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Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map,
and the Intelligence of Thermodynamic Systems

Alexander B. Boyd* and James P. Crutchfield†

Complexity Sciences Center and Department of Physics, University of California at Davis,
One Shields Avenue, Davis, California 95616, USA
(Received 13 June 2015; published 13 May 2016)

We introduce a deterministic chaotic system—the Szilard map—that encapsulates the measurement,
control, and erasure protocol by which Maxwellian demons extract work from a heat reservoir.
Implementing the demon’s control function in a dynamical embodiment, our construction symmetrizes
the demon and the thermodynamic system, allowing one to explore their functionality and recover the
fundamental trade-off between the thermodynamic costs of dissipation due to measurement and those due
to erasure. The map’s degree of chaos—captured by the Kolmogorov-Sinai entropy—is the rate of energy
extraction from the heat bath. Moreover, an engine’s statistical complexity quantifies the minimum
necessary system memory for it to function. In this way, dynamical instability in the control protocol plays
an essential and constructive role in intelligent thermodynamic systems.

DOI: 10.1103/PhysRevLett.116.190601

Synthetic nanoscale machines [1–4], like their macro-
molecular biological counterparts [5–7], perform tasks that
involve the simultaneous manipulation of energy, informa-
tion, and matter. In this they are information engines—
systems with two inextricably intertwined characters.
The first aspect, call it “physical,” is the one in which
the system—seen embedded in a material substrate—is
driven by, manipulates, stores, and dissipates energy. The
second aspect, call it “informational,” is the one in which
the system—seen in terms of its spatial and temporal
organization—generates, stores, loses, and transforms
information. Information engines operate by synergistically
balancing both aspects to support a given functionality,
such as extracting work from a heat reservoir.
This is remarkable behavior. Though we can sometimes

identify it—in a motor protein hauling nutrients across a
cell’s microtubule highways [5], in how a quantum dot
transistor modulates current under the influence of an
evanescent wave function [8,9]—it is not well understood.
Understanding calls on a thermodynamics of nanoscale
systems that operate far out of equilibrium and on a physics
of information that quantitatively identifies organization
and function, neither of which has been fully articulated.
However, recent theoretical and experimental break-
throughs [6,7,10–12] hint that we may be close to a
synthesis which not only provides understanding but
predicts quantitative, measurable functionalities.
We define an information engine as a system that

performs information processing as it undergoes controlled
thermodynamic transformations. We show that information
engines are chaotic dynamical systems in the particular
sense that energy extraction from the heat bath requires a
spreading of ensemble trajectories and this leads to a
positive Lyapunov characteristic exponent. (In a rather
different setting, that demonlike behavior requires an

overall chaotic dynamics was broached previously by
Ref. [13].) Building this bridge to dynamical systems
theory allows us to employ its powerful tools to analyze
an engine’s complex, nonlinear behavior. This includes not
only monitoring instability via the Lyapunov exponents,
but a thorough informational and structural analysis that
leads to a measure of thermodynamic system intelligence.
By way of concretely illustrating the theory, we intro-

duce an explicit implementation of Szilard’s engine [14] as
an iterated composite map of the unit square that is a
deterministic, but chaotic dynamical system. The result is a
particularly simple and constructive view of the energetics
and computation embedded in controlled nonlinear ther-
modynamical systems. That simplicity, however, gives a
solid base for designing and analyzing real information
engines. We end by giving a concise statement of the
general theory and applications.
Background.—The Szilard engine is an ideal

Maxwellian demon for examining the role of information
processing in the second law of thermodynamics [14]. The
engine consists of three components: A controller (the
demon), a thermodynamic system (a particle in a box), and
a heat bath that keeps both thermalized to a temperature T.
It operates by a simple mechanism of a repeating three-step
cycle of measurement, control, and erasure. During meas-
urement, a barrier is inserted midway in the box, con-
straining the particle either to the box’s left or right half,
and the demon memory changes to reflect on which side the
particle is. In the thermodynamic control step, the demon
uses that knowledge to allow the particle to push the barrier,
extracting

R
PdV ¼ kBT ln 2 work from the thermal bath.

