
Kennesaw State University Kennesaw State University

DigitalCommons@Kennesaw State University DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Summer 7-2021

Efficient Yet Robust Privacy for Video Streaming Efficient Yet Robust Privacy for Video Streaming

Luke Cranfill
Kennesaw State University

Junggab Son

Follow this and additional works at: https://digitalcommons.kennesaw.edu/cs_etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Cranfill, Luke and Son, Junggab, "Efficient Yet Robust Privacy for Video Streaming" (2021). Master of
Science in Computer Science Theses. 51.
https://digitalcommons.kennesaw.edu/cs_etd/51

This Thesis is brought to you for free and open access by the Department of Computer Science at
DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Computer
Science Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more
information, please contact digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/
https://digitalcommons.kennesaw.edu/cs_etd
https://digitalcommons.kennesaw.edu/cs
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd/51?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Efficient Yet Robust Privacy for Video
Streaming

A Thesis Presented to

The Faculty of the Computer Science Department

by

Luke Cranfill

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Kennesaw State University

July 2021

Efficient Yet Robust Privacy for Video
Streaming

Approved:

Dr. Junggab Son – Advisor

Dr. Coskun Cetinkaya – Department Chair

Dr. Sumanth Yenduri – Interim Dean

DocuSign Envelope ID: E80C6313-3949-46E6-A786-4C20EBF79DB3

July 31, 2021

August 2, 2021

August 2, 2021

In presenting this thesis as a partial fulfillment of the requirements for an advanced

degree from Kennesaw State University, I agree that the university library shall make it

available for inspection and circulation in accordance with its regulations governing mate-

rials of this type. I agree that permission to copy from, or to publish, this thesis may be

granted by the professor under whose direction it was written, or, in his absence, by the

dean of the appropriate school when such copying or publication is solely for scholarly

purposes and does not involve potential financial gain. It is understood that any copying

from or publication of, this thesis which involves potential financial gain will not be al-

lowed without written permission.

Your Name

Notice To Borrowers
Unpublished theses deposited in the Library of Kennesaw State University must be used

only in accordance with the stipulations prescribed by the author in the preceding statement.

The author of this thesis is:

Luke Cranfill

The director of this thesis is:

Dr. Junggab Son

Users of this thesis not regularly enrolled as students at Kennesaw State University are

required to attest acceptance of the preceding stipulations by signing below. Libraries

borrowing this thesis for the use of their patrons are required to see that each user records

here the information requested.

Efficient Yet Robust Privacy for Video
Streaming

An Abstract of

A Thesis Presented to

The Faculty of the Computer Science Department

by

Luke Cranfill

Bachelor of Biology, University of Georgia, 2018

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Kennesaw State University

July 2021

Abstract

MPEG-DASH is a video streaming standard that outlines protocols for sending audio and

video content from a server to a client over HTTP. The standard has been widely utilized

by the video streaming industry. However, it creates an opportunity for an adversary to

invade users’ privacy. While a user is watching a video, information is leaked in the form

of meta-data, the size and time that the server sent data to the user. This information is

not protected by encryption and can be used to create a fingerprint for a video. Once

the fingerprint is created, the adversary can use this to identify whether a target user is

watching the corresponding video. Successful attack schemes have been proposed based on

this leakage of user data using both Machine Learning (ML) and algorithmic approaches.

Only one defense strategy has been proposed to deal with this problem: using differential

privacy that adds a sufficient amount of noise in order to muddle the attacks. However, this

strategy still suffers from the trade-off between the privacy level and efficiency for both the

server and the client. To break through the problem, this paper proposes two schemes. A

server-side defense and a client-side defense against the attacks with rigorous privacy and

performance constraints, creating a totally private, scalable solution that outperforms the

extant schemes. Our two proposed schemes, No Data are Alone (NDA) and a proposed

scheme that uses only a single cluster (Single Cluster Solution), are developed based on K-

Means clustering and are highly efficient. The experimental results show that our schemes

are more than two times as efficient, in terms of excess downloaded video (represented as

waste), than the most efficient differential privacy-based scheme. Additionally, no classifier

can achieve an accuracy above 7.07% against videos obfuscated with our scheme NDA and

2.5% against our Single Cluster Solution.

Efficient Yet Robust Privacy for Video
Streaming

A Thesis Presented to

The Faculty of the Computer Science Department

by

Luke Cranfill

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Advisor: Dr. Junggab Son

Kennesaw State University

July 2021

Contents

1 Introduction 1

2 Background 6

2.1 MPEG-DASH . 6

2.2 K-Means Overview . 7

2.3 K-Means Formal Definition . 8

2.4 Convolutional Neural Network . 9

2.5 Differential Privacy . 11

2.5.1 Fourier Perturbation Algorithm (FPAk) 12

2.5.2 d*-privacy . 13

3 Problem Description 15

3.1 Traffic Analysis Attack . 15

3.2 Problem Definition . 16

3.3 Privacy Definition . 17

3.4 Distance Privacy Definition . 18

4 Proposed Scheme 1: NDA 20

4.1 Metrics . 20

4.2 Proposed Scheme Overview . 21

4.3 Proposed NDA Algorithm . 21

4.4 Cluster Recreation Probability . 24

4.5 Various Clustering Algorithms . 25

5 Implementation and Simulation 27

5.1 Data Collection . 27

5.2 Comparison of Defense Schemes . 28

5.3 Attack Classifiers . 29

6 Experimental Results 32

6.1 Privacy Evaluation . 32

6.2 Clusters and Video Types . 33

6.3 Traditional K-Means vs. NDA . 34

6.4 Accuracy vs waste+de f icit . 35

6.5 Attack Accuracy Across Epochs . 36

6.6 Time Complexity . 37

7 Proposed Scheme 2: A Single Cluster 41

7.1 Motivation . 41

7.2 Proposed Scheme Overview . 41

7.3 Experimentation . 42

7.4 Experimental Results . 43

8 Related Works 45

8.1 MPEG-DASH Leak . 45

8.2 Traffic Analysis . 46

9 Conclusion 48

References 49

List of Figures

2.1 A Conceptual Overview of the Proposed Scheme NDA 9

4.1 Obfuscation Pattern Comparison . 23

5.1 An Overview of the Evaluation Methods 28

6.1 Video Category Distribution Across Multiple Clusters 33

6.2 Accuracy of the CNN Attack against K-Means and NDA across an increas-

ing number of clusters . 34

6.3 Accuracy vs. waste+de f icit . 35

6.4 Accuracy Across Multiple Epochs For Three Classifiers 38

7.1 Proposed Scheme 2 . 42

List of Tables

5.1 Comparative Analysis: Attack Classifiers 31

6.1 The percentage of non-private videos created by each scheme 32

6.2 Execution Time (Millisecond) and Complexity 38

7.1 Accuracy Across Multiple Cluster Sizes 1000 Video Data-set NDA 44

7.2 Accuracy Across Multiple Cluster Sizes 41 Video Data-set NDA 44

7.3 Accuracy Across Multiple Cluster Sizes 41 Video Data-set Proposed Scheme

2 . 44

Chapter 1

Introduction

Server to client video streaming is commonly encrypted and is characterized by a series

of requests from client to server, and subsequent fulfillment of these requests from server

to client. Popular online streaming services, such as YouTube, Netflix, etc., all share the

industry standard MPEG-DASH, a protocol for server to client video streaming over HTTP.

Chosen ubiquitously in the industry for its high performance, in spite of the widespread use

of cryptography today, the standard has a weakness: it can be exploited by a side channel

attack, allowing for an adversary to compromise user privacy by determining whether or

not a user is streaming any video chosen by the adversary. With YouTube being used for

both recreation and as an educational hub, there are many things a user might not want

to be exposed. It is possible for an adversary to steal sensitive information about a user’s

health, personal relationships, possessions, or future actions, including, for example, how

to make a house appear occupied while on vacation.

One of the components of MPEG-DASH that allows it to become an effective attack

surface is the reliance on variable bit-rate encoding (VBR). Bit-rate is the measure of bits

per second being sent across a system, in the case of video streaming it is the amount of bits

needed to encode one second of video that is sent from server to client. This number of bits

can be fixed, Constant Bit-rate Encoding (CBR), or vary depending on the content to be

1

sent. VBR is a double-edged sword. It allows for efficient use of storage and high quality

streaming, but also allows a unique fingerprint to be made for a video. VBR only sends as

many bits as needed to render each segment of video, making it far less wasteful than CBR

and is the reason it is widely used instead of CBR. In a video encoded by VBR, a high

action scene will require more bits and have a relatively higher bit-rate, and a lower action

scene a lower bit-rate. MPEG-DASH breaks videos into time segments of approximately

the same length (Sodagar, 2011), and a client will only request a new video segment when

its buffer falls below the threshold. Thus, a client creates uniquely sized bursts of traffic

over time, which can be used as a fingerprint for a video. Researchers have created various

attack models based on this information (Schuster, Shmatikov, & Tromer, 2017; Gu, Wang,

Yu, & Shen, 2019; Reed & Klimkowski, 2016; Dubin, Dvir, Pele, & Hadar, 2017).

The most effective of these attacks is by Schuster et al. (Schuster et al., 2017), its

effectiveness is due to the fact that it makes no closed world assumptions, has high accuracy,

and because it can be executed by JavaScript code (e.g., in the form of a malicious web

browser advertisement). This attack relies on a Convolutional Neural Network (CNN)

that is trained on the meta-data of the target video to be identified, and other video bit-rate

measurements are used for negative examples. The adversary measures video stream bursts

by saturating the network connection between the client and the server and then estimating

the change in congestion; a form of timing side channel attack used against schedulers

(Kadloor, Kiyavash, & Venkitasubramaniam, 2016). This saturation allows the adversary

to learn the victims traffic pattern, and consequently, the video burst pattern. This attack

was used to great effect, and the YouTube video classifier from the paper had 98.8% recall

and 0 false positives (Schuster et al., 2017).

