -
c
01

O
30

• h
20 •

10 • u
oi f 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
False Accept Rate (%)

Figure 46 ROC Curves of EBGM (dup2 probe set)

Chapter 5. Real Time Elastic Bunch Graph Matching 102

Table 50 summarizes the optimization techniques employed and their effects.

Figures shown in bold indicated that the particular stage is improved. Note that

only accuracy preserving techniques are included here, so the effect of

optimization by efficient Gabor filter set selection (Section 5.4.4) is omitted

here.

Execution Time

Technique I ； ^ F e a t u r e Template ^̂ ^̂ ^

(Section)
Original 8 335s 218.2s 324.8s 1.849s 553.2s

(N/A) 1
Fixed-point ^ 9 3 s 15.07s 29.45s 0 .2812s 46.73s

(5.4.1) ‘ ——
Pre-computation 丨 ^^^ 12.91s 20.97s 0.2812s 36.09s

(5.4.2) ‘ ——

ID A r r a y ^ gg2s 7.026s 2.989s 0.2970s 11.19s
(5.4.3) ‘ ————

Cache Policy ‘ o.882s 6.06s 2.78s 0.2263s 9.948s
(5.4.5) ‘

LoopMerginT" o.882s 5.87s 2.12s 0.2263s 9.098s
(5.4.6) ‘

Array M e r g i ^ ; r o .882s 5.85s 1-08

(5.4.7)

Table L o o k ^ ^ r o.48s 0.52s

Chapter 6. Conclusions 103

6. Conclusions

Despite the growing importance of mobile devices and increasing demand for

more secure authentication methods, the adoption of reliable and affordable

schemes such as face authentication is slow to keep up with the demand. Mobile

devices, due to their scarce computation and storage resources, have never been

the real target of traditional face recognition systems.

In this thesis, we investigate the feasibility of real time face authentication on

mobile devices. In particular, two representative and fundamentally different

face recognition algorithms, Principal Component Analysis (PCA) and Elastic

Bunch Graph Matching (EBGM), are implemented and optimized. Various

computation and memory optimization techniques such as fixed-point arithmetic

and array merging are also developed and employed. Experimental results show

a significant improvement in execution time for both PCA and EBGM. For PCA,

the time for one authentication session reduces from 30 seconds to 1.3 seconds.

For EBGM, a 420 times reduction is achieved - from 553 seconds down to 1.3

seconds. Further verification experiments show that the real time performance is

achieved without any significant loss in accuracy. Sub-second performance may

be possible by making use of architecture specific techniques, such as cache

mapping[53], programmable page attributes[45], preload instructions[54], and

DSPextension[45].

Chapter 6. Conclusions 104

At the beginning of the PCA and EBGM optimization, we encounter the problem

of not having a formal optimization model to follow. There may be tips, hints

and advice for some facets of the optimization problem, but not one simple and

general enough to be adapted to our particular problem. The arsenal of tools and

techniques developed by the software community over the years has only added

to the confusion. Optimization, then, becomes more a personal artistry than a

science that anyone can follow, adapt and extend. It soon became clear to us that

a software engineering model dedicated to the general optimization problem is

needed. In light of this, we proposed a high level view of optimization

techniques and a feedback oriented workflow. The high level view gives insights

on how general optimization problems should be approached and how

techniques can be categorized; the workflow keeps us sensitive to changes in

program behaviour and measure the effectiveness of a technique to a particular

problem. The merit of the two lies in their simplicity and flexibility, and they

may serve as a basis for a full-fledged model.

Our real time, accuracy preserving implementations of PCA and EBGM show

that by combining suitable optimization techniques and adequate knowledge of

the target platform and application at hand, the computational power of

constrained devices can be flilly exploited. The same optimization approach,

techniques and workflow can be applied generally to other problems which

demands fast execution time on slow devices. On the other hand, our real time

PCA and EBGM implementations may serve as parts of a larger evaluation

Chapter 6. Conclusions 105

framework for mobile authentication methods. Possible addition to this

framework includes a face database which consists of images collected from

mobile devices, so that the mobile face authentication problem can be more

accurately modeled.

Real time face authentication on mobile devices makes a myriad of applications

possible, for instance, the combination of difference face recognition 'experts'

(e.g. PCA, EBGM) to improve accuracy. Previous efforts in other biometric

modalities such as voice [32] and fingerprint [33, 34，35, 36] can also be

combined to construct a multimodal authenticator similar to the scheme in [55].

