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Wigner function with correlation damping
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We examine the effect of the decoherence-induced reduction of correlation length on a one-dimensional
scattering problem by solving numerically the evolution equation for the Wigner function with decoherence
proposed by Barletti et al. [J. Comput. Theor. Transp. 47, 209 (2018)]. The numerical solution is achieved by
the splitting-scheme algorithm, suitably modified to include the decoherence term. Three cases are examined,
corresponding to a reflection-dominated regime, a transmission-dominated regime, and an intermediate one.
The dynamic evolution of the Wigner function is followed until the separation process of the reflected and
of the transmitted packets is complete and it is observed for three different values of the correlation length.
The outcomes show a broadening and flattening of the Wigner function which becomes progressively more
pronounced as the correlation length is decreased. This results in a reduced reflection at low energies and in a
reduced transmission at high energies.
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I. INTRODUCTION

The Wigner-function (WF) approach to quantum kinetic
theory was introduced in 1932 by Wigner [1] (see also [2–4])
in order to calculate the quantum corrections to thermody-
namic equilibrium. It has been widely studied in the last four
decades by many research groups, including mathematicians,
physicists, and engineers [1,5–7]. This approach relies on
the phase-space representation of quantum mechanics, whose
physical implications and mathematical properties have been
analyzed in detail and are now better understood. There are,
however, several practical and theoretical limitations to the
Wigner formalism which make the applications difficult, so
that only very few results concerning real systems have been
obtained so far by this method; in particular, a large-scale
use in practical cases still looks to be a distant goal. These
difficulties arise from some of the fundamental assumptions
under which the Wigner equation holds, among which we re-
call the vanishing of the density matrix ρ(r, s) as r, s → ±∞
(this allows the vanishing of the integrated terms in an in-
tegration by parts) for normalizable states; that the potential
V (x) must be defined over the whole space; and no mecha-
nism which destroys the phase correlations of the individual
states must be present, i.e., the correlation length must be
infinite. These conditions entail that the WF formalism in its
standard formulation is applicable only to fully Hamiltonian,
spatially infinite coherent systems, which are also confined.
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They also imply, for example, that boundary conditions cannot
be included in the formalism without further theoretical mod-
ifications. Finally, the absence of decoherence mechanisms is
one of the main causes of the highly oscillatory character of
the Wigner function, which makes numerical simulations very
difficult. Another issue related to the Hamiltonian, coherent
character of the model is that the evolution equation for the
Wigner function is invalid for scattering states, since the wave
function does not vanish at infinity [8].

In this paper we investigate the question related to the
coherence length by presenting numerical simulations on a
simple reflection-transmission problem approached by the de-
coherence model introduced in [9]. The results confirm the
broadening and flattening of the Wigner function with time as
predicted in [9]; they also indicate that a reduced coherence
length favors transmission of low-energy electrons through
the potential barrier, inhibiting reflection. We observe another
important feature, which appears when the potential varies
abruptly, namely, the formation of a narrow region of sharp
variation of the Wigner function when the packet separa-
tion begins; our analysis strongly suggests an interpretation
in terms of a more classical-like behavior as the correlation
length is reduced.

The Wigner function is the Wigner-Weyl transform of the
density matrix ρ(r, s), namely,

f (x, p, t ) = 1

2π h̄

∫
ρ
(

x + η

2
, x − η

2
, t

)
e−iηp/h̄dη (1)

and it obeys the well-known governing evolution equation

∂ f

∂t
+ p

m

∂ f

∂x
+ i

h̄
�[δV ] f = 0, (2)
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often called “Wigner equation,” where �[δV ] is the pseudod-
ifferential operator

(�[δV ] f )(x, p)