The defense to these attacks is straightforward in principle, but its implementation re-

quires careful consideration because of the potential computational overhead. To stop the

bit-rate streaming pattern from being able to be identified by an adversary, the streaming

pattern must be obfuscated. To the best of our knowledge, the only defense algorithm was

2

proposed by Zhang et al. (Zhang, Hamm, Reiter, & Zhang, 2019). This paper focused

on defending against the CNN attack model mentioned above (Schuster et al., 2017). The

work done in this paper uses differential privacy, specifically d∗− privacy (Xiao, Reiter,

& Zhang, 2015), which is adjusted for time series data, and the Fourier Perturbation Al-

gorithm (FPAk) which was proposed by Rastogi et al. (Rastogi & Nath, 2010). The goal

of the defense is to create an obfuscated bit-rate pattern with differential privacy and then

use a proxy in the form of a browser extension to send segment requests based on this dif-

ferentially private pattern. These methods were able to successfully reduce the accuracy of

the CNN model below 50%, but incurred waste in the form of extra downloaded material,

or ran a deficit by not downloading enough material. Differential privacy always trades

a lack of utility in exchange for privacy, in this case, the waste incurred by this solution

is a hindrance when watching video streams, especially on already computationally weak

mobile devices.

In light of the computational constraints of many users, and seeking to find a bit-rate

request pattern that was not random, but efficient, we pursued K-Means clustering. The

centroid of a cluster in K-Means clustering would provide us with an average of all videos

in that cluster, and so this pattern would be representative of many videos, so it can be

used to obfuscate efficiently by replacing a video with its centroid pattern. Sometimes a

cluster may only have one data point (video), making the cluster’s centroid equal to the

video in the cluster. Obfuscation with this centroid would provide no privacy. Because of

this, K-Means cannot be used without augmentation.

Our proposed server-side defense scheme and our client-side defense schemes are an

augmented version of K-Means, and they cluster videos based on bit-rate over time. We

then use the cluster centroids as the new pattern for video requests to be sent, creating an

efficient request pattern. Our privacy is shown through experimentation and through a for-

mal privacy definition. We recreate the CNN video classifier (Schuster et al., 2017) to show

our scheme’s effectiveness. In addition to the experimentation done to show our scheme’s

3

privacy, we give a formal privacy definition and a formal distance privacy definition that

is based in the L1 norm, in order to give a broader view of privacy beyond just one attack.

When compared to differential privacy, our methods significantly reduces computational

waste while providing higher privacy.

The contributions of our paper are summarized as follows:

• An effective and novel server-side defense scheme that generates an optimal request

pattern called No Data are Alone (NDA) is proposed

• An effective and novel client-side defense scheme that generates an optimal request

pattern is proposed

• The time complexity of our server-side scheme is compared with the differential

privacy schemes, which hasn’t been shown previously for the differentially private

schemes

• Multiple attack CNNs are created and trained on un-obfuscated data and noised data

and detailed explanations of how they are trained are given

• These CNNs are then used for a thorough evaluation of privacy provided by our

scheme compared to differentially private schemes

• The privacy of both NDA and the differentially private schemes is evaluated using a

distance privacy definition based on the L1 norm, the results show that our scheme

outperforms differential privacy

• A formal privacy definition is defined for our schemes to give a scope of privacy

beyond experimentation.

The remainder of this paper is organized as follows: Section 2 gives necessary background

knowledge, then Section 3 lays out the problem description. Section 4 introduces our

proposed scheme NDA in detail, and Section 5 details implementation and experimental

4

methods. Section 6 shows the results of our evaluations on NDA. Section 7 introduces

our Single Cluster solution and details the experimental results from this scheme. Sec-

tion 8 introduces some notable related research results. Finally, we conclude this paper in

Section 9.

5

Chapter 2

Background

2.1 MPEG-DASH

MPEG-DASH is a ubiquitous standard for video streaming, employed by companies like

Netflix and YouTube. MPEG-DASH begins a streaming session by sending a Media Pre-

sentation Description (MPD) to the client. The MPD is an XML file that outlines the

video segments available for each quality level, along with other characteristics needed for

streaming. The DASH client then parses this file and determines the appropriate quality,

segments to request, and other information. Then it begins streaming using HTTP GET

requests (Sodagar, 2011).

MPEG-DASH uses VBR, an often used means of encoding video streams because of its

efficiency. VBR encodes only as much of a video file as is necessary. Meaning that scenes

in a video have a comparatively higher or lower bit-rate depending on what takes place in

the stream at that point in time. DASH mandates that the video is streamed in segments,

each being requested when a user falls below their buffer threshold. The segment sizes

(bits) are based on video display time. Video display time can be variable sizes or held

constant (Sodagar, 2011), but is most often held constant. Because of variable bit-rate

encoding, each segment contains a different amount of bytes.

6

In addition to using VBR and standardized segment sizes with MPEG-DASH, video

streaming is bursty (Rao et al., 2011) because there are periods when new segments are

being requested which cause a spike in bits being sent from server to client, then there are

break periods where no bits are requested. This combination of variable bit-rate segments,

size standardized segments, and bursty segment request patterns led researchers to develop

a successful traffic analysis attack that use this data as a fingerprint. A visualization of a

video’s un-obfuscated bit-rate over time can be seen in Figure 4.1.

2.2 K-Means Overview

K-Means is a popular type of unsupervised learning. The term K-Means comes from (MacQueen

et al., 1967), thought the original algorithm is credited to Steinhaus Hugo (Steinhaus,

1956). The algorithm that is commonly used for the implementation of K-Means today,

and the algorithm used by Sklearn 1 which is the Pyhton package used for experimentation

in this paper, was developed by Stuart Lloyd (Lloyd, 1982). It involves the formation of

clusters in data. Specifically, it involves the formation of any number of clusters, deter-

mined by the number k. This value is set by the user of the algorithm. With a value of

k = 2, two clusters will be created.

At the center of each data cluster is a cluster centroid. This cluster centroid is the mean

of all of the values that belongs to that cluster, which is where the algorithm derives its

name. It will posses k number of means (cluster centroids).

The first step in this algorithm is the initialization of cluster centroids. Initializing a

centroid means giving it a value within the dimensions of the data-set. These cluster cen-

troids can be randomly initialized or use an algorithm such as kmeans++. Once the cluster

centroids are initialized, the Euclidean distance is calculated from each cluster centroid

to each datapoint. The Euclidean distance between two data p and q in n dimensions is

1https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

7

calculated by:

d(p,q) =

√
n

∑
i=1

(qi− pi)2 (2.1)

Once the Euclidean distance is calculated, each data point is assigned to a cluster. This

assignment is based on the Euclidean distance to each cluster centroid. Whichever centroid

is closest to a data point is the centroid that is assigned to. Each data point is assigned to the

cluster centroid that is nearest to it. Once each datapoint has been assigned to its nearest

centriod, the centroids are recalculated as the mean of all the data points in that centroid.

All the data points are then reassigned to the centroids since their positions have changed.

This process is repeated until the cluster centroids no longer change values substantially

when being recalculated.

2.3 K-Means Formal Definition

K-Means is an unsupervised learning algorithm that clusters data points into discrete groups.

Let S be a finite set of vectors, i.e., S = {x1,x2, . . . ,xλ} where xi ∈ Rn is a finite vec-

tor, i.e., xi = (xi1,xi2, . . . ,xin). The algorithm first requires k ∈ N∗ as input, where N∗

is a set of all positive whole numbers excluding 0, and then instantiates a set of clus-

ters C = {C1,C2, . . . ,Ck}. Once C is created, the algorithm instantiates a set of means

M = {m1,m2, . . . ,mk}, where mi ∈ Rn is initialized randomly or with an algorithm such

as k-means++. For each cluster Ci ∈ C , mi ∈M is considered to be its centroid. After

the initialization of means, each vector xi ∈ S is assigned to a cluster C j ∈ C based on the

minimum euclidean distance between xi and m j. More specifically, for each mean m j ∈M,

the euclidean distance between xi and m j defined by equation 2.2 is computed. Then, xi is

assigned to the cluster C j whose centroid m j is the closest to xi.

dist(xi,m j) = ‖xi−m j‖2 (2.2)

8

Client Server

The	client	constantly	checks	the
buffer	threshold	to	see	if	new

video	segments	must	be	requested	 1)	Segment	Requests	by	client

4)	Server	sends	video	segments
with	modified	pattern

Video	Fingerprint
created	by	segment
request	pattern

Adversary

Adversary
observse	bitrate

pattern	

Malicious
Classifier

Adversary	uses	ML	or
algorithm	to	learn	video

identity	

NDA
Algorithm

2)	Video's
request	pattern
cluster	assigned
by	K-Means

3)	The	centroid
pattern	replaces

the	video's
request	pattern

Video
Fingerprint
created	by
segment	request
pattern	is
private

Adversary

Adversary
observse	bitrate

pattern	 Video's	pattern	is	the
pattern	of	the	centroid
of	a	cluster	containing

multiple	videos.
Therefore,	identifying
the	video	is	impossible

Figure 2.1: A Conceptual Overview of the Proposed Scheme NDA

After the assignment phase, each cluster Ci ∈ C should be a subset of S and given

another cluster C j, with i 6= j, Ci∩C j =∅.

Finally, m j the centroid of C j is updated following equation 2.3:

m j =
1
|C j|

|C j|

∑
i=1

x(C j)
i (2.3)

where x(C j)
i represents the vector in C j at position i.

The assignment and centroid update process is repeated until the value of each centroid

remain constant.

2.4 Convolutional Neural Network

Deep Neural Networks (DNNs) are one of the most widely used machine learning algo-

rithms largely because of their ability to learn high level, complex features. Deep neural

networks are machine learning algorithms that operate using a series of layers, the final

9

layer being the layer that outputs classification and the first layer being the data that is be-

ing input into the neural network. The layers between the input layer and the classification

layer are known as hidden layers. Each network varies with the amount of hidden layers

it contains. Within each hidden layer are neurons. Each neuron contains an activation

function, which will control whether the neuron ”fires”, to use the common analogy of the

human brain. The input and output of each neuron is controlled by weights. These weight

values are adjusted over time to help the neural network grow more accurate. This happens

by the process of back-propagation, which measures the output of the network against the

real value, and then adjusts weights accordingly.

