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CHAPTER 1 INTRODUCTION 

1.0 Introduction 

The world is changing at an ever-increasing pace around us. The rise in speed of communication 

and global social connectivity (Figure 1-2); the ubiquitous personal computing through smart 

phones; and human-level task performance by machines (e.g. autonomous vehicles) etc. are 

creating unprecedented challenges and new opportunities for society. However, human 

civilization has survived for thousands of years, relying on social and cultural adaption across 

myriad periods of duress. One expects that the resiliency and robustness of human kind also will 

help the species adapt to the current and future challenges. 

 

Figure 1-1 Scales of social interaction. The emergent properties depend on the scale at which the interaction takes place 
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Figure 1-2: The Impact of social media: Source givingcompass.org 

Cultural Algorithms (CA) are stochastic optimization methods that are modelled after human 

culture and are suited to finding the solutions to problems embedded in complex environments 

(Figure 1-1). The CA belong to the class of population-based optimization algorithms but are 

enhanced in that the population agents are connected by a social network and they share a 

common Belief Space. Knowledge of various types reside in the Belief Space and are distributed 

to the population via a Knowledge Distribution (KD) mechanism on a periodic basis. Each type of 

knowledge is a metaheuristic that guides the associated population individuals through the 

problem search space in a specific manner. A knowledge distribution mechanism serves as a 

hyper-heuristic that solves the problem of selecting the right metaheuristic at the right time for 

each population individual. 

Hitherto, CA implementations have used competitive KD mechanisms – i.e. mechanisms where 

knowledge types are pitted against each other and vie for the control of a population of 

individuals. Such KD methods resolve to a ‘winner’ knowledge type for each individual, which then 
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controls the individual in the next period. Competitive KD methods have performed well for 

problems embedded in static environments. Relatively recently, CA research has evolved to 

encompass dynamic problem environments – which for immediate purpose can be defined as 

environments that can change over time. The degree and rate of an environment’s changes can 

be referred to as its complexity.  

Given increasing environmental complexity, a natural question arises as to whether the KD 

mechanisms that also incorporate cooperation can perform better in such dynamic environments? 

Stochastic optimization requires a balance between exploration and exploitation (Matej 

Črepinšek, 2013). Among other projections, each knowledge type or metaheuristic can also be 

viewed as a point on the exploration-exploitation continuum, due to the nature in which it moves 

the individual through the search space. All else being equal, in CA the Knowledge Distribution 

mechanism is the primary allocator of resources between exploration and exploitation. It controls 

allocations both at the macro (population-level) and the micro (individual-level). Thus, the KD 

mechanism, through the allocation of knowledge in the population space, is a key determiner of 

optimization performance. 

Game theory is a formal approach for analyzing the behaviors of goal-oriented, interacting 

entities. Here the term ‘entity’ should be interpreted broadly. For example, it could refer to 

software agents, individuals in a population, organizations, countries or even blocs of countries 

(e.g. NATO vs. Warsaw pact countries).  Game theory can inform about both competitive and 

cooperative situations. For example, alliance formation as in the case of the European Union was 

a cooperative undertaking whereas a market share tussle between say Ford and GM is 

competitive.  
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The application of Game theory for Knowledge Distribution mechanisms in Cultural Algorithms 

thus seems very apropos, especially in the light of eliciting cooperation among the available 

knowledge types. Game theory is an established discipline in that it is both broad and deep with 

applications in myriad fields, e.g. economics, social sciences, marketing, computer science, 

military strategy, to name just a few. Hence it is a rich source for ideas for game-based knowledge 

distribution. 

The primary question that this research tries to answer is whether cooperative games can be 

an effective mechanism for Knowledge Distribution in Cultural Algorithms especially in the case 

of dynamic environments and / or complex domains. 

1.1 Cooperative and Completive Games 

In this research, CA knowledge distribution is studied in the context of 3 types of games that 

encompass both cooperation and competition: 

• Iterated Prisoner’s Dilemma 

• Stag-Hunt  

• Stackelberg 

Prisoner’s Dilemma is a well-studied game whose analytical solution settles in favor of non-

cooperative actions. However, when played repeatedly cooperation can emerge. Axelrod    

showed that reciprocity based stable strategies can emerge in iterated game play (e.g. tit-for-tat) 

(Axelrod & Hamilton, 1981).  

Stag-Hunt is a game that models situations where the default is cooperation but can lead to 

defection (competition) if reward is sufficiently delayed. The “stag hunt” metaphorically is where 
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a group of hunters must cooperate to hunt a stag – a more difficult task but with a larger reward. 

The alternate is to hunt a rabbit which each hunter can do alone without needing cooperation 

from others – but this provides lower reward. Hunters initially wait for a stag to appear but the 

longer the delay in sighting a stag (which are rarer) the more tempted they are to defect and go 

after a rabbit (which are plentiful).  Among other situations, Stag-Hunt has been used to study 

alliance formation (Boudreau, Rentschler, & Sanders, 2019) and the evolution of social structure 

(Skyrms, 2004). 

Stackelberg is a model of collusion/competition in Microeconomics that is closely related to 

Cournot competition. Here a leader firm takes the lead in setting the production-level/price in a 

market that is being targeted by the leader and a few followers. The leader can take advantage of 

its first-mover position to set an advantageous production target / price. However, the leader and 

followers have enough information to implicitly coordinate on prices and production for mutual 

benefit, given their relative market positions. In Stackelberg, limited cooperation emerges due to 

the inherent structure in the interaction arena. The Stackelberg model is often applied in product 

pricing and production strategies. For example, Yu and Hong have studied supply-demand balance 

in the electricity market in the context of a Stackelberg game (Yu & Hong, 2016). 

1.2 CAT Software to Support Competitive / Cooperative Communication 

To evaluate game-based knowledge distribution, two new CA software systems were 

developed that implement several KD mechanisms. The CA default KD mechanism - Weighted 

Majority (WTD) or “wisdom of the crowd” - is used as a baseline for comparison in both systems.  

The two systems, described below, optimize in vastly different domains. This was done in order 

to more robustly investigate the premise that – in complex and dynamic environments – games 
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that span both cooperation and competition are a better method of knowledge distribution than 

Weighted Majority which is akin to “wisdom of the crowd (majority voting). Majority voting is 

shown to work well when the signal-to-noise ratio is weak or when the environment is relatively 

static. For example, many animal cultures use a form of voting to make group decisions (Hoole, 

2018).  By contrast, human cultures are rich and complex where social network games play a vital 

role in knowledge flow (Jiang, Chen, & Liu, 2014)  and eliciting cooperation (Takano, Wada, & 

Fukuda, 2016).  

