
Kennesaw State University Kennesaw State University

DigitalCommons@Kennesaw State University DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Fall 12-15-2021

Graph based management of temporal data Graph based management of temporal data

alex Fotso

Follow this and additional works at: https://digitalcommons.kennesaw.edu/cs_etd

 Part of the Data Storage Systems Commons

Recommended Citation Recommended Citation
Fotso, alex, "Graph based management of temporal data" (2021). Master of Science in Computer Science
Theses. 50.
https://digitalcommons.kennesaw.edu/cs_etd/50

This Thesis is brought to you for free and open access by the Department of Computer Science at
DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Computer
Science Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more
information, please contact digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/
https://digitalcommons.kennesaw.edu/cs_etd
https://digitalcommons.kennesaw.edu/cs
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd/50?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Graph based management of temporal data

A Thesis presented to The Faculty of the

 Computer Science Department

By

Alex Fotso

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Kennesaw State University

Fall 2021

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

I

Graph based management of temporal data

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 II

Approved:

Dr. Ramazan Aygun - Advisor

Dr. Rebecca Rutherfoord – Computer Science Chair

Dr. Sumanth Yenduri - Dean

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

December 13, 2021

December 13, 2021

December 13, 2021

 III

In presenting this thesis as a partial fulfillment of the requirements for an advanced degree

from Kennesaw State University, I agree that the university library shall make it available for

inspection and circulation in accordance with its regulations governing materials of this type. I

agree that permission to copy from, or to publish, this thesis may be granted by the professor under

whose direction it was written, or, in his absence, by the dean of the appropriate school when such

copying or publication is solely for scholarly purposes and does not involve potential financial

gain. It is understood that any copying from or publication of this thesis which involves potential

financial gain will not be allowed without written permission.

Alex Fotso

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 IV

Unpublished theses deposited in the Library of Kennesaw State University must be used only in

accordance with the stipulations prescribed by the author in the preceding statement

The author of this thesis is:

The director of this thesis is:

Users of this thesis not regularly enrolled as students at Kennesaw State University are required

to attest acceptance of the preceding stipulations by signing below. Libraries borrowing this

thesis for the use of their patrons are required to see that each user records here the information

requested.

Notice to Borrowers

Alex Fotso

Dr. Ramazan Aygun

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 V

Graph based management of temporal data

An Abstract of

A Thesis Presented to

The Faculty of the Computer Science Department

By

Alex Fotso

Bachelor of Science in Electrical Engineering Technology, Kennesaw State University, 2016

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Kennesaw State University

Fall 2021

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 VI

Abstract

In recent decades, there has been a significant increase in the use of smart devices and sensors that

led to high-volume temporal data generation. Temporal modeling and querying of this huge data

have been essential for effective querying and retrieval. However, custom temporal models have

the problem of generalizability, whereas the extended temporal models require users to adapt to

new querying languages. In this thesis, we propose a method to improve the modeling and retrieval

of temporal data using an existing graph database system (i.e., Neo4j) without extending with

additional operators. Our work focuses on temporal data represented as intervals (event with a start

and end time). We propose a novel way of storing temporal interval as cartesian points where the

start time and the end time are stored as the x and y axis of the cartesian coordinate. We present

how queries based on Allen’s interval relationships can be representing using our model on a

cartesian coordinate system by visualizing these queries. Temporal queries based on Allen’s

temporal intervals are then used to validate our model and compare with the traditional way of

storing temporal intervals (i.e., as attributes of nodes). Our experimental results on a soccer graph

database with around 4000 games show that the spatial representation of temporal interval can

provide significant performance (up to 3.5 times speedup) gains compared to a traditional model.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 VII

Graph based management of temporal data

A Thesis Presented to The Faculty of the

 Computer Science Department

By

Alex Fotso

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Advisor: Dr. Ramazan Aygun

Kennesaw State University

Fall 2021

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 VIII

Acknowledgment

I would like to thank my mother, Denise Fotso, for supporting me through my education

for all these years. I would like to thank my father, Nestor Fotso, for bringing me up and guiding

me towards this amazing career. I would like to thank Dr. Aygun for being an excellent advisor

and guidance. He always made himself available to help me out through my research and writing

every time I had a problem. I would like to thank Dr. Donghyun Kim who gave me my first

opportunity as Research assistant and guided me through my first steps in the research world. I

would like to thank Dr. Jing (Selena) He for her course in advanced data structure and analysis.

This course inspired me to dig more into database systems and motivated me through my research.

I would like to thank my committee members: Dr. Ramazan Aygun, Dr. Yong Shi, Dr. Junggab

Son for their support and advice. I would like to thank the Kennesaw writing center for taking their

time to help me through the writing of my thesis. I would like to thank the computer science

department from KSU for providing the financial and technical support to help me through this

research.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 IX

Table of Contents

Chapter 1 Introduction .. 1

1.1 Motivation ...2

1.2 Method ..4

1.3 Organization...5

Chapter 2 Related Work .. 6

2.1 Interval Labeled Temporal Graphs ..6

2.2 Duration Labeled Temporal Graphs ... 11

2.3 Snapshot Based Temporal Graphs ... 12

2.4 Summary .. 13

Chapter 3 Approach .. 14

3.1 Spatial Data Structure ... 14

3.2 Our Temporal Data Model .. 15

3.3 Spatial Point Comparison .. 18

3.4 Allen’s Interval Relationships .. 19
3.4.1 Before/After Relationship.. 21
3.4.2 During Relationship ... 22
3.4.3 Meets / Met By Relationship ... 24
3.4.4 Overlaps/Overlapped By Relationship .. 26
3.4.5 Starts/Started By ... 29
3.4.6 Finishes/Finished By Relationship ... 31
3.4.7 Equals Relationship .. 33

3.5 Other Queries ... 34
3.5.1 Previous/Next .. 34
3.5.2 Conditional Before/After ... 35
3.5.3 Conditional Time Instance ... 35
3.5.4 Conditional Temporal Graph Traversing ... 36

3.6 Summary .. 37

Chapter 4 Experiments .. 38

4.1 Dataset .. 40

4.2 Performance Comparison ... 44
4.2.1 Before/After Relationship.. 44
4.2.2 During Relationship ... 48
4.2.3 Meets / Met By Relationship ... 51
4.2.4 Overlaps/Overlapped By Relationship .. 54
4.2.5 Starts/Started By ... 57
4.2.6 Finishes/Finished By .. 59
4.2.7 Equals ... 61

4.3 Other Query Examples .. 63
4.3.1 Previous/Next .. 63

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 X

4.3.2 Conditional before/after ... 65
4.3.3 Conditional time instance .. 67
4.3.4 Conditional temporal graph traversing ... 70

4.4 Summary .. 72

Chapter 5 Conclusion and Future work .. 73

5.1 Future work ... 73

References ... 74

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 XI

List of figures

Figure 1-1: Friendship intervals between 3 users on a social network ... 3
Figure 2-1:Picture taken from [12] showing their proposed temporal indexing 7
Figure 2-2: Sample query using model in [12] ... 7
Figure 2-3: Sample node from [13] and [4] proposal with time represented as interval (T_1 as start

time and T_2 as end time) ... 8
Figure 2-4: A temporal graph with varying types of nodes from [4] .. 9
Figure 2-5: Query from [4] : finding all continuous paths of friends between Mary Smith Taylor

and Peter Burton, in the interval [2018, 2020], with a minimum length of 2 and maximum length

of 3. ... 9
Figure 3-1: Temporal representation of events in proposed model .. 15
Figure 3-2: Temporal representation of events in traditional way .. 16
Figure 3-3:Spatial representation of temporal events ... 16
Figure 3-4: Cartesian diagram showing areas representing various comparison operators.......... 18
Figure 3-5: Diagram showing Allen's before/after relationship ... 21
Figure 3-6: Cartesian representation of before/after relationship ... 21
Figure 3-7: Diagram showing Allen's during relationship .. 22
Figure 3-8:Cartesian representation of during relationship .. 23
Figure 3-9: Diagram showing Allen's meets/met by relationship ... 24
Figure 3-10: Cartesian representation of meets/met by relationship .. 26
Figure 3-11: Diagram showing Allen's overlaps / overlapped by Relationship 26
Figure 3-12: Cartesian representation of overlaps/overlapped by relationship 27
Figure 3-13: Diagram showing Allen's start/started by relationship .. 29
Figure 3-14: Cartesian representation of starts/start by relationship .. 29
Figure 3-15: Diagram showing Allen's finishes/finished by relationship 31
Figure 3-16: Cartesian representation of finishes / finished by relationship 31
Figure 3-17: Diagram showing Allen's Equals relationship ... 33
Figure 4-1: Sample neo4j node with traditional temporal interval storage start and end time

represented as two distinct properties ... 39
Figure 4-2: Sample neo4j node with the point property representing the temporal interval 39
Figure 4-3: Soccer dataset with traditional temporal interval representation 40
Figure 4-4:Soccer dataset with proposed model temporal interval representation 41
Figure 4-5: Mini dataset represented on a timeline. Red are Manchester’s games and Blue are

Chelsea’s games. ... 42
Figure 4-6: Graph representation of mini dataset in our model .. 43
Figure 4-7: Graph representation of mini dataset in traditional model ... 43
Figure 4-8: Results of before query (a) our model and (b) the traditional model 45
Figure 4-9: Results of after query (a) our model and (b) the traditional model............................ 46
Figure 4-10:Our model(blue) vs traditional model query time comparison(red) for before

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time 47
Figure 4-11: Results of during query (a) our model and (b) the traditional model 48
Figure 4-12: Our model(blue) vs traditional model query time comparison(red) for during

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time 50
Figure 4-13: Results of meets query (a) our model and (b) the traditional model........................ 51
Figure 4-14: Results of met by query (a) our model and (b) the traditional model 52

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072264
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072265
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072266
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072267
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072267
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072268
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072269
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072269
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072269
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072270
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072271
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072272
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072273
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072274
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072275
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072276
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072277
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072278
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072279
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072280
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072281
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072282
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072283
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072284
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072285
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072286
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072287
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072287
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072288
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072289
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072290
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072291
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072291
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072292
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072293
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072294
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072295
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072296
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072296
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072297
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072298
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072298
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072299
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072300

 XII

Figure 4-15: Our model(blue) vs traditional model query time comparison(red) for met by

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time 53
Figure 4-16: Results of overlaps query (a) our model and (b) the traditional model 54
Figure 4-17: Results of overlapped by query (a) our model and (b) the traditional model 55
Figure 4-18: Our model(blue) vs traditional model query time comparison(red) for overlaps

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time 56
Figure 4-19: Results of starts query (a) our model and (b) the traditional model 57
Figure 4-20: Our model(blue) vs traditional model query time comparison(red) for starts

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time 58
Figure 4-21: Results of finishes query (a) our model and (b) the traditional model 59
Figure 4-22: Our model(blue) vs traditional model query time comparison(red) for finishes

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time 60
Figure 4-23: Results of equals query (a) our model and (b) the traditional model 61
Figure 4-24: Our model(blue) vs traditional model query time comparison(red) for Equal

relationship of Allen’s interval ... 62
Figure 4-25: Our model(blue) vs traditional model query time comparison(red) for previous

queries ... 64
Figure 4-26: Our model(blue) vs traditional model query time comparison(red) for conditional

after ... 66
Figure 4-27: Our model(blue) vs traditional model query time comparison(red) for conditional

time instance ... 69
Figure 4-28: Our model(blue) vs traditional model query time comparison(red) for conditional

temporal graph traversal ... 71

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072301
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072301
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072302
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072303
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072304
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072304
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072305
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072306
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072306
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072307
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072308
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072308
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072309
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072310
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072310
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072311
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072311
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072312
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072312
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072313
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072313
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072314
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072314

