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Pauli principle and the Monte Carlo method for charge transport in graphene
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An attempt to include the Pauli principle in the Monte Carlo method by also acting on the free-flight step and
not only at the end of each collision is investigated. The charge transport in suspended monolayer graphene is
considered as a test case. The results are compared with those obtained with the standard ensemble Monte Carlo
technique and with the updated direct simulation Monte Carlo algorithm which is able to correctly handle with
Pauli’s principle. The physical aspects of the investigated approach are analyzed as well.
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I. INTRODUCTION

The Monte Carlo approach is nowadays widely used in
simulations of charge transport in semiconductor devices.
Most of the methods employed in this field are based on
the ensemble Monte Carlo (EMC) procedure of Lebwohl
and Price [1] and on the approach developed by Bosi, Ja-
coboni, and Reggiani [2,3]. When the simulations involve
degenerate materials, the inclusion of the Pauli principle be-
comes essential; to this aim, Lugli and Ferry [4] improved the
EMC method and included the Pauli principle by means of
a rejection technique at the end of each scattering process.
Unfortunately, with this procedure the charge distribution can
exceed the maximum value of 1, leading to unphysical results.
Some attempts were made in the literature to overcome this
difficulty: in [5,6] ad hoc scattering out terms to force the
distribution function to be smaller than 1 were introduced;
in [7,8] some approximations of the distribution of the fi-
nal states were used. These efforts improved the simulation
results but did not lead to the correct reconstruction of the dis-
tribution function, which is of fundamental importance since
it enters the collisional terms of the Boltzmann equation and
influences the determination of the scattering probabilities.

An important issue which we address in this paper arises
when degenerate materials are considered. In this case, there
is an ongoing debate in the literature about whether the Pauli
principle should be applied to the free-flight step or not.
This is an important theoretical question for computational
purposes as well. An alternative procedure was proposed in
[9] in which the rejection technique was adopted not only
at the end of each scattering event but also at the end of
each free flight. To the best of our knowledge, this method,
despite being cited several times in the literature (see, for
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example, [5,6,8,10,11]), has never been used. In the literature
an analysis of this approach is missing (it received only a
brief comment in [5]); it is the aim of this work to fill this
gap and to present a coherent discussion on the inclusion of
the Pauli principle in a Monte Carlo procedure. We do so by
comparing the numerical results for a suspended monolayer
graphene obtained with the Monte Carlo Method presented in
[9] with those obtained using the standard EMC in [4] and
the updated direct simulation Monte Carlo (DSMC) in [12],
which are by now well established in the semiconductor field
and have been cross validated with deterministic solutions, for
example, those based on the discontinuous Galerkin method
[12–19] or on weighted essentially non-oscillatory (WENO)
schemes [20].

The updated DSMC scheme in [12] is able to correctly in-
clude the Pauli principle; the streaming term of the Boltzmann
equation is treated deterministically by means of a splitting
procedure, resulting in a rigid translation of the distribution
function as a whole. The scattering events are then simulated,
and the rejection technique is applied at the end of each
collision.

The results obtained using the EMC and the DSMC were
already studied in [12] and allow us to quantify the correctness
of the method proposed in [9]. In addition, graphene is a
material whose peculiar energy bands make the degeneracy
effects relevant, thus representing a useful choice as a test
case.

The relationship between the results of a Monte Carlo
simulation and the solution of the Boltzmann equation is still
a matter of debate in the literature. Almost all the Monte Carlo
approaches for studying charge transport in semiconductor
materials are based on the so-called direct simulation which
allows us to follow the single-particle dynamics (and later to
calculate the mean quantities). The direct simulation approach
is derived from Bird’s algorithm in gas dynamics [21,22], for
which a convergence proof to the solution of the Boltzmann
equation is given in [23]. The direct simulation approach can
be interpreted as only one possible application of the Monte
Carlo technique corresponding to a particular choice of the

2469-9950/2021/104(20)/205410(10) 205410-1 ©2021 American Physical Society

https://orcid.org/0000-0003-4439-9781
https://orcid.org/0000-0002-4313-0732
https://orcid.org/0000-0002-2851-6573
https://orcid.org/0000-0002-2967-6552
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.205410&domain=pdf&date_stamp=2021-11-08
https://doi.org/10.1103/PhysRevB.104.205410


COCO, BORDONE, DEMEIO, AND ROMANO PHYSICAL REVIEW B 104, 205410 (2021)

scattering probabilities, which are, in our case, the physical
scattering rates. When the probabilities of the events are de-
fined in a general arbitrary way, the Monte Carlo method,
called in this case weighted Monte Carlo, can be interpreted
as a formal solution of the Boltzmann equation. For further
details we refer the interested reader to [24] and references
therein.

