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California 94720-1730
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Abstract — We investigate the accuracy of the recently proposed nonclassical transport equation. This equation
contains an extra independent variable compared to the classical transport equation (the path length s), and
models particle transport in homogenized random media in which the distance to collision of a particle is not
exponentially distributed. To solve the nonclassical equation, one needs to know the s-dependent ensemble-
averaged total cross section �t(�, s) or its corresponding path-length distribution function p(�, s). We consider
a one-dimensional (1-D) spatially periodic system consisting of alternating solid and void layers, randomly
placed along the x-axis. We obtain an analytical expression for p(�, s) and use this result to compute the
corresponding �t(�, s). Then, we proceed to solve numerically the nonclassical equation for different test
problems in rod geometry; that is, particles can move only in the directions � � �1. To assess the accuracy of
these solutions, we produce benchmark results obtained by (i) generating a large number of physical realizations
of the system, (ii) numerically solving the transport equation in each realization, and (iii) ensemble-averaging the
solutions over all physical realizations. We show that the numerical results validate the nonclassical model; the
solutions obtained with the nonclassical equation accurately estimate the ensemble-averaged scalar flux in this
1-D random periodic system, greatly outperforming the widely used atomic mix model in most problems.

Keywords — Nonclassical transport, random media, atomic mix.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

The classical theory of linear particle transport defines
the total cross section �t as independent of the path length s
(the distance traveled by the particle since its previous inter-
action) and of the direction of flight �. This definition leads
to an exponential probability density function for the dis-
tance to collision of a particle:

p(s) � �te
��ts . (1)

However, a nonexponential attenuation law for the
particle flux arises in certain inhomogeneous media in
which the scattering centers are spatially correlated. This
nonclassical behavior occurs in certain important applica-

tions, such as neutron transport in pebble bed reactors
(PBRs) [in which a nonexponential p(s) arises due to the
pebble arrangement within the core] and photon transport
in atmospheric clouds (in which the locations of the water
droplets in the cloud seem to be correlated in ways that
measurably affect the radiative transfer within the cloud).

An approach to this type of nonclassical transport prob-
lem was recently proposed1,2 with the assumption that the
positions of the scattering centers are correlated but indepen-
dent of direction �. The existence and uniqueness of solu-
tions are rigorously discussed in Ref. 3. This nonclassical
theory was extended in Ref. 4 to include angular-dependent
path-length distributions to investigate anisotropic diffusion
of neutrons in three-dimensional PBR cores.

A similar kinetic equation with path length as an inde-
pendent variable was rigorously derived for the periodic*E-mail: richard.vasques@fulbrightmail.org

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 185 · 78 –106 · JANUARY 2017
© American Nuclear Society

DOI: http://dx.doi.org/10.13182/NSE16-35

78

http://dx.doi.org/10.13182/NSE16-35


Lorentz gas in a series of papers by Golse et al. (see Ref. 5
for a review) and by Marklof and Strömbergsson.6,7 Further-
more, related work by Grosjean8 considers a generalization
of neutron transport that includes arbitrary path-length dis-
tributions, and presents a derivation of diffusion solutions for
infinite isotropic point and plane source problems.

Assuming monoenergetic transport and isotropic scat-
tering, the nonclassical linear Boltzmann equation with
angular-dependent path-length distributions and isotropic
source is written as

��
�s

(x, �, s) 	 � · 
�(x, �, s) 	 �t(�, s)�(x, �, s)

�
�(s)
4� �c �

4�
�

0



�t (�', s')�(x, �', s')ds'd�' 	 Q(x)� ,

(2)

where

x � (x, y, z) � position,

� � (�x, �y, �z) � direction of flight (with |�| � 1),

� � nonclassical angular flux,

c � scattering ratio (such that the scat-
tering cross section �s � c�t),

Q � source.

Here, the nonclassical angular-dependent ensemble-
averaged total cross section �t(�, s) is defined as the
probability (ensemble-averaged over all physical realiza-
tions) that a particle, scattered or born at any point x and
traveling in the direction �, will experience a collision
between x � s� and x � (s � ds)�.

The underlying path-length distribution and the above
nonclassical cross section are related4 by

p(�, s) � �t(�, s) exp�� �
0

s

�t (�, s')ds'� . (3)

It has been shown that, if p(s) is independent of �,
Eq. (2) can be converted to an integral equation for the scalar
flux that is identical to the integral equation that can be
constructed for certain diffusion-based approximations.9,10

Moreover, if the path-length distribution function is
an exponential as given in Eq. (1), then Eq. (2) reduces to
the classical linear Boltzmann equation

� · 
�(x, �) 	 �t�(x, �)

�
1

4� � �
4�

�s�(x, �')d�' 	 Q(x)� (4a)

for the classical angular flux

�(x, �) � �
0



�(x, �, s)ds . (4b)

Numerical results have been provided for the asymp-
totic diffusion limit of this nonclassical theory2,11–13 and
for moment models of the nonclassical equation in the
diffusive regime.14 However, very few results have been
presented for the nonclassical transport equation. This is
because one must know �t(�, s), or �t(s) in the case of
angular-independent path lengths, to solve Eq. (2).

In this paper, we investigate the accuracy of the one-
dimensional (1-D) nonclassical transport equation. We
consider a 1-D random periodic system: a spatially peri-
odic system consisting of alternating layers, randomly
placed on the x-axis. This means that we know only which
material is present at any given point x in a probabilistic
sense. The 1-D version of Eq. (2) is written as

��
�s

(x, �, s) 	 �
��
�x

(x, �, s) 	 �t(�, s)�(x, �, s)

�
�(s)

2 �c �
�1

1 �
0



�t (�', s')�(x, �', s')ds'd�' 	 Q(x)� .

(5)

This system was chosen because we can obtain an
analytical expression for the distribution function p(�, s)
of the distance to collision of a particle in the direction �.
Then, using the identity4

�t(�, s) �
p(�, s)

1 � �
0

s

p(�, s')ds'

, (6)

one can obtain a solution for Eq. (5).
The numerical results presented in this paper consider

transport in rod geometry, in which particles can only
move in the directions � � �1. Solutions are given for a
total of 72 solid-void test problems. To analyze the accu-
racy of these results, we compare them against benchmark
numerical results, obtained by ensemble-averaging the
solutions of the transport equation over a large number of
physical realizations of the random system. Furthermore,
we compare the performance of the nonclassical model
against the widely used atomic mix model.