 XIII

 List of Tables

Table 3-1: Summary of Allen's relations .. 20
Table 3-2: Summary of our model query compared to that of the traditional mode for before/after

relation .. 22
Table 3-3: Summary of our model query compared to that of the traditional model for during

relation .. 23
Table 3-4: Summary of our model query compared to that of the traditional model for meets/met

by relationship ... 25
Table 3-5: Summary of our model query compared to that of the traditional model for

overlaps/overlapped by relationship ... 28
Table 3-6:Summary of our model query compared to that of the traditional model for starts/started

by relationship ... 30
Table 3-7: Summary of our model query compared to that of the traditional model for

finishes/finished by relationship ... 32
Table 3-8:Summary of our model query compared to that of the traditional model for equals

relationship .. 33
Table 3-9: Our model compared to traditional model for previous queries 34
Table 3-10:Our model compared to traditional model for conditional after query 35
Table 3-11: Our model compared to traditional model for conditional time instance.................. 36
Table 3-12: Our model compared to traditional model for conditional temporal graph traversing

... 36
Table 4-1: Mini dataset for temporal queries validation ... 42
Table 4-2: Before queries using cypher query based on our model and the traditional model 45
Table 4-3: After queries using Cypher query based on our model and the traditional mode

... 46
Table 4-4: During queries using cypher query based on our model and the traditional model 48
Table 4-5: Meets queries using cypher query based on our model and the traditional model 51
Table 4-6:Met by queries using cypher query based on our model and the traditional model 52
Table 4-7: Overlaps queries using Cypher query based on our model and the traditional model 54
Table 4-8: Overlapped by queries using cypher query based on our model and the traditional model

... 55
Table 4-9: Starts queries using cypher query based on our model and the traditional model 57
Table 4-10: Finishes queries using cypher query based on our model and the traditional model 59
Table 4-11: Equal queries using cypher query based on our model and the traditional model 61
Table 4-12: Our model compared to traditional model previous query example 63
Table 4-13: Our model compared to traditional model conditional after query example 65
Table 4-14: Our model compared to traditional model conditional time instance query example68
Table 4-15: Our model compared to traditional model conditional temporal graph traversing query

example ... 70

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072315
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072316
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072316
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072317
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072317
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072318
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072318
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072319
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072319
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072320
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072320
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072321
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072321
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072322
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072322
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072323
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072324
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072325
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072328
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072329
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072329
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072330
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072331
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072332
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072333
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072334
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072334
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072335
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072336
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072337
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072338
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072339
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072340
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072341
file://///Users/alexfotso/Documents/Research_Fall/Thesis_Draft3.docx%23_Toc89072341

I

Chapter 1 Introduction

In recent decades, there has been a significant increase in the use of smart devices and sensors that

led to high-volume temporal data generation. This huge data is generated automatically from

sensor devices, such as internet of things (IOT) devices, that continuously generate time-based

telemetric data, or it is inputted by billions of people to online social media platforms. Querying

and analyzing data based on temporal information would be important to obtain robust and relevant

results as seen in the following applications:

a) When a user goes on YouTube and searches the highlights of a soccer game between Team

A and Team B that took place yesterday, sometimes the search engine presents the game

between those two teams that happened a year ago. The most recent game should have

been listed first, but it did not because the data is not always returned in temporal order.

b) Online social networks produce user data that can be used in an extended range of fields.

This type of data can be used to identify potential civil unrest-oriented threats [1].

Marketing companies use it to promote their products. Content delivery networks, such as

Netflix or YouTube, use online user generated data to improve the quality of the content

proposed to the user and thereby improving user experience. Using outdated data for such

situations will generate biased results, thereby providing inaccurate contents to the users.

c) Khandpur et al. [2] propose a way of using social media for detecting various cyber-attacks,

such as distributed denial of service, data breach, account hijacking and other types of

attacks. In this application, working with data that is not in an ideal temporal order could

result in security issues.

With such a wide range of temporal data applications, the need for an appropriate storage

mechanism for temporal data arises. In literature, temporal data involves two widely accepted

types of times: valid time and transaction time. Dyreson et al. [3] define valid time as a time when

a fact is true in the real world. It corresponds to the time interval when an event happened.

Transaction time is the time at which an object is stored and stays valid in the database [3]. Unlike

valid time, transaction time can be associated to any object, not only events. This thesis will only

focus on the valid time since this is the only temporal data time that is associated with events.

Temporal models for temporal data with a valid time can be divided into three main categories:

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 2

duration labeled temporal graphs, snapshot based temporal graphs, and interval based temporal

graphs [4]. This thesis will only focus on interval based temporal graphs.

Temporal intervals are attributes of events. In this thesis, we will represent events or

temporal relationships as nodes in a graph database. The proposed model can be used to represent

two main forms of temporal events: instantaneous events and interval events. Instantaneous events

are events that happened at a specific time or an event with a start time equal to the end time.

Interval events are events with a start time different from end time. In this thesis, we will propose

a method to improve the modeling and retrieval of these forms of data.

1.1 Motivation

With the evolution of technology and computing systems, temporal data has become a present

member in most real-world problems. Most of the time, users want to query temporal data as

illustrated in the following examples:

1) Online social networks:

• Who were friends with Mary on February 10th, 2015?

• Find all friends of John ranked by earliest friendship dates

• Find the peoples who graduated from Kennesaw State University after 2018

2) Health care:

• Who were Dr Joseph’s patients between 2019 and 2021?

• How has patient Mary’s diseases evolved since her last visit in 2017?

• Which patient had symptoms that started at the same time as patient A’s symptoms

but lasted longer?

3) Natural phenomena:

• What climate changes happened before the tornado appeared?

• What was the temperature during the tornado?

• Which cyclones ranked in order of appearance happened between 2004 and 2010?

All these queries involve some type of temporal data organization, and to address such

query needs, query languages on temporal data, such as TQUEL[5], TSQL2[6] , SQL3[7],

ATSQL[8], have been developed. Languages for temporal XML trees like TXpath[9] have also

been proposed. In addition to these models, [10] gives a good review of other models that have

been studied to represent temporal data in relational database; however, storing temporal data in

a relational database is not always ideal for the following reasons:

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 3

1) Performance issue: Join operations are costly in relational databases as querying

temporal relations may require many joins.

2) Complexity of query language: Use of new vocabulary for queries as in [11] leads to

complex query languages.

3) Modeling temporal data: Trying to represent temporal data is not straightforward if the

relationships are recursive or iterative. To illustrate this, consider the situation to keep

track of the friendship start and end date between users in a social network.

Figure 1-1 shows the friendship duration between three users on a social network. Friendship

between User 1 and User 2 started on 𝑇1 and ended on 𝑇1
′. Friendship between User 2 and User 3

started on 𝑇2 and ended on 𝑇2
′. This is an example of temporal data with recursive relationships.

For example, finding temporal relationship between User 3 and User 2, between User2 and User

1, and so on has a recursive nature. Representing such relationships on a relational data model is

not straightforward. Due to these reasons, graph databases have advantages over relational

databases for some temporal data applications.

Graph databases are becoming increasingly popular for various kinds of applications such

as social media or network data storage and analysis. Graph databases are built over property

graphs models [4]. In a graph database, data objects are represented by nodes. Edges represent the

relationship between the nodes. Both nodes and edges can have properties or attributes that

describe their characteristics. With these features, graph databases can support storing temporal

data. Models that we will see in more details in Chapter 2 have been developed to represent

temporal intervals in graph databases ([4], [12], and [13]). The work in this study will leverage

graph databases for temporal querying.

Figure 1-1: Friendship intervals between 3 users on a social network

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 4

1.2 Method

We can categorize the approaches using temporal graphs in the literature as follows: i) custom

temporal models and ii) extended temporal models. Custom temporal models have the limitation

of generalizability for different application domains. Moreover, they require specialized index

structures. On the other hand, extended temporal models utilize existing graph models but extend

them with additional temporal query operators with the support of additional indexing structures.

This would require the users to adapt new temporal querying languages. This thesis will take a

different approach by not changing the existing graph models. Rather, our proposal is to model the

temporal data in a way that it can work on an existing graph model as it is without any extensions.

This enables the generalizability of our approach. Our intention is not to compare our method with

custom or extended models. However, we will investigate and compare our model to the base

component in these models. We call the base structures in these models as the traditional model.

The traditional model keeps intervals (start and end times) as nodes attributes.

 Temporal intervals are attributes of events. In this thesis, we represent events or temporal

relationships as nodes in a graph database. We propose a model to represent the temporal property

of time interval events. In our model, the interval is defined as a cartesian point (x, y) with x

representing the start time and y representing the end time. This representation enables the

conversion of temporal queries into spatial queries. Such spatial representation of temporal data

can be achieved with the use of an attribute graph. Attribute based graphs have become widely

popular in various literatures [14], [15], and this forms the basis of most graph database that are

found in the literature. Neo4j which we are going to use to represent and analyze our model is a

graph database based on this framework. Even though it is not the focus of this thesis, this storage

system can be used to answer the temporal query examples shown in Section 1.1. We should note

that our temporal querying is not equivalent to comparing each axis with some conditions as it

would be for the traditional model. Axis-based comparisons would not benefit temporal querying,

hence temporal queries are represented on a spatial domain.

In this thesis, we first describe our temporal storage model. We then use Allen’s interval

relationships (a set of all possible relationships between two temporal intervals) [16] as a guide

and show how our proposed model can be used to generate temporal query and organize temporal

data. Given that multiple research studies ([17],[18],[19] ,[20], [21]) involving temporal data have

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 5

used a more traditional way (more details are provided in Chapter 2) of storing temporal intervals,

we performed a performance analysis and comparison between our proposed model and the

traditional model on a dataset containing more than 4000 entries. This dataset contains premier

league games (England championship games) from 2011 to 2021 for 21 premier league teams.

Each game is considered as an event with the start and end time of the game being the temporal

interval of the event. The games are stored as nodes in the graph. In addition, we provide additional

temporal query types using our model. The query examples involve the following query categories:

i) previous/next, ii) conditional before/after, iii) conditional time instance, and iv) conditional

temporal graph traversing

In summary, the purpose of this research is to study (i) how graph databases can be used

to store temporal data such that graph models can be used without extensions and (ii) show how

temporal queries based on Allen’s intervals can be performed using graph models without the

overhead encountered in relational databases.

1.3 Organization

The rest of the thesis has the following organization. Chapter 2 presents the related work. It

provides the relevant temporal models pertaining to temporal interval graphs that have been found

in literature. It also covers the work that has been done on other temporal data graphs (duration

labeled and snapshot based temporal graphs).

Chapter 3 describes the details of our temporal data storage model. This chapter shows how

a cartesian plane can be utilized for query structures based on all the 7 Allen’s interval relationships

and their inverses. Note that Allen’s interval relationships are chosen as the basis to evaluate our

model.

In Chapter 4 we evaluate our model for different types of queries and provide

computational evaluation using our model. We provide how sample queries for each Allen’s

interval relationship is represented using our model and then provide computational performance

comparisons.

Chapter 5 concludes our work and presents an overview of our future work that this

proposed model leaves open to be explored.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 6

Chapter 2 Related Work

In this chapter, we provide an overview of work done on storing and querying temporal data in

graph databases. The two main methods that have generally been used for the representation of

temporal data as a graph are versioning and attribute-based graph models [4]. Our method is an

attribute-based approach. An attribute graph is a graph where both nodes and edges have

properties. For example, Neo4j is a graph database based on attribute graphs. Debrouvier et al.[4]

categorize temporal data models into three groups: duration labeled temporal graphs, snapshot

based temporal graphs, and interval based temporal graphs. The duration labeled and interval

based temporal graphs both fall under the attribute-based graph model while the snapshot based

temporal graph falls under the versioning model.