This paper is organized as follows. In Sec. II the semi-
classical mathematical model for spatially homogeneous
graphene is presented, and the simulation procedures are in-
troduced; in Sec. III a preliminary analysis of the numerical
accuracy of the standard and updated Monte Carlo methods is
carried out; in Sec. IV we present and discuss the results of
our simulations. Section V contains our conclusions.

II. THE MATHEMATICAL MODEL
AND THE MONTE CARLO TECHNIQUES

The carrier population in graphene is made up of four com-
ponents: the electrons of the valence and conduction bands,
which can occupy the states around either of the Dirac points,
K and K ′, of each band. In our simulations, we consider a ho-
mogeneous graphene strip of infinite extension in the direction
transverse to the applied electric field and only the electrons
of the conduction band belonging to the valley around the K
point because we consider the two valleys to be equivalent.
We recall that the graphene Brillouin zone B has a hexagonal
shape, and we shall choose the reference frame of the k space
so that the origin coincides with the K point. The electric field
is directed along the x axis.

With good approximation [25], the dispersion relation for
the band energy ε around the equivalent Dirac points is given
by

ε = h̄ vF |k − k�|, (1)

where vF is the Fermi velocity and k� is the position of the
Dirac point �. We will use Eq. (1) as the dispersion relation
because for the electric field strengths usually considered in
applications the charge transport involves almost exclusively
the electrons around the K and K ′ points.

Under these conditions and using the semiclassical approx-
imation, the Boltzmann equation for the charge carriers is

∂ f (t, k)

∂t
− e

h̄
E

∂ f (t, k)

∂kx
= df

dt
(t, k)

∣∣∣∣
e−ph

, (2)

where f (t, k) is the electron distribution function of the
charge carriers at time t , k = (kx, ky) is the wave vector.
The right-hand side of Eq. (2) is the collision operator which
describes the interactions of the carriers with the phonons.

The appropriate initial condition for Eq. (2) in the degen-
erate case is the Fermi-Dirac distribution

f (0, k) = fFD(k) ≡ 1

1 + exp
(

ε(k)−εF

kBT

) , (3)

where εF is the Fermi level and T is the room temperature,
related to the charge distribution by means of

ρ(0) = 2

(2π )2

∫
f (0, k)d2k, (4)

where only the spin degeneracy is considered. The Fermi level
will be chosen to be high enough to produce a strong degen-
eracy, according to the situation we want to investigate. This
is equivalent to introducing a high n doping in a traditional
semiconductor.

The electron mean energy and velocity are defined as

E (t ) = 1

ρ(t )

2

(2π )2

∫
ε(t, k) f (t, k)d2k, (5)

V(t ) = 1

ρ(t )

2

(2π )2

∫
v(t, k) f (t, k)d2k, (6)

where ε(t, k) and v(t, k) are the particle energy and velocity,
respectively, and ρ(t ) is the time-dependent electron density,

ρ(t ) = 2

(2π )2

∫
f (t, k)d2k. (7)

The collision operator represents the interactions of the
electrons with acoustic, optical, and K phonons. Acoustic
phonon scattering is intravalley and intraband and can be lon-
gitudinal (LA) or transverse (TA). Optical phonon scattering
is intravalley and can be longitudinal (LO) and transverse
(TO); it can be intraband, leaving the electrons in the same
band, or interband, pushing the electrons from the initial band
toward another one. Scattering with K phonons pushes elec-
trons from a valley to a nearby one (intervalley scattering).
For the optical and K phonons we will assume the Einstein
approximation, h̄ωA = const, A = LO, TO, K , with ωA being
the Ath phonon frequency. The K phonons are not an actual
physical phonon branch; their name is due to the fact that their
wave vectors are close to the K or K ′ point [25]. They belong
to the optical branches and induce intervalley scatterings. This
justifies the use of the Einstein approximation for them. For
the in-plane acoustic phonons the Debye approximation will
be adopted, h̄ωA = h̄vA|q|, A = LA, TA, with q ∈ B being the
phonon wave vector, and in this case for the analytical calcu-
lations the Brillouin zone can be consistently extended to R2.
The out-of-plane Z phonons are not considered because they
do not interact with the electrons; they are important when
phonon transport and thermal effects are taken into account
[26–29].

The general form of the collision term can be written as
[20,25]

df

dt
(t, k)

∣∣∣∣
e−ph

=
∫
B

S(k′, k) f (t, k′)[1 − f (t, k)]dk′

−
∫
B

S(k, k′) f (t, k)[1 − f (t, k′)]dk′,

(8)

where S(k′, k) is the total transition rate and is given by
the sum over several types of scatterings whose details are
reported in the Appendix,

S(k′, k) =
∑

A

∣∣G(A)(k′, k)
∣∣2{(g−

A + 1)δ[ε(k) − ε(k′) + h̄ ωA]

+g+
Aδ[ε(k) − ε(k′) − h̄ ωA]}, (9)

where the index A runs over the phonon modes: longitudinal-
acoustical (LA) and -optical (LO), transverse-acoustical (TA)
and -optical (TO), and K phonons. |G(A)(k′, k)|2 are the
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electron-phonon coupling matrix elements, which describe
the interaction mechanism of an electron with the Ath phonon,
from the state of wave vector k′ to the state of wave vec-
tor k. The symbol δ denotes the Dirac delta function, and
gA(q) is the phonon distribution for the A-type phonons. In
(9), g±

A = gA(q±), where q± = ±(k′ − k), stemming from the
momentum conservation.