This paper is an expanded version of a recent confer-
ence paper.15 The remainder of this paper is organized as
follows. In Sec. II, we sketch the 1-D random periodic
system under consideration. In Sec. III.A, we analytically
derive the path-length distribution function for the peri-
odic random system; explicit expressions for solid-void
media are given in Sec. III.B. In Sec. IV, we define the
parameters of the test problems and describe the bench-
mark, atomic mix, and nonclassical approaches to solve
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them. In Sec. V, we examine the numerical results that
confirm the accuracy of the nonclassical model. We con-
clude with a discussion in Sec. VI.

II. THE 1-D RANDOM PERIODIC SYSTEM

Let us consider a 1-D physical system similar to the
one introduced in Ref. 16, consisting of alternating layers
of two distinct materials (labeled 1 and 2) periodically
arranged. The period is given by � � �1 � �2, where �i

represents the length of each layer of material i � �1, 2�. A
sketch of the periodic system is given in Fig. 1.

This periodic system is randomly placed in the infi-
nite line �  � x � , such that the probability Pi of
finding material i in a given point x is �i/�. Therefore, the
cross sections and source are stochastic functions of
space; that is, if x is in material i, then

�t(x) � �ti , (7a)

�s(x) � ci�ti , (7b)

and

Q(x) � Qi(x) , (7c)

where �ti, ci, and Qi represent the total cross section,
scattering ratio, and source in material i, respectively.

III. THE PATH-LENGTH DISTRIBUTION FUNCTION

Given a physical realization of the 1-D system
described in Sec. II, let us examine a particle that is born
(or scatters) at a point x in a layer of material i � �1, 2�
with direction of flight � � 0. We define x0 to be the
horizontal distance between x (the point at which the colli-
sion or birth event took place) and the next intersection
between layers in the direction �. We also define that (1)
pAi

(x0, �, s) is the probability that a particle born or scattered
in material i, at a horizontal distance x0 from the next inter-
section, with direction of flight �, will travel a distance s
without colliding; and (2) pBi

(x0, �, s)ds is the probability
that a particle born or scattered in material i, at a horizontal
distance x0 from the next intersection, with direction of flight
�, having traveled a distance s without colliding, will expe-
rience a collision between s and s � ds.

III.A. General Medium

For � � 0, we can write

pAi
(x0, �, s) � �e��tis, if 0 � s|�| � x0

(e��tix0 /|�|)(e��tj (s�x0 /|�|)), if x0 � s|�| � x0 	 �j

(e��ti (s��j / |�|))(e��tj�j / |�|), if x0 	 �j � s|�| � x0 	 �

É

(8a)

and

pBi
(x0, �, s) � ��ti, if 0 � s|�| � x0

�tj, if x0 � s|�| � x0 	 �j

�ti, if x0 	 �j � s|�| � x0 	 �

É

(8b)

such that

pAi
(x0, �, s) � �e��tis, if 0 � s|�| � x0

e��tjs� (�ti��tj) (x0	n�i)/ |�|, if x0 	 n� � s|�| � x0 	 n� 	 �j

e��tis� (�tj��ti) (n	1)�j / |�|, if x0 	 n� 	 �j � s|�| � x0 	 (n 	 1)�
(9a)

and

pBi
(x0, �, s) � ��ti, if 0 � s|�| � x0

�tj, if x0 	 n� � s|�| � x0 	 n� 	 �j

�ti, if x0 	 n� 	 �j � s|�| � x0 	 (n 	 1)� .
(9b)

Fig. 1. Sketch of the periodic medium.
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Here, n � 0, 1, 2, . . .; i, j � �1, 2�; i � j; and
� � �i � �j. Let us define pCi

(x0, �, s)ds as the probability
that a particle born or scattered in material i, at a horizontal
distance x0 from the next intersection, with direction of flight �,
will experience its first collision while traveling a distance
between s and s � ds. Then, it is clear that

pCi
(x0, �, s)ds � pAi

(x0, �, s) � pBi
(x0, �, s)ds , (10)

and the ensemble-averaged path-length distribution func-
tion of particles born or scattered in material i with direc-
tion of flight � is given by

pi(�, s) �
1
�i

�
0

�i

pCi
(x0, �, s)dx0 . (11)

Finally, the ensemble-averaged path-length distribu-
tion function for particles born anywhere in the 1-D

random periodic system with direction of flight � is given
by the weighted average

p(�, s) � �1 p1(�, s) 	 �2 p2(�, s) , (12)

where �i is the probability that any given birth or scatter-
ing event takes place in material i. It is easy to see that if
�t1 � �t2, Eqs. (9) through (12) yield the exponential

p(�, s) � p(s) � �t1e
��t1s , (13)

as given in Eq. (1).

III.B. Solid-Void Medium

The numerical results included in this paper are for
solid-void systems. We define material 2 as the void, such
that �2 � �t2 � Q2 � 0, �1 � 1, and p(�, s) � p1(�, s).
Depending on the lengths �i of the material layers, Eq. (11)
yields the following expressions for p(�, s):

Case 1: �1 � �2

p(�, s) � ��t1

�1
(n� 	 �1 � s|�|)e��t1 (s�n�2 /|�|), if n� � s|�| � n� 	 �1

0, if n� 	 �1 � s|�| � n� 	 �2

�t1

�1
(s|�| � n� � �2)e

��t1 [s� (n	1)�2 /|�|], if n� 	 �2 � s|�| � (n 	 1)� .

