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Abstract

Results of the most sophisticated measurements in coincidence of the angular resolved K-shell

photo- and Auger-electrons, and of two atomic ions produced by dissociation of N2 molecule, are

analyzed. Detection of photoelectrons at certain angles allows separating the Auger decay processes

of the 1σg and 1σu core hole states. The Auger electron angular distributions for each of these

hole states are measured as a function of the kinetic energy release of two atomic ions and are

compared with the corresponding theoretical angular distributions. From that comparison one

can disentangle the contributions of different repulsive doubly charged molecular ion states to the

Auger decay. Different kinetic energy release values are directly related to the different internuclear

distances. In this way one can trace experimentally the behavior of the potential energy curves of

dicationic final states inside the Frank-Condon region. Presentation of the Auger electron angular

distributions as a function of kinetic energy release of two atomic ions opens a new dimension in

the study of Auger decay.

http://arxiv.org/abs/1005.0549v1


I. INTRODUCTION

Auger decay studies of molecules have a long history, though it seems that not all char-

acteristics of that process have been investigated up to now. In atoms the Auger decay

corresponds to a transition between two (quasi)discrete states, therefore main attention in

the atomic Auger electron spectroscopy studies was focused on the identification of discrete

lines [1,2]. The coincidence study of photoelectrons and Auger electrons enabled a much

more detailed study of complex Auger electron spectra with a high precision [3-8]. As com-

pared to atoms, in diatomic molecules due to lower symmetry (axial instead of spherical in

the case of atoms) two new degrees of freedom appear, the vibrational and the rotational

motion of nuclei. Due to that the molecular Auger electron spectra are substantially modi-

fied. The rotational splitting is too small to be resolved in the Auger electron spectra, while

the vibrational splitting is of the same order of magnitude as the Auger line widths and can

broaden them. In addition to that, the photoionization followed by Auger decay produces a

doubly charged molecular ion which often dissociates creating atomic ions in their ground or

excited states. In that way the excitation energy of the initial state is distributed among the

Auger electron, the nuclear motion and electronic excitation of the final products. Instead

of a well defined discrete line a broad continuum of Auger electron energies appears. This

continuum cannot be identified by its energy position since usually several transitions are

contributing at the same energy. Therefore a basically new method is needed for studying

the continuous Auger electron emission spectra in molecules. Such a method must take

advantage of the axial symmetry of diatomic molecules in order to extract additional infor-

mation not available in the standard Auger electron spectra. Namely, when the dissociation

process is faster than the rotational motion, the latter can be disregarded which opens the

possibility to study the Auger decay of fixed-in-space molecules. That is the way to get the

most detailed information about the Auger decay.

Let us consider the photoionization of the K-shell of N2 molecule which produces highly

excited molecular ion state. Within a short time of about 7 fs this state decays, predomi-

nantly by emission of a fast Auger electron (around 360 eV). As a result, a doubly charged

molecular ion is created with two holes in valence shells. At the next step this doubly

charged molecular ion dissociates predominantly into two N+ atomic ions with the kinetic

energy release (KER) in the region of 4 to 20 eV. The dissociation time is usually short



compared to the molecular rotation, therefore the direction of motion of the atomic ions

gives the direction of the molecular axis at the time of photoabsorption and Auger decay.

Earlier the Auger decay of core ionized N2 molecules has been studied by different meth-

ods, in particular, by the Auger electron spectroscopy [9-10], and KER spectroscopy of the

two N+ ions [11-13]. In these studies, as in the case of atomic Auger decay, mainly the

resonance structures have been investigated. We report on the most detailed study of the

Auger decay process by detecting in coincidence the photoelectron, the Auger electron and

the two atomic singly charged ions (all of them being energy and angular resolved) using

the COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS) technique [14-15]. The

single hole states in the K-shell of N2 molecule are due to symmetry requirements split into

two states, 1σg and 1σu, and it is of interest to separate the Auger decay processes of these

two states. Their energy splitting is rather small, about 100 meV, which is nearly equal

to the width of these states equal to 120 meV. Nevertheless, recent very high resolution

measurements allowed resolving these states in the photoelectron spectra [16,17] as well as

in the Auger electron spectra [18,19]. For the Auger decay routes leading to dissociative

states the symmetry of Auger electron cannot be deduced from its continuous energy alone,

but the initial singly ionized state has to be determined. That could in principal be done

by measuring the Auger electron energy and the KER with a resolution of better than the

g/u splitting. Alternative one can measure the photoelectron in coincidence to the Auger

electron and deduce the character of the K-hole from either the photoelectron energy or the

emission angle. Since the necessary energy resolution is hard to achieve in a coincidence

experiment, we have opted to use the photoelectron angle to tag the g or u core hole state.