However, such extensions would involve derivation of sophisticated

combination rules which are non-trivial and are beyond the scope of this thesis.

In conclusion, we believe that our experience will be useful to software

optimization on such devices so mobile phones, and PDAs. Such devices share

one common set of characteristics: relatively slow CPU, fixed hardware platform,

support multiple programs, and multimedia applications. For such machines,

traditional hardware-software co-design is not applicable because of the

diversified programs to be supported. Under such conditions, our techniques will

be dominant for their performance optimization.

Chapter 7. Bibliography 11 ^

7. Bibliography

[1] U. S. Department of Defense, "Biometrics 101 Tutorial",
http://www.biometrics.dod.mil/biolQl/index.aspx.

[2] H. Thomas, "Biometrics: Face Recognition",
http://www-users.cs.vork.ac.uk/~tomh/Biometrics.html.

[3] J. Zhang, Y. Yan, and M. Lades, "Face Recognition: Eigeuface, Elastic

Matching, and Neural Nets," the IEEE, vol. 85, pp. 1423-1435, 1997.

[4] S. A. Rizvi, P. J. Phillips, and H. Moon, "The FERET Verification Jesting

Protocol for Face Recogtiilkm Algorithms, “ Proceedings of the International

Conference on Automatic Face and Gesture Recognition, Nara, Japan, pp.
48-53, 1998.

[5] P Phillips, H. Wechsler, J. Huang, and P. Rauss., "The FERET Database and

Eevaluatiofi Procedure for Face RecogiiUioii Algorithms, “ Image and Vision

Computing, vol. 16, pp. 295-306, 1998.

[6] "Intel XScale Microarchitecture - Technical Summary," Intel Corporation,

2000.

[7] "Camera phones are 'must-haves'," in BBC News, 2004.

[8] M. Turk and A. Pentland, "Face RecognWoii Using Eigetifaces, “ Proceedings

of Computer Vision and Pattern Recognition, pp. 586-591, 1991.

[9] K. H Pun, Y. S. Moon, C.C. Tsang, C. T. Chow, and S. M. Chan, "A Face

Recognition Embedded System, “ Proceedings of Biometric Technology for
Human Identification II, SPIE Defense and Security Symposium, Florida, USA,
pp. 390-397, 2005.

[10] L. Wiskott, J. Fellous, N. Kruger, and C. v. d. Malsburg, "Face Recognition by

Elastic Bunch Graph Matching,“正EE Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, pp. 775-779, 1997.

http://www.biometrics.dod.mil/biolQl/index.aspx
http://www-users.cs.vork.ac.uk/~tomh/Biometrics.html

Chapter 7. Bibliography 11 ^

[11] C Liu and H. Wechsler, "Evolutkmaiy Pursuit and Its Application to Face

Recognition, “ IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, pp. 570-582, 2000.

[12] Marian Stewart Bartlett, H. Martin Lades, and T. J. Sejnowski, "Independent

Component Representatiom for Face Recogijition, “ Proceedings of the SPIE,

Vol 3299: Conference on Human Vision and Electronic Imaging III, pp.
528-539, 1998.

[13] M. Turk and A. Pentland, "Face RecogfiWon Using Eigenfaces, “ Journal of

Cognitive Neuroscience, vol. 3, pp. 71-86, 1991.

[14] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs.

fisherfaces: Recognition Using Class Specific Linear Projeclkm, “ IEEE

Transaction on Pattern Analysis and Machine Intelligence, vol. 19, pp. 711-720,
1997.

[15] P. S. Penev and J. J. Atick, "Local Feature Analysis: A General Statistical

Theory for Object Represefilaticm, “ Network: Computation in Neural Systems,
vol. 7, pp. 477-500, 1996.

[16] "Local Feature Analysis. Automated Identification and Data Capture Web Site",
http://et.wcu.edu/aidc/Bi0WebPa2es/lfa.htm.

[17] P. J. Phillips, P. Grother, R. J. Micheals, D. M. Blackburn, E. Tabassi, and M.
Bone, "Face Recognition Vendor Test (FVRT) 2002: Overview and summary",
www.frvt.or^.

[18] "Cognitec Systems GmbH. •‘ http://www.comiitec-svstems.de/index.html.

[19] "Neven Vision, Inc. " http://www.nevenvision.com.