= 1

2π h̄

∫∫
δV (x, η) f (x, p′)eiη(p′−p)/h̄ dp′ dη, (3)

where V (x) is the potential energy and the symbol δV is
given by δV (x, η) = V (x + η/2) − V (x − η/2). In this work
we focus on the modifications which must be introduced in
the WF formalism when the effects of phase randomization
have to be considered. This is an important factor, for exam-
ple, in the description of semiconductor devices with the WF
approach [5,6,10]. This issue has been addressed in [9,11–
14]. In [11] the finite size of a semiconductor device was
considered by modifying the correlation function across the
device boundaries, allowing in fact for a finite correlation
length, within the framework of the Schrödinger equation. The
results of that paper showed that the finiteness of the device or,
equivalently, a finite correlation length favors transmission of
low-energy electrons through the potential barrier in the scat-
tering process, inhibiting reflection, since long-wavelength
components of the potential cannot interfere effectively with
the electron wave function. In [12] a general exponential cor-
relation damping factor was introduced in the definition of the
Wigner function, which led to a modified evolution equation
where, because of the nondifferentiable nature of the damping
factor, a complex momentum and a complex Wigner function
were introduced. In [9] a Wigner equation with decoherence
was introduced, the main effect of the decoherence being
the decay in time of the correlation length. Such model can
be considered as the dynamical version of the approach of
Ref. [12].

In this paper, we examine again the effect of the finite
correlation length on a one-dimensional scattering problem
by solving numerically the evolution equation for the Wigner
function proposed in [9]. A Gaussian wave packet, supposed
free at t → −∞, enters a region where a Gaussian-shaped
potential is present, and the final state is observed in terms
of average quantities (momentum and position), transmission
coefficient, and density profiles. The numerical solution is
obtained with the splitting-scheme algorithm [15–19], suit-
ably modified in order to accommodate for the extra terms
which arise because of the finite correlation length. The paper
is organized as follows. In Sec. II we introduce the Wigner
equation with decoherence and describe its properties; Sec. III
briefly introduces the physical model; in Sec. IV we illustrate
the numerical method; Sec, V contains the numerical results
and in Sec. VI we state our conclusions.

II. WIGNER EQUATION WITH DECOHERENCE

In order to endow the WF formalism with a mechanism
describing decoherence, a model was developed by Barletti
et al. in [9], based on the rigorous results of Adami et al.
[20]. The idea is to let the carriers, described by the WF
formalism, undergo a number of collisions per unit time with
a nominal background medium of light particles; each inter-
action is described by the model introduced in [20] and, in
the limit of very small mass ratio, it amounts to the following

transformation of the particle density matrix:

ρ(x, y, t0) �−→ I (x, y)ρ(x, y, t0). (4)

Here, each collision is supposed to be instantaneous, t0 is the
time at which the collision occurs, and

I (x, y) = �λ(x − y) + iΓ (x) − iΓ (y), (5)

where �λ and Γ are quantities which depend on the light par-
ticle wave function and on the scattering coefficients [9,20].
In particular, �λ(η) describes the damping of the correlation
for large values of x − y; it depends on the positive parameter
λ which is the typical length of the correlation damping (we
will often refer to it as “correlation length”), with λ → +∞
for the fully coherent system. We also assume that

�λ(0) = 1, (6)

lim
η→±∞ �λ(η) = 0, (7)

lim
λ→∞

�λ(η) = 1. (8)

In [12], the function �λ(x − y) = e−|x−y|/λ, which fulfills all
these requirements, was chosen.

In the WF formalism Eq. (4) becomes [9]

f �−→ �̂λ ∗ f + i

h̄
�[δ�] f , (9)

where ∗ denotes convolution with respect to the momentum p
and

(�̂λ)(p) = 1

2π h̄

∫
R

�λ(η)e−iηp/h̄ dη

is the Fourier transform of �λ. From Eq. (9) we see that �

plays the role of a potential term and, therefore, it does not
contribute to decoherence. In addition, � is usually small [20]
and we shall neglect its contribution. Assuming that collisions
occur randomly with frequency 1/τ0, we obtain the following
equation for the Wigner function (see [9] for the details):

∂ f

∂t
+ p

m

∂ f

∂x
+ i

h̄
�[δV ] f = 1

τ0
( fλ − f ), (10)

where

fλ(x, p, t ) = (�̂λ ∗ f )(x, p, t )

=
∫
R

�̂λ(p − p′) f (x, p′, t )dp′. (11)

The collisional term at the right-hand side of Eq. (10)
comes from the interactions with the environment and repre-
sents therefore a decoherence mechanism. Note that this term
describes the relaxation of f to a modified Wigner function
fλ, which is exactly the Wigner function with finite coherence
length defined by Jacoboni and Bordone [12]. To this extent,
we can interpret (10) as the dynamical version of the model
introduced in [12]. As shown in [9], when �λ(η) is regular
enough it admits the following expansion:

�λ(η) = 1 + i1η − 2η
2 + · · · , (12)

where 1 and 2 are real, with 2 > 0. We remark that,
if 1 = 0, the quadratic approximation �λ(η) ≈ 1 − Λ2η

2
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reduces (10) to the Wigner-Fokker-Planck equation

∂ f

∂t
+ p

m

∂ f

∂x
+ i

h̄
�[V ] f = h̄2Λ2

τ0

∂2 f

∂ p2
, (13)

which is a classic model of decoherence [21].
As with the standard WF formalism, the macroscpic quan-

tities are given by the moments of the Wigner function.
In particular, for a given Wigner function f , the associated
macroscopic density n[ f ], current j[ f ], and energy density
e[ f ] correspond to the first three moments of f , namely,

n[ f ](x, t ) =
∫

f (x, p, t )dp, (14)

j[ f ](x, t ) = 1

m

∫
p f (x, p, t )dp, (15)

e[ f ](x, t ) = 1

2m

∫
p2 f (x, p, t )dp. (16)

When the same quantities are evaluated with fλ, by using (12)
it can be easily proven that

n[ fλ] = n[ f ], (17)

j[ fλ] = j[ f ] + h̄1

m
n[ f ], (18)

e[ fλ] = e[ f ] + h̄1

m
j[ f ] + h̄22

m
n[ f ]. (19)

Hence the decoherence mechanism, as represented by the
collision term in Eq. (10), conserves the density, while it
modifies the current if and only if 1 �= 0 (which corresponds
to the fact that, in this case, the background medium has
an asymmetric distribution in p, so that an average nonzero
momentum is transferred to the particle). Note also that, since
2 > 0, energy is absorbed from the environment at a rate
h̄22/(mτ0) n.

One word of caution should be issued before we present the
physical model and our numerical results. The decoherence
mechanism introduced in [9] results in a progressive broad-
ening and flattening of the Wigner function with time, this
effect being stronger at small correlation lengths. This leads
to an unphysical behavior for large times, already pointed out
in [21]. However, in this paper we apply the finite correlation
model to a scattering process, following the time evolution
only up to the separation of the packets, and the long-time
behavior of the system will not be followed. In our simulation,
this unphysical behavior is revealed by the results for the
smaller value of λ considered, and will be commented upon
in Sec. V.

III. THE PHYSICAL MODEL

In Sec. IV, we shall present the numerical solution of
Eq. (10) for the case of a minimum uncertainty Gaussian wave
packet which approaches a central region where the Gaussian
potential

V (x) = V0e−x2/a2
(20)

is present. The model is similar to the one used in [22].

The initial condition for Eq. (10) is given by the Wigner-
Weyl transform of an initial wave function of the form

ψ (x, 0) = 4

√
2σp

π h̄2 exp

{
−σ 2

p (x − x0)2

h̄2 + i
p0(x − x0)

h̄

}
,

where the normalization constant is such that
∫ |ψ (x)|2dx =

1. Here, σp is the initial momentum spread, x0 the initial
average position, and p0 the initial average momentum. The
initial Wigner function can be easily calculated from Eq. (1)
and is given by

f (x, p, 0) = 1

π h̄
exp

{
−2

σp(x − x0)2 + σx(p − p0)2

h̄2

}
,

(21)

where σx is the initial position variance which, for a minimal
uncertainty packet such as our ψ (x, 0), obeys the relationship
σpσx = h̄2/2. The normalization of the wave function entails
that the Wigner function is also normalized,∫∫

f (x, p, 0)dx d p = 1. (22)

Since the Wigner equation (10) preserves the norm of the
Wigner function, the normalization condition (22) remains
valid at all times. The initial Wigner function starts in free
motion at a large distance from the origin; the exact initial
condition is characterized by a dimensionless energy given by

EK = p2
0

2mV0
(23)

and an initial dimensionless momentum variance σ0 =
σp/(mV0). We also introduce the dimensionless variables x′ =
x/a, t ′ =

√
V0/(ma2), and the dimensionless Planck constant

h = h̄/(a
√

mV0), coherence length λ′ = λ/a and collision
time τ = τ0/t ′; in the sequel, we shall drop the primes for
a simpler notation and unprimed variables are meant to be
dimensionless from now on. The initial dimensionless mo-
mentum then is p0 = √