The angular distributions of photoelectrons from the K-shell of N2 molecule have been

studied theoretically, and from calculations it is known that at some angles predominantly

1σg or 1σu shell is contributing [14-15]. By measuring the Auger electron angular distribu-

tion in coincidence with the photoelectrons collected at these angles one can separate the

contributions of 1σg and 1σu shells to the Auger decay process without need to resolve these

transitions in energy [15]. As is shown below, the corresponding Auger electron angular

distributions for transitions from the 1σg and 1σu hole states strongly depend on the config-

uration and the term of the final dicationic state. Comparing experimental and theoretical

Auger electron angular distributions, one can identify the transitions into different dica-

tionic states. Important is that this method allows studying mainly the continuous part of



the Auger spectrum which is hard to study by any other method [20,21]. This continuum is

formed by Auger transitions into repulsive doubly charged molecular ion states which do not

create any resonance structure. However, the most intense resonant Auger transitions can

also be studied by this method. The preliminary results of this study have been published

in [22].

II. THEORY

A detailed description of the method used in our calculations has been presented earlier

in [23-25]. Here we shall mention mainly the modifications introduced in the present cal-

culations. We describe theoretically the angular distributions of photoelectrons from core

levels and Auger electrons measured in coincidence with each other, and in coincidence with

the atomic ions resulted from dissociation of doubly charged molecular ion. The dissociation

time is implied to be much shorter than the period of molecular rotation, so that the direc-

tion of motion of dissociation products gives the direction of molecular axis at the time of

the photoionization and the Auger decay. Since the dissociation step is not considered theo-

retically, we calculate the photoionization and the Auger decay of fixed- in-space molecules.

We imply that a two-step model is applicable according to which the photon absorption is

much faster than the Auger decay [1,2]. Under these conditions the amplitude of the process

can be presented as a product of a dipole d and a Coulomb V matrix elements

fλ
f,i(~pA, ~p) =

〈

ΨN−2
f ψ−

~pA
|V |ΨN−1

i

〉 〈

ΨN−1
i ψ−

~p |dλ|Ψ0

〉

. (1)

Here |Ψ0〉 means the ground state wave function of a molecule containing N electrons, λ is

projection of a photon angular momentum in a photon frame with the z axis directed along

the photon beam, ΨN−1
i and ΨN−2

f are a singly charged and a doubly charged molecular

ion wave functions of the intermediate and final states, respectively, ψ−

~p and ψ−

~pA
are the

photoelectron and the Auger electron wave functions defined in the molecular frame, and ~p

and ~pA are the moments of the photoelectron and the Auger electron, respectively. In our

case the intermediate state is the state with one hole either in the 1σg or in the 1σu shell.

The final state ΨN−2
f has two holes in the valence shells.

Doubly differential cross section for the process of core ionization of N2 molecule with a

subsequent Auger decay in which both photo- and Auger-electrons are ejected at some fixed



angles is given within the two-step model by the equation

dσλ
fi

dΩpAdΩp

∝
∣

∣

∣fλ
fi(~pA, ~p)

∣

∣

∣

2
, i = 1σg or 1σu. (2)

Since the Lorentzian widths of the 1σg and 1σu photoelectron lines in N2 are approximately

equal to their energy splitting, in the photoelectron-Auger electron coincidence experiment

the photoelectrons from these shells cannot be energetically resolved [15]. This situation is

described theoretically by treating the 1σg and 1σu states as if they were degenerate. Then

instead of (2) we get

dσf
dΩpAdΩp

∝
∣

∣

∣ff,1σg
(~pA, ~p) + ff,1σu

(~pA, ~p)
∣

∣

∣

2
. (3)

Now we have a square modulus of the sum of two amplitudes which includes also the inter-

ference term, and this equation actually describes a deviation from the two-step model. The

role of the interference term in equation (3) was discussed in [15,26].

