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Abstract

Encryption key use is a critical component to the security of a stream cipher: because many im-

plementations simply consist of a key scheduling algorithm and logical exclusive or (XOR), an

attacker can completely break the cipher by XORing two ciphertexts encrypted under the same

key, revealing the original plaintexts and the key itself. The research presented in this paper rein-

terprets this phenomenon, using repeated-key cryptanalysis for stream cipher identification. It has

been found that a stream cipher executed under a fixed key generates patterns in each character

of the ciphertexts it produces and that these patterns can be used to create a fingerprint which is

distinct to a certain stream cipher and encryption key pair. A discrimination function, trained on

this fingerprint, optimally separates ciphertexts generated through an enciphering pair from those

which are generated by any other means. The patterns were observed in the Rivest Cipher 4 (RC4),

ChaCha20-Poly1305, and Salsa20 stream ciphers as well as block cipher modes of operation that

perform similarly to stream ciphers, such as: Counter (CTR), Galois/Counter (GCM), and Output

feedback (OFB) modes. The discriminatory scheme proposed in this study perfectly detects ci-

phertexts of a fixed-key stream cipher with or without explicit knowledge of the key which may

be utilized to detect a specific type of malware that exploits a stream cipher with a stored key to

encrypt or obfuscate its activity. Finally, using real-world example of this type of malware, it is

shown that the scheme is capable of detecting packets sent by the DarkComet remote access trojan,

which utilizes RC4, with 100% accuracy in about 36 µs, providing a fast and highly accurate tool

to aid in detecting malware using encryption.
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Chapter 1

Introduction

The stream cipher is a method of symmetric encryption modeled after the One-time Pad. It is sus-

ceptible to well-documented attacks such as related-key, divide-and-conquer, malleability, among

others (Verdult, 2015). One critical vulnerability of stream ciphers lies in the reuse of the en-

cryption key. A Many-time Pad can be broken easily by an adversary who obtains two messages

that were encrypted under the same key: by performing a simple exclusive-or (XOR) of the two

messages, he can uncover the respective original messages and finally, the key itself (Denning,

1983). This vulnerability is used for many cryptanalytic studies focused on attacking the cipher

and uncovering sensitive information, however, this study will use repeated-key encryption for the

purpose of ciphertext identification.

The process of stream cipher encryption is performed via a direct mapping of one plaintext char-

acter to one ciphertext character, repeated encryption under a fixed key will produce identical

mappings with each iteration. Using this property which is inherent to stream ciphers which em-

ploy an exclusive-or operation along with the ASCII encoding scheme which is used to define the

characters in the language of the encrypted messages, a deterministic mapping can be obtained

which represents every possible value at each index across all possible ciphertexts generated by

the stream cipher and encryption key pair. Together, these deterministic mappings can be used to

1
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create a model which is distinct for a given encryption pair. The distinct model serves as a type of

fingerprint which can be used to identify ciphertexts generated by the pair.

Presented in this work is a ciphertext discrimination function that, when trained on a given finger-

print, is capable of identifying all ciphertexts generated by the cipher and key pair which produced

the fingerprint. The discrimination function is formed using Bayesian statistic methods to deter-

mine the likelihood that a given message is a ciphertext generated by the same pair as the finger-

print, accomplished by taking the probability of the value at each byte of the tested message in the

positional distributions of the fingerprint pattern. Because the key is fixed during this analysis, the

discrimination function can be determined with or without explicit knowledge of the encryption

key. Through simulation, it is shown that this detection scheme is effective at classifying cipher-

texts from the following stream ciphers: Alleged Rivest Cipher 4 (RC4), ChaCha20-Poly1305,

and Salsa20. Furthermore, it also works well with a subset of block cipher modes of operation that

operate as a stream cipher, such as Counter (CTR), Galois/Counter (GCM), and output feedback

(OFB) modes.

Though fixed key encryption is known to be insecure and is avoided in practice, one potential

application for this scheme is use as a tool to detect encrypted malware. Encrypted malware is a

type of malicious software which utilizes encryption to hide itself or obfuscate its malicious activ-

ities from detection. Malware authors may even utilize encryption techniques supported in secure

networking protocols, rendering traditional antivirus or malware detection tools, such as network

monitoring, under-equipped against these forms of invasion. Messages passed by encrypted mal-

ware will appear as regular, benign communication to an unintelligent monitor. Among the most

popular implementations of encryption in malware is RC4, which was used in the development of

Zeus, Citadel, and Dridex, encompassing a variety of malware genres such as remote access trojans

(RAT), ransomware, and botnets (Binsalleeh et al., 2010; Milletary, 2012; Adamov, Carlsson, &

Surmacz, 2019). However, other stream ciphers have found use in malicious applications as well.

For instance, Salsa20 was used in the development of the original Petya malware family, Advanced
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Encryption Standard (AES) with GCM mode used to encrypt files for the Tycoon ransomware, and

AES with Counter (CTR) mode in the Locky ransomware application (Protection, 2020; Sinitsyn,

2016).

Decryption of each message is not a feasible solution for the monitoring tool as this would de-

crease the security for and integrity of truly benign messages shared over the network, is both time

and computationally expensive, and impossible in cases when the encryption parameters are not

known. However, in many encrypted malware applications the author of the software will use a

pre-stored key in order to mitigate the difficulty of sharing the key once the the malicious payload

is deployed. The ciphertext discrimination function proposed in this paper offers a promising so-

lution for the detection of encrypted malware packets as it enables a monitoring tool to classify

encrypted packets from malware without necessitating decryption, providing the notable benefit of

fast and accurate packet inspection. While there is no generic solution that is capable of detecting

all malware, the proposed scheme can effectively and efficiently detect a specific type of malware

which transfers packets encrypted using a stream cipher under a fixed key.

Experiments with real-world malware, the DarkComet RAT which encrypts its traffic using RC4,

demonstrate the efficiency and effectiveness of the proposed scheme with empirical data. The

proposed scheme achieves accuracy of 100% when the key is known, taking about 350 millisec-

onds (ms) for model creation and 36 microseconds (µs) for packet detection on an Intel Core (TM)

i7-8700 processor. The scheme also achieves 100% accuracy when the key is not known, train-

ing the detection model and classifying messages in approximately 11 seconds (sec) and 32 µs,

respectively.

The remainder of this paper is organized as follows: first, a brief literature review of related studies

is provided in Chapter 2, Chapter 3 details the stream cipher mechanism and the source of the

statistical weakness used for the detection scheme, in Chapter 4 the specifications of the discrimi-

nation function that can identify messages generated by the stream cipher and encryption key pair

are described, Chapter 5 presents a real-world simulation of the proposed scheme and its results



CHAPTER 1. INTRODUCTION 4

using the remote access trojan DarkComet. Finally, concluding remarks and a brief discussion of

future works are presented in Chapter 6.



Chapter 2

Literature Review

Though the proposed scheme is not suitable for detecting all malware, it may be useful in detecting

a specific type. Presented below are works dedicated to the study of the type of malware this

scheme may be effective against.

2.1 Notable Weaknesses of and Attacks on Stream Ciphers

In (Armknecht, 2004), F. Armknecht presented results of algebraic attacks on stream ciphers,

where he outlines a theoretical attack on a Bluetooth encryption system. ChaCha20-Poly1305

is commonly used for Secure Shell (SSH) and Transport Layer Security (TLS) secure communi-

cation tools. In (McLaren, Russell, Buchanan, & Tan, 2019), the authors exposed a vulnerability

of OpenSSH and OpenSSL that allows for the discovery of cryptographic artefacts existing in

memory, providing an interested party with the ability to crack secure-tunneled communications

by targeted memory extraction. B. Jungk and S. Bhasin proposed potential power and electromag-

netic side-channel attacks on ChaCha20-Poly1305 in (Jungk & Bhasin, 2017).

From the time it was leaked to the public in 1994, RC4 has been under research scrutiny in attempts

to uncover potential vulnerabilities. Jindal and Singh surveyed RC4, detailing the implementation

5
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of the cipher, its application, and some of the well-known weaknesses in (Jindal & Singh, 2015).

They classified the different vulnerabilities in the following manner: weak keys (set of keys in

the cipher which leave a trace in the keystream or output bytes), key collisions (the generation

of similar output states from two different keys), key recovery from the keystream, state recovery

(recovering the internal state of the cipher), and biased bytes (an event produces a nonuniform

probability which does not follow the expected randomness of byte production).

