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Abstract

Group Key Agreement (GKA) mechanism plays a crucial role in the realization of various

secure applications in various networks such as, but not limited to, sensor networks, Inter-

net of Things (IoT), vehicular networks, social networks, and so on. To be suitable for IoT,

GKA must satisfy several critical requirements. First, a GKA mechanism must be robust

against a compromised device attack and satisfy essential secrecy definitions without the

existence of a Trusted Third Party (TTP). TTP is often used by IoT devices in the estab-

lishment of ad hoc networks and usually, these devices are resource-constrained. Second,

the GKA mechanism must be capable of distributing session keys successfully even with

offline devices. Third, GKA must reduce the burden of heavy cryptographic computations

for IoT devices. Based on these observations, in this paper, we propose a new GKA scheme

that satisfies all the aforementioned requirements. The proposed scheme leverages smart

contracts to alleviate the computational and storage overheads on the IoT devices induced

by cryptographic functions. It also brings the advantage of asynchronism such that offline

devices will be able to compute the group key once they are online since the essential in-

formation for obtaining the group key is stored inside the blockchain. We implement and

test the proposed scheme on an Ethereum test network. The obtained results show that it

consumes 5,264,150 gas to create a group, 994,178 gas to add a new member, and 798,431

gas to update a group key when the group has 20 members.
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Chapter 1

Introduction

IoT (Internet of Things) devices have become ubiquitous in our daily life (Kangath, 2018),

and the data they are dealing with are more sensitive than ever. For instance, we have

smartwatches that monitor our hearthbeat, smart vehicles that keep track of our location,

and so on. These devices need to communicate and exchange data with each other. To

do so, they can engage in group communications over computer networks, such as ad-

hoc networks. An instance of such a group communication is a fleet of smart vehicles

broadcasting their positions to each other. However, if those communications happen over

insecure networks, adversaries can eavesdrop on packets exchanged and obtain copies of

those data. To prevent such attacks, group members can use a robust GKA (Group Key

Agreement) to devise a session key that will secure their communication channels prior to

exchanging messages.

From the definition of NIST (Barker, 2015), a key agreement is a key establishment

procedure in which two or more participants contribute information to compute a common

session key so no participants can obtain that key without the share of others. Generally,

a key agreement is considered a GKA if it can support more than two participants. The

first known key agreement is Diffie-Hellman key agreement (Diffie & Hellman, 1976). For

Alice and Bob to obtain a common session key, they proceed as follows:

1
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1. Both agree on a group G of generator g and of prime order q

2. Alice randomly generates a, computes u = ga mod q, and sends u to Bob

3. Bob randomly generates b, computes v = gb mod q, and sends v to Alice

4. Both compute the session key ssk = gab mod q = ub = va

Nevertheless, this key agreement only supports two parties. Multiple works have proposed

group key agreement schemes (Kim, Perrig, & Tsudik, 2004b; Choi, Hwang, & Lee, 2004;

Arifi, Gardeshi, & Farash, 2012; Zhang, Wu, Domingo-Ferrer, Qin, & Dong, 2015), but

these schemes are based on assumptions that do not hold in IoT environments. For in-

stance, they assume that all group members will be online during the execution of a GKA,

whereas IoT systems often employ power management mechanisms that can put some

devices in hibernation mode to maximize the lifetime of networks composed of battery-

powered devices (Kim et al., 2017; Rahimi & Chrysostomou, 2019), hence, in that case

some group members may not be online during the execution of the GKA. Therefore, in

such environments, group members should still be able to devise a common key after the

execution of a GKA even if some devices are offline. In addition, IoT devices are typically

resource-constrained, hence having them execute all cryptographic operations may reduce

their lifetimes. Therefore, a GKA scheme could delegate cryptographic operations to re-

duce their burden. Furthermore, the fact that IoT devices are resource-constrained make

them an easy target for adversaries (Meneghello, Calore, Zucchetto, Polese, & Zanella,

2019). Thus, a GKA scheme for IoT should provide post-compromise security, i.e., the

security of a communication session between group members should be preserved even if

one of the group members was compromised (Cohn-Gordon, Cremers, & Garratt, 2016).

Generally, GKA schemes presume the existence of a TTP (Trusted Third Party), such

as a server that will store the public keys of group members and their identities, or that will

perform some precomputations on information shared by group members. Meanwhile, a

TTP can be regarded as a single point of failure. For example, if a GKA uses a TTP to
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perform some precomputations on shared information and that TTP is brought down, then

the GKA execution will fail. However, though blockchain was first used in the development

of a cryptocurrency system (Nakamoto, 2008), its specifications, such as the immutability

of data stored on it, position it as a suitable candidate to replace a TTP. In addition, with

smart contracts, users can deploy executable codes on the blockchain (Buterin, 2014). If

a user sends a transaction to the blockchain that calls one of these codes, it will trigger

the code’s execution. Hence, blockchain can provide an always-online trusted execution

environment.

Our Contributions. In this work, we proposed an asynchronous GKA based on smart

contract. Along the way, we define blockchain and smart contract functionalities necessary

for its establishment. Also, we define the different security requirements needed and prove

that, indeed, our proposed GKA fulfills those security requirements. Our proposed GKA

uses a smart contract to host the different key materials and delegate part of the compu-

tations. It also supports the addition and removal of members. Simulation results on the

Ethereum’s test network show that it consumes 5,264,150 gas to create a group, 994,178

gas to add a new member, and 798,431 gas to update a group key, when the group has 20

members.

Outline of this work. Chapter 2 provides an overview of related works, Chapter 3 pro-

vides insights about different notions that are necessary for the establishment of our work,

Chapter 4 presents our proposed solution, and finally, Chapter 5 provides a conclusion and

future works.



Chapter 2

Related Works

The existing works in the literature focus on GKA schemes that reduce the computational

burden of group members by delegating a part of the process to a TTP (Veltri, Cirani,

Busanelli, & Ferrari, 2013; Islam et al., 2018; Zhang et al., 2018). In these approaches, each

group member sends key materials to the TTP. Then, the TTP computes and broadcasts a

pre-group key to group members which will be used to derive the final group key. However,

all group members need to be online and send their contributions during a given time-frame.

In addition, these schemes do not provide post-compromised security and suffer from the

drawbacks of using a TTP.

In GKA, the main role of a TTP is to provide PKI (Public Key Infrastructure) related

operations. PKIs are used to store and manage public encryption keys used by nodes in a

network. To mitigate the issues of traditional PKIs, e.g., high centralization, decentralized

PKIs based on blockchain have been proposed (Yao & Wang, 2018; Hu, Xiong, Huang,

& Bao, 2018; Al-Bassam, 2017; Singla & Bertino, 2018). Since blockchain is immutable,

blockchain-based solutions improve the integrity of public keys. However, using decen-

tralized PKIs do not completely shield GKAs, and thus TTPs are still required to perform

some operations such as pre-key computation. To use blockchain in conjunction with GKA,

Schindler et al. proposed a distributed key generation system that leverages Ethereum’s

4
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smart contract for communication (Schindler, Judmayer, Stifter, & Weippl, 2019). In their

scheme, TTP is no longer needed to handle keys and some operations are executed on

Ethereum through smart contracts for devices’ efficiency. However, all group members

must be online during the initial operation, and a subset of group members must cooperate

to obtain the secret key. This is not practical in an environment where some members have

an intermittent connection.