2.1 Interval Labeled Temporal Graphs

An interval labeled graph can be defined as G = (N, E) where N represents the set of nodes and E

represents the set of edges. In this type of graph, any of the edges or nodes could have temporal

attributes represented as an interval (start and end time). The work and model proposed in this

thesis that will be seen in more details in Chapter 3 falls under this temporal data model category.

Different models have been developed under this category. Cattuto et al. [12] try to find a

way for modeling the storage and retrieval of time varying social network data. In their proposed

data model, the nodes represent the individuals in the social network and the edges represent the

instances. They propose a temporal model where the temporal data is represented as frames with

a frame being defined as the finest unit of temporal aggregation. Each frame is a node, and there

is a main frame called the RUN frame. The run frame is connected to every other frame using a

RUN_FRAME relation(edge). The authors propose a temporal indexing structure (Figure 2-1) and

perform their sample queries from this temporal indexing. The indexing is structured in a way that

each frame has a timeline node, and the timeline node is linked to a year node which is then linked

to the month node. This relationship keeps going all the way to a finer time granularity.

While this model can be useful for events with a continuously changing time intervals, it

has some limitations that makes it unsuitable for events that have fixed time intervals. 1) This

temporal indexing increases the complexity of the query structure. Consider this sample query

from [12]: Get all time frames of run “HT2009", recorded between 9:00-13:00 of July 1st

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 7

2009, ordered by timestamp. Figure 2-2 shows the query proposed by [12] to answer this

question.

In Figure 2-2, a complex match pattern needs to be provided before the “WHERE” clause to match

the frame time granularity. Such query requires the user to be knowledgeable of the indexing

structure and complicates querying. Ideally, querying language should not require the users to

know the internal organization of temporal data. The second problem with this approach as

mentioned in their paper is the performance bottleneck. The frame represents a temporal interval

Figure 2-1:Picture taken from [12] showing their proposed temporal indexing

Figure 2-2: Sample query using model in [12]

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 8

and all the nodes that are linked to this temporal interval has a relationship going from the frame

to the node. Some of these frames end up having multiple relationships (about 20,000), making

query execution time grow to the point where the query execution becomes impractical. Hence,

temporal data models that do not have such query complexity are needed.

As an alternative method, Campos et al. [13] and Debrouvier et al. [4] both use a simple

model to represent interval based temporal data. [4] is an extension of work by Campos et al. [13]

in which the temporal interval is represented the same way, but Debrouvier et al. provide a broader

set of algorithms and operators used for temporal queries. An attribute graph is used, and the

temporal property is created as an interval attribute (Figure 2-3), which is then attached to any

temporal node or relationship.

In [4], a temporal graph example is provided as in Figure 2-4. In this graph, temporal

attributes appear as a part of relationships. Moreover, temporal attributes are attached to people to

indicate when they were born and died. However, building a temporal index on a graph like this is

challenging. The authors consider continuous, pairwise continuous, and consecutive path queries.

This is required to build an index based on Neo4j nodes including properties, the start and end

nodes, the nodes in the path, and the time interval of the continuous path for continuous paths.

This would require editing of the index structure as new nodes are added. Figure 2-5 shows the

query for finding all continuous paths of friends between Mary Smith Taylor and Peter Burton, in

the interval [2018, 2020], with a minimum length of 2 and maximum length of 3. To increase the

query retrieval performance, explicit index structure is needed.

Figure 2-3: Sample node from [13] and [4] proposal with time represented as interval

(𝑻𝟏 as start time and 𝑻𝟐 as end time)

 Node properties:

- Label: “given label”

- Interval: [𝑻𝟏, 𝑻𝟐]

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 9

For temporal intervals representation and querying, the authors developed a library with a

set of procedures to incorporate as plugins in Neo4j servers. These procedures can then be used as

operators to perform temporal queries. Let’s assume a user wants to retrieve a set of events that

happened between date 𝑇1 to 𝑇2 ; this model will use the keyword BETWEEN ‘𝑻𝟏 ’ and ‘𝑻𝟐 ’.

Figure 2-4: A temporal graph with varying types of nodes from [4]

Figure 2-5: Query from [4] : finding all continuous paths of friends between Mary

Smith Taylor and Peter Burton, in the interval [2018, 2020], with a minimum length

of 2 and maximum length of 3.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 10

The BETWEEN operator used in this situation is not part of the native Neo4j temporal operators;

it is a procedure developed by [13] and [4] in their temporal library. While Neo4j is enhanced with

additional operators, the users get to learn a new set of keywords to build such queries. Additional

indexing structures should be built to enhance query execution times. A temporal query

representation using existing query language would be desired. Furthermore, none of those two

methods show how this library compares to a more traditional way of temporal data representation

(a way in which the start time and the end time are represented as two separate node attributes in

the graph).

Liu et al.[17], Memarzadeh et al.[18], Yu.[19] , Zheng et al.[20] and Durand et al. [21]

using temporal graph databases tried to solve various science problems: keyword searching on

graph database, tracking diseases progression, representation of natural phenomena, spatio-

temporal data modeling and backlog and interval timestamp, respectively. They all represent

the temporal properties of their events using a traditional approach where the start time and end

time of the event are individual graph attributes.

[17] represents their data as a directed graph with each node and edge being annotated with

the time interval during which they are valid. The queries are formalized with the following

structure: < Q > :: = < KEYWORD > + < PRED > * < RF > * where KEYWORD represents one

or more words included in the search, or it could also correspond to the labels of the data node.

PRED represents a time predicate: time intervals during which the search results exist. It could be

preceding, meets, overlaps, etc. The RF involves the ranking or order the user wants to give to the

query results. Their paper considers various forms of searches that could be performed and

proposes an algorithm on how to handle it.

[18] proposes a way to track diseases evolution over time using graph databases. Their data

is organized in sequence where the whole graph shows the order in which the diseases evolved for

each patient. Here, the time is represented as a property of the graph node, and each node represents

a state of the diseases.

[19] builds a model to represent the dynamics of natural phenomenon as spatiotemporal

events. The data model proposed consists of three entities: spatiotemporal (ST) objects, ST

relationships, and ST events. An ST object represents an object that evolves with space and time.

An ST relationship represents the relationship between consecutive time intervals, and an ST event

represents the life cycle of a specific event from start to end. They do this by using a graphical

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 11

approach where spatio temporal events are represented as node and spatio-temporal relationships

are represented as edges. The relation/edge indicates the changes that happens to the object from

time t to time t+1.

Temporal Geographical Information Structures (TGIS) is a model developed by [20]. The

authors realized that it is hard to convert temporal problem domain model to relational model. This

leads to complex queries and low expansibility. To solve this problem, they come up with a spatio-

temporal model based on graph databases.

[21] tries to find a suitable way to represent and model network data with graph databases

given that there is a continuous evolution of this data with time. They design a model that supports

temporal analysis with property graph databases, using a single-graph model limited to structural

changes. To appropriately represent their model, they consider a group of devices, and

management services which track the devices interconnection where an event represents the

addition and removal of a device from the network. In their model, they represent timestamps

intervals as node properties. They also introduce a global indexing and graph as an index to handle

the backlogs. In the global indexing approach, indexes are linked with the creation and deletion

time of items which can be used at run time to efficiently reconstruct order sets. By using the graph

as index, they can come up with a backlog table indicating how the various time intervals are

linked with each other.

2.2 Duration Labeled Temporal Graphs

[4] defined a duration labeled temporal graph as 𝐺𝑑 = (V, E) being a temporal graph where V is

the set of vertices, and E is the set of edges. Each edge is represented as (u, v, t,) E and

represents a temporal relationship between vertex u and v starting at time t with a duration . Such

graphs are studied by Wu el al. [22] to represent duration between vertices and to compute the

shortest path or fastest path algorithms. In this temporal graph, the edges are labeled with the

duration of the relationship between the two nodes. Based on this definition, the authors of [22]

extended their work [23], [24], [25].

This form of temporal data representation is ideal for handling and solving path queries

since the interval is summarized as duration and can be used for easier traversal/shortest path

computations. The summarization of temporal intervals to duration labels comes with some

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 12

important data being omitted, so it is not ideal to solve a query such as finding the people who

graduated from Kennesaw State University after 2018.

2.3 Snapshot Based Temporal Graphs

[4] defines this type of temporal graph as G [𝑡𝑖, 𝑡𝑗] in a time interval [𝑡𝑖, 𝑡𝑗] where {𝐺𝑡𝑖
,

𝐺𝑡𝑖+1
, … . 𝐺𝑡𝑗 } is a sequence of graph snapshots. Multiple temporal graph models have been

proposed in this category with most of them using a versioning method. For example, Khurana et

al. [26] proposed a way to efficiently query historical data. They focus on querying the state of a

network at a particular point in time (snapshot). They store the current graph and other versions of

the graph representing the state of the data at various points in time. Their work helps to keep track

of the evolution of data through time.

 Throughout the literature we also see other models for snapshot retrieval. Copy and log are

two snapshot retrieval approach models proposed by Salzberg and Tsotras [27]. The copy approach

involves the storage of the database snapshot at each transaction state with the primary advantage

of fast retrieval. The log approach involves recording all changes in the database annotated by

time. They go further and propose a mix of the two approaches (copy+log) where a subset of the

snapshots is explicitly stored. Other methods such as external index tree or segment tree [28] are

also found in the literature for this same purpose. Snapshot retrieval model is not the only area

where snapshot based temporal graphs have been used.

Huo et al. [29] propose a way to efficiently compute the shortest path on evolving social

graphs. They extend the Dijkstra’s algorithm to compute the shortest path for a time-point or time

interval with the goal of efficiently querying the temporal shortest path problem within the social

graph evolving history.

Algorithms for the traversal of snapshot based temporal models have also been proposed.

Huang et al. [30] propose a temporal version of breadth-first search(BFS) / depth first search

algorithms. A temporal graph consists of multiple snapshots where each snapshot is a non-

temporal graph, so a naïve traversal approach will involve applying BFS/DFS on each of the

snapshots; however, this will not be realistic since the number of snapshots in a temporal graph

could be relatively large. Chrono graph is a system design proposed by Byun et al. [31] to manage

and traverse temporal graph. [31] handles the limitations of [30] by converting time instant

events(instantaneous events) used in [30] to time periods (interval events). In this thesis, our focus

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 13

is not on snapshot databases. Mate et al. [32] and Wongsuphasawat et al. [33] also did some work

on temporal database with a focus on finding friendly ways for users to generate temporal queries.

2.4 Summary

Among the three categories of temporal graphs, interval labeled temporal graphs are closest to the

proposed method in this thesis. The existing database models can be extended to support temporal

data storage and querying. As the temporal data storage becomes specific, specialized indexing

structures need to be built. To efficiently benefit from these extensions, new temporal querying

operators are introduced. As the domain of temporal databases continue evolve, this debilitates

traditional users adapting to new querying paradigms.

 Our goal is to support temporal querying with existing models without extending them.

This may require adapting the traditional operators of existing models for the purpose of temporal

querying. However, the data should be stored in a specific way so that these inherent operators can

be used without changing them. Hence, we are not trying to extend any model, but we are aiming

at modeling temporal data to leverage from existing operators. In the literature, temporal

information is either attached to nodes or edges for graph databases. When temporal information

is attached to edges, the queries turn into path searching or pattern matching, which is not the goal

here. We will compare our proposed model’s performance with traditional representation where

the temporal information is attached to the nodes, but without extending them with additional

keywords for fair comparison.

