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Touching the transcendentals:
t ract ional mot ion from the bir th

of calculus to future perspect ives

Pietro Mi l ic i

When the rigorous foundation of calculus was devel-
oped, it marked an epochal change in the approach
of mathematicians to geometry. Tools from geome-
try had been one of the foundations of mathematics
until the 17th century but today, mainstream con-
ception relegates geometry to be merely a tool of vi-
sualization. In this snapshot, however, we consider
geometric and constructive components of calculus.
We reinterpret “tractional motion”, a late 17th cen-
tury method to draw transcendental curves, in order
to reintroduce “ideal machines” in math foundation
for a constructive approach to calculus that avoids
the concept of infinity.

1 Foundat ional role of ideal machines

Machines, interpreted here to mean any mechanical tools, play various roles in
mathematics. They can transfer mathematical concepts to real-world applica-
tions and foster deeper understanding, particularly as used for visualization.
But they have also played a foundational role since antiquity, particularly with
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regards to geometry. The fundamental question we want to address in this snap-
shot is the following: Can machines also constitute a foundation for advanced
mathematics, avoiding abstract concepts such as infinite objects or processes?

The Greek mathematician Euclid (about 300 BCE) wrote the book The
Elements, which is regarded to be the beginning of modern geometry. He
considered the straightedge and compass to be foundational tools in mathematics.
Indeed, the mathematical notions of straight lines and circles can be seen as
an idealization of these tools. Their constructive power was captured by the
following axioms:

• Given two distinct points, it is possible to construct the straight line through
them.

• Given two distinct points A and B, it is possible to construct the circle with
center A and radius AB.

Many geometrical problems can be solved using only straightedge-and-
compass constructions (for instance, dividing any given angle into two halves,
or constructing a square whose area is twice that of a given square). However,
some are not solvable in this way. Consider the three classical problems of
antiquity: constructing an angle which is exactly a third of a given angle (tri-
secting the angle); constructing a cube whose volume is twice the volume of
a given cube (doubling the cube); and, most famously, constructing a square
whose area is equal to the area of a given circle (squaring the circle). All of
these problems were proved in the 19th century to be unsolvable using only
straightedge and compass. Doubling the cube was known to the ancient Greeks
to be possible by finding the intersection of a parabola and a hyperbola (which
are not constructable using a straightedge and compass). So, more powerful
tools were needed, in particular for analyzing curves.

Let us fast forward to the 17th century and to the work of the French
philosopher and mathematician René Descartes (1596–1650). His latinized
name Cartesius led to the word “Cartesian”, as in Cartesian coordinates or
the Cartesian product. With his book La Géométrie [6], Descartes is often
described as the father of “analytic geometry”, that is, using algebraic equations
to represent curves. But nowhere in his work did he ever graph an equation;
curves were constructed from geometrical actions, often pictured as idealized
machines, thus generalizing the classical constructions of Euclid and others.
Only after the curves, whose construction had to be “clear and distinct”, had
been drawn, did he introduce notation and analyze the curve to arrive at an
equation. This is an important point to keep in mind, that the 17th century
perspective was essentially the opposite of ours. For Descartes, a knowledge
of geometric problems and constructions, and the intrinsic value of geometry,
was taken for granted. He justified algebra by showing that it could faithfully
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represent geometry. Nowadays, the link to geometry is much less visible and we
take completely for granted the algebraic manipulation of equations.

We will now consider logarithmic spirals of which straight lines and circles are
particular cases. They were first studied by Descartes and the Italian physicist
and mathematician Evangelista Torricelli (1608–1647) in 1638, and later by the
Swiss mathematician Jacob Bernoulli (1655–1705). These curves are easier to
define using polar coordinates, (r, θ), where r is the distance from the origin and
θ is the angle from the x–axis. Logarithmic spirals are given by the equation

r = aekθ,

for two real constants a 6= 0 and k. 1 The geometric property shared by these
curves is that given the center O of the spiral and a point P on the spiral, the
angle between the line OP (that is, the radial direction), and the tangent line
to the spiral at P is constant for every P . Notice that if k = 0, we obtain a
circle, and thinking of a straight line as a “degenerate” circle, we can see that if
we introduce a machine to draw logarithmic spirals, we will have a machine that
can solve any problem solvable with straightedge and compass, but potentially
problems beyond these.