As a result of their effectiveness, they became a foundation for many variant neu-

ral networks, such as Recurrent Neural Networks (RNNs), Long Short-Term Memory

(LSTM), and Convolutional Neural Networks (CNN). Each of these variants have their

own strengths, for example, RNNs are frequently used in natural language processing. A

Convolutional Neural Network is an augmentation of the Neural Network with a number

of unique components that make it exceptionally good for dealing with multi-dimensional

inputs and data that hold strong spatial correlations, in the case of video streaming, large

bursts of bit data occur at a certain time in the video. CNNs were effectively applied in the

attack scenario put forward by Schuster et al. (?, ?).

CNNs perform multiple transformations to their data that make them unique. One of

these is a convolutional layer, that convolves the data. The output of the convolutional layer

is a dot product computed between a filter and the input. The number of filters and size of

filter can be altered so that the number of channels can increase after a convolutional layer.

The purpose of the convolutional layer is to learn key features in the data such as lines,

edges, textures etc. in the case of image classification.

Another augmentation of a CNN is the pooling layer. The purpose of the pooling layer

is to reduce data dimensionality while preserving key features. Pooling dimensions n× n

are set that are smaller than the input space, a subset of the feature map is then looked

10

at through this pooling window of n × n dimensions. The pooling layer then takes only

one value from this window, it can be the average of all the values in the window, or the

maximum etc., but the maximum is the most common value to use. The pooling layer then

outputs the maximum value of this n × n section of the feature map and moves a given

number of spaces. The pooling window can only move one element in the feature map

array or move multiple, the value that controls the amount of elements moved is called the

stride. The pooling layer does not have weights or bias, the only purpose of the pooling

layer is to reduce size while preserving key features, which is why max pooling is more

effective than average pooling, because it will record only the most prominent feature in

each section of the feature map.

Finally, the feature map is flattened to a 1 dimensional vector (this is not required, and

some notable CNN models don’t do this) and there is a fully connected layer before the

classification layer to promote non-linear learning.

2.5 Differential Privacy

Differential privacy is a technique for privacy protection. It relies on the addition of noise

to data in order to keep individual user data private. The first paper to formally outline

what is know as ε-differential privacy was published in 2006 (Dwork, McSherry, Nissim,

& Smith, 2006). In layman’s terms, a scheme is determined to be differentially private if

an observer cannot distinguish between the presence or absence of one single individual’s

data in the database. Formally, this definition is given by:

Pr[A(D1) ∈ S]≤ exp(ε)×Pr[A(D2) ∈ S] (2.4)

In this formal definition, Pr stands for probability, A represents a differential privacy

analysis mechanism on a database, D1 or D2 represent two databases that differ by only

one data point, and ε represents the metric that controls the amount of privacy.. The lower

11

the value of ε, the more noise is added, the more privacy is added. In layman’s terms, we

could say that a system is differentially private if the probability of output in the space S

from mechanism A on D1, when divided by the same value for D2 is less than or equal to

eε. Sometimes the definition is alternatively written as:

Pr[A(D1) ∈ S]
Pr[A(D2) ∈ S]

≤ exp(ε) (2.5)

Differential privacy works by adding noise within a range that can be controlled. The

most common way to add noise to a database is to add the noise within a distribution that

is centered on the data-set. The most common distribution for adding noise to a database is

the Laplacian distribution, but the Gaussian distribution can be used as well.

For the purpose of comparison, we implemented two differential privacy mechanisms

in this paper. The two differential privacy mechanisms we implemented were adjusted for

time series data. The two methods we used were d ∗−privacy (Xiao et al., 2015) and

FPAk (Rastogi & Nath, 2010).

2.5.1 Fourier Perturbation Algorithm (FPAk)

FPAk relies on a Discrete Fourier Transformation (DFT). For this algorithm, we consider

Q = (Q[1], . . . ,Q[n]) to be a real or complex valued sequence of length n. In our case, it

is a single video’s data. In a DFT, this sequence Q is tranformed into F = (F [1], . . . ,F [n])

where:

F [j] =
n

∑
i=1

exp(
2π
√
−1

n
i j)Q[i] (2.6)

F [j] represents the j-th Fourier coefficient of the DFT(Q). After a DTF is performed

on a data sequence, an inverse DFT (IDFT) can be performed. IDFTs have the prop-

erty IDFT (DFT (Q)) = Q. If we consider a sequence P = (P[1], . . . ,P[n]) with complex

values, then an IDFT will convert this sequence into another complex-valued sequence

12

R = (R[1], . . . ,R[n]) where:

R[j] =
1
n

n

∑
i=1

exp(
2π
√
−1

n
i j)P[i] (2.7)

Let Lap(λ) denote a random vareiable drawn from the Laplacian distribution with scale

λ and location µ = 0. Suppose the inputs of the FPAk algirhtnm are Q,λ, and k. The FPAk

algorithm is described as:

• Keep the first k Fourier coeffiecients F [1], . . . ,F [k] after computing DFT(Q).

• Compute F̃ = F [i]+Lap(λ) for i = 1, . . . ,k.

• Return Q̃ = IDFT (PADn([F̃ [1], . . . , F̃ [k]])), where PADn([F̃ [1], . . . , F̃ [k]]) denotes

the sequence of length n obtained by appending n− k zeroes to F̃ [1], . . . , F̃ [k].

Rastogi (Rastogi & Nath, 2010) that FPAk is ε-differentially private for λ=
√

k∆2(Q)/ε,

where ∆2(Q) denotes the L2 sensitivity of a set of Qs. Formally, ∆2(Q) is the smallest num-

ber such that for all Q,Q′ ∈Q, |Q−Q′|2 ≤ ∆2(Q).

2.5.2 d*-privacy

Xiao (Xiao et al., 2015) leveraged d-privacy with a distance metric d∗ on a one-dimensional

time series. Let x and x′ denote two time series. The d∗ was defined as:

d ∗ (x,x′) = ∑
i≤1
|(x[i]− x[i−1])− (x′[i]− x′[i−1])| (2.8)

To achieve d∗-privacy, Xiao (Xiao et al., 2015) extended a mechanism from Chan (Chan,

Shi, & Song, 2011) to implement a d∗-privacy mechanism as follows: Let N donte the nat-

ural numbers and D(i) ∈ N denote the largest power of two that divides i; i.e., D(i) = 2 j

if and only if 2 j|i and 2 j+1 6 |i. Note that i = D(i) if an only if i is a power of two. The

13

mechanism A computes a noised value x̃[i] that is used in place of x[i] using the recurrence:

x̃[i] = x̃[G(i)]+(x[i]− x[G(i)])+ ri (2.9)

where x[0] = x̃[0] = 0, and:

G(i) =

0 if i = 1

i/2 if i = D(i)≥ 2

i−D(i) if i = D(i)

(2.10)

ri ∼

Lap(1

ε
) if i = D(i)

Lap(blog2ic
ε

otherwise
(2.11)

It was proven by Xiao (Xiao et al., 2015) that the algorithm in Equations 2.9,2.10,

and 2.11 is (d∗,2ε)-private and (l1,4ε)-private.

14

Chapter 3

Problem Description

3.1 Traffic Analysis Attack

The traffic analysis attack against MPEG-DASH video streaming relies on side channel

information to identify the video a user is streaming. While video streaming, a client re-

quests video segments from the server at regular intervals. The video segments themselves

are encrypted, but the meta-data including packet size and arrival times are visible at the

application layer to any adversary on the network (Schuster et al., 2017). The bit-rate data

seen by the adversary can be used to determine whether or not a user is streaming a spe-

cific video selected by the adversary. Multiple approaches have been taken to use this data

for malicious purposes, both algorithmic and machine learning based. The algorithmic ap-

proaches (Gu et al., 2019; Reed & Klimkowski, 2016) seek to measure similarity between

the users bit-rate data and the adversary’s pre-recorded bit-rate data for a specific video.

The machine learning approaches (Schuster et al., 2017; Dubin et al., 2017) seek to predict

whether or not a user is watching the video selected by the adversary. Schuster et al. intro-

duced a traffic analysis attack based on a CNN and extended it to work in a web browser,

it is executed by JavaScript code that saturates a victim’s connection to a server and then

measures the traffic changes (Schuster et al., 2017). More information about the attacks

15

and their implementation is included in Section 8.

However this attack is implemented, whether by machine learning or an algorithmic

approach, the data it relies on is the same. The vital information being leaked is the size

of the packets and the times of their delivery, which allow an adversary to observe the

rate at which bits are sent, or the bit-rate of the video stream. The un-obfuscated graph

in Figure 4.1 is a graphical representation of the format of this bit-rate data. Because of

MPEG-DASH and VBR, these bit-rate patterns are a unique fingerprint for at least 20% of

videos when analyzed theoretically (Schuster et al., 2017), though all implementations of

this attack show accuracy values above 90% for video identification.

For this attack, we make two assumptions. First, we assume a polynomial time adver-

sary, that is, an adversary restricted to practical means of attack. Second, we assume that

the adversary is external, and cannot be executing their attack from the server side.

3.2 Problem Definition

Creating a defense mechanism for this attack is in theory straightforward. The video re-

quest pattern, seen as bit-rate by the adversary, must be changed so that an adversary can

no longer use this information to compromise user privacy. In practice, there are more

considerations, primarily computational efficiency. Video streaming is a computationally

expensive process, and if a request pattern is obfuscated too much it will cause video lag

or video buffering because not enough data is being sent, or conversely, because excess

data is being downloaded. To the best of our knowledge at the time of this writing, only

one defense strategy has been proposed, by Zhang et al. (Zhang et al., 2019). It leverages

differential privacy and works by setting a proxy between the client and server in the form

of a browser extension. The extension perturbs the video segment request pattern using

differential privacy. Differential privacy adds noise to data, in the case of video streaming,

this noise changes the time intervals of the requests from the client and the amount of data

16

requested by the client. The defense scheme proposed by Zhang et al. (Zhang et al., 2019)

leverages two differential privacy methods for obfuscation, d∗− privacy and FPAk.

While the strategy of video request pattern obfuscation with differential privacy suc-

cessfully defended against the CNN based attack proposed by Schuster et al. (Schuster et

al., 2017), there was computational overhead incurred by the defense because of the use of

differential privacy, which always trades utility for privacy. Because of this, and the need

for scalability in the field of video streaming, we sought to create a more efficient defense

solution.