The first system, CATGame, solves numerical optimization problems in both static and dynamic 

environments. CATGame supports a variety of game mechanics. Here the KD mechanism is 

implemented in an abstract manner and serves as the framework that can be used to study 

concrete game implementations by injecting them into the this mechanism. All three games 

described above leverage this framework.  

The second system, CATNeuro, evolves optimal deep learning models i.e. neural networks 

(Goodfellow, Bengio, & Courville, 2016) – a domain very different from numerical optimization. 

Each of the population individuals in CATGame contain a vector of real numbers. And those in 

CATNeuro contain a directed graph - a somewhat direct encoding of a deep learning model. 

CATNeuro takes many aspects from the neuro-evolution discipline (Miikkulainen, et al., 2017) 

(Stanley & Miikkulainen, 2002) but adapts them to work in the Cultural Algorithms framework. 

The CA knowledge sources operate accordingly in each domain, i.e. move individuals through a) 

a real-valued hyperspace for numerical optimization; and b) the space of directed graph 

structures for deep learning models. However, in both cases the respective knowledge sources 

operate on the principles established in the Cultural Algorithms literature. 
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1.3 Models of Complex Dynamic Environments in CATGame 

To evaluate the performance of the various knowledge distribution mechanisms implemented 

in CATGame, the Cones World test problem generator is used. Cones World is based on the DF1 

generator devised by Morrison and De Jong (Morrison & De Jong, 1999); DF1 is specifically 

designed to evaluate the performance of evolutionary algorithms in dynamic environments.  A 

sample 2D Cones World landscape is shown in Figure 1-3. The optimization goal is to find the 

global maximum (highest peak) of the landscape within a specified epsilon. There may be a 

thousand or so cones – i.e. local maxima – making this a relatively hard optimization problem.  The 

Cones World problem generator includes dynamics to periodically modify the landscapes while 

the performance optimization is still underway. The level of change from landscape-to-landscape 

– i.e. the dynamic complexity of the environment – is controllable by a system parameter.  

 

Figure 1-3: Sample 2D Cones World landscape 

A key characteristic to note is how quickly the system recovers from a shock. In other words, 

when the proverbial rug is pulled from under, how many iterations does the system take on 

average to find the new global maximum. A robust system should recover sooner. A non-robust 
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system may take longer or could get stuck at a local maximum more of the time. The KD 

mechanisms are tested at varying levels of dynamic complexity – from linear changes, to non-

linear, all the way to near-chaotic changes – to better understand each’s responsiveness to 

different levels of dynamic complexity. 

Multiple types of metrics are collected and analyzed to obtain a wholistic, multi-faceted 

understanding of KD operation and performance. The primary performance metric is the number 

of generations needed in order to reach solution within the specified epsilon. However, since 

knowledge distribution operates in the context of a social network, several ‘social’ metrics are also 

collected, such as Schelling’s segregation index (Schelling, 1971); diffusion; and information 

related to the dynamics of knowledge flow in the network.  

1.4 Models of Complexity in CATNeuro 

The notion of complexity to test CATGame is in the form of change over time. By contrast, 

CATNeuro must solve an inherently complex, multi-layered optimization problem. The top level is 

that of the overall structure of the model as illustrated in Figure 1-4. At this top level, deep learning 

models are directed graphs that process input to produce output – the optimization should 

produce a feasible and hopefully compact top-level structures (often there is no single right 

answer).  

The internal nodes of the top-level graph are modules which are smaller, reusable graphs. The 

system maintains several module ‘species’. Each species is evolved in a separate population so as 

to protect the members from being eliminated too early and reducing overall available diversity – 

a process known as speciation in biology (Howard & Berlocher, 1998). Hence, the second level 
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optimization is to select the right modules for the internal nodes from the available species of 

modules. 

Several parameters associated with both the top-level and module individuals also need tuning. 

For example, the overall learning rate (top level) and deep learning operation parameters 

(module-level) e.g. number of dimensions of a dense node; activation type (ReLU, TanH), etc. This 

is the third level of optimization. 

 

Figure 1-4: Example CATNeuro evolved model - shows overall structure and the structure of selected modules 

The structures produced by CATNeuro are translated into concrete deep learning models for 

the chosen deep learning library (e.g. CNTK, Tensorflow, PyTorch, etc.). The concrete models are 

then trained using the available training data for the problem. The error or loss obtained from the 

training step is fed back to CATNeuro as the fitness signal to guide the optimization. CATNeuro is 
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a general system that can be used to optimize deep learning models for any problem as long as a 

suitable training dataset is available for the given problem. The training dataset for the CATNeuro 

test problem is created via a Reinforcement Learning process and is explained next. 

 

Figure 1-5: A frame from FightingICE game 

The test problem selected for CATNeuro is the construction of a deep learning model driven 

controller to play a fighting game called FightingICE (Intelligent Computer Entertainment lab., 

Ritsumeikan University, 2018). FightingICE is a research testbed for AI, maintained by Ritsumeikan 

University, Japan. It is a version of Rumble Fish (Dimps Corp.) a 2D street fighting game (Figure 

1-5). 
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The FightingICE research testbed is part of an annual competition for AI-driven controllers. 

Among other features, the testbed allows programmatic access to internal game state which can 

be used to create controllers that play the characters in the game. Each player has 56 possible 

actions to choose from (e.g. jump, hit, block, throw projectile, etc.). 

Any deep learning model requires a fair amount of training data to train. To acquire the training 

data for the deep learning controller model, a Reinforcement Learning (Sutton & Barto, 2018) 

inspired approach was followed. The main idea is to first learn a mapping (as a table) between 

game state and action distribution. In Reinforcement Learning parlance this known as a policy 

table. How such a mapping is learned is described later. If however such a mapping is available, 

an agent (or controller) can use it to play the game. It can look up the current game state in the 

table and if there is a match, it can then sample from the found distribution and play the selected 

action. Otherwise it may take a random action.  

For very large game state spaces, as is the case for FightingICE, a table-based approach is not 

feasible as the table will have either many gaps or will be impractically large. A better approach is 

to convert the table into a neural network model which would be a compressed representation of 

the table. A table is discrete mapping whereas the corresponding neural net is a continuous one. 

The neural network model can be learned from the table by using the table as the training data. 

The network can “fill in the blanks”, i.e. can abstract over the learnings available in the policy table. 

How is the policy table learnt? For the FightingICE controller, the process is to play many games 

and record each frame’s non-pixel data to obtain representative samples of states encountered 

during game play. The table is initialized with uniform action distributions for each recorded state. 

