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Abstract: 

Needs for new particle based heterogeneous materials as led to the development of many Statistical 

Volume Element (SVE) modeling schemes tailored to specific shapes of particles or meshing procedures. 

To generalize the numerical analysis of particle filled SVEs, a modeling methodology based on the 

Unified Topology Model (UTM) is proposed. Using the concept of Boundary Representation (BRep) 

and a modified Random Sequential Adsorption (RSA) algorithm, the geometry of a Statistical Volume 

Element (SVE) can be generated automatically with any shape of particles. Using an integration of 

Computer-Aided Design (CAD) and mesh tools, a mesh size map is constructed with the objective of 

minimizing the number of mesh elements while preserving quality of the discretization. The SVE is 

meshed using proven CAD model meshing algorithms for a robust and reliable result. Simulation and 

post processing are carried out automatically, without any user interaction. To illustrate the potential of 

this new method, a short glass fiber / epoxy matrix composite is modeled with spherical and elongated 

cylindrical particles. 
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1. Introduction

Understanding the mechanical behavior of a given randomly oriented inclusion based composite material 

can be a tedious process. Even when mechanical properties of individual constituents are fully understood 

and their shapes and sizes quantified, their combined interaction and the process by which they are 

bounded together can produce a material of unknown properties. Actual mechanical testing requires 

numerous steps ranging from samples fabrication to calibrated testing and in some cases can be near to 

impossible to accomplish due to the size or nature of the required samples [1]. Hence, the quest for 

predicting the material properties, which would yield faster prototyping and faster decision making has 

resulted in a variety of analytical and numerical modeling schemes. Analytical models can give a fair 

overview of the mechanical modulus in cases where the contrast between the different constituents is 

low but these models lack the ability to take into account the size, geometry, and distribution of the 

constituents. On the other hand, numerical models such as the Finite Element Analysis (FEA) of the 

Statistical Volume Element (SVE) have shown great interest in the research community for its ability to 

represent and simulate a numerical representation of a heterogeneous material. In this paper, the term 

SVE is used instead of the Representative Volume Element (RVE) as different realization of SVE are 

expected to have different averaged values which differs from the uniqueness of the RVE (Fig. 1). Such 

an approach must be employed when the size of a RVE is too large to be numerically evaluated. The 

biggest challenge of this method is obtaining a realistic representation of the material’s microstructure. 

As illustrated by many research papers, the mechanical properties of a simulated composite material can 

be influenced by the constituent’s shape [2-5], orientation [2, 6, 7], volume fraction [7, 8] and distribution 

[9, 10]. The size of the SVE and the number of realizations can also impede the realism and statistical 

accuracy of the numerical model [4, 8, 11-17]. Large SVEs will require significant computing power but 

will provide a more accurate estimation whereas smaller SVEs are individually less accurate but, if taken 

in a larger number, can provide a statistically representative estimation of the material mechanical 

behavior. A numerical SVE can be obtained from an actual composite sample via a scanning process 

[18-21]. A numerical SVE can also be generated based on predetermined experimental parameters. The 

main advantage of generating SVEs over sample-based methods is the fact that it does not require 

physical samples. One can generate, simulate and compile mechanical properties of a theoretical 

composite without actually manufacturing samples of this composite. Using this approach over a range 

of material formulations can provide an early on insight of the optimal material which reduces 

prototyping time and costs.  
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Fig. 1. Illustration of the SVE modeling approach. Multiple SVEs are randomly generated according to 

the material’s microstructure. The SVEs are numerically studied and their properties combined to form 

a statistical description of the simulated material. 

 

The first step towards generating a SVE is creating its geometrical representation. Early studies showed 

SVE filled with spherical particles positioned using the Random Sequential Adsorption (RSA) algorithm 

[1-3, 5, 8, 22-24]. Using spherical particles allows for simple interference detection during the addition 

of each particle. Interference detection is heavily used in the RSA method and is one of the many 

challenges of packing particles. Later studies presented improved version of the RSA algorithm using 

different geometric overlap detection algorithms based on the shape’s parametric equations. These 

extensions of the RSA algorithm enable using ellipsoids [2, 4, 23-27] and cylinders [2, 7, 15, 17, 24, 27-

31] as particles. Convex polyhedral shapes have also been used with the RSA algorithm by computing 

the intersection of planar faces [3, 5]. More recent studies presented molecular dynamic based SVE 

generation methods [32-34]. The advantage of molecular dynamic based SVE generation methods is their 

ability to attain higher volume fractions than with the RSA algorithm. Even though the complexity of 
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particles shapes has evolved over time, the final geometric representation of a SVE is still mainly 

composed of lists of elementary shapes with limited use of Computer-Aided Design (CAD) tools. For 

example, a SVE filled with spherical particles can be geometrically defined by a list of analytical 

spherical surfaces. These representations can be efficient and easily implemented but they tend to be 

limited to a particular SVE type. The meshing process follows the same trend. Generated SVE are either 

meshed with unstructured mesh generation methods (Delaunay, advancing front, octree [35]) using, in 

most cases, quadratic tetrahedrons [2, 5, 8] and hexahedrons [36] or with structured voxel based mesh 

generation methods [4]. The main advantage of using an unstructured mesh generation method over a 

voxel-based method is its ability to better fit curvilinear geometry. A voxel mesh needs to be dense 

enough to realistically depict a curved shape without significant chopping effect. If well optimized, an 

unstructured mesh can feature fewer nodes than an equivalent structured voxel-based mesh, which results 

in a lighter system. The main difficulty in using these unstructured mesh generation techniques with the 

above-mentioned geometric representation is the lack of a generalized mesh generation procedure. 