In our attempt to define constraints for a more efficient, private solution, we considered

that a defensive scheme should improve with more available data, growing more robust over

time. Additionally, we assert that the solution must be scalable, considering the scale of the

video streaming industry, the number of users who stream on computationally constrained

mobile devices, and the computational cost of video streaming.

3.3 Privacy Definition

For our scheme we created a formal privacy definition based on the type of privacy pro-

vided by our scheme. A formal privacy definition gives our scheme scope beyond just the

experimentation done. The privacy of our scheme is given by the mapping of multiple in-

puts to a single output. When we obfuscate a cluster of videos, all the videos in the cluster

are obfuscated to a single output value. This means that if there are 10 videos in a cluster,

if the adversary is only able to observe the streaming after obfuscation, the adversary has

a 10% chance of guessing the identity of the video. If the adversary does guess the title of

the video correctly, they have no way to verify it. Therefore, our privacy definition is based

off of the number of videos in a cluster. The merit of providing privacy in this way is that

as the scale of the scheme increase, the privacy does too. We give our privacy definition as

follows:

17

We define n as the total number of videos in the data-set that are clustered, G as the

guess of the adversary, S as an obfuscated video capture, V as the true identity of the

video, Pr[G(S) = V] is the probability of the correctness of the attacker’s guess, and ε is

a negligible probability. We assume the adversary has full knowledge of the bit-rate of a

single centroid. The probability that the attacker is correctly able to guess the title given by

the centroid can be expressed by:

Pr[G(S) =V]≤ 1
n
+ ε (3.1)

If multiple clusters are created, then n represents the smallest cluster size, i.e., if there

are 3 clusters, and the smallest cluster has only 5 videos, then n = 5. Though in experimen-

tation the privacy shown is much greater than this.

3.4 Distance Privacy Definition

We sought to create a distance privacy definition to give a more in depth view of the privacy

being provided. Drawing from the attack paper by Schuester et al. (Schuster et al., 2017),

we used the L1 norm as the basis of our privacy definition. The L1 norm can be defined for

two vectors a,b ∈ Rn by the following equation:

L1(a,b) = ‖a−b‖1 =
n

∑
i=1
|a[i]−b[i]| (3.2)

For this privacy definition, we consider two vectors x and y. Let the vector x represent

video byte data recorded at a constant interval t = 0.25 seconds over a time space T . Let

y represent the vector x after obfuscation. In the paper by Schuester et al. (Schuster et al.,

2017), the adversary was successfully able to identify a video if the L1 norm between the

recorded data x and the attacker’s fingerprint y was less than 3,500,000 bytes. To make

a robust privacy model, we reduced this threshold to 2,200,000 bytes so that videos must

18

have an increased level of privacy, making the scenario more favorable to the attacker.

We also used this privacy definition to compare our proposed scheme NDA to differ-

ential privacy (Zhang et al., 2019). For our own scheme NDA, privacy is two-fold. There

is privacy given by the obfuscation of the original video, and there is privacy given by

belonging to a cluster with a high number of videos. If a cluster has 10 videos, guess-

ing at random the adversary has a 10% chance of guessing the correct video even if the

adversary has full knowledge of which videos are in the cluster. Therefore, for NDA, we

multiply the L1 norm by the number of items in the cluster to account for the extra pri-

vacy provided by being included in a cluster with an increasingly large number of data.

Additionally, this will account for the degradation of privacy that comes when the number

of clusters increases, causing the number of videos per cluster to decrease. Letting C be

a cluster, our scheme’s privacy is shown by (|C| × ‖x− y‖1) ≤ 2,200,000. This privacy

threshold of 2,200,000 bytes is further validated with the accuracy levels shown later in the

experimentation. For differential privacy, we used only the L1 norm as the privacy measure,

represented by ‖x−y‖1≤ 2,200,000, because all the privacy given by differentially private

solutions comes from noise added. It is therefore logical to conclude that a measurement of

the distance between two vectors because of added noise in order to preserve privacy will

give a clear view of the level of privacy provided.

19

Chapter 4

Proposed Scheme 1: NDA

4.1 Metrics

For evaluation of the video performance after the implementation of our algorithm, we

used the two metrics defined by Zhang et al.(Zhang et al., 2019), waste and deficit. Both

metrics are defined in relation to the bit-rate pattern of the original video. Deficit can be

defined as the maximum difference between what amount of video is being downloaded in

the obfuscated request pattern, and what amount of video should be downloaded. Waste

can be defined as the opposite, the amount of extra video that is being downloaded that

doesn’t need to be. Let a ∈ Rn be a vector that represents the original un-obfuscated video

pattern and let b ∈ Rn be a vector that represents the obfuscated video pattern.

waste = max
1≤i≤n

{max(b[i]−a[i],0)} (4.1)

de f icit = max
1≤i≤n

{max(a[i]−b[i],0)} (4.2)

20

4.2 Proposed Scheme Overview

Our proposed scheme, “No Data are Alone (NDA)”, seeks to find an efficient and effective

way to obfuscate video requests from a client. Figure 1 depicts our overall scheme in

detail. In our proposed scheme, the server has a database of all video segment request

patterns from which a random subset will be selected to fit a K-Means algorithm on. Let a

video request pattern be defined as a vector x∈Rn, where x[i] represents one video segment

sent from the server to the client. Let S = (x1, . . . ,xm) be the set of video request patterns.

In our scheme, the server has knowledge of S and its contents. When a client selects a

video for which its request pattern is xi ∈ S, this video request pattern xi is altered by our

algorithm NDA so that its value is now yi.

As a client streams a video, the client will send requests to the server. Each request is

filled with a segment of video that can be defined as xi[j] from the vector xi. In an unaltered

system, the vector xi is defined progressively by the size of data sent from the server to the

client, with the size of each video request xi (in bytes) being dependent on the content of

the video clip, the desired streaming quality, and the quality of the network the client is

streaming from. Under our proposed scheme, the requests are not filled according to the

request of the client, but according to the vector yi.

In order to preserve video streaming quality, the vector yi is defined by our algorithm

and minimizes the two metrics defined in Section 4.1.

4.3 Proposed NDA Algorithm

Our algorithm is an augmentation of K-Means clustering. We use K-Means clustering

instead of other clustering algorithms because K-Means clustering provides a centroid.

This centroid is the average of all values in the cluster, and is crucial to our scheme. With

another clustering algorithm, we would need to compute the value of the centroid ourselves.

One of the advantages to using K-Means clustering is that initialization is different each

21

time the model is fit, and therefore cluster distribution is also different with each fitting.

The implication of this is that even if the attacker knows the full set of videos, and performs

his own clustering, he will not receive the same cluster distributions. So if the adversary

determines that the target video V is in his cluster Cluster 1, this will not necessarily be

true in the defensive schemes cluster distribution.

In our scheme, first, we apply K-Means clustering to the set of videos S. In a naive

approach, the centroid m j of a cluster C j, which is defined as a vector m j = (x1,x2, . . . ,xn)

and is calculated by equation 2.3, can then serve as an obfuscated pattern for each video

xi ∈C j. Theoretically, since there are multiple videos in each cluster, the adversary cannot

distinguish between them if they are all streamed with the same (centroid) pattern. In prac-

tice, the naive approach encounters problems and this theory does not hold (see Figure 6.2).

While clustering data, it is inevitable that some data points x will be alone in a cluster

C. When this is the case, the mean m calculated will be equal to the data point x so that

this instance can be shown by considering:

m =
1
|C|

|C|

∑
i=1

x(C)
i = x (4.3)

where |C|= 1.

In this case, implementation of the naive algorithm would result in the obfuscated pat-

tern yi being equal to xi, and no privacy would be provided. To combat this, we developed

No Data are Alone (NDA).

The assumptions made by our algorithm are as follows: a user will request video seg-

ments (xi1,xi2, . . . ,xin) ∈ xi for some video xi, the server will fulfill these requests with an

obfuscated pattern xi. The server has a database of videos S and an NDA model N that is

fit on a random subset of these videos. Whenever a video xi is requested by the user, the

server must compute yi. This computation is the same as the assignment step in K-Means.

Instead of directly returning this result as yi, our algorithm will check the value of |C j|.

If this value is 1 (meaning the data is alone in a cluster), our algorithm performs a new

22

Figure 4.1: Obfuscation Pattern Comparison

assignment.

Our algorithm’s reassignment step is based on the minimization of waste + de f icit

instead of Euclidean distance, and requires |C j| > 1 so that the cluster assignment C j

of a video xi will have not be alone in a cluster, ensuring privacy, and an obfuscated

pattern yi that minimizes waste and deficit when compared to all other cluster patters

M = {m1,m2, . . . ,mk}. Our algorithm can be represented as follows:

C j :=argmin(max
1≤i≤n

{max
j∈k

(
m j[i]−xi[i],0

)
}

+ max
1≤i≤n

{max
j∈k

(
xi[i]−m j[i],0

)
})

(4.4)

For Algorithm 1 let M be a list of the cluster centroids, where m j ∈M is the centroid of

a cluster C j. x represent the video segment to be made private, and y is the video segment

after obfuscation. All cluster centroids are evaluated to determine which cluster assignment

C j produces the lowest value of waste + deficit.

23

Algorithm 1: No Data Are Alone (NDA)
Input : M, x

1 let min waste = 0
2 let min deficit = 0
3 let y ∈ Rn

4 for each centroid m in M do
let C be the cluster corresponding to m

5 if |C|= 1 then
6 remove m from M

end
end

7 for each centroid m in M do
8 waste = max1≤i≤n{max(m[i]−x[i],0)}
9 de f icit = max1≤i≤n{max(x[i]−m[i],0)}

10 if waste < min waste and de f icit < min de f icit then
11 min waste = waste
12 min de f icit = de f icit
13 y = m

end
end

14 return y

4.4 Cluster Recreation Probability

Our proposed schemes maps multiple inputs to one output. Multiple videos are in any given

cluster, and these videos will all have their patterns obfuscated to the same cluster centroid

pattern. When mapping multiple videos to one centroid, the probability of guessing which

video is mapped to the output is dependent on the number of videos in the cluster. If there

are 10 videos in the cluster, the probability of guessing based off of the output would be

10%. A concern for a scheme that provides privacy in this way is the recreation of the

same mapping. In the case of our scheme, NDA, the adversary would have to produce the

same cluster distribution. In our scheme, we performed clustering on 40 videos (though

this number could greatly increase in real world implementation).

