
Open Research Online
The Open University’s repository of research publications
and other research outputs

Investigating web APIs on the World Wide Web
Conference or Workshop Item
How to cite:

Maleshkova, Maria; Pedrinaci, Carlos and Domingue, John (2010). Investigating web APIs on the World Wide
Web. In: The 8th IEEE European Conference on Web Services (ECOWS 2010), 1-3 Dec 2010, Ayia Napa, Cyprus.

For guidance on citations see FAQs.

c© 2010 Maria Maleshkova

Version: Version of Record

Link(s) to article on publisher’s website:
http://www.cs.ucy.ac.cy/ecows10/index.php?p=Program

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/4848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.cs.ucy.ac.cy/ecows10/index.php?p=Program
http://oro.open.ac.uk/policies.html


Investigating Web APIs on the World Wide Web

Maria Maleshkova, Carlos Pedrinaci, John Domingue
Knowledge Media Institute (KMi)

The Open University
Milton Keynes, United Kingdom

{m.maleshkova, c.pedrinaci, j.b.domingue}@open.ac.uk

Abstract—The world of services on the Web, thus far limited
to “classical” Web services based on WSDL and SOAP, has
been increasingly marked by the domination of Web APIs,
characterised by their relative simplicity and their natural
suitability for the Web. Currently, the development of Web
APIs is rather autonomous, guided by no established standards
or rules, and Web API documentation is commonly not based
on an interface description language such as WSDL, but is
rather given directly in HTML as part of a webpage. As a
result, the use of Web APIs requires extensive manual effort
and the wealth of existing work on supporting common service
tasks, including discovery, composition and invocation, can
hardly be reused or adapted to APIs. Before we can achieve
a higher level of automation and can make any significant
improvement to current practices and technologies, we need
to reach a deeper understanding of these. Therefore, in this
paper we present a thorough analysis of the current landscape
of Web API forms and descriptions, which has up-to-date
remained unexplored. We base our findings on manually
examining a body of publicly available APIs and, as a result,
provide conclusions about common description forms, output
types, usage of API parameters, invocation support, level of
reusability, API granularity and authentication details. The
collected data provides a solid basis for identifying deficiencies
and realising how we can overcome existing limitations. More
importantly, our analysis can be used as a basis for devising
common standards and guidelines for Web API development.

Keywords-Web APIs, RESTful services, Web services

I. INTRODUCTION

The world of services on the Web is increasingly dom-
inated by Web applications and APIs, which seem to be
preferred over “classical” Web services based on WSDL and
SOAP. Web services have played and, without a doubt, will
continue to play a major role for the development of loosely-
coupled component-based systems within and between en-
terprises. However, Web APIs, also referred to as RESTful
services [1] when conforming to the REST architectural
principles [2], are characterised by their relative simplicity
and their natural suitability for the Web, relying almost
entirely on the use of URIs, for both resource identification
and interaction, and HTTP for message transmission. On
the basis of this simple technology stack, many Web sites
like Facebook, Google, Flickr and Twitter offer easy-to-
use, public APIs that provide simple access to some of the
resources they hold, thus enabling third-parties to combine

and reuse heterogeneous data coming from diverse services
in data-oriented service compositions called mashups.

Despite their popularity, the use of Web APIs still requires
extensive manual effort, which is most often focused on the
development of custom tailored software that can hardly be
reused. A number of researchers and developers are devising
generic solutions for better supporting the discovery, reuse,
invocation, and composition of Web APIs [3], [4]. These
approaches build upon the wealth of research on Web
services and adapt it to deal with Web APIs. Yet, a quick
look at some of the existing Web APIs shows significant
differences when compared to classical Web services. The
most notable distinction lies in the fact that there is no
established interface definition language, although some
researchers have already tried to address this aspect [5], [6].
In fact, as opposed to Web service technologies, work around
Web APIs has evolved in a rather autonomous way, which is
perhaps one of the main reasons for their rapid proliferation.

Before any significant impact and improvement can be
made to current Web API practices and technologies, we
need to reach a deeper understanding of these. This involves,
for instance, figuring out how current APIs are developed
and exposed, what kind of descriptions are available, how
they are represented, how rich these descriptions are, etc.
It is only then that we shall be able to clearly identify
deficiencies and realise how we can overcome existing
limitations, how much of the available know-how on Web
services can be applied and in which manner.