Automatic mesh generation procedures from CAD models are well known and documented [35]. Without 

using a proper CAD representation of SVEs, meshing each type of SVE requires using specific meshing 

procedures. Thus, any addition or modification to the geometrical representation of a SVE requires 

setting up new meshing procedures. 
 

In order to study efficiently and accurately multiple types of inclusion-based materials, the methodology 

by which SVEs are generated, meshed, simulated and homogenized must be generalized and automated. 

The aim of this study is to propose a new approach towards automatically generating and modeling SVEs. 

This new approach is based on the Unified Topology Model (UTM) [37], a model whose objective is to 

closely integrate Computer Aided Design (CAD) with Finite element Analysis (FEA). The UTM uses 

the concept of Boundary Representation (BREP), which is a classical CAD geometric data structure that 

involves and integrates two types of information: topological information and geometrical information. 

All modern CAD software use BREP for modelling complex parts. When using BREP, a volumetric part 

is defined as a volume which is itself defined as a closed envelope. This envelope is defined as a list of 

faces. A face is defined using an underlying surface which is bounded by a closed loop. Each loop is 

composed of a list of edges. Finally, an edge is defined using an underlying curve, which is bounded by 

two vertices and each vertex is associated with an underlying point along with its coordinates (Fig. 2). 
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Fig. 2. Illustration of the BREP model. 

 

Topological information relates to data arrangement whereas geometrical information provides a 

mathematical definition of surfaces, edges and vertices in a BREP structure. One key feature of the UTM 

is that it avoids topological redundancy through the use of co-topological entities. For example, if two 

volumes share a common face, this face is only defined once and the orientation of each volume face is 

kept valid with the use of two co-faces. Each co-face corresponds to one of the two volumes in contact. 

Thus, a co-face can be seen as a common face between two volumes along with the addition of a normal 

orientation vector. This normal vector defines on which side of the common face is located the material 

of the co-face associated volume (Fig. 3). Consequently, as illustrated in Fig. 3, normal vectors of the 

two co-faces associated with the two volumes in contact, are always oriented in opposite directions. 

These two co-faces are usually referred to as partner co-faces. In a similar way, the concept of co-

topological entities also includes co-edges and co-vertices. A volumetric part is thus defined as a closed 

envelope containing a list of co-faces, a co-face itself defined by a face and so on. 
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Fig. 3. Illustration of the co-topology concept.  
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The UTM is not limited to specific CAD and FEA software. The UTM can link itself with different CAD 

software by encapsulating its functionalities based on open source libraries or Application Programming 

Interfaces (APIs). Therefore, using the UTM, a programmer can construct algorithms using CAD 

functionalities without rewriting every line of code when a change of CAD software occurs. The same 

principles apply to the integration of FEA in the UTM. CAD-FEA integration relies on a bidirectional 

link between the BREP topological entities and the mesh entities (FEA nodes, edges, faces and elements). 

With this link, one can apply boundary conditions directly on topological entities without any preexisting 

mesh. During automatic mesh generation, each mesh entity is linked to its corresponding topological 

entity. Before the FEA simulation itself, node groups and element groups are automatically created and 

transmitted to the FEA software considered. Once FEA is completed, results are imported back to the 

UTM. This allows using CAD and meshing tools for post-processing FEA results. Automation provided 

by the UTM has been successfully applied to many research fields such as topology optimization [38], 

fixtureless inspection [39] and automatic a priori mesh adaptation [40]. 
 

The following sections will provide an in-depth description of a methodology aimed at automatically 

modeling a SVE, which is based on the UTM. The process by which the CAD representation of a SVE 

is obtained using an adapted RSA algorithm is discussed in section 2. Automatic application of boundary 

conditions and material properties to BREP topological entities is described in section 3. Section 4 details 

how a mesh size map is automatically defined using geometric tools and a structured grid. Linear and 

quadratic tetrahedral mesh generation is described in section 5. The homogenization process is detailed 

in section 6. Finally, results obtained from short glass/epoxy composite SVEs modeled with spheres and 

cylinders are presented and discussed in section 7. The paper ends with a conclusion and perspectives of 

future work in Section 8. 
 

2. Automatic CAD generation of Statistical Volume Elements 

 

Fast, efficient and automatic generation of CAD models associated with Statistical Volume Elements 

(SVEs) is a key step in the methodology presented in this paper, since a large number of SVEs have to 

be considered. The underlying CAD modeler used in this implementation of the UTM is Open Cascade™ 

[41]. This modeler is open-source which enables a direct access to its geometric modeling tools. CAD 

models of SVEs are automatically generated using classical Boolean operators (union, subtract, 

intersection) along with a parent operator, which will be referred to as the fragmentation operator. 
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The fragmentation operator is internally implemented and used in commercial CAD software but it is 

usually inaccessible for users. The fragmentation operator acts before union, difference or intersection 

operators by defining the new boundaries between the objects (Fig. 4).  

 

 

 

Fig. 4. Illustration of the fragmentation operator and derived Boolean operators. 
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This process enables using co-topological entities. When two topological entities are associated with the 

same underling geometrical entity, two co-topological entities are created, each containing the respective 

orientation of associated topological entities. One of the two topological entities is kept while the other 

is discarded and the two newly created co-topological entities are linked to the remaining topological 

entity. This concept is illustrated in figure 3. When volume A is generated, the face (green) in contact 

with volume B is created and a co-face (blue) is created and linked to it. When volume B is generated, 

the face in contact with volume A is discarded, and a co-face (red) is linked to the green face. The blue 

co-face has the same orientation as the green face and the blue co-face the opposite so as to maintain the 

correct orientation. Hence, the boundary shared between to volumes is only represented by one 

topological entity.  