In the Monte Carlo procedure, the scattering rate of each
type of scattering plays a fundamental role; the scattering rate
	A of the Ath type of scattering is defined as

	A(k) =
∫
B

SA(k, k′) dk′. (10)

The expressions for all types of scattering mechanisms are
reported in the Appendix.

In this work, we compare the results for charge transport
in graphene obtained with three different Monte Carlo pro-
cedures: the standard ensemble MC procedure, an updated
ensemble MC procedure, and the free-flight-based one.

In general, in a Monte Carlo simulation, the motion of each
particle is given by the solution of the semiclassical equation
of motion h̄k̇ = −eE, followed by a collisional event after a
time 
t . The total scattering rate is given by

	̃tot = 	LA + 	TA + 	LO + 	TO + 	K , (11)

and it varies with the energy (see the Appendix for details
about the scatterings). A scattering rate 	ss due to fictitious
collision events, which are called self-scatterings and do not
change the particle state, is also introduced, and the new
constant total scattering rate is defined as 	tot = 	̃tot + 	ss.

t is then calculated as the ratio (see, for example, [30])


t = − ln η

	tot
, (12)

where η is a random number uniformly distributed in [0,1].
The free flight is always present, and it is always interrupted
by a scattering event. The free-flight time is of the order of
a few hundred femtoseconds [25]. In general, the value of
	tot is determined as α	max, with 	max = max(	LA + 	TA +
	LO + 	TO + 	K ), where α > 1 is a tuning parameter. Since
the previous scattering rates can differ even by two orders of
magnitude, using the same 	tot for each time step leads to a
very large number of self-scatterings, making the computa-
tional cost considerably high. Therefore, in our simulations,
we use a variable 	tot that depends on the state of the particle
at the current time t :

	tot = α[ 	LA(ε(t )) + 	TA(ε(t )) + 	LO(ε(t ))

+	TO(ε(t )) + 	K (ε(t ))], (13)

with α = 1.1.
In our simulations, the following three Monte Carlo pro-

cedures will be used: (i) standard ensemble Monte Carlo
(SEMC) [4], (ii) the updated, or “new,” ensemble Monte Carlo
(NEMC) [12], and (iii) the free-flight-based Monte Carlo
(FFMC) [9].

(i) SEMC. After each collision, the new wave vector k′ is
determined, and if the final state is available, the initial state
k is updated. The availability of the final states has to respect
the Pauli principle, and this is checked by means of a rejection

procedure: a random number ζ , uniformly distributed in [0,1],
is generated, and the final state k′ is available if the condition
ζ < 1 − f (k′) holds. This scheme is repeated for each par-
ticle. The main steps of the SEMC procedure for each time
window [tn, tn+1] are as follows:

(a) Choose the free flight duration for each particle accord-
ing to Eq. (12).

(b) Solve the semiclassical equation of motion during the
free flight in the k space for each particle

d (h̄k)

dt
= −eE. (14)

(c) Choose the type of scattering and calculate the energy
and the momentum of the particle after the collision with final
state k′.

(d) Use the rejection technique to check the availability of
the final state k′.

(e) Update the values of the energy, momentum of the
particle, and the distribution function f if the final state is
available; otherwise, the scattering is rejected, and it does not
happen.

(f) Generate a new free-flight time and repeat the procedure
until tn+1 is reached.

(g) At t = tn+1 evaluate and record the mean energy and
the velocity.

(ii) NEMC. This method consists of two main steps. First,
the distribution function is translated as a whole according
to the semiclassical equation of motion, and all the particles
experience the same free flight; steps 1 and 2 of the SEMC
are replaced by the solution of Eq. (2) by setting the right-hand
side equal to zero: f (t + 
t, k′) = f (t, k + e

h̄ E
t ). Then, for
each particle a sequence of collisional events is simulated. The
final state after each scattering mechanism is checked by using
the rejection technique described above.

(iii) FFMC. In this method, the rejection technique to
check the availability of the final states is used not only at
the end of each collision but also at the end of each free
flight; if the state reached after the free flight governed by the
semiclassical equation of motion is not accepted, the particle
goes back, and nothing happens. The algorithm is similar to
the SEMC, but step 4 is used also after step 2.