 Another problem we see in the literature is the limited indexing. Indexing is directly tied

to the data, and indexing structure is heavily dependent on the data. However, we should assume

that events happen at any time. Rather than data specific or model dependent explicit index

structures customized according to the existing models, implicit indexing could be desired based

for the temporal information.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 14

Chapter 3 Approach

In this chapter, we explain our proposed model and show how temporal queries can be executed

using our model. Since the proposed model leverages spatial data structure and benefit from spatial

indexing, we start with the relevance of spatial representation. Then, we explain our temporal

model where an interval is represented as a point on the cartesian coordinate system. This section

also explains the mapping of time on an axis. After explaining Allen’s intervals, we present how

queries based on Allen’s interval relationships can be expressed using our model. The major

advantage of our model is that it can use an existing graph database system without any extension

while benefiting from all inherent optimizations.

3.1 Spatial Data Structure

Our model for temporal data storage involves the conversion of temporal interval data to spatial

data. Samet [34] defines spatial data as spatial objects made of points, lines, regions, rectangles,

surfaces, volumes, and data of higher dimensions. Spatial data storage involves multidimensional

key search. Multidimensional key search which is different from single key search where records

could be stored and searched using only a single property such as name or ID number. Unlike

single key search data structures, spatial data structures are designed in a way to achieve high

performance results when it comes to multidimensional range queries such as searching for all

cities within a given distance of a specific point[35]. Multi-dimensional range queries are the

defining features of a spatial application.

 Point data is the spatial data of interest in this thesis. Multidimensional point data could be

represented in a variety of ways such as K-d tree which is preferable when dealing with dimensions

greater than 3 [34] or point quadtree. Most of the point data representations available are some

variants of the bucket method. The bucket method is based on data structures that are based on

spatial occupancy. Spatial occupancy involves decomposing the space from which the data is

drawn into regions called buckets. Examples of such bucketing methods are PR quadtree (P for

Point and R for Region), R-tree and 𝑅+tree. R-trees are used for organizing collections of arbitrary

spatial objects.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 15

3.2 Our Temporal Data Model

This thesis aims at finding a way to organize and retrieve temporal data using a graph database.

Temporal properties are represented as a cartesian point with the start time being the x-axis and

the end time being the y-axis. This cartesian point will be used to perform queries on the nodes.

A temporal graph is defined as G = (N, E) where N denotes the set of temporal nodes and

E represents temporal ordering of semantically related intervals. A node is defined as n = (u,

Interval) ∈ N where u represents the label of the node and Interval represents the temporal property

of the node.

In our model, the interval is defined as a cartesian point (x, y) with x representing the start

time and y representing the end time as shown in Figure 3-1. This cartesian representation is the

key difference with traditional models which have the interval represented as two individual node

attributes (Figure 3-2).

Figure 3-1: Temporal representation of events in proposed model

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 16

To appropriately demonstrate our model, let us consider the following example: Patient1 was a

patient of doctor1 during the time interval from T1 to T1’. In our model, the relationship between

patient 1 and the doctor 1 is a node and is denoted as (patientOf, [T1, T1’]). During this time

interval, patient 1 made two visits to doctor1 both denoted as (visit1, [T2, T2’]) and (visit2, [T3,

T3’]). The graphical structure of this information is shown in Figure 3-3.

Figure 3-2: Temporal representation of events in traditional way

Figure 3-3:Spatial representation of temporal events

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 17

With the cartesian point system in place, the major issue is to represent time as a number to be

plotted on a cartesian coordinate. Let us consider the example below to illustrate how this can be

done.

John went to the hospital on July 28th, 2021, at 8:30am and he came out on August 2nd,

2021, at 8:15pm. To represent this in our model, we are going to concatenate all the numbers

together to form an integer and use the time as the floating part of the number. To distinguish

between am and pm time, the 12 hours o’clock convention will be transformed to the military time

chart. The format to represent time is yyyymmdd.hhnn (4-digit year followed by 2-digit months

followed by 2-digit days followed by decimal point followed by 2-digit hours followed by 2-digit

minutes). Therefore,

July 28th, 2021, at 8:30am in cartesian numbers will be 20210728.0830 and

August 2nd, 2021, at 8:15pm in cartesian numbers will be 2021802.2015.

Converting the temporal data to spatial data comes with some characteristics that give a

better temporal ordering performance: i) By converting the temporal data to spatial data, we can

make use of the multidimensional storage capabilities provided by spatial storage systems. ii)

Storing the data as a cartesian point implies storing the start and end times as an integer (or real

numbers) which is different from a datetime object that stores the date as a string. From [36], it

can be inferred that Integer comparison has a better performance compared to string comparison.

Things could be different now with the recent advancement in technologies; however, this

characteristic is part of the reasons why we believe that storing data as a point will be beneficial

for temporal queries.

When converting the temporal interval to cartesian point, the following features are to be

considered. i) It is important to follow the standard temporal notation year/month/day when doing

the concatenation. Any different order could result in the end time number generated being smaller

than the start time number generated, which will cause some future search queries to fail. ii)It is

important to keep the day and month as two digits. This will ensure that the end time is not smaller

than the start time. Having the time converted to cartesian point simplifies our temporal queries. It

allows intervals to be represented as points to be plotted effectively and compared easily. We will

demonstrate how our model can be used to perform querying based on temporal interval for each

of Allen’s interval relationships.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 18

3.3 Spatial Point Comparison

Developing temporal queries based on spatial points will require points comparison, so

understanding the comparison operators between spatial points is important to effectively generate

temporal queries with our model.

Figure 3-4 shows the areas representing various comparison operators with respect to point A.

Zone A (blue rectangle) is the zone with all the points strictly greater than point A. All the points

Figure 3-4: Cartesian diagram showing areas representing various comparison operators

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 19

located in Zone A + the points located on line L1, and the points located on line L2 forms the set

of points greater than or equal to point A. So, in summary we have:

 (Points > Point A) = Zone A

 (Points ≥ Point A) = Zone A + L1 + L2

 (Points = Point A) = Point A

Following the same logic, we have the following summary for less than operators:

(Points < Point A) = Zone B

 (Points ≤ Point A) = Zone B + L3 + L4

 (Points = Point A) = Point A

3.4 Allen’s Interval Relationships

Allen’s interval relationships describe all possible positional relationships between two time

periods along a common timeline[37]. These relationships were originally proposed by James F.

Allen in 1983 [16] to represent temporal knowledge and temporal reasoning. Besides temporal

databases, Allen’s relations are also used in temporal pattern matching ([38], [39]). Queries based

on Allen’s relations will be used to evaluate our model. Table 3-1 shows a summary of Allen’s

relations. We are going to explain each relationship in the following sections.

 For each Allen’s interval relationship, we provide the visualizations on a spatial context,

so that these queries could be designed accordingly. This is not a one-to-one mapping of conditions

based on start and end times of intervals compared to the traditional model.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 20

Table 3-1: Summary of Allen's relations

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 21

3.4.1 Before/After Relationship

Figure 3-5 represents Allen’s before/after relationship. This shows the relationship between two

events (X, [𝑇1, 𝑇1
′]) and (Y, [𝑇2, 𝑇2

′]) where X happened before Y meaning that 𝑻𝟏 < 𝑻𝟏
′ < 𝑻𝟐 <

𝑻𝟐
′ . The cartesian diagram in Figure 3-6 will help us demonstrate how we can use our model to

process such temporal queries. Zone B in the diagram represents the location of all the events that

happened before the interval Y that is all the X events, and the inverse is shown by Zone A. To

retrieve such data with our model, we will use the reference point B for before query and point A

for after query. The area covered by zone B represents all the points that are less than reference

point B (𝑻𝟐, 𝑻𝟐). So, the cypher query used to retrieve all events X that happened before Y is

provided in Table 3-2.

Figure 3-5: Diagram showing Allen's before/after relationship

Figure 3-6: Cartesian representation of before/after relationship

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 22

We should note that using comparison operators ‘>’ and ‘<’ on a cartesian point is

enough to satisfy these queries. In other words, we do not need to compare with each axis.

3.4.2 During Relationship

Figure 3-7 represents Allen’s during relationship. This shows the relationship between two events

(X, [𝑇1, 𝑇1′]) and (Y, [𝑇2, 𝑇2′]) where X happened during Y meaning that: 𝑻𝟐 < 𝑻𝟏 < 𝑻𝟏′ < 𝑻𝟐′.

Figure 3-8will help us demonstrate how we can use our model to process such temporal queries.

From Figure 3-8, all the events that happened during interval Y are in Zone A. To retrieve this

data, we will use the reference points A and B. The points in Zone A are all the points that are

Table 3-2: Summary of our model query compared to that of the traditional mode for

before/after relation

Temporal

relation

Our model query Traditional model query

Before

Match (n: event)

Where n.interval <

 point ({x:𝑇2, 𝒚: 𝑇2})

return n

Match (n: event)

Where n.endTime < 𝑇2

return n

After Match (n: event)

Where n.interval >

 point ({x:𝑻𝟐
′ , 𝒚: 𝑻𝟐

′ })

return n

Match (n: event)

Where n.startTime > 𝑻𝟐
′

Return n

Figure 3-7: Diagram showing Allen's during relationship

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 23

greater than reference point B but less than reference point A. So, the general query to get all the

events X that happened during interval Y is shown in Table 3-3.

Figure 3-8:Cartesian representation of during relationship

Table 3-3: Summary of our model query compared to that of the traditional model for during

relation

Temporal

relation

Our model query Traditional model query

During Match (n: event)

Where n.Interval >

 point ({x:𝑻𝟐, y:𝑻𝟐})

 AND

 n.Interval <

 point ({x:𝑻𝟐
′ , y:𝑻𝟐

′ })

return n

Match (n: event)

Where n.startTime >

 𝑻𝟐

 AND

 n.endTime <

 𝑻𝟐
′

return n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 24

3.4.3 Meets / Met By Relationship

Allen’s meets/met by relationship is a relationship where the end time of one event equals the start

time of another event. In Figure 3-9, the end time of event X equals the start time of event Y so,

event X meets event Y, or Y is met by X. This implies that 𝑻𝟏 < 𝑻𝟏
′ = 𝑻𝟐 < 𝑻𝟐

′ . Figure 3-10 shows

how these events lie on the cartesian system and how they can be accessed. All the points located

on 𝐿1 are the intervals that meet Y. The points on the line 𝐿2 represent all the events that are met

by Y. Table 3-12 shows our model query compared to the traditional model query.

Figure 3-9: Diagram showing Allen's meets/met by relationship

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 25

Table 3-4: Summary of our model query compared to that of the traditional model for

meets/met by relationship

Temporal

relation

Our model query Traditional model query

Meets Match (n: event)

Where n.Interval > =

 point ({x: 0, y:𝑻𝟐})

 AND

 n.Interval < =

 point ({x:𝑻𝟐, y:𝑻𝟐})

return n

Match (n: event)

Where

 n.endTime = dateTime(𝑇2)

return n

Met By Match (n: event)

Where n.Interval > =

 point ({x:𝑻𝟐
′ , y:𝑻𝟐

′ })

 AND

 n.Interval < =

 point ({x:𝑻𝟐
′ , y: 𝑌𝑚𝑎𝑥})

return n

Match (n: event)

Where

 n.startTime = dateTime(𝑻𝟐
′)

return n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 26

3.4.4 Overlaps/Overlapped By Relationship

Allen’s overlaps relationship portrays a relationship where a portion of an event happens during

the same time as another event. In Figure 3-11, the end time of event X is greater than the start

time of event Y but less than the end time of Y, meaning that event X overlaps event Y. This

Figure 3-10: Cartesian representation of meets/met by

relationship

Figure 3-11: Diagram showing Allen's overlaps / overlapped by

Relationship

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 27

implies that 𝑻𝟏 < 𝑻𝟐 < 𝑻𝟏
′ < 𝑻𝟐

′ . Overlapped By is the inverse of this relationship. We demonstrate

how such events can be accessed with our model with the help of the cartesian plan in Figure 3-12.