(14a)

Case 2: �1 � �2

p(�, s) � ��t1

�1
(n� 	 �1 � s|�|)e��t1 (s�n�2 /|�|), if n� � s|�| � n� 	 �1

�t1

�1
(s|�| � n� � �2)e

��t1 [s� (n	1)�2 /|�|], if n� 	 �2 � s|�| � (n 	 1)� .
(14b)

Case 3: �1 � �2

p(�, s) � ��t1

�1
(n� 	 �1 � s|�|)e��t1 (s�n�2 /|�|), if n� � s|�| � n� 	 �2

�t1

�1
[(n� 	 �2 � s|�|)(1 � e�t1�2 /|�|) 	 �1 � �2]e

��t1 (s�n�2 /|�|), if n� 	 �2 � s|�| � n� 	 �1

�t1

�1
(s|�|�n� � �2)e

��t1 [s� (n	1)�2 /|�|], if n� 	 �1 � s|�| � (n 	 1)� ,

(14c)

where n � 0, 1, 2, . . . The first and second moments of p(�, s) in Eq. (14) are given by

s � �
0



sp(�, s)ds �
�1 	 �2

�t1�1
(15a)

and
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s2(�) � �
0



s2p(�, s)ds �
2�1 	 4�2

�t1
2 �1

	
�2

2

�t1�1 |� | � e�t1�1 / |�| 	 1
e�t1�1 / |�| � 1 � . (15b)

We point out that the mean free path s does not
depend on the direction � and it is equivalent to the
inverse of the volume-averaged total cross section. On
the other hand, the mean square free path s2 is a
function of |�|.

Figure 2 depicts examples of path-length distributions
and nonclassical cross sections assuming �t1 � 1 and
direction of flight � � �1. Figures 2a.i, 2a.ii, and 2a.iii
compare the numerically obtained (through Monte Carlo)
p(s) and the analytical expressions given in Eq. (14).
Figures 2b.i, 2b.ii, and 2b.iii show the corresponding �t(s)
obtained with Eq. (6). The sawtooth behavior of �t(s) is
consistent with the physical process and can be easily
understood. For instance, for �1 � �2 � 1 (case 2):

1. A particle is born or scatters in material 1. The
path length s is set to 0, and �t(0) � �t1 � 1.

2. At s � 1, the x-coordinate must be in material 2.
Thus, �t(1) � �t2 � 0.

3. At s � 2, the x-coordinate must be back in
material 1. Thus, �t(2) � �t1 � 1.

The exceptions would be particles born exactly at
interface points, which form a set of measure zero.

IV. TEST PROBLEMS AND MODELS

The test problems simulated in this paper consider
only rod geometry transport (particles can only travel in
the directions � � �1) taking place in a finite 1-D
random periodic system with vacuum boundaries. The
classical transport equation is

�
���

�x
(x) 	 �t(x)��(x) �

�s(x)

2
��	(x) 	 ��(x)�

	
Q(x)

2
, �X � x � X (16a)

and

�	(�X) � ��(X) � 0 , (16b)

where ��(x) � �(x, � � �1) and the stochastic param-
eters �t(x), �s(x), and Q(x) are given by Eq. (7).

We are interested in how accurately the nonclassical
model predicts the ensemble-averaged scalar flux 	�
 (over
all physical realizations). To this end, we compare the

nonclassical results against benchmark results obtained by
averaging the solutions of the transport equation over a large
number of physical realizations of the random system.
Finally, we compare the performance of the nonclassical
model against the widely known atomic mix model.

We consider two sets of problems (A and B), each
divided into three subsets according to the choices of the
lengths �i of the material layers. For each subset, we present
results for 12 different choices of scattering ratios ranging
from purely absorbing to diffusive; namely c1 � {0.0; 0.1;
0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.95; 0.99}. We assume
vacuum boundaries at x � �10. Material 2 is defined as a
void, and the parameters of material 1 are given in Table I.
The source Q1(x) is defined as

Q1(x) � �q1, if �0.5 � x � 0.5
0, otherwise ;

(17)

that is, particles are born near the center of the random
system. The reason for this choice of source region can be
visualized in Fig. 3, in which the wavy pattern that arises
from the periodic structure can be seen in Fig. 3a. If we
allow Q1 � 1 for � X � x � X, the solution is smoother,
and the pattern is harder to identify (Fig. 3b).

IV.A. The Benchmark Model

The random quality of the 1-D system arises from its
random placement in the x-axis. To obtain a single phys-
ical realization, one can simply choose a continuous
segment of two full layers (one of each material) and
randomly place the coordinate x � 0 in this segment,
which also defines the boundaries �X.

Given this fixed realization of the system, the cross
sections and source in Eq. (16) are now deterministic
functions of space. We use the diamond spatial differenc-
ing scheme with mesh interval 	x � 2
7 to solve for the
angular flux �, obtaining the scalar flux �(x) �

�	(x) 	 ��(x) (see Fig. 4). This procedure is repeated
for different realizations of the random system. Finally,
we calculate the ensemble-averaged benchmark scalar
flux 	�B
(x) by averaging the resulting scalar fluxes over
all physical realizations (as shown in Fig. 3a).

Clearly, the number of different realizations that can
be computed is limited by the spatial discretization, with
the maximum number of different realizations being �/	x.
For all test problems in this paper, differences in the
numerical results for 	�B
(x) were negligible when
increasing the number of mesh intervals and realizations.
Thus, we have concluded that these benchmark results are
adequately accurate for the scope of this work.
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Fig. 2. Path-length distribution functions (left column) and corresponding nonclassical cross sections (right column) (assuming
� � �1 and �t1 � 1.0). (a.i) Case 1: �1 � 0.5 and �2 � 1.0. (b.i) Case 1: �1 � 0.5 and �2 � 1.0. (a.ii) Case 2: �1 � �2 �
1.0. (b.ii) Case 2: �1 � �2 � 1.0. (a.iii) Case 3: �1 � 1.0 and �2 � 0.5. (b.iii) Case 3: �1 � 1.0 and �2 � 0.5.
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IV.B. The Atomic Mix Model

The atomic mix model17,18 consists of replacing in the
classical transport equation the stochastic parameters (cross
sections and source) by their volume averages. This model is
known to be accurate in 1-D geometry when the material
layers are optically thin. The atomic mix equation in rod
geometry for the test problems in this paper is given by

�
�	��


�x
(x) 	 	�t
	��
(x)

�
	�s


2
�	�	
(x) 	 	��
(x)� 	

	Q
(x)
2

,

�X � x � X,
(18a)

and

	�	
(�X) � 	��
(X) � 0 , (18b)

where

	�t
 � P1�t1 	 P2�t2 �
�1

�
�t1 , (18c)

	�s
 � P1c1�t1 	 P2c2�t2 �
�1

�
c1�t1 , (18d)

and

	Q
(x) � P1Q1(x) 	 P2Q2(x) �
�1

�
Q1(x) . (18e)

We solve Eq. (18) for the ensemble-averaged angular flux
	�
 using a diamond spatial differencing scheme with mesh
interval 	x � 2
7. The ensemble-averaged atomic mix scalar
flux is given by 	�AM
(x) � 	�	
(x) 	 	��
(x). An example
is depicted in Fig. 5.