 

In this work, the RSA algorithm is used to randomly generate the CAD model of a SVE. RSA algorithm 

relies on gradually inserting particles in the SVE until reaching a target volume fraction and on detecting 

geometrical overlap between a candidate particle and previously inserted particles. Detecting overlap of 

a given particle requires rapidly identifying nearby particles, which can be efficiently performed using a 

search grid (Figure 6). In this work, the search grid used is composed of a regular grid of hexahedral 

cells, covering the area of the SVE. A particle is linked to each cell that intersects its bounding box.  

 

Generating the CAD model of a SVE starts with generating a cube which represents the empty matrix. 

This cube is then modified through gradual insertion of particles inside it. Orientation, location and shape 

of these particles can be generated randomly or with imposed values. A particle that intersects boundaries 

of the SVE must be over a minimum volume, its faces over a minimum area and its edges over a minimum 

length to avoid generating small or distorted elements. Particles that are inserted inside the SVE must be 

sufficiently far away from boundaries of the SVE and sufficiently far away from each other so not to 

generate too small or distorted mesh elements. Also, angles between two faces must be large enough to 

avoid generating flat finite elements. The following algorithm summarizes the major steps of our 

implementation of the RSA algorithm (Algo 1). List 1 defines the corresponding variables.  Figure 5 

shows the resulting BREP model of two SVEs (one filled with spheres and one filled with cylinders). As 

a first approach, we did not consider periodic conditions (or constraints) in this work to simplify the 

development of the different methods presented. We could apply periodic conditions with the approach 

presented in this paper, given that the RSA algorithm can be adapted towards generating periodic CAD 

representations. A new particle could be created with its corresponding periodic counterparts and the 

assessment of intersections would have to be applied to both the new particle and its periodic 
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counterparts. In this work, we used a classical version of the RSA algorithm, which has some limitations 

when trying to reach high volume fractions. Enhancements of the RSA algorithm have been proposed in 

the literature to reach higher volume fractions, notably by coupling the RSA algorithm with a particle 

rearrangement algorithm [22]. 

 

List 1. Variables for the RSA algorithm 

Variable Definition 

𝑉𝑓 Current volume fraction 

𝑉𝑓𝑡𝑎𝑟𝑔𝑒𝑡  Volume fraction target 

𝐷𝑖𝑠𝑡𝑚𝑖𝑛 Minimum allowable distance between two topological entities 

𝑉𝑜𝑙𝑚𝑖𝑛 Minimum allowable volume for a volume entity 

𝐴𝑟𝑒𝑎𝑚𝑖𝑛 Minimum allowable area for a face entity 

𝐿𝑒𝑛𝑔𝑡ℎ𝑚𝑖𝑛 Minimum allowable length for an edge entity 

𝐴𝑛𝑔𝑙𝑒𝑚𝑖𝑛 Minimum allowable angle between two face entities 

𝑁𝑏𝑠𝑡𝑒𝑝 Number of parametric discretization steps 

𝑀𝑠𝑡𝑟𝑢𝑐𝑡 CAD model of the SVE 

𝐶 SVE cubic geometry 

𝑃 Particle geometry 

𝐺𝑃 Particle search grid 

𝐿𝑃 List of neighboring particles 

𝐷𝑖𝑠𝑡𝑃𝑖,𝑃𝑗 Minimal distance between 𝑃𝑖 and 𝑃𝑗 

𝐷𝑖𝑠𝑡𝑃,𝐶 Minimal distance between 𝑃 and borders of 𝐶 

𝐼𝑛𝑡𝑒𝑟𝑃,𝐶 Intersection Boolean operator on 𝑃 and 𝐶 

𝐹𝑟𝑎𝑔𝑃,𝐶 Fragmentation operator on 𝑃 and 𝐶 

𝑡 Parametric variable of a curve 
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a) 

 

b) 

 

Fig. 5. BREP model of an SVE with 10% (volume fraction) of spherical particles (S1FV10) (a) and 

cylindrical particles (C1FV10) (b). BREP edges (left), BREP faces (right)  
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a)                                              b) 

c)                                               d) 

 

Fig. 6. Illustration of the search grid used for the proximity detection. a) Search grid containing 

previously inserted particles (blue). b) New particle (red). c) Each cell in contact with the bounding box 

of the new particle is listed (gray). d) Proximity detection of the green particle.  
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Data associated with CAD include: number of particles, statistical analysis on the size of particles, 

volume fraction of each constituents and orientation tensor in the case of elongated particles. For 

elongated particles such as cylinders or ellipsoids, the orientation tensor is based on the orientation vector 

of particles (EQ 1-2), as described in [42]. This tensor provides information about isotropy in the 

distribution of particles orientation.  

 
𝑝𝑥 = 𝑠𝑖𝑛 θ 𝑐𝑜𝑠 φ
𝑝𝑦 = 𝑠𝑖𝑛 θ 𝑠𝑖𝑛φ

𝑝𝑧 = cos θ
 (1) 

 

𝑎2 = 〈𝑝⊗ 𝑝〉  (2) 

 

3. Material properties and Boundary conditions 

 

Materials properties can be randomly generated based on an imposed distribution or using fixed values. 

Material properties are associated with volumetric topological entities. Using the link between 

topological entities and associated mesh elements provided by the UTM model, materials properties will 

subsequently be transferred to these mesh elements in the FEA model. Boundary conditions are also 

applied on topological entities of the BREP. In this case, they are automatically applied on the six planes 

of the cube. In this work, Kinematic Uniform Boundary Conditions (KUBC) (EQ 3) and Static Uniform 

Boundary Conditions (SUBC) (EQ 4) are used to model the mechanical response of isotropically 

distributed inclusion filled SVEs. KUBC consist in applying a uniform displacement vector on the SVE’s 

boundary and SUBC in applying a uniform stress vector on the SVE’s boundary. Two types of load cases 

are used to evaluate the mechanical response of the material: a hydrostatic load and a deviatoric load. 