To consider the privacy given my our scheme more fully, we consider the possibility

of the adversary recreating the same cluster distribution used by our defensive scheme.

We give the adversary full knowledge of all 40 videos that were used to perform the NDA

24

algorithm. Using this knowledge, the adversary is allowed to perform his own clustering to

attempt to obtain the same distribution as our proposed scheme. A cluster distribution can

be defined as which videos belong to which clusters i.e., there are 4 videos in cluster 1, 12

videos in cluster 2, etc. If the adversary is able to obtain a distribution with the same videos

in the same cluster as the defensive scheme distribution it would be a breach of privacy.

For the cluster initialization algorithm in our scheme, we use K-means++ (Arthur &

Vassilvitskii, 2006). This algorithm will determine the probability of obtaining the same

cluster distribution twice. This algorithm randomly selects a data-point as a starting cluster

centroid, then initializes the rest of the cluster centroids with probabilities proportional

distance from the chosen data-point i.e., a cluster with a distance closer to the chosen

centroid has a lower probability of being chosen as the next centroid, while a data-point the

furthest away from the initial cluster centroid has the highest probability of being chosen.

This means that with K-means++, there are 40 possible initial data-points to choose in our

data-set. This means the adversary has a at most a 1
40 or 2.5% chance of producing the

same initial cluster centroid. The probability of maintaining the same cluster distribution

degrades with each subsequent assignment. Additionally, the adversary has no way of

knowing if he has successfully produced the same cluster.

4.5 Various Clustering Algorithms

While doing experimentation on K-Means clustering, we also performed clustering with

two other algorithms, Agglomerative clustering and DB-SCAN clustering. Agglomerative

clustering and DB-SCAN are two popular clustering algorithms. When performing cluster-

ing, we noticed the exact same pattern in each of the clustering algorithms. Each algorithm

provided very lopsided clusters, most of the videos were grouped into a single cluster with

only a few videos falling into other clusters. We fit the models multiple times but the result

was always the same. Since the output for all three clustering algorithms was nearly iden-

25

tical, we decided to use K-Means clustering. Additionally, our schemes need the cluster

centroid in order to provide privacy. K-Means provides this as part of its implementation,

but it would have to be calculated manually for another clustering algorithm. This would

introduce a small amount of computational overhead because it would have to be imple-

mented manually instead of using a package optimized for it as we did with K-Means, and

since the distributions were very similar across different algorithms, the centroids would

be as well.

26

Chapter 5

Implementation and Simulation

5.1 Data Collection

Data collection was automated using tshark by Wireshark1 and Selenium2. We collected

data from YouTube, and only videos of 20+ minutes were captured, ad content was filtered

out, and video quality was kept constant (720p). We recorded the server to client bit-rate

of each video in segments of 0.25 seconds. We collected a data-set of 41 different hand

selected videos. The bit-rate data of each these 41 videos was collected for 100 captures

each, and each capture only lasted for exactly 20 minutes. With a 20 minute long capture

that captured data every 0.25 seconds, each video capture had 4800 data-points so that a

single video capture could be represented as xi = (xi1,xi2, . . . ,xi4800). With 100 captures for

41 videos, we ended up with a data-set of 4100 samples, 100 per video, with 4800 data-

points for each video. This data was used to implement our defense algorithm and train our

CNNs. We also collected 1000 traces of 20 minute long videos, each unique. These videos

were split into 10 categories, Boxing, Soccer, Basketball, Football, League of Legends,

Fortnite, Makeup Tutorials, Vlogs, Symphony Performances, and Ted Talks. These videos

weren’t used during experimentation, but are used in Figure 6.1 to elaborate on our scheme.

1www.wireshark.org
2www.selenium.dev

27

Video	1
Class	1

Sample	1
Sample	2
Sample	3

Sample	10

d*-privacy

FPAk

Comparison
method	1

Repeat
for		10
samples

NDA

Proposed
Scheme

Sample:	A	single
capture	of	video

bitrate	data	(bits/sec),
repeated	10	times	per

video	

Video	41:
Class	41	

Sample	1
Sample	2
Sample	3

Sample	10

NDA
Classifier

FPAk
Classifier

d*-privacy
Classifier

Comparative
Analysis

Attack	CNNs

Comparison
method	2

Figure 5.1: An Overview of the Evaluation Methods

5.2 Comparison of Defense Schemes

To evaluate the performance of our scheme NDA compared to the proposed scheme of

Zhang et al. (Zhang et al., 2019), we implemented d∗− privacy and FPAk exactly the same

as Zhang et al. with one modification. The value for k in the paper by Zhang et al. was

set a 10, and their video length was 720. Our video length was 4800, so accordingly we

increased k to 67.

The un-obfuscated graph in Figure 4.1 is a graph of the data exploited by this attack, bit-

rate over time. The bursty nature of video streaming can be seen here, the graph continues

at a low number of bytes, then a large spike (burst) in the graph occurs when a client’s

request is filled. A graph of our defensive method NDA and graphs of each differential

privacy method are shown to add a deeper analysis of each method, beyond just the waste

and deficit measure in Section 6.

The NDA graph in the bottom right of Figure 4.1 is a graphical representation of the

obfuscation that our proposed scheme creates. Our scheme provides obfuscation by com-

puting an average of many video patterns like the un-obfuscated graph at the top. This

average is the cluster centroid. Because the centroid is the average of multiple videos,

NDA has slightly smaller bursts than the un-obfuscated pattern, but still retains the bursty

nature. In the experimentation from which this graph was derived, 36% of videos were

28

assigned to this cluster. In our scheme, the 36% of videos assigned to this cluster will be

obfuscated with the pattern shown in the NDA graph in Figure 4.1.

The FPAk graph in Figure 4.1 is a representation of obfuscation by FPAk, which relies

on a Fast Fourier Transformation, addition of laplacian noise, and subsequent Inverse Fast

Fourier Transformation for its obfuscation. It can be seen that this video doesn’t exhibit the

bursty nature of video streaming, but instead has more gradual fluctuations, which could

lead to video lag because of prolonged periods without requesting new video segments.

The d∗− privacy graph in Figure 4.1 is a graphical representation of d∗− privacy,

which adds simple laplacian noise to time series data. This method adds the most noise,

the range of bytes for the original un-obfuscated video stays mostly within the 50,000-

300,000 range, but the d∗− privacy method has a large number of points in the 1,000,000

bytes range, which would cause an excess downloading of video data. This result agrees

with the waste and deficit measurements given in Section 6.

5.3 Attack Classifiers

To test our proposed algorithm, we implemented the CNN created by Schuster et al. (Schuster

et al., 2017), with a few minor modifications to the architecture. We did this to accommo-

date our data vectors, which were significantly longer than the ones used by Schuster et al.

We used a filter size of 32 with a kernel size of 3 and a pooling size of 2 instead of 6. We

also used the Adadelta optimizer instead of Adam. Additionally, we used z-score normal-

ization and a learning rate of 0.001. These were the only differences. Our classifier has 41

classes, one for each video. We trained this classifier on our full data-set for 80 epochs.

The classifier, ModelA, had an accuracy of 0.9316 and a false positive rate of 0.0017.

For evaluation we used 10 samples for each video, totalling 410 samples for all 41

videos. The results of accuracy, waste, and deficit for all 410 samples tested were aver-

aged to give a broad view of the performance of each algorithm. Figure 5.1 is a visual

29

representation of these evaluation methods.

We created three ”attack CNNs” and trained one on noised data from our scheme NDA

and one on noised data from each of the two differential privacy schemes, in an attempt to

increase the performance against them. We then tested these defense schemes against our

attack CNNs and recorded the waste and deficit for NDA, and for the differential privacy

schemes with varying epsilon values. Results of the accuracy for each of these schemes

can be seen in Table 5.1.

To train against our scheme NDA, we used one data-set of videos obfuscated by our

scheme and the original un-obfuscated data-set. Instead of training a new classifier, we

retrained the original model, ModelA. This new attack model, ModelB, was trained for

50 epochs, or else significant over-fitting occurred. This model theoretically shouldn’t be

able to successfully learn to predict our scheme, because of the method our scheme uses to

provide privacy. When we fit our algorithm with 4 clusters, all videos can be obfuscated

to one of four options. This may result in, for example, 15 of 41 videos all being assigned

to the same cluster, and obfuscated with the same pattern. The classifier will be unable to

learn any correlation between an obfuscated pattern and a video class, because so many

videos from different classes will have the same pattern. The results in Section 6 support

this conclusion.

To create the FPAk attack CNN, ModelC, we retrained ModelA on 5 data-sets. We

included the original un-obfuscated data-set, then 4 different data-sets of data obfuscated

by FPAk, two with an epsilon values of 15 and two with epsilon values of 25. Different

epsilon values will yield classifiers robust to different levels of obfuscation. We chose

15 and 25 to have a well balanced model. We trained the model for 500 epochs. This

model required more data and longer training time to become accurate when compared

to the d∗− privacy, which is unsurprising when you consider FPAk in Figure 4.1 and the

higher level obfuscation when compared to d∗− privacy which added significant noise but

retained the bursty pattern. This model had an accuracy of 0.9317 and a false positive rate

30

Table 5.1: Comparative Analysis: Attack Classifiers

FPAk d∗−Privacy NDA
Accuracy ε W D Acc ε W D Acc C W D Acc
0 - 10% 0.5 10.45 2.10 0.03 5e-6 29.51 1.68 0.03 4 0.15 2.17 0.07

10 - 20% 5 1.10 2.15 0.16 1.4e-5 10.43 1.42 0.18 N/A N/A N/A N/A
21 - 40% 10 0.57 2.15 0.23 1.8e-5 8.13 1.31 0.33 N/A N/A N/A N/A
40 - 60% 25 0.31 2.16 0.53 2e-5 7.31 1.25 0.44 N/A N/A N/A N/A
> 60% N/A N/A N/A N/A 1e-4 1.49 0.08 0.93 N/A N/A N/A N/A

ε: Epsilon to achieve the accuracy, W : Waste, D: Deficit, Acc: Exact attack accuracy, C: number of clusters

of 0.0024 on the un-obfuscated data.