III. ACCURACY OF THE METHODS

In this section a preliminary analysis of the numerical
accuracy of reference methods SEMC and NEMC is carried
out.

We discretize the wave-vector space by means of a uniform
square grid [−kx,max, kx,max] × [−ky,max, ky,max], with kx,max =
ky,max = 24 nm−1 and 642 × 642 cells. For each cell Cα , we
consider the cell center with wave vector kα = (ki, k j ), with
i and j being the indices of the cell centers along the x
and y directions, respectively. Let nP be the initial number
of simulated particles. The particles are allocated in each
cell according to the following Fermi-Dirac distribution fi j ,
calculated in each cell center:

fi j (0, kα ) = 1

1 + exp
( εi j (kα )−εF

kBT

) , (15)
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TABLE I. Physical parameters for the scattering rates.

Symbol Value

σm 7.6 × 10−8 g/cm2

vF 106 m/s
vLA 2.13 × 104 m/s
vTA 1.36 × 104 m/s
Dac 6.8 eV
h̄ ωLO 164.6 meV
h̄ ωTO 164.6 meV
DO 109 eV/cm
h̄ ωK 124 meV
DK 3.5 × 108 eV/cm

where εF is the Fermi level, T is the room temperature, and
εi j is the energy associated with each cell center using the
dispersion relation

εi j = h̄ vF |kα| = h̄ vF |(ki, k j )|. (16)

In each cell, we allocate ni j = fi j × nP particles; the ni j parti-
cles of the Cα cell have the wave vector of the corresponding
cell center kα = (ki, k j ) and energy εi j . We approximate each
number of particles ni j with the nearest integer ñi j . So the
number of particles in each cell of wave vector (ki, k j ) is ñi j ,
and the actual total number of simulated particles is

ñP =
∑
i, j

ñi, j . (17)

During the simulation the distribution ñi, j is updated as
ñi, j = ñi, j ± 1 if a charged particle reaches or leaves the state
(i, j), respectively. Eventually, by considering the maximum
occupation number M = max

i, j
ñi, j , we define the numerical

distribution function f̃i, j as

f̃i, j = ñi, j

M
. (18)

For example, for nP = 104 particles we have M = 22.
We compare the results for the numerical reconstruction

of the distribution function of both the SEMC and NEMC
approaches for several different values of the particle num-
ber, nP = (0.25, 0.5, 1, 2, 4, 8, 16, 32) × 104. All the results
reported here are obtained with an electric field E equal to 20
kV/cm and Fermi level εF = 0.6 eV. The physical parameters
proposed in [31,32] and reported in Table I are adopted.

We evaluate the numerical distribution function f̃i, j at
t = 5 ps for the SEMC and NEMC methods for the different
values of nP. The results are shown and compared in Fig. 1.
It can be noted that the Pauli principle is always fulfilled in
the NEMC case for each value of the particle number nP,
while the numerical distribution function obtained with the
SEMC approach is compatible with the Pauli principle only
for nP � 8 × 104. In both cases, the maximum value of f̃
decreases as the number of particles increases due to the
higher numerical accuracy. The right panels of Fig. 1 show
how the grid is rigidly moved in the x-axis direction together
with the whole distribution function, consistent with the semi-
Lagrangian approach of the NEMC.

(a) (d)

(b) (e)

(c) (f)

FIG. 1. View of the particle distribution along the x axis for the
different values of the particle number nP.

In Table II we report the one-norm and two-norm of the
difference 
 f1,2 = f2 − f1, where f1 and f2 are calculated
with particle numbers n1 and n2. The results suggest that
the NEMC method has higher numerical accuracy with a
lower number of particles and that the NEMC and SEMC
approaches reach a comparable numerical accuracy only with
a very large number of particles, which makes SEMC compu-
tationally much more expensive than NEMC.

IV. SIMULATION RESULTS

In this section, the results of the three Monte Carlo ap-
proaches to include the Pauli principle presented in Sec. II
are shown, compared, and discussed.

In the simulations, nP = 104 (super)particles are used, and
the time step is set equal to 
t = 2.5 fs; the wave-vector grid
and the physical parameters are the same as in Sec. III.

TABLE II. The (1,2)-norm of the distribution function in the
NEMC and SEMC cases for different numbers of particles.

NEMC SEMC NEMC SEMC
n1, n2 ||
 f1,2||1 ||
 f1,2||1 ||
 f1,2||2 ||
 f1,2||2
(0.25, 0.5) × 104 7.7455 9.4727 2.3787 2.9031
(0.5, 1) × 104 5.5909 6.2273 1.6949 1.9403
(1, 2) × 104 4.2045 4.7955 1.2717 1.5014
(2, 4) × 104 2.9378 3.9574 0.8351 0.9956
(4, 8) × 104 2.1665 2.4407 0.5773 0.6817
(8, 16) × 104 1.4425 1.6883 0.4099 0.5012
(16, 32) × 104 1.0127 1.1548 0.3020 0.3427
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FIG. 2. (a) Mean energy and (b) velocity for the SEMC, NEMC,
and FFMC procedures, with εF = 0.6 eV and E = 20 kV/cm.