(The Supplemental Material reviews this and related
thermodynamic calculations [15].) In the erasure step,
the demon resets its finite memory to a default state, so
that it can perform measurement again. The periodic
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protocol cycle of measurement, control, and erasure repeats
endlessly and deterministically.
The net result of the cyclic protocol is the extraction of

work from the bath during control balanced by heat
dissipated due to changes in the demon’s memory during
measurement and erasure. Note that extracting kBT ln 2
work from a thermal reservoir was a paradox until the last
century, when it was realized that the information process-
ing steps of measurement and erasure have a compensating
energy cost [21–23].
Rather than seeing the demon and box as separate,

though, we view it—an information engine—as the direct
product of thermodynamic system and demon memory
[24]. Though we follow Szilard closely, he did not specify
the demon’s physical embodiment. Critically, we choose
the demon’s memory to be another spatial dimension of a
particle in a box. Thus, we see the joint system as a single
particle in a two-dimensional box, where one axis repre-
sents the thermodynamic system under study (SUS)—the
original particle in a box—and the other axis represents the
demon memory. We now describe a deterministic protocol
that implements the Szilard engine, evolving a particle
ensemble over the joint state space.
A dynamical engine.—The Szilard engine’s measure-

ment-control-erasure barrier-sliding protocol is equivalent
to a discrete-time two-dimensional map from unit
square I2 ¼ ½0; 1� × ½0; 1� to itself. The engine has two
kinds of mesoscopic states—states of the particle’s location
fL ∼ x ∈ ð0; δ�; R ∼ x ∈ ðδ; 1Þg and states of the demon’s
knowledge fA ∼ y ∈ ð0; γ�; B ∼ y ∈ ðγ; 1Þg of the location
—that partition the joint states ðx; yÞ ∈ I2.
The protocol cycle translates into a composite map

TSzilard ¼ TE∘TC∘TM of I2, with one map for each engine
step; see Fig. 1. As they operate, they take the joint state
space from one stage to another around the cycle.
(i) Measurement: To correlate demon memory with

particle location, TM takes the A ⊗ L and the B ⊗ L
mesostates to themselves, the A ⊗ R mesostate to
B ⊗ R, and B ⊗ R to A ⊗ R,

TMðx;yÞ ¼

8>>>>>><
>>>>>>:

ðx;yÞ x < δ; y < γ or x < δ; y≥ γ;�
x;γþ y 1−γ

γ

�
x≥ δ; y≤ γ;�

x;γ y−γ
1−γ

�
x≥ δ; y > γ:

(ii) Thermodynamic control: To extract energy from the
bath, TC expands both the A and B demon memory
mesostates over the SUS’s whole interval,

TCðx; yÞ ¼

8>>><
>>>:

�
x
δ ; y

�
x < δ;�

x−δ
1−δ ; y

�
x ≥ δ:

(iii) Erasure: TE maps both the A and B demon memory
mesostates back to a selected demon memory reset
mesostate. If that reset state is A, then the mapping is

TA
Eðx; yÞ ¼

8<
:

ðx; yδÞ y < γ;�
x; δγ þ y−γ

1−γ γð1 − δÞ
�

y ≥ γ:

The resulting form of the whole measure, control, and erase
cycle on the unit square is

bTSzilardðx; yÞ ¼

8>>>>>>>><
>>>>>>>>:

�
x
δ ; δy

�
x < δ; y < γ;�

x−δ
1−δ ; δγ þ yð1 − δÞ

�
x ≥ δ; y < γ;�

x
δ ; δγ þ y−γ

1−γ γð1 − δÞ
�

x < δ; y ≥ γ;�
x−δ
1−δ ;

y−γ
1−γ γδ

�
x ≥ δ; y ≥ γ:

This explicit construction establishes that the temporal
behavior of Szilard’s engine can be modeled by a deter-
ministic dynamical system whose component maps are
thermodynamic transformations—a piecewise thermody-
namical system. The mapping TSzilard means we can avail
ourselves of the analytical tools of dynamical systems
theory [25,26] to analyze the Szilard engine mechanisms.
This perforce suggests a number of more refined and
quantitative questions about the engine dynamics, ranging
from the structural role of the stable and unstable sub-
manifolds in supporting information and thermodynamic
processing to the existence of asymptotic invariant distri-
butions and measures of information generation, storage,
and intelligence.
As shown in Fig. 1 (leftmost panel), only the lower