Most importantly, none of the previously cited works offer post-compromise security

and asynchronism concurrently. Some of the existing schemes provide those requirements

for large groups (Cohn-Gordon, Cremers, Garratt, Millican, & Milner, 2018; Barnes et al.,

2020). However, both rely on tree-based Diffie-Hellman construction. Basically, for four

nodes Alice, Bob, Carl and David with private-public key (a,ga),(b,gb),(c,gc),(d,gd),

respectively, the group key is computed as follows:

• Alice and Bob combine their keys to compute g(ab)

• Carl and David combine their keys to compute g(cd)

• the group is computed by combining g(ab) and g(cd): ssk = gg(ab)g(cd)

With such a construction, it is difficult to delegate part of the computation unless we rely

on a TTP. Hence, they are impractical for resource-constrained IoT devices.



Chapter 3

Preliminaries

In this chapter, we introduce the background knowledge necessary for the establishment of

this work. Notably, we cover Elliptic curve, Blockchain, and Smart Contract.

3.1 Notations

We use the following notations:

Z∗n Set of integers mod n excluding zero

{0,1}` Set of all binary strings of fixed length `

{0,1}∗ Set of all binary strings of arbitrary length

a || b Concatenation of the string a and b

| G | The number of elements in a set G

a ∈R G The element a is sampled uniformly and at random from the set G

(k,K)
Given a private-public key pair (k,K), k represents the private key, and

K represents the public key

(P.x) Given a point P on an elliptic curve, P.x represents the x-coordinate

Pr(A) Probability of event A

6
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3.2 Elliptic curve

The materials covered in this section is based on (Stallings, 2017; Washington, 2008).

An elliptic curve is a function defined by an equation of the form:

y2 = x3 +ax+b, (3.1)

where a and b are constants. That equation is formally known as a Weierstrass equation.

Figure 3.1 shows a graphical representation of such a function for {a = 1,b = 1}. For

completeness, an elliptic curve includes a point O of coordinate (∞,∞) known as point at

infinity, its importance will be implicitly shown later.

Given a field K, we say that an elliptic curve E is defined over K if a,b ∈ K, and we

denote by E(K) the set of points all points (x,y) lying on the curve E including the point

O. Formally speaking,

E(K) = {O}∪{(x,y) ∈K×K | y2 = x3 +ax+b}

3.2.1 Group on Elliptic curve

From an elliptic curve E defined over a field K and the set of points E(K), if the equa-

tion 3.2 is verified,

4a3 +27b2 6= 0 (3.2)

We can define a group equipped with the addition operation (+) denoted by (E(K),+),

and whose properties are the following:

• (Closure) If A,B ∈ E(K) then A+B ∈ E(K)

• (Associativity) A+(B+C) = (A+B)+C for all A,B,C ∈ E(K)

• (Commutativity) A+B = B+A for all A,B ∈ E(K)
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Figure 3.1: Elliptic curve y2 = x3 + x+1

• (Identity element) P+O = P for all P ∈ E(K)

• (Inverse element) Given P∈E(K), there exist an element P∈E(K) such that P+P=

P+P = O

It is worth nothing that in a group generated over an elliptic curve, a multiplication opera-

tion (×) is defined as a binary operation between a scalar and a point, i.e., given a scalar

a ∈K and a point P ∈ E(K),

u×P = P+P+P+ · · ·+P︸ ︷︷ ︸
u times

which is equivalent to the addition of the point P on itself u times.

Numerical definition of addition. Given two points P,Q ∈ E(K) of coordinates

(xP,yP), (xQ,yQ), respectively, it is possible to graphically add them and find the resulting

point R of coordinates (xR,yR). However, in this work, we are interested in a computable

form of the addition operation. Hence, when we compute R= P+Q, the addition operation
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is performed as follows:

• Case xP 6= xQ:  xR = m2− xP− xQ

yR = m(xP− xR)− yP

(3.3)

where m =
yQ−yP
xQ−xP

• Case xP = xQ and yP = yQ:

 xR = m2−2xP

yR = m(xP− xR)− yP

(3.4)

where m =
3x2

p+a
2yP

, with a being the value set in equation 3.1.

• Case xP = xQ and yP =−yQ:

P+Q = O (3.5)

where O is the point at infinity. In this case, Q is the inverse of the point P and can

be denoted as −P.

• Case xP = xQ and yP = yQ = 0:

P+Q = O (3.6)

it should be noted that in real-world applications, it is difficult to encounter this case.

3.2.2 Elliptic curve over finite field

An elliptic curve E defined over a finite field Fq is a function of the form

y2 mod q = (x3 +ax+b) mod q
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Figure 3.2: Elliptic curve y2 = x3 + x+1 over F23

where a,b ∈ Fq satisfy the equation 3.2, and q is a prime greater than three. We use E/Fq

to denotes an elliptic curve E defined over Fq.

Figure 3.2 represents a graph of the elliptic curve y2 = x3 + x+1 defined over F23. By

comparing figure 3.1 and figure 3.2, we can observe that points in figure 3.2 seem to have

no correlation, except the fact the graph has a symmetry around the middle.

Points addition over Fq. The addition of points in E(Fq) follows the same definitions

as equations 3.3, 3.4, 3.5, 3.6 with respect to modular arithmetic.

Advantages of Elliptic Curve in Cryptography. Using Elliptic curve over finite

field to develop cryptography schemes has the advantage of being less resource-demanding

than classical systems, such as RSA. For instance, Blake et al. showed that a key of 313-

bits in an elliptic curve cryptosystem offered the same security advantages as a key of

4096-bits in RSA (Blake, Seroussi, & Smart, 1999). Furthermore, Daswani and Boneh

conducted experiments using a PalmPilot, which was a hand-held device released in 1997

with a CPU of 16MHz, and they showed that generating a 512-bit RSA took 3.4 minutes

whereas generating a 163-bits Elliptic curve digital signature took 0.597 seconds (Daswani

& Boneh, 1999).
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Intractable problems. In computer science, a problem is said to be intractable if there

exist no efficient algorithms that can solve it, i.e, there is no algorithm with polynomial

time complexity that can solve that problem. Therefore, a PPT (Probabilistic Polynomial

Time) adversary is any algorithm that has access to a source of randomness and whose

number of steps can be express by a function f () such that f is bounded by a polyno-

mial function. Given E/Fq, for this work, we assume the following two problems to be

intractable:

• Discrete Logarithm Problem over Elliptic Curve (DLPEC): Given P,Q ∈ E(Fq),

it is difficult for any PPT adversary A to find a value m ∈ Z∗n such that Q = mP, i.e.,

the advantage of A given by the following expression is negligible:

AdvECDLP
A = Pr[{m|Q = mP}← A(P,Q)]

• Computational Diffie-Hellman problem over Elliptic Curve (CDHEC): Given

tow points a.P,b.P ∈ E(Fq) with a,b ∈ Z∗n. It is difficult for any PPT adversary

A to compute ab.P, i.e., the advantage of A given by the following expression is

negligible:

AdvCDHEC
A = Pr[ab.P← A(aP,bP)]

3.2.3 ElGamal Encryption over Elliptic Curve

Given E/Fq where the DLPEC is instractable in the subgroup E(Fq), let P ∈ E(Fq) be a

base point with a large prime order n. The ElGamal encryption over E(Fq) is a public key

encryption scheme made of three algorithms (GenKey,Enc,Dec), where GenKey is the key

generation algorithm, Enc is the encryption algorithm, and Dec the decryption algorithm.