2EK , while x0 is chosen empirically
so that the bulk of the initial packet lies far away from the in-
fluence region of the potential. The initial correlation variance
is initially set to zero, but it acquires nonzero values during
the time evolution. With the dimensionless variables, Eq. (10)
becomes

∂ f

∂t
+ p

∂ f

∂x
+ i

h
�[δV ] f = 1

τ
( fλ − f ), (24)

where

fλ(x, p, t ) = 1

2πh

∫
R

∫
�λ(η)e−iη(p−p′ )/h f (x, p′, t )dη dp′,

(25)

and the initial condition becomes

f (x, p, 0) = 1

πh
e−2σ 2

0 {[(x−x0 )2/h
2
]+h

2
(p−p0 )2}. (26)

In the numerical simulations we shall mainly follow the av-
erage quantities and the particle density. With the Wigner
function normalized according to (22) we have

〈x〉(t ) =
∫∫

x f (x, p, t )dx d p≡ xt

(average position), (27)

044112-3



BARLETTI, BORDONE, DEMEIO, AND GIOVANNINI PHYSICAL REVIEW E 104, 044112 (2021)

〈p〉(t ) =
∫∫

p f (x, p, t ) dx d p ≡ pt

(average momentum), (28)

σ20(t ) =
∫∫

(x − xt )
2 f (x, p, t )dx d p

(position spread or variance), (29)

σ02(t ) =
∫∫

(p − pt )
2 f (x, p, t )dx d p

(momentum spread or variance), (30)

σ11(t ) =
∫∫

(x − xt ) (p−pt ) f (x, p, t )dx d p

(covariance) (31)

with the initial conditions 〈x〉(0) = x0, 〈p〉(0) = p0, σ02(0) =
σ0, σ20(0) = h

2
/(2σ0), σ11(0) = 0.

IV. THE NUMERICAL METHOD

We solve Eq. (24) by using a modified version of the
splitting scheme algorithm, a method which was initially
developed in [15] for the classical Vlasov equation for col-
lisionless plasmas, and subsequently adapted to the quantum
case [16–19] in order to solve the Wigner equation (2).

In its original formulation [15] for the classical nonlinear
Vlasov-Poisson system, the splitting scheme performs the
numerical integration along the characteristics in the phase
space. A discretized mesh is introduced in the simulation do-
main of the phase space, and the solution is advanced in time
from t to t + �t by alternating an integration along x for half

FIG. 1. Density profile n(x) in dimensionless units as function of
x at four instants of time, t = 12 (a), t = 36 (b), t = 48 (c), t = 60
(d) for EK = 0.5, τ = 3, σ0 = 0.1EK and four different values of λ.
Coherent case (λ → ∞): solid black line; λ = 10: dashed blue line;
λ = 4: dotted red line; λ = 1: dash-dotted green line.

FIG. 2. Average momentum 〈p〉 (a) and momentum spread σ02

(b) in dimensionless units as functions of time for EK = 0.5, τ = 3,
and σ0 = 0.1EK . The values of λ are the same as in Fig. 1.

time step (corresponding to integrating the equation with the
free-streaming term only), an integration along p for a whole
time step (corresponding to integrating the equation with the
force term only), and a final integration again along x for half
time step. The integration along x corresponds to a shift of the
solution along x (referred to as “horizontal shift”), while the
integration along p corresponds to a shift of the solution along
p (referred to as “vertical shift”). At each time step after the
initial one, the first horizontal shift can be combined with the
second horizontal shift of the previous time step in a unique
horizontal shift, thus saving computational time.

The quantum version of the splitting-scheme algorithm
follows the same pattern [16–19], even though there are no
characteristics as in the classical case. The free-transport part
of the equation is exactly the same as in the Vlasov case,
while the force term of the Vlasov equation is replaced by the
pseudodifferential operator term i �[δV ] f /h. In our modified
version of the splitting scheme, we have added the decoher-
ence term −( fλ − f )/τ to the pseudodifferential operator in
the vertical shift. In practical terms, in the vertical shift we
solve the equation

∂ f

∂t
+ i

h
�[δV ] f − 1

τ
( fλ − f ) = 0 (32)

which in the Fourier transformed space becomes

∂g

∂t
+ i

h
δV g − 1

τ
(�λ − 1)g = 0, (33)