A few notable weaknesses which have been identified and well-documented include: bias of the

second byte towards 0 (biased bytes) (Mantin & Shamir, 2001), the initial byte generated by the

Key Scheduling Algorithm is highly related to a few bytes from the key (weak keys) discovered

by Roos in 1995 (Roos, 1995), the Fluhrer, Mantin, and Shamir study which showed that only a

few keys may determine the output state and many output bits with significant probability (weak

keys) (Fluhrer, Mantin, & Shamir, 2001). A practical key recovery attack is described in (Chen &

Miyaji, 2011). Exploiting the potential for key collision, the secret key can be discovered in non-

negligible time when the key is sufficiently large in a related-key model. The authors of (Sen Gupta,

Maitra, Paul, & Sarkar, 2014) investigated event outcomes of the RC4 stream cipher, reporting on

non-randomness and biases that further contribute to the cipher’s insecurity. During their research,

they were able to define a bias created by the length of the secret key used to create the cipher’s

keystream which was used for proofs of attacks on Wired Equivalent Privacy (WEP) and Wireless

Protected Access (WPA). The bias discovered shows a correlation between the length of the secret

key (`) and the `-th byte of the keystream. Vanhoef and Piessens introduced attacks on WPA-TKIP

and TLS, which employ RC4, where they proposed a fixed-plaintext algorithm that returns a set

of probable plaintexts (Vanhoef & Piessens, 2015). The authors break WPA-TKIP by using biases

which they detect empirically through statistical analysis, allowing them to uncover the TKIP MIC

key.
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2.2 Use of Encryption in Malware

Various studies have been conducted on the subject of encryption employed by malware. In 2007,

Martignoni et al. proposed a malware detection technique referred to as OmniUnpack which at-

tempted to solve the problem of packed malicious software or malware whose payload was either

encrypted or compressed in an attempt to hide its presence (Martignoni, Christodorescu, & Jha,

2007). In polymorphic malware applications, the programmer may alter the encryption or com-

pression, making traditional signature detection difficult to impossible; the authors investigated a

method to unpack the malware and expose the original source code so that a software scanner could

identify the malware based on the original signature. In (Zhao, Gu, Li, & Zhang, 2014), R. Zhao

et al. proposed a new approach to detecting the encryption functions within network applications.

Through dynamic taint and data pattern analysis, the authors were able to detect various encryption

routines, including RC4, which can be used in signature detection of the malware.

While malware may employ encryption techniques for the purpose of polymorphism, it may also

hide its communications using secure traffic protocols. A research series performed by a group

at Cisco studied the use of encryption and TLS in malware (Anderson, Paul, & McGrew, 2018).

Through this work, a random forest classifier was ultimately created which distinguishes TLS

flow generated by malware (Anderson & McGrew, 2017). In (P. Prasse & Havelka, 2017), Prasse

et al. proposed a Long Short-term Memory neural network which uses only observable features

of HTTPS traffic (client and host IP addresses and ports, timestamps, data flow volume, and the

unencrypted host domain name) for malware classification, claiming it outperforms random forest

models in similar applications with a 64% detection rate and 70% precision. The authors of (J. Liu

& Liu, 2019) proposed a distance-based, supervised learning solution which suffers from the pitfall

of relying on collecting a large amount of traffic data and extracting the features before any analysis

can be completed. An approach which analyzes persistent communications, instead of the presence

of anomalies within the persistent communication itself, is offered in (Kohout & Pevny, 2015).
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Encryption also plays a significant role in ransomware applications: when a machine is infected

with this type of malware, the data stored on the machine is encrypted and the secret key which

unlocks the data is held at ransom. Surveys on the history and growth of ransomware are presented

in (Sultan, Khalique, Alam, & Tanweer, 2018) and (Tailor & Patel, 2017), including details on the

different families of ransomware, notable attacks, and prevention techniques. An early-warning

scheme which allows for the detection of potential malware was developed in (Scaife, Carter,

Traynor, & Butler, 2016) using the following indicators: file type changes, similarity measurement

between original data and its encrypted version, and Shannon entropy. The authors determined

these indicators from the actions that each class of ransomware performs upon deployment.

2.3 Malware Employing Stream Ciphers

Stream ciphers are often chosen as the means of encryption in malware applications due to their

speed and ease of implementation. RC4 is among the most popular choices, having a few notable

examples such as DarkComet, Zeus, Citadel, and Dridex. The Zeus malware, which emerged in

the late 2000s, is a trojan horse malware that became a significant threat in the banking industry.

Binsalleeh et. al. provided an in-depth analysis of the Zeus botnet in their paper (Binsalleeh

et al., 2010). Through reverse-engineering of the toolkit, the authors were able to uncover the

encryption key and a method to thwart the malware’s HTTP communications through injection

of false information. It was found that Zeus packets contain information about the length of the

packet and that upon XORing the ciphertext and plaintext, the ”stream key” can be found and

used as a method for detecting encrypted Zeus packets (Park, Park, & Kim, 2014). A framework

for detection of the DarkComet RAT was developed in (Awad, Sayed, & Salem, 2017), with the

authors claiming 95.23% detection accuracy.

While RC4 appears to be the dominant stream cipher used in communication obfuscation, likely

due to its legacy role in securing network traffic, other contemporary stream ciphers used in mal-
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ware development may be found in crypto-ransomware applications. A survey of trends in ran-

somware development is given in (Craciun, Mogage, & Simion, 2019); a few malware packages

provided as examples are also listed with their respective encryption schemes (RC4, BlowFish, and

Salsa20) and how the key is derived in each example. A novel approach to discover the artefacts

of malware communications using crypto-libraries found in Microsoft Windows is described in

(McLaren, Buchanan, Russell, & Tan, 2019). Their method does not require any prior knowledge

and is extensible to other implementations in the cipher suite of TLS such as AES and ChaCha20;

AES-GCM is used for all malware samples sourced in their approach. The ransomware Locker-

Goga was used to attack Norsk Hydro in 2019, the authors of (Adamov et al., 2019) found the

scheme used to encrypt the affected data was AES with CTR mode.



Chapter 3

Ciphertext Patterns Generated by Stream

Ciphers

In this chapter, the statistical weakness found in the ciphertexts generated by stream cipher encryp-

tion is presented in more detail, including supporting information describing the mechanism of the

stream cipher and its notable weaknesses.

3.1 Stream Cipher Secrecy

Cryptography is a technique used for secure message sharing; encryption is the process of convert-

ing a plaintext message to a secure ciphertext; the reverse operation is known as decryption. The

process of encrypting the message m can be represented symbolically as: E(k,m) = c, where E is

the encryption mechanism or cipher, k is the key used by the cipher, and c is the ciphertext gener-

ated by the procedure. It may also be denoted as Ek(m) = c. E is considered public, a standardized

algorithm that is known amongst all parties, while k is private and only known between privileged

parties. The goal of encryption is to conceal the true meaning of some plaintext message so that

when it is shared, only the approved entities are able to uncover the contents of the original mes-

10
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sage. While E provides the actual function of converting plaintext to ciphertext and vice versa, it is

k that actually provides the security to the message and allows c to be decrypted by an entity who

has access to the key. There are many forms of encryption, varying in complexity and promised

security, an implementer must balance the different needs of their application in order to ensure

their cipher is the best solution.

Symmetric key encryption, in particular, is a basic enciphering method in which privileged parties

use the same cryptographic key for both encryption and decryption. There are two paradigms of

symmetric encryption, determined by the process through which the cipher divides characters of

the message. One technique, referred to as a block cipher, processes a message in blocks of data

in pre-defined lengths. In contrast, the stream cipher processes the message as a stream of data

(i.e. bit-by-bit or character-by-character), encrypting the message m by processing each character

mi such that 0  i < L and m0  mi < mL, where L is the length of m. Consider the simple

example provided in Figure 3.1, here the plaintext message ”HELLOWORLD” is combined with

the secret key (pad) ”BLETCHLEYP” via an XOR operation on a per-character basis to obtain

the final ciphertext. To compute the XOR, each character must first be converted to a numerical

value: this is done via a character encoder. Character encoding is a method computers use to

interpret non-binary values. Such characters are converted to a standardized binary value used to

represent the character. Examples of such encoding schemes include the American Standard Code

for Information Interchange (ASCII) and the Unicode Transformation Format (UTF-X).

The stream cipher is modeled after the One-time Pad, an encryption technique first introduced by

a banker named Frank Miller in 1882, however, the form that is most widely known today can be

attributed to Gilbert Vernam. In 1919, Vernam designed an encryption device that would perform

an XOR operation between the characters in a plaintext message and a stream of characters that

were generated randomly (Bellovin, 2011). The security of the Vernam Cipher, as it is sometimes

known, is theoretically absolute or perfect when the key is generated completely at random and

never reused. The One-time Pad was formally proven to be perfectly secure by the mathematician
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Figure 3.1: Elementary depiction of a stream cipher executing XOR operation.

Claude Shannon in 1946 (Shannon, 1949). In summary, his definition of perfect security is that

upon interception of some encrypted message c, an adversary is unable to learn anything or make

any deductions given just c. Suppose there are infinitely many possible m’s and the a priori prob-

ability of any m is P(m), then P(m) and the a posteriori probability of m given c must be equal

(i.e. P(m) = P(m|c)). Conversely, the statement P(c) = P(c|m) must also hold true. This can be

justified using Bayes’ Theorem, which takes the general form:

P(A|B) = P(A)P(B|A)
P(B)

. (3.1)

And the likelihood of c being generated by the encryption of m may be expressed as

P(c|m) =
P(m)P(m|c)

P(c)
, (3.2)
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where:

• P(c|m) is the posterior likelihood of c given m,

• P(m) is the prior probability of m among all possible m’s,

• P(m|c) is the sum of probabilities of all encryptions of m which generate c, and

• P(c) is the probability of c across all possible c’s.