In the present analysis we selected only the photoelectron ejection angles at which the

predominant contribution is given by one of two K-shells, that is where one of the following

conditions is fulfilled, ff,1σg
(~pA, ~p) << ff,1σu

(~pA, ~p), or ff,1σg
(~pA, ~p) >> ff,1σu

(~pA, ~p), In these

cases the interference term is small and to a good approximation can be neglected, so that

only a square modulus of one of the two transitions in equation (3) gives a substantial

contribution. Then all the general equations presented in [25] are valid here, too.

Our calculations have been performed in prolate spheroidal coordinates by the method

described in [23]. The two steps (the photoionization and the Auger decay) are treated

in the following way. At first the single electron wave functions of the ground state of

the neutral molecule are calculated in the Hartree-Fock (HF) approximation. After that

the wave functions for the intermediate singly charged molecular ion state are calculated

in the relaxed core HF (RCHF) approximation as a solution of the HF equation with the

potential formed by the self-consistent HF wave functions of a singly charged ion. The

relaxed core approximation allows taking into account the rearrangement of the molecular

orbitals to the creation of a core hole state. But the usual integer charge 1 for the ion core

overestimates this effect, therefore we proposed the modification of this method by using a

fractional charge. The latter is selected empirically from the condition to correctly describe

the position in energy of the σ∗ shape resonance of the photoionization cross section. For

the K-shell of N2 the best agreement with experiment was found with the fractional charge



equal to 0.7 [24]. The photoelectron wave function is calculated in the RCHF field and is

orthogonalized to the ground state wave functions. With the wave functions described above

the dipole matrix elements are calculated according to the equations (10)-(11) of [25]. Many-

electron correlations in the photoionization process are taken into account in the random

phase approximation by solving the corresponding equation for the dipole matrix elements

presented in [23].

The initial state for the Auger decay is described by the same self-consistent RCHF wave

functions, ϕ
(i)
j of the singly charged molecular ion as in the photoionization step. For the

doubly charged final molecular ion state another set of the self-consistent HF wave functions

ϕ
(f)
j is calculated, this time with the integer charge 2. The Auger electron wave function

is calculated in the frozen field of the doubly charged ion. The Auger decay amplitude is

defined by the Coulomb matrix element given by equations (34)-(40) of [25]. Since the wave

functions ϕ
(i)
j and ϕ

(f)
j are not orthogonal, we calculate also the overlap matrix between the

HF orbitals of the initial and final states Sjk =
〈

ϕ
(f)
j

∣

∣

∣ϕ
(i)
k

〉

and obtain the Auger amplitude

following the procedure proposed in [27]. The Auger electron energy in the particular cases

considered here is large, about 360 eV, so that the contribution of many-electron correlations

is expected to be small. Therefore we restricted calculations by the HF approximation as it

was done already in [25] for CO molecule.

III. EXPERIMENT

The experiment was performed at beamline 11.0.2 of the Advanced Light Source of

Lawrence Berkeley Laboratory via COLTRIMS technique [28-31]. A supersonic gas jet,

with a precooled nozzle provided an internally cold and well localized target of N2 molecules

in their vibrational ground state. This gas jet was intersected by a beam of circularly po-

larized photons (419 eV) from beamline 11.0.2. The interception volume of well below 0.3

mm3 was situated in a region of homogeneous parallel electric (12 V/cm) and magnetic (6.5

G) fields. The fields were prependicular to the gas jet. The fields guided the photoelectrons

toward a multichannel plate detector (diameter 80 mm) with delay-line position readout

[32]. The fields assured 4π collection solid angle for the photoelectrons, while the fast Auger

electrons where detected only within the small geometrical solid angle. They were used for

calibration purposes only. In case the N2+
2 ions break up, the resulted ionic fragments gain



a large amount of kinetic energy from the Coulomb explosion. Therefore the solid angle of

detection depends on the orientation of the molecular axis at the instant of fragmentation:

those N2+
2 ions that fragmented within 15◦ parallel to the electric field axis of our spectrom-

eter were guided toward a second position-sensitive detector, 72 cm from the interaction

point. From the position of impact and the time of flight of the photoelectron and ions,

we could determine their vector momenta, respectively. To improve the ion momentum res-

olution, we used a three-dimensional time and space-focusing ion optics setup (see figure

12 in [28]). Momentum vectors of the photoelectron and the two ions from the four- body

final state were measured directly, whereas the momentum of the fourth particle, the Auger

electron, was obtained through momentum conservation. This was possible only because

the lens system avoided the deterioration of the ion momentum resolution due to the spatial

extension of the interaction volume and since the N2 jet was sufficiently cold in the direction

of the gas beam due to cooling of the nozzle. For the nozzle conditions great care was taken

to avoid clustering of the beam while maintaining its narrow momentum spread.