FIG. 3. Average position 〈x〉 (a) and position spread σ20 (b) in
dimensionless units as functions of time for EK = 0.5, τ = 3, and
σ0 = 0.1EK . The values of λ are the same as in Fig. 1.
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FIG. 4. Wigner function f (x, p) at t = 60, for EK = 0.5, τ = 3, σ0 = 0.1EK and three different values of λ. Coherent case (λ → ∞)
(a); λ = 10 (b); λ = 4 (c).

where

g(x, η, t ) =
∫

f (x, p, t )eiηp/hdp. (34)

Hence,

g(x, η, t + �t ) = e−�t[iδV/h+(1−�λ )/τ ]g(x, η, 0). (35)

The phase-space integrals needed for the calculations of the
average quantities (27)–(31) are performed by standard open
Newton-Cotes rules.

V. NUMERICAL RESULTS

In this section we present and discuss the numerical
solution of the Wigner equation with decoherence (10)
for the physical model introduced in Sec. III. For the
correlation-damping function �λ [introduced in Eq. (5)]
we use

�λ(η) = 1

cosh(η/λ)
, (36)

which satisfies all properties outlined in Sec. II and is differ-
entiable over the whole domain.

We present the numerical results for four different values
of λ, (i) λ → ∞, corresponding to the quantum standard
dynamics; (ii) λ = 10, corresponding to a long correlation
length; (iii) λ = 4, corresponding to an intermediate correla-
tion length; and (iv) λ = 1 corresponding to a short correlation
length; and for three different values of the dimensionless
energy EK , (i) EK = 0.5 which corresponds to a reflection-
dominated regime in the quantum standard dynamics;
(ii) EK = 1, which corresponds to an intermediate reflection-
transmission regime; and (iii) EK = 1.5, which corresponds to
a transmission-dominated regime. Furthermore, we set τ = 3
in all simulations. For each value of the energy and of the
correlation length we present the most relevant mean quanti-
ties as functions of time, i.e., the average position 〈x〉(t ), the
average momentum 〈p〉(t ), and the position and momentum
spreads σ20(t ) and σ02(t ), all defined in Eqs. (27)–(30). We
also show the particle density n(x) at four key instants of time
and the Wigner function at the final time of the numerical
simulation. Finally, we show the transmission coefficient T
as a function of the energy in the range 0.5 � EK � 2 for
λ → ∞, λ = 10, and λ = 4. For the transmission coefficient

we adopt the approximate expression [22]

T = 1

2

(
1 + 〈p〉∞

p0

)
, (37)

where p0 is the initial momentum and 〈p〉∞ is the average
momentum at the end of the simulation.

A. First case, reflection-dominated regime: EK = 0.5

The dynamics of the scattering process for EK = 0.5 is
shown in Figs. 1–3, where the density profile and the aver-
age quantities are portrayed. In Figs. 1(a)–1(d) we show the
density profile n(x) at t = 12 (early stages of the evolution),
t = 36 (beginning of the scattering process and onset of the
density oscillations), t = 48 (oscillations begin to disappear),
and t = 60 (past the scattering process), for λ = 10 (dashed
blue lines), λ = 4 (dotted red lines), and λ = 1 (dash-dotted
green lines); the standard quantum case (corresponding to
λ → ∞) is also shown for reference (solid black lines). In

FIG. 5. Density profile n(x) in dimensionless units as a function
of x at four instants of time, t = 12 (a), t = 36 (b), t = 48 (c), and t =
60 (d) for EK = 1, τ = 3, and σ0 = 0.1EK . The values of λ are the
same as in Fig. 1 [λ = 1 (dash-dotted green line) in (a) and (b) only].
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FIG. 6. Average momentum 〈p〉 (a) and momentum spread σ02

(b) in dimensionless units as functions of time for EK = 1, τ = 3,
and σ0 = 0.1EK . The values of λ are the same as in Fig. 1.

Figs. 2(a) and 2(b) the average momentum and the momentum
spread, respectively, are shown for t ∈ [0, 60] and in Figs. 3(a)
and 3(b) we show the average position and the position spread
for the same values of λ. In Figs. 4(a)–4(c) we show the
Wigner function f (x, t ) at t = 60 for λ → ∞ (a), λ = 10 (b),
and λ = 4 (c).