To create the d∗− privacy attack model, we trained the ModelD from the original model

ModelA with 2 data-sets. We used the original un-obfuscated data and one data-set obfus-

cated by d∗− privacy with an epsilon value of 0.0007. This model trained for only 50

epochs or else over-fitting occurred.

Furthermore, to show that transfer learning was taking place when we retrained ModelA,

we reconstructed the original architecture from ModelA and trained it against FPAk from

scratch on the 5 data-sets, however, the accuracy of this model on the un-obfuscated data

was significantly lower than retraining the previous model, and lower on data obfuscated

by FPAk that is was trained to classify. This implies that the knowledge about identifying

un-obfuscated data successfully transferred from one task (detecting un-obfuscated data) to

another (detecting obfuscated data). From this it can be inferred that even after obfuscation

with differential privacy, the video pattern retains identifiable features that can be learned.

31

Chapter 6

Experimental Results

6.1 Privacy Evaluation

To get a broader view of the privacy levels shown by our scheme and the extant scheme,

we performed obfuscation on all the videos in our data-set, both with our scheme, NDA,

and with the two differential privacy schemes used by Zhang etal. (Zhang et al., 2019). We

then represented the privacy level of each video with a boolean value, either private or non-

private based on the distance privacy definition given in Section 3.4. We then divided the

total number of non private videos for each scheme by the total number of videos, giving

the percentage of non private videos for each scheme. The results are shown in Table 6.1.

These results can also be interpreted inversely, that is, NDA with 4 clusters has a 1.4%

chance of leaving a video non private, or NDA has a 98.6% chance of successfully priva-

Table 6.1: The percentage of non-private videos created by each scheme

Scheme Privacy
NDA 4 Clusters 0.014

NDA 24 Clusters 0.181
FPAk ε = 0.5 0.00023
FPAk ε = 5 0.971

d∗− privacy ε = 0.000005 0
d∗− privacy ε = 0.0001 0.987

32

Figure 6.1: Video Category Distribution Across Multiple Clusters

tizing a video. It can also be seen that the privacy of our scheme degrades some as the

number of clusters increases, but still remains high. It can be seen here that at an epsilon

value of 0.5, FPAk performs well, however, the waste incurred at this value is high (see

Table 5.1). When the epsilon value is increased slightly, the privacy degrades very quickly,

more quickly than the attack accuracy using the CNN (see Table 5.1). This calls into ques-

tion the protection level of this scheme against other attacks. When observing d∗−privacy,

the privacy level looks impressive, but the computational cost of this scheme is very high

(see Table 5.1).

6.2 Clusters and Video Types

Figure 6.1 depicts the clustering of 1000 unique videos, that each fall into one of 10 cat-

egories. The purpose of this figure is to show the distribution of video category among

different clusters. This is important to consider, because it is possible the attacker might

try to determine the cluster identity, and then infer the category of the video from the clus-

ter. This graph gives insight to the possibility of invading a user’s privacy this way. The

33

Figure 6.2: Accuracy of the CNN Attack against K-Means and NDA across an increasing
number of clusters

ten categories in the graph fall into 3 broader categories. Sports videos are shown in blue,

video game videos are shown in green, and low action videos are shown in orange. The Y

axis of the graph represents the number of videos in a given cluster, i.e. 40 football videos

fall into Cluster 1, 20 Football videos fall into Cluster 2 etc. This graph shows a broad

distribution of videos even within the same category. League of Legends videos have their

highest percentage of videos in cluster 2, along with Basketball. Fortnite, the other group

of videos in the video game category has the most videos in cluster 2, along with Boxing

videos. From this graph it can be seen that there is no category of videos that dominate a

single cluster.

6.3 Traditional K-Means vs. NDA

Figure 6.2 is a measure of accuracy with an increasingly large number of clusters with

both traditional K-Means and our proposed scheme NDA. This graph displays the need

for an altered K-Means algorithm. As the number of clusters increases, the number of

videos alone in their own cluster also increases. Data points alone in a cluster have no

34

Figure 6.3: Accuracy vs. waste+de f icit

privacy, because the cluster centroid is equal to the video pattern. This is why as the

clusters increase, the number of alone data points increases, and therefore the privacy of

the scheme decreases.

This is because with a high number of videos in one cluster, the centroid is an average

of all these videos. As the number of alone clusters increases, the cluster reassignment

will mean that one video is being assigned another videos pattern, instead of an average

of multiple videos. This makes the similarity to the un-obfuscated video pattern decrease

compared to a centroid that is the average of many videos. However, this impact is minimal,

and the accuracy for NDA never goes higher than 7%.

6.4 Accuracy vs waste+de f icit

Figure 6.3 is a comparison of the the attack accuracy against each scheme vs waste +

de f icit (measured in Mega-Bytes) of each scheme; each defensive scheme was tested

against the classifier trained to attack it. For d∗− privacy and FPAk, we considered multi-

ple ε values. Table 5.1 represents a summary of the performance of each defensive scheme

when evaluated against the CNN that was trained to attack it, i.e. the performance of NDA

35

against classifier trained on NDA obfuscated data. Since we could not achieve an identical

accuracy for all three schemes, we set accuracy ranges for the table and found ε-values that

made them fall under the ranges.

As the ε values increase, accuracy increases and waste+ de f icit decrease. This intu-

itive, a higher ε value will add less noise to a differential privacy scheme, in this case, it

means that the obfuscated video is closer to the original and is therefore more likely to

be correctly classified, and will also incur less waste and deficit because it is closer to the

original.

In every ε case, our scheme outperforms differential privacy when considering both

accuracy and waste+ de f icit. Our scheme significantly outperforms d ∗−privacy, and

creates 1MB less waste+ de f icit while having an attack accuracy half as high as FPAk.

The correlation between ε, waste and deficit, and accuracy can also be clearly seen from

this graph. Higher ε values will add less noise, resulting in higher attack accuracy and

less waste and deficit. We did not include the accuracy for d∗− privacy that would’ve

been equivalent to ours because the waste incurred was extremely high, and we wanted to

preserve the scale of the graph (see Table 5.1).

6.5 Attack Accuracy Across Epochs

Figure 6.4 shows the accuracy the attack CNNs of each scheme across multiple epochs of

training. In Figure 6.4, Epoch 0 represents the classification accuracy of ModelA before

training on noised data. Figure 6.4c depicts the accuracy of the classifier that was trained

on both un-obfuscated data and data that was privatized using our algorithm NDA. This

result shows that over 50 epochs, the classifier doesn’t learn anything about about the data,

the accuracy remains below 8% the entire training time. This result is predictable because

of the privacy preserving format of our proposed scheme. With only 4 clusters, all videos

are obfuscated to 1 of 4 patterns. In the testing, 410 samples are taken. All 410 samples

36

are obfuscated to only 4 videos. With so many samples being obfuscated into one of only

four possibilities, no learning can occur.

From figure 6.4a, it can be seen that the FPAk attack classifier effectively learned all the

different epsilon values of FPAk except for one, when epsilon is 0.5, which adds consider-

able waste and deficit. The accuracy improvement is expected, because differential privacy

always adds noise within a range (controlled by epsilon), so with enough data a classifier

can still learn to predict accurately through the obfuscation. We used only 4 obfuscated

data-sets to produce this result, but it is logical to conclude accuracy would grow higher

against FPAk if more obfuscated data-sets were used. Additionally, we included one data-

set of un-obfuscated data while training the FPAk attack classifier so that the model did not

over-fit and learn only FPAk.

Figure 6.4b depicts the d∗− privacy attack classifier. The accuracy for this scheme can

also be seen to increase for all but the highest level of privacy protection, which adds too

much waste to be viable.

This is the downside of differential privacy, there is always a trade-off of computational

efficiency and privacy, and a scheme that adds too little noise can be overcome by training

against the differential privacy scheme, but a scheme that adds too much noise can cre-

ate too much computational overhead. Our scheme overcomes this trade-off and provides

constant high level privacy while being computationally efficient.

6.6 Time Complexity

Because of the real world nature of this problem, and the need for a scalability in the video

streaming industry, we examined the computational overhead of both our scheme and the

scheme proposed by Zhang et al. (Zhang et al., 2019).

Finding an optimal solution to K-Means is NP-Hard (Mahajan, Nimbhorkar, & Varadara-

jan, 2009), therefore, many similar but alternative algorithms have been proposed, the most

37

(a) FPAk Classifier (b) d∗− privacy Classifier

(c) NDA Classifier

NDA

Un-Obfuscated

d*-privacy:
ϵ	=	0.000005
ϵ	=	0.00005
ϵ	=	0.00007
ϵ	=	0.0001

FPAk:
ϵ	=	0.5
ϵ	=	5
ϵ	=	25
ϵ	=	50

(d) Legends

Figure 6.4: Accuracy Across Multiple Epochs For Three Classifiers

commonly used (and used in this paper) is Lloyd’s Algorithm. The time complexity of

Lloyd’s algorithm is O(t×k×n×d) (Hartigan & Wong, 1979) where t is a number of iter-

ations over n points in d dimensions with k number of clusters. The time complexity of our

algorithm is O(k×kz×v), where k is the number of clusters. For each cluster, defined as C j,

the value |C j| must be evaluated, which must be done iteratively. kz is the number of clus-

ters where |C j|> 1 so that the potential waste and deficit of the video V will be evaluated

relative to each centroid. The value v represents the time taken to find the maximum and

minimum values of a data vector so that the difference between x and y can be calculated

Table 6.2: Execution Time (Millisecond) and Complexity

Scheme Time (ms) Time Complexity
NDA 16.1 O(k× kz× v)

NDA w/o
Pre-fit Algorithm 136.3 O(t×2k×n×d× kz× v)

FPAk 8.4 N/A
FPAk w/o

Pre-Computation 616000 O(n2)
d∗− privacy 155.1 O(λ×n)

38

for waste and deficit. Therefore, the time complexity of NDA is O(t×2k×n×d× kz× v).