The experiment yielded the full 4π solid angle distribution of the Auger electron and

photoelectron and 1% solid angle for the ion momentum. We obtained an overall resolution

of better than 50 meV (see fig 8 below) for the KER and 0.5 atomic unit momentum resolution

of the center of mass motion (i.e. the momentum of the Auger electron). The data were

recorded in list mode, so any combination of angles and energies of the particles could be

sorted out in the off-line analysis without repeating the experiment. The dataset used in the

present analysis is the same as in [15,22]. All spectra reported were taken simultaneously

with the same apparatus to reduce possible systematic errors.

IV. RESULTS

A. The basis of the method

Fig. 1a shows the theoretical angular distribution of photoelectrons in the molecular

frame ejected from K-shell of N2 molecule by circularly polarized light at photon energy 419

eV. This energy corresponds to the well known σ∗ shape resonance in the photoabsorption

cross section [33] so that the photoelectron intensity at this photon energy has a maximum.

The calculations have been performed with many electron correlations taken into account



in the RPA approximation. It is seen that at the angles 60-80 and 240- 260 degrees the

predominant contribution is given by the photoelectrons ejected from 1σg shell. At the

angles 140◦ − 150◦ and 320◦ − 330◦, vice versa, the predominant contribution is given by

the 1σu shell. Therefore to a good approximation one can say that by measuring the Auger

electron angular distribution in coincidence with the photoelectrons collected at the angles

mentioned above one can study the Auger decay process separately for the 1σg and 1σu shells

without need to resolve these transitions in energy [15]. In the experiment the photoelectrons

were collected from a broader range of angles in order to increase the intensity of the signal.

Namely, the angles 35◦ − 85◦ and 215 − 265◦ were used to select the contribution of 1σg

shell, and the angles 115 − 150◦ and 295 − 330◦ for the contribution of the 1σu shell. As is

evident from the figures, the separation of the contributions of the 1σg and 1σu shells is not

complete, there is always some admixture of the state of the opposite parity which must be

taken into account while comparing theory with experiment (see below).

It is worth while to mention that absorption of circularly polarized light gives a better

opportunity to separate the contributions of the 1σg and 1σu shells as compared to linearly

polarized light. Figs. 1b,c show the photoelectron angular distributions for absorption of

light linearly polarized parallel and perpendicular to the molecular axis, respectively, for the

same photon energy 419 eV. In both cases one can easily separate the contribution of the

1σg shell, while the contribution of the 1σu shell is greatly overlapping with the 1σg one and

hardly can be separated. The other question is whether the particular photon energy can

be favorable or unfavorable for such a separation, or an experiment can be performed at any

photon energy. As an example, we show in Fig. 1d the photoelectron angular distribution

for circularly polarized light at photon energy 483 eV (the photoelectron energy 73 eV). Here

one can also quite well separate the contributions of the 1σg and 1σu shells. So, the method

can be applied at different photon energies and is not bound to the shape resonance.

To interpret the Auger electron spectra corresponding to the decay of the 1σg or 1σu

hole state we performed calculations of Auger electron angular distributions for all possible

final doubly charged molecular ion states with two holes in the outermost 3σg, 1πu, or 2σu

shells. Single configuration approximation was used in these calculations. These angular

distributions strongly depend on the configuration and the term of the dicationic final state.