The use of four load cases (non-zero components: hydrostatic KUBC 𝐸11 = 𝐸22 = 𝐸33 = 𝜀, deviatoric 

KUBC 𝐸12 = 𝐸13 = 𝐸23 = 𝜀, hydrostatic SUBC Σ11 = Σ22 = Σ33 = 𝜎, deviatoric SUBC Σ12 = Σ13 =

Σ23 = 𝜎) instead of 12 linearly independent cases is motivated by a significant reduction in computation 

time and by the assumption of a macroscopically isotropic composite. 

 

𝑢(𝑥) = 𝐸 ⋅ 𝑥 ∀𝑥 ∈ ∂𝑉 (3) 

 

𝑡(𝑥) = Σ ⋅ 𝑛 ∀𝑥 ∈ ∂𝑉 (4) 
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4. Automatic generation of a mesh size map 

 

A finite element mesh size distribution, referred to as a mesh size map is imposed and plays a key role 

in the process. Indeed, it allows minimizing the number of mesh elements in areas where particles are far 

from each other and it also ensures that mesh quality is preserved in areas where particles are close to 

each other or close to the SVE boundaries by refining the mesh in these areas. In this work, a mesh size 

map is represented as a scalar field ℳ(𝑥, 𝑦, 𝑧). Definition of this field first involves a nominal mesh 

element size 𝐸𝑛, which is imposed in areas where the mesh doesn’t need to be refined. In refinement 

areas, ℳ(𝑥, 𝑦, 𝑧) is generated in order to ensure a minimum number of mesh elements layers between 

two topological entities (referred to as 𝑁𝑏𝑒𝑙𝑒) and to impose a specific element size (referred to as 𝐸𝑖𝑛𝑡𝑒𝑟) 

at the interface between each particle and the matrix. So, the size map algorithm automatically calculates 

the local size of mesh elements based on the minimum number of elements layers (𝑁𝑏𝑒𝑙𝑒) required 

between two distinct topological entities, which is user specified. To insure convergence of advancing 

front mesh generation, at least two layers of elements (𝑁𝑏𝑒𝑙𝑒 = 2) must be generated between two 

neighboring particles or between a particle and SVE boundaries. In this paper, 𝑁𝑏𝑒𝑙𝑒 = 2 has been 

considered for all results presented. Using more than two layers of elements between close entities 

improves the local quality of elements but also increases computational time. Studying the effect, on 

results obtained, of using more than two layers of elements in these locations and looking for the best 

compromise between accuracy and computational time could be an interesting perspective for future 

work.  

 

As explained and illustrated in figure 7 and figure 8, this size map is practically defined and interpolated 

on a regular hexahedral grid covering the entire SVE volume. This regular grid is only used as support 

for definition of the size map, which is represented as an interpolated size field across the grid cells. 

Using CAD tools, a constant size value is first calculated and associated with each cell of this grid. Then 

this mesh size distribution is smoothed and interpolated across the grid. The following algorithm details 

this mesh size map generation (Algo 2) and List 2 defines its variables. Figure 7 illustrates the three main 

steps of the algorithm while figure 8 show the resulting size map of a cylinder filled SVE. As explained 

just above, at this point of our work, the size map calculation algorithm used is an “a priori” refinement 

algorithm, which means that it calculates the desired size of mesh elements before doing any FEA 

calculations. In this work, the objective of the mesh size map algorithm is to ensure convergence of the 

mesh generation process and to promote generating elements with good quality. Further work could be 
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done towards taking into account singularities and mesh pre-optimization [40] could be employed in this 

direction to further improve the accuracy of FEA results. “A posteriori” mesh adaptation based on error 

estimation could also be used to improve this accuracy.  

 

                     a)                                                         b)                                                        c) 

Fig. 7. Illustration of the size map algorithm; a) Hexahedral mesh, b) Refinement, c) Smoothing 

Fig. 8. Size map for C1FV10 
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List 2. Variables for the size map algorithm 

 

Variable Definition 

𝑀𝑠𝑡𝑟𝑢𝑐𝑡 CAD model of the SVE 

𝐸𝑛 Nominal mesh element size 

𝐸𝑖𝑛𝑡𝑒𝑟 Mesh element size at the interface of a volume entity 

𝐸𝑙𝑜𝑐 Local mesh element size 

𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 Local average mesh element size 

𝑁𝑏𝑒𝑙𝑒 Number of elements between two topological entities 

𝑛𝑥, 𝑛𝑦, 𝑛𝑧 Number of regular hexahedral cells in 𝑥, 𝑦, 𝑧 

𝑁𝑏𝑠𝑡𝑒𝑝 Number of parametric discretization steps 

𝑓 Element size increase factor 

ℳ Size map 

𝒯 Hexahedral mesh covering ℳ 

𝐾 Hexahedral cell 

𝑇 Topological entity 

𝐺𝐾 Hexahedral cell search grid filled with 𝒯 

𝐺𝑇 Topological entities search grid filled with 𝑀𝑠𝑡𝑟𝑢𝑐𝑡 

𝐿𝑇 List of neighboring topological entities 

𝐿𝐾 List of neighboring hexahedral cells 

𝐷𝑖𝑠𝑡𝑇𝑖,𝑇𝑗 Minimal distance between 𝑇𝑖 and 𝑇𝑗 

𝑂𝐾 Sorted array of hexahedral cells 

𝑁 Node element 

 