In the previous section it was shown that the NEMC is
able to properly take into account the Pauli principle even
for a low number of particles, in contrast to SEMC, thanks
to the higher numerical accuracy. Regarding the mean values,
in Fig. 2 the mean energy and velocity for both schemes are
reported; the results of the NEMC and SEMC methods are
in good agreement (for further details see [12], where a cross
validation with the deterministic results obtained by means of
the discontinuous Galerkin method was analyzed as well).

In Fig. 2 the average energy and velocity obtained with
the FFMC procedure are shown and compared with those
obtained with SEMC and NEMC. The energy remains almost
constant, and the velocity, after an initial negligible positive
peak, reaches a negative value equal to −0.14 × 108 cm/s. The
behavior given by the FFMC approach is certainly unphysical
because it is opposite to the one induced by the electric field.
In [9], the unphysical results are explained as a result of the
initial Fermi-Dirac condition, which leads to almost all the
final states being unavailable.

The slight variation in the energy and in the absolute value
of the velocity observed with the FFMC in Fig. 2 is compatible
with an overestimation of the Pauli principle, which freezes
the charge dynamics.

In the following sections, we discuss the main results, in
particular for the charge distribution and the mean energy and
velocity, when both an initial Fermi-Dirac distribution and a
Maxwell-Boltzmann distribution are considered.

A. Initial Maxwell-Boltzmann distribution

To overcome the difficulty related to the frozen dynam-
ics due to the Fermi-Dirac distribution, Tadyszak et al. [9]
proposed to use a high-temperature Maxwell-Boltzmann dis-
tribution as the initial condition in place of the Fermi-Dirac
one; the distribution temperature was heuristically set equal
to 80 T , with T being the room temperature, for the silicon
case. Along these lines, we introduce the following Maxwell-
Boltzmann distribution:

f (0, k) = fMB(k) ≡ exp
(
−ε − μ

kBT ∗
)
, (19)

where the free parameters μ and T ∗ are the electrochemical
potential and the temperature, respectively. They can be de-
termined by setting equal the charge densities calculated with
fFD and fMB: one of the two parameters may be fixed, and
the other one may be determined by the charge equality. In
particular, for each given Fermi level εF , one can fix T at the
room temperature, T ∗ = T , and determine μ or set μ = 0 and
calculate the temperature as T ∗ = c T . In Table III the values

TABLE III. Values of the density ρ, coefficient c, and potential
μ for different Fermi levels εF .

εF (eV)

0.3 0.4 0.5 0.6

ρ (μm−2) 3.3867 × 104 5.9579 × 104 9.2638 × 104 1.3304 × 105

c 8.3082 11.0197 13.7410 16.4672
μ (eV) 0.1094 0.1240 0.1354 0.1448

of the constant c and the potential μ for different values of
εF are reported; for convenience the electron density ρ is also
given for each value of εF .

In the absence of an applied electric field, the mean en-
ergy and velocity, calculated with either the Fermi-Dirac or
Maxwell-Boltzmann distribution as the initial condition, have
to converge to the same stationary values. This convergence is
reached for all three Monte Carlo methods, NEMC, SEMC,
and FFMC, for different values of the Fermi level εF . In
Fig. 3 the average energy and velocity are shown when the
Fermi-Dirac (FD) and Maxwell-Boltzmann (MB) initial con-
ditions are imposed in the FFMC with εF = 0.6 eV. The same
behavior is present when NEMC and SEMC are used (see
Figs. 4 and 5).

In the presence of an applied electric field E , the mean
energy and velocity calculated with the SEMC and NEMC
approaches are in good agreement, while they are totally dif-
ferent with the FFMC approach. They are shown in Figs. 6
and 7, respectively, for εF = 0.6 eV and E = 10 and 20
kV/cm. The energy given by FFMC with an initial Fermi-
Dirac (FFMC-FD) distribution remains about constant, while
with an initial Maxwell-Boltzmann distribution (FFMC-MB)
it has an initial peak followed by a fast decrease; at 5 ps
the values obtained with the FD and MB distributions have
a difference of about 9%.