To this end, in this paper we present a thorough analysis
over a body of publicly available API descriptions. In
particular, we analyse how Web APIs are published, we
check which information is provided and its level of detail.
We investigate the characteristics of input parameters and
record the API categories. Similarly, we study the provided
output descriptions and analyse the different types of APIs as
well as the availability of relevant details such as the HTTP
method, invocation URI and authentication requirements.
We also record whether example requests and responses
are provided, since they indicate how the communication
between the client and the server is realised. Finally, we
also study general API information, such as the number
of mashups and operations, in order to be able to draw
conclusions about the reusability and the granularity of the



APIs. The analysis exposed in this paper provides a reality
check over the current state and practices with Web APIs and
certainly contributes to understanding where we are, helps us
in better realising what needs to be done, and also assists us
in devising supporting mechanisms. In this sense, we show
that the current proliferation of Web APIs is not due to the
increased use of REST principles, since according to our
study, most Web APIs do not have RESTful descriptions
and how APIs are described is not significant for reusability.
Instead, simplicity and the trend towards opening data are
driving the evolution that results in the world of services on
the Web being increasingly dominated by Web applications
and APIs.

The remainder of this paper is structured as follows:
Section II, describes the methodology used for conducting
our Web API study, while Section III gives the collected
data. A summary of the main results and a discussion of
identified correlations and trends are provided in Section IV
and Section V. Section VI presents an overview of existing
work on analysing Web services and Section VII presents
future work and concludes the paper.

II. METHODOLOGY

The study presented herein was conducted during
February 2010, analysing 222 Web APIs from the Pro-
grammableWeb1 directory. ProgrammableWeb is a popular
API directory, that at the time of this writing provides
information about 2002 APIs and 4827 mashups. For easier
search and browsing, the APIs are sorted in categories
and our analysis covered all 51 categories, including on
average 4 APIs per category. The analysed Web APIs for
each category were randomly chosen, however, since some
categories have only one or two entries, the analysed number
of Web APIs per category varies. As a result the survey
covered 18% of the REST APIs listed at ProgrammableWeb
(1235 APIs at the time of the study). Therefore, we consider
the following results to be representative for the directory
and in general, since ProgrammableWeb is currently the
biggest directory2.

Each Web API description was analysed in terms of
six main groups of features, including general Web API
information, type of Web API, input parameters, output for-
mats, invocation details and complementary documentation.
The Web API analysis was conducted manually, and some
features such as the type of Web API were examined twice
in order to achieve greater accuracy. More concretely, each
Web API was examined in terms of:

1) General Web API information – name of the API, de-
scription, category, number of mashups, date updated,
URL and number of operations.

1http://www.programmableweb.com
2Webmashup.com (http://www.webmashup.com) contains around 1800

Web APIs and 3100 mashups, while APIFinder (http://www.apifinder.com)
provides around 1100 Web APIs.

2) Type of Web API – details on whether the API
description is RESTful, RPC-style or hybrid (for more
details see section III-B).

3) Input parameters – does the API use default parame-
ters, does it use optional parameters, does it use coded
parameters (for example, instead of ”English“ use
”en“), does it use parameters with alternative values
(for example, the input value is 1 or 2 or 3), is the
data-type of the input parameter stated and are boolean
(yes/no, true/false) parameters used.

4) Output formats – form of the output (for example,
XML or JSON) and whether it is sent as a parameter.

5) Invocation details – is the HTTP method provided,
is the invocation URI provided, does the API require
authentication and if yes, what type, how are the input
parameters transmitted and how is the authentication
information transmitted.

6) Complementary documentation – does the description
provide example request, example response and a list
of error messages/codes.

We focus our analysis on studying precisely these groups
of API features because each of them plays an important
role for different aspects of the API use. The general
information provides insights on the information that is
commonly used to describe Web APIs in directories and
how this information is captured, including temporal details,
reusability and level of granularity. Since, an important part
of current research work on APIs is focused on investigating
and opposing different Web service types (REST vs. WSDL
and SOAP) [3], we also record and analyse the existing types
of Web APIs. We study input parameters, output formats
and invocation details, since they serve as the basis for
conducting main service tasks. These Web API features are
present in all interface description languages (IDLs), as they
are considered essential for invocation [3], composition [4]
and discovery. The complementary documentation provides
details on how the communication between the client and
the service is realised, and what are the possible errors that
can occur.

The analysis approach involved a sequence of simple
steps. First, for each API picked for the study, the Pro-
grammableWeb webpage was opened. The APIs to analyse
were randomly chosen within each category, covering all
categories. This was necessary in order to ensure that the
results are domain-independent and at the same time repre-
sentative for the whole directory. For each API the general
information was recorded.