Then the FightingICE supplied simulator is used to play selected actions for each recorded state. If 
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simulation actions produce a win, the probability of choosing the winning actions for the 

corresponding states is increased and the table updated accordingly. Initially actions are selected 

at random but later a mix of random and sampled actions are used. It takes a while for the policy 

table to converge but eventually it does. Following this process resulted in a 1.3 million row policy 

table with a disk size of about 1 gigabyte. The table thus learnt provides sufficient data to train a 

deep learning model to be used as a controller. 

Stag-Hunt – for which CATGame experimental results showed as performing the best – and 

WTD knowledge distribution mechanisms are implemented for CATNeuro. Several deep learning 

models are evolved using each of the mechanisms, with the training data obtained from the policy 

table. FightingICE was played for each model and game play statistics recorded. The selected 

opponents for all test games are a) “Jerry Mizuno” (Chu & Thawonmas, 2017) – an algorithmically-

driven AI used as the benchmark for comparison and b) “Thunder” (Intelligent Computer 

Entertainment lab., Ritsumeikan University)  the 2018 FightingICE competition champion. 

In addition to game statics (e.g. hits-to-opponent; relative-score; distribution of actions taken; 

etc.) several aspects of the produced model structures were noted (e.g. the number learnable 

parameter weights; number of nodes; number of edges; maximum path length; etc.). The game 

play statistics and model structural properties are analyzed and compared to evaluate the 

performance of each knowledge distribution mechanism under CATNeuro. 

1.5 Outline of the Thesis 

The remainder of the thesis is organized as follows. Chapter 2 provides an overview of the 

Cultural Algorithms framework which is the main subject of this research. Since knowledge 
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distribution is one of the primary determiners of CA performance, the prior mechanisms and their 

historical progression is detailed in Chapter 3.  

Chapter 4 is a primer on Game Theory. Only the basics are covered in enough detail for one to 

understand the application of games to CA knowledge distribution. Chapter 5 explores how games 

can be used for knowledge distribution in CA, and details an abstract mechanism for injecting a 

wide variety of games into the CA framework for study. The concepts and implementations of the 

three games mentioned earlier are provided in Chapter 6.  

Chapter 7 details the experimental framework used to evaluate game-based knowledge 

distribution mechanisms implemented in CATGame. The Cones World based dynamic landscape 

generation mechanism is explained in detail. Also detailed are the various ‘social’ metrics used for 

evaluation such as Schelling’ Index of segregation; diffusion; and analytical methods based on a 

Markovian view of knowledge flow across the population network. Data collected from CATGame 

experiments, conducted as described in Chapter 7, are analyzed and presented in Chapter 8. 

The CATNeuro system and the experimental framework to evaluate CATNeuro is explained in 

Chapter 9. It details the graph operations used to evolved deep learning models and the mapping 

of those operations to knowledge sources. Chapter 9 also provides a description of the FightingICE 

game and the reinforcement learning inspired method used to create the training data for deep 

learning, along with the training regime used to train the models. Chapter 10 presents the 

performance analysis for CATNeuro knowledge distribution mechanisms from the experimental 

data collected. Finally, the main conclusions of this research are summarized in Chapter 11. Future 

work arising from the conducted research are also presented in the chapter. 
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CHAPTER 2 CULTURAL ALGORITHMS FRAMEWORK OVERVIEW 

2.0 Introduction 

In the spirit of Ant Colony Optimization (Dorigo, Maniezzo, & Colorni, 1996) (ACO) and Particle 

Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), the Cultural Algorithm (CA) (Reynolds R. 

G., 1978) is a socially motivated knowledge-driven approach that can be used to find optimal 

solutions in a search landscape. Its applications exist in a diverse set of domains, e.g. numerical 

optimization (Ali, Suganthan, Reynolds, & Al-Badarneh, 2016); archeology (Jayyousi & Reynolds, 

2014), biology (Judeh, Jayyousi, Acharya, Reynolds, & Zhu, 2014);  gesture recognition (Waris & 

Reynolds, 2015), and computer vision (Waris & Reynolds, 2018); to name some.  As with ACO and 

PSO, the CA approach employs a socially interacting population of agents. By contrast however 

CA also employs a high-level component called the Belief Space that collects and disseminates 

varied types of knowledge from/to the population. The Belief Space consists of Knowledge 

Sources (KS), each of which essentially represents a type of search strategy. Some KS are primarily 

exploratory while others are primarily exploitative and yet others can be like stem cells that can 

be explorative or exploitative depending on the context. The Cultural Algorithm is a hyper-

heuristic that determines what strategies to distribute to the population. 

The two components (Population and Belief Space) are connected by an interface; the 

communications protocol. The interface consists of an acceptance function and an influence 

function. The acceptance function manages transferring experience from the Population 

component to the Belief Space. In turn, the influence function is concerned with distribution of 

knowledge across a social network. One of the keys to the influence function is the knowledge 

distribution mechanism. This mechanism controls how the search strategies from the Belief Space 
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are distributed among the population of individuals. The establishment of the right dynamic 

balance between the influences of the various Knowledge Sources on the population of individuals 

is a key goal of CA. 

Over the years, many knowledge distribution mechanisms have been proposed and studied 

(Peng, 2005) (Che, 2009) (Reynolds & Kinnaird-Heether, 2013) (Al-Tirawi & Reynolds, 2018). This 

are detailed in Chapter 3. However, prior research on Cultural Algorithms has focused exclusively 

on competitive KD mechanisms where each individual in the population is assigned one 

Knowledge Source (the winner) that influences that individual for the next generation.  

Biologically inspired computing was first given impetus by the John Holland with the 

development of Genetic Algorithms (GA) (Holland, 1992). GA mimic the chromosomal processes 

of mutation and inheritance that occurs in nature. The philosophical underpinnings go all the way 

back to Darwin and the aphorism “survival of the fittest”. In fact, the GA structure follows nature’s 

form quite closely. A population of individuals is evolved through mutation and crossover of 

‘genetic material’; individuals are evaluated for fitness as candidate solutions against the problem 

space under consideration; the fittest individuals receive higher chance of passing their genes on 

to the next generation. 

2.1 The Cultural Algorithm 

CA are a computational model of cultural evolution that happens at a faster pace than 

biological evolution (Perreault, 2012). Dawkins (Dawkins, 1976) proposed the idea of ‘meme’ as 

carrier of cultural knowledge, analogous to genes in biology. The Belief Space in CA can function 

as the storehouse of memetic information that can be transcribed on to future generations. The 

basic CA is given in Figure 2-1. 



16 
 

 
 

 

Figure 2-1: Cultural Algorithms Framework (source: CA papers) 

The major components of the CA are explained next and the pseudocode for the main loop is 

given in Figure 2-4: 

• Population Space – a collection of agents or individuals. Each individual contains 

information that can determine its action and behaviors. The individuals may be 

networked together in some topology (see Figure 2-2). Each is associated with a single 

Knowledge Source (in most cases). 