The description of GenKey,Enc, and Dec are as follows:

• GenKey: Alice randomly selects a variable a∈Z∗n and computes A = a.P. The public

key is A and the private key is a.
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• Enc: For Bob to send a message m to Alice, it converts m into a point M ∈ E(Fq),

and uniformly at random selects a secret nonce r ∈ Z∗n. Then, it computes C′ = r.P

and C = r.A+M. The ciphertext is (C′,C).

• Dec: To decipher the ciphertext (C′,C) and obtain the message m from M, Alice

computes K = a.C′. Then, it computes M from C as follows: M =C−K = (r.a.P+

M)− (r.a.P). Once Alice obtains M, it converts the point M into the actual message

m.

Homomorphism. An encryption scheme (GenKey,Enc,Dec) is homomorphic if it

accepts an operator ◦, such that ∀m1,m2 ∈M the following equation is verified:

Enc(m1 ◦m2) = Enc(m1)◦Enc(m2)

where M is the set of all possible messages accepted by the scheme.

ElGamal encryption over E(Fq) is homomorphic for the addition (+) operation. Given

the private-public key pair (a,A), two plaintexts m1, m2 ∈ E(Fq), and some random num-

bers r1,r2 ∈ Z∗n, r = r1 + r2, we demonstrate the homomorphic property:

Enc(m1)+Enc(m2) = (r1.P,r1.a.P+m1)+(r2.P,r2.a.P+m2)

= ((r1 + r2)P,(r1 + r2).a.P+(m1 +m2))

= (rP,r.a.P+(m1 +m2))

= Enc(m1 +m2)

3.3 Blockchain and Smart Contract

This section is based on joint work with William Stone, Jeehyong Kim, Daeyoung Kim, and

Junggab Son that appears in IEEE Access (Youdom Kemmoe, Stone, Kim, Kim, & Son,

2020).
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Block i+2
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Figure 3.3: Structure of Blockchain

3.3.1 Blockchain

In 2008, Satoshi Nakamoto presented a decentralized payment system named Bitcoin (Nakamoto,

2008). In Bitcoin, the history of transactions is stored in a contiguous set of blocks, in

which blocks that are linked and protected through cryptographic primitives. Nakamoto’s

idea sparked what we know today as blockchain. Blockchain is a distributed data structure,

more or less similar to a distributed ledger, formed by consecutive blocks linked through

cryptographic hashed values. Each block contains a set of transactions, a nonce, a times-

tamp, and a cryptographic hash value to a preceding block. The nonce, timestamp, hash of

the previous block, and an accumulated hash of all transactions are part of the block header.

Figure 3.3 shows a general representation of the structure of a blockchain.

A blockchain is maintained by a set of independent nodes on a computer network (each

node has a copy of the blockchain). However, It can happen that not all nodes have the

same number of blocks. In that case, a general solution is to consider the longest chain as

the valid one. Figure 3.4 shows an abstract representation of a blockchain maintained by

four independent nodes. Node 2 and Node 4 have four blocks, whereas Node 1 has two

blocks and Node 3 has three blocks. In that case, It is the chain held by Node 2 and Node

4 that should be considered as the valid chain.

A blockchain has two basic operations: read (to read the content of blocks) and append

(to append new blocks). Although an adversary might try to remove/modify some blocks,

it requires extremely expensive computations, which makes them nonviable. For instance,
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Node 2

Node 3

Node 1

Node 4

Blockchain's Network

Figure 3.4: Abstract Blockchain maintained by four nodes

given the blockchain

bn→ ··· → bi→ ··· → b2→ b1→ b0

if the block bi is modify, then its hash value will also change. This will break the link in

the blockchain and create two subchains:

bn→ ··· → bi+2→ bi+1 bi−1→ ··· → b2→ b1→ b0

Therefore, the original blockchain will become invalid. To ensure that the blockchain stays

valid, the attacker will have to modify all the blocks starting from bi+1 to bn (updating the

hash value of bi in bi+1 will change the hash value of bi+1) and re-append them. However,

for a block to be appended, it must be validated through a consensus protocol. For instance,

in Bitcoin, the consensus algorithm requires the hash of a block to have to a specific for-

mat (Nakamoto, 2008). Therefore, nodes willing to append new blocks have to compute

the hash values of those blocks until the find values that match the specified format. In addi-

tion, blockchain has a de facto fault tolerance, because as long as a non-negligible portions

of nodes maintaining the blockchain is online, then the blockchain will remain available.

Cryptographic primitives in blockchain. Blockchain is able to provide a trusted

execution environment thanks, in part, to crucial cryptographic primitives. Following are

two primitives used by blockchain that are important in the establishment of this work:

• Public Key Cryptosystem: it is a crytographic system that uses a public-private key
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pair such that for a private key k, its related public key K, and a bijective function

f : K× I→O accepted by the cryptosystem, the equation 3.7 is verified for any pair

(x,y) ∈ I×O.  f (K,x) = y

f−1(k,y) = x
(3.7)

where I is the set of inputs, O is the set of outputs and K is the set of keys. Each

node Ui interacting with a blockchain has a unique public-private key pair (i, I).

• Digital Signature: it is a cryptographic scheme based on public key cryptosys-

tem that allows one party, a signer, to digitally sign a message m such that any

other parties, verifiers, can verify m was issued the signer and was not altered in

transit. Formally speaking, a digitial signature scheme consists of three algorithms

(GenKey,Sign,Verify):

– GenKey(1λ): it takes as input a security parameter 1λ and outputs a private-

public key pair (k,K).

– Sign(k,m): it takes as input a private key k, a message m. It outputs a signature

σ.

– Verify(K,σ,m): it takes as input a public key K, a signature σ, a message m. It

returns “accept” if σ was indeed generated for m using k, or “reject”.

In blockchain, all transactions are digitally signed by their issuers. This prevents a

node A from modifying a transaction issued by a node B (Integrity), and it prevents a

node C from passing one of its transactions as a transaction issued by another node,

or from denying ownership of a transaction it issued (Non-repudiation).
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Figure 3.5: Overview of Smart Contracts

3.3.2 Smart Contract

A smart contract is a set of instructions stored on a blockchain that is executed whenever

a transaction sent to the blockchain references it. Bitcoin’s script language used to exe-

cute and verify transactions can be considered as the first application of smart contracts in

blockchain. However, it is not turing-complete, i.e., it cannot be used to write any type

of program. Later in 2015, Vitalik Buterin (Wood, 2019) created Ethereum, a blockchain

platform that features a decentralized payment system and a Turing complete language.
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How Smart Contract Work. We provide a high level overview of the functioning of

smart contracts, starting from their development until their execution. Figure 3.5 provides a

graphical representation of the different steps involve in the functioning of smart contracts.