Second, the provider’s Web API description was ex-
amined, recording the documentation URL, counting the
number of operations and determining the type of the API.
For RPC-style and hybrid operations each operation was
counted, while for RESTful ones, each resource represen-
tation manipulation/retrieval through an HTTP method was
counted as one operation. For example, GET on the User-



Profile resource is one operation, while PUT on the same
resource is another. We also analysed the input parameters
of each operation, in case of RESTful services these are also
referred to as the scope [1]. For the output of each API, the
format was recorded, including the available alternatives and
how they are chosen (through parameterisation or through
a separate URI for the invocation). Finally, the invocation
details, included in the description, and the complementary
documentation were recorded. We did not perform any test
invocations of the APIs, since we aim to gain a picture of
the current state of the Web APIs landscape as depicted by
their descriptions.

Conducting the study took around three weeks, since
the documentation of every Web API had to be review
manually. In the process, we already noticed that the work
was slowed down by the fact that the description forms
and structures are very diverse and each API had to be
examined from scratch, without being able to benefit from
the analysis of previous APIs. This already provides some
indication about the difficulties arising from having to deal
with heterogeneous textual API documentation.

III. ANALYSING COMMON WEB API DESCRIPTIONS

In this section we describe the data collected from the
Web API study. The results are structured into six groups,
according to the different parts of the API descriptions that
were analysed.

A. General Web API Information

The general Web API information analysed includes the
recording of some details provided directly by the API
directory, such as the name of the API, its description, the
category that it is assigned to, the URI of the API and the
latest update of the description. Table I provides the exact
numbers for these features.

Table I: General Web API Information

Description Maximum Minimum Average
APIs per Category 12 1 4
Number of Mashups 506 0 6.4
Number of Operations over 200 1 15.5

Of these general details, the number of mashups is of
particular relevance, since it provides an indicator of the
reuse of Web APIs, and to a certain extent can help to
highlight factors influencing the reusability of APIs. The
analysis shows that a few APIs are highly reused, whereas
most APIs, are used in very few or no mashups at all. In
particular, there are 136 APIs with 0 mashups, 60 APIs with
1 to 4 mashups and 26 APIs with 5 to 506 mashups. The API
with most mashups is Flickr, which can be easily integrated
into different Web applications as a source of images and
photos. In summary, there is a big difference in the frequency
of use of some APIs (12%), while most APIs are not used

often as part of mashups. Also it must be noted, that the
number of mashups is as provided by ProgrammableWeb,
therefore the actual values can somewhat differ. However,
for comparison purposes it is still representative, since the
data comes from the same source for all APIs.

The general API information collected also delivers some
valuable insights about the granularity, i.e. the number of
operations, of the APIs. 109 of the APIs or about 50%
have 1 to 7 operations, while 36 APIs or 16% have only 1
operation. 92 APIs have between 7 and 50 operations, where
more APIs have fewer operations. Finally, only 21 APIs have
between 50 and 200+ operations (Yahoo Ads). This leads us
to the conclusion that the majority of the APIs are small and
have very few operations. We investigated whether there is
a correlation between the size of the APIs and their use as
part of mashups, but even though social and community Web
sites, seem to expose a larger number of operations, there are
important exceptions such as del.icio.us3, which has only 15
operations but 142 mashups and geocoder4 with 3 operations
but 28 mashups. The data provided no proof that there is a
relation between the level of reusability of APIs and their
granularity.

The analysed API descriptions were updated between
02.06.2005 and 14.01.2010, which shows that the Pro-
grammableWeb directory has been enriched during the past
five years, but also that some descriptions are old, which
might be an indication that they are out of date. There were
relatively few descriptions from 2005, 2006 and 2007 (11,
33, 27 correspondingly) and around 60 and 80 for 2008
and 2009. This might indicate either that there have been
an increasing number of APIs published during the past
two years or that older descriptions have been update, even
though the APIs were created earlier. Since we do not have
the date of creation of the API entries but only the update
dates, we cannot make a conclusive statement.

Finally, based on the general Web API information, our
analysis highlighted that since all details are added manually
to the Web API directory, some of the feature descriptions
were not always accurate. This is especially true for the
URL of the documentation, which was sometimes moved or
no longer available, and for the authentication information,
which was very often inaccurate. This is indicative for the
difficulties resulting from using directories based on user
entries, the two main ones being the retrieval of outdated
information, because the entries cannot be automatically
updated, and the retrieval of erroneous information, due
to wrong or inaccurate user input. Therefore, despite the
fact that currently these manually created directories are the
easiest way to search for APIs, there is a need for developing
approaches that automatically crawl and extract accurate API
descriptions from the Web.