18 

 

  



19 

 

5. Automatic mesh generation of Statistical Volume Elements 

FE linear mesh elements are automatically generated with respect to the imposed mesh size map above-

mentioned. Once generated, each mesh element is linked to its underlying topological entity in the BREP 

model. At first, mesh nodes are created on BREP vertices, then each BREP edge is discretized with 

segments [43].  BREP faces are then automatically triangulated using an advancing front mesh generation 

method [44] and finally, each volume is automatically filled with linear tetrahedrons using a 3D 

advancing front mesh generation method [37]. Figure 9 illustrates the discretization of BREP edges and 

faces for the two SVEs introduced in Fig. 5. 

a) 

b) 

Fig. 9. Linear mesh for S1FV10 (a), C1FV10 (b). Edges discretization (left), Faces discretization 

(right)  
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Obtaining accurate FEA results require using quadratic tetrahedrons. Thus, quadratic mesh tetrahedrons 

are created from previously generated linear mesh elements. Mesh nodes are first inserted in the middle 

of linear mesh segments. Then, each middle node belonging to a curved BREP geometrical entity (BREP 

surface or curve) is projected on this entity (surface or curve) so that curvilinear distances between the 

middle node and end nodes of the curvilinear mesh segment are equal (Fig. 10). In some cases, local 

geometric configurations of curved entities induce quadratic tetrahedrons with a negative Jacobian, 

which invalidates these mesh elements. Avoiding quadratic elements with negative Jacobians has been 

an important subject of interest in the mesh generation community and many solutions have been 

published over the years [45-47]. In our work, it has usually been observed that less than 0.1% of 

quadratic tetrahedrons are affected with a negative Jacobian. In this work, a simple node relocation 

method can be used to solve negative Jacobian mesh configurations. For a negative Jacobian mesh 

element, each node that had been projected on a curved topological entity is gradually brought back to 

its initial position until Jacobian turns positive. Although simple, this method proves to be suitable and 

particularly efficient in our case, as it will be demonstrated in section 7. A comparison between linear 

and quadratic meshes for a given case is illustrated in figure 11.  

 

Fig. 10. Middle node relocation 

 

Fig. 11. Comparison between linear (left) and quadratic (right) meshes 
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Data associated with mesh generation include: number of mesh elements, statistical analysis of quality 

of linear mesh elements (EQ 5) and volume fraction of each constituents. In Equation (5), 𝑄𝐾 represents 

a classical quality indicator used in this work for linear tetrahedrons. 𝑄𝐾 values are between 0 (poorest 

quality, typically for flat elements) and 1 (regular tetrahedron with 4 equilateral faces). In Equation (5) 

ℎ𝑚𝑎𝑥 is the length of the longest element segment and 𝑟𝑖𝑛𝑠𝑐 is the radius of the tetrahedron’s inscribed 

sphere. 

𝑄𝐾 =
2√6𝑟𝑖𝑛𝑠𝑐

ℎ𝑚𝑎𝑥
  (5) 

As mentioned in section 1, one of the main advantages of using the UTM is the link between the CAD 

model and the FEA mesh. Using this link, mesh elements associated to any topological entity on which 

a boundary condition is applied are automatically partitioned for the FEA solver. In this work, 

Code_Aster™ is used [48] as FEA solver. This software is also open-source and is well documented. 

Script files are automatically generated, FEA solving is automatically performed and relevant FEA 

results are automatically extracted for further post-processing. 

 

6. Homogenization 

 

Homogenizations is done using the average values of stress and strain fields components (EQ 6-7) for 

the complete SVE. Calculations of the apparent shear 𝐺𝑎𝑝𝑝 and compressibility 𝐾𝑎𝑝𝑝 modulus (EQ 8-9) 

and subsequently the elastic modulus 𝐸𝑎𝑝𝑝 (EQ 10) are done with the assumption of a perfectly isotropic 

material at the macroscopic scale.  

 

𝐸 = 〈ε〉𝑉 =
1

𝑉
∫ ε(𝑥)𝑑𝑉
𝑉

  (6) 

 

Σ = 〈σ〉𝑉 =
1

𝑉
∫ σ(𝑥)𝑑𝑉
𝑉

  (7) 

 

𝐾𝑎𝑝𝑝 =
1

3
(
Σ11+Σ22+Σ33

𝐸11+𝐸22+𝐸33
)  (8) 

 

𝐺𝑎𝑝𝑝 =
1

3
(
Σ12

2𝐸12
+

Σ23

2𝐸23
+

Σ13

2𝐸13
)  (9) 

 

𝐸𝑎𝑝𝑝 =
9𝐾𝑎𝑝𝑝𝐺𝑎𝑝𝑝

3𝐾𝑎𝑝𝑝+𝐺𝑎𝑝𝑝
   (10) 
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7. Results and discussion 

 

To illustrate the benefits of the above-mentioned methodology, a comparison between a glass fiber / 

epoxy resin material modeled with spherical and cylindrical inclusions is presented. Material properties 

and SVE cases are first listed. The homogenization results which are the central motivation of this work 

are presented and discussed. Finally, an analysis of the CAD and mesh data is put forward to validate the 

modeling approach. 

 

Material properties of glass fibers and epoxy matrix are listed in table 1. The ratio between elastic moduli 

of these two materials is more than twenty, which is ideal to illustrate the benefits of numerical simulation 

over analytical analysis of this composite material. With such a contrast, analytical bounds such as Voigt 

and Reuss or Hashin-Shtrikman bounds [49-51] are spaced farther apart as the volume fraction of glass 

fiber increases, which provides a less accurate estimate of the actual elastic modulus. 