All the points located in zone A are the points that overlap with interval Y, and the ones located in

Zone B are the ones that are overlapped by interval Y. Table 3-5 shows how we can get these

points using our proposed model.

Figure 3-12: Cartesian representation of overlaps/overlapped by relationship

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 28

Table 3-5: Summary of our model query compared to that of the traditional model for

overlaps/overlapped by relationship

Temporal

relation

Our model query Traditional model query

Overlaps Match (n: event)

Where n.Interval >

 point ({x:0, 𝑦: 𝑇2)

 AND

 n.Interval <

 point({x: 𝑇2, y:𝑇2
′})

return n

Match (n: event)

Where n.startTime <

 dateTime(𝑇2)

 AND

 n.endTime >

 dateTime (𝑇2)

 AND

 n.endTime <

 dateTime (𝑻𝟐
′)

return n

Overlapped

By

Match (n: event)

Where n.Interval >

 point({x: 𝑇2, y:𝑇2
′})

 AND

 n.Interval.x <

 point ({x:𝑻𝟐
′ , y: 𝑌𝑚𝑎𝑥})

return n

Match (n: event)

Where n.startTime >

 dateTime(𝑇2)

 AND

 n.startTime <

 dateTime (𝑻𝟐
′)

 AND

 n.endTime >

 dateTime (𝑻𝟐
′)

return n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 29

3.4.5 Starts/Started By

In Allen’s starts relationship, the two events have the same start time, but one ends before the

other. In Figure 3-13, the start time of event X equals the start time of event Y, but it ends before

event Y (𝑻𝟏 = 𝑻𝟐 < 𝑻𝟏
′ < 𝑻𝟐

′) implying that event X starts event Y. Started by is the inverse of this

relationship. Figure 3-14 shows how such events could be accessed. The queries are summarized

in Table 3-6.

Figure 3-13: Diagram showing Allen's start/started by relationship

Figure 3-14: Cartesian representation of starts/start by relationship

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 30

Table 3-6:Summary of our model query compared to that of the traditional model for

starts/started by relationship

Temporal

relation

Our model query Traditional model query

Starts Match (n: event)

Where

 Where n.Interval > =

 point ({x: 𝑻𝟐, y:𝑻𝟐})

 AND

 n.Interval < =

 point ({x:𝑻𝟐, y: 𝑻𝟐
′) })

return n

Match (n: event)

Where n.startTime =

 dateTime(𝑇2)

 AND

 n.endTime <

 dateTime (𝑻𝟐
′)

return n

Started By Match (n: event)

Where

Where n.Interval > =

 point ({x:𝑻𝟐, y: 𝑻𝟐
′) })

 AND

 n.Interval < =

 point ({x:𝑻𝟐, y:𝑌𝑚𝑎𝑥) })

return n

Match (n: event)

Where n.startTime =

 dateTime(𝑇2)

 AND

 n.endTime>

 dateTime (𝑻𝟐
′)

return n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 31

3.4.6 Finishes/Finished By Relationship

This relationship is like the mirror of start/started by relationship. The two events have the same

end time, but one starts before the other. In Figure 3-15, the start time of event X is greater than

the start time of event Y and both have the same end time (𝑻𝟐 < 𝑻𝟏 < 𝑻𝟏
′ = 𝑻𝟐

′), implying that event

X finishes event Y. The inverse to this relation is Finished by. Figure 3-16 shows how such events

could be accessed. The queries are summarized in Table 3-7.

Figure 3-15: Diagram showing Allen's finishes/finished by relationship

Figure 3-16: Cartesian representation of finishes / finished by relationship

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 32

Table 3-7: Summary of our model query compared to that of the traditional model for

finishes/finished by relationship

Temporal

relation

Our model query Traditional model query

Finishes Match (n: event)

Where

 Where n.Interval > =

 point ({x:𝑻𝟐, y: 𝑻𝟐
′ })

 AND

 n.Interval < =

 point ({x: 𝑻𝟐
′ , y: 𝑻𝟐

′) })

return n

Match (n: event)

Where

 n.endTime =

 dateTime(𝑻𝟐
′)

 AND

 n.startTime >

 dateTime (𝑻𝟐)

return n

Finished By Match (n: event)

Where

 Where n.Interval > =

 point ({x:0, y: 𝑻𝟐
′ })

 AND

 n.Interval < =

 point ({x:𝑻𝟐, y: 𝑻𝟐
′ })

return n

Match (n: event)

Where

 n.endTime =

 dateTime(𝑻𝟐
′)

 AND n.startTime <

 dateTime (𝑻𝟐)

return n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 33

3.4.7 Equals Relationship

In this form of relationship, the two events have the same time interval as seen in Figure 3-17:

meaning 𝑻𝟏 = 𝑻𝟐 < 𝑻𝟏
′ = 𝑻𝟐

′ . This relationship does not have any inverse. This relationship is

straightforward so, a graph is not needed to show how the queries from Table 3-8 are obtained.

Figure 3-17: Diagram showing Allen's Equals relationship

Table 3-8:Summary of our model query compared to that of the traditional model for equals

relationship

Temporal relation Our model query Traditional model query

Equals Match (n: event)

Where

 n. Interval =

 point({x: 𝑇2, y: 𝑇2
′})

return n

Match (n: event)

Where

 n.endTime =

 dateTime(𝑻𝟐
′)

 AND

 n.startTime = dateTime (𝑻𝟐)

return n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 34

3.5 Other Queries

In this section, we explain 4 more types of queries other than Allen’s intervals: i) previous/next,

ii) conditional before/after, iii) conditional time instance, and iv) conditional temporal graph

traversing. Previous/next querying provides the immediate previous/next event. Conditional

before/after just returns a subset of the results after filtering based on a condition. Time instance

querying focuses on returning the time of event based on a condition. Conditional graph traversing

query traverses the graph and returns the results that satisfy a condition. We provide 4 examples

here.

3.5.1 Previous/Next

Previous/next query considers the immediate before/after query based on a condition.

Handling this type of query first involves applying Allen’s before/after relation, then organizing

the data in descending order for previous or ascending order for next to get the top object from the

list. Let us consider we want to get the previous event from today, with today interval given as 𝑻𝟐-

𝑻𝟐
′ . The query to get the previous event is shown in Table 3-9.

Table 3-9: Our model compared to traditional model for previous queries

Relationship Our model query Traditional model query

Previous Match (n:event)

Where n.Interval <

 point({x: 𝑻𝟐 , y: 𝑻𝟐})

 AND (Conditions if any)

return n

ORDER BY

 n.Interval

 DESC

 LIMIT 1

Match(n:event)

Where n.endTime <

 datetime(𝑻𝟐)

 AND (Conditions if any)

return n

ORDER BY

 n.startime

 DESC

LIMIT 1

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 35

3.5.2 Conditional Before/After

Conditional before/after just returns a subset of the results after filtering based on a condition. This

is very similar to the previous/next except for the ordering and filtering the results to a single event.

Taking the temporal interval 𝑻𝟐- 𝑻𝟐
′ as reference, the temporal query is shown in Table 3-10.

3.5.3 Conditional Time Instance

Time instance querying focuses on returning the time of an event based on a condition. This type

of query could be based on any of Allen’s intervals and will return where the time of the event in

consideration will be accessed. The temporal query is provided in Table 3-11.

Table 3-10:Our model compared to traditional model for conditional after query

 Relationship Our model query Traditional model query

Conditional After Match (n:event)

Where n.Interval >

 point({x𝑻𝟐
′ : , y: 𝑻𝟐

′ })

 AND (Conditions)

return n

ORDER BY

 (ranking if available)

Match (n:event)

Where n.startime>

 datetime(' 𝑻𝟐
′ ')

 AND (Conditions))

Return n

ORDER BY

 (ranking if available)

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 36

3.5.4 Conditional Temporal Graph Traversing

Conditional graph traversing query traverses the graph and returns the results that satisfy a

condition. The general query structure for such queries is shown in figure Table 3-12.

Table 3-12: Our model compared to traditional model for conditional temporal graph traversing

Relationship Our model query Traditional model query

Conditional temporal graph

traversing

Match (n:event)

Where

 Temporal condtions

 AND

 Filtering conditions

return n

Ranking (if any)

Match (n:event)

Where

 Temporal condtions

 AND

 Filtering conditions

return n

Ranking (if any)

Table 3-11: Our model compared to traditional model for conditional time instance

Relationship Our model query Traditional model query

Time Instance Match (n:event)

Where

 Temporal conditions

 AND

 Filtering Condtions

return n.Interval.x

Ranking (if any)

Match(n:event)

Where

 Temporal conditions

 AND

 Filtering Conditions

return n.startTime

 Ranking (if any)

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 37

3.6 Summary

This chapter showed a detailed overview of our model and how we can use the cartesian coordinate

to design temporal queries. It also shows the query structure for other forms of queries. Not all

forms of temporal interval organization are represented by Allen’s intervals, but the same

framework used for the Allen’s relations can be used to come up with any other form of queries.

The next chapter will show a performance comparison between the queries generated here and the

queries generated for a traditional model.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 38

Chapter 4 Experiments

Chapter 3 explained how we can use our model to build queries based on Allen’s intervals and

then compared those query structures to the query structure of a traditional temporal querying

method. In this chapter, we will demonstrate these queries on actual examples and compare the

performance between our model and the traditional model. In the traditional model, the event

interval is stored as attributes composed of start time and end time for the event (Figure 4-1). To

do this, we performed two sets of experiments. The first one will involve query examples and

performance analysis based of Allen’s intervals. The second experiment set will demonstrate

performance related to temporal ordering.

The experiments and demonstrations were done using Neo4j. Neo4j comes with the point

spatial geometry which has multiple characteristics [38] relevant to this research. Just like with

any geometric point, Neo4j spatial point has up to three dimensions. We are going to focus only

on two dimensions in this research (x, y). Neo4j points can be assigned to nodes and relationship

as properties (Figure 4-2). With this feature, we can represent the temporal property of an event as

a point. The points can be indexed using a spatial index. This will be useful for future research

when speed optimization will be of the essence. All these features make it possible to represent

temporal data using cartesian points through an existing database structure.

In the following section, we describe the dataset for our experiments. Then the results of

experiments and performance results are provided. We additionally give examples of 4 types of

queries other than Allen’s intervals: i) previous/next, ii) conditional before/after, iii) conditional

time instance, iv) conditional temporal graph traversing.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 39

Figure 4-1: Sample neo4j node with traditional temporal interval storage start and

end time represented as two distinct properties

 Figure 4-2: Sample neo4j node with the point property representing the

 temporal interval

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 40

4.1 Dataset

The two sets of experiments will be performed on a soccer dataset of more than 4000 games (4343).

These are the premiere league games of 21 English premiere league teams from 2011 to 2021.

Each node represents a game with a start and end time, and each edge represents the timeline that

links the game of each team. We have two representations of the node in the same graph database.

The first representation is the one where the temporal interval is represented using the traditional

model (Figure 4-3) and the second representation is with our model (Figure 4-4).