Though it provides theoretic perfect security, the One-time Pad is not viable for real world appli-

cation due to the stipulations regarding the key. First, the key must be as long as the messages

it encrypts/decrypts which makes the key sharing process cumbersome and costly. Secondly the

key must never be reused, so sending a new key with every message is redundant because if the

participants have a method of sharing the key privately, then they can also use this method to

share messages securely. To mitigate these issues surrounding the key, modern stream ciphers are

implemented using a keystream generated by a key scheduling algorithm. Instead of explicitly

constructing a pad the length of the message, a random keystream can be produced using a pseu-

dorandom generator (PRG) taking k as seed (Boneh, n.d.). Finally, the pseudorandomly-generated

pad is XORed with the plaintext or ciphertext to perform encryption or decryption, respectively.

3.2 Vulnerabilities Stemming from Key Generation

Security of the One-time Pad is facilitated through use of a uniformly distributed and truly ran-

dom secret key. Because the pad G(k) produced by a PRG is not truly random, security of the

cipher relies on the unpredictability of the PRG. In the same way that a truly random key creates

indiscriminate mappings of m to c, a PRG should generate G(k) such that each byte of the pad is

statistically independent, i.e. P(ki|k j) = P(k j|ki) = 0 holds true for all i-th and j-th bytes of G(k),

and the potential values of each i-th byte are well-distributed. Creating unpredictability is hard to
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accomplish and if not implemented carefully, gives rise to various vulnerabilities which propagate

into the encryption scheme.

3.3 Discriminatory Patterns in Ciphertexts

Son, et. al. discovered a statistical weakness in the ciphertexts generated by RC4 in (Son et al.,

2019). Using this we weakness, the authors proposed a machine learning application capable of

identifying RC4 ciphertext generated under a fixed key and later, the solution was used to detect

encrypted malware communication. The authors found that ASCII-encoded ciphertexts generated

under these conditions produce a discernible pattern which allows a trained classifier to identify

other ciphertexts generated under the same conditions when compared to those which were gener-

ated through other means. An example of these patterns can be found in Figure 3.2.

Figure 3.2: The distribution of bytes over the first four bytes of RC4 ciphertexts.

Figures 3.2 and 3.3 depict the first four bytes of ciphertexts generated from 10,000 encryptions

using RC4 and AES with Cipherblock Chaining (CBC) mode under a fixed key, respectively. Each

byte (i.e. character) of the ciphertext has 256 possible values, the dependent variable in the plots of

Figures 3.2 through 3.4 is the probability that each value appears at that position of the ciphertext.

AES-CBC, which operates as a traditional block cipher, creates no obvious pattern. Even though

the probabilities of values across each byte are not perfectly uniform, all values are well-represented

and given an infinite number of samples, the probabilities should approach a uniform distribution.

However, in the case of RC4, only 95 of the possible 256 values are ever expressed regardless of

how many encryptions are performed. Using the two figures as examples, the non-uniformity and
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gaps left in the ciphertexts generated via RC4 compared with those of a well-distributed function

are what facilitate the proposed discrimination function.

Figure 3.3: The distribution of bytes over the first four bytes of CBC ciphertexts.

3.3.1 The Effect of Character Encoding on Pattern Generation

Human language is defined over a set of possible characters, with different languages being defined

over different sets. The common English language, for example, includes the alphabetical charac-

ters in both upper and lower cases, the Arabic numerals, and a collection of special characters used

for punctuation, mathematical expressions, etc. Together, these characters sum to a set of size 95.

This set, known as printable characters, are those which can be found on the standard keyboard

and can be printed to the screen on input. Computers understand binary, requiring an encoder to

interpret all characters other than 0 and 1. In the simple case of ASCII, characters are interpreted

using a binary number the size of one byte. This allows for all values that it can encode to be

represented as 1 of 256 possible values, however, the printable characters do not occupy the entire

range. This limited range of expressed values gives rise to the gaps found in Figure 3.2.

3.3.2 Encryption Schemes Displaying Ciphertext Patterns

Using this knowledge in conjunction with the mechanism of the stream cipher, it is possible to use

this discrepancy as a statistical weakness when analyzing the cipher. Stream ciphers encrypt on a

per-character basis via a direct mapping of a plaintext character to a ciphertext character. For any
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given encryption, there is only ever one mapping of a plaintext character to a ciphertext character

at each byte of the message and both must exist in this truncated range of just 95 possibilities.

Other stream ciphers and block ciphers whose mode of operation causes it to perform like a stream

cipher were tested have been examined in addition to RC4, which also generate similar statistical

patterns. The study was extended to the following schemes: ChaCha20-Poly1305, Salsa20, and to

the CTR, OFB, and GCM modes of operation. Figure 3.4 displays the patterns generated under

repeated fixed-key encryptions of 10,000 random messages containing the full array of printable

ASCII values.
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(a) ChaCha20-Poly1305

(b) Salsa20

(c) AES with CTR mode

(d) AES with OFB mode

(e) AES with GCM mode

Figure 3.4: The distribution of values over the first four bytes of ciphertexts generated by various
stream ciphers.



Chapter 4

A Proposed Solution for Detecting Stream

Ciphers

In the previous chapter, a statistical weakness in the ciphertexts generated by stream ciphers and

block cipher modes of operation which operate similar to stream ciphers was presented. Because

this weakness produces distinct patterns which are unique to a given encryption scheme and key,

they can be used as a fingerprint for the detection of the encrypting pair. Then, the patterns can

be used to construct a model capable of predicting the likelihood that a message was encrypted by

the given scheme under the specified key. The remainder of this chapter details the formation of a

discrimination function which, when trained, is capable of classifying ciphertexts encrypted by Ek

from those that are not.

4.1 Representing the Discovered Patterns Mathematically

Using the results from the generated ciphertexts, the patterns can be represented using the two-

dimensional matrix M =

18
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2

66666664

x0,0 x0,1 . . . x0,255

x1,0 x1,1 . . . x1,255
...

...
...

...

xl,0 xl,1 . . . xl,255

3

77777775

where xi j is each cell of M, i is the byte (position) in the ciphertext, j is the decimal representation

of the value found at ci (0 j  255), and l = L�1 . Consider the simplified example in Figure 4.1

where there are only 10 characters in an arbitrary alphabet, so 0  j  9. The current message

is ”HELLO”, in which i0 = ’H’, i1 = ’E’, etc, below each character is its respective decimal

representation, j, in the truncated range. Since the example includes one message, its length is

used to determine l = 5�1.

+ ( / / 2

� � � � �

2

66664

x0,0 x0,1 x0,2 x0,3 x0,4 x0,5 x0,6 x0,7 x0,8 x0,9
x1,0 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9
x2,0 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9
x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8 x3,9
x4,0 x4,1 x4,2 x4,3 x4,4 x4,5 x4,6 x4,7 x4,8 x4,9

3

77775
=

2

66664

0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0

3

77775

Figure 4.1: Construction of M from one message.

The indices of M are used as frequency bins, so upon analysis of xi, we determine the decimal

representation of the character, j, and update M by incrementing the value at position (i, j). This

way, M may be used for multiple calculations such as whether or not a character will appear at a

specified byte in the ciphertexts generated by an encryption pair or the probability of that character

existing at that byte.

In this paper, we propose machine learning-based schemes that can detect ciphertexts generated by
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stream ciphers. First, it is shown how the model can be trained with or without knowledge of the

encryption key. Then, two detection scenarios are presented: (i) when a complete set of ciphertext

is available and (ii) when only a partial ciphertext is available.

4.2 Constructing a Detection Model

The discrimination model is trained based on the two following scenarios:

• the key is known and available or obtainable through some means of investigation,

• a fixed key is used for encryption, but its true value is unknown.

Because these patterns are generated under a fixed key, the key is not necessary to perform the

analysis if it is assumed to be constant. Training the models in either scenario is the same, the

only step that changes is the data used to train the model. In the first scenario, knowledge of the

key allows the model to be determined theoretically, yielding the optimal dataset by populating M

using perfect knowledge of the encryption system. The key can be used to determine all possible

encryptions deterministically, making it possible to deduce precisely the range of bytes which the

cipher will map to. However, in the second scenario when the key is unknown, the patterns must

be determined empirically, populating M with data collected from the source of encryptions.

In the case where the key is known, a type of chosen plaintext analysis of the cipher is per-

formed in which every possible printable value is encrypted. That is, a character x j in the print-

able ASCII range generates the character c j when encrypted under Ek, or c j = E(k,x j), where

3210  j < 12710. Each message consists of the repeated character x j, for example: when x j =

’A’, the encrypted message is ’AAAA. . . ’ for some length L. This is performed for each character

(95 times), determining the encryption of each possible character at each position over L. Finally,
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for each c in the collection of calculated ciphertexts, M is populated by iterating over each c to

determine ci j and incrementing the value of M at the i j-th bin.

Without access to the encryption key, the same test can not be completed in indistinguishable time.

Instead, assume that a sufficiently large set of ciphertexts generated under the specified conditions

can be captured. Then, using these samples, iterate over each character in each message of the set,

populating M using the same analysis of incrementing the ci j-th position of M. Algorithm 1 details

the steps taken to construct the model in either training scenario.