However, before diving in the description of those steps, we give a definition of the terms

that will be used:

• Developer: an individual who implements the logic of a smart contract using a spe-

cific set of instructions compatible with or provided by a blockchain platform

• User: any entity that uses the services of a smart contract

• Transaction: a query made to a smart contract program

• Blockchain platform: the set of applications and protocols used to maintain and man-

age a blockchain

• Node: an entity having an account on the blockchain platform that can execute and

validate transactions

• Faulty node: a node susceptible to submitting false results after the execution of a

smart contract

Following is a step-by-step process of the smart contract:

Step 1: Developers write the logic for the contract in a programming language supported

by the blockchain platform they wish to use. Then, using a specific compiler (usually pro-

vided by the blockchain platform), they compile the source code representing their smart

contract and obtain a byte code.

Step 2: After obtaining the byte code, they will publish it to the blockchain platform where

it will be stored on the blockchain. Depending on the platform used, once the smart con-

tract program is published, it will be either read-only or modifiable. For instance, Ethereum
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does not allow smart contracts to be modified (Wood, 2019), whereas EOSIO allows over-

writing through the uploading of a new byte code (EOSIO-CLEOS/CLEOS-set, n.d.). In

case it is read-only, to provide an update, the developers will need to publish a new version

of the smart contract and redirect users to it. Once uploaded, the smart contract is at its

initial state. The initial state represents the initial values of the internal variables of that

smart contract.

Step 3: Access to a published smart contract program depends on the blockchain plat-

form. In the case of Ethereum (Wood, 2019) and Neo (NeoContract White Paper, n.d.), the

blockchain platform returns an address to the developers. The address will then be used to

interact with the smart contract. In the case of EOSIO, the smart contract is published to an

account (hosted on the blockchain platform) that was previously created by the developers.

The identifier of the account will be used to access and interact with the smart contract.

Once users obtain the address/identifier, they can begin sending transactions. Each trans-

action should contain the function of the smart contract that they wish to utilize and the

function’s arguments. If an amount of platform currency is needed to start the function’s

execution, that amount will be transferred alongside the transaction. The transaction will

be stored in the blockchain platform’s pool of transactions that await to be executed and

validated. Step 3 in figure 3.5 is based on the functioning of (Wood, 2019; NeoContract

White Paper, n.d.).

Step 4: From the pool of transactions, the blockchain platform will select a set of trans-

actions to be executed and validated. During the execution phase, the functions of a smart

contract that are specified in the transaction will be executed by a set of nodes. During

the validation phase, the nodes that executed the transaction will compare their results and

select the one to be kept according to a consensus protocol. For instance, in a Byzantine

Fault Tolerant (BFT) consensus protocol based on (Pease, Shostak, & Lamport, 1980),
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the blockchain platform will select n nodes to execute and validate a set of transactions

T = {t1, t2, ..., tq}, where ti (i ∈ {1, ...,q}) is a transaction and n ≥ 3m+ 1 with m being

the maximum number of possible faulty nodes. Each node k will execute the smart con-

tract tied to each transaction and submit a set of results rk = {r1k ,r2k , ...,rqk} where rik

represents the result of each transaction ti ∈ T , with k ∈ (1, ...,n). From the set of results

R = {r1,r2, ...,rn}, a result r′ that was obtained by n′ nodes with n′ > (n+m)/2 will be

considered as the valid result. Also, there is proof-based consensus where instead of a

group of nodes agreeing on a final answer, each node has to prove that it has executed

a certain operation, or it is in possession of a certain value. The first node to present a

valid proof is elected as the leader and is allowed to attach the result of its execution to

the blockchain (Nguyen & Kim, 2018). In addition, there are hybrid consensus protocols

which are based on both BFT and proof-based protocols (Pass & Shi, 2016; Wu, Song, &

Wang, 2020).

Step 5: Once the valid result has been selected, it will be inserted in a block that will

be appended to the blockchain. Also, the initial state of each smart contract specified in set

T will be updated, i.e., if a validated transaction altered the internal variables of a smart

contract, those new values will now be considered as initial values by future transactions.



Chapter 4

Asynchronous Group Key Agreement

from Smart Contract

In this chapter, we present a GKA aimed at IoT environments. During the group creation,

only the group creator needs to be online, hence the asynchronism. In addition, a smart

contract is used to perform some pre-computation and hold necessary information to devise

the final group key. This allows to reduce the computational workload and the required

amount of storage of group members.

4.1 System and Security Models

4.1.1 System Model

In this section, we give a description of the different components that constitute the system

in which our proposed GKA operates.

Ideal Blockchain Fidl. Our system model includes an ideal blockchain denoted by Fidl

and whose properties are the followings:

• Fidl uses a public key cryptosystem based on an elliptic curve E/Fq where DLPEC

and CDHEC are assumed to be intractable in the subgroup E(Fq).

20
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Figure 4.1: Abstract representation of the proposed scheme.

• Each node Ui interacting with Fidl has an account on the system. The account has a

long-term key pair (lki,LKi). The private key lki is assumed to be stored offline in

a secured memory location of Ui. The public key Lki is assumed to be available on

Fidl, and it can act has Ui’account identifier.

• Transactions in Fidl are digitally signed by their issuers. For any transaction Tx, any

node can extract the signature and verify it.

• Fidl supports stateful smart contracts defined using a Turing-complete programming

language.

• We assume the access mode of Fidl to be public, i.e., any node on the blockchain can

read information stored in it (Denis, 2018).

Smart Contract Fidl SC. Our system is also equipped with a stateful smart contract

denoted by Fidl SC that is hosted on Fidl. We provide a formal definition of Fidl SC’ func-
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tionalities in section 4.2.

Participants. Aside from the defined blockchain and smart contract, the system model

includes participants that use Fidl SC to establish a group key. Let U be the set of all nodes

with an account on Fidl. To participate in the protocol, a node Ui ∈U needs to have a set

of ephemeral keys stored in Fidl SC. From this, we denote Ur ⊆U as the set of all nodes

in Fidl having ephemeral keys stored in Fidl SC. In Ur, we identify two types of nodes:

• Initiator: it is a node denoted by U0 that wants to create a group G with a subset R of

nodes in Ur, and establish a group key. It has the role of group administrator that is

in charge of adding and removing group members. U0 is the only node that needs to

be online during the execution of the group creation.

• Responders: they are the nodes R = {U1,U2, . . . ,Um} that join a group G created by

an initiator U0, and obtain the exchanged group key, with R ⊆ Ur. Responders are

assumed to be less powerful than the initiator and do not need to be online.

During phase one of the protocol’s execution, the initiator requests the long-term and

ephemeral public keys of responders from Fidl SC. Then, it uses the keys to compute and

transfer key materials to Fidl SC, which will be used to devise the group key. During phase

two, once Fidl SC computes the group key (ssk), the initiator and responders can request

for ssk once they are online. During phase three, nodes in G can use ssk to secure their

communication channels. Figure 4.1 provides a graphical representation of those phases.

4.1.2 Security Model

In this section, we define the different security properties on which our proposed GKA is

based.

• Weak Backward Secrecy: new group members cannot have access to previous

group keys (Kim, Perrig, & Tsudik, 2004a).
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• Weak Forward Secrecy: a former group member should not be able to obtain new

group keys (Kim et al., 2004a).