region y ≤ γ is occupied in the iteration of the Szilard map.
This is the demon’s default state, from which it starts every
cycle. Over this region, the Szilard map is a version of an
asymmetric Baker’s map. As such, it is immediately clear
that the Szilard engine dynamics are chaotic [25,26].
While the overall composite map TSzilard is important,

considering its complete-cycle behavior alone misses much.
What is key are the component maps that nominally control
a thermodynamic system, with each step corresponding to a
different thermodynamic transformation. We now analyze
the dynamics to see how the component maps contribute
to information processing and thermodynamics. (The
Supplemental Material gives calculational details [15].)
Dynamical systems analysis.—What does chaos in the

Szilard enginemean?The joint systemgenerates information
—the information about particle position that the demon
must keep repeatedly measuring to stay synchronized to the
SUS and so extract energy from the bath. On the one hand, it
is generated by the heat bath through state-space expansion
during TC. On the other, it is stored by the demon (tempo-
rarily) and must be erased during TE. The latter’s construc-
tion makes clear that it, dynamically, contracts state space
and so is locally dissipative.
With explicit equations of motion in hand, one can

directly check, by calculating the Jacobian ∂xyTSzilard, that
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the map is globally area preserving. Moreover, the invariant
distribution bρ can be determined from the Frobenius-Perron
operator [25,26]

bρðx0; y0Þ ¼ Z
I2
dxdyδ(ðx0; y0Þ − TSzilardðx; yÞ)bρðx; yÞ:

[δð·Þ here, and only here, is the Dirac delta function.]
Calculation shows that bρ has full support on the lower
portion of the unit square I ⊗ ½0; γ� for all δ, γ ∈ ð0; 1Þ.
That said, the action of TSzilard builds up a self-similar
interleaving within bρ, as shown on the far right of Fig. 1
via the third iterate of TSzilard and in the online animation
[15]. In fact, the particle density is uniform when, during
TE, the demon’s memory mesostate partition falls at
η ¼ γδ, where η is the iterate of y ¼ γ under T A

Erase.
However, if we change the mesostate partition η so that
η ≠ γδ, bρ is no longer uniform, corresponding physically to
inefficiency in erasure that dissipates additional heat.
The Szilard map Jacobian also determines its local

linearization, and so one can easily calculate the spectrum
of Lyapunov characteristic exponents (LCEs) for the over-
all cycle and realize the contribution of each protocol step.
This gives insight into the directions (submanifolds) of
stability (convergence) and instability (divergence). There
are two LCEs, i.e., one positive λþ ¼ HðδÞ and one
negative λ− ¼ −HðδÞ, where HðδÞ is the (base 2) binary
entropy function [27]. λþ quantifies the exponential spread-
ing of the distribution along the SUS axis, while λ−

quantifies its exponential contraction along the demon
axis. (See Supplemental Material for details [15].) Note
that energy conservation (TSzilard’s area preservation) is
reflected in the exact balance of instability and stability:
λþ þ λ− ¼ 0. The unstable manifolds (parallel to the x axis)
support the mechanism that amplifies small fluctuations
from the heat bath to macroscopic scale during energy
extraction (TC). The stable manifolds (parallel to the
y axis) are the mechanism that dissipates energy into the
ambient heat bath during erasure (TE).
The overall information production rate is given by

TSzilard’s Kolmogorov-Sinai entropy hμ, which also quan-
tifies the degree of chaos of the map [28]. This chaotic
information production is necessary for an information
engine’s processing cycle. For the Szilard engine, given the
well behaved nature of bρ, hμ ¼ P

λ>0λ ¼ λþ by Pesin’s

theorem [26]. [That is, hμ ¼ HðδÞ, directly verified
shortly.] This entropy monitors the information generated
in the SUS during the control step, as well as the
information erased in the demon in the measurement and
erasure steps combined. In this way, it quantifies an
effective flow of information from the SUS to the demon.
The physical consequence, simply stated, is perhaps strik-
ing: The degree of chaos determines the rate of energy
extraction from the bath.
Computational mechanics analysis.—The demon