Consider the equiangular compass that is shown in Figure 1. For a fixed
point O, the wheel A defines a constant angle φ with the radial direction, thus
this device traces logarithmic spirals. The constructive power of the equiangular
compass is represented by the following axiom:

Given three distinct points O, P , and Q, it is possible to construct
a logarithmic spiral with center O, passing through P , and with
inclination φ = ∠OPQ.

It is known that this device extends straightedge-and-compass constructions.
In particular, it is possible to use it to trisect any angle and double any cube as
proven in [10]. Whether it can be used to solve the squaring of a circle is still
an open problem.

The equiangular compass is just one example of how ideal machines can be
used in geometry. From this perspective, the early 17th century was a very
fertile period, when the introduction of algebra in the resolution of geometric
problems required a strong geometric constructive counterpart. As hinted at
above and explained further in [3], this was the exactness issue for geometric
constructions.

1 For more explanations and pictures of logarithmic spirals, see also https://www.mathcurve.
com/courbes2d.gb/logarithmic/logarithmic.shtml.
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Figure 1: The equiangular compass for logarithmic spirals. The wheel (A) rolls
on the paper and is mounted in a fork (B) locked at a fixed angle
with the rod (C). The rod is constrained by the rolling of the wheel,
and by the pivot (D), which allows the rod to slide and which itself
rotates over the chosen center point (O). For practical reasons, there
are also two pointers (E),(F), a capillary feed (G) for the ink, a knob
(H) to orient the wheel, a cam (I) to lock the fork in position. To
reduce friction, there are bearings in (J) and (K).

2 The introduct ion of tract ional mot ion

In the 17th century, curves were generally introduced as traces of ideal machines.
As already mentioned in the introduction, in La Géométrie, Descartes proposed a
“balance” between geometric constructions and symbolic manipulation with the
introduction of suitable ideal machines. In particular, he used planar linkages
which are collections of one-dimensional straight segments of fixed lengths that
are joined at their endpoints to form a graph. The segments are often called
links or rods, and the shared endpoints are called joints. Some joints may be
pinned to be fixed to specific locations (see [5]). These can clearly be seen to be
a generalization of the classical straightedge and compass. So, Cartesian tools
were polynomial algebra (analysis) and a class of diagrammatic constructions
(synthesis) (see [3]). This setting provided a classification of curves according
to which only the algebraic ones 2 were considered “purely geometrical”. It was
thanks to the groundbreaking method of Descartes that we developed “trust”
in equations to faithfully describe the geometric properties of curves, and that

2 An algebraic curve in the Euclidean plane is defined to be the set of coordinates that
satisfy a polynomial equation in two variables, P (x, y) = 0. This is the implicit equation of
the curve, as opposed to the explicit form y = P (x), which can generally be graphed more
easily. Curves that are not algebraic are called transcendental. Note that logarithmic spirals
are transcendental.
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analytic manipulations of equations alone, without geometric constructions to
define curves, are sufficient to give solutions to problems that are fundamentally
geometric.

Let us consider now the transcendental case, since after Descartes, the
foundational role of ideal machines is only necessary for non-algebraic curves.
The origin of a wide class of transcendental curves is the inverse tangent problem.
As opposed to the direct tangent problem, in which we are given a curve and must
calculate its tangents, in the inverse tangent case, a curve is sought given some
properties that its tangent has to satisfy. In a modern setting, the problem is
found in the geometrical solution of differential equations. The first documented
appearance is attributed to the French architect Claude Perrault (1613–1688)
in the late 17th century (see Figure 2). The role of traction, that is, of pulling
something over a flat surface, in the first instrumental way of generating a
curve given some tangent conditions gave rise to the name “tractional” for such
constructions.

Figure 2: Moving the extremity of a chain-clock that lies flat on a table along
a straight line (slowly enough to avoid inertia), the clock describes a
curve called a tractrix.

Many mathematicians worked on clarification and definition of tractional
motion from both a practical and purely mathematical perspective (see [12]).
Physically, the machine solving an inverse tangent problem had to avoid the
lateral motion of a point with respect to a given direction. This can be
accomplished by something that, like the blade of a pizza-cutter or the front
wheel of a bicycle, guides the direction of the motion (as with the equiangular
compass of Figure 1).