The initial Gaussian packet travels freely in the early stages
of the evolution, and moves towards the potential region, with
the average momentum staying constant before the bulk of the
packet reaches the potential. The packet presents the natural
increasing spread, both in position and in momentum, this ef-
fect becoming more pronounced at smaller correlation lengths
[see Figs. 2(b) and 3(b)]. As the packet reaches the potential,
the density profile exhibits oscillations, which appear to be
smoothened as the correlation length becomes shorter; the av-
erage momentum, initially positive, drops and turns negative
in the course of the scattering event, the drop being also less
pronounced at shorter values of λ (see Fig. 2).

By looking at the density profiles, here and in the other two
cases, the dependence of n on λ might seem in contradiction
with Eqs. (14) and (17), i.e., with the fact that f and fλ have
the same n. However, the different curves corresponding to
different values of λ are the densities of different Wigner
functions: they all start with the same initial datum but they
have distinct dynamics, because of the different values of
λ in the evolution equation (24). After the interaction with
the potential has occurred, the transmitted and the reflected
packet separate, traveling away from the origin in opposite
directions, the reflected packet being considerably larger
than the transmitted one in the standard quantum case. As
the correlation length is made smaller, the Wigner function
spreads out more both in momentum and in position, causing
the transmitted portion to increase and the reflected portion
to decrease in size, thus making the decrease of the average
momentum less pronounced. In the standard quantum case,
in addition to the reflected and the transmitted portions, the
Wigner function displays a strongly oscillating behavior near
the potential region [see Fig. 4(a)]; as the correlation length
becomes smaller, the oscillations are seen to be damped away
[see Figs. 4(b) and 4(c)].

In addition to the damping of the oscillations, two impor-
tant additional effects of the finite correlation length on the
dynamics of the Wigner function must be pointed out.

(i) First of all, the broadening and flattening of the Wigner
function with the decreased correlation length can be ob-

FIG. 7. Average position 〈x〉 (a) and position spread σ20 (b) in
dimensionless units as functions of time for EK = 1, τ = 3, and σ0 =
0.1EK . The values of λ are the same as in Fig. 1.

served both in time [for fixed λ, f (x, p, t ) becomes flatter and
broader as t → ∞] and with respect to λ [for fixed t , f (x, p, t )
becomes flatter and broader as λ → 0]. This flattening and
broadening effect of the correlation length is in agreement
with the results of [9,20,21], where the increased transmission
due to the decoherence was attributed to a reduced momen-
tum exchanged between the packet and the potential caused
by the correlation damping. As a consequence, this poses
a difficulty in the description of the long-time evolution of
the system by the Wigner-function model with finite corre-
lation length; it also leads to numerical problems, because
of the need for a larger and larger simulation domain as
t → ∞ and λ → 0. These theoretical and numerical difficul-
ties are well represented by the dash-dotted green curves in
Figs. 1(a)–1(b), corresponding to λ = 1: the curves showing
the average quantities behave unphysically and the very flat
density profile seen in Fig. 1(d) strongly suggests that the
simulation domain should be made larger. In the next ex-
amples at higher energies we will not show any longer the
results for λ = 1 at the later times. The difficulty in applying
the decoherence model to the large-time behavior was already
briefly mentioned in Sec. II.

(ii) Another feature which is observed in the particle
density is the sharp jump in the profile at x = 0 [see
Figs. 1(a)–1(d)], the jump being larger in relative magnitude
(with respect to the peak of the density) as λ decreases. The
jump in the density profile is directly related to the appar-
ent discontinuity seen in the Wigner function at x = 0 [see
Figs. 4(b) and 4(c)] for λ = 10 and λ = 4; here, the reflected
and the transmitted packets appear well separated in the poten-
tial region, where the Wigner function takes very small values.
An analysis and an explanation of this phenomenon will be
developed in Sec. V E.

B. Second case, intermediate regime: EK = 1

The density profiles for this case are shown in
Figs. 5(a)–5(d) at the same four instants of time as for the case
with EK = 0.5, the average momentum and the momentum
spread in Figs. 6(a) and 6(b), the average position and the
position spread in Figs. 7(a) and 7(b), and the Wigner function
in Figs. 8(a)–8(c) all of them for the same values of the
correlation length as for EK = 0.5. The initial energy is here at
the same level of the potential height and the early evolution of
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FIG. 8. Wigner function f (x, p) at t = 60, for EK = 1, τ = 3, and σ0 = 0.1EK . The values of λ are the same as in Fig. 4.

the initial Gaussian packet is similar to the evolution observed
in the previous case.