[20] "Identix, Facelt", http://www.identix.com/trends/face.html.

http://et.wcu.edu/aidc/Bi0WebPa2es/lfa.htm
http://www.comiitec-svstems.de/index.html
http://www.nevenvision.com
http://www.identix.com/trends/face.html

Chapter 7. Bibliography 11 ^

[21] E. Weinstein, P. Ho, B. Heisele, T. Poggio, K. Steele, and A. Agarwal,
"Handheld Face Identification Technology in a Pervasive Computing

Environment, “ Proceedings of Pervasive 2002, Zurich, Switzerland, pp. 48-54,
2002.

[22] T. J. Hazen, E. Weinstein, and A. Park, "Towards Robust Person Recognition

on Handheld Devices using Face and Speaker Identification Technologies,“

Proceedings of the 5th International Conference on Multimodal interfaces, pp.

289-292, 2003.

[23] T. J. Hazen, E. Weinstein, R. Kabir, A. Park, and B. Heisele, "Multi-modal

Face and Speaker Identification on a Handheld Device, “ Proceedings of the

Workshop on Multimodal User Authentication, pp. 113-120, 2003.

[24] S. L. Wijaya, M. Sawides, and B. V. K. V. Kumar, "Illumination-tolerant Face

Verification of Low-bit-rate JPEG2000 Wavelet Images with Advanced

Correlation Filters for Handheld Devices, “ Applied Optics, Special Issue on
Biometric Recognition, vol. 44，pp. 655-665, 2005.

[25] H. Fatemi, R. Kleihorst, H. Corporaal, and P. Jonker, "Real-time Face

Recognition on a Smart Camera, “ Proceedings of Advanced Concepts for
Intelligent Vision Systems 2003, Ghent, Belgium, pp. 222-227, 2003.

[26] J. Yang, X. Chen, and W. Kunz, "A PDA-based Face Recognition System,“

Proceedings of the 6th IEEE Workshop on Applications of Computer Vision,

pp. 19-23,2002.

[27] J. Yang, X. Chen, W. Kunz, and H. Kundra, "Face as in Index: Knowing Who is

Who Using a PDA, “ International Journal of Imaging Systems and Technology,

pp.33-41，2003.

[28] J.-L. Nagel，P. Stadelmann, M. Ansorge, and F. Pellandini, "Comparison of

Feature Extraction Techniques for Face Verification using Elastic Graph

Mathcing on Low-power Mobile Devices, “ Proceedings of IEEE Region 8

EUROCON 2003, International Conference on Computer as a Tool, Ljubljana,
Slovenia, pp. 365-369, 2003.

109
Chapter 7. Bibliography

[29] "Omron, OKAO Vision Face Recognition Sensor"，

http://www.omron.eom/news/n 28Q205.html,.

[30] "OMRON Demonstrates 'OKAO Vision Face Recognition Sensor, for Mobile

Phones at Security Show Japan 2005",
http://www.iapancoiT' net/Article.asp?Art ID=982Q.

[31] "Earth Beat, Genelock Light for Cell-phone",
http://www.earthbe?^t m.jp/Web F'RVindex.html.

[32] Y. S. Moon, C. C. Leung, and K. H. Pun, "Fixed-point GMM-based Speaker

Verification over Mobile Embedded System," Proceedings of the 2003 ACM
SIGMM workshop on Biometrics methods and applications, Berkley，

California, pp. 53 - 57，2003.

[33] J. S. Chen, Y. S. Moon, and K. F. Fong, "Efficient Fingerprint Image

Enhancement for Mobile Embedded Systems," Proceedings of ECCV 2004

International Workshop(BioAW), Prague, Czech Republic，pp. 146-157, 2004.

[34] P. S. Cheng，Y. S. Moon, Z. G. Cao, K. C. Chan, and T. Y. Tang, "Enabling

Fingerprint Authentication in Embedded Systems for Wireless Applications,"

Proceedings of the 1st International Workshop on Signal Processing for

Wireless Communications, pp. 228 - 231, 2003.

[35] T. Y. Tang, Y. S. Moon, and K. C. Chan, "Efficient Implementation of

Fingerprint Verification for Mobile Embedded Systems using Fixed-point

Arithmetic, “ Proceedings of the 2004 ACM symposium on Applied computing,

Nicosia, Cyprus, pp. 821-825, 2004.

[36] Y. S. Moon, F. T. LUK, H. C. HO, T. Y. TANG, K. C. CHAN, and C. W.
LEUNG, "Fixed-Point Arithmetic for Mobile Devices - A Fingerprint

Verification Case Study, “ Proceedings of the SPIE 2002 Advanced Signal
Processing Algorithms, Architectures, and Implementations XII, Seattle, pp.
144-149, 2002.

http://www.omron.eom/news/n

110
Chapter 7. Bibliography

[37] "The CSU Face Identification Evaluation System
http://www.cs-colostate.edii/evalfacerec.