 

Table 1. Material properties of constituents 

Material E (GPa) ν 

Epoxy 3.5 0.33 

Glass 72.3 0.22 

 

The composition of each labeled numerical sample type is listed in table 2. The diameter of particles is 

evaluated at two levels ([S1, S2], [C1, C2]). S1 and S2 corresponds to a diameter of 1/6 and 1/8 of the 

unit cube’s length while C1 and C2 corresponds to a diameter of 0.085 and 0.064 of the cube’s unit 

length.  The elongation of cylindrical particles is chosen using a ratio of length to diameter equal to five. 

The volume of an individual particle is the same between S1, C1 and between S2, C2. Four targets for 

the volume fraction of spherical particles are considered: 5% (FV5), 10% (FV10), 15% (FV15) and 20% 

(FV20) and two targets for the volume fractions of cylindrical particles are considered: 5% (FV5) and 

10% (FV10). The volume fraction of cylindrical particles is limited to 10% because inserting a cylindrical 

particle is harder than inserting a spherical particle due to cylindrical particle’s elongation. Higher 

volume fraction values could be attained by varying particles geometrical properties according to a 

predefined distribution rather than a fixed value. This distribution would allow the RSA algorithm to 

insert smaller particles in thither spaces otherwise unfilled. As mentioned previously, a rearrangement 

algorithm could help to increase the attainable volume fraction. Another solution could be to use a rigid 
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body physics engine to simulate the compaction of a high-volume fraction of particles and to generate 

SVEs CAD models based on rigid body physics simulation results. 

 

Table 2. List of numerical samples 

Particle Label Geometrical properties 𝑉𝑓𝑡𝑎𝑟𝑔𝑒𝑡  𝐷𝑖𝑠𝑡𝑚𝑖𝑛 Number of samples 

Sphere 

S1FV5 𝐷𝑖𝑎.= 1/6 5% 0.04 100 

S1FV10 𝐷𝑖𝑎.= 1/6 10% 0.04 100 

S2FV10 𝐷𝑖𝑎.= 1/8 10% 0.04 20 

S2FV15 𝐷𝑖𝑎.= 1/8 15% 0.02 20 

S2FV20 𝐷𝑖𝑎.= 1/8 20% 0.01 20 

Cylinder 

C1FV5 𝐷𝑖𝑎.= 0.085, 𝐿/𝐷 = 5 5% 0.03 100 

C1FV10 𝐷𝑖𝑎.= 0.085, 𝐿/𝐷 = 5 10% 0.03 100 

C2FV10 𝐷𝑖𝑎.= 0.064, 𝐿/𝐷 = 5 10% 0.02 20 

 

As mentioned previously, FEA simulation for each SVE is carried out automatically and results obtained 

are averaged according to equations (6-7). Figure 12 illustrates stress and strain fields for case C1FV10 

with a quadratic mesh under hydrostatic KUBC. Based on averaged stress and strain tensors, apparent 

shear 𝐺𝑎𝑝𝑝 and compressibility 𝐾𝑎𝑝𝑝 moduli are calculated using equations (8-9). Finally, the apparent 

elastic modulus 𝐸𝑎𝑝𝑝 is obtained and compared with Voigt, Reuss and Hashin-Shtrikman bounds as 

reported in table 3. In table 3, analytic bounds are calculated according to volume fractions of particles 

that are evaluated from the CAD models of SVEs, which are listed in table 4. In figure 13 the elastic 

modulus obtained for each SVE is plotted with respect to the volume fraction of elements belonging to 

the particles for cases S1FV10 and C1FV10 with linear and quadratic elements. In figure 14, the elastic 

modulus for the S2 cases is plotted according to the volume fraction of quadratic elements. As expected, 

apparent elastic moduli obtained using KUBC (Kinematic Uniform Boundary Conditions) is higher than 

those obtained with SUBC (Static Uniform Boundary Conditions). Comparing results obtained with 

quadratic and linear elements has been investigated to quantify the effect of using quadratic elements. 

This effect is indeed twofold. First, as explained earlier, relocating middle nodes increases the volume 

fraction of particles which, in turn, slightly increases the modulus of elasticity. The second effect 

originates from the fact that linear tetrahedrons classically tends to overestimate material stiffness. The 
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use of quadratic elements provides a better estimation of stiffness, which accounts for the drop of the 

elasticity modulus. The increase in the number of particles from [S1,C1] to [S2,C2], decreases the 

difference between elastic moduli obtained with KUBC and SUBC, which is consistent with literature 

[12]. Comparing the elastic modulus obtained between samples with spherical and cylindrical particles 

reveals the influence of particles geometry on mechanical properties. Indeed, an increase of the elasticity 

modulus is observed with cylindrical particles. This is explained considering that stress transfer from 

particle to particle is better with cylindrical particles than with spherical particles, resulting in a stiffer 

composite material. 