As is evident from Fig. 7, by using an initial Maxwell-
Boltzmann distribution, the velocity has the same behavior as
in Fig. 2(b), with an initial small rising portion followed by
a descent toward negative values, which are always higher in
absolute value than those obtained by considering the Fermi-
Dirac distribution. The difference is considerable, about 50%
for high values of the Fermi energy and the applied electric
fields. The choice of an initial high-temperature Maxwell-
Boltzmann distribution in place of a Fermi-Dirac distribution
produces a greater possibility of movement of the particles
because there are fewer fully occupied states and the over-
estimation of the effect of also applying the Pauli principle
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FIG. 3. (a) Mean energy and (b) mean velocity in the FFMC case
when εF = 0.6 eV and E = 0 kV/cm.
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FIG. 4. (a) Mean energy and (b) mean velocity in the NEMC case
when εF = 0.6 and E = 0 kV/cm.

at the end of each free flight is smaller, as also noted in [9].
Therefore, the absolute value of the velocity is appreciably
higher.

The SEMC and NEMC simulations are not affected by the
choice of the initial condition; the mean energy and velocity
reach the same stationary values. The only difference is an
initial overshoot in the velocity that is not present when an
initial Maxwell-Boltzmann distribution is used (see Fig. 8).

B. The charge distribution of the FFMC

The results obtained using the FFMC procedure, i.e., al-
most constant mean energies and negative mean velocities, are
certainly unphysical and not in agreement with the solution
of the Boltzmann equation or with the SEMC and NEMC
methods and deserve deeper analysis.

The comparison between the charge distributions ob-
tained in the FFMC simulation when the Fermi-Dirac or the
Maxwell-Boltzmann distribution is taken as the initial condi-
tion is shown in Fig. 9 for εF = 0.6 eV and E = 20 kV/cm.
The initial Fermi-Dirac distribution undergoes only negligible
changes during the time evolution [see Figs. 9(a) and 9(b)];
the Maxwell-Boltzmann distribution as the initial distribution
allows a coarser collocation of the particles with high mean
energy because it occupies a portion of the k space two times
larger than that of the initial Fermi-Dirac distribution [see
Fig. 9(c)]. The initial MB distribution does not seem to evolve
toward a realistic particle distribution, but as time passes, it
becomes more similar to an irregular FD-like distribution, as
clearly shown in Fig. 9(d). Small voids are present mainly in
the front of the distribution due to the effect of the electric
field, while the backside is more compact. It is evident that
the initial Maxwell-Boltzmann conditions lead to a larger
absolute velocity due to the greater possibility of movement
of the charged particles. The same considerations hold when
the density, i.e., the Fermi level εF , is lower; in this case the
time necessary to reach a FD-like final distribution is longer.
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FIG. 5. (a) Mean energy and (b) mean velocity in the EMC case
when εF = 0.6 eV and E = 0 kV/cm
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FIG. 6. Mean energy in the NEMC, SEMC, FFMC cases, with
FD and MB initial distributions, when (a) εF = 0.6 eV and E = 10
kV/cm and (b) εF = 0.6 eV and E = 20 kV/cm.

The dynamics generated by an initial FD distribution is
trivial because almost all the final states are occupied during
the simulation as a result of the Pauli principle also being im-
posed at the end of each free flight. When the MB distribution
is employed as the initial condition, the dynamics becomes
more complex, but the effect seems to be numerical rather
than the simulation of a realistic physical situation described
by the Boltzmann equations. The results are unphysical; the
evolution of the distribution function is not physically satis-
factory, and the negative value of the mean velocity has no
rationale at all.

C. Negative mean velocity with the FFMC method

To understand the origin of the negative mean velocity
obtained with the FFMC approach, we investigate the main
steps of the Monte Carlo procedure in the three methods,
i.e., the free flights and the subsequent scattering events. In
the NEMC procedure the distribution function is translated
as a whole at each time step 
t , and the number of the free
flights is equal to that of the simulated particles nP = 104. In
the SEMC scheme, the particles are followed one by one;
this leads to an incorrect reconstruction of the distribution
function, even if the number of free flights is of the same order
as in the NEMC case, as shown in Fig. 10(a) for the case of
an initial Fermi-Dirac distribution. In the SEMC and NEMC
approaches, the Pauli principle is not imposed at the end of
the free flight, only after the scatterings, so that all free flights
are allowed and take place. If the Pauli principle is imposed
also at the end of the free flights, the number of accepted
free flights is strongly reduced, as reported in Fig. 10(b). Also
when, initially, the MB distribution is used, the number of free
flights is about of 250 at early times but then rapidly decreases
and becomes equal to the case with the initial FD distribution.
The use of the Pauli principle at the end of each free flight
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FIG. 7. Mean velocity in the NEMC, SEMC, FFMC cases, with
FD and MB initial distributions, when (a) εF = 0.6 eV and E = 10
kV/cm and (b) εF = 0.6 eV and E = 20 kV/cm.
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FIG. 8. Mean energy and velocity in the (a) and (b) NEMC and
(c) and (d) SEMC cases when the FD or the MB initial distribution
is used; εF = 0.6 eV, and E = 20 kV/cm.

blocks the dynamics; it depletes the numerical sample, and
only a few tens of events survive in comparison to the about
104 events in the other schemes.