[38] R. Beveridge, D. S. Bolme, M. Teixeira，and B. Draper, "The CSU Face

Identification Evaluation System User's Guide"

[39] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine

Vision, 2nd ed. Peking: Thomson Brooks/Cole, 2002.

[40] B. Jahne, Digital Image Processing, 5th revised ed. Berlin: Springer, 2002.

[41] "GNU profiler (Gprof)",
http://www.gnu.Qrg/software/hinutils/niRniial/gDrof-2.9.1/gprof.html.

[42] "Application Note 33: Fixed Point Arithmetic on the ARM"，

http://www.arm.coni/pdfe/DAIOOM A fixedpoint.pdf.

[43] "arm-linux-gcc Cross Compiler",
ftp://ftp.handhelds.org/pub/linux/arin/toolchain.

[44] D. S. Bolme, Thesis: "Elastic Bunch Graph Matching," Colorado State

University, 2003.

[45] "Intel XScale Microarchitecture for the PXA255 Processor - User's Manual，"

Intel Corporation, 2003.

[46] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach:

Morgan Kaufmann Publishers Inc., 1996.

[47] V. D. L. Luz and M. Kandemir, "Array Regrouping and Its Use in Compiling

Data-Intensive Embedded Applications, “ IEEE Transactions on Computers, vol.

53，pp. 1-19, 2004.

[48] P. R. Panda, N. D. Dutt, A. Nicolau, F. Catthoor, A. Vandecappelle, E.
Brockmeyer, C/ Kulkami, and E. D. Greef，"Data Memory Organization and

Optimizations in Application-Specific Systems, “ IEEE Design and Test of
Computers, vol. 18, pp. 56-68, 2001.

http://www.cs-colostate.edii/evalfacerec
http://www.gnu.Qrg/software/hinutils/niRniial/gDrof-2.9.1/gprof.html
http://www.arm.coni/pdfe/DAIOOM
ftp://ftp.handhelds.org/pub/linux/arin/toolchain

Chapter 7. Bibliography 11 ^

[49] J. H. Lee, M. Y. Lee, S. U. Choi，and M. S. Park, "Reducing cache conflicts in

data cache prefetching," ACM SIGARCH Computer Architecture News, vol.

22, pp.71-77，1994.

[50] R. Xu and Z. Li, "Using Cache Mapping to Improve Memory Performance

Handheld Devices," Proceedings of 2004 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS)，pp. 106-114，2004.

[51] W. Wolf and M. Kandemir, "Memory System Organization of Embedded

Software, “ the IEEE, vol. 91, pp. 165-182, 2003.

[52] "GNU Compiler Collection (GCC)"，http://gcc.^nu.org/.

[53] Q. Yang, X. Ding, and Z. Chen, "Discriminant Local Feature Analysis of

Facial Images," Proceedings of IEEE International Conference on Image

Processing (ICIP 2003)，pp. 863-866, 2003.

[54] "Intel PXA250 and PXA210 Application Processors Application Developer's

Optimization Guide，" Intel Corporation, 2003.

[55] J. Bigun, J.Fierrez-Aguilar, J. Ortega-Garcia, and J. Gonzalez-Rodriguez,

"Multimodal Biometric Authentication using Quality Signals in Mobile

Communications, “ Proceedings of the 12th International Conference on Image

Analysis and Processing, pp. 2-11, 2003.

p -
V •

V.•‘

！‘

€n

rr . • •
I .
r.
y�
I

I
I V

P： ,

•i-

•::- .

I. ‘
.... .• "r - , • ‘ • I :.. , • . ••" '. ：广. . ，，‘，•. . .•• . . , • i • •• -i { f ‘ • . . ‘ - . ' ‘ V . , . . . - . ‘ . • ‘ ‘ . . . ,+ • . . • ' . . 、 • , 1 • • ‘ • • . • _ . . . • � . I r,�‘. • . • r . . , • • : ‘ . - . . . ， . . . • • •_ . •. 丨. . ， . . . - . ' /•、 . .‘、厂？ . • • • • - • ‘ • ： - ‘ • \ \ • . • .•. . . • , 『 ， . ‘ ' • . . , , . . --；• :.,‘, ： •'‘ . 、.'. .,...‘ • i 、 .，， ，.

CUHK L i b r a r i e s
_ _ _ _ _

0 0 4 2 7 9 0 1 9