• Belief Space – stores and organizes different categories of knowledge into the 

aforementioned Knowledge Sources. The Knowledge Sources reside in the Belief Space 

and are organized in a tree structure as shown in Figure 2-3. Knowledge is harvested from 

the current population generation and stored into the Belief Space. It is then disseminated 

to the next generation.  This knowledge transfer and update occurs via the 

communications protocol described next. 

Knowledge Distribution 
Mechanism 

Population Space 

Belief Space 

A
cc

ep
t(

) 
In

flu
e

n
ce

() 

Knowledge Sources 

Network 

Update () 



17 
 

 
 

• Communication Protocol – methods for transferring knowledge between the Population 

Space and the Belief Space. It consists of an Accept, Update and Influence functions. Every 

generation, interesting individuals from the current generation are inducted via the Accept 

function into the Belief Space. The Update function harvests knowledge from the selected 

individuals and updates the stored knowledge in the Belief Space. The Update function 

flows accepted individuals as per Figure 2-3. The Influence function updates the 

population to create the next generation by a) first associating each individual with a 

Knowledge Source using the knowledge distribution mechanism; and b) modifying the 

individual via its associated KS to move it through the search space in search of better 

solutions. 

 

Figure 2-2: Population network topologies (source: CA papers) 
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Figure 2-3: Knowledge Source dependency graph (source: CA papers) 

Begin 
t = 0; 
initialize BeliefSpace; Pop 
repeat 
   Pop <- evaluateFitness (Pop) 
   Selected-Indvs <- accept(Pop) 
   BeliefSpace <- update (BeliefSpace, Selected-Indvs) 
   Pop <- influence (BeliefSpace, Pop) 
   t <- t + 1 
until (termination condition achieved) 
End 

Figure 2-4: Cultural Algorithms Pseudocode (source: CA papers) 

Knowledge Sources can be viewed as being exploitative or explorative. Exploitative KS explore 

a local region of the search space. For example, the Situational KS tracks exemplar individuals in 

the population. Individuals under its influence are small variations of one of the exemplars stored 

in the Belief Space. Situational knowledge is therefore considered exploitative. The Topographic 

KS on the other hand maintains knowledge of diverse regions of the search space by tracking 

clusters of individuals. Under its influence, individuals are likely to move to a location in or near 

one of the clusters which span a larger radius than that around a single individual. 

It must be noted that Knowledge Sources operate on principles harvested from the dynamics 

and evolution of cultures and as such are abstract ideas. Their concrete implementation for a 
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particular domain really determines where on the explorative-exploitative scale they fall. For 

example, Normative KS as interpreted for numerical problems is considered explorative whereas 

it is considered exploitative in CATNeuro because it does not alter the structure of the graph and 

instead only changes the parameters of the graph nodes. 

The CA can be configured with either homogenous (fixed) or heterogenous network topologies 

(Figure 2-5). Reynolds, et al (Reynolds, Gawasmeh, & Salaymeh, 2015 ) found that homogenous 

topologies were more efficient in low entropy problems but a variation of heterogenous 

topologies performed more predictably in higher complexity problems.  Below (Figure 2-5) are 

examples of completely connected graphs. Disjoint graphs can be represented in a co-evolution 

fashion as multiple populations are may communicate via the Belief Space. 

 

Figure 2-5: Homogenous and Heterogenous topologies (source: CA papers) 

The CA has been applied in a vast variety of problem domains. In addition to the applications 

noted in 1.0, to solve scheduling problems in cloud workflows (Mojab, Ebrahimi, Reynolds, & Lu, 
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2019); implement security policies (Bhuyan, Lu, Reynolds, Zhang, & Ahmed, 2019); and multi-

objective optimization (Stanley S. D., 2020), among others. Several books by Reynolds covers 

additional applications (Reynolds R. G., 2020), (Reynolds R. G., 2019). 

2.2 Knowledge Sources 

The CA framework allows for different types of Knowledge Sources to be combined in a 

synergistic manner. The schematic in Figure 2-6 depicts the flow of knowledge from the Belief 

Space to the population space.  

The number and types of Knowledge Sources is not fixed. However, the CA is typically 

configured with a default set, namely Situational, History, Domain, Topographical and Normative 

knowledge. These are described in some detail in Table 2-1. KS usage is selective and new 

knowledge types can be integrated into the Belief Space, if required by the problem domain. Colon 

(Colon, 2012) for example, augmented CA with a ‘Contextual’ rule-based knowledge 

representation to determine optimal plans for pediatric nursing care. The reader is referred to 

other CA papers for the detailed explanation of the commonly used Knowledge Source 

metaheuristic types (Reynolds & Saleem, 2005) (Ali M. , 2008) (Che, 2009).  
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Figure 2-6: CA Knowledge distribution flow (source: CA papers) 

Conceptually, each KS represents some process in cultural evolution. These abstract concepts 

are translated into concrete implementations based on the problem domain. In general, for 

numerical optimization problems, the KS operate on numerical vectors. Each vector is a point in 

the problem hyperspace and represents a candidate solution. Each KS modifies the vector 

elements, in its own way, to guide the associated individual to optimality in the search space. The  

The CATGame system is meant for numerical optimization and thus operates on numerical 

vectors as described above. CATNeuro by contrast operates on directed graphs and hence the KS 
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need to modify graphs. This is done with the help of graph operations derived from NEAT (Stanley 

& Miikkulainen, 2002), namely: 

• Toggle Connection 

• Add Connection 

• Add Node 

• Crossover 

• Mutate Parameter 

These operations are   described in detail in section 9.1. Here the mapping of these operations 

to the various KS is described in Table 2-1. 

Table 2-1:Default Knowledge Source Types 

Knowledge Source & 
Description 

Acceptance  Influence 

Situational 
Situational knowledge was first 
introduced by Chung (Chung, 
1997). It consists of a set of 
exemplar individuals along with 
their parameter values and the 
fitness value. These individuals 
represent ‘event-based’ 
memories observed within some 
species. They also serve as 
examples for other individuals to 
follow. 

Best performing individuals 
are added to the list of 
exemplars maintained by 
Situational KS. The new list is 
ranked by fitness and 
truncated to the configured 
maximum length. 

Numeric: The parameter values of 
an individual under the influence 
of this KS are mutated in the 
direction of the corresponding 
parameter values of the exemplars 
or evolved from their current 
values. The probability between 
the two actions depends on a 
configure probability with bias 
towards parameter evolution. 
 