Figure 4-3: Soccer dataset with traditional temporal interval representation

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 41

 We have also developed a mini dataset for validating query results. The mini dataset consists

of 7 carefully selected games. These games were selected in such a way that we will have a

nonnull response for each of the queries generated based on Allen’s intervals. Figure 4-5 shows

how these games are aligned on the timeline. The games follow the timeline of two main teams:

Manchester United and Chelsea. The edges between all Manchester United games are used to

group Manchester United events together, and the edges between all Chelsea games are used to

group Chelsea games together. Figure 4-6 shows the representation of these games in Neo4j graph

database. We built 2 graph models for the mini dataset: one where the temporal interval is

represented with our proposed model (Figure 4-6) and the other where the temporal interval is

represented with the traditional interval representation (Figure 4-7).

Figure 4-4:Soccer dataset with proposed model temporal interval representation

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 42

Table 4-1: Mini dataset for temporal queries validation

Game label Team A Team B Start Date End Date

Game1 Man United Liverpool 2021/01/31

10:30pm

2021/02/01

12:00 am

Game2 Man United Arsenal 2021/02/28

11:59pm

2021/03/01

1:29am

Game3 Chelsea Man City 2021/01/31

11:30pm

2021/02/01

1:00am

Game4 Chelsea Arsenal 2021/02/28

11:30pm

2021/03/01

1:00am

Game5 Man United Tottenham 2021/02/01

12:00 am

2021/02/01 1:30

am

Game6 Man United Man City 2021/02/28

10:30 pm

2021/02/28

11:59 pm

Game7 Man United Chelsea 2021/02/10

10:00 am

2021/02/10

11:30 am

Figure 4-5: Mini dataset represented on a timeline. Red are Manchester’s games

and Blue are Chelsea’s games.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 43

Figure 4-6: Graph representation of mini dataset in our model

Figure 4-7: Graph representation of mini dataset in traditional model

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 44

4.2 Performance Comparison

In Chapter 3, we have developed a set of queries based on Allen’s intervals. We will apply those

queries using our model and the traditional model. Both models use a graph structure to store the

dataset. The queries based on Allen’s intervals include before/after relationships, during,

meets/met by, overlaps/overlapped by, starts/started by, finishes/finished by, and equals

relationships. We briefly provide performance analysis of these queries as follows. For each

relationship, we provide a query example to show how the query can be structured and then provide

the performance analysis.

For the experiments, we are going to use the queries developed in Chapter 3 then use the

mini dataset shown in Table 4-1 for validation. We are then going to use these queries on the larger

dataset for performance analysis between the traditional model and our model. For the

performance analysis, we run each query 1000 times in series of hundreds and record the average

availability time (time taken for the records to become available) and consumed time (time taken

for records to be consumed by the server). The total query time is the sum of these two times, and

it represents the query performance.

In our temporal database, events correspond to intervals. Events need to be compared with

another interval for temporal queries based on Allen’s intervals. Rather than using an existing

event from the database, we explicitly defined intervals in our queries. The interval could be a day,

a week, or a month, etc. If events need to be compared with another event as an interval, the queries

will be executed based on its start and end time. Hence, the query structure is still the same. Some

of the queries are based on a maximum y value. For this experiment, we will select our maximum

y value as December 31st of the year 2100. So, in our model, this will be represented as 𝒀𝒎𝒂𝒙 =

21001201.

4.2.1 Before/After Relationship

Query example:

What are all the games that were played before (after) February 15th, 2021?

Query description:

This question contains two queries that relate to the before/after relationship proposed by

Allen. The interval Y is represented by the 15th of February with 𝑻𝟐 = 2021-15-01T00:00 and 𝑻𝟐
′

= 2021-02-15T23:59. All the events that happened before this interval represent the X from Figure

3-5, so the query wants us to get all the X that happened before Y and the inverse (after).

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 45

Getting all the games that happened before the 15th of February 2021 from the mini dataset

should return Game 1, Game 3, Game 5, and Game 7. Table 4-2 provides the queries for both

models using the Cypher query language. Figure 4-8 shows the query results for both models.

Getting all the games that happened after the 15th of February 2021 from the mini dataset should

return Game 2, Game 4, and Game 6 (Figure 4-9).

Table 4-2: Before queries using cypher query based on our model and the traditional model

 Our model Traditional model

Match (n:CartesianGames)

Where n.Event_Interval

 < point ({x:20210215, y:20210215})

Return n

Match (n:TemporalAttributeGames)

Where n.end_Time

 < datetime('2021-02-15T0:0')

Return n

(a) (b)

Figure 4-8: Results of before query (a) our model and (b) the traditional model

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 46

After validating the queries on the small dataset, we run the queries on the large dataset for

performance analysis. Figure 4-10(a) shows the total query time which is the summation of

available time and consumed time. In this graph, we see our model has a total query time of about

2.4ms and the traditional model has a total time of about 3.75ms so a difference of about 1.5ms

between the two. Figure 4-10(b) and (c) show the consumed time and available time respectively

between the two models. We can see that the availability time for both models are about the same.

The difference between the 2 models originates from the consumed time.

(a) (b)

Table 4-3: After queries using Cypher query based on our model and the traditional

mode

Our model Traditional model

Match (n: CartesianGames)

Where n. Event_Interval> point

 ({x:20210215.2359, y:20210215.2359})

Return n

Match (n: TemporalAttributeGames)

Where n.start_Time >

 datetime('2021-02-15T23:59')

Return n

Figure 4-9: Results of after query (a) our model and (b) the traditional model

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 47

(c)

(a)

(b)

Figure 4-10:Our model(blue) vs traditional model query time comparison(red) for before

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time

Our model consumed time vs traditional model consumed time

Our model total time vs traditional model total time

Our model availability time vs traditional model availability time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 48

4.2.2 During Relationship

Query Example: What are all the games that were played during the month of February 2021?

Query Description:

This question is related to the during relationship proposed by Allen. The interval Y is

represented by the whole month of February with 𝑻𝟐= 2021-02-01T00:00 and 𝑻𝟐
′ = 2021-02-

28T23:59. All the events that happened during this interval represent the X from Figure 3-8

From our mini dataset, this query should return Game 5, Game 6, and Game 7. The queries are

provided in Table 4-4.

(a) (b)

Our model Traditional model

match (n: CartesianGames)

Where n.Event_Interval > = point

 ({x:20210201, y:20210201})

 AND

 n.Event_Interval <= point

 ({x:20210228.2359, y:20210228.2359})

return n

Match (n: TemporalAttributeGames)

Where n.start Time >=

 datetime('2021-02-01T0:0')

 AND

 n.end_Time <=

 datetime('2021-02-28T23:59')

return n

Table 4-4: During queries using cypher query based on our model and the traditional

model

Figure 4-11: Results of during query (a) our model and (b) the traditional model

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 49

The query results for during relationship is shown in Figure 4-11.

Just like with the before relationship, our model also performed better in this situation.

Total query of our model time for this relationship is approximately 2ms while the traditional

model’s time is close to 7ms yielding a difference of about 5ms. Just like the before relationship,

the difference between the two models mostly comes under the consumed time (Figure 4-12 (b)).

The available time (Figure 4-12 (c)) for both models are about the same.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 50

(c)

(a)

(b)

Figure 4-12: Our model(blue) vs traditional model query time comparison(red) for during

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time

Our model total time vs traditional model total time

Our model consumed time vs traditional model consumed time

Our model availability time vs traditional model availability time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 51

4.2.3 Meets / Met By Relationship

Query example: Find all the games that meet with the month of February.

Query description:

From the dataset shown in Figure 4-5 the interval Y is represented as the month of

February with 𝑻𝟐 = 2021-02-01T00:00 and 𝑻𝟐
′ = 2021-02-28T23:59. The game that meets interval

Y is G1, and the game met by interval Y is G2. The queries are provided in Tables 4-5 and 4-6.

The query results for meets and met by are shown in Figure 4-13 and Figure 4-14 respectively.

(a) (b)

Our model Traditional model

Match (n: CartesianGames)

Where n. Event_Interval >=

 Point({x:0, y:20210201})

 AND

 n. Event_Interval <=

 Point({x: 20210201, y:20210201})

Return n

Match (n: TemporalAttributeGames)

Where

 n.end_Time = datetime('2021-02-01T0:0')

Return n

Table 4-5: Meets queries using cypher query based on our model and the traditional

model

Figure 4-13: Results of meets query (a) our model and (b) the traditional model

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 52

Our model performs better in this relationship too with an average time of 2.5ms compared

to 6ms from Figure 4-15 (a) and just like with the other relationships, the difference in time is

mostly contributed by the consumed time (Figure 4-15 (b)).

(a) (b)

Our model Traditional model

Match (n:CartesianGames)

Where n.Event_Interval >=

 point ({x: 20210228.2359, y:

20210228.2359})

 AND

 n.Event_Interval <=

 point ({x: 20210228.2359, y: 21001201})

Return n

Match (n:TemporalAttributeGames)

Where

 n.start_Time =

 datetime('2021-02-28T23:59')

Return n

Table 4-6:Met by queries using cypher query based on our model and the traditional

model

Figure 4-14: Results of met by query (a) our model and (b) the traditional model

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 53

(c)

(b)

(a)

Figure 4-15: Our model(blue) vs traditional model query time comparison(red) for met by

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time

Our model total time vs traditional model total time

Our model consumed time vs traditional model consumed time

Our model availability time vs traditional model availability time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 54

4.2.4 Overlaps/Overlapped By Relationship

Query example: What are the games that overlaps or is overlapped by February 2021?

Query description:

From the dataset shown in Figure 4-5 with interval Y represented as the month of February

𝑻𝟐 = 2021-02-01T00:00 and 𝑻𝟐
′ = 2021-02-28T23:59. We have game 3 that overlaps Y and game

4 that is overlapped by Y. The queries are provided in Tables 4-7 and 4-8. The query results for

overlaps and overlapped by are shown in Figure 4-16 and Figure 4-17 respectively.

(a) (b)

Table 4-7: Overlaps queries using Cypher query based on our model and the traditional

model

Figure 4-16: Results of overlaps query (a) our model and (b) the traditional model

Our model Traditional model

Match (n:CartesianGames)

Where n.Event_Interval >

 point ({x:0, y:20210201.0000})

 AND

 n.Event_Interval <point

 ({x:20210201.0000 ,

 y:20210228.2359})

return n

Match (n:TemporalAttributeGames)

Where n.start Time <

 dateTime('2021-02-01T00:00')

 AND

 n.end_Time >

 dateTime ('2021-02-01T00:00')

 AND n.end_Time <

 dateTime ('2021-02-28T23:59')

Return n

n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 55

The performance comparison between the two models shows an average query time of

about 3ms for our model and about 9ms from the traditional model giving a difference of about

6ms (Figure 4-18).

(a)
(b)

Table 4-8: Overlapped by queries using cypher query based on our model and the

traditional model

Figure 4-17: Results of overlapped by query (a) our model and (b) the traditional

model

Our model Traditional model

Match (n: CartesianGames)

Where n.Event_Interval >

 Point ({x:20210201.0000 , y:20210228.2359})

 AND

 n.Event_Interval <

 point ({x: 20210228.2359, y: 21001201})

return n

Match (n:TemporalAttributeGames)

Where n.start_Time >

 dateTime('2021-02-01T00:00')

 AND n.start_Time <

 dateTime ('2021-02-28T23:59')

 AND n.end_Time >

 dateTime ('2021-02-28T23:59')

Return n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 56

(c)

(b)

(a)

Figure 4-18: Our model(blue) vs traditional model query time comparison(red) for overlaps

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time

Our model availability time vs traditional model availability time

Our model consumed time vs traditional model consumed time

Our model total time vs traditional model total time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 57

4.2.5 Starts/Started By

Query example: Get all queries that starts the month of February

Query description:

From the dataset shown in Figure 4-5 with interval Y represented as the month of February

𝑻𝟐 = 2021-02-01T00:00 and 𝑻𝟐
′ = 2021-02-28T23:59. We have game 5 that starts Y. When we

execute both queries (Table 4-9), we get the results shown in Figure 4-19. The performance results

(Figure 4-20) show overall gain of around 5.5ms for our model (2.5ms vs 7ms).