Since in the experiment mainly the dissociating states are contributing, we concentrate on

the consideration of these states. Fig. 2 shows the potential energy curves for several
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FIG. 1: (Color online) Molecular frame photoelectron angular distributions in the plane perpendic-

ular to the photon beam calculated for several light polarizations and photon energies: (a) for left

handed circularly polarized light at photon energy 419 eV; (b) for light linearly polarized parallel

to the molecular axis at 419 eV; (c) for light linearly polarized perpendicular to the molecular axis

at 419 eV; (d) for left circular polarization at photon energy 483 eV. Molecular axis is directed

along the horizontal axis as is shown in (c). The contributions of 1σg and 1σu hole states are shown

by dashed and dot-dashed lines, respectively. Their sum is shown by solid line.
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FIG. 2: (Color online) Potential energy curves from refs. [11,34-36] for several final dicationic states

mentioned in the figure. The zero KER corresponds to the dissociation limit into the N+(3P ) +

N+(3P ) ion states. For the 1Πg final state two curves are shown, one from ref. [35] (bold curve),

and the other from ref. [36] (thin curve). The horizonthal lines mark the positions of potential

energy barriers for the A1Πu and D1Σ+
g terms.

states of the N2+
2 ion taken from the references [11, 34-36]. As we already mentioned, the

photoionization and the Auger decay processes are fast compared to the nuclear motion, and

the internuclear distance during these processes remains weakly changed. Therefore only the

Franck-Condon (FC) region is contributing to the formation of doubly charged molecular

ions. The vertical axis in Fig. 2 gives the KER energy of two N+ ions after dissociation

process. The part of potential energy curves inside the FC region gives the range of KER

energies to which the corresponding term is contributing.

Theoretical Auger electron angular distributions for several final dicationic states giving

the predominant contribution to the Auger electron intensity are presented in Fig. 3. Our

calculations are in agreement with the earlier result of Ågren [37] according to which the

triplet final states are giving rather small contribution to the Auger decay and hardly can

be disentangled in our experiment, therefore we do not show them. There is one exception,

the 3Σu term (see Fig. 2), which has a local minimum and for which the quasidiscrete final

states are observed and identified as discussed below. Similarly there are quasidiscrete states

corresponding to the 1Σu term which has a local minimum in the potential energy curve,

too.

Now we have enough information to start the analysis of the experimental results. Fig. 4

shows the angular distributions of the Auger electrons for a photon energy 419 eV measured
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in coincidence with the photoelectrons ejected at the directions corresponding to ionization

of either 1σg or 1σu shell in accord with Fig. 1a. In this way the Auger decay processes

of the 1σg and 1σu states are separated. They are shown separately in Figs. 4a and 4b,

respectively. The vertical axis in these figures corresponds to the KER energy. As a function

of KER one can single out three regions corresponding to KER energies 7-7.5 eV, 7.5-9.5

eV, and 10.3-11.5 eV, where the angular distributions have different characteristic features.

Comparing theoretical and experimental angular distributions one can determine the main

Auger decay channels contributing at a given KER. Since the KER for any final state is

defined by the internuclear distance at which the Auger decay takes place, the analysis of

the KER dependence of the Auger electron angular distributions allows determining the

internuclear distances at which a given Auger decay channel contributes. The separation of

the Auger decay processes of the 1σg and 1σu core holes plays the key role in this analysis.

B. Analysis of the coincidence Auger electron-photoelectron spectra

Let us start from the KER energies 7-7.5 eV. From Fig. 2 follows that three final states

are contributing here, (3σg)
−1(1π−1

u ) 1Πu, (1πu)
−2 1Σ+

g , and (1πu)
−2 1∆g. Fig. 5 shows the

comparison of theoretical results with the experimental data (in arbitrary units). Since in

theory the dissociation process is not considered, the theoretical angular distributions are

not connected with any definite value of KER, while in experiment we have a contribution

of a well defined KER energy region. Therefore the relative contributions of the three final

states mentioned above are taken theoretically as free parameters fitted by comparison with

the experiment. The result of this fitting gives for the relative contributions of these states

the following ratio: I(1Πu) : I(
1Σ+

g ) : I(
1∆g) = 1 : 0.7 : 0.7. Fig. 5a and 5b show the relative

contributions of these transitions together with their sum. For the 1σg hole state (Fig. 5a)

the main maximum at 90◦ is given by the 1∆g term, the maxima at about 30◦ and 150◦

are due to the 1Πu term, and finally the only nonzero contribution at 0◦ and 180◦ is given

by the 1Σ+
g term. For the 1σu hole state (Fig. 5b) the main maxima at 55◦ and 125◦ are

defined by the 1Πu term, while the two maxima at 75◦ and 105◦ due to the 1∆g term are

making the main maxima broader. The only contribution at 0◦ and 180◦ is given again by

the 1Σ+
g term. In Figs. 5c and 5d the total contributions from figs. 5a and 5b are shown by

dashed curves. The agreement between theory and experiment is satisfactory. Let us take
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FIG. 5: (Color online) Auger electron angular distributions (in arbitrary units) measured in

coincidence with photoelectrons (points with error bars) corresponding to ionization of either 1σg