The ratio of the number of accepted free flights with respect
to the total is around 0.6 until t = 1.5 ps and drops very much
afterward, making the statistics not significant (see Fig. 11).

The free flights, even a few, give a positive contribution to
the mean velocity. Therefore, the negative values seen with
FFMC in Fig. 7 should originate from the scattering events.
The percentage of scatterings whose final states are available
is shown in Fig. 12. For the NEMC and SEMC procedures the
mean value is about 45% with a standard deviation of about
4%; in the FFMC case, we observe the same behavior shown
in Fig. 11, and after 1.5 ps very few nonrepresentative events
are left. In order to understand the negative value of the mean
velocity, we analyze all types of scatterings, in particular the
fraction of those which lead to a final negative velocity. This
fraction is reported in Fig. 13 for the LO and K scatterings

(a) (c)

(b) (d)

FIG. 9. FFMC scheme. (a) Initial Fermi-Dirac and (b) charge
distributions at 5 ps. (c) Initial Maxwell-Boltzmann and (d) charge
distributions at 5 ps. εF = 0.6 eV and E = 20 kV/cm.
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FIG. 10. Number of accepted free flights (a) for SEMC, with the
initial FD, and (b) for FFMC when the FD and the MB are used.

in the case of NEMC (the SEMC scheme gives the same
qualitative results), while the statistics is again not significant
for FFMC. Almost all the LO and K scatterings produce a
negative final velocity in the first 0.5 ps; then a mean constant
value of about 70% with a small variance is reached for the
LO collisions [see Fig. 13(a)], and a mean constant value of
about 80% is reached for the K scatterings [see Fig. 13(b)].

The previous results show that with FFMC there are very
few scattering events; their contribution produces a negative
final velocity which cannot be balanced by the free flights
because they are almost completely inhibited and are not sta-
tistically relevant. This interpretation is confirmed by Figs. 14
and 15. In Fig. 14, the mean velocity is shown when only the
scattering events with the LO and K phonons are considered.
It is negative in both cases and has a higher absolute value
when only the K phonons are included. In Fig. 15 the mean
velocity due to only the free flights, without any scattering,
is shown. In Fig. 15(a) the initial Fermi-Dirac distribution
is used, and the mean value is calculated by considering all
the particles of the sample (red line) and only those particles
which experience a free flight event at least once (blue line).
The two lines are very different, which means that a large
number of particles do not experience any free flight during
the simulation. The use of the initial MB in place of the FD
distribution worsens the results because the mean negative
velocity is larger in absolute value with respect to the FD.
This is due to the fact that in the early times of the simulation
there are more available states and each particle has a free
flight event at least once, so that the previous two samples are
almost the same, and the corresponding mean velocities are
almost equal, as is evident in Fig. 15(b).
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FIG. 11. Ratio of the number of accepted free flights with respect
to their total number for the FFMC, with the FD (blue dots) and the
MB (red dots) initial conditions.
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FIG. 12. Ratio of the number of accepted scatterings with respect
to their total number for the FFMC scheme, with the FD and MB
initial conditions, and the SEMC and NEMC schemes.

When a particle experiences a change in state due to either
free flight or scattering with the crystal lattice phonons, it
keeps moving in a free motion, without changing its velocity
during the rest of the simulation; when this velocity is nega-
tive, it will remain negative until the simulation has finished.
This fact is supported by the percentage of particles that do not
change their velocity between two consecutive time steps, as
reported in Fig. 16; after about 1.5 ps, almost all the particles
perform only a free motion.

In Fig. 17, the contribution of each type of scattering to
the mean velocity, obtained by averaging only over the parti-
cle population which experienced the corresponding collision
events, is shown. The prevalence of the backward scatterings
with LO and K phonons is confirmed; the LA, TA, and TO
phonons give a positive contribution, but their number is too
low to balance the negative values due to the LO and K
collisions.

V. CONCLUSIONS

The inclusion of the Pauli principle in the Monte Carlo
simulations by introducing the rejection technique also at
the end of each free flight and not only after a scattering
event was analyzed by considering a homogeneous suspended
monolayer of graphene as a test case. The results were com-
pared with those obtained when the Pauli principle is applied
only at the end of the collision events, both in the standard
ensemble Monte Carlo and in the updated ensemble Monte
Carlo scheme, with the latter being able to take the Pauli
principle into account correctly. The treatment of the free
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FIG. 13. Ratio of the number of emitted (a) longitudinal-optical
and (b) K scatterings, whose final velocity is negative, with respect
to their total number for the NEMC approach.
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FIG. 14. Mean velocity when (a) only the LO scatterings and
(b) only they K scatterings are included for the FFMC, with the FD
and the MB initial conditions.