• Key Independence: an adversary that knows a set of group keys cannot deduce other

group keys.

• Perfect Forward Secrecy (PFS): an adversary which is able to obtain the long-term

private keys of all group members cannot be able to compute the session keys of

previous sessions (Menezes, Oorschot, & Vanstone, 1996). With this property, even

if all group members are compromised, the adversary will not be able to obtain a

plaintext copy of their past exchanges.

• Post-Compromise Security (PCS): from the definition of Conh-Gordon et al. (Cohn-

Gordon et al., 2016), PCS is the ability of a protocol to offer security guarantee about

a communication between different parties even if one of those parties was compro-

mised. For instance, in case Alice and Bob use a key agreement protocol that pro-

vides PCS to secure their communication, if Alice is compromised (the session key

and its long-term secret key is exposed), then after a successful execution of a key

refreshing process, the security of the communication between Alice and Bob should

be re-establish. Obviously, this is only possible if during the execution of the key

refreshing process, the adversary is passive.

4.2 Group Key Agreement protocol

We now focus on the construction of our GKA. First, we define the different functionalities

Fidl SC, and we introduce the concept of asynchronous biparty key agreement. Second, we

define the three functionalities of our proposed GKA: group creation, group key update and

member events (join and leave).
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Fidl SC functionalities. Fidl SC smart contract is a tuple of PPT algorithms Fidl SC =

(postEphK,getEphK,createGroup, getPreGrpK,getKeyMaterials,updateGrpK,addMember)

with the following properties:

• postEphK(Yi): A node Ui ∈U uploads a set of ephemeral keys Yi to Fidl SC. If there

is already a set Yi stored in Fidl SC, executing postEphK will overwrite Yi with the

new values.

• getEphK(LKi): it returns an unused ephemeral key EKi from the set Yi stored in

Fidl SC of a node Ui with public key LKi.

• createGroup(G ,Z,K,Φ,Y ): this function takes as inputs G (the set of group mem-

bers), Z, K, Φ (three set of key materials), Y (the set of ephemeral keys of members

in G). It computes the pre-group key for the group G and stores K,Φ, and Y on

Fidl SC. In addition, it generates and returns G .ID, which is the ID of the group, to

all members of G .

• getPreGrpK(G .ID): this function is triggered by a node Ui ∈ G with ID = G .ID. It

returns the pre-group key of the group G to the Ui.

• getKeyMaterials(G .ID): this function is triggered by a node Ui ∈G with ID = G .ID.

It returns the sets K,Φ,Y to the Ui.

• updateGrpK(G .ID,K,Y ,α): this function is triggered by a node Ui ∈ G with ID =

G .ID. It updates the pre-group key sskpre using α and replaces K and Y stored in

Fidl SC with the ones passed as arguments.

• addMember(G .ID,z,b,Φ′,Y ′): this function is triggered by U0, the initiator of the

group G with ID = G .ID. It updates Φ with Φ′, and Y with Y ′. Also, it appends b

to K. Then, it updates the pre-group key using z to include the new member.

Asynchronous biparty key agreement(ABKA). It is a key agreement protocol that

allows two parties, initiator and responder, to asynchronously establish a common session
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key. In our case, the purpose of such a protocol is to allow the initiator to obtain the

different key materials of responders in such a way that no adversary can also obtain them.

Therefore, the ABKA must be robust. Thus, for our proposed GKA, we consider X3DH

(extended tripple Diffie-Hellman) protocol (Marlinspike & Perrin, 2016) as a suitable

candidate (also, it is not patented). It uses private-public key pairs defined over E/Fq. Let

us consider two parties Alice and Bob. Alice has an identity key pair (ika, IKa), private

and public, respectively. Bob has an identity key pair (ikb, IKb), a signed pre-key pair

(skb,SKb), and a one-time pre-key pair (okb,OKb). The public part of each key pair is

available on a TTP. For Alice to exchange a secret key with Bob who is offline, Alice

proceeds as follows:

• Alice generates an ephemeral key pair (eka,EKa) and sends EKa to the TTP.

• Alice request Ikb,SKb, and OKb from the TTP

• Then, Alice executes X3DH (ika, IKb,eka,SKb,OKb). That operation computes:

ssk = KDF [(SKb)
ika ||(IKb)

eka ||(SKb)
eka||(OKb)

eka],

where KDF is a Key Derivation Function which can be implemented using a cryptographic

hash function (Krawczyk, 2010). It should be noted that OKb can be omitted. In that case,

Alice executes X3DH (ika, IKb,eka,SKb) which computes:

ssk = KDF [(SKb)
ika||(IKb)

eka||(SKb)
eka]

Bob obtains the exchanged key by executing X3DH(ikb, IKa,skb,EKa) which computes:

ssk = KDF [(IKa)
skb||(EKa)

ikb||(EKa)
skb]

For the purpose of our proposed scheme, we have omitted the concept of signed pre-
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key and one-time key. Furthermore, we consider long-term key pair to be equivalent

with identity key pair. For instance, given a node Alice having long-term key (lka,LKa),

ephemeral key (eka,EKa), and a node Bob having long-term key (lkb,LKb) and ephemeral

key (ekb,EKb), we have the following:

X3DH(lka,LKb,eka,EKb) = X3DH(lkb,LKa,ekb,EKa)

4.2.1 Group creation

The group creation process is the core of our proposed GKA. After a successful execution

of this process, a group G is formed between an initiator and its responders, and a group

key is established. It constitutes of four subprocesses which are setup, Initiation, Smart

Contract Computation, and Acquisition of the group key. Figure 4.2 shows the overall

group creation process with the different transactions involved.

Setup. This process is divided into two phases:

• Phase 1: The setup process copies the parameter of the elliptic curve E/Fq used by

Fidl. Specifically, it uses the same large prime q used by Fidl to define E ′/Fq such that

E ′(Fq) ≡ E(Fq). In addition, it selects the base point P ∈ E ′(Fq) with large prime

order n such that P is the same base point used by E/Fq. It selects two cryptographic

hash functions H1 : Fq→ E(Fq) and H2 : {0,1}∗→{0,1}`, where ` is a fixed length.

It is worth nothing that this phase is only executed by all nodes when instantiating

the system for the first time.

• Phase 2: Each node Ui ∈U generates a set of ephemeral keys EPi = (yi,Yi), where

yi = {eki1,eki2, . . . ,ekiw}, and Yi = {EKi1,EKi2, . . . ,EKiw}. For 1 ≤ j ≤ w, eki j ∈R

Z∗n and EKi j = eki j × P. Then Ui posts Yi to Fidl SC by sending the transaction

Fidl SC.postEphK(Yi) to Fidl. It is worth nothing that EPi should be frequently re-

placed.
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Figure 4.2: Group creation process

Initiation. During the initiation process, the initiator U0 computes the essential key

materials that will be used to generate the group key and sends those to Fidl SC. We outline

this process in Algorithm 1. Firstly, U0 selects the variables λ0,s ∈R Fq, and k ∈R Z∗n and

a non-used ephemeral key pair (ek0,EK0). Secondly, it encrypts H1(λ0) with EK0 using

ElGamal encryption. Finally, for each responder in R = {U1, . . . ,Um}, it gets a non-used

ephemeral key from Fidl SC and computes λ using X3DH protocol. Then, it encrypts k

and s for each member using H2(λ) and the collected ephemeral key. After this process, it

deletes λ. Once everything is done, it sends a transaction Fidl SC.createGroup() to Fidl.