(a,c) or 1σu (b,d) shell, integrated over KER energies from 7 to 7.5 eV. Molecular axis is directed

along the horizontal axis. The theoretical calculations (normalized to the experiment) include the

Auger transitions to the following doubly charged molecular ion states (3σg)
−1(1πu)

−1 1Πu, (1πu)
−2

1∆g, and (1πu)
−2 1Σ+

g . The dashed and solid lines in (c), (d) show the results of calculation without

and with the inclusion of the admixture of the hole state of the opposite parity correspondingly

(see the text for detail).

now into account the fact that the separation of contributions of the 1σg and 1σu shells in

the coincidence experiment is not complete as is evident from Fig. 1a. We must allow some

admixture of the hole state of the opposite parity to each angular distribution. With such

an admixture (added with a fitted parameter) the theoretical curves shown by solid lines in

Fig. 5c and 5d are coming to a fairly good agreement with the experiment. The main lobes

and their relative intensities are correctly reproduced by the theory.

Fig. 6 shows the comparison of calculated and measured Auger electron angular distri-
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FIG. 6: (Color online) The same as in Figs. 5c,d for KER energies from 8 to 9 eV. Theoretical

Auger transitions to the doubly charged molecular ion states (1πu)
−2 1∆g and (1πu)

−2 1Σ+
g are

included.

butions at KER energies from 8 to 9 eV. In accord with Fig. 2 only two doubly charged

molecular ion states (1πu)
−2 1∆g and (1πu)

−2 1Σ+
g are contributing here. The (1πu)

−2 1∆g

state is responsible (i) for the intensive lobe at the ejection angle 90◦ (above the horizontal

axis) and two smaller lobes at 57.5◦ and 122.5◦ for the 1σg state, and (ii) for the intensive

lobes at the angles 75◦ and 105◦ for the 1σu state. The (1πu)
−2 1Σ+

g state contributes mainly

along the molecular axis at the angles 0◦ and 180◦ (qualitatively similar results though with-

out resolving the contributions of 1σg and 1σu hole states have been obtained theoretically

in [20]). Dashed lines again show the results obtained for pure 1σg or pure 1σu hole states.

The relative contributions of different terms in the fitted curve is I(1∆g) : I(
1Σ+

g ) = 1 : 0.87.

For the 1σu state agreement with experiment is only qualitative. But after adding the con-

tribution of the state of the opposite parity shown by solid lines in Fig. 6 the agreement with

experiment is becoming quite satisfactory. The amount of admixture is defined by fitting to

the experiment.

Finally, at KER between 10.2 and 11 eV three terms are contributing to the angu-

lar distributions shown in Fig. 7, namely, (2σu)
−1(1πu)

−1 1Πg,
1Σ+

g (3) (see Fig. 2), and

(3σg)
−1(2σu)

−1 1Σu. The last term is responsible for several discrete transitions appearing

at these KERs. The characteristic features of these angular distributions are defined basically

by the (2σu)
−1(1πu)

−1 1Πg term. Namely, this term gives the main contribution at the angles

70◦ and 110◦ for the 1σg hole state and at 45◦, 90◦, and 135◦ for the 1σu hole state. As to the
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FIG. 7: (Color online) The same as in Figs. 5c,d for KER energies from 10.2 to 11 eV. Theoretical

Auger transitions to the doubly charged molecular ion states (2σu)
−1(1πu)

−1 1Πg, (1πu)
−2 1Σ+

g

and (3σg)
−1(2σu)

−1 1Σu are included.