flight in a “quantum” perspective is not in accordance with
the Liouvillian nature of the streaming part of the Boltzmann
equation. By employing this approach, the resulting numerical
dynamics does not seem compatible with the solution of the
Boltzmann equations and leads to unphysical results. This is
due to the fact that most of the free flights are rejected, the
statistics is very poor and becomes nonsignificant, and the
distribution function changes very little with respect to the
initial one. The mean value of the energy is almost constant,
and the mean velocity is negative due to the effect of the back-
ward scatterings, mainly with the longitudinal-optical and K
phonons, which are not balanced by the free flights or by
the forward scatterings. The same results were also obtained
when the initial Fermi-Dirac distribution was substituted by a
Maxwell-Boltzmann distribution at high temperature; in this
case a greater initial possibility of movement is present, but
the charge distribution tends to acquire an irregular Fermi-
Dirac-like shape in the course of its evolution. The average
values of the velocity are even worse, being negative and
larger in absolute value. The average energy starts from a high
value and rapidly decreases to a stationary one, in accordance
with the evolution of the distribution function. The statisti-
cal sample is more populated at early times, but it quickly
becomes too poor. For both initial distributions almost all the
particles that experience a change in state will not change their
velocity during the whole simulation, thus maintaining their
state. The FFMC procedure does not reproduce a solution of
the Boltzmann equation when degeneracy effects are relevant.
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APPENDIX: THE SCATTERING MECHANISMS

Here we report the details of the scattering rates for the
various phonon branches. For both LA and TA phonons, we
consider the elastic approximation, according to which the
transition rate is given by [33]

SA(k′, k) = 1

(2 π )2

π D2
ac kB T

2h̄ σm v2
s

(1+cos ϑk,k′ )δ[ε(k′)−ε(k)],

s = LA, TA, (A1)

where Dac is the acoustic phonon coupling constant (also
called the acoustic phonon deformation potential), σm is the
graphene areal density, vs is the sound speed of the sth acous-
tical phonon branch in graphene, and ϑk,k′ is the convex angle
between k and k′.

The electron-phonon coupling matrix elements of LO, TO,
and K phonons are [20]∣∣G(LO)(k′, k)

∣∣2

= 1

(2 π )2

π D2
O

σm ωO
[1 − cos(ϑk,k′−k + ϑk′,k′−k )], (A2)

∣∣G(TO)(k′, k)
∣∣2

= 1

(2 π )2

π D2
O

σm ωO
[1 + cos(ϑk,k′−k + ϑk′,k′−k )], (A3)

∣∣G(K )(k′, k)
∣∣2 = 1

(2 π )2

2π D2
K

σm ωK
(1 − cos ϑk,k′ ), (A4)

where DO is the optical phonon coupling constant, ωO is the
optical phonon frequency, DK is the K phonon coupling con-
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FIG. 17. Contribution of each scattering type to the mean veloc-
ity for the FFMC with the (a) FD and (b) MB initial conditions.
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FIG. 18. Scattering rates evaluated with the Bose-Einstein equi-
librium distributions for phonons at a temperature of 300 K.

stant, and ωK is the K phonon frequency. The angles ϑk,k′−k
and ϑk′,k′−k denote the convex angles between k and k′ − k
and between k′ and k′ − k, respectively.

For the sake of completeness, we provide here the scatter-
ing rates of all types of scatterings used in this paper. For the
acoustic phonon scattering we get

	ac(ε) = D2
ac kB T

4h̄3 v2
F σm v2

s

ε ; (A5)

for the longitudinal- and transverse-optical phonons we get

	LO,TO(ε) = D2
O

4πσm ωOh̄2 v2
F

{(ε − h̄ ωO)(gLO,TO + 1)

× H (ε − h̄ ωO)[2π ∓ �−(ε)]

+ (ε + h̄ ωO) gLO,TO[2π ∓ �+(ε)]}, (A6)

where the upper and lower signs refer to the LO and TO
phonons, respectively. H is the Heaviside function, and

�±(ε)

=
∫ 2π

0

(2ε2 + h̄2ω2
O ± 2h̄ωOε) cos θ ′′ − 2ε(ε ± h̄ ωO)

2ε2 + h̄2ω2
O ± 2h̄ωOε − 2ε(ε ± h̄ ωO) cos θ ′′ d θ ′′

= − π

ε(ε ± h̄ωO)

(
2ε2 + h̄2ω2

O ± 2h̄ωOε − h̄ωO|2ε ± h̄ωO|).
(A7)

Similarly, the expression for the scattering rate for the K
phonon scattering reads

	K (ε) = D2
K

σm ωK h̄2 v2
F

[(ε − h̄ ωK )(gK + 1)

×H (ε − h̄ ωK ) + (ε + h̄ ωK ) gK ]. (A8)

These scattering rates are shown in Fig. 18 as a function of the
energy.
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