Algorithm 1 Proposed Training Model
Generate training data:

1: if key is known then
Generate D � E(k,mi),A32  mi  A127, where A is the set of all ASCII characters represented
in decimal form and mi is the repeated character found at Ai

2: else
Generate D, through network monitoring. Captured suspicious messages are formatted such
that each character in the message is represented as its respective decimal value

3: end if
Construct training model:

4: M = ÂL
i=0 Â255

j=0 ai j = 0
5: for message 2 D do
6: l = 0
7: for character 2 message do
8: M[l][character]++
9: l ++

10: end for
11: end for

Calculate probability distributions:
12: for position 2 M do
13: sum = ÂL

i=0 position[i]
14: for val 2 position do
15: val = val ÷ sum
16: end for
17: end for
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4.2.1 Calculating Probabilities Using the Ciphertext Patterns

M is now a collection of encryptions of all printable ASCII characters generated by Ek. Due to

the nature of stream ciphers, the encrypted value can only exist as one of 95 values and because

the encrypted messages are generated using a fixed key, a one-to-one relationship can be observed

between x and c. So using the patterns created by M, the probability that a given message was

generated by Ek can be calculated.

First, the elements of M are converted from sums of observations to the respective frequencies by

dividing each element by the total number of messages which were analyzed at each ci. Now, each

element in M is equivalent to P(ci j|Ek), or the expected probability of the observed value at each

byte given the cipher and encrypting key. In order to determine the probability that a ciphertext

was generated by the encrypting pair Ek, the a priori likelihood is calculated using Bayes’ Theorem

(recall Equation 3.1 defined in Chapter 3). Once P(Ek|c) is calculated, the discrimination function

(4.2) is used to determine the binary classification of the result, where q is the classification rule

also referred to as the threshold.

P(Ek|c) =
P(c|Ek) ·P(Ek)

P(c)
. (4.1)

P(Ek|c)
Ek
>
<
¬Ek

q (4.2)

The independent probabilities of P(Ek) and P(x) are constant: P(Ek) = P(¬Ek) and assuming a

uniform distribution of the possible byte-values of c, any ciphertext c1 is just as likely to exist as

another ciphertext c2. Equation (4.1) can be simplified to the proportional relationship:

P(Ek|c) µ P(c|Ek). (4.3)
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That is, the probability of Ek given c is equivalent to the probability of c given Ek. This relationship

can be used in conjunction with Bayes’ assumption of event independence to define the probability

of a ciphertext c given an encryption scheme E with key k as the product of probabilities of the

value observed at each byte of c over its length L:

P(c|Ek) =
L

’
i=1

P(ci|Ek). (4.4)

4.2.2 Determining a Classification Threshold

The model considers a simple binary classification: a message is generated by Ek or it is not. Since

the binary classifier is trained using labeled data, q is determined as a point on a linear line which

perfectly separates the two classes depending on the length of the message due to the variable

length of the captured information. An optimal threshold can be determined by calculating the

probability c was generated truly randomly (ideal case).

Let us consider a ciphertext c with length L. In Chapter 3 it was described how the ASCII encoding

scheme uses one byte to represent all possible characters which, in theory, provides 256 possible

values to be represented by a single character. Each character of the ciphertext c, ci, can be con-

sidered to have probability P(ci) = 1/256. Because a stream cipher encrypts byte-by-byte, each

ci can be considered as an individual output. For a number to be truly randomly generated, each

output event must be independent of another. With this consideration, the probability of any c can

be calculated as the product of the independent probabilities of each ci:

P(c) =
L

’
i=0

P(ci). (4.5)
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Because the calculated probabilities are small, the log-likelihood is taken as:

P(c) =
L

’
i=0

ln(P(ci)). (4.6)

In the case that c was generated randomly and encoded in ASCII the probability of c can be

determined as:

P(c) =
L

’
i=0

1
256

or
1

256
⇥L. (4.7)

However, the described weakness of stream ciphers when paired with an encoding scheme such

as ASCII, only produces values over a truncated range due to only a fraction of the possible val-

ues being printable. The number of printable values in ASCII is only 95, meaning that when c

is generated by a stream cipher each character only has the probability of P(ci) = 1/95 and the

probability of c is P(c) = 1
95 ⇥L. As a result of the difference between P(ci),0  ci < 256 and

P(ci),0  ci < 95, an optimal threshold can be calculated which perfectly separates both classifi-

cations.

The optimal threshold may be found by calculating (4.7) for the the length of the message currently

evaluated. This threshold is optimal, because the calculated probability returned by the equation

is the P(c) when each ci is uniformly distributed. Any deviation from this value indicates that the

message being evaluated is not truly random.

It is also possible to calculate q from the training data. In some monitoring scenarios, certain mes-

sages may be repeated periodically (i.e. a connection status or keepalive message). By calculating

q from the collected data, these types of repeated messages can be taken into account while deter-

mining the likelihood that a message belongs to the encryption pair. First, P(c|Ek) is calculated for

each message in the training dataset. Because all messages in the set are expected to be generated
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under the same conditions, they can be ordered with respect to how probable they are to test pos-

itive, finding the least probable positive case (most likely to read false negative) and denote it as

P+. Then, the probability of the message given a uniform distribution of bytes at each element of

the message is calculated using (4.7) and denoted as P�. Finally, the threshold is calculated as the

midpoint of the distance between the two: q = P++P�

2 which yields the threshold that maximizes

the separation between classes at the current length. Finally, q must be defined as a function of

message length: as the length of the message increases, more information is gained which affects

the likelihood that it was produced by Ek. With more information, the likelihoods begin to diverge

and the margin between the two classes increases. Assuming the margins continue to diverge in

this manner, the simple linear equation: q=mL+q0 is used to calculate q as a function of L, where

m is the slope of the line and q0 is the intercept.

4.3 Detecting Ciphertexts Generated by Ek

Once the model is created, it can then be used to make predictions about whether a ciphertext was

generated by the pair Ek or not. A ciphertext can be obtained in two conditions which will affect

how the threshold is determined:

• the ciphertext is completely available

• the ciphertext is only partially available.

4.3.1 Using a Complete Ciphertext

First, consider the scenario when as much information as possible is available: the complete ci-

phertext c generated by Ek. We denote the likelihood that Ek was used to generate c as P(Ek|c)

which we defined to be proportional to P(c|Ek) in (4.3). Thus, by calculating the independent
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probabilities of each byte in the ciphertext c given the stream cipher Ek, P(Ek|c) can be determined

as:

P(Ek|c) µ
L

’
i=1

P(ci|Ek). (4.8)

Presence of a stream cipher may be detected using the discriminant function found in (4.2). Here,

the likelihood that the given stream cipher was used to generate the ciphertext is evaluated against

the threshold (q) to determine whether c can be classified as a ciphertext generated by Ek or not.

The steps taken to calculate (4.8) and appropriately classify c are provided in Algorithm 2.

Algorithm 2 Detection of a complete ciphertext
Training model:

1: Use the training model in Algorithm 1
Calculate probability:

2: p = 0
3: i = 0
4: for xi 2 x do
5: pi = M[i][xi]
6: p = p+ ln(pi)
7: i++
8: end for

Determine threshold
9: l = length(x)

10: q = ln(1/256)⇥ l
Detection

11: if p > q then
12: return Ek
13: else
14: return ¬Ek
15: end if

4.3.2 Using a Partial Ciphertext

The detection scheme also considers the scenario in which a ciphertext is only partially available.

In the previous section, it was described how the proposed scheme detects ciphertexts encrypted
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by stream cipher when the positions of values in the ciphertext are known. However, in a real-

world scenario it is often difficult to know the exact position of a ciphertext in traffic and some

network protocols may experience some level of data loss. Since the patterns observed in the

collected ciphertexts are position-dependent, the proposed scheme may not function properly when

presented with only partial information.

Suppose that only a slice of a network packet is analyzed, s = {si|1  i  Ls} and s ⇢ c, where

the size of the partial packet is much shorter than that of the ciphertexts gathered previously, i.e.,

Ls ⌧ L. P(Ek|s) must be determined, which can then be used to infer if c = E(k,x). The first step

is to determine the most probable position of s in c. We define the likelihood function, P(i|s,Ek),

which is how likely the partial packet s is a subset of the ciphertext starting at i, where 1  i  L.

The log-likelihood, lnP(i|s,Ek), can be computed by:

lnP(i|s,Ek) =
M

Â
j=1

lnP(xi+ j�1 = s j|Ek), (4.9)

where P(xi+ j�1 = s j|Ek) represents the probability that the byte value s j is observed in the (i+ j�

1)-th byte of the message x. Thus, P(xi+ j�1 = s j|Ek) can be estimated by:

P(xi|Ek) =
ci(xi)+a

Â255
m=0 ci(m)+a

(4.10)

and the maximum likelihood function returns the most probable position where the statistical pat-

terns of the partial packet match. The most probable position of the partial packet in c can be

obtained by calculating:

i⇤ = argmax
i

lnP(i|s,Ek), (4.11)
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where 1  i  L� Ls + 1. An example of the log-likelihood of a partial packet is illustrated in

Figure 4.2. Equation 4.9 is used to find the position of a partial packet in an original ciphertext.