1Σ+
g (3) state, from the calculations of Ågren [37] follows that though the main configuration

contributing to this state is (2σu)
−2, the admixture of other configurations like (1πu)

−2 is sub-

stantial. Since in our calculations the configuration interaction is not taken into account, we

included into our fitting two separate configurations, (2σu)
−2 and (1πu)

−2. The ratio of dif-

ferent theoretical contributions to the fitted curve is I(1Πg) : I(
1Σ+

g ) : I(
1Σu) = 1 : 0.2 : 0.12.

The results of fitting are again in a reasonable agreement with the experiment.

The contributions of different triplet final states have not been identified in our fittings due

to their small contribution as was already mentioned earlier. Remaining difference between

theory and experiment can be explained by approximations accepted in our calculations. In

particular, the calculated Auger electron angular distributions correspond to a fixed equilib-

rium internuclear distance, while in experiment the internuclear distance is varying inside the

FC region. Evidently, the Auger electron angular distributions depend on the internuclear

distance.

Another source of error is connected with the description of the doubly charged final ion

state. We calculated the angular distributions for a well defined configuration of the final

states, while calculations of potential energy curves for N2+
2 demonstrated that configuration

mixing plays an important role [34-37]. Fortunately, the main final states, giving the principal

contribution to the Auger electron spectra, namely (3σg)
−1(1πu)

−1 1Πu, (1πu)
−2 1Σ+

g , (1πu)
−2

1∆g, and (2σu)
−1(1πu)

−1 1Πg, can be represented sufficiently well by a single configuration

[37].



When separating the contribution of the 1σu state at the angles 115−150◦ and 295−330◦

it is evident from Fig. 1 that the contribution of the 1σg state is not negligible, so that the

neglect of the interference term in equation (3) is not well justified. But its inclusion makes

the calculations much more laborious. One can mention also a possible contribution of many

electron correlations beyond the HF approximation used in this paper. It is difficult to give

a numerical estimate of all these effects. Since the degree of agreement between theory and

experiment in figs. 5-7 is quite satisfactory, all possible theoretical improvements mentioned

above hardly can change the principal conclusions.

C. Discussion of KER spectrum

Fig. 8 shows the total KER spectrum for all Auger decay channels (that is without

coincidence with photoelectrons and integrated over the angle θ relative to the molecular

axis). This spectrum contains several strong discrete lines and a continuous contribution.

Qualitatively, this spectrum is similar to the KER spectrum observed in [11] by electron

scattering. According to the results demonstrated above, a broad maximum between 7 and

10 eV is mainly formed by the transition to the (1πu)
−2 1∆g state. It coincides with the

region where the corresponding potential energy curve crosses the Frank-Condon region (see

Fig. 2). To trace the contribution of this final state more precisely, we selected from the data

shown in Fig. 4 the angles corresponding to the Auger electron emission perpendicular to

the molecular axis (85− 95◦). The corresponding results are shown in Figs. 9c,e for the 1σg

and 1σu hole states separately, and in Fig. 9a for the sum of these two states. As is evident

from theoretical angular distributions shown in Fig. 3, for the 1σg hole state practically only

one 1∆g term is contributing in this direction. According to Fig. 9c, this contribution as

a function of KER at first increases, and then decreases inside the FC region which is in

accord with the behavior of the zero order vibrational wave function of the ground state of

N2.

In the KER energy region between 6.8 and 7.5 eV a substantial contribution in Fig. 8 is

given also by the transition to the (3σg)
−1(1πu)

−1 1Πu final state. This is in agreement with

the position of the corresponding potential energy curve inside the FC region in Fig. 4. It is

important to mention that due to the potential barrier (at the internuclear distance about

1.8 Å) the contribution of this state inside the FC region is visible only at the internuclear
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FIG. 8: Total experimental Auger electron KER spectrum (in arbitrary units), which is the sum

of contributions of the 1σg and 1σu states integrated over all Auger electron emission angles.

distances smaller than 1.1 Å. Due to that its contribution has a sudden jump at KER≈

6.8 eV, at lower KER energies the fast dissociation is not possible. This sudden jump is

a characteristic feature of the KER spectrum in Fig. 8. Finally, the maximum between

10.3 and 12 eV is formed mainly by the (2σu)
−1(1πu)