Neuro: Graph of a randomly 
selected exemplar is evolved via an 
operation sampled from the 
probability distribution over 
operations associated with 
Situational (see Figure 2-7). The 
updated graph is then assigned to 
the influenced individual. 
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Normative 
In cultural terms this knowledge 
represents the accepted norms 
of behaviors in a society.   
Normative knowledge was also 
introduced by Chung (Chung, 
1997). It is a set of intervals for 
each of the parameters of the 
problem. The intervals are 
considered promising range of 
values for the corresponding 
parameters.  

The interval ranges 
maintained by Normative KS 
are updated from the 
parameter values associated 
with best performing 
individuals. 

Numeric: The parameter values of 
the population individuals are 
mutated in accordance with the 
intervals. If a parameter value falls 
outside the range, a value is 
randomly assigned from the range 
interval. Otherwise the value is 
mutated around its current value. 
 
Neuro: The parameters of the 
influenced individuals’ graph are 
evolved by sampling from kernel 
density estimates (Cosma Shalizi 
CMU, 2009) maintained by 
Normative KS. 
 

Topographic 
In cultural terms, this KS 
represents the knowledge of the 
landscape or the terrain. The 
version of Topographic KS used 
for CATGame and CATNeuro is 
based on the Brainstorm 
optimization algorithm (Shi, 
2011). The individuals are 
grouped into clusters (using an 
algorithm such as K-means). The 
clustering mechanism by its 
nature divides the top 
performers into diverse groups 
each of which marks a promising 
region of the search space. 
 
Note: Earlier versions of this KS 
use multi-dimensional trees. Jin 
(Jin & Reynolds, 1999) 
introduced topographic or 
regional knowledge. The search 
space is divided into cells. A list 
of best cells is maintained. 
Overtime the cells may be 
divided into finer grained cells to 
provide better resolution for 
optimization.  
 

The top performing 
individuals are added to the 
list of individuals maintained 
by Topographic. The new list is 
ranked by fitness and 
truncated to a configured 
maximum. The updated list is 
clustered with K-means where 
each list individual is binned to 
a fixed number of clusters. 
 
Note that to perform K-means 
clustering some measure of 
distance is required between 
two individuals. This is usually 
the Euclidean distance in the 
case of numeric optimization. 
For CATNeuro a measure of 
distance is defined based on 
graph similarity (see Chapter 
9). 

Numeric: The parameter values of 
the influenced individual are 
derived by evolving those of the 
centroid individual of a randomly 
selected cluster. 
 
Neuro: Graph of a randomly 
selected centroid is evolved via an 
operation sampled from the 
probability distribution over 
operations associated with 
Topographic (see Figure 2-7). The 
probability distribution is heavily 
biased towards the crossover 
operation. The updated graph is 
then assigned to the influenced 
individual. 
 

Domain 
Domain knowledge was 
introduced by Saleem (Saleem, 

Accept the current generation 
of top performers 
 

Numeric: The influenced 
individuals parameter values are 
mutated in the direction of the 
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2001).  The idea is to leverage 
knowledge specific to the 
problem domain – such as by 
consulting an expert in that 
domain. 
 
For numerical problems, Domain 
guides the individuals in a 
direction determined from local 
gradients. 
 
David Colon (Colon, 2012) used 
business rules as the basis of 
Domain knowledge. 
 
For Domain, CATNeuro is the 
primary KS for adding new nodes 
to a graph. CATNeuro encodes 
knowledge of graph structures 
to evolve structurally sound 
graphs for deep learning models 
however this applies for all KS 
except Normative (which does 
not modify structure).  
 

 gradient to achieve better 
performance (for high dimensional 
problems, the determination of 
local gradients may be expensive 
so CATGame also implements an 
alternate, Differential Evolution 
(Storn & Price, 1997) based version 
of Domain KS). 
 
Neuro: The influenced individuals’ 
graph is updated either by evolving 
its own current graph or that of a 
top performer of the current 
generation. Neuro evolution is 
elitist (Stanley & Miikkulainen, 
2002). With configured probability, 
a top performer’s graph is chosen 
over the individuals own. Graph 
evolution is strongly biased 
towards addition of a new node to 
the graph. 

Historical 
History knowledge was also 
introduced by Saleem (Saleem, 
2001). In cultural terms it 
represents ‘episodic’ memories. 
History maintains the trail of 
best performers over time. This 
allows for backtracking or 
branching from a prior best – 
helpful if the optimization is 
stuck in local optima. 
 

Add new best, if any, to the 
history list. Truncate the list to 
a configured maximum 

Numeric: If the influenced 
individual’s fitness is worse than 
that of a randomly selected best 
from the history list, the influenced 
individual is assigned mutated 
parameters of the selected history 
individual. Otherwise the 
influenced individual’s parameters 
are evolved around their current 
values. 
 
Neuro: Here the mechanism used 
is similar to the one used for 
numeric problems except that the 
mutation applied is a graph 
operation which is sampled from 
the distribution given in Figure 2-7. 
For History, equal weight is given 
to mutate parameter, toggle 
connection and add connection 
operations. 
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To enable better exploration and to prevent premature convergence, the Knowledge Sources 

are not deterministically mapped to graph operations in the CATNeuro system. Rather the KS are 

associated via probability distributions. When a KS influences a popluation indvidual, it samples 

from the associated distribution and selects a graph operation to apply. A high level view of this 

mapping is in Figure 2-7 and more details are given in Chapter 9. In Figure 2-7, each row visually 

depicts the probabilty of selecting a graph operation for the corresponding KS. Each ‘block’ of each 

row corresponds to a graph operation. The graph operations are shown on the x-axis. The color 

of  the block represents probability. The color key on the right side provides a mapping from color 

to proability value. As an examle Topographic is biased to select the Crossover operation but can 

select Add Connection or Add Node operations with some probability. If a KS is under represnted 

in the population then, under a determinsitic mapping, the corresponding  graph operation could 

be under applied. The randomized association helps maintain diversity of graph operations in the 

population. 
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Figure 2-7: Knowledge Source to graph operation heat map - colors represent probability; row probabilities sums to 1 

(source: CA papers) 

2.3 Chapter Summary 

This chapter provided an overview of Cultural Algorithms in terms of its architecture, major 

components and operation, namely the Belief Space and the contained Knowledge Sources; the 

Population Space and its network configuration; Accept, Update and Influence functions and the 

influence of KS on population individuals depending upon the problem domain (e.g. numerical 

optimization or graph evolution). 