A partial packet of 18 bytes was extracted from an RC4 ciphertext, the likelihood scores were

calculated in order to find the position of the partial packet in the original RC4 ciphertext. As seen

in Figure 4.2, the distribution of the log-likelihood shows that the highest score is approximately

-82 at position 219, indicating the partial packet is most likely a subset of the original ciphertext

located between bytes 219 and 236.
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Figure 4.2: Log-likelihood of a partial packet across a network packet.

In order to determine whether or not the partial packet s is a subset of c, the discriminant function,

L(s,k), is defined by a log-posterior probability, lnP(Ek|s), which can be estimated by the log-

likelihood:
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L(s,k) = lnP(Ek|s)

µ lnP(i⇤|s,Ek)

=
M

Â
j=1

lnP(xi⇤+ j�1 = s j|Ek). (4.12)

Finally, ciphertexts can be detected by comparing with the threshold (z):

L(s,k) =
M

Â
j=1

lnP(xi⇤+ j�1 = s j|Ek)
Ek
?
¬Ek

z. (4.13)

Algorithm 3 Detection of a partial ciphertext
Training model:

1: Use the training model in Algorithm 1
Detection:

2: for i = 1 to (L�M+1) do
3: pi=0
4: for j = 1 to M do
5: pi = pi + lnP(xi+ j�1 = s j|RC4k)
6: end for
7: p=argmax pi
8: if (p > z) then
9: return Ek

10: end if
11: end for
12: return ¬Ek

4.4 Evaluation of the Proposed Scheme

The scheme proposed in this chapter was evaluated in regards to the following criteria:

• minimum detectable ciphertext length,
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• detection time and accuracy,

• distinguishability from ciphertexts generated using a random key, and

• distinguishability from patterns produced by other ciphers.

Evaluations were conducted using models for each of the six enciphering schemes. The models

were constructed from synthetic data with a fixed key as described previously in Section 4.2 of

this chapter. Then, testing data was generated by encrypting 200 messages at various lengths for

each encryption scheme. The messages were split in half, with 100 messages encrypted under a

fixed key (the same used to create the model) and the other 100 under randomized keys. Results

are provided in the following subsections.

4.4.1 Determining the Minimum Detectable Message Length

We begin by finding the minimum length at which the scheme can discriminate ciphertexts with

confidence. Because the proposed scheme uses the gaps in the distribution of expressed values

at different bytes over a ciphertext, it must be presented with sufficient information to make a

justifiable assessment. The probability at any given byte alone is not sufficient to determine the

likelihood of Ek as many different configurations may produce distributions which overlap the

distributions of values at the same bytes of Ek. The results of classifying ciphertexts of lengths 1

to 15 bytes are presented in Tables 4.1 and 4.2.

As expected, the model cannot achieve perfect accuracy using only a few bytes and performance is

very poor in a few cases. Unsurprisingly, the true positive rate, or TPR, is relatively high even in

these short testing cases because it is likely that the value is expressed at the current byte, but the

frequency of its expression may not be high enough to overcome the threshold. The false positive

rate (FPR) affects the model’s accuracy most significantly: insufficient data presents Type I error

as it is likely for the distributions of values to have some overlap, causing ¬Ek ciphertexts to be
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falsely classified as Ek. All models have slightly different lengths at which they achieve 100%

accuracy, but for the remainder of this paper we will consider a message length of 16 bytes to be a

safe lower limit for classifiable messages.

Table 4.1: Minimum detectable ciphertext lengths for RC4, ChaCha20, and Salsa20 ciphers.

RC4 CHA SAL
Length q TPR FPR Accuracy TPR FPR Accuracy TPR FPR Accuracy
1 byte -5.55 0.990 0.118 0.900 1.000 0.378 0.685 0.990 0.414 0.653
2 bytes -11.09 0.970 0.000 0.995 0.970 0.208 0.822 0.970 0.214 0.817
3 bytes -16.64 0.960 0.000 0.993 0.990 0.000 0.998 0.950 0.080 0.925
4 bytes -22.18 0.970 0.000 0.995 0.960 0.000 0.993 0.970 0.000 0.995
5 bytes -27.73 0.950 0.000 0.992 0.960 0.000 0.993 0.960 0.000 0.993
6 bytes -33.27 0.990 0.000 0.998 1.000 0.000 1.000 0.990 0.036 0.968
7 bytes -38.82 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.040 0.967
8 bytes -44.36 0.990 0.000 0.998 1.000 0.000 1.000 1.000 0.012 0.990
9 bytes -49.91 1.000 0.000 1.000 0.990 0.000 0.998 1.000 0.000 1.000

10 bytes -55.45 1.000 0.000 1.000 0.990 0.000 0.998 1.000 0.000 1.000
11 bytes -61.00 1.000 0.000 1.000 0.990 0.000 0.998 0.990 0.000 0.998
12 bytes -66.54 1.000 0.000 1.000 0.990 0.000 0.998 1.000 0.000 1.000
13 bytes -72.09 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000
14 bytes -77.63 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000
15 bytes -83.18 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000

Table 4.2: Minimum detectable ciphertext lengths for OFB, CTR, and GCM modes.

OFB CTR GCM
Length q TPR FPR Accuracy TPR FPR Accuracy TPR FPR Accuracy
1 byte -5.55 0.990 0.134 0.887 0.990 0.476 0.602 1.000 0.476 0.603
2 bytes -11.09 0.980 0.000 0.997 0.980 0.180 0.847 0.980 0.000 0.997
3 bytes -16.64 0.970 0.000 0.995 0.990 0.082 0.930 0.980 0.000 0.997
4 bytes -22.18 0.940 0.000 0.990 0.960 0.000 0.993 0.960 0.000 0.993
5 bytes -27.73 0.930 0.000 0.988 0.980 0.000 0.997 0.960 0.000 0.993
6 bytes -33.27 1.000 0.000 1.000 0.990 0.038 0.967 0.980 0.000 0.997
7 bytes -38.82 1.000 0.000 1.000 1.000 0.048 0.960 1.000 0.000 1.000
8 bytes -44.36 0.990 0.000 0.998 1.000 0.024 0.980 1.000 0.000 1.000
9 bytes -49.91 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000

10 bytes -55.45 0.990 0.000 0.998 1.000 0.000 1.000 1.000 0.000 1.000
11 bytes -61.00 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000
12 bytes -66.54 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000
13 bytes -72.09 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000
14 bytes -77.63 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000
15 bytes -83.18 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000
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4.4.2 Detection Time and Accuracy

Following the determination of 16 bytes as the minimum message length, models were evaluated

to verify their detection accuracy, as well as to calculate an average detection time at each length.

Table 4.3 shows q at each test message length along with two values for each encryption scheme:

the maximum and minimum likelihoods calculated from the test messages at each L for the respec-

tive cipher. The min(P) denotes the likelihood of the message most probable to be classified false

negative, i.e. it would be marked as ¬Ek when it should actually be classified as Ek. The times

taken to determine the classification are provided in Table 4.4. Times are listed in microseconds

(µs) with two standard deviations.

Table 4.3: Minimum and maximum likelihoods calculated at various message lengths.

Length q P(Ek) RC4 CHA SAL OFB CTR GCM

16 bytes -88.72 Max -71.28 -71.72 -71.47 -71.53 -71.47 -71.25
Min -88.67 -83.97 -83.36 -79.54 -84.68 -79.48

18 bytes -99.81 Max -80.41 -80.27 -80.77 -80.07 -80.40 -81.04
Min -88.17 -92.50 -93.63 -93.12 -88.51 -93.60

20 bytes -110.90 Max -89.84 -89.77 -89.42 -89.50 -89.77 -89.23
Min -101.28 -107.26 -102.24 -97.35 -101.64 -102.59

22 bytes -121.99 Max -98.86 -98.42 -98.42 -98.90 -98.43 -98.75
Min -111.35 -112.58 -110.76 -111.98 -110.11 -111.39

24 bytes -133.08 Max -107.18 -107.49 -108.14 -107.00 -107.23 -106.95
Min -126.40 -119.73 -126.06 -125.86 -119.81 -126.98

26 bytes -144.17 Max -116.47 -116.64 -116.65 -116.81 -116.06 -116.84
Min -130.37 -129.22 -135.45 -129.33 -130.78 -129.79

30 bytes -166.36 Max -135.04 -134.23 -134.20 -134.68 -134.38 -134.01
Min -149.05 -150.48 -147.96 -152.23 -152.50 -148.45

34 bytes -188.54 Max -153.31 -152.23 -153.03 -152.31 -152.56 -152.50
Min -170.42 -168.14 -164.74 -166.92 -172.69 -175.16

40 bytes -221.81 Max -179.35 -179.16 -179.46 -178.78 -179.75 -180.05
Min -205.20 -195.98 -198.91 -199.33 -195.62 -199.87
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4.4.3 Distinguishing Random-key Ciphertexts

Next, it is shown that a model can perfectly distinguish ciphertexts generated under a random

key. Table 4.5 displays the calculations of the maximum likelihood amongst 100 ciphertexts,

representing the most likely to be false positive. The proposed scheme separates the data well and

the likelihoods of cases closest to the threshold diverge as more characters are taken into account,

indicating the proposed scheme can distinguish fixed-key ciphertexts from those generated using a

random key under the same cipher.