IV.C. The Nonclassical Model

For the rod geometry test problems included in this
work, we rewrite the nonclassical Eq. (5) in an initial
value form (see Ref. 4) as

���

�s
(x, s) �

���

�x
(x, s) 	 �t(s)��(x, s) � 0,

�X � x � X, s � 0 , (19a)

TABLE I

Parameters of Test Problems

Set �1 �2 �t1 q1 Set �1 �2 �t1 q1

A1 0.5 1.0 1.0 1.0 B1 20/3 40/3 1.5 1.5
A2 1.0 1.0 1.0 1.0 B2 10 10 1.0 1.0
A3 1.0 0.5 1.0 1.0 B3 40/3 20/3 0.75 0.75

Fig. 3. Ensemble-averaged scalar flux for problem set A2 with c1 � 0.5. (a) Source Q1 given by Eq. (17). (b) Source Q1

for � 10 � x � 10.

Fig. 4. Scalar flux in a fixed realization of problem set A2

with c1 � 0.5.
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��(x,0) �
c
2 �

0



�t (s')[�	(x, s') 	 ��(x, s')]ds'

	
	Q
(x)

2
, � X � x � X , (19b)

and

�	(�X, s) � ��(X, s) � 0, s � 0 , (19c)

where ��(x, s) � �(x, � � �1, s), 	Q
(x) is given by
Eq. (18e), and the nonclassical cross section �t(s) �
�(� � �1, s) is given by Eqs. (6) and (14) (see Fig. 2).

For the numerical solution of this system, we can
interpret the path length s as a pseudotime variable. We
then solve Eq. (19) using a finite-volume method with
explicit pseudotime discretization according to Ref. 19
(these schemes are usually called HLL schemes after
Harten, Lax, and van Leer). Specifically, we adapt the
scheme introduced in Ref. 14 for moment models of the
nonclassical transport equation.

This method is of first order in the pseudotime vari-
able s and in the spatial variable x. We choose a uniform
grid (xm, sn), where xm	1 � xm 	 �x for all m � �, and
sn	1 � sn 	 �s for all n � �0. Furthermore, we define
�m

n,� � ��(xm, sn), Qm � 	Q
(xm), and �t
n � �t(s

n). The
fully discretized system reads

�m
n	1,� � �m

n,�

�s
�

�m	1
n,� � �m�1

n,�

2�x

�
�m	1

n,� � 2�m
n,� 	 �m�1

n,�

2�x
	 �t

n�m
n,� � 0 (20a)

and

�m
0,� �

c
2 �

n�0



�n�t
n(�m

n,	 	 �m
n,�) 	

Qm

2
, (20b)

for some infinite quadrature rule given by the weights �n.
The second-order central differences arise as a numerical
diffusion term, which is typical for HLL finite-volume
schemes.

In our calculations, we cut off the integration at smax �
4X � 40 and use the trapezoidal rule. We use the same
mesh interval 	x � 2
7 as for the previous models, and a
Courant-Friedrichs-Lewy condition (CFL) number 0.5
(that is, 	s � 2
8). Because of the coupling of the initial
value to the full solution in Eq. (19), this system is solved
in a source-iteration manner, where we iterate between
Eqs. (20a) and (20b). Finally, the ensemble-averaged non-
classical scalar flux is given by

	�NC
(x) � �
0

40

[�	(x, s) 	 ��(x, s)]ds .

An example is depicted in Fig. 6.
It was shown in Ref. 14 that the contraction rate for the

source iteration is given by the scattering ratio c. The max-
imum number of source iterations to converge the solution in
problem set A was 417 (problem A3 with c1 � 0.99), and in
problem set B it was 251 (problem B3 with c1 � 0.99).

V. NUMERICAL RESULTS

The atomic mix model inherently approximates the
path-length distribution function by the exponential
p(s) � 	�t
e�	�t
s. The nonclassical model uses the correct
p(�, s) that was analytically obtained in Eq. (14). In this

Fig. 5. Atomic mix scalar flux for problem set A2 with
c1 � 0.5.

Fig. 6. Nonclassical scalar flux for problem set A2 with
c1 � 0.5.
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section, we compare the accuracy of these two models in
predicting the benchmark solutions obtained for the test
problem sets A and B.

For a better analysis of these results, we define the
relative errors of the models with respect to the benchmark
solutions as

ErrAM �
	�AM
(x) � 	�B
(x)

	�B
(x)

� Atomic Mix Relative Error (21a)

and

ErrNC �
	�NC
(x) � 	�B
(x)

	�B
(x)

� Nonclassical Relative Error . (21b)

V.A. Problem Set A

The lengths of the material 1 layers in this set are the
same order as a mean free path; that is, �1�t1 � O(1). It
has been shown that, in the diffusive asymptotic limit, the
diffusion coefficient of such problems is correctly esti-
mated by the atomic mix model.20 For the rod geometry
problems in set A, this diffusion coefficient is given by

D �
�1 	 �2

�t1�1
�

1
	�t


� �3.0, for set A1

2.0, for set A2

1.5, for set A3 .
(22)

Therefore, we expect the atomic mix predictions of the
ensemble-averaged scalar flux to improve as the scattering
ratio increases and the system becomes more diffusive.

On the other hand, the diffusion coefficient obtained
by applying the same asymptotic analysis to the nonclas-
sical equation (see the Appendix) is given by

DNC �
1
2

s2

s
� �3.0277, for set A1

2.0410, for set A2

1.5137, for set A3 ,
(23)

where s and s2 are defined in Eq. (15). The solution of the
nonclassical transport equation has been shown to con-
verge to the solution of the nonclassical diffusion equation
in the diffusive asymptotic limit.21 Thus, we expect the
nonclassical predictions of the ensemble-averaged scalar
flux to deteriorate as the system becomes diffusive,
underestimating the correct solution.