(a) (b)

Table 4-9: Starts queries using cypher query based on our model and the traditional model

Figure 4-19: Results of starts query (a) our model and (b) the traditional model

Our Model Traditional Model

Match (n:CartesianGames)

Where

 n.Event_Interval >=

 point({x: 20210201, y: 20210201})

 AND

 n.Event_Interval <=

 point({x: 20210201, y: 20210228.2359 })

Return n

Match (n:TemporalAttributeGames)

Where n.start_Time =

 dateTime('2021-02-01T0:0')

 AND n.end_Time <

 dateTime ('2021-02-28T23:59')

Return n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 58

(c)

(b)

(a)

Figure 4-20: Our model(blue) vs traditional model query time comparison(red) for starts

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time

Our model total time vs traditional model total time

Our model consumed time vs traditional model consumed time

Our model availability time vs traditional model availability time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 59

4.2.6 Finishes/Finished By

Query example: What are the games that finishes the month of February?

Query description:

From the dataset shown in Figure 4-5 with interval Y represented as the month of

February 𝑻𝟐 = 2021-02-01T00:00 and 𝑻𝟐
′ = 2021-02-28T23:59. We have game 6 that Finishes

Y. When we execute both queries (Table 4-10), we get the results shown in Figure 4-21. The

performance results (Figure 4-22) show overall gain of around 3.5ms for our model (3ms vs

6.5ms).

(a) (b)

Table 4-10: Finishes queries using cypher query based on our model and the traditional

model

Figure 4-21: Results of finishes query (a) our model and (b) the traditional model

Our model Traditional model

Match (n:CartesianGames)

Where n.Event_Interval >=

 Point({x: 20210201, y: 20210228.2359 })

 AND

 n.Event_Interval <=

 Point({x:20210228.2359, y:20210228.2359 })

Return n

Match (n:TemporalAttributeGames)

Where n.end_Time

 = dateTime('2021-02-28T23:59')

 AND

 n.start_Time >

 dateTime('2021-02-01T0:0')

Return n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 60

(c)

(b)

(a)

Figure 4-22: Our model(blue) vs traditional model query time comparison(red) for finishes

relationship of Allen’s interval (a) total time, (b) consumed time, and (c) available time

Our model availability time vs traditional model availability time

Our model consumed time vs traditional model consumed time

Our model total time vs traditional model total time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 61

4.2.7 Equals

Query example: What are the games that started at midnight on February 1st, 2021, and ended

at 1:30 am of the same day?

Query description:

This query uses the time interval of game 5, so using the equals interval from Allen’s

relation should return game 5. From the query, we have: 𝑻𝟐 = 2021-02-01T00:00 and 𝑻𝟐
′ =

2021-02-01T01:30. The performance results summarized in Figure 4-24 show overall gain of

around 5ms for our model (2ms vs 7ms). Table 4-11 shows the query used and Figure 4-23 shows

the query results for both our model and the traditional model.

(a) (b)

Table 4-11: Equal queries using cypher query based on our model and the traditional

model

Figure 4-23: Results of equals query (a) our model and (b) the traditional model

Our model Traditional model

Match (n: CartesianGames)

Where n. Event_Interval = Point

 ({x:20210201, y:20210201.0130})

return n

Match (n: TemporalAttributeGames)

Where n. start_Time =

 dateTime('2021-02-01T0:0')

 AND n.end_Time =

 dateTime ('2021-02-01T01:30')

Return n

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 62

(c)

(b)

(a)

Figure 4-24: Our model(blue) vs traditional model query time comparison(red) for Equal

relationship of Allen’s interval

Our model total time vs traditional model total time

Our model consumed time vs traditional model consumed time

Our model availability time vs traditional model availability time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 63

4.3 Other Query Examples

 The second set of experiment involves examples for the four types of queries

(previous/next, conditional before/after, conditional time instance, and conditional temporal graph

traversing) introduced in Chapter 3. Just like with the Allen’s intervals, the experiment will involve

a performance comparison between our model and the traditional model.

4.3.1 Previous/Next

Query example: What is Manchester United’s the last premiere league game?

Query description:

 This query refers to accessing the last game that happened from the date of today (the

previous game). Let us assume that the date of today is March 15, 2013, which from our model is

given as the interval 20130315 - 20130315.2359. Applying the query structure proposed in Table

3-9 gives us the exact queries shown in Table 4-12.

Table 4-12: Our model compared to traditional model previous query example

Our model Traditional model

Match (n:CartesianGames)

Where n.event_Interval <

 point({x:20130315 , y:20130315})

 AND

 (n.teamA = 'manchester united'

 OR

 n.teamB = 'manchester united')

return n

ORDER BY

 n.event_Interval DESC

LIMIT 1

Match(n:TemporalGames)

Where n.endTime <

 datetime('2013-03-15T0:0')

 AND

 (n.teamA = 'manchester united'

 OR

 n.teamB = 'manchester united')

Return n

ORDER BY

 n.startime DESC

LIMIT 1

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 64

(c)

(b)

(a)

Figure 4-25: Our model(blue) vs traditional model query time comparison(red) for previous

queries

Our model availability time vs traditional model availability time

Our model consumed time vs traditional model consumed time

Our model total time vs traditional model total time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 65

The performance analysis shown in Figure 4-25 between our model and the traditional

model shows a better performance from our model. The traditional model approximate query

time is 6ms and our model approximate query time is 3, so a difference of about 3ms between

the 2 models.

4.3.2 Conditional before/after

Query example: What are all the upcoming Manchester United games to be played against

Chelsea ranked soonest to latest?

Query description:

This query falls under the conditional after category where the condition here is to select

all Manchester United games against Chelsea. We also have some ranking involved here that

organizes the data from soonest to latest. Let us assume that the date of today is March 15, 2013,

which from our model is given as the interval 20130315 - 20130315.2359. Based on Table 3-10,

this query is given in Table 4-13.

Table 4-13: Our model compared to traditional model conditional after query example

Our model Traditional model

Match (n:CartesianGames)

Where n.event_Interval >

 point({x: 20130315.2359 , y:20130315.2359})

 AND

 (n.teamA = 'manchester united'

 OR

 n.teamA = 'chelsea')

 AND

 (n.teamB = 'manchester united'

 OR

 n.teamB = 'chelsea')

return n

ORDER BY n.event_Interval

Match (n:TemporalGames)

Where n.startime>

 datetime('2013-03-15T23:59')

 AND

 (n.teamA = 'manchester united'

 OR

 n.teamA = 'chelsea')

 AND

 (n.teamB = 'manchester united'

 OR

 n.teamB = 'chelsea')

Return n

ORDER BY n.startime

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 66

(c)

(b)

(a)

Figure 4-26: Our model(blue) vs traditional model query time comparison(red) for

conditional after

Our model total time vs traditional model total time

Our model consumed time vs traditional model consumed time

Our model availability time vs traditional model availability time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 67

The performance analysis shown in Figure 4-26 between our model and the traditional

model shows a better performance for our model with a difference of about 3.5 ms between the 2

models (approximately 6 ms for the traditional model and 2.5ms for our model).

4.3.3 Conditional time instance

Query example: When was the last time Tottenham played against Arsenal?

Query description:

 This query is a time instance query because we need to access the time at which a specific

event happened, and based on the general query structure provided in Table 3-11, the temporal

condition is given as the previous relation and the filtering condition is given as games between

Tottenham and Arsenal. To perform this query, we will assume the date of today is January 18,

2014. To get the last time Tottenham played against Arsenal, we need to get all the games between

the 2 teams before January 18, sort it in temporal intervals and access the first element start date.

The query is summarized in Table 4-14.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 68

Table 4-14: Our model compared to traditional model conditional time instance query

example
Our model Traditional model

Match (n:CartesianGames)

 Where n.event_Interval <

 point({x:20130315 , y:20130315})

 AND

 (n.teamA = 'tottenham'

 OR

 n.teamA = 'arsenal')

 AND

 (n.teamB = 'tottenham'

 OR

 n.teamB = 'arsenal')

return n.event_Interval.x

ORDER BY

 n.event_Interval DESC

 LIMIT 1

Match(n:TemporalGames)

 Where n.endTime <

 datetime('2013-03-15T0:0')

 AND

 (n.teamA = 'tottenham'

 OR

 n.teamA = 'arsenal')

 AND

 (n.teamB = 'tottenham'

 OR

 n.teamB = 'arsenal')

return n.startime

ORDER BY

 n.startime DESC

LIMIT 1

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 69

(c)

(b)

(a)

Figure 4-27: Our model(blue) vs traditional model query time comparison(red) for

conditional time instance

Our model availability time vs traditional model availability time

Our model consumed time vs traditional model consumed time

Our model total time vs traditional model total time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 70

The performance analysis shown in Figure 4-27 between our model and the traditional

model shows a slightly better performance from our model on this type of query (about 1ms).

4.3.4 Conditional temporal graph traversing

Query example: From earliest to latest, what Arsenal games were played during February

2017?

Query description:

 This query is an example of the conditional temporal graph traversing query. The temporal

condition is the Allen’s during interval, and the filtering condition are Arsenal games. This query

also involves some ranking. The start time for the interval is given as 20170201 and the end time

is given as 20170228.2359. Based on this info and the query structure in Table 3-12, we have the

query shown in Table 4-15.

Table 4-15: Our model compared to traditional model conditional temporal graph traversing

query example
Our model Traditional model

Match (n:CartesianGames)

Where n.event_Interval >=

 point ({x:20170201, y:20170201})

 AND

 n.event_Interval <=

 point ({x:20170228.2359, y:20170228.2359})

 AND

 (n.teamA = 'arsenal'

 OR

 n.teamB = 'arsenal')

return n

ORDER BY n.event_Interval

Match (n:TemporalGames)

Where n.startime>=

 datetime('2017-02-01T0:0')

 AND

 n.endTime <=

 datetime('2017-02-28T23:59')

 AND

 (n.teamA = 'arsenal'

 OR

 n.teamB = 'arsenal')

return n

ORDER BY n.startime

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 71

(a)

(b)

(c)

Figure 4-28: Our model(blue) vs traditional model query time comparison(red) for

conditional temporal graph traversal

Our model total time vs traditional model total time

Our model consumed time vs traditional model consumed time

Our model availability time vs traditional model availability time

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 72

The performance analysis shown in Figure 4-28 between our model and the traditional

model shows a better performance from our model with a difference of about 6 ms between the 2

models (approximately 8 ms from the traditional model and 2ms from our model).

4.4 Summary

The experiments compared the performance of two models. The total query time was given by

the query consumption time and availability time. The experimental results show that total query

time of our model was better than the traditional model query time with the time difference being

mostly contributed by the consumption time. The difference between query execution times was

as much as 6ms. If we look at the ratio of speedup, the speedup would be an average of 3.5

times.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 73

Chapter 5 Conclusion and Future work

With the increasing complexity and availability of temporal data, it has become a necessity to find

a way to appropriately store and retrieve this form of data. In this thesis, we proposed a cartesian

point system where the x-axis represents the start time of the event and y-axis represents the end

time of the event. To test our model, we used the spatial point system of an existing graph database

(Neo4j) and used the cartesian coordinate system to show how queries can be built from our model.