Table 4.4: Average detection times in µs.

Length RC4 CHA SAL OFB CTR GCM
16 bytes 22.36 ± 0.64 22.50 ± 0.85 22.92 ± 2.7 22.94 ± 2.3 24.38 ± 5.5 24.98 ± 6.5
18 bytes 24.49 ± 0.65 25.24 ± 2.4 24.87 ± 2.3 25.03 ± 3.2 25.83 ± 5.7 24.86 ± 3.1
20 bytes 27.05 ± 0.53 27.28 ± 1.5 26.66 ± 0.75 26.63 ± 1.7 27.20 ± 2.6 27.27 ± 2.7
22 bytes 29.13 ± 0.92 29.15 ± 1.5 29.32 ± 1.0 30.38 ± 5.5 29.86 ± 3.5 29.15 ± 1.1
24 bytes 31.44 ± 0.64 31.36 ± 1.3 31.70 ± 0.61 31.11 ± 2.1 31.40 ± 3.4 30.94 ± 1.1
26 bytes 33.83 ± 0.74 33.84 ± 3.3 34.52 ± 5.5 33.84 ± 3.3 34.10 ± 4.5 33.81 ± 3.7
30 bytes 37.83 ± 0.89 39.38 ± 6.0 38.34 ± 1.3 38.09 ± 1.9 38.39 ± 1.4 38.61 ± 3.4
34 bytes 42.39 ± 0.94 42.76 ± 2.4 42.48 ± 0.94 43.24 ± 1.6 43.28 ± 5.2 42.67 ± 3.7
40 bytes 50.10 ± 6.2 49.15 ± 3.4 49.04 ± 2.0 49.23 ± 2.6 48.84 ± 1.3 50.88 ± 8.9

Table 4.5: Results of testing the models with ciphertexts generated under a random key.

Length Theta RC4 CHA SAL OFB CTR GCM
16 bytes -88.72 -99.96 -94.78 -94.53 -100.00 -105.84 -100.75
18 bytes -99.81 -119.73 -119.74 -108.67 -114.55 -114.83 -109.39
20 bytes -110.90 -128.64 -134.39 -129.29 -124.62 -124.43 -128.85
22 bytes -121.99 -138.12 -143.47 -142.94 -144.80 -143.94 -148.42
24 bytes -133.08 -153.58 -159.14 -158.42 -153.07 -158.15 -158.08
26 bytes -144.17 -178.81 -178.32 -172.30 -173.18 -178.40 -177.98
30 bytes -166.36 -185.81 -207.70 -201.25 -202.96 -196.81 -207.22
34 bytes -188.54 -231.27 -221.27 -235.62 -225.73 -211.03 -228.77
40 bytes -221.81 -279.83 -265.74 -284.18 -284.48 -284.14 -285.01
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4.4.4 Distinguishability Between Models

Finally, we show that the model for each cipher can be distinguished from another. Using the

fixed-key training set, each model is tested with the 100 ciphertexts of the other five encryption

schemes at each respective length. As shown in Table 4.6, the maximum likelihood amongst the

500 tests is listed, representing the message most likely to be classified as a ciphertext generated

by the current cipher, i.e. a false positive. The results indicate that the models are distinct for each

cipher and key, preventing the misclassification of a ciphertext generated by one of the other five

models using the same key.

Table 4.6: Distinguishing ciphers using relative most-probable false positive.

Length Theta RC4 CHA SAL OFB CTR GCM
16 bytes -88.72 -104.76 -104.85 -105.16 -104.91 -105.25 -115.57
18 bytes -99.81 -119.17 -119.53 -119.44 -119.86 -119.41 -125.40
20 bytes -110.90 -134.04 -134.09 -134.44 -134.89 -128.95 -140.35
22 bytes -121.99 -144.21 -148.72 -145.09 -154.41 -144.51 -159.25
24 bytes -133.08 -158.27 -157.08 -157.86 -163.67 -158.21 -168.64
26 bytes -144.17 -172.19 -178.45 -172.66 -183.04 -172.55 -188.56
30 bytes -166.36 -212.87 -206.54 -207.56 -212.27 -217.81 -217.52
34 bytes -188.54 -230.89 -242.89 -236.47 -242.84 -236.78 -248.59
40 bytes -221.81 -277.54 -285.91 -285.58 -284.37 -274.76 -290.79



Chapter 5

Simulating Malware Detection Using the

Proposed Solution

The previous chapters have presented a statistical weakness found in the ciphertexts generated by

a stream cipher and proposed a probabilistic technique which may be used to detect such cipher-

texts in different scenarios. This chapter details a simulation in which the discrimination function

presented in this paper is used to detect malicious communications across a network.

Some encrypted malware are implemented with a pre-stored encryption key in order to mitigate the

difficulty of key sharing upon deployment to the victim machine. In this case, it would be possible

to obtain the stored key via source code-checking or reverse engineering. The optimal detection

model can be determined if the key is uncovered, however, other malware might exploit a technique

such as code obfuscation, hiding the key and rendering its acquisition almost impossible. In this

case, the model would be determined empirically; both scenarios can be addressed by the proposed

discrimination scheme. Through implementation of this scheme, current network monitoring tools

can be strengthened by using the technique to identify this type of encrypted malware.

The RC4 stream cipher found wide use in secure technologies such as TLS, WEP, and WPA, among

other applications. Though its use in industry has since been replaced by other encryption methods

35
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following the discovery of a multitude of vulnerabilities, RC4 is still widely used by malware

programmers due to its speed, ease of implementation, and legacy support in the aforementioned

secure technologies. DarkComet for example, is a RAT that gained popularity in the early 2010s

which utilizes RC4 encryption under a fixed key to camouflage its activity. The following sections

describe the process of how the proposed detection algorithm could be used to detect malware in

a situation where it is actively sending information between a victim and attacking machine using

DarkComet.

5.1 The DarkComet Testing Environment

DarkComet 5.3.1 was safely installed in a secure testing environment configured on an offline

machine. To study the malware traffic, two virtual machines (VM) were prepared: one acting as

an attacker and the other as victim. Both virtual machines were deployed using VMWare Player

running versions of Windows 10.

DarkComet infects a victim machine through use of a stub which, when opened on the machine,

installs the payload and initiates the connection with the attacker. The stub was copied to the victim

VM via USB and opened. Once connected, DarkComet begins to send its encrypted messages via

TCP: the Wireshark network monitoring tool was used on the attacking VM to capture communi-

cation between the two machines. Because the testing environment was set-up offline, filtering the

packets generated by DarkComet was trivial.

5.2 Generating Data Using DarkComet

Though it is now considered a malicious trojan, DarkComet was originally designed more gen-

erally as a remote administration tool and provides functions used by other similar applications
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including, but not limited to: screen capture, access to the secondary machine’s shell, and key-

logging. It also has a collection of ”Fun Functions” which provide features such as: remote chat

between the two machines, a text-to-speech dictator which uses Microsoft Reader to read input text

on the primary machine and play the audio on the secondary machine, a piano which plays sounds

on the secondary machine, and options to show and hide GUI elements (clock, taskbar, desktop).

These functions were the primary method of data generation as they are the most easily repeatable.

Figure 5.1: Screenshot of the DarkComet GUI including the remote chat box.

To generate communication data, the functions within the DarkComet malware were used to send

Transmission Control Protocol (TCP) packets between the attacking and victim VMs; the packets

were captured via Wireshark. Studying these messages, it was found that a DarkComet TCP

packet consists of a header which pertains to the function used and some appended text which is
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used to execute the function on the receiving machine. For example, sending the message ”Hello,

World!” via the remote chat function would produce a TCP packet with a payload containing

”CHATOUTHello, World!” encrypted via RC4. This payload is what was used as the data to train

the discrimination model of the proposed scheme. Other information such as IP addresses found

in the header of the packet was discarded.

To extract the payload, the collected Wireshark data was exported to a JSON file. Then, using a

Python script, unwanted information was filtered out so that only TCP communications containing

a payload remained. The data is output as hexadecimal values representing each byte, so a method

was written which converts the data to the appropriate ASCII characters and then finally to the

decimal representation of each character.

Figure 5.2: Screenshot of Wireshark intercepting a DarkComet packet with its respective payload.

5.3 Detecting DarkComet Through Packet Analysis

As mentioned previously, it is known that DarkComet employs RC4 and uses a fixed key under

which all messages are encrypted and conveniently, the standard key for the version used for this

simulation is known to be #KCMDDC51#-890, providing an example for the schemes proposed
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in Chapter 4 to be tested on. Both methods of model construction (where the key is either known

or unknown) were executed, the latter was simulated by withholding the key and training un-

der the pretense that the only information known prior to training is which packets belong to the

malware’s communication traffic. Following the data generation process outlined earlier in this

section, 10,000 DarkComet packets were collected and the results of the simulation are presented

in the remainder of this chapter.

To test the models, a test message dataset was created to include collected DarkComet packets

as well as benign packets. The benign packets were obtained from casual web-surfing on an un-

infected machine, using Wireshark to capture the UDP packets between the machine and various

web servers. User Datagram Protocol (UDP) packets contain a payload similar to TCP, so the same

filtering technique can be used in order to obtain the encrypted data sent in the packet. The method

used to encrypt the benign packets is not important, the messages only serve as a source of data

that we can confidently label as non-malicious (i.e. not produced by DarkComet). The final testing

dataset included 1,000 entries and was evenly split between DarkComet and benign packets.