The role of knowledge distribution was briefly mentioned but since KD mechanisms are central 

to the research question, the entire next chapter is dedicated to describing the history of the CA 

distribution mechanisms and their detailed operation. 
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CHAPTER 3 FROM COMPETITION TO COOPERATION: A PERSPECTIVE ON CA KNOWLEDGE 

FLOW MECHANISMS 

3.0 Introduction 

The Influence function is the main driver of knowledge distribution in Cultural Algorithms. It 

has two major roles a) to associate a Knowledge Source with each population individual – i.e. 

distribute knowledge; and b) to update the parameters of each population individual by letting 

the associated Knowledge Source operate on the said individual. The pseudocode of the Influence 

function is given Figure 3-1. First the direct influence for the individual is determined. The exact 

determination is performed by the underlying distribution mechanism. It could be as simple as 

taking the currently assigned KS. Or it may be a more involved calculation. Then the network 

neighbors of the individual are collected. And finally, a new KS assignment is arrived upon by 

utilizing the direct influence; state of the individual & its neighbors; and possibly other relevant 

information identified as “System State” in the referenced pseudocode. The newly determined KS 

is then used to influence the individual to obtain the offspring for the next generation. The new 

KS is associated with the offspring. 

import Population, Network, DirectInfluence, DetermineKS, SystemState 
init NewPopulation 
Begin  
   For individual in Population 
     ksDirect <- DirectInfluence(individual) 
     neighbors <- Network(individual) 
     ksNew = DetermineKS(ksDirect, individual, neighbors, SystemState) 
     offspring <- ksNew.Influence(individual) 
     offspring.KnowledgeSource <- ksNew 
     NewPopulation[individual.Id] <- offspring 
   End For 
   Return NewPopulation 
End 
 

Figure 3-1: Pseudocode for the Influence function (source: CA papers) 
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Knowledge distribution emerged as a focused area of research over the evolution of the CA. 

Knowledge distribution generally does not affect how the Knowledge Sources modify the 

associated individuals. It is primarily concerned with the association of knowledge to individuals. 

Knowledge distribution mechanism is another heuristic (Figure 3-2). It is the primary allocator of 

compute resources to search strategies (metaheuristics) and is therefore an important operation 

in CA. The CA thus is a ‘hyperheuristic’ algorithm. 

 

Figure 3-2: Knowledge distribution operation 

Over the years, many distribution mechanisms have been studied.  Figure 3-3 displays the 

various distribution mechanisms relative to the fidelity of the environmental signal available in the 

optimization problem at hand. The left end corresponds to a completely noisy signal. As one 

moves to the right, the fidelity of the signal gets stronger and less noisy. Majority win is a good 

strategy when there is a signal but some background noise. The voting process filters out much of 

the noise. As the signal gets stronger particular knowledge sources may be better at tracking it 

and therefore can begin to carry more weight. Once the signal is strong enough that it is visible to 

most then an auction or bidding mechanism becomes useful to identify the individuals most 

Re-distribution of 

knowledge via heuristic 

Knowledge assignments of population 

individuals at generation t 

 t+1  t 
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attracted to the signal. When the signal takes a more precise value the fixed price solution is 

possible. Now the agents have a precise set of moves, they can pay the price or not. At the far 

right, agents can make specific moves to support cooperation and competition or both. 

 

Figure 3-3: Spectrum of Knowledge Distribution mechanisms (source: CA papers) 

The following few sections describe the commonly used mechanisms for knowledge distribution. 

3.1 Random Selection 

The earliest CA knowledge distribution was random, i.e. individuals were randomly assigned a 

KS with equal probability. Reynolds and Saleem (Reynolds & Saleem, 2005) introduced Random 

knowledge distribution in 2005. Later mechanisms took account of individual and aggregate KS 

fitness, the social network structure, and other relevant factors. Peng (Peng, 2005) devised 

Knowledge Source assignment proportional to KS performance (see Figure 3-4) based on 

Charnov’s Marginal Value Theorem for predator/prey dynamic (Charnov, 1976). Ali (Ali M. , 2008) 

extended Peng’s work with the idea of a social fabric and flow of knowledge between connected 

individuals and introduced the Majority Win Knowledge Distribution mechanism. Che (Che, 2009) 

introduced a variety of homogeneous network topologies taken from the Particle Swarm 

literature and introduced the Weighted Majority win distribution mechanism. 

Random Majority 

Weighted 

Majority  Auction Game 

Increasing fidelity (signal/noise) 
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Figure 3-4: KS selection roulette wheel (source: CA papers) 

 

Figure 3-5: Simple Majority Knowledge Distribution (source: CA papers) 

3.2 Majority Win 

The difference between (simple) Majority and Weighted Majority is shown in Figure 3-5 and 

Figure 3-6, respectively. The diagrams show the KS assignment process for a single individual going 

from time t to t + 1. The surrounding circles represent neighbors which are coded with color and 

letter to represent their assigned KS (H=History, S-Situational, etc.). Each of these nodes has its 

own direct knowledge source. First the direct influence for the center node is arrived at. Then the 

Knowledge Sources of the neighboring nodes are considered. In the case of Simple Majority, the 

center individual gets the KS that is most frequent considering the direct influence and 

neighboring KS (with supplementary mechanisms to handle ties).  

Roulette Wheel Selection

KS1 KS2 KS3 KS4 KS5
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Figure 3-6: Weighted Majority Knowledge Distribution (source: CA papers) 

Since Weighted Majority is the most commonly used mechanism and used as the benchmark for 

knowledge distribution, it is described more formally next using mathematical notation. 𝐾 =

{𝐻, 𝑆, 𝑁, 𝑇, 𝐷} 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝐾𝑆. Let 𝑖 index population members. 𝑊𝑘 ∈𝐾 =
1

∑ 𝑓𝑖𝑡𝑖𝑖
 ∑ 𝑓𝑖𝑡𝑖| 𝑘𝑖 = 𝑘𝑖  

is the relative weight of each KS in the population, where 𝑓𝑖𝑡𝑖  is the fitness (assuming 

maximization objective) and 𝑘𝑖 is the KS of 𝑖 and ∑ 𝑊𝑘 = 1𝑘 . Let 𝑗 index 𝑖′𝑠 network neighbors 

then 𝑘𝑖1, 𝑘𝑖2, … , 𝑘𝑖𝑗 , …  be their KS. Also, 𝑘𝑖𝑔 ∈ 𝐾 be a randomly selected KS with selection 

probability 𝑊𝑘 – i.e. the direct influence. The KS assigned to 𝑖 in the next generation is 𝑘𝑖𝑛𝑒𝑤, 

given in Eq 3-1. 