3http://delicious.com/help/api
4http://geocoder.us/help/



B. Type of Web APIs

In this section we describe our findings regarding the
different types of Web APIs and their frequency of use.
We have identified three types of APIs: RESTful, RPC-
style and Hybrid. RESTful services are defined as services,
which conform to the representational state transfer (REST)
paradigm [2]. REST is based on a set of constrains such
as the client-server based communication, statelessness of
the request and use of a uniform interface. A RESTful
web service is commonly implemented by using HTTP,
comprising a collection of uniquely identified resources and
their links to each other. In addition, RESTful services are
characterised by resource-representation decoupling, so that
resource content can be accessed via different formats.

For the scope of our study, we identify Web APIs as
RESTful, when their descriptions indicate that they are
resource-centred and data retrieval and manipulation is
done only over the HTTP methods. Example APIs include
MusicBrainz (http://wiki.musicbrainz.org/XMLWebService)
and Doodle (http://doodle.com/xsd1/RESTfulDoodle.pdf).
RESTful services can have a scope, or a set of parameters,
to restrict the effect of the HTTP methods on the resource
only to the ones determined by the parameter values. For
example, instead of retrieving all news resources in the News
collection by using GET (HTTP GET http://url/.../News)
the API can also be invoked by including a parameter and
retrieve only news created by a particular user (HTTP GET
http://url/.../News?user=aUser).

In comparison to RESTful APIs, RPC-style ones do
not use directly the HTTP methods to access resources
but rather define their own operations, wrapping the re-
source information, and then invoke these through one
of the HTTP methods. For example, an RPC-style API,
providing the same information as the news RESTful one,
would look like: HTTP GET http://url/.../getNews and there
can be a scope or a set of parameters (HTTP GET
http://url/.../getNews?user=aUser). Example APIs include
GeoNames (http://www.geonames.org/export/web-services
.html) and Daylife (http://developer.daylife.com/docs). It is
important to point out that we base our classification strictly
on the API descriptions, since RPC API implementations
can be wrapped and described as RESTful and RESTful im-
plementations can have operations such as getNews, which
are in fact realised by using the GET HTTP method on the
News resource. Still our definitions of Web API types share
common understanding with the ones given in [1], stating
in essence that RPC APIs exposes internal functionalities
through a complex programming-language-like interface that
is different for every service, while resource oriented APIs
exposes internal data through a simple document-processing
interface that is always the same.

Hybrid APIs, as the name suggests, represent a
mix between RESTful and RPC ones. Hybrid-style

APIs define their own operations, but employ opera-
tion information, which is contradictory to the used
HTTP method. For example, a hybrid API can re-
alise the getNews operation through POST and addNews
trough GET. Example hybrid APIs include ClearFor-
est (http://www.opencalais.com/documentation/calais-web-
service-api), which uses POST for getting resources
and Box.net (http://developers.box.net/ApiOverview) where
adding a new element can be done by using GET. The
use of hybrid APIs can be very problematic since they do
not guarantee operation safety, especially in cases where
data manipulation is realised by using GET, because of the
possibility of unintentional data modification. In such cases
a simple crawler can change or delete resources, since it
would use GET, expecting to retrieve information instead of
altering it.

Table II: Type of Web APIs

Description In %
RPC-Style 47.8
RESTful 32.4
Hybrid 19.8
Mashups with RPC-Style APIs 42
Mashups with RESTful APIs 34
Mashups with Hybrid APIs 24

Table II shows the distribution of the different types of
APIs. As it can be seen, currently almost half of the Web
APIs are RPC-style and about one third are RESTful. The
hybrid APIs represent about 20% of the analysed data. This
shows that even though RESTful services are by design
suitable for the Web, since they are based on the same
principles, their level of adoption is still relatively low.
Instead of identifying resource collections and manipulating
them with the help of HTTP methods, developers prefer to
define their own operations, whose functionality sometimes
even contradicts the used HTTP method (hybrid APIs). As
a result, two thirds of the API descriptions are structured
very much like common interface definitions, disregarding
the REST principles.