 

 

Fig. 12. Stress σ𝑥𝑥 (left) and strain  ε𝑥𝑥 (right) for C1FV10 using a quadratic mesh.  
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Table 3. Modulus of elasticity 

Label 

𝐸𝑎𝑝𝑝 (GPa) 

SUBC KUBC Analytic bounds 

linear quadratic linear quadratic Reuss HS- HS+ Voigt 

S1FV5 3.88 ± 0.01 3.82 ± 0.01 4.11 ± 0.05 4.02 ± 0.05 3.67 3.84 5.40 7.01 

S1FV10 4.28 ± 0.01 4.17 ± 0.01 4.87 ± 0.07 4.69 ± 0.06 3.87 4.22 7.37 10.47 

S2FV10 4.31 ± 0.01 4.19 ± 0.01 4.59 ± 0.03 4.42 ± 0.02 3.87 4.22 7.35 10.44 

S2FV15 --- 4.60 ± 0.01 --- 5.04 ± 0.03 4.08 4.63 9.41 13.88 

S2FV20 --- 5.06 ± 0.01 --- 5.76 ± 0.04 4.32 5.09 11.56 17.32 

C1FV5 3.95 ± 0.02 3.90 ± 0.02 4.15 ± 0.04 4.09 ± 0.04 3.67 3.84 5.40 7.01 

C1FV10 4.42 ± 0.03 4.33 ± 0.03 4.93 ± 0.05 4.80 ± 0.05 3.87 4.22 7.36 10.45 

C2FV10 4.46 ± 0.02 4.35 ± 0.02 4.90 ± 0.04 4.75 ± 0.04 3.87 4.21 7.34 10.43 

 

 
a) 
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b) 

Fig. 13. Modulus of elasticity scatter for S1FV10 (a) and C1FV10 (b) 

 

 
Fig. 14. Modulus of elasticity scatter for S2 using quadratic elements 
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Mean and standard deviation values for the volume fraction, particle size and number of particles for 

each sample type, are reported in table 4. Mean volume fraction values obtained are very close to target 

volume fractions and low standard deviations obtained indicate a low scatter. As expected, to fulfill a 

given required volume fraction with smaller particles (S2, C2) more particles need to be generated. 

Although volumes of spherical and cylindrical particles are initially the same before their insertion, 

cylindrical particles tend to be smaller than spherical particles. This difference is caused by the elongation 

of cylindrical particles which, for a limited insertion volume, tend to be cut more often by boundaries of 

SVEs than spherical particles.  

 

Table 4. CAD model constitution. Particle volume fraction, particle volume and number of particles. 

Label 𝑉𝑓 (%) Particle volume (10−3) Number of particles 

S1FV5 4.99 ± 0.05 2.07 ± 0.107 24 ± 1 

S1FV10 9.98 ± 0.05 1.95 ± 0.071 51 ± 2 

S2FV10 9.94 ± 0.09 0.996 ± 0.003 100 ± 1 

S2FV15 14.93 ± 0.02 0.983 ± 0.003 152 ± 1 

S2FV20 19.92 ± 0.01 0.972 ± 0.004 205 ± 1 

C1FV5 4.98 ± 0.06 1.84 ± 0.096 27 ± 1 

C1FV10 9.95 ± 0.07 1.62 ± 0.055 61 ± 2 

C2FV10 9.92 ± 0.02 0.629 ± 0.024 158 ± 6 

 

Locations obtained for the center of mass of SVEs are listed in table 5. The center of mass being located 

at the center of unit cubes and obtaining identical values for moments of inertia (not shown in Table 5) 

indicate that the distribution of particles is isotropic.  
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Table 5. Location of the center of mass in the unit cube 

Label 𝑥 𝑦 𝑧 

S1FV5 0.502 ± 0.040 0.501 ± 0.037 0.500 ± 0.035 

S1FV10 0.501 ± 0.017 0.499 ± 0.018 0.502 ± 0.019 

S2FV10 0.502 ± 0.010 0.499 ± 0.010 0.500 ± 0.012 

S2FV15 0.501 ± 0.008 0.503 ± 0.008 0.501 ± 0.008 

S2FV20 0.502 ± 0.005 0.500 ± 0.006 0.502 ± 0.008 

C1FV5 0.506 ± 0.026 0.498 ± 0.025 0.501 ± 0.028 

C1FV10 0.499 ± 0.014 0.498 ± 0.012 0.499 ± 0.012 

C2FV10 0.505 ± 0.010 0.507 ± 0.008 0.498 ± 0.008 

 

For cylindrical particles (cases C1FV5, C1FV10 and C2FV10) orientation tensors obtained are listed in 

table 6. The fact that these tensors are very close to diagonal tensors indicates that the distribution of 

particles orientation is isotropic. 

 

Table 6. Orientation tensors; C1FV5 (a), C1FV10 (b), C2FV10 (c) 

a) 

[
0.330 −0.004 −0.002
−0.004 0.338 −0.004
−0.002 −0.004 0.331

] 

b) 

[
0.324 −0.002 0.000
−0.002 0.333 0.009
0.000 0.009 0.343

] 

c) 

[
0.349 0.007 0.002
0.007 0.322 −0.003
0.002 −0.003 0.329

] 

 

Parameters of mesh size maps used are listed in table 7. Based on these parameters and for each SVE, a 

linear mesh is first created and based on this mesh, a quadratic mesh is generated. Therefore, both meshes 

(linear and quadratic) are composed of the same elements, the only difference being the presence of 
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middle nodes in quadratic meshes and their location on curved geometrical entities. As illustrated in 

figure 11, the impact of relocating middle nodes for quadratic elements in contact with curved topological 

entities is obvious. This impact is also illustrated in volume fraction data reported in table 8. Indeed, 

comparison between particle volume fractions for linear and quadratic meshes shows that the mesh 

volume fraction is inferior for linear meshes, due to the tessellation effect. Switching from linear to 

quadratic elements, the volume fraction of a SVE becomes nearly identical to the volume fraction based 

on the SVE CAD model, which means based on the actual geometry of inclusions. Thus, using a CAD 

model as original representation of the microstructure, computing a size map from this CAD model, 

using proven automatic CAD mesh generation algorithms and relocating middle nodes of quadratic 

elements provides a very accurate discretized representation of the intended microstructure. 