Smart Contract Computation. Once U0 terminates the initiation process, the function

Fidl SC.createGroup() is executed by Fidl. We outline this process in Algorithm 2. The pre-

group key (sskpre) is computed as the sum of the encrypted H1(λi) variables stored in Z.

Following is the value of sskpre once the computation is done:

sskpre =
m

∑
i=0

[H1(λi)+ k(EKi)]
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Algorithm 1: Initiation of Group
1 Input: G = {U0}∪R
2 Require: Z[0 : m], Y [0 : m], K[1 : m], Φ[0 : m]
3 begin
4 Select λ0,s ∈R Fq and k ∈R Z∗n
5 Select a non-used ephemeral key pair (ek0,EK0)
6 Z[0]← H1(λ0)+ k×EK0
7 Y [0]← EK0
8 for i← 1 to m do
9 Y [i]← Fidl SC.getEphK(LKi)

10 λ← X3DH(lk0,LKi,ek0,Y [i])
11 Z[i]← H1(λ)+ k×Y [i]
12 K[i]← k⊕H2(λ)
13 Φ[i]← s⊕H2(λ||Y [i].x)
14 Delete λ

15 end
16 Send transaction Fidl SC.createGroup(G ,Z,K,Φ,Y ) to Fidl
17 end

The righteousness of this operation is verified by the homomorphic property of ElGamal

encryption. During this process, G .ID, the identifier of the group G , is generated and

forwarded to all members in G .

Algorithm 2: Computation of Pre-Group Key
1 Function createGroup(G ,Z,K,Φ,Y ) is
2 sskpre← 0
3 for i← 0 to m do
4 sskpre← sskpre +Z[i]
5 end
6 Generate G .ID
7 Store G ,Z,K,Φ,Y
8 return G .ID
9 end

Acquisition of the group key. Once the Smart Contract Computation step is com-

pleted, responders can derive the group key by executing Algorithm 3. Firstly, each Ui ∈ R

needs to get the key materials from Fidl SC. Then, using X3DH protocol, they obtain the

λ that was computed by the initiator during the Initiation step. Using λ, they decipher the
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encrypted value of k and s. Secondly, they get the pre-group key from Fidl SC and compute

θ:

θ = H1(λ0)+H1(λ1)+ · · ·+H1(λm).

Finally, using KDF, the responders obtain ssk from θ and s. Then, they delete θ and s. The

initiator also executes Algorithm 3 to get the group key. However, it starts the execution at

line 7 because it already has the key materials stored in local memory.

Algorithm 3: Acquisition of Group Key
Input : idx //the index of node in G
Return: ssk //The group key

1 begin
2 K,Φ,Y ← Fidl SC.getKeyMaterials(G .ID)
3 Get EKidx and EK0 from Y
4 λ← X3DH(lkidx,LK0,ekidx,EK0)
5 k← K[idx]⊕H2(λ)
6 s←Φ[idx]⊕H2(λ||EKidx.x)
7 sskpre← Fidl SC.getPreGrpK(G .ID)
8 w← 0
9 for i← 0 to m do

10 w← w+Y [i]
11 end
12 w← k×w
13 θ← sskpre−w
14 ssk← KDF(s||θ.x)
15 Delete θ,s
16 return ssk
17 end
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4.2.2 Group Key Update

To satisfy PCS’s requirements, our scheme needs to provide a mechanism to update the

group key such that the new group key depends on both the previous group key and freshly

generated key materials. This dependency is demonstrated by Cohn-Gordon et al. (Cohn-

Gordon et al., 2016).

Algorithm 4: Initiation of Key Update
Input : idx //index of node initiating key update
Require: Y [0 : m],K′[1 : m]

1 begin
2 Select k′ ∈R Z∗n, λ′idx ∈R Fq, ek′idx ∈ yidx
3 Y [idx]← EK′idx
4 for i← 0 to (m), i 6= idx do
5 Y [i]← Fidl SC.getEphK(LKi)
6 λ′← X3DH(lkidx,LKi,ekidx,Y [i])
7 K′[i]← k′⊕H2(λ)
8 Delete λ′

9 end
10 α← 0
11 for i← 0 to (m) do
12 α← α+Y [i]
13 end
14 α← α× k′−w−H1(λidx)+H1(λ

′
idx)

15 Send transaction Fidl SC.updateGrpK(G .ID,K′,Y ,α) to Fidl
16 end

The key update process is two-fold. Let us Uidx ∈ G be a node that wants to update the

group key. Firstly, Uidx executes the Initiate Key Update process outlined in Algorithm 4. It

selects k′ ∈R Z∗n,λ′idx ∈R Fq and a non-used ephemeral key pair (ek′idx,EK′idx). Next, it gets

a set of non-used ephemeral key of other members in G from Fidl SC. Then, using X3DH

protocol, it computes λ′ for others. After that, it encrypts k′ using λ′. Finally it computes

α and sends the transaction Fidl SC.updateGrpK() to Fidl. Following the homomorphic

property of ElGamal encrytion, we have

α =
m

∑
i=0

[k′(EK′i )]−
m

∑
i=0

[k(EKi)]−H1(λidx)+H1(λ
′
idx),
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where EK′i represents the newly selected ephemeral keys during Algorithm 4 and EKi rep-

resents the old ephemeral keys.

Secondly, once Fidl receives Fidl SC.updateGrpK(), it updates sskpre to ssk′pre by com-

puting sskpre +α:

ssk′pre =H1(λ0)+ · · ·+H1(λidx)−H1(λidx)+H1(λ
′
idx)+ · · ·+H1(λm)+

m

∑
i=0

[k′(EK′i )]

After this, other nodes in G can obtain the new group key according to Algorithm 5. Each

of which gets the new key materials from Fidl SC, and using X3DH protocol, it computes

λ′. Then, each node deciphers the encrypted value of k′ by using H1(λ
′). Next, each node

gets ssk′pre from Fidl SC, and from ssk′pre, it computes θ′. Finally, using KDF, each node

derives the new group key ssk′ from the previous key ssk and θ′. The initiator of the group

key update, Uidx, also obtains the new group key by executing Algorithm 5, but starting at

line 5 since it already has the new key materials stored in local memory.

Algorithm 5: Acquisition of New Key
Input : j //the index of node in G getting in the new key
Return: ssk′//the new group key

1 begin
2 K′,Φ,Y ← Fidl SC.getKeyMaterials(G .ID)
3 λ′← X3DH(lk j,LKidx,ek j,EKidx)
4 k′← K′[ j]⊕H2(λ)
5 ssk′pre← Fidl SC.getPreGrpK(G .ID)

6 w′← 0
7 for i← 0 to (|G |) do
8 w′← w′+Y [i]
9 end

10 w′← k′×w′

11 θ′← ssk′pre−w′

12 ssk′← KDF(ssk||θ′.x)
13 Delete θ′

Return: ssk′
14 end
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4.2.3 Member Events

Given a group G , it is possible for the initiator, U0, to add or remove a member. Hav-

ing access to these functionalities is particularly important because IoT environments are

dynamic, i.e., devices are added and removed depending on users’ needs.