The German polymath Gottfried Wilhelm Leibniz (1646–1716) was particu-
larly interested in these constructions. As Leibniz is considered a cofounder of
modern calculus (alongside the English scientist Isaac Newton (1643–1727)), we
can infer that tractional motion may also have played an important role in the
development of calculus. However, the analytic tools that Leibniz used to solve
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calculus problems involved the concept of infinity (although we would have to
wait until the 19th century for this to be put on a solid formal foundation).
As happened with the Cartesian machines used in La Géométrie, tractional
constructions gradually fell out of favour, eventually becoming obsolete.

Even though almost forgotten 3 , I would assert that tractional constructions
can provide an alternative foundation to derivatives in calculus, making it
possible to construct a large class of transcendental objects without the need
for infinity. From a cognitive perspective, such an approach is no longer based
on the concept of infinity (as suggested in [7]), but on something more concrete,
namely, “the wheel direction defines the tangent to a curve” (see also Figure 3).
This concept is present in everyday experience (to turn when riding a bicycle,
we turn the direction of the handlebar).

Figure 3: Considering a wheel rolling on a curve, the direction of the wheel (in
the image represented by a bar) is the tangent to the curve.

3 Def in i t ion and l imitat ions of tract ional construct ions

Tractional machines historically constituted an inhomogeneous class of devices
with some similar ideas (the guidance of the tangent). That means that there
was no well-defined notion of tractional machines until the recent work [8].
With little variations, the main idea behind tractional machines is that they
are linkages, as used by Descartes, extended with the possible introduction of
ideal wheels (compare Figure 3) to be posed on rods. As (partially) proved by
the British mathematician Alfred Kempe (1849–1922) in 1876, for any finite
algebraic part of an algebraic curve, we can construct a linkage tracing it. But

3 Tractional constructions first appeared with foundational purposes in the late 17th century,
were forgotten after the middle 18th century, and were later autonomously rediscovered in
the late 19th century for engineering applications.
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what about the constructive limitations of tractional constructions? To solve
this problem (compare [9]), that historically remained unsolved, we can use
20th century differential algebra (see [4] for a clear introduction).

In the 19th century, the interest in solving equations with polynomials
(thought of as expressions made up of variables such as x and y and coefficients
such as real numbers) led to the development of abstract algebra, defining
algebraic structures such as groups, rings, and fields. 4 These structures consist
of sets equipped with one or two binary operations that generalize the arithmetic
operations of addition and multiplication of real numbers.

Differential algebra extends these algebraic structures with the introduction
of a unary operation, the derivation a 7→ a′, which is defined by the conditions
(a+ b)′ = a′ + b′ and (ab)′ = a′b+ ab′. A ring with derivation is then called a
differential ring and so on. Thus, instead of polynomials, differential algebra
deals with differential polynomials (for example x2x′3y + xy′′2 − x′y′), and
there are algorithms to eliminate some variables in systems of differential
polynomials. Roughly speaking, the difference between differential and non-
differential polynomials is that the variables x, y, . . . in polynomials represent
elements in a ring such as real numbers, while in differential polynomials, the
variables x, y, x′, . . . represent functions of these elements. Considering a point
of a tractional machine as a pair of functions P = (x, y) that both vary in time,
the tangent condition that P cannot move out of the direction given by the
pair of real numbers (∆x,∆y) can be translated into the equation y′∆x = x′∆y.
Thus, inverse tangent conditions can be converted to differential polynomials.

With differential algebra (specifically, with elimination algorithms), we ob-
tain that the behaviour of any point of a tractional machine locally can be
parametrized by differentially algebraic functions 5 . That means that with
tractional constructions we can trace many transcendental curves, but there are
still curves out of reach as not all functions are differentially algebraic. However,
elementary functions (trigonometric, exponential, logarithmic ones) and even
most of the transcendental functions of analysis handbooks are differentially
algebraic. Historically, the first example of a function that is not differentially
algebraic was Euler’s gamma function 6 , as proven by the German mathe-
matician Otto Hölder (1859–1937) in 1886. Curiously, differentially algebraic
functions form the same class as the functions obtainable by Shannon’s General

4 For an introduction to the concept of fields, see Snapshot 4/2014 What does “>” really
mean? by Bruce Reznick.
5 A function y is called differentially algebraic if it satisfies a differential equation of the
form P (t, y, y′, . . . , y(n)) = 0 where P is a nontrivial polynomial in n + 2 variables.
6 Euler’s gamma function is a continuous extension of the factorial function to all complex
numbers which was introduced by the Swiss mathematician and physicist Leonhard Euler
(1707–1783).
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Purpose Analog Computer (GPAC) from [11], written many centuries after the
introduction of tractional constructions. As visible in the title of Shannon’s 1941
paper, the GPAC was a theoretical model for the analog computer called differ-
ential analyzer 7 and still today it seems that differentially algebraic functions
constitute a limit for analog computation.