5.3.1 Simulating Packet Detection

To show that the model can be effective in detecting packets produced by DarkComet, we present

two sets of value distributions. Figure 5.3.a shows the distributions of four bytes of captured Dark-

Comet packets, Figure 5.3.b shows the distributions of four bytes of RC4 ciphertexts generated

using the same key used by DarkComet. Bytes 7 through 10 were chosen because the first seven

bytes of DarkComet data were just the encrypted function ID which results in only one value being

expressed at each byte.

As covered previously, using empirical data creates an imperfect model because it is unlikely that

all possible encryptions will be observed, causing the frequencies associated with each value to be

slightly different between the models. However, the patterns remain the same which allows the
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scheme to maintain detection accuracy.

(a) DarkComet packets

(b) RC4 ciphertexts

Figure 5.3: The distribution of values over four bytes of DarkComet packets and ciphertexts gen-
erated by RC4 using the DarkComet Key.

5.3.2 Detecting DarkComet Packets

Using the complete array of printable ASCII characters to train the model when the key is known, it

was found that the model could be trained in about 350 ms. Because testing this model is identical

to the evaluation provided in Chapter 4, we tested the model by investigating the effects of the

character set on detection time. By decreasing the number of characters available to create the

model, it was found that the model maintains perfect accuracy from the complete set of 95 down

to 50 characters and as expected, the training time decreased to about 230 ms as there was less data

to be trained on.

Results of testing the model when the key is unknown (or simulated to be unknown) are given in

Figure 5.1. The model was executed 100 times with each iteration of the model evaluated using

5-fold cross-validation. Training completed with an average execution time of 11 sec. Training

time increases due to the importation of data, formatting the data appropriately, and training on a

larger dataset which is compounded by the cross-validation scheme.
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Table 5.1: Results of detecting DarkComet.

Length Theta Min P(Ek) Detection Time (µs)
16 bytes -88.72 -84.00 17.96 ± 2.9
18 bytes -99.81 -97.94 20.22 ± 4.2
20 bytes -110.90 -98.45 21.93 ± 2.5
22 bytes -121.99 -111.50 24.81 ± 5.2
24 bytes -133.08 -119.98 25.91 ± 2.1
26 bytes -144.17 -136.15 28.36 ± 4.6
30 bytes -166.36 -154.10 32.44 ± 3.8
34 bytes -188.54 -174.00 36.50 ± 3.4
40 bytes -221.81 -199.80 43.15 ± 1.6

5.4 Detecting Partial Packets

The results presented in Figure 5.1 use complete packets to detect DarkComet. However, as men-

tioned previously, each DarkComet message is prepended with a function ID. This provides for

easier detection as the first bytes of any DarkComet message will always be one value of an even

smaller subset of the 95 presented throughout this paper, but this also skews the model results.

Consider Table 5.2, the testing messages are all prepended with the ID ”CHATOUT”. Because the

DarkComet model has been trained on messages which share the same first 7 bytes, the messages

are detected perfectly. Because it is unlikely that a byte from the benign message’s first 7 bytes

maps to these values (a 1/256 chance per byte), we cannot establish a robust model by including

such outliers. Observe that the minimum likelihood for DarkComet packets does not change until

a message length of 8 bytes (i.e. the byte after the prepended function ID), at which point we are

able to begin properly calculating P(DarkComet).

Now, if the first 7 bytes are ignored and calculations start at the 8th byte, we confront the issue of

insufficient information (recall the evaluation of the minimum length limit in Section 4.4). Now

that the true 95 values may be expressed at this byte, it is more likely that the well-distributed UDP

data will collide with the DarkComet distribution. Since the most significant factor in the pro-

posed scheme’s calculation of P(Ek) are the gaps in values expressed at each byte; with messages
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Table 5.2: Results of detecting DarkComet at shorter message lengths.

Length Theta DarkComet Min Benign Max
1 byte -5.55 0.00 -10.00
2 bytes -11.09 0.00 -20.00
3 bytes -16.64 0.00 -20.00
4 bytes -22.18 0.00 -30.00
5 bytes -27.73 0.00 -40.00
6 bytes -33.27 0.00 -50.00
7 bytes -38.82 0.00 -60.00
8 bytes -44.36 -4.83 -64.49

of shorter lengths, the algorithm does not posses enough information to make accurate classifica-

tions as can be observed in Table 5.3. Using the same test message set as before, each message

is classified using just the [8,L) characters. While the model maintains a perfect true positive

rate (TPR), the insufficient information presents Type I error as observed during the theoretical

evaluation.

Table 5.3: Results of detecting DarkComet at shorter message lengths after message header.

Length Theta DarkComet Min Benign Max TPR FPR Accuracy
1 byte -5.55 -4.90 -4.40 1.000 0.228 0.886
2 bytes -11.09 -9.62 -8.86 1.000 0.098 0.951
3 bytes -16.64 -14.27 -13.36 1.000 0.048 0.976
4 bytes -22.18 -18.75 -17.82 1.000 0.012 0.994
6 bytes -33.27 -28.02 -27.58 1.000 0.032 0.984
7 bytes -38.82 -32.77 -37.53 1.000 0.010 0.995
8 bytes -44.36 -37.31 -41.92 1.000 0.002 0.999
9 bytes -49.91 -41.83 -46.51 1.000 0.002 0.999

10 bytes -55.45 -46.48 -56.34 1.000 0.000 1.000
11 bytes -61.00 -51.10 -61.07 1.000 0.000 1.000
12 bytes -66.54 -55.64 -65.65 1.000 0.002 0.999
13 bytes -72.09 -60.33 -75.65 1.000 0.000 1.000
14 bytes -77.63 -64.87 -85.65 1.000 0.000 1.000
15 bytes -83.18 -69.41 -90.69 1.000 0.000 1.000
16 bytes -88.72 -73.98 -99.70 1.000 0.000 1.000

We can consider a partial ciphertext of 16 bytes or more and calculate the most probable position
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of the partial message using Algorithm 3. To show that the first 7 bytes can be ignored, we use the

partial packet (m = [8,L)) testing data to find the most probable starting position of the message

in the model. Figure 5.4 shows that the most-likely first byte of the partial packets is point 8 in the

complete ciphertext, which supports our assumption that the prepended message may be ignored

so long as the resulting partial packet is at least 16 bytes long.

Figure 5.4: Finding the most probable starting point of a partial ciphertext in a trained model.
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Conclusion

This thesis expanded upon and studied a novel machine learning approach to detect the use of

a stream cipher from captured ciphertexts. Through use of the many-time pad, a new statistical

weakness was uncovered which is produced by typical character encoding which creates a pattern

of gaps in the expressed values of generated ciphertexts. This weakness allows an analyzer to

create a fingerprint for a given stream cipher and key pair from the patterns they generate as they

are unique to the pair. The fingerprint may then be used to calculate the likelihood that a message

was produced by the cipher and key versus a truly random generator.

The detection scheme is 100% effective in detecting ciphertexts generated by a stream cipher when

the message is at least 16 bytes long. The scheme was tested with both hypothetical and real-

world samples, showing that that the discrimination function can be used to effectively identify

potentially malicious communications encrypted via stream cipher. Specifically, the scheme is

100% effective in detecting ciphertexts generated by RC4 with detection times as fast as 22 µs

using a theoretical model and equally effective at detecting packets generated by the DarkComet

RAT which employs RC4 as its encryption mechanism in about 17 µs. The quicker real-world

time is attributed to the training set being explicitly trained on other collected DarkComet packets.

Furthermore, it was shown that the position of a partial ciphertext may be probabilistically located

44
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within the original ciphertext and can be used to detect the enciphering pair with perfect accuracy

as long as the 16 byte minimum length is satisfied.

Network monitoring tools must constantly adapt to the increasingly complex malware environ-

ment, current tools are under-equipped to detect malware which utilizes encryption to obfuscate its

malicious intentions. This discovery, along with the proposed scheme, will aid networking tools by

providing a fast and accurate method to detect encrypted malware which will ultimately produce

more robust network security solutions.



Bibliography

Adamov, A., Carlsson, A., & Surmacz, T. (2019). An analysis of lockergoga ransomware. 2019

IEEE East-West Design and Test Symposium, EWDTS 2019, 1–5. doi: 10.1109/EWDTS

.2019.8884472

Anderson, B., & McGrew, D. (2017). Machine learning for encrypted malware traffic classifi-

cation: Accounting for noisy labels and non-stationarity. In Proceedings of the 23rd acm

sigkdd international conference on knowledge discovery and data mining (p. 1723–1732).

New York, NY, USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/3097983.3098163 doi: 10.1145/3097983.3098163

Anderson, B., Paul, S., & McGrew, D. (2018). Deciphering malware’s use of tls (without decryp-

tion). Journal of Computer Virology and Hacking Techniques, 14, 195-211.

Armknecht, F. (2004). Algebraic attacks on stream ciphers. ECCOMAS 2004 - European Congress

on Computational Methods in Applied Sciences and Engineering(November).