A very similar distribution can be detected among the
APIs, which are reused as part of mashups. 42% of the APIs
are RPC-style, 34%– RESTful and 24%– hybrid. Therefore
we can conclude that API reuse is not driven by the type
of description, since the mashups percentage distribution
matches almost exactly the Web API distribution. As a
result, we can argue that the current proliferation of Web
APIs cannot be attributed to the use of RESTful services.
As our study shows, most Web APIs do not have RESTful
descriptions and how APIs are described is not significant
for reusability.

C. Input Parameters

We also thoroughly analysed the information in the API
descriptions, relating to the input parameters. As it can be
seen in Table III about 60% of APIs use optional parameters,



while 45% use default values. This has a strong effect on the
matchmaking and invocation approaches, since one API can
be found or not depending on whether optional parameters
are taken into account or not. Similarly, if invocation is done
on the basis of default values, the output results can be
drastically changed. For example, a lot of APIs have XML as
a default output format but some use also JSON as default.
If the default parameter value is used, the results might be
retrieved in the wrong format, making them useless.

Table III: Input Parameters

Description Number In %
APIs w/t optional parameters 136 61.3
APIs w/t alternative values for a parameter 114 51.3
APIs w/t default values for parameters 99 44.6
APIs that state the data-type of the parameters 61 27.5
APIs w/t coded values for a parameter 55 24.8
APIs w/t boolean parameters 39 17.6

The fact that a lot of APIs use alternative values for one
parameter (for example, a range of 1, 2 or 3) and coded
values (for example, for languages only a language code,
instead of the full string) makes the API invocation even
more challenging. For the invocation of single APIs, the
input data has to be transformed in the correct format, which
can be very difficult, since sometimes the lists with alterna-
tive or coded values are not provided. For the invocation of
mashups, the transformation between the inputs of one API
and the outputs of the next one has to be defined. Currently,
this work requires extensive manual effort and the adaption
of existing Web service invocation approaches is hindered by
the under-specification and the variability of the parameters.

This situation is aggravated by the fact that two thirds of
the APIs do not even state the data-type of the input param-
eters. As a result developers need to determine the proper
input format by making assumptions or through trial-and-
error. In addition, the reuse of existing invocation approaches
or the development of new ones is made extremely difficult,
since the data-type information is simply not available. If
a standard interface description language, such as WSDL,
were used to describe Web APIs, not specifying the data-
types would be unthinkable. However, the current state
of Web APIs shows us that this in not always necessary.
Since there is no common IDL, under-specification is very
common and it effects in no way the level of reuse of
APIs. Our data showed that there is no correlation between
stating the data-type of input parameters and the number of
mashups.

D. Output Formats

As it can be seen in Table IV, there are two main common
output formats – XML and JSON. XML is provided in 85%
of the cases and JSON in 42%, while more than one third
of the APIs provide both. Further output formats include
HTML, CVS, RDF, Text, object, RSS, GFF, Serialised PHP,
Tab, YAML. These results show that providing support for

the use of XML and JSON addresses the vast majority of
the APIs.

Table IV: Output Formats

Description Number In %
XML 80 36
XML, JSON 53 23.9
XML and other 34 15.3
XML, JSON and other 23 10.4
only JSON 12 5.4
only other 14 6.3
JSON and other (except XML) 6 2.7
RDF 13 5.8
Total XML 190 85.6
Total JSON 94 42.4

The way of specifying how the results should be struc-
tured can be determined in two ways. Either the API
provides a separate operation for every output format or it is
determined though a parameter. This might present a chal-
lenge for invocation, since currently there is no commonly
accepted way for stating the desired output format.

E. Invocation Details

In this section we describe our findings in relation to the
invocation details commonly provided in API descriptions.
The collected data is of crucial importance, since it has a
direct impact on the usability of the APIs.

Table V: Invocation Details

Description Number In %
Provide HTTP method 134 60.4
Provide invocation URI 214 96.4

Table V shows that almost all descriptions provide the
URI for invoking the API, while only about two thirds
state the HTTP method to be used. This is possibly because
providers assume that the method to use is GET, especially
for APIs that can be invoked directly through parameterising
the URI.