From a foundational perspective, it is interesting that the analysis of trac-
tional machines does not need infinity: tractional machines can be investigated
in a purely symbolic way with the 20th century differential algebra without
the need for infinitary objects or processes. That can be considered as an
extension of Descartes’ foundational balance between geometric constructions
and symbolic manipulation but far beyond polynomial algebraic boundaries.
This time the dualism is no longer between curves that are algebraic or not, but
between functions that are differentially algebraic or not.

4 Fur ther perspect ives

Apart from the theoretical model, tractional machines can be useful for didactical
purposes, in particular to foster a deep and conscious understanding of calculus
and differential equations. These topics pose several difficulties because they
involve the manipulation of infinitary objects. Research in math education,
which focused on these difficulties for a long time, has highlighted obstacles and
proposed different approaches. Indeed, the actual manipulation of an artifact
can help students to experience and internalize the underlying mathematical
contents, if suitably introduced into educational pathways (see [1]).

The adoption of tractional tools in laboratories to improve the learning
of students has already been present in the Italian tradition: we may recall
Giovanni Poleni from Padua (1683–1761) who invented the “calculating clock”
and Ernesto Pascal from Naples (1865–1940) who reorganized the teaching of
mathematics at his university. An interdisciplinary commitment would consist
in developing suitable didactical activities concerning tractional motion with the
aid of both concrete machines and digital tools, as already realized for algebraic
machines (see [2]).

To conclude with future perspectives, we note that the geometric “legitima-
tion” of analytic results (as described for the Cartesian approach in the first
section) is somehow present also today in some fields of advanced mathematics.
An example of how mathematical machines and theory worked together in the
20th century is given in the Snapshot 13/2019 Analogue mathematical instru-

7 The differential analyzer, completed by the American engineer Vannevar Bush (1890–1974)
in 1931 at MIT, was one of the first machines operationally used to solve general differential
equations. Such equations were solved using mechanical integrations by wheel-and-disk
mechanisms (see the images and videos at http://www.mit.edu/~klund/analyzer/).
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ments: Examples from the “theoretical dynamics” group (France, 1948–1964)
by Loïc Petitgirard.

On the contrary, for other fields of advanced mathematics, we still are
looking for a geometric interpretation. Let us describe one example here:
Differentially algebraic functions are solutions of differential polynomials, that
is, of polynomials with non-negative, integer order derivatives. Negative integer-
order derivatives could be considered indefinite integrals, but what could it
mean to consider derivatives of non-integer order? This question, first posed by
Leibniz, is at the core of “fractional calculus”. While fractional calculus finds
use in many fields of science and engineering, it still lacks a widely accepted
geometric interpretation. Fractional calculus analytically involves the use of
Euler’s gamma function, which is not a differentially algebraic function, so this
class of problems cannot be coped by tractional motion. An exciting problem
is thus to generalize tractional constructions in order to include this class of
problems, extending the power of analog computation while still avoiding the
introduction of infinity or approximation. After the exactness issue for geometric
constructions from the 17th century that was described in the first section, we
have now a new quest for exactness: Are you ready?
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Figure 1 Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Springer, The Mathematical Intelligencer: The Equiangular
Compass, P. Milici and R. Dawson, Copyright (2012).

Figure 2 Reprinted by permission from Springer Nature Customer Service
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between the Tractrix and Logarithmic Curves with Mechanical Applications,
D. Crippa and P. Milici, Copyright (2019).

Figure 3 Reprinted by permission from Springer Nature Customer Service Cen-
tre GmbH: Springer, A geometrical constructive approach to infinitesimal
analysis: Epistemological potential and boundaries of tractional motion,
P. Milici, in From Logic to Practice: Italian Studies in the Philosophy
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