Awad, A. A., Sayed, S. G., & Salem, S. A. (2017). A host-based framework for RAT bots detection.

2017 International Conference on Computer and Applications, ICCA 2017, 336–342. doi:

10.1109/COMAPP.2017.8079775

Bellovin, S. (2011, 07). Frank miller: Inventor of the one-time pad. Cryptologia, 35, 203-222.

doi: 10.1080/01611194.2011.583711

Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M., & Wang, L.

(2010). On the analysis of the Zeus botnet crimeware toolkit. PST 2010: 2010 8th Interna-

tional Conference on Privacy, Security and Trust, 31–38. doi: 10.1109/PST.2010.5593240

46

https://doi.org/10.1145/3097983.3098163
https://doi.org/10.1145/3097983.3098163


Bibliography 47

Boneh, D. (n.d.). Cryptography i [mooc]. Coursera. Retrieved from https://www.coursera

.org/learn/crypto/

Chen, J., & Miyaji, A. (2011). A new practical key recovery attack on the stream cipher RC4

under related-key model. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6584 LNCS(October

2010), 62–76. doi: 10.1007/978-3-642-21518-6 5

Craciun, V. C., Mogage, A., & Simion, E. (2019). Trends in design of ransomware viruses. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 11359 LNCS, 259–272. doi: 10.1007/978-3-030-12942-2

20

Denning, D. E. (1983, April). The many-time pad: Theme and variations. In Ieee symposium on

security and privacy (p. 23-30).

Fluhrer, S. R., Mantin, I., & Shamir, A. (2001). Weaknesses in the key scheduling algorithm

of rc4. In Revised papers from the 8th annual international workshop on selected areas in

cryptography (p. 1–24). Berlin, Heidelberg: Springer-Verlag. doi: 10.5555/646557.694759

Jindal, P., & Singh, B. (2015). A Survey on RC4 Stream Cipher. International Journal of Computer

Network and Information Security, 7(7), 37–45. doi: 10.5815/ijcnis.2015.07.05

J. Liu, R. Z., Z. Tian, & Liu, L. (2019). A distance-based method for building an encrypted

malware traffic identification framework. IEEE Access(7), 100014-100028.

Jungk, B., & Bhasin, S. (2017). Don’t fall into a trap: Physical side-channel analysis of ChaCha20-

Poly1305. Proceedings of the 2017 Design, Automation and Test in Europe, DATE 2017,

1110–1115. doi: 10.23919/DATE.2017.7927155

Kohout, J., & Pevny, T. (2015). Unsupervised detection of malware in persistent web traffic.

ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Pro-

ceedings, 2015-August, 1757–1761. doi: 10.1109/ICASSP.2015.7178272

Mantin, I., & Shamir, A. (2001). A practical attack on broadcast rc4. In Revised papers from the

8th international workshop on fast software encryption (p. 152–164). Berlin, Heidelberg:

https://www.coursera.org/learn/crypto/
https://www.coursera.org/learn/crypto/


Bibliography 48

Springer-Verlag. doi: 10.5555/647936.741069

Martignoni, L., Christodorescu, M., & Jha, S. (2007). OmniUnpack: Fast, generic, and safe

unpacking of malware. Proceedings - Annual Computer Security Applications Conference,

ACSAC, 431–440. doi: 10.1109/ACSAC.2007.15

McLaren, P., Buchanan, W. J., Russell, G., & Tan, Z. (2019). Discovering encrypted bot and

ransomware payloads through memory inspection without a priori knowledge. Retrieved

from http://arxiv.org/abs/1907.11954

McLaren, P., Russell, G., Buchanan, W. J., & Tan, Z. (2019). Decrypting live SSH traffic in virtual

environments. Digital Investigation, 29, 109–117. doi: 10.1016/j.diin.2019.03.010

Milletary, J. (2012). Citadel trojan malware analysis (Report). Dell SecureWorks. Retrieved from

https://www.botnetlegalnotice.com/citadel/files/Patel Decl Ex20.pdf

Park, C., Park, H., & Kim, K. (2014). Realtime C&C Zeus Packet Detection Based on RC4

Decryption of Packet Length Field (Vol. 64) (No. Security). doi: 10.14257/astl.2014.64.14

P. Prasse, T. P., L. Machlica, & Havelka, J. (2017). Malware detection by analysing network traffic

with neural networks. 2017 IEEE Security and Privacy Workshops (SPW), San Jose, CA,

205-210.

Protection, E. (2020). Threat spotlight: Tycoon ransomware targets education and soft-

ware sectors (Report). The Blackberry Research and Intelligence Team. Retrieved

from https://blogs.blackberry.com/en/2020/06/threat-spotlight-tycoon

-ransomware-targets-education-and-software-sectors

Roos, A. (1995). A class of weak keys in the rc4 stream cipher. (Posts in sci.crypt)

Scaife, N., Carter, H., Traynor, P., & Butler, K. R. (2016). CryptoLock (and Drop It): Stopping

Ransomware Attacks on User Data. Proceedings - International Conference on Distributed

Computing Systems, 2016-August, 303–312. doi: 10.1109/ICDCS.2016.46

Sen Gupta, S., Maitra, S., Paul, G., & Sarkar, S. (2014). (Non-)random sequences from (Non-

)random permutations - Analysis of RC4 stream cipher. Journal of Cryptology, 27(1), 67–

108. doi: 10.1007/s00145-012-9138-1

http://arxiv.org/abs/1907.11954
https://www.botnetlegalnotice.com/citadel/files/Patel_Decl_Ex20.pdf
https://blogs.blackberry.com/en/2020/06/threat-spotlight-tycoon-ransomware-targets-education-and-software-sectors
https://blogs.blackberry.com/en/2020/06/threat-spotlight-tycoon-ransomware-targets-education-and-software-sectors


Bibliography 49

Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell system technical

journal, 28(4), 656–715.

Sinitsyn, F. (2016). Locky: the encryptor taking the world by storm (Report). Kapersky Labs.

Retrieved from https://securelist.com/locky-the-encryptor-taking-the-world

-by-storm/74398/

Son, J., Ko, E., Boyanapalli, U. B., Kim, D., Kim, Y., & Kang, M. (2019, Feb). Fast and accurate

machine learning-based malware detection via rc4 ciphertext analysis. In 2019 international

conference on computing, networking and communications (icnc) (p. 159-163). doi: 10

.1109/ICCNC.2019.8685644

Sultan, H., Khalique, A., Alam, S. I., & Tanweer, S. (2018). a Survey on Ransomeware: Evolution,

Growth, and Impact. International Journal of Advanced Research in Computer Science,

9(2), 802–810. Retrieved from http://dx.doi.org/10.26483/ijarcs.v9i2.5858 doi:

10.26483/ijarcs.v9i2.5858

Tailor, J. P., & Patel, A. D. (2017). A Comprehensive Survey: Ransomware Attacks Prevention,

Monitoring and Damage Control. International Journal of Research and Scientific Innova-

tion (IJRSI), 4(VIS), 116–121. Retrieved from www.rsisinternational.org

Vanhoef, M., & Piessens, F. (2015). All Your Biases Belong to Us: Breaking RC4 in WPA-TKIP

and TLS. USENIX Security, 97–112.

Verdult, R. (2015). Introduction to cryptanalysis: Attacking stream ciphers (Report). Institute for

Computing and Information Sciences Radbound University Nijmegen, Netherlands.

Zhao, R., Gu, D., Li, J., & Zhang, Y. (2014). Automatic detection and analysis of encrypted

messages in malware. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8567(61103040), 101–

117. doi: 10.1007/978-3-319-12087-4 7

https://securelist.com/locky-the-encryptor-taking-the-world-by-storm/74398/
https://securelist.com/locky-the-encryptor-taking-the-world-by-storm/74398/
http://dx.doi.org/10.26483/ijarcs.v9i2.5858
www.rsisinternational.org

	Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection
	Recommended Citation

	Introduction
	Literature Review
	Notable Weaknesses of and Attacks on Stream Ciphers
	Use of Encryption in Malware
	Malware Employing Stream Ciphers

	Ciphertext Patterns Generated by Stream Ciphers
	Stream Cipher Secrecy
	Vulnerabilities Stemming from Key Generation
	Discriminatory Patterns in Ciphertexts
	The Effect of Character Encoding on Pattern Generation
	Encryption Schemes Displaying Ciphertext Patterns


	A Proposed Solution for Detecting Stream Ciphers
	Representing the Discovered Patterns Mathematically
	Constructing a Detection Model
	Calculating Probabilities Using the Ciphertext Patterns
	Determining a Classification Threshold

	Detecting Ciphertexts Generated by Ek
	Using a Complete Ciphertext
	Using a Partial Ciphertext

	Evaluation of the Proposed Scheme
	Determining the Minimum Detectable Message Length
	Detection Time and Accuracy
	Distinguishing Random-key Ciphertexts
	Distinguishability Between Models


	Simulating Malware Detection Using the Proposed Solution
	The DarkComet Testing Environment
	Generating Data Using DarkComet
	Detecting DarkComet Through Packet Analysis
	Simulating Packet Detection
	Detecting DarkComet Packets

	Detecting Partial Packets

	Conclusion
	Bibliography