 

Table 7. Size map parameters 

Particle (S1, S2) (C1, C2) 

𝐸𝑛 0.08 

𝐸𝑖𝑛𝑡𝑒𝑟 0.04 0.02 

𝑁𝑏𝑒𝑙𝑒 2 

𝑛𝑥,𝑦,𝑧 50 

𝑁𝑏𝑠𝑡𝑒𝑝 8 

𝑓 1.25 
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Table 8. Mesh data. Particle’s mesh volume fractions with linear and quadratic elements, total number 

of elements and quality factor. 

Label 𝑉𝑓% linear 𝑉𝑓% quadratic Number of elements Quality 𝑄𝐾 

S1FV5 4.36 ± 0.05 4.91 ± 0.05 31960 ± 1384 0.60 ± 0.002 

S1FV10 8.84 ± 0.06 9.88 ± 0.05 55160 ± 1828 0.59 ± 0.002 

S2FV10 8.27 ± 0.08 9.70 ± 0.12 91023 ± 2110 0.59 ± 0.001 

S2FV15 --- 14.8 ± 0.03 285276 ± 8463 0.63 ± 0.001 

S2FV20 --- 19.8 ± 0.11 504086 ± 12180 0.62 ± 0.001 

C1FV5 4.68 ± 0.05 4.97 ± 0.06 116728 ± 2101 0.59 ± 0.001 

C1FV10 9.36 ± 0.07 9.94 ± 0.07 213322 ± 2935 0.60 ± 0.001 

C2FV10 9.05 ± 0.03 9.88 ± 0.02 344720 ± 3390 0.60 ± 0.001 

 

The influence of the mesh size map can be observed on the number of mesh elements generated. As the 

volume fraction of particles increases, particles come closer to each other, which makes that the size map 

algorithm decreases mesh elements size in order to insure the required minimum number of elements 

layers between two topological entities. This mesh refinement process reduces CPU time required for 

the FEA simulation by allowing the generation of smaller elements where needed and coarser elements 

elsewhere which reduces the total number of elements if compared with a uniformly sized mesh. The 

number of elements is significantly higher for SVEs with cylindrical particles if compared with SVEs 

with spherical particles. This difference is partly due to 𝐸𝑖𝑛𝑡𝑒𝑟, which is the mesh size imposed at the 

interface between particles and matrix. Indeed, 𝐸𝑖𝑛𝑡𝑒𝑟 is lower for cases with cylindrical particles to 

insure accurately modeling mechanical behavior at the fiber level due the elongation of fibers and due to 

a smaller diameter if compared to that of spherical particles. A higher number of elements for SVEs with 

cylindrical particles can also be explained because a lower minimum distance between two topological 

entities (referred to as 𝐷𝑖𝑠𝑡𝑚𝑖𝑛 in Algo 1) must be considered to reach the target volume fraction. Quality 

of mesh elements, as defined by Equation (5), also benefits from using automatic mesh generation 

procedures (in this case the advancing front mesh generation algorithm). As reported in table 8, the 

average quality for linear elements is high. As illustrated in figure 15, the distribution of quality is mostly 

centered around the average value and the percentage of elements below 0.2 is very low, with a sudden 
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drop under 0.2. This is due to the fact that, when possible, the mesh generation algorithm suppresses 

elements that are below a minimum quality threshold (in this case 0.2) and re-meshes the area.  

 

a) 

b) 

Fig. 15. Element’s quality distribution for S1FV10 (a) and C1FV10 (b) 

 

In this work, the SVE modeling approach is applied to SVEs filled with spherical and cylindrical 

particles. This modeling approach can easily be generalized to any shape of particles since it is based on 

a CAD representation of microstructures. Using CAD tools, the modified RSA algorithm is not restricted 

to a particular type of shape for particles. Another benefit of using a CAD representation is that mesh 

generation can be carried out using robust and proven CAD models automatic mesh generation 

algorithms. Concepts and tools underlying the UTM contribute to a complete and robust automation of 

the generation, simulation and post-processing of great numbers of SVEs for a wide range of particles 

shape. 
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8. Conclusion 

 

The need to model more and more complex heterogeneous particle-based materials as led to the 

development of numerous SVE’s representation and meshing schemes. Many of these approaches are 

limited to a specific geometry of particles or constrained by the use of specific mesh generation 

procedures, which highly limits their potential. In this work, a new methodology is proposed towards 

automatically generating, simulating and post-processing SVEs for particle-based materials. This 

methodology is mainly based on using CAD/FEA integration concepts and tools. BREP geometric 

modelling concepts, such as co-topology in particular, used in conjunction with a modified RSA 

algorithm allow the fast and efficient automatic generation of very accurate geometric representations of 

material microstructures. From the CAD representation of a SVE, a mesh size map can be automatically 

generated and used by proven and efficient automatic mesh generation algorithms to minimize the 

number of finite elements while preserving quality of the discretization. Quadratic elements are used to 

ensure accuracy of both geometric tessellation and FEA results. FEA simulation and post-processing are 

also carried out autonomously. An application of this methodology has been carried out on a short glass 

fiber / epoxy matrix material to illustrate the potential of this new approach. The effects of the particle’s 

shape, of the curved quadratic finite elements and of the boundary conditions on the elastic modulus have 

been highlighted to emphasise the benefits of this methodology. 

 

Full automation, accuracy of generated geometrical models, quality of derived FEA meshes and FEA 

solutions and versatility of the approach with respect to the shape of particles considered are the most 

interesting and promising aspects of this methodology. Extending this methodology to other types of 

materials, to other types and shapes of particles, to other spatial distributions of particles and to other 

types of behavior (non-linear mechanics heat transfer, etc.) can be easily foreseen.     
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