Table VI: Common Web API Authentication Approaches

Authentication Mechanisms Number In %
API Key 89 38%
No Authentication 46 19%
HTTP Basic 32 14%
Username and Password 19 8%
OAuth 14 6%
Web API Operation 12 5%
HTTP Digest 11 5%
API Key in Combination with Other Credentials 5 2%
Session Based 5 2%
Other 2 1%
Authentication Only for Data Modification 4 2%
Offer Alternative Authentication Mechanisms 16 7%

Our analysis also shows that more that 80% of the APIs
require some form of authentication (Table VI). As it can
be seen, using an API key (also called “developer key”,
“developer token”, “token Id”, “user Id”, “user key”) is by



far the most common way of authentication (38%). It is
followed by 19% of APIs, which do not require any authen-
tication. HTTP Basic and HTTP Digest [7] are not used as
often (14%, 5%), while about 6% of the APIs use OAuth [8]
and 5% implement their own operations, which need to be
called, before being able to invoke other operations. There
are also some APIs, which require authentication only for
operations, which perform data modification but require no
authentication for only reading resources.

In summary, at least in 40% of the cases there is missing
information required for the invocation of the APIs and 3
out of 4 APIs require some form of authentication, which
means that developers would have to sign up with providers
for acquiring the appropriate credentials. In addition, there
is no established approach for Web API authentication but
rather a landscape of different approaches. Also, about only
a quarter of the APIs use a mechanism that protects the user
credentials and does not transmit them directly in plain text.
This shows that providers are not so much concerned with
verifying the user identity and do not invest implementation
work in securing the message transfer but rather prefer to
employ simple measures for controlling resources usage.
This is verified by the fact that less than 10% of the Web
APIs use signatures and encryption.

Table VII: Way of Transmitting Credentials

Transmission Medium Number In %
URI 117 70%
HTTP Header 45 27%
URI or HTTP Header, Depending on the 6 3%
Type of Authentication and HTTP Method

Table VII shows the most commonly used ways for trans-
mitting authentication credentials. As it can be seen, 70%
of the Web APIs send authentication information directly in
the URI, while less that one third require that the HTTP
header is constructed. This means that even if Web APIs
require authentication, most of them do not need a custom
client but can rather be invoked directly from a Web browser.
These numbers are similar for invocation in general, where
about one third of the APIs require the construction of the
HTTP request, while the rest can be called by using the URI.

F. Completeness of the Documentation

Finally, in this section we present results for API descrip-
tion features, which are not strictly necessary for directly
supporting service tasks such as discovery or invocation,
but are useful when implementing and using the APIs. As
Table VIII shows, more than 75% of the APIs provide exam-
ple requests and responses. These give valuable information
about the structure and the form of the request as well as
of the retrieved results and, therefore, ease the development
work.

We also found out that about only half of the APIs
describe the used error codes. This represents a problem,

Table VIII: Complementary Documentation

Description Number In %
APIs that provide an example Request 186 83.8
APIs that provide an example Response 167 75.2
APIs that describe the Error messages 118 53.1

since in half of the cases developers cannot determine and
have no indication of what went wrong and whether the
error is due to an incorrect invocation, to the connection, to
missing credentials, etc.

IV. RESULTS

As already pointed out, Web APIs face a number of
challenges mainly related to the fact that currently all
common service tasks such as discovery, composition and
invocation require extensive manual effort. However, before
any significant improvement can be achieved and suitable
approaches can be devised, we need to gain a clear picture
of the development process, used technologies, available
information, richness of the descriptions, etc. In order to con-
tribute directly towards this goal, in this section we derive a
number of important results and conclusions, characterising
the current Web API landscape.

1) Finding Web APIs on the Web requires either manual
search, by using general-purpose search engines like
Google and Yahoo or referring to directories like
ProgrammableWeb, which are based on manual input
that is sometimes inaccurate or outdated.

This result points out one of the main challenges faced by
current Web API repositories. Since the API descriptions
are published and updated manually by users, some of the
entries are not up-to-date or no longer exist. In addition,
details such as the authentication method are not always
accurate. Therefore, there is a need for developing solutions
for a more automated way of collecting, publishing and
updating API descriptions.

2) Few APIs are highly reused, whereas most APIs, are
used in very few or no mashups at all. In addition,
there is no correlation between the level of reusability
of APIs and their granularity.

Reusability, as indicated by the number of mashups per API,
is a very important characteristic of the current Web API
landscape. First, since we have no direct information about
how many of the existing APIs are actually being used, the
number of mashups is an indirect indication for that. Second,
the frequent participation of APIs in mashups is reflected
in the increased significance of certain service tasks, in
this case composition, and the pieces of data required for
supporting these tasks. This is made even more clear by the
fact that the 222 APIs, analysed in our study, participated
in a total of 1350 mashups. Therefore, future approaches



for supporting the use of APIs should especially focus on
enabling the composition and creation of mashups.