Figure 7 depicts the ensemble-averaged scalar fluxes
obtained with each model for the purely absorbing case
(Figs. 7a.i, 7a.ii, and 7a.iii) and for the diffusive case c1 �
0.99 (Figs. 7b.i, 7b.ii, and 7b.iii). The benchmark solu-
tions present a sinuous shape due to the periodic structure

of the random systems. This pattern becomes less notice-
able as the solid/void ratio increases, and as the system
becomes more diffusive. It is important to point out that
the nonclassical model is able to capture this sinuous
behavior, while the atomic mix model yields a smooth
curve.

It is easier to analyze the accuracy of these models by
examining the relative errors to the benchmark solution.
Figures 8 through 13 show the (absolute) percentage error
of the nonclassical and atomic mix predictions of the
ensemble-averaged scalar flux with respect to the
benchmark solutions. The error plots confirm the theoret-
ical predictions; the atomic mix becomes more accurate as
the system becomes more diffusive, while the accuracy of
the nonclassical model decreases.

The nonclassical model clearly outperforms the atomic
mix for all the problems in A1 and for most of the problems
in sets A2 and A3. The exceptions are for c1 � 0.95 and
c1 � 0.99, in which the accuracy of the atomic mix model
overtakes that of the nonclassical. Tables II, III, and IV show
that the nonclassical model tends to underestimate the scalar
flux, while the atomic mix overestimates the solution. The
nonclassical model never reaches an error larger than 3.7%
in estimating the solution peak (at x � 0). On the other hand,
the atomic mix estimate exceeds 5% error in several prob-
lems, reaching a maximum of 8.24%.

It can also be seen from the results at the boundaries that
the atomic mix model generates a solution with a large tail
and it greatly overestimates the outgoing flux, in some prob-
lems by several orders of magnitude. The nonclassical
model, however, never reaches an error larger than 4.7%.

V.B. Problem Set B

Following the work presented in Sec. III.B, Fig. 14
shows the path-length distributions and nonclassical cross
sections of problem set B. We have chosen the parameters
of this set such that

1. The optical thickness of each layer of material 1
is one order of magnitude larger than a mean free path:
�1�t1 � 10.

2. The volume-averaged parameters remain the
same in all problems in the set: 	�t
 � 	q1
 � 0.5.

The large optical thickness implies that the problems
in this set are not the type of problems for which the
atomic mix model is known to yield the correct asymp-
totic diffusive limit. By fixing the volume-averaged
parameters, the atomic mix model will yield exactly the
same ensemble-averaged scalar flux for all problems in set
B (which is the same as in A2). The goal is to investigate
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Fig. 7. Ensemble-averaged scalar fluxes for problem set A. (a.i) Problem set A1 with c1 � 0.0. (b.i) Problem set A1 with c1 �
0.99. (a.ii) Problem set A2 with c1 � 0.0. (b.ii) Problem set A2 with c1 � 0.99. (a.iii) Problem set A3 with c1 � 0.0. (b.iii) Problem
set A3 with c1 � 0.99.
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Fig. 8. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set A1. (a) c1 �
0.0. (b) c1 � 0.1. (c) c1 � 0.2. (d) c1 � 0.3. (e) c1 � 0.4. (f) c1 � 0.5.
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Fig. 9. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set A1. (a) c1 �
0.6. (b) c1 � 0.7. (c) c1 � 0.8. (d) c1 � 0.9. (e) c1 � 0.95. (f) c1 � 0.99.
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Fig. 10. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set A2. (a) c1 �
0.0. (b) c1 � 0.1. (c) c1 � 0.2. (d) c1 � 0.3. (e) c1 � 0.4. (f) c1 � 0.5.
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Fig. 11. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set A2. (a) c1 �
0.6. (b) c1 � 0.7. (c) c1 � 0.8. (d) c1 � 0.9. (e) c1 � 0.95. (f) c1 � 0.99.
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Fig. 12. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set A3. (a) c1 �
0.0. (b) c1 � 0.1. (c) c1 � 0.2. (d) c1 � 0.3. (e) c1 � 0.4. (f) c1 � 0.5.
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Fig. 13. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set A3. (a) c1 �
0.6. (b) c1 � 0.7. (c) c1 � 0.8. (d) c1 � 0.9. (e) c1 � 0.95. (f) c1 � 0.99.
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whether the nonclassical model will outperform the
atomic mix for the diffusive cases.

Figure 15 depicts the ensemble-averaged scalar fluxes
obtained with each model for the purely absorbing case
(Figs. 15a.i, 15a.ii, and 15a.iii) and for the diffusive case
c1 � 0.99 (Figs. 15b.i, 15b.ii, and 15b.iii). The sinuous
pattern of the benchmark solution is easier to notice in set
B3, with the largest solid/void ratio. Similarly to the result
in set A, the nonclassical model is able to capture the
sinuous behavior. The atomic mix model generates the
same smooth solution for each choice of c1, and it is

unable to capture the differences in the scalar flux caused
by the different choices of �i, �ti, and qi.

Figures 16 through 21 show the percentage error of
the nonclassical and atomic mix predictions of the
ensemble-averaged scalar flux with respect to the bench-
mark solutions in logarithmic scale. The changes in the
accuracy of both models have a different pattern than in
problem set A. The atomic mix solutions tend to grossly
overestimate the ensemble-averaged scalar flux in most of
the system, with errors at x � 0 reaching 36% as seen in
Tables V, VI, and VII. Once x approaches the boundaries,
the atomic mix model systematically underestimates the

solution, with errors in the outgoing flux exceeding 50%
in most test problems and reaching over 80% in the least
diffusive systems.

Once again, the nonclassical model underestimates
the solution in diffusive systems. For most problems, the
nonclassical error in estimating the ensemble-averaged
scalar flux at x � 0 is less than 4%. The exceptions are the
most diffusive problems, with scattering ratios c1 � 0.95
and c1 � 0.99. Nevertheless, even in these diffusive cases,
the nonclassical model greatly outperforms the atomic
mix approach.