memory and particle location mesostates form Markov
partitions for the Szilard map dynamics (Ref. [26], Chaps. 7
and 9): Tracking sequences of symbols in fA;Bg or in
fR;Lg (or all four pairs fAR; AL; BR;BLg) leads to a
symbolic dynamics that captures all of the joint system’s
information processing behavior. We now use this fact to
analyze the various kinds of information processing and
introduce a way to measure the demon’s “intelligence” or,
more appropriately, that of the entire engine. We do
this by calculating computational mechanics’ ϵ-machines
and ϵ-transducers from the engine’s symbolic dynamics.
The ϵ-machine for the Szilard engine is a special kind of
hidden Markov model—the minimal unifilar generator—of
the observed symbol sequence. Its unique properties
allow for exact calculation of many essential information-
theoretic properties [29]. The ϵ-transducer is an extension
that accepts control inputs and also generates outputs
[30,31]. The overall engine transducer is shown in Fig. 2(a),
that for the SUS particle dynamics in Fig. S2(a) and for the
demon memory dynamics in Fig. S2(b) [15].
In addition to explicitly expressing the effective mech-

anisms that support information processing, ϵ-machines
allow us to quantify the effects of measurement, control,
and erasure. The engine’s Kolmogorov-Sinai entropy hμ
can be calculated directly from the ϵ-machine’s causal-
state averaged transition uncertainty. To quantitatively
measure the minimal required memory—a key component
of “intelligence”—for the information engine functioning,
we employ the ϵ-machine’s statistical complexity
Cμ ¼ H½PrðσÞ�, where σ ∈ S are the system’s causal states
[30] and H½·� is the Shannon information [27].
It is important to emphasize an aspect of the information

engine ϵ-machine construction: It is stage dependent in
that, to fully capture the component operations and their

FIG. 1. Szilard engine as a deterministic dynamical system: The Szilard map TSzilard ¼ T A
Erase∘TControl∘TMeasure. Regions left and right

of δ are colored to aid visually tracking particle ensemble history. Rightmost panel: Action of T 3
Szilard resulting in self-similar (fractal)

structure in density bρ; uniform bρ requires η ¼ γδ. These assume the demon’s reset memory state is A. (The Supplemental Material
includes an animation [15].)
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thermodynamic effects, the individual maps must be taken
into account. This observation should be contrasted with
the symbolic dynamics and particle position ϵ-machine for
the overall Szilard map. The resulting process arises from
stroboscopically observing the behavior after driving the
engine with the three-symbol word MCE. As an example,
the particle position process’ ϵ-machine is shown in
Fig. 2(b); it is a biased coin, a single-state ϵ-machine with
no memory: CμðTSzilardÞ ¼ 0. This is as it should be: The
overall cycle must return to the same state storing no
memory of previous cycles.
Computational mechanics analysis shows that, over

the three-step cycle, the engine has an entropy rate of
hμ ¼ HðδÞ as seen above [or HðδÞ=3 per map step] and a
statistical complexity of Cμ ¼ log2 3þHðδÞ. (See the
Supplemental Material for details, including analysis of
SUS and demon subsystems [15].) How predictable is
the engine’s operation? The information in its future
predictable from its past is given by the excess entropy:
E ¼ I½⃖Z; ~Z� ¼ H½⃖Z� þH½~Z� −H½⃖Z; ~Z�, where ⃖Z is the past
and ~Z is the future of the joint process over random variable
Zt ∈ fA; Bg ⊗ fR;Lg. We see that the machines in
Figs. 2(a) and 2(b), driven by the protocol, are counifilar
and so E ¼ Cμ [32]. Thus, we see that while the Szilard
engine does not carry any information through one measure-
control-erase cycle to the next, within the three steps of a
single cycle, the engine stores log2 3þHðδÞ bits to operate.
Thermodynamics.—During each protocol step, the

engine interacts thermodynamically with the heat bath.
The Supplemental Material calculates the average heat hQi
and work hWi flows between the demon and the bath and
between the SUS and the bath during each step [15]. For
this implementation of the Szilard engine, heat and work
are equivalent, since there is no change in the average
internal energy of the particle contained by the box during
the isothermal measurement, control, and erasure protocol

steps. Thus, we discuss only the heat, as energies hQdissi
dissipated to the bath for each interaction. As we will see,
although γ—the demon memory partition—did not play a
direct role in the informational properties, it does in the
thermodynamics.
The expected heat flow during measurement is

hQmeasurei¼−kBTð1−δÞ ln½ð1−γÞ=γ�. Because γ ∈ ½0; 1�,
the dissipated heat can be negative or positive. It vanishes at
γ ¼ 1=2. Negative dissipated heat means that the engine
absorbs energy from the heat bath and, in that case, turns it
into work. The work