This work also contains a performance comparison between our model and a more traditional

model where the start time and end time are represented as two separate attributes of the event

based on Allen’s interval relationships. The performance comparison shows that our model queries

run faster than the traditional model (6ms difference and an average speed up of 3.5). Since we

have not used spatial indexing at this stage, the performance difference most likely depends on the

datatype being used. Further analysis on how spatial indexing could be beneficial for our model

will be done. The major advantage of our method is that it can leverage an existing graph model

without extending it.

5.1 Future work

The model we propose in this thesis can be extended as follows:

1) With the events being stored as a cartesian point, it is possible to have different events

occupying the same positions in space (events with similar start and end time). To

distinguish between such events, we could extend this work by adding a z index. The z

index will increase the dimensionality of the temporal intervals to 3 and will be used to

distinguish between events with start and end time being equal.

2) With the extensive amount of data being generated by computing systems, it is more likely

to have data being stored in a distributed database system. Our proposed querying system

can be extended for temporal queries on distributed graphs.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 74

 References

[1] S. Agarwal and A. Sureka, “Applying Social Media Intelligence for Predicting and

Identifying On-line Radicalization and Civil Unrest Oriented Threats,” ArXiv151106858 Cs,

Nov. 2015, Accessed: Sep. 10, 2021. [Online]. Available: http://arxiv.org/abs/1511.06858

[2] R. P. Khandpur, T. Ji, S. Jan, G. Wang, C.-T. Lu, and N. Ramakrishnan, “Crowdsourcing

Cybersecurity: Cyber Attack Detection using Social Media,” in Proceedings of the 2017

ACM on Conference on Information and Knowledge Management, New York, NY, USA:

Association for Computing Machinery, 2017, pp. 1049–1057. Accessed: Sep. 10, 2021.

[Online]. Available: https://doi.org/10.1145/3132847.3132866

[3] C. Dyreson et al., “A consensus glossary of temporal database concepts,” ACM SIGMOD

Rec., vol. 23, no. 1, pp. 52–64, Mar. 1994, doi: 10.1145/181550.181560.

[4] A. Debrouvier, M. Perazzo, E. Parodi, V. Soliani, and A. Vaisman, “A Model and Query

Language for Temporal Graph Databases,” VLDB J., vol. 30, Sep. 2021, doi:

10.1007/s00778-021-00675-4.

[5] R. Snodgrass, “The temporal query language TQuel,” ACM Trans. Database Syst., vol. 12,

no. 2, pp. 247–298, Jun. 1987, doi: 10.1145/22952.22956.

[6] C. S. Jensen, R. T. Snodgrass, and M. D. Soo, “The TSQL2 Data Model,” in The TSQL2

Temporal Query Language, R. T. Snodgrass, Ed. Boston, MA: Springer US, 1995, pp. 157–

240. doi: 10.1007/978-1-4615-2289-8_10.

[7] “SQL3 Support for Time.” http://www2.cs.arizona.edu/~rts/sql3.html (accessed Nov. 01,

2021).

[8] J. Chomicki, D. Toman, and M. H. Böhlen, “Querying ATSQL databases with temporal

logic,” ACM Trans. Database Syst., vol. 26, no. 2, pp. 145–178, Jun. 2001, doi:

10.1145/383891.383892.

[9] F. Rizzolo and A. A. Vaisman, “Temporal XML: modeling, indexing, and query processing,”

VLDB J., vol. 17, no. 5, pp. 1179–1212, Aug. 2008, doi: 10.1007/s00778-007-0058-x.

[10] M. H. Böhlen, A. Dignös, J. Gamper, and C. S. Jensen, “Database Technology for Processing

Temporal Data (Invited Paper),” p. 7 pages, 2018, doi: 10.4230/LIPICS.TIME.2018.2.

[11] markingmyname, “Temporal Tables - SQL Server.” https://docs.microsoft.com/en-

us/sql/relational-databases/tables/temporal-tables (accessed Sep. 10, 2021).

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 75

[12] C. Cattuto, M. Quaggiotto, A. Panisson, and A. Averbuch, “Time-varying Social Networks

in a Graph Database: A Neo4j Use Case, in First International Workshop on Graph Data

Management Experiences and Systems GRADES ’13 (ACM, New York,” USA, vol. 1, Jun.

2013.

[13] A. Campos, J. Mozzino, and A. Vaisman, “Towards Temporal Graph Databases,”

ArXiv160408568 Cs, May 2016, Accessed: Sep. 10, 2021. [Online]. Available:

http://arxiv.org/abs/1604.08568

[14] N. Prabhu and R. V. Babu, “Attribute-Graph: A Graph Based Approach to Image Ranking,”

in 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, Dec.

2015, pp. 1071–1079. doi: 10.1109/ICCV.2015.128.

[15] J. Cheng, Q. Wang, Z. Tao, D. Xie, and Q. Gao, “Multi-View Attribute Graph Convolution

Networks for Clustering,” in Proceedings of the Twenty-Ninth International Joint Conference

on Artificial Intelligence, Yokohama, Japan, Jul. 2020, pp. 2973–2979. doi:

10.24963/ijcai.2020/411.

[16] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun. ACM, vol. 26, no.

11, pp. 832–843, Nov. 1983, doi: 10.1145/182.358434.

[17] Z. Liu, C. Wang, and Y. Chen, “Keyword Search on Temporal Graphs,” in 2018 IEEE 34th

International Conference on Data Engineering (ICDE), Apr. 2018, pp. 1807–1808. doi:

10.1109/ICDE.2018.00261.

[18] H. Memarzadeh, N. Ghadiri, and S. P. Zarmehr, “A Graph Database Approach for Temporal

Modeling of Disease Progression,” in 2018 8th International Conference on Computer and

Knowledge Engineering (ICCKE), Oct. 2018, pp. 293–297. doi:

10.1109/ICCKE.2018.8566311.

[19] M. Yu, “A Graph-Based Spatiotemporal Data Framework for 4D Natural Phenomena

Representation and Quantification–An Example of Dust Events,” ISPRS Int. J. Geo-Inf., vol.

9, no. 2, Art. no. 2, Feb. 2020, doi: 10.3390/ijgi9020127.

[20] L. Zheng, L. Zhou, X. Zhao, L. Liao, and W. Liu, “The Spatio-Temporal Data Modeling and

Application Based on Graph Database,” in 2017 4th International Conference on Information

Science and Control Engineering (ICISCE), Jul. 2017, pp. 741–746. doi:

10.1109/ICISCE.2017.159.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 76

[21] G. C. Durand, M. Pinnecke, D. Broneske, and G. Saake, “Backlogs and Interval Timestamps:

Building Blocks for Supporting Temporal Queries in Graph Databases Work in progress

paper.”

[22] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems in temporal graphs,”

Proc. VLDB Endow., vol. 7, no. 9, pp. 721–732, May 2014, doi: 10.14778/2732939.2732945.

[23] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and time-based path queries in

temporal graphs,” in 2016 IEEE 32nd International Conference on Data Engineering

(ICDE), May 2016, pp. 145–156. doi: 10.1109/ICDE.2016.7498236.

[24] H. Wu et al., “Core decomposition in large temporal graphs,” in 2015 IEEE International

Conference on Big Data (Big Data), Oct. 2015, pp. 649–658. doi:

10.1109/BigData.2015.7363809.

[25] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu, “Efficient Algorithms for Temporal

Path Computation,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 11, pp. 2927–2942, Nov.

2016, doi: 10.1109/TKDE.2016.2594065.

[26] U. Khurana and A. Deshpande, “Efficient snapshot retrieval over historical graph data,” in

2013 IEEE 29th International Conference on Data Engineering (ICDE), Apr. 2013, pp. 997–

1008. doi: 10.1109/ICDE.2013.6544892.

[27] B. Salzberg and V. J. Tsotras, “Comparison of access methods for time-evolving data,” ACM

Comput. Surv., vol. 31, no. 2, pp. 158–221, Jun. 1999, doi: 10.1145/319806.319816.

[28] G. Blankenagel and R. H. Güting, “External segment trees,” Algorithmica, vol. 12, no. 6, pp.

498–532, Dec. 1994, doi: 10.1007/BF01188717.

[29] W. Huo and V. J. Tsotras, “Efficient temporal shortest path queries on evolving social

graphs,” in Proceedings of the 26th International Conference on Scientific and Statistical

Database Management - SSDBM ’14, Aalborg, Denmark, 2014, pp. 1–4. doi:

10.1145/2618243.2618282.

[30] S. Huang, J. Cheng, and H. Wu, “Temporal Graph Traversals: Definitions, Algorithms, and

Applications,” ArXiv14011919 Cs, Jan. 2014, Accessed: Nov. 10, 2021. [Online]. Available:

http://arxiv.org/abs/1401.1919

[31] J. Byun, S. Woo, and D. Kim, “ChronoGraph: Enabling Temporal Graph Traversals for

Efficient Information Diffusion Analysis over Time,” IEEE Trans. Knowl. Data Eng., vol.

32, no. 3, pp. 424–437, Mar. 2020, doi: 10.1109/TKDE.2019.2891565.

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

 77

[32] S. Mate et al., A Method for the Graphical Modeling of Relative Temporal Constraints

(Preprint). 2019.

[33] K. Wongsuphasawat, C. Plaisant, M. Taieb-Maimon, and B. Shneiderman, “Querying event

sequences by exact match or similarity search: Design and empirical evaluation☆,” Interact.

Comput., vol. 24, no. 2, pp. 55–68, Mar. 2012, doi: 10.1016/j.intcom.2012.01.003.

[34] “kim.pdf.” Accessed: Oct. 18, 2021. [Online]. Available:

http://www.cs.umd.edu/users/hjs//pubs/kim.pdf

[35] “15.2. Spatial Data Structures — CS3 Data Structures & Algorithms.” https://opendsa-

server.cs.vt.edu/ODSA/Books/CS3/html/Spatial.html (accessed Oct. 18, 2021).

[36] X.-F. Jia, A. Trotman, and J. Holdsworth, “Fast Search Engine Vocabulary Lookup,” p. 8.

[37] “Allen Relationship - an overview | ScienceDirect Topics.”

https://www.sciencedirect.com/topics/computer-science/allen-relationship (accessed Sep.

16, 2021).

[38] M. Körber, N. Glombiewski, and B. Seeger, “TPStream: Low-Latency Temporal Pattern

Matching on Event Streams,” Aug. 2018.

[39] S. Helmer and F. Persia, “ISEQL, an Interval-based Surveillance Event Query Language,”

Int. J. Multimed. Data Eng. Manag. IJMDEM, vol. 7, no. 4, pp. 1–21, Oct. 2016, doi:

10.4018/IJMDEM.2016100101.

[40] “Spatial values - Neo4j Cypher Manual,” Neo4j Graph Database Platform.

https://Neo4j.com/docs/cypher-manual/4.3/syntax/spatial/ (accessed Sep. 10, 2021).

DocuSign Envelope ID: 12D8E1FC-6917-442B-A3FD-4C3A732C01AA

	Graph based management of temporal data
	Recommended Citation

	Chapter 1 Introduction
	Chapter 2 Related Work
	2.1 Interval Labeled Temporal Graphs

	Chapter 3 Approach
	3.1 Spatial Data Structure

	Chapter 4 Experiments
	Chapter 5 Conclusion and Future work
	5.1 Future work

	References