VI. CONCLUSION

This work presents an investigation of the accuracy of
the nonclassical transport theory in estimating the
ensemble-averaged scalar flux in 1-D random periodic
media. The analytical portion of the paper considers trans-
port in a slab consisting of alternating layers of any two
materials. The following simplifying assumptions are
made for the numerical simulations: (1) the 1-D system is
a periodic arrangement of solid and void layers randomly
placed in the x-axis; and (2) particle transport takes place

TABLE II

Ensemble-Averaged Scalar Fluxes for Problem Set A1

c 	�B
 	�AM
 	�NC
 ErrAM ErrNC

x � 0

0.0 0.1420 0.1537 0.1421 0.0824 0.0006
0.1 0.1509 0.1628 0.1509 0.0787 0.0002
0.2 0.1614 0.1734 0.1613 0.0747 
0.0001
0.3 0.1740 0.1862 0.1738 0.0706 
0.0006
0.4 0.1895 0.2021 0.1893 0.0662 
0.0012
0.5 0.2094 0.2223 0.2091 0.0616 
0.0019
0.6 0.2360 0.2493 0.2353 0.0567 
0.0026
0.7 0.2735 0.2876 0.2725 0.0515 
0.0036
0.8 0.3316 0.3469 0.3300 0.0462 
0.0048
0.9 0.4360 0.4541 0.4333 0.0413 
0.0063
0.95 0.5287 0.5496 0.5249 0.0397 
0.0072
0.99 0.6472 0.6728 0.6421 0.0395 
0.0079

x � 10

0.0 0.0063 0.0071 0.0061 0.1294 
0.0326
0.1 0.0076 0.0085 0.0074 0.1128 
0.0313
0.2 0.0093 0.0103 0.0091 0.0972 
0.0301
0.3 0.0116 0.0126 0.0113 0.0826 
0.0289
0.4 0.0148 0.0158 0.0143 0.0693 
0.0278
0.5 0.0191 0.0202 0.0186 0.0571 
0.0267
0.6 0.0255 0.0267 0.0248 0.0464 
0.0256
0.7 0.0354 0.0367 0.0345 0.0371 
0.0244
0.8 0.0520 0.0535 0.0508 0.0297 
0.0231
0.9 0.0841 0.0863 0.0823 0.0251 
0.0216
0.95 0.1141 0.1169 0.1117 0.0246 
0.0206
0.99 0.1533 0.1573 0.1503 0.0259 
0.0196

TABLE III

Ensemble-Averaged Scalar Fluxes for Problem Set A2

c 	�B
 	�AM
 	�NC
 ErrAM ErrNC

x � 0

0.0 0.2049 0.2213 0.2048 0.0798 
0.0006
0.1 0.2181 0.2347 0.2179 0.0760 
0.0009
0.2 0.2337 0.2506 0.2334 0.0720 
0.0013
0.3 0.2527 0.2698 0.2522 0.0677 
0.0019
0.4 0.2762 0.2936 0.2755 0.0631 
0.0026
0.5 0.3065 0.3243 0.3054 0.0582 
0.0035
0.6 0.3475 0.3658 0.3458 0.0527 
0.0049
0.7 0.4072 0.4263 0.4045 0.0467 
0.0069
0.8 0.5054 0.5255 0.5003 0.0398 
0.0100
0.9 0.7067 0.7291 0.6950 0.0316 
0.0165
0.95 0.9254 0.9502 0.9035 0.0267 
0.0237
0.99 1.2915 1.3204 1.2451 0.0223 
0.0359

x � 10

0.0 0.0017 0.0033 0.0018 0.9112 0.0057
0.1 0.0023 0.0040 0.0023 0.7419 0.0058
0.2 0.0031 0.0049 0.0031 0.5953 0.0063
0.3 0.0043 0.0063 0.0043 0.4695 0.0070
0.4 0.0060 0.0082 0.0060 0.3628 0.0075
0.5 0.0087 0.0111 0.0088 0.2733 0.0077
0.6 0.0132 0.0158 0.0133 0.1993 0.0072
0.7 0.0211 0.0241 0.0212 0.1390 0.0055
0.8 0.0371 0.0405 0.0372 0.0910 0.0016
0.9 0.0769 0.0811 0.0764 0.0536 
0.0070
0.95 0.1257 0.1305 0.1236 0.0384 
0.0162
0.99 0.2126 0.2185 0.2061 0.0278 
0.0305
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in rod geometry. This paper is an expanded version of a
recent conference paper,15 in which numerical solutions
for the nonclassical transport equation were provided for
the first time.

A total of 72 test problems are analyzed. We show
that the nonclassical theory greatly outperforms the
atomic mix model in estimating the ensemble-averaged
scalar flux for most problems and that it qualitatively
preserves the sinuous shape of the solution. The few cases
in which the atomic mix is more accurate are part of a
class of diffusive problems in which the atomic mix
model is known to converge to the correct diffusive limit
(diffusive problems in set A). In this small subset of
problems, the nonclassical model converges to a diffusion
solution with an unphysically large diffusion coefficient,
causing the nonclassical solution to underestimate the
ensemble-averaged scalar flux. However, for diffusive
problems that are not in the atomic mix limit (set B), the
nonclassical model is clearly superior to the atomic mix
approach.

This gain in accuracy comes at a cost: the path-length
distribution function p(s) [and its corresponding �t(s)]
must be known to solve the nonclassical transport
equation. Despite the extra work, it is our expectation that

the gain in accuracy will prove the effort worthwhile in
important nuclear systems where nonclassical transport
takes place, such as in PBR and boiling water reactor
cores. In particular, the nonclassical theory represents an
alternative to current methods that might yield more accu-
rate estimates of the eigenvalue and eigenfunction in a
criticality calculation.

Future work includes (1) performing a thorough
numerical investigation of the nonclassical theory in slab
geometry to validate our analytical results further, (2)
comparing the gain in accuracy against other models and
experimental data, and (3) dropping the periodic assump-
tion to investigate results in more realistic random media.
We point out that step 3 cannot be performed with the
analytical approach to obtain the path lengths presented in
this paper. It requires either a numerical approach to
estimate p(�, s), or a (much) more complex mathematical
theory.