 𝒌𝒊 𝒏𝒆𝒘 =
𝒂𝒓𝒈𝒎𝒂𝒙

𝒌
 (∑ 𝒘𝒌𝒊𝒋

𝒋

 | 𝒌𝒊𝒋 = 𝒌) +  {
𝑾𝒌𝒊𝒈

𝒌𝒊𝒈 = 𝒌

𝟎 𝒐𝒕𝒉𝒆𝒘𝒊𝒔𝒆
  Eq 3-1 

 

Weighted majority denotes “wisdom of the crowd” and is a form of voting. Voting is also 

exhibited by animal cultures (Hoole, 2018). When the signal-to-noise ratio is relatively a simpler 

voting mechanism is often is as effective any alterative. 

3.3 Auctions 

More recent developments in CA’s have started to explore auctions for Knowledge Distribution 

(Reynolds & Kinnaird-Heether, 2019), (Al-Tirawi & Reynolds, 2019), (Al-Tirawi & Reynolds, 2018) 

 

N 

Direct influence 
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(Reynolds & Kinnaird-Heether, 2013) . In the Auction KD mechanism devised by Reynolds and 

Kinnaird-Heether, ‘bidding wheels’ are first constructed for each KS. A pie or slice of the wheel 

proportionately represents the fitness of one of the individuals that the KS had influenced in some 

specified number of past generations. Each slice is a token for bidding with value proportional to 

its thickness. A mechanism solicits bids from the relevant KS for a contender individual. The KS 

cast bids with probability proportional to the value of the tokens they hold. The bidding 

mechanism determines a winner and the winning KS is assigned to the contender. The winning KS 

then removes the winning token so that it is no longer available for subsequent bids (see Figure 

3-7)  

 

Figure 3-7: Auction mechanism, [source: (Reynolds & Kinnaird-Heether, 2013)] 

3.4 Chapter Summary 

Knowledge distribution is a critical part of CA. It’s the primary allocator of compute resources 

and currently an active area of research in Cultural Algorithms. This chapter summarizes the prior 

work and currently active research in distribution mechanisms – from random, all the way to 

auction mechanisms. While auctions are a kind of a game, they are still a competitive mechanism. 
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Departing from prior tradition, this research focuses on mechanisms that span both cooperation 

and competition. The new mechanisms are sourced from classical and evolutionary game theory.  

The next chapter is a brief primer on game theory designed to re-acquaint the reader with 

some terms and concepts that will be used later. Then in  Chapter 5, an abstract framework for 

injecting arbitrary games for knowledge distribution is described. The three specific game-based 

KD mechanisms, introduced earlier, are described in detail in Chapter 6. These are concrete 

instantiations of the abstract mechanism described in Chapter 5. 
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CHAPTER 4 A PRIMER ON GAME THEORY 

4.0 Introduction 

Game theory is a well-studied discipline that is both broad and deep. Any extensive treatise of 

Game Theory is beyond the scope of this document but the curious reader is pointed to the 

comprehensive online book “Multiagent Systems: Algorithmic, Game-Theoretic, and Logical 

Foundations” by Shoham et al. (Shoham & Leyton-Brown, 2009). This section describes some 

relevant terms and ideas – just enough to support the approach presented here. 

4.1 Basic Game Formulation 

A game can be represented in what is known as ‘normal’ form as a 3 tuple: 

𝜙 = (𝑁, 𝐴, 𝑢)  
N = Set of Actors (players) 
A = Set of actions available to actors – usually discrete choices but may be continuous (Veelen & Spreij, 
2009) 
u = Set of utility functions (u1, u2, …, un) corresponding to each player.  
 

The utility function determines the payout for the corresponding player given the actions taken 

by all players in the game. Often two-player games are represented in matrix form. An example 

of the well-studied, Prisoner’s Dilemma game is presented below: 

N = {1, 2} 
A = {Cooperate, Defect}  
u = Utilities as shown in Table 4-1 
 
 

Table 4-1: Prisoner's Dilemma Payout 

 Player 2: Cooperate Player 2: Defect 

Player 1: Cooperate 1, 1 -1, 2 

Player 1: Defect 2, -1 0, 0 
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As an example, if player 1 Cooperates and player 2 Defects then player 1 gets utility -1 and 

player 2 gets utility 2. Game theorists are often concerned with ‘solving’ a posed game, i.e. 

determining the actions (or mix of actions) that players should play, if they are rational. Each 

player is expected to maximize its utility with a view that other players will do the same. In the 

Prisoners Dilemma game, rational players are expected to Defect. If either player Cooperates then 

the other player can maximize its payoff by Defecting (Axelrod & Hamilton, 1981) (Holland, 1992). 

4.2 Competitive and Cooperative Games 

There are several possible taxonomies for games in Game Theory however from the 

perspective of application to Cultural Algorithms dividing games into Competitive and Cooperative 

categories is useful (see Figure 4-1). Cooperative games are also referred to as Coalitional games 

and Competitive games are also referred to as Non-cooperative games in the literature. 

 

Figure 4-1: Competitive and Cooperative games – a useful categorization of games for the application of games to Cultural 

Algorithms  

Broadly speaking, in Competitive games each agent or player is trying to maximize its own 

utility, i.e. the agents behave in a selfish manner. In Cooperative games, agents may form teams 

or coalitions and work together to maximize the utility of the team. In the extreme case, all agents 

may form a single team (the so called ‘Grand Coalition’) and maximize the overall utility. 

Games

Competitive 

Cooperative
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From the perspective of Cultural Algorithms, the various Knowledge Sources can be seen as 

agents in a game that can influence a particular population individual. If the game is formulated 

as a competitive game, the agents will compete against each other but there may be only one 

‘winner’ that acquires the individual and affects its parameters via the Influence function. Recall 

that population individuals exist in a (social) fabric or network, and that each individual is currently 

under the ‘influence’ of a Knowledge Source. An interplay between Knowledge Sources can 

develop via this network. 

Alternatively, the interplay between Knowledge Sources can be posited as a Cooperative game. 

The Knowledge Sources involved can form a single team or multiple competing teams. If multiple 

teams are formed then these teams can compete with one another to win the opportunity to 

influence of the current population individual. This interaction would be similar to what happens 

in a competitive game. The difference is that the winning team (or the grand coalition) would have 

multiple members that can collectively influence the population individual.  

The CA knowledge distribution mechanisms applied up until now associate a single KS with a 

population individual at each time step. From a Cooperative game perspective, this stipulation can 

be relaxed to allow multiple Knowledge Sources to influence a single individual at each time step. 

In Cooperative games, there are two additional problems to solve (when compared with 

Competitive games); 1) how stable coalitions or teams can form from the individual agents and 2) 

how to divide the total utility gained by a team among its members, at the end of the game. 
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4.3 Some Common Competitive Games 

There are several well-known classes of games that have been given names (sometimes 

multiple names). A new game situation may be analyzed more quickly by mapping to an existing 

scenario, thereby harnessing the existing knowledge, solution strategies, etc. and applying them 

to the new game situation. This section describes some common classes of games. Most of the 

information in this section is sourced from the book Shoham et al. (Shoham & Leyton-Brown, 

2009). 