The onset of the oscillations on the density profile is ob-
served again during the scattering process, but a portion of the
packet has already traveled past the potential region before
the oscillations stop. As the interaction with the potential
becomes negligible, we observe again a transmitted and a
reflected packet, of approximately equal size, traveling away
from the origin in opposite directions; both the transmitted
and the reflected packets become broader and smaller as λ

is decreased and as t → ∞. The average quantities follow
the same qualitative pattern seen in the EK = 0.5 case: the
average momentum drops after the initial constant profile,
the drop being less pronounced at small values of λ. We
observe again the unphysical behavior at short correlation
lengths; the density jump at x = 0 is also present.

FIG. 9. Density profile n(x) in dimensionless units as a function
of x at four instants of time, t = 12 (a), t = 36 (b), t = 48 (c), and
t = 60 (d) for EK = 1.5, τ = 3, and σ0 = 0.1EK . The values of λ

are the same as in Fig. 1 [λ = 1 (dash-dotted green line) in (a) and
(b) only].

C. Third case, transmission-dominated regime: EK = 1.5

Finally, we illustrate the scattering dynamics for an initial
energy above the potential barrier, EK = 1.5. The density
profiles are shown in Figs. 9(a)–9(d) at the same instants of
time and for the same values of λ as in the previous cases.
The average momentum and the momentum spread are shown
in Figs. 10(a) and 10(b), the average position and the position
spread in Figs. 11(a) and 11(b), and the Wigner function in
Figs. 12(a)–12(c).

The initial energy is now higher than the potential one. By
comparing Figs. 10 and 11 for the average momentum and
the average position with the corresponding Figs. 2 and 3, we
see that the effect of a decreasing λ on transmission is now
much weaker; the average momentum, after the drop from the
initial value during the interaction, settles to a value which
depends very little on the coherence length λ. The same is
true for the average position [see Fig. 11(a)], but only for the
long and intermediate values of λ, the unphysical behavior for
λ = 1 being present in this case as well (see the dash-dotted
green line in Figs. 10 and 11). The density profiles show a
similar behavior as in the previous two cases, with the onset
of oscillations during the interaction of the packet with the po-
tential, followed by a separation into reflected and transmitted
portions, which become lower and broader as the value of λ is
reduced.

D. The transmission coefficient

Finally, in Fig. 13 we report the transmission coefficient,
as given by Eq. (37) as a function of the energy for τ = 3
and three values of the correlation length, λ → ∞, λ = 10,
and λ = 4. We see that, at energies below the potential bar-

FIG. 10. Average momentum 〈p〉 (a) and momentum spread σ02

(b) in dimensionless units as functions of time for EK = 1.5, τ = 3,
and σ0 = 0.1EK . The values of λ are the same as in Fig. 1.
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FIG. 11. Average position 〈x〉 (a) and position spread σ20 (b) in
dimensionless units as functions of time for EK = 1.5, τ = 3, and
σ0 = 0.1EK . The values of λ are the same as in Fig. 1.

rier, the transmission coefficient increases as the correlation
length λ is made smaller (the dashed blue and dotted red
curves, corresponding to λ = 10 and λ = 4, respectively, lie
above the solid black curve, which represents the results of
the coherent case), while this tendency is reversed at energies
above the potential barrier. This shows that decoherence (low
values of λ) favors transmission (T values are incremented) in
reflection-dominated regimes, while it favors reflection at high
energy. The decoherence effects at high energies also appear
weaker than at low energies (the curves of the transmission
coefficient lie closer to each other at the higher values of
EK ). This observation is consistent with the spreading effect
of the finite correlation length on the Wigner function, which
enhances the size of the transmitted packet at lower energies
and the size of the reflected packet at higher energies. We have
also calculated the curves of the transmission coefficient for
other values of τ in the vicinity of τ = 3 with no relevant
deviations from the ones shown in Fig. 13.