APPENDIX

ONE-DIMENSIONAL ASYMPTOTIC ANALYSIS

Following Ref. 4, we scale the parameters of Eq. (5)
such that �t � O(1), 1 � c � O(ε2), Q � O(ε2),
��/�s � O(1), and ���/�x � O(ε), with ε ≪ 1. In this
scaling, Eq. (5) becomes

��
�s

(x, �, s) 	 ε�
��
�x

(x, �, s) 	 �t(�, s)�(x, �, s)

�
�(s)

2 �
�1

1 �
0



[1 � ε2(1 � c)]�t (�', s')

� �(x, �', s')ds'd�' 	 ε2�(s)
Q(x)

2
. (A.1)

Let us define �̂(x, �, s) such that

�(x, �, s)  �̂(x, �, s)
e� �0

s
�t (�,s')ds'

s
, (A.2)

where s �
1
2
��1

1 �0
sp(�, s)dsd�. Then, using Eq. (3),

Eq. (A.2) becomes the following equation for �̂(x, �, s):

��̂
�s

(x, �, s) 	 ε�
��̂
�x

(x, �, s)

�
�(s)

2 �
�1

1 �
0



[1 � ε2(1 � c)]p(�', s')

� �̂(x, �', s')ds'd�' 	 ε2�(s)s
Q(x)

2
. (A.3)

TABLE IV

Ensemble-Averaged Scalar Fluxes for Problem Set A3

c 	�B
 	�AM
 	�NC
 ErrAM ErrNC

x � 0

0.0 0.2732 0.2835 0.2730 0.0376 
0.0007
0.1 0.2908 0.3012 0.2905 0.0359 
0.0010
0.2 0.3117 0.3223 0.3112 0.0341 
0.0013
0.3 0.3369 0.3477 0.3363 0.321 
0.0018
0.4 0.3683 0.3793 0.3674 0.0300 
0.0023
0.5 0.4087 0.4201 0.4075 0.0277 
0.0031
0.6 0.4637 0.4754 0.4618 0.0252 
0.0041
0.7 0.5442 0.5564 0.5412 0.0224 
0.0056
0.8 0.6788 0.6919 0.6733 0.0192 
0.0081
0.9 0.9715 0.9868 0.9582 0.0157 
0.0137
0.95 1.3295 1.3481 1.3018 0.0140 
0.0209
0.99 2.0777 2.1055 2.0011 0.0134 
0.0369

x � 10

0.0 0.0004 0.0026 0.0004 4.8188 
0.0070
0.1 0.0006 0.0030 0.0006 3.6072 
0.0073
0.2 0.0009 0.0034 0.0009 2.6478 
0.0073
0.3 0.0014 0.0041 0.0014 1.8989 
0.0071
0.4 0.0022 0.0052 0.0022 1.3238 
0.0070
0.5 0.0036 0.0068 0.0036 0.8906 
0.0070
0.6 0.0062 0.0097 0.0061 0.5718 
0.0076
0.7 0.0114 0.0153 0.0113 0.3438 
0.0090
0.8 0.0237 0.0282 0.0235 0.1868 
0.0121
0.9 0.0618 0.0670 0.0605 0.0847 
0.0196
0.95 0.1198 0.1259 0.1164 0.0502 
0.0287
0.99 0.2570 0.2647 0.2449 0.0302 
0.0469
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Fig. 14. Path-length distribution functions (left column) and corresponding nonclassical cross sections (right column) for problem
set B. (a.i) Set B1: �1 � 20/3 and �2 � 40/3. (b.i) Set B1: �t1 � 1.5. (a.ii) Set B2: �1 � 10 and �2 � 10. (b.ii) Set B2: �t1 �
1.0. (a.iii) Set B3: �1 � 40/3 and �2 � 20/3. (b.iii) Set B3: �t1 � 0.75.
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Fig. 15. Ensemble-averaged scalar fluxes for problem set B. (a.i) Problem set B1: c1 � 0.0. (b.i) Problem set B1: c1 � 0.99. (a.ii) Problem set
B2: c1 � 0.0. (b.ii) Problem set B2: c1 � 0.99. (a.iii) Problem set B3: c1 � 0.0. (b.iii) Problem set B3: c1 � 0.99.
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Fig. 16. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set B1 (log scale).
(a) c1 � 0.0. (b) c1 � 0.1. (c) c1 � 0.2. (d) c1 � 0.3. (e) c1 � 0.4. (f) c1 � 0.5.

98 VASQUES et al. · NONCLASSICAL PARTICAL TRANSPORT

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 185 · JANUARY 2017



Fig. 17. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set B1 (log scale).
(a) c1 � 0.6. (b) c1 � 0.7. (c) c1 � 0.8. (d) c1 � 0.9. (e) c1 � 0.95. (f) c1 � 0.99.
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Fig. 18. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set B2 (log scale).
(a) c1 � 0.0. (b) c1 � 0.1. (c) c1 � 0.2. (d) c1 � 0.3. (e) c1 � 0.4. (f) c1 � 0.5.
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Fig. 19. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set B2 (log scale).
(a) c1 � 0.6. (b) c1 � 0.7. (c) c1 � 0.8. (d) c1 � 0.9. (e) c1 � 0.95. (f) c1 � 0.99.
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Fig. 20. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set B3 (log scale).
(a) c1 � 0.0. (b) c1 � 0.1. (c) c1 � 0.2. (d) c1 � 0.3. (e) c1 � 0.4. (f) c1 � 0.5.
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Fig. 21. Atomic mix and nonclassical percentage errors with respect to the benchmark solutions for problem set B3 (log scale).
(a) c1 � 0.6. (b) c1 � 0.7. (c) c1 � 0.8. (d) c1 � 0.9. (e) c1 � 0.95. (f) c1 � 0.99.
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This equation is mathematically equivalent to

��̂
�s

(x, �, s) 	 ε�
��̂
�x

(x, �, s) � 0, s � 0 (A.4a)

and

�̂(x, �, 0) �
1
2 �

�1

1

[1 � ε2(1 � c)]

��
0



p(�', s')�̂(x, �', s')ds'd�' 	 ε2s
Q(x)

2
, (A.4b)

where �̂(x, �, 0) � �̂(x, �, 0	). Integrating Eq. (A.4a)
over 0 � s' � s, we obtain

�̂(x,�, s) � �̂(x,�, 0) � ε�
�
�x �

0

s

�̂(x, �, s')ds'

�
1
2 �

�1

1

[1 � ε2(1 � c)] �
0



p(�', s')�̂(x, �', s')ds'd�'

	 ε2s
Q(x)

2
� ε�

�
�x �

0

s

�̂(x, �, s')ds' . (A.5)