Zero-Sum or Constant-Sum Games 

In such games the total payoff is a constant regardless of the strategies chosen by the players. 

One player’s gain is another player’s loss. Such games were studied very early on in GT 

development by van Neumann and Morgenstern (von Neumann & Morgenstern, 1947). The 

minmax theorem was first published in 1928 by von Neumann that proved that the best strategy 

for each player is independent of the strategies of other players. A sample payoff matrix is given 

in Table 4-2. Zero sum games can be solved more easily using minmax strategies and are Pareto 

optimal. From a computational efficiency perspective it might be desirable to model a knowledge 

distribution mechanism as a zero-sum game. 

 

Table 4-2: Zero-sum Payoff Matrix Conducive to Minmax Solutions 

 Left Right 

Left 1, -1 1,-1 

Right -1,1 0, 0 
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Battle of the Sexes 

This is a game of both coordination and competition. Both players lose if they choose different 

actions. Both are better off if they chose the same action but the utility of the action differs for 

each player.  

This game is often posed as a husband and wife deciding on what movie to go to. Each has a 

preference for a different movie but above all they both want to be together. A possible payoff 

matrix is show in Table 4-3. 

Table 4-3: Battle of the Sexes Payoff Table 

 Left Right 

Left 2,1 0,0 

Right 0,0 1,2 

 

In studying climate change negotiations DeCanio et al show the applicability of games similar 

in structure to the Battle of the Sexes (DeCanio & Fremstad, 2011). 

The fact that this game models both coordination and competition makes it interesting for 

Cultural Algorithms where a coordinated outcome may be desired for KS selection. 

Matching Pennies 

This is a zero-sum game where one player wins by matching the action of another player 

whereas the other player wins by picking something different. In the canonical version of the game 

each player chooses either heads or tails from a coin with the payoff matrix shown in Table 4-4. 

Table 4-4: Matching Pennies Payoff Matrix 

 Head Tail 

Head 1,-1 -1,1 

Tail -1,1 1,-1 
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This game is important in the study of behavior over repeated play. For example, an innovative 

company such as Apple can do well by trying to define new products and markets. Established 

players such as Microsoft can do well by matching the innovations of its competitor. 

Hawk – Dove 

In this game, the players may adopt two types of actions predatory (Hawks) or peaceful (Doves) 

when competing over the same resource. This game was first described by Maynard Smith (who 

is well known for biological games) and Price (Maynard Smith & Price, 1973) and has been used 

to model aspects of animal behavior in many species. A possible payoff matrix is as follows in Table 

4-5. 

Table 4-5: Hawk-Dove Payoff Matrix 

 Hawk Dove 

Hawk -2, -2 6,0 

Dove 0,6 3,3 

 

Many competitive business situations can be modeled as a Hawk-Dove game, for example a 

competitor entering a market currently dominated by an existing player. The existing player can 

chose to fight by lowering prices or other marketing spending or acquiesce some market share to 

the new player. Anderton (Anderton, 2003) has studied competitive behavior in developing 

economies using Hawk-Dove models. 

4.4 Repeated Games 

The taxonomy of games is extensive. One important categorization is that between one-shot 

and repeated games. In repeated games, players remember the history of interaction and respond 

accordingly. For example, in the iterated version of Prisoners’ Dilemma, a strategy that often 
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emerges is tit-for-tat where a player will defect if the opponent defected in the past otherwise 

cooperate. Unlike the one-shot version, the Iterated Prisoners’ Dilemma can lead the players to 

cooperation, resulting in higher utility for both (Holland, 1992). The notion of repeated games 

with possibly continuous actions is utilized as the basis for Knowledge Distribution in CA and is 

discussed in the next section. 

Repeated games are an important subclass of Competitive games that can prove useful in 

modeling many real-world phenomenon (Harrington & Zhao, 2012). Repeated games pose a 

challenge because the strategy space can be very large or even infinite. At any game stage, the 

players know the history of the game thus far; i.e. the actions all players have taken to get to the 

current stage. Thus, the actions taken at the current stage can depend on the history of the game 

that can become intractably large very quickly. 

An approach to solving repeated games is based on average or payoff. The Folk1 Theorem 

(Shoham & Leyton-Brown, 2009) is useful for determining an equilibrium based on feasible and 

enforceable payoff profiles. The basic idea is that in an infinitely repeated game the average payoff 

attainable in an equilibrium is the same as the Nash equilibrium in a single stage game. The 

constraint is that each player must obtain at least the minmax payoff. 

Formally, 
let 𝐺 = (𝑁, 𝐴, 𝑢) be a normal form game and 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛) be any payoff profile. 

𝑣𝑖 = min max 𝑢𝑖(𝑠−𝑖 , 𝑠𝑖) is the player 𝑖′𝑠 minmax value, i.e. the payoff 𝑖 receives when other players play 
minmax strategies against 𝑖 
𝑟 is feasible i.e. it can be constructed from the individual payoffs in the game 
𝑟 is enforceable 𝑟𝑖 ≥ 𝑣𝑖  ∀ 𝑖  
 

 
1 The Folk Theorem is named as such because like a folk song it has been generally known for a long time but no one 
knows who originally authored it. Nonetheless, it is widely accepted in the game theory community, see (Shoham & 
Leyton-Brown, 2009). 
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By the Folk Theorem1 r is the payoff profile for some Nash equilibrium of the infinitely repeated 

game G with average payoffs. 

Consider the knowledge distribution game, one can take the position that the same game will 

be played repeatedly between the same network individuals, over many generations, so one can 

analyze the game as an infinitely repeated game to find a solution or an equilibrium. 

4.5 Continuous Action Games 

The vast majority of games in Game Theory are restricted to discrete action choices, as they 

are easier to analyze, however, game actions can also be continuous real values. Veelen and Spreij 

have analyzed games in the continuous action space (Veelen & Spreij, 2009). 

To study a wide variety of possible game-based knowledge distribution mechanisms, it was 

deemed necessary to support both discrete as well as continuous action spaces. For example, a 

game may be structured such an individual could choose an action from a discrete set, e.g. 

Cooperate or Defect. Whereas in a different game, the chosen action can be continuous, e.g. the 

fitness of the player. The same general mechanism can be used for both discrete and continuous 

action games. 

4.6 Chapter Summary 

Game Theory is a vast and deep subject area. The core ideas of this research are inspired by 

games in classical and evolutionary game theory. This chapter provided a brief overview of Game 