−1 1Πg state. This contribution is also

seen in Fig. 9e where there is a sharp increase of intensity starting from 10.3 eV. This is in

accord with the behavior of the theoretical Auger electron angular distribution for the 1Πg

term for the 1σg hole state which has a maximum at the angle 90◦ (see Fig. 3). There are

two calculations of the potential energy curve for this state shown in Fig. 2 which do not

coincide well within the FC region. The sharp increase of the Auger electron intensity at

KER=10.3 eV definitely testifies to the presence of some potential barrier like in the case of

the 1Πu final state, or at least to a non-monotonic decrease of the potential energy curve with

increasing internuclear distance like in the calculations of Taylor [35]. But in the latter case

the position of the potential energy curve inside the FC region does not fit the position of

the maximum in the experimental KER spectrum. Therefore we conclude that the potential

energy curve for the 1Πg dicationic state needs to be calculated more accurately.

The contribution of the (1πu)
−2 1Σ+

g state does not produce a well separated maximum

in the total KER spectrum shown in Fig. 8. To separate the contribution of Σ states we

show in Figs. 9b,d,f the parts of the spectrum of Fig. 4 in the direction of the molecular
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FIG. 9: Auger electron intensities integrated over the angles 90◦ ± 5◦, that is perpendicular to the

molecular axis ((a), (c), and (e), left column), and over the angles 0◦ ± 5◦ plus 180◦ ± 5◦, that is

parallel to the molecular axis ((b), (d), and (f), right column). Upper line: without separation of

the contributions of the 1σg and 1σu hole states ((a) and (b)), the second line: contribution of only

1σg hole state ((c) and (d)), the third line: contribution of only 1σu hole state ((e) and (f)).

axis, that is in the regions −5◦ − +5◦ and 175 − 185◦. For the 1σg hole state in Fig. 9d

there are two broad maxima in the Auger electron intensity along the molecular axis which

must be connected with the Σ terms (Π and ∆ terms do not contribute along the molecular

axis). The first of these maxima corresponds to the (1πu)
−2 1Σ+

g state, which is in agreement

with the behavior of the corresponding potential energy curve shown in Fig. 2. The second

maximum is most probably produced by the 1Σ+
g (3) state also shown in Fig. 2 which is

connected mainly with the (2σu)
−2 configuration. Its position in Fig. 2 is shifted upwards

by about 4 eV as compared to other potential energy curves contributing at KER energies

studied by us which means that the corresponding state dissociates into the pair of excited

atomic ions N+(1D)+N+(1D) or into N+(3P ) + N+(1S).

From the analysis of the Auger electron angular distributions presented in Fig. 4 we can



conclude that a strong discrete transition at KER = 6.8 eV corresponds to the (2σu)
−1(3σg)

−1

3Σu state. Two other strong discrete transitions at KER=10.32 and 10.54 eV can be unam-

biguously indentified as transitions to the (2σu)
−1(3σg)

−1 1Σ+
u state which is in agreement

with the identification made earlier by Lundqvist et al [11]. This is supported by the pres-

ence of contribution of these lines along the molecular axis in Figs. 9d,f for both 1σg and

1σu shells in accord with the corresponding theoretical angular distributions shown in Fig.

3.

V. CONCLUSIONS

We demonstrated that the measurement in coincidence of photoelectrons and Auger elec-

trons together with the singly charged atomic ions produced by dissociation of doubly charged

molecular ion allows separating Auger decay channels corresponding to the 1σg and 1σu hole

states of N2 without need to separate these transitions in energy. In addition, it becomes

possible to disentangle the contributions of different repulsive doubly charged molecular ion

states as a function of KER energy by comparison with corresponding theoretical Auger

electron angular distributions in the molecule fixed frame. This allows to follow experi-

mentally the behavior of the potential energy curves for dicationic final states within the

Frank-Condon region. Presentation of the Auger electron angular distributions as a function

of kinetic energy release of two atomic ions opens a new dimension in the study of Auger

decay. In particular, one can follow the contribution of a given Auger transition as a function

of internuclear distance. To the best of our knowledge, that can not be done by any other

method. The strongest discrete lines can also be identified by this method. The method can

be used at different photon energies and with different light polarization, though circularly

polarized light seems to give a better resolution of contributions of the 1σg and 1σu hole

states. Evidently, this method is applicable to other homonuclear diatomic molecules.
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Phys. Rev. Lett. 88, 073002 (2002).
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