R
PdV done by the particle on the

barrier is kBTHðδÞ ln 2. Thus, the average heat absorbed by
the engine from the heat bath during thermodynamic
control is hQcontroli ¼ −kBTHðδÞ ln 2, which is maximized
when δ ¼ 1=2. During memory erasure the demon shifts
back to its default state, without affecting the SUS state.
The barrier partitioning the demon’s mesostates slides,
compressing the contained particle ensemble into, say,
the default state A. The heat dissipated in this process is
hQerasei ¼ kBTð1 − δÞ ln½ð1 − γÞ=γ� þ kBTHðδÞ ln 2.
While the heat dissipated during control is independent of

γ, both measurement and erasure can dissipate any positive
or negative amount of heat, depending on γ. Notably, for
γ > 1=2, the Szilard engine demonstrates an extension
of Landauer’s principle [21,22] in that hQerasei ≤ kBT ln 2,
but this is balanced by an increase in hQmeasurei. Indeed,
for γ ¼ 4=5, erasure is thermodynamically free and meas-
urement takes on the usual cost of erasure.
Figure 3 illustrates the trade-offs in thermodynamic costs

for each step. They sum to zero, and so the engine respects
the second law of thermodynamics over the whole range
of δ and γ. The erasure and measurement steps together
obey the relation hQerasei þ hQmeasurei ¼ kBTHðδÞ ln 2,
recovering trade-offs noted previously [23,33–35]. That
is, the Szilard engine achieves the lower bounds on energy

(a) (b)

FIG. 2. ϵ-Transducers for the symbolic dynamics of the Szilard
information engine from the Markov partition of its joint state
space. (a) The ϵ-transducer for T Szilard that reads in the periodic
control signal for measure (M), control (C), and erase (E).
(b) T Szilard single-state ϵ-transducer: Memoryless over the full
measure-control-erase protocol. Transitions βjα: p denote read-
ing protocol symbol α, taking the transition with probability p,
and emitting symbol β. Asymptotic state probabilities are given
in parentheses underneath state names.

FIG. 3. Beyond Landauer’s principle: Thermodynamic costs
(energy dissipationQdiss) for measurement, control, and erasure in
Szilard’s information engine as a function of γ (demon partition)
with SUS barrier at δ ¼ 1=2. Landauer’s principle applies only
at γ ¼ 1=2 (vertical yellow band at the middle): Measurements
are thermodynamically free, but erasure costs because heat is
dissipated as a result of demon resetting. Costs exactly flip at
γ ¼ 4=5, though.
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dissipation during measurement and erasure; thus, it plays
an analogous optimal role in the conversion of information
into work as the Carnot engine does for optimal efficiency
when converting thermal energy to work.
Final remarks.—We leveraged a straightforward obser-

vation to give a thorough dynamical systems, computational
mechanics, and thermodynamic analysis of Szilard’s engine:
An information engine’s intrinsic computation is supported
by the evolution of its joint state-space distribution, and its
thermodynamic costs monitor how those distributional
changes couple energetically to its environment.
The Szilard map construction is straightforward and easy

to interpret. For these reasons, we selected it to illustrate the
bridge between thermodynamics, information theory, and
dynamical systems necessary to fully analyze information
engines. The approach generalizes. We can now state our
central proposal: (i) an information engine is the dynamic
over a joint state space of a thermodynamic system and a
physically embodied controller; (ii) the causal states of the
joint dynamics, formed from the predictive equivalence
classes of system histories, capture its information process-
ing and emergent organization; (iii) a necessary component
of the engine’s effective “intelligence,” its memory, is given
by its statistical complexity Cμ; (iv) its dissipation is given
by the dynamical system negative LCEs; and (v) the rate of
energy extracted from the heat bath is governed by the
Kolmogorov-Sinai entropy hμ.
Sequels use this approach to analyze the information

thermodynamics of more sophisticated engines,
including the Mandal-Jarzynski ratchet [36], experimental
nanoscale information processing devices, and intelligent
macromolecules.
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