3) There are three main types of Web API descriptions
(RESTful, RPC-style and hybrid) but developers prefer
to describe APIs in terms of operations, rather than
resources.

This means that each type of Web API requires separate
invocation support, which makes it even more challenging
to provide support for the invocation of mashups. Currently,
mashup development is based on individual solutions, which
have a low level or reusability and do not contribute to the
automation of a common API invocation process. The fact
that most developers prefer to describe APIs in terms of
operations, disregarding REST principles can be explained
by looking at popular ways for defining interfaces, which
are commonly based on operations and methods. Therefore
developers with previous knowledge of interface description
languages and a background in programming intuitively tend
to formulate Web APIs in terms of operations, rather than
resources that are manipulated through the HTTP methods.

4) APIs reuse in not driven by the particular type of
Web API description (RESTful, RPC-style or hybrid).
Therefore, the current proliferation of Web APIs can-
not be attributed to the use of RESTful APIs.

We base this conclusion on the fact that the mashups
percentage distribution matches almost exactly the Web API
description type distribution. Our data shows no indication
of RESTful APIs having a leading role in determining how
APIs are described or whether they are used in mashups.

5) The description of input parameters is very flexible,
allowing for the use of default values, coded values, al-
ternative values and optional parameters. This presents
a hindrance for all service tasks, especially invocation.

Service tasks that predominantly rely on the input informa-
tion, such as discovery, composition and invocation, gain
complexity, since the presence of some parameters is non-
restrictive and the input data has to be transformed into
coded or alternative values. As a result the approaches,
which aim to support the use of Web APIs, should be able
do deal with the flexibility of the input parameters. This
is especially true for invocation, which would require the
development of an integrated view on all theses diverse input
forms.

6) XML and JSON are establishing themselves as the
main output formats.

Even though there are no guidelines for the format of
the output, currently most APIs give their results either in
XML or JSON. Therefore, providing support for using and
processing only these two formats, would directly contribute
to the overall increase of Web API usability.

7) More than 80% of the APIs require some form of
authentication.

Therefore, authentication is a vital part of the invocation
process and any approach for supporting the use of APIs
and mashups that disregards authentication, has very limited
applicability. Currently, developers have to sign up with
multiple providers in order to acquire credentials necessary
for APIs participating in mashups or restrict the implemen-
tations to APIs, which are based on shared credentials such
as OAuth [8].

8) Most API descriptions are characterised by under-
specification.

Our data shows that two thirds of the APIs do not state the
data-type of the input and 40% of the APIs do not state the
HTTP method. If a standard interface description language,
such as WSDL, were used to describe Web APIs, not
specifying these details would be unthinkable. Since there is
no common IDL, under-specification is very common and,
more importantly, as our data shows it effects in no way the
level of reuse of APIs.

Looking at the different results provided in this section,
it becomes obvious that currently the Web API landscape is
very heterogeneous and it is not possible to determine what
a typical Web API description looks like. Without a doubt,
all descriptions contain common pieces of information,
which are required for the support of main service tasks,
such as discovery, composition and invocation. However,
since Web API development is not guided by standards,
the diversity spreads from the structure and the form of
the documentation up to the technological principles used
behind the implementation. Therefore, currently the use of
APIs requires extensive manual effort and the development
of automated approaches is very challenging.

V. DISCUSSION

In this section we reflect on a number of further trends and
correlations that we discovered while conducting our Web
API analysis. In particular, we describe how APIs from the
same domain tend to have some similar features.

One interesting correlation that we detected is that APIs
from the same ProgrammableWeb category tend to have
the same type of description. For example, all bookmark-
ing APIs were RPC-style, while all project management
ones were RESTful. This is also true for most of the
categories, where we found out that the majority of the
APIs have the same type. This might be due to devel-
opers investigating competing providers and their services
and, therefore, being influenced by the way APIs with
similar functionalities are structured and described. Also
for some use cases it is more intuitive to base the de-
scription on resources, while for others using operations
is more natural. For example, getting a set of news ar-
ticles or information about an artist can easily be de-
scribed based on resources (GET http://example.com/News
and GET http://example.com/Artist?name=madonna), while



determining a route between two locations or retrieving the
temperature in a city can better be realised with operations.