E. The density jump

In all three cases examined in our simulations, the Wigner
function and, as a consequence, the density profile exhibit a
sudden jump, which appears as a discontinuity at x = 0 in our
graphs. This feature has never been observed in the Wigner
function simulations performed by us or by other groups.
We have analyzed this phenomenon by varying the width of
the potential a [see Eq. (20)] and by adopting a top view of
the Wigner function. In all simulations performed so far the
choice a = 1 was done, in accordance with the adimensional-
ity of the x variable.

FIG. 13. Transmission coefficient T as a function of the energy
for 0.5 � EK � 2, τ = 3, and three different values of λ. Coherent
case (λ → ∞): solid black line; λ = 10: dashed blue line; λ = 4:
dotted red line.

In Fig. 14 we show the density profile n(x) at t = 60, for
EK = 0.5, τ = 3, σ0 = 0.1EK , and λ = 4 for several values
of the potential width a: the solid black line refers to a = 1,
the dashed red line to a = 2, the dash-dotted green line to
a = 5, and the dotted blue line to a = 8. We see that, as the
potential is made broader, the density jump is smoothed out
and eventually the profile becomes regular. This indicates that
what appears as a discontinuity at a = 1 is in fact a narrow
region of rapid decrease in the profile, not well resolved by
the numerical discretization of the phase-space variables.

We explain this phenomenon with the aid of Fig. 15, which
shows a top view of the Wigner function at five instants of
time, t = 12, t = 24, t = 36, t = 48, and t = 60 for EK =
0.5, τ = 3, σ0 = 0.1EK , and λ → ∞ (left panels: coherent
case) and λ = 10 (right panels). Let us consider for a moment
the classical picture: if the initial distribution were to evolve
classically, it would follow the phase-space trajectories, the
bulk being reflected back and turning from the p > 0 to the
p < 0 half-plane, with only a small portion in the tail being
transmitted. The nonlocality due to the quantum effects in the
coherent case makes the distribution deviate from the clas-
sical trajectories and causes the interference fringes seen as
oscillations on the Wigner function in the potential region (see
Fig. 15, left panels). The finiteness of the correlation length
switches off the exchange of information and the nonlocality

FIG. 12. Wigner function f (x, p) at t = 60, for EK = 1.5, τ = 3, and σ0 = 0.1EK . The values of λ are the same as in Fig. 4.
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FIG. 14. Density n(x) in dimensionless units as a function of x at
t = 60 for EK = 0.5, τ = 3, σ0 = 0.1EK , and λ = 4 for four values
of the potential width: solid black line: a = 1; dashed red line: a = 2;
dash-dotted green line: a = 5; and dotted blue line: a = 8.

effects on a spatial scale of order λ, leaving a void central
region of size ∼λ (see Fig. 15, right panels). The fact that
the finite correlation length somehow restores locality into the
system does not mean that the system is becoming entirely
classical, since, for example, the quantum character of the
pseudodifferential operator describing the interaction with the
potential remains in place.

VI. CONCLUSIONS

In this paper we have investigated numerically the deco-
herence model introduced in the WF formalism in Ref. [9].
We have considered a simple system given by an initial
Gaussian Wigner function undergoing scattering by a Gaus-
sian potential barrier. Three energy regimes were analyzed:
a reflection-dominated regime with energy below the barrier
height, a transmission–dominated regime with energy above
the barrier height, and an intermediate regime with energy
equal to the barrier height. The effects of the decoherence
mechanism were studied by considering three different values
of the correlation length λ, and compared with the coherent
case. The main conclusion is that of an enhanced transmission
at low energies and a reduced transmission at higher energies,
the former effect being more pronounced, also because a finite
correlation length favors transmission of low-energy elec-
trons through the potential barrier, inhibiting reflection, since
long-wavelength components of the potential cannot interfere
effectively with the electron wave function. We interpret this
behavior as due to the broadening and flattening of the Wigner
function as λ is reduced, which causes an increased size of
the transmitted packet at small energies and of the reflected
packet at high energies. Finally, as the coherence length is

FIG. 15. Wigner function f (x, p) as a function of x and p at five
instants of time, t = 12, t = 24, t = 36, t = 48, and t = 60 for EK =
0.5, τ = 3, and σ0 = 0.1EK . Left panels: coherent case (λ → ∞);
right panels: λ = 10.

reduced, the Wigner function exhibits a narrow region of sharp
variation, which appears when the packet separation begins;
our analysis strongly suggests that this is due to the tendency
of the system to show a more classical behavior at low values
of the correlation length.
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