Introducing into this equation the ansatz

�̂(x, �, s) � �
n�0



εn �̂n (x, �, s) (A.6)

and equating the coefficients of different powers of ε, we
obtain for n � 0

�̂n(x, �, s) �
1
2 �

�1

1 �
0



p(�', s')�̂n (x, �', s')ds'd�'

� �
�
�x �

0

s

�̂n�1 (x, �, s')ds' �
1 � c

2

� �
�1

1 �
0



p(�', s')�̂n�2 (x, �', s')ds'd�' 	 �n,2s
Q(x)

2
,

(A.7)

with �̂�1 � �̂�2 � 0. Equation (A.7) with n � 0 has the
general solution

�̂0(x, �, s) �
�̂0(x)

2
, (A.8)

TABLE V

Ensemble-Averaged Scalar Fluxes for Problem Set B1

c 	�B
 	�AM
 	�NC
 ErrAM ErrNC

x � 0

0.0 0.1776 0.2213 0.1768 0.2459 
0.0045
0.1 0.1896 0.2347 0.1892 0.2379 
0.0018
0.2 0.2037 0.2506 0.2039 0.2302 0.0009
0.3 0.2206 0.2698 0.2214 0.2229 0.0036
0.4 0.2414 0.2936 0.2329 0.2163 0.0063
0.5 0.2678 0.3243 0.2700 0.2111 0.0085
0.6 0.3027 0.3658 0.3056 0.2085 0.0098
0.7 0.3520 0.4263 0.3550 0.2108 0.0084
0.8 0.4294 0.5255 0.4293 0.2237 
0.0002
0.9 0.5772 0.7291 0.5585 0.2630 
0.0325
0.95 0.7271 0.9502 0.6710 0.3067 
0.0771
0.99 0.9650 1.3204 0.8160 0.3683 
0.1545

x � 10

0.0 0.0250 0.0033 0.0248 
0.8667 
0.0075
0.1 0.0270 0.0040 0.0273 
0.8515 0.0079
0.2 0.0295 0.0049 0.0302 
0.8324 0.0248
0.3 0.0325 0.0063 0.0339 
0.8078 0.0436
0.4 0.0364 0.0082 0.0387 
0.7756 0.0643
0.5 0.0414 0.0111 0.0450 
0.7325 0.0871
0.6 0.0483 0.0158 0.0537 
0.6734 0.1114
0.7 0.0587 0.0241 0.0666 
0.5899 0.1355
0.8 0.0760 0.0405 0.0877 
0.4677 0.1532
0.9 0.1126 0.0811 0.1284 
0.2799 0.1408
0.95 0.1529 0.1305 0.1676 
0.1463 0.0966
0.99 0.2209 0.2185 0.2226 
0.0106 0.0077

TABLE VI

Ensemble-Averaged Scalar Fluxes for Problem Set B2

c 	�B
 	�AM
 	�NC
 ErrAM ErrNC

x � 0

0.0 0.1975 0.2213 0.1972 0.1200 
0.0018
0.1 0.2100 0.2347 0.2101 0.1177 0.0004
0.2 0.2245 0.2506 0.2252 0.1159 0.0028
0.3 0.2420 0.2698 0.2433 0.1148 0.0054
0.4 0.2634 0.2936 0.2655 0.1148 0.0080
0.5 0.2904 0.3243 0.2934 0.1168 0.0105
0.6 0.3261 0.3658 0.3301 0.1218 0.0125
0.7 0.3763 0.4263 0.3812 0.1327 0.0129
0.8 0.4548 0.5255 0.4588 0.1553 0.0088
0.9 0.6042 0.7291 0.5972 0.2066 
0.0116
0.95 0.7553 0.9502 0.7233 0.2581 
0.0423
0.99 0.9946 1.3204 0.8961 0.3276 
0.0990

x � 10

0.0 0.0246 0.0033 0.0243 
0.8646 
0.0106
0.1 0.0267 0.0040 0.0265 
0.8494 
0.0048
0.2 0.0291 0.0049 0.0292 
0.8302 0.0020
0.3 0.0322 0.0063 0.0325 
0.8055 0.0098
0.4 0.0360 0.0082 0.0367 
0.7733 0.0188
0.5 0.0410 0.0111 0.0422 
0.7302 0.0293
0.6 0.0480 0.0158 0.0500 
0.6711 0.0413
0.7 0.0584 0.0241 0.0615 
0.5877 0.0545
0.8 0.0758 0.0405 0.0808 
0.4658 0.0670
0.9 0.1124 0.0811 0.1201 
0.2786 0.0685
0.95 0.1527 0.1305 0.1604 
0.1455 0.0500
0.99 0.2208 0.2185 0.2211 
0.0105 0.0010
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where �̂0(x) is undetermined at this point. For n � 1, Eq.
(A.7) has a particular solution of the form

�̂1
part(x, �, s) � �

s�
2

d�̂0

dx
(x) , (A.9)

and its general solution is given by

�̂1(x, �, s) �
1
2 ��̂1(x) � s�

d�̂0

dx
(x)� , (A.10)

where �̂1(x) is undetermined.
Equation (A.7) with n � 2 has a solvability condition,

which is obtained by operating on it by ��1
1 �0

p(�, s)
( · )dsd�; the solvability condition yields

0 �
1
2 �

�1

1 �
0



p(�, s)� (s�)2

2

d2�̂0

dx2
(x)�dsd�

�
1 � c

2 �
�1

1 �
0



p(�, s)�̂0 (x)dsd� 	 sQ(x) .

(A.11)

Thus, using that �0
p(�,s)ds � 1, we can rewrite

Eq. (A.11) as

�DNC

d2�̂0

dx2
(x) 	

1 � c
s

�̂0(x) � Q(x) , (A.12a)

where DNC is the nonclassical diffusion coefficient given
by

DNC �
1
4s �

�1

1

�2 �
0



s2p(�, s)dsd� . (A.12b)

Therefore, the solution �(x, �, s) of Eq. (A.3) satisfies

�(x, �, s) �
�̂0(x)

2
e� �0

s
�t (�,s')ds'

s
	 O(ε) , (A.13)

where �̂0(x) satisfies Eq. (A.12). The classical angular
flux can be obtained to leading order by integrating
Eq. (A.13) over 0  s  �. For transport in rod geometry,
Eq. (A.12b) yields

DNC �
1
2

s2

s
, (A.14)

where s2 � �0
s2p(s)ds.
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