The lower bound of the time complexity of a Fast Fourier Transformation hasn’t been

proven, but through experimentation, we determined that the slowest component of the

computation of FPAk privacy is the calculation of sensitivity, which is defined as the great-

est difference between any two data vectors in a data-set. Considering all videos x ∈ S one

must find the difference between all videos in a set relative to each other. For example,

the difference between the first video compared to each other video, etc., so the time com-

plexity of this calculation is O(n2). This is an important constraint, because the provable

privacy of differential privacy is contingent on the value for sensitivity (Rastogi & Nath,

2010), so this value cannot be chosen randomly to speed up computation.

The time complexity of d∗− privacy would be O(λ× n), because it performs a se-

ries of constant time computations for the length of one data vector, additionally, during

each iteration it must compute D(i). The time consuming component for our implementa-

tion was the calculation of D(i) which is defined as the largest power of two that divides

a number i (Xiao et al., 2015). We found this value iteratively, trying m numbers until

we found the largest square that divided i, this made out implementation O(n×m), there

are more efficient ways to find that value so it is defined as λ. The implementation of

d∗− privacy was considerably slower than both NDA and FPAk pre-fit algorithms. Both

FPAk and NDA have an impressive computational performance when pre-computation of

a component of each is considered. In the case of NDA, pre-fitting the K-Means algorithm

considerably increased performance, in the case of FPAk, pre-computation of the sensitiv-

ity increases performance considerably. Considering the time complexity of each solution,

without pre-computation, FPAk is not viable, and while d∗− privacy is potentially viable,

the waste added by this scheme can be a problem. Our algorithm will scale better compared

to FPAk if pre-computation isn’t possible, and doesn’t require a list of all videos for pre-

computation, without a full list, FPAKk can’t be proven to be differentially private. Results

obtained through experimentation for the computation of yi from xi both with and without

39

pre-computation can be seen in Table 6.2. We recorded the time it took each method to

obfuscated a single video, measuring both pre-computation times and non pre-computed

times for FPAk and NDA.

All the experiments were implemented using Python1 version 3.7 and TensorFlow2

version 2.3. Also, they were executed on a desktop equipped with Intel Core i7-6700

processor at 3.40GHz, 16GB memory, AMD Radeon(TM) R5 340x display adaptor, and

Windows 10 Pro 64-bit Operating System.

1www.python.org
2www.tensorflow.org

40

Chapter 7

Proposed Scheme 2: A Single Cluster

7.1 Motivation

In order to create a robust scheme, we decided to create a client-side implementation in

addition to the server side implementation. We initially used a server-side implementation

in order to give the computational burden of our scheme to the server, since video streaming

can be a computationally expensive task and we didn’t want to add any additional burden

to the client. Therefore, in order to implement a client-side solution, we had to consider a

more computationally efficient scheme. Additionally, the client-side scheme needed to be

able to be implemented in real time. If a client clicks on a video, the full pattern hasn’t been

streamed yet so it cannot be clustered. The server-side implementation can simply keep a

database of video patterns in order to implement real time, but the client doesn’t have

this amount of storage. Therefore, our goal was to implement a computationally efficient

scheme that can be implemented in real time.

7.2 Proposed Scheme Overview

In this scheme, the client will request video patterns from server, for example, 40 video pat-

terns. The client has the flexibility to request more or less. The average of all these patterns

41

1) Request for meta-data from 40
videos

2) Request fulfilled

3) Client creates centroid
using K-Means

Client Server

4) Client requests video segments
based on the obfuscated centroid

pattern

5) Server fulfills obfuscated
requests

Client Server

Figure 7.1: Proposed Scheme 2

will then be computed, which is equivalent to making a single cluster in K-Means cluster-

ing, therefore our privacy definition applies directly to this scheme. All videos watched

by the client will then be obfuscated with this average. The client is able to request more

videos than will be used for obfuscation, i.e., the client is able to request 100 videos, and

create an average from only 50 of them. This way, the client is able to hide the values in the

average from the server. An overview of our proposed scheme 2 can be seen in Figure 7.1.

7.3 Experimentation

In order to show the effectiveness of our Proposed Scheme 2, we performed two exper-

iments. First, we performed K-Means clustering on our two different data-sets. One K-

Means model was clustered on the 1000 video data-set, and one K-Means cluster was fit

on the 41 video data-set. We performed clustering on these videos with multiple cluster

sizes. For cluster sizes over 1, we performed obfuscation with NDA. We then measured the

42

accuracy of videos obfuscated with each of the two models at various cluster sizes. Results

can be seen in Table 7.1 and Table 7.2.

We also performed obfuscation of videos in order to show that our Proposed Scheme

2 meets our privacy definition. For this experiment we obfuscated a set number of videos

using Proposed Scheme 2, then tested the accuracy of the CNN against these videos. For

example, we used 10 videos for our Proposed Scheme 2 obfuscation pattern, then tested

the CNN accuracy against only these 10 videos after being obfuscated. According to our

privacy definition, the number of videos used for obfuscation should define the accuracy of

an adversary against our proposed scheme. If 10 videos are obfuscated by a cluster with

only 10 videos, the accuracy against our proposed scheme should be 1
10 or 10%. Results

from this experiment can be seen in Table 7.3.

7.4 Experimental Results

In Table 7.1 it can be seen that the accuracy of the scheme reduces when the cluster size

increases past 2 clusters. The accuracy after the cluster size of 2 does not hold to our

privacy definition. The same result can be seen in Table 7.2 showing that this trend holds

across data-sets of different sizes.

Table 7.3 represents the clustering of our Proposed Scheme 2. It can be seen in this

table that the accuracy rigorously conform to our privacy definition for every cluster size.

Additionally, the waste and deficit are slightly lower for our Proposed Scheme 2 than for

NDA.

43

Table 7.1: Accuracy Across Multiple Cluster Sizes 1000 Video Data-set NDA

Number of Clusters Accuracy Waste + Deficit
1 0.0243 2.278
2 0.0243 2.284
3 0.0414 2.297
4 0.0414 2.298
5 0.0414 2.297
6 0.0414 2.295

Table 7.2: Accuracy Across Multiple Cluster Sizes 41 Video Data-set NDA

Number of Clusters Accuracy Waste + Deficit
1 0.0243 2.324
2 0.0487 2.329
3 0.0463 2.330
4 0.0487 2.318
5 0.0463 2.317
6 0.0463 2.339

Table 7.3: Accuracy Across Multiple Cluster Sizes 41 Video Data-set Proposed Scheme 2

Cluster Size Accuracy Waste + Deficit
2 0.5 1.704
3 0.33 2.162
4 0.25 2..194

10 0.10 2.373
20 0.05 2.523
40 0.025 2.111

44

Chapter 8

Related Works

8.1 MPEG-DASH Leak

There have been multiple traffic analysis attacks that exploit the MPEG-DASH leak on

video streaming. The most effective attack with the broadest attack surface is by Schuster

et al. (Schuster et al., 2017). The attack can be implemented in the form of a malicious

web advertisement written in JavaScript. Additionally, no closed world assumptions were

imposed on the attack model, the adversary can identify the target video without need for a

predetermined ”set” of videos. The authors’ train a Convolutional Neural Network (CNN)

for target video identification and achieve high accuracy and precision, with the accuracy

of the accuracy of their YouTube identifier at 99.4% depending on the features selected for

training.

Implementing algorithmic approaches has also been effective at video fingerprint for

identification, Gu et al. (Gu et al., 2019) achieved up to 90% accuracy using a variant of

Dynamic Time Warping. Dynamic Time Warping is an algorithm for comparing time series

data, this algorithm was implemented to determine the similarity between a known video

traffic pattern and an unknown video fingerprint to determine the identity of the unknown

video from a set of possible candidates.

45

Instead of dynamic time warping to determine similarity, Reed et al. (Reed & Klimkowski,

2016) used a multi stage algorithm that breaks videos into candidate ”windows” that have

a similar throughput to the target video. After selecting potential candidates, Pearson’s

correlation coefficient is used to determine a ”match” between two video fingerprints. The

model achieved an accuracy of 96%.

Finally, Dubin et al. (Dubin et al., 2017) also used machine learning to great effect, em-

ploying nearest neighbor, nearest neighbor to class algorithm, and support vector machines

and achieved an accuracy above 95%.

In response to these attacks, specifically the CNN based attack, Zhang et al. (Zhang et

al., 2019) used differential privacy as a defense mechanism to obfuscate video bit-rate data.

8.2 Traffic Analysis

A traffic analysis attack is a form of attack in which an adversary learns information by spy-

ing on a victims network traffic. Traffic analysis attacks have a broad set of goals. Some

seek to compromise information about a victims smart home for theft or other malicious

purposes (Copos, Levitt, Bishop, & Rowe, 2016; Kennedy, 2019). Some seek to com-

promise privacy of a victim unsuspecting victim (Taylor, Spolaor, Conti, & Martinovic,

2018; Meidan et al., 2017; Skowron, Janicki, & Mazurczyk, 2020; Li et al., 2016; Feghhi

& Leith, 2016). Some traffic analysis attacks target victims that are using an anonymous

browsing service such as Tor or Pishon (Yang, Gu, Ling, Yin, & Luo, 2017; Ejeta & Kim,

2017; Basyoni, Fetais, Erbad, Mohamed, & Guizani, 2020; Attarian, Abdi, & Hashemi,

2019; Abe & Goto, 2016). Some of these attacks are even able to determine the IP address

of users on Tor (Iacovazzi, Frassinelli, & Elovici, 2019).

Since most web traffic is encrypted these days, most traffic analysis attacks often rely on

side channel information and machine learning to be effective. Some side channel reliant

traffic analysis attacks use only on timing information (Feghhi & Leith, 2016; Ramesh

46

& Prakash, 2017; Monaco, 2019) while others depend on different side channel infor-

mation, such as presence or absence of communication information (Baroutis & Younis,

2016), delaying and analyzing HTTP requests (Monaco, 2019), and standard side chan-

nel information, such as packet length, number of packets, time, etc. (Abe & Goto, 2016).