In addition to having similar types of descriptions, we
discovered that APIs from the same category usually have
similar authentication mechanisms. For example, most gov-
ernmental and medical APIs require no authentication, while
job search and general search APIs commonly use an API
key. This again can be attributed to developers comparing
their API with other APIs with similar functionality and as
a result adapting similar authentication measures. However,
certain domains should naturally be very accessible, while
others related to more private or confidential information
should be supported by stronger authentication measures.

The survey also provided some important information
about the Web API description forms. In particular, none
of the analysed APIs used WSDL [6] or WADL [5] and the
majority of the APIs are documented directly in HTML Web
pages. A search for WADL documents in Google returns
only around 160 matches, but certainly not all of these
represent actual APIs (search was done on 19.05.2010). This
number should be compared to over 2000 APIs currently
registered in the ProgrammableWeb directory. In addition,
some of the descriptions were in PDF, which requires
downloading the documentation and makes crawling for
APIs and automated processing more difficult.

VI. RELATED WORK

Up-to-date the current state of Web APIs, including
different description forms, input types, invocation details,
etc., has remain unexplored. However, there are two similar
studies, devoted to investigating Web services on the Web.
The authors in [10] provide a study on Web services, focus-
ing on deriving statistics based on operations analysis, size
analysis, words distribution and function diversity analysis
by using the Google API. This study is based only on
a few Web service characteristic and is restricted to only
one source. A broader and more complete study is given
by [9]. The authors have developed a crawler for col-
lecting metadata about service interfaces available through
repositories, portals and search engines. The gathered data
is used to determine statistics about object sizes, type of
technology and functioning of the Web services, among
others. In comparison to previous studies, this one also
provides conclusions about the status of Web services and
what percentage of the Web services are considered to be
active and responsive.

VII. CONCLUSION AND FUTURE WORK

Currently, finding, interpreting and invoking Web APIs
requires extensive human involvement due to the lack of
API machine-processable descriptions. However, before any
significant progress and improvement can be made to the
existing practices and technologies for Web APIs, we need
to reach a deeper understanding of how APIs are developed

and exposed, what kind of descriptions are available, how
they are represented and how rich these descriptions are. In
this paper, we contribute directly to this goal by providing
a thorough analysis of the current state of Web APIs based
on investigating six groups of main characteristic features
including – general information, type of Web API, input
parameters, output formats, invocation details and comple-
mentary documentation. By using the collected data, we
can better realise what the current difficulties are, which
problems need to be addressed, and how should supporting
mechanisms be devised. In this sense, we show that RESTful
services are not the driving force behind the current Web API
proliferation and that Web API descriptions are characterised
by under-specification, where important information such as
the data-type and the HTTP method are commonly missing.

Future work will involve the conduction of the study, over
the same set of Web APIs, in one year. In this way we
will have an updated view of the Web API landscape and
can make statements about the changes and developments.
In addition, we are planning on investigating some further
correlations such as the ones between the domain and the
lever of reuse, or the granularity and the domain.

REFERENCES

[1] L. Richardson, S. Ruby: RESTful Web Services. O’Reilly
Media, May 2007.

[2] R. T. Fielding: Architectural styles and the design of network-
based software architectures. PhD thesis, University of Cali-
fornia, 2000.

[3] C. Pautasso: RESTful Web service composition with BPEL
for REST. Data and Knowledge Engineering journal, 68:851-
866, 2009.

[4] K. Gomadam, A. Ranabahu, M. Nagarajan, A. Sheth, K.
Verma: A Faceted Classification Based Approach to Search
and Rank Web APIs. In proceedings of the 2008 IEEE
International Conference on Web Services, 2008.

[5] M. J. Hadley: Web Application Description Language
(WADL). Technical report, Sun Microsystems, November
2006. Available at https://wadl.dev.java.net.

[6] Web Services Description Language (WSDL) Version 2.0.
W3C Recommendation, June 2007. Available at http://www.
w3.org/TR/wsdl20/.

[7] J. Franks, P. Hallam-Baker, J. Hostetler: HTTP Authentica-
tion: Basic and Digest Access Authentication RFC2617. The
Internet Society, 1999.

[8] M. Atwood, et al: OAuth Core 1.0 Specification. http://oauth.
net/core/1.0/.

[9] E. Al-Masri, M. H. Qusay: Investigating web services on the
world wide web. In Proceedings of WWW, pp.795-804, 2008.

[10] Y. Li, Y. Liu, L. Zhang, G. Li, B. Xie, and J. Sun: An
Exploratory Study of Web Services on the Internet. In Pro-
ceedings of ICWS, pp. 380-387, 2007.