Add Member. The addition of member is a process divided into two parts. First, for U0

to add a new member Um+1 to a group G , U0 initiates the addition of a new member process

as outlined by Algorithm 6. More in details, U0 selects a new secrete variable s′ ∈R Fq

and a non-used ephemeral key pair (ek0,EK0). Then, for each member in G including

the new member Um+1, U0 gets a non used ephemeral key from Fidl SC and computes λ.

Using H2(λ), U0 encrypts the secret variables s′ for each member. For the new member

Um+1, U0 computes b = k⊕H2(λ) (since Um+1 will need k to get the group key, but others

already possess k) and z = H1(λ) + k×EK′m+1 (this variable will be used to update the

pre-group key). Once everything has been computed, U0 erases λ from memory and sends

the transaction Fidl SC.addMember() to Fidl.

Second, once Fidl receives the transaction Fidl SC.addMember(), it triggers the execu-

tion of the function addMember() with the given parameters. That function updates the

values of sskpre as follows:

sskpre = sskpre + z

=
m+1

∑
i=0

[H1(λi)+ k(EK′i )]

After the smart contract completes its execution, the members of G derive the new group

key by following Algorithm 7. More precisely, the members {U1,U2 . . . ,Um,Um+1} get

the update key materials from Fidl SC through the transaction Fidl SC.getKeyMaterials().

Then, from Y , each extracts U0’s ephemeral key and its ephemeral key used by U0. Using

those keys, each computes λ by using the X3DH protocol and deciphers s′. However, Um+1,

the new member, gets the new pre-group key ssk′pre from Fidl SC, obtains the secret value k
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and computes the sum of ephemeral keys used by U0. Using that sum, k and ssk′pre, Um+1

computes θ′. Then, using θ′ and s′, it computes the new group key as ssk′ = KDF(s′||θ′.x).

For the old group members {U0,U1, . . . ,Um}, they execute the else-case in Algorithm 7.

They request the pre-group key from Fidl SC and compute θ′. Then, they compute the new

group key.

Algorithm 6: Initiate the addition of a new member
1 Input: G = {U0,U1, . . . ,Um},
2 Um+1//The new member to be added
3 Require: Y ′[0 : m+1], Φ′[1 : m+1]
4 begin
5 Select s′ ∈R Fq
6 Select a non-used ephemeral key pair (ek0,EK0)
7 Y ′[0]← EK0
8 for i← 1 to (m+1) do
9 Y ′[i]← Fidl SC.getEphK(LKi)

10 λ← X3DH(lk0,LKi,ek0,Y [i])
11 Φ′[i]← s′⊕H2(λ||Y [i].x)
12 if i=m+1 then
13 z = H1(λ)+ k×Y ′[i]
14 b = k⊕H2(λ)

15 Delete λ

16 end
17 Send transaction Fidl SC.addMember(G .ID,z,b,Φ′,Y ′)
18 end

Remove Member. To remove a member U j ∈ G , U0 simply re-executes the group

creation process starting at the Initiation for the new group G/U j.

4.3 Security Analysis

In this section, we thoroughly analyze the security of the proposed group key exchange

scheme.

Man-in-the-Middle attack: Given the current state of our GKA, it is possible for an ad-

versary A to impersonate the initiator U0 from the point of view of a member Ui and to
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Algorithm 7: Get new key after member addition
Input : idx//the index of node in G
Return: ssk′ //The new group key

1 begin
2 K,Φ,Y ← Fidl SC.getKeyMaterials(G .ID)
3 Get EKidx and EK0 from Y
4 λ← X3DH(lkidx,LK0,ekidx,EK0)
5 s′←Φ[idx]⊕H2(λ||EKidx.x)
6 if idx = m+1 then

//This case is performed by the new member Um+1
7 ssk′pre← Fidl SC.getPreGrpK(G .ID)

8 k = K[idx]⊕H2(λ)
9 w′← 0

10 for i← 0 to m+1 do
11 w′← w′+Y [i]
12 end
13 w′← k×w′

14 θ′ = ssk′pre−w′

15 else
//This case is performed by the old members including the

initiator
16 w′← w+ k×Y [m+1]
17 ssk′pre← Fidl SC.getPreGrpK(G .ID)

18 θ′ = ssk′pre−w′

19 end
20 ssk′ = KDF(s′||θ′.x)
21 Delete s′,θ′

Return: ssk′
22 end
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impersonate Ui from the point of view of U0. To prevent this attack, once can use a smart

contract to maintain a list of authorized nodes in case the amount of connected devices is

small. However, for large infrastructures, one can use a Decentralized Public Key Infras-

tructure (DPKI) on top of our scheme to authenticate public keys. (Sivakumar & Singh,

2017; Al-Bassam, 2017; Patsonakis, Samari, Kiayiasy, & Roussopoulos, 2019) propose

DPKI systems based on smart contracts, which make them suitable candidates to supple-

ment our scheme.

Definition 1 (Session). We consider a session to be a communication channel between

members in a group G protected by a secret group key ssk.

Theorem 1 (Perfect Forward Secrecy). Given E/Fq with base point P of order n, a group

G = {U0, . . . ,Um}, their long-term private keys δ = {lk0, . . . , lkm} and their long-term pub-

lic keys ∆ = {LK0, . . . ,LKm}, there is no PPT adversary A who can reveal ssk, the secret

group key of G .

Proof. From the Algorithm 3, ssk = KDF(s||θ.x). Given that Fidl access is public, A can

obtain sskpre, Y = {EK0, . . . ,EKm}, Φ = {s⊕H2(λ1||EK0.x), . . . ,s⊕H2(λm||EKm.x)} and

K = {k⊕H2(λ1), . . . ,k⊕H2(λm)} from Fidl SC.

From Algorithm 1, λi = X3DH(lk0,LKi,ek0,EKi). However, under CDHEC, it is im-

possible for A to compute λi from given δ,∆, and Y . Without λi, A cannot obtain k and s

from K and Φ. Also, under DLPEC, A cannot find k and compute w = ∑
m
i=0[k(EKi)] from

Y . A cannot compute θ = sskpre−w. Thus, given δ,∆,sskpre,Y ,Φ and K, A cannot com-

pute ssk. Therefore, Perfect Forward Secrecy is verified.

Theorem 2 (Known session key attack - Security). Given a group G = {U0, . . . ,Um} and

a set of their previous session keys D = {ssk1,ssk2, . . . ,sskn}, it is impossible for any PPT

adversary A to reveal sskn+1, the secret key of a future session, or ssk0, the secret key of a

past session.
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Proof. First, let’s suppose that every key in D were derived after a group creation pro-

cess or member addition process. In this case, any session key in D has the form ssk =

KDF(s||θ.x), with θ = ∑
m
i=0 H1(λi) and s ∈R Fq. Since θ is computed from randomly gen-

erated variables and s is randomly generated, ssk is random. Furthermore, since a KDF

is collision-resistant (Krawczyk, 2010), ssk is unique, so all keys in D are uncorrelated.

Therefore, A cannot use key in D to reveal sskn+1 or ssk0.