Machine learning allows adversaries to analyze even encrypted traffic to steal user informa-

tion (Msadek, Soua, & Engel, 2019; Kennedy, 2019; Taylor, Spolaor, Conti, & Martinovic,

2017; Kausar, Aljumah, Alzaydi, & Alroba, 2019).

Defending against traffic analysis attacks can be difficult, as noted previously, encryp-

tion is not enough. Some work done seeks to make an efficient defense using Adaptive

Padding (Juarez, Imani, Perry, Diaz, & Wright, 2016). To defend against website finger-

printing, some researchers (Wang & Goldberg, 2017) modify the way browsers commu-

nicate, allowing burst sequences to be molded more easily. Privacy can be added at the

network layer by adding latency (Chen et al., 2018), controlling the network latency to

allow for privacy and utility. Differential privacy also presents a viable solution for obfus-

cating traffic from an adversary. Differential privacy can also be employed (Liu, Zhang, &

Fang, 2018) to protect smart homes from traffic analysis attacks.

47

Chapter 9

Conclusion

This paper aimed to develop a privacy preservation scheme that conformed to rigorous

privacy standards while having a high computational efficiency, overcoming the common

trade-off between privacy and computational speed. Using K-Means clustering as a base,

we created our own algorithm, named No Data Are Alone, that accomplished this goal. Our

algorithm provided privacy at a higher level when measures against the most robust attack

method, which relied on a Convolutional Neural Network (CNN). We created multiple

CNNs, each trained on data obfuscated by a different scheme. The attack CNN being

trained on data obfuscated by our scheme never improved in accuracy and was ever able

to reach an accuracy above 7.07%. Other differential privacy defense techniques were

vulnerable to a CNN trained against them, and the CNNs trained against these schemes

had 20% or greater increases in accuracy. Additionally, the computational cost, measured

in waste+de f icit, of our scheme was less than half of the best performing scheme.

48

References

Abe, K., & Goto, S. (2016). Fingerprinting attack on tor anonymity using deep learning.

Proceedings of the Asia-Pacific Advanced Network, 42, 15–20.

Arthur, D., & Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding

(Tech. Rep.). Stanford.

Attarian, R., Abdi, L., & Hashemi, S. (2019). Adawfpa: Adaptive online website fin-

gerprinting attack for tor anonymous network: A stream-wise paradigm. Computer

Communications, 148, 74–85.

Baroutis, N., & Younis, M. (2016). A novel traffic analysis attack model and base-station

anonymity metrics for wireless sensor networks. Security and Communication Net-

works, 9(18), 5892–5907.

Basyoni, L., Fetais, N., Erbad, A., Mohamed, A., & Guizani, M. (2020). Traffic analysis

attacks on tor: A survey. In 2020 ieee international conference on informatics, iot,

and enabling technologies (iciot) (p. 183-188).

Chan, T.-H. H., Shi, E., & Song, D. (2011). Private and continual release of statistics.

ACM Transactions on Information and System Security (TISSEC), 14(3), 1–24.

Chen, C., Asoni, D. E., Perrig, A., Barrera, D., Danezis, G., & Troncoso, C. (2018).

Taranet: Traffic-analysis resistant anonymity at the network layer. In 2018 ieee eu-

ropean symposium on security and privacy (euros p) (p. 137-152).

Copos, B., Levitt, K., Bishop, M., & Rowe, J. (2016). Is anybody home? inferring activity

from smart home network traffic. In 2016 ieee security and privacy workshops (spw)

49

(p. 245-251).

Dubin, R., Dvir, A., Pele, O., & Hadar, O. (2017). I know what you saw last

minute—encrypted http adaptive video streaming title classification. IEEE Trans-

actions on Information Forensics and Security, 12(12), 3039-3049.

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity

in private data analysis. In Theory of cryptography conference (pp. 265–284).

Ejeta, T. G., & Kim, H. J. (2017). Website fingerprinting attack on psiphon and its forensic

analysis. In International workshop on digital watermarking (pp. 42–51).

Feghhi, S., & Leith, D. J. (2016). A web traffic analysis attack using only timing informa-

tion. IEEE Transactions on Information Forensics and Security, 11(8), 1747-1759.

Gu, J., Wang, J., Yu, Z., & Shen, K. (2019). Traffic-based side-channel attack in video

streaming. IEEE/ACM Transactions on Networking, 27(3), 972-985.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm.

Journal of the royal statistical society. series c (applied statistics), 28(1), 100–108.

Iacovazzi, A., Frassinelli, D., & Elovici, Y. (2019, September). The DUSTER attack: Tor

onion service attribution based on flow watermarking with track hiding. In 22nd in-

ternational symposium on research in attacks, intrusions and defenses (RAID 2019)

(pp. 213–225). Chaoyang District, Beijing: USENIX Association. Retrieved from

https://www.usenix.org/conference/raid2019/presentation/iacovazzi

Juarez, M., Imani, M., Perry, M., Diaz, C., & Wright, M. (2016). Toward an efficient

website fingerprinting defense. In European symposium on research in computer

security (pp. 27–46).

Kadloor, S., Kiyavash, N., & Venkitasubramaniam, P. (2016). Mitigating timing side

channel in shared schedulers. IEEE/ACM Transactions on Networking, 24(3), 1562-

1573.

Kausar, F., Aljumah, S., Alzaydi, S., & Alroba, R. (2019). Traffic analysis attack for

identifying users’ online activities. IT Professional, 21(2), 50-57.

50

Kennedy, S. M. (2019). Encrypted traffic analysis on smart speakers with deep learning

(Unpublished doctoral dissertation). University of Cincinnati.

Li, H., Xu, Z., Zhu, H., Ma, D., Li, S., & Xing, K. (2016). Demographics inference

through wi-fi network traffic analysis. In Ieee infocom 2016 - the 35th annual ieee

international conference on computer communications (p. 1-9).

Liu, J., Zhang, C., & Fang, Y. (2018). Epic: A differential privacy framework to defend

smart homes against internet traffic analysis. IEEE Internet of Things Journal, 5(2),

1206–1217.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information

theory, 28(2), 129–137.

MacQueen, J., et al. (1967). Some methods for classification and analysis of multivari-

ate observations. In Proceedings of the fifth berkeley symposium on mathematical

statistics and probability (Vol. 1, pp. 281–297).

Mahajan, M., Nimbhorkar, P., & Varadarajan, K. (2009). The planar k-means problem is

np-hard. In International workshop on algorithms and computation (pp. 274–285).

Meidan, Y., Bohadana, M., Shabtai, A., Guarnizo, J. D., Ochoa, M., Tippenhauer, N. O.,

& Elovici, Y. (2017). Profiliot: A machine learning approach for iot device iden-

tification based on network traffic analysis. In Proceedings of the symposium on

applied computing (p. 506–509). New York, NY, USA: Association for Computing

Machinery. Retrieved from https://doi.org/10.1145/3019612.3019878 doi:

10.1145/3019612.3019878

Monaco, J. V. (2019). Feasibility of a keystroke timing attack on search engines with

autocomplete. In 2019 ieee security and privacy workshops (spw) (p. 212-217).

Msadek, N., Soua, R., & Engel, T. (2019). Iot device fingerprinting: Machine learning

based encrypted traffic analysis. In 2019 ieee wireless communications and network-

ing conference (wcnc) (p. 1-8).

Ramesh, S., & Prakash, D. S. A. (2017). An effective attack analysis and defense in web

51

traffic using only timing information..

Rao, A., Legout, A., Lim, Y.-s., Towsley, D., Barakat, C., & Dabbous, W. (2011). Network

characteristics of video streaming traffic. In Proceedings of the seventh conference

on emerging networking experiments and technologies (pp. 1–12).

Rastogi, V., & Nath, S. (2010). Differentially private aggregation of distributed time-

series with transformation and encryption. In Proceedings of the 2010 acm sigmod

international conference on management of data (pp. 735–746).

Reed, A., & Klimkowski, B. (2016). Leaky streams: Identifying variable bitrate dash

videos streamed over encrypted 802.11n connections. In 2016 13th ieee annual con-

sumer communications networking conference (ccnc) (p. 1107-1112).

Schuster, R., Shmatikov, V., & Tromer, E. (2017). Beauty and the burst: Remote identifica-

tion of encrypted video streams. In 26th {USENIX} security symposium ({USENIX}

security 17) (pp. 1357–1374).

Skowron, M., Janicki, A., & Mazurczyk, W. (2020). Traffic fingerprinting attacks on

internet of things using machine learning. IEEE Access, 8, 20386-20400.

Sodagar, I. (2011). The mpeg-dash standard for multimedia streaming over the internet.

IEEE MultiMedia, 18(4), 62-67.

Steinhaus, H. (1956). Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci,

1(804), 801.

Taylor, V. F., Spolaor, R., Conti, M., & Martinovic, I. (2017). Robust smartphone app iden-

tification via encrypted network traffic analysis. IEEE Transactions on Information

Forensics and Security, 13(1), 63–78.

Taylor, V. F., Spolaor, R., Conti, M., & Martinovic, I. (2018). Robust smartphone app iden-

tification via encrypted network traffic analysis. IEEE Transactions on Information

Forensics and Security, 13(1), 63-78.

Wang, T., & Goldberg, I. (2017, August). Walkie-talkie: An efficient defense against pas-

sive website fingerprinting attacks. In 26th USENIX security symposium (USENIX

52

security 17) (pp. 1375–1390). Vancouver, BC: USENIX Association. Retrieved from

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao

Xiao, Q., Reiter, M. K., & Zhang, Y. (2015). Mitigating storage side channels using

statistical privacy mechanisms. In Proceedings of the 22nd acm sigsac conference

on computer and communications security (pp. 1582–1594).

Yang, M., Gu, X., Ling, Z., Yin, C., & Luo, J. (2017). An active de-anonymizing attack

against tor web traffic. Tsinghua Science and Technology, 22(6), 702-713.

Zhang, X., Hamm, J., Reiter, M. K., & Zhang, Y. (2019). Statistical privacy for streaming

traffic. In Ndss.

53

	Efficient Yet Robust Privacy for Video Streaming
	Recommended Citation

	tmp.1639598832.pdf.trP1B