Second, let’s suppose some keys in D were derived after a key update, i.e., sski+1 =

KDF(sski||θ′.x). In this case, knowing sski is not sufficient to reveal sski+1.

Hence, our proposed scheme is resistant against Known session key attack.

Theorem 3 (Post-compromise Security (PCS)). Against a passive adversary A , given a

session between members in a group G = {U0, . . . ,Um}, it is sufficient for a compromised

group member Ui ∈ G to perform the update group key process to re-establish the security

of the session.

Proof. Once Ui is compromised, it is possible for A to obtains k,λi, and ssk. However, if

after the compromised Ui performs the Update Key process,

sskpre =H1(λ0)+ · · ·+H1(λi)+ · · ·+H1(λm)+
m

∑
i=0

[k(EKi)]

is updated to

ssk′pre =H1(λ0)+ · · ·+H1(λ
′
i)+ · · ·+H1(λm)+

m

∑
i=0

[k′(EK′i )]

and ssk is updated to ssk′ = KDF(ssk||θ′.x). Without knowledge of λ′i, A cannot compute

θ′.x and obtains ssk′. Therefore members in G can use ssk′ to re-secure their session. This

is only possible if A is passive after the compromise of Ui. Hence, PCS is verified under

the presence of a passive adversary.

Weak Forward secrecy. As stated in section 4.2.3, The removal of a group member
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is equivalent to executing the group creation process minus that member. From theorem 2,

we showed that each session key obtained after running a group creation process is unique.

Therefore, it is not possible for a former member to obtain group keys generated after its

removal unless it is able to break the DLPEC and CDHEC. Hence, Weak Forward Secrecy

is verified.

Weak Backward secrecy. Once a new member, Um+1, is added to a group, a new

secret value s′ is generated and shared to all members. Using s′ and θ′ = ∑
m+1
i=0 H1(λi),

the new group key is computed as follows: ssk′ = KDF(s′||θ′.x). It is possible for Um+1

to obtain the value θ = ∑
m
i=0 H1(λi) = θ′−H1(λm+1) that was used to generate the group

key ssk = (s||θ.x) before its addition. However, since s is unknown from Um+1, it cannot

compute ssk. Unless one of the old member was dishonest and didn’t erase the value s, then

Um+1 can collide with that member to obtain the old group key. We expect the probability

of such an event to be negligible. Furthermore, from theorem 2, we know that each new

key is independent from the others. Therefore, unless Um+1 colludes with a dishonest old

member, it cannot obtain previous group keys. Hence, Weak Backward secrecy is verified.

4.4 Implementation

This section demonstrates the feasibility of the proposed GKA. For this simulation, we

used Rinkeby Testnet1, (one of Ethereum’s test networks).

For local computation, nodes use Node.js v10.16.3 and its Crypto library2, and Web3.js

is used to interact with the blockchain. Fidl SC was written and complied using Solidity

version 0.5.16. Then, it was deployed to Rinkeby Testnet3 with Truffle4.

The simulation environment includes a group G with one initiator and three responders.

Each node in G has an account on Rinkeby Testnet with long-term keys stored in Meta-

1https://www.rinkeby.io/
2https://nodejs.org and https://nodejs.org/api/crypto.html
3Address: ”0xC48f9bb74ebaD1EEf59967b6e2Ba245f4D37F89C”
4https://www.trufflesuite.com/
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(a) An ssk initialized by an initiator

(b) The ssk obtained by responders

Figure 4.3: Experiment results

Mask5. Figure 4.3 depicts the execution results of the proposed scheme. Figure 4.3a shows

ssk obtained by the initiator, while Figure 4.3b shows ssk obtained by the three respon-

ders, after executing the proposed scheme. The key values, sskpre, θ, and ssk, are denoted

by green, yellow, and white texts, respectively. As shown in the figures, all members in

G obtained the same sskpre, θ, and ssk. These results shows the validity of the proposed

scheme.

To show the efficiency of the proposed scheme, we measured the gas consumption

of each Fidl SC functions. Deploying Fidl SC on Rinkeby Testnet consumed 2,239,679

gas. However, this is a one-time cost since once Fidl SC is available on the blockchain,

there is no need to redeploy it. The execution of the function postEphK() consumes ap-

proximately 157,365 gas to post five ephemeral keys. This amount must be paid by each

5https://metamask.io/
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Figure 4.4: Amount of Gas Consumption in response to change in the number of users.

node on the blockchain that desires to register/update their ephemeral keys in Fidl SC. The

functions getEphK(),getPreGrpK(),getKeyMaterials() do not require gas to be executed

since they only access data already stored in Fidl SC. For the functions createGroup() and

updateGrpK(), their gas consumption are proportional to the size of a group. Figure 4.4

shows the gas consumption of those functions for different group size. Also, in figure 4.4,

we have the gas consumption of the function addMber() that represents the function that we

have implemented to add a new member in a group. Like createGroup() and updateGrpK(),

the gas consumption of addMber() is proportional to the size of a group. The function

createGroup() consumes approximately 250,000 gas per user, updateGrpK() consumes

approximately 40,000 gas per user, and addMber() consumes approximately 50,000 gas

per user. As we can see from 4.4, in the case of a group of 20 members, createGroup()

consumed 5,264,150 gas, updateGrpK() consumed 794,431 gas and addMber() consumed

994,178 gas. It is worth noting that for createGroup() and addMber(), the cost is covered

by the initiator since it is the administrator of the group. The cost for updateGrpK() is

covered by the node that initiated the update key process. Furthermore, the member leave

operation is implemented as a replay of the group creation process minus the group member

that was removed.



Chapter 5

Conclusion

IoT devices present many challenges for current cryptographic systems since they are re-

source constrained, battery powered, prone to connection failure, and so one.

In this work, we focused on group key agreement. we presented a smart contract-based

group key agreement protocol aimed at IoT environments. The proposed protocol relies on

blockchain to store key materials and on smart contracts to delegate part of the computation.

Therefore it does not need a trusted third party. It allows the addition and removal of

members to and from a group. Also, it supports post-compromised security under a passive

adversary. The security analysis showed that our proposed group key agreement is secured

under DLPEC and CDHEC problems. Metrics from the implementation phase showed that

our proposed protocol can be applied in real-world settings.

Future works. As potential points of improvement, we aim at looking for ways to re-

duce the gas consumption of smart contract’s functions and design a better member removal

process. In addition, we hope to port this construction in a more extensive cryptographic

model such as the Universal Composability model to further analyze the security of our

proposed protocol.

40
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Appendix A

Glossary

We provide a brief definition to some of the terms used in this work.

Active adversary: is an adversary that can tamper with a communication channel. For

instance, it can inject messages or interfere with the transmission of messages issued by

rightful parties.

Ephemeral key: is a cryptographic key that is short-lived. It is generated to be used in

a specific key establishment procedure, and after usage, it should be discarded.

Gas (Ethereum): is a metric used by the Ethereum platform to evaluate the cost of

executing a transaction.

Long-term key: is a cryptographic key that is supposed to be used over a long period

of time. For instance, in the case of a device, such a key can be used throughout the lifetime

of that device.

Passive adversary: is an adversary that can only listen to messages exchanged in a

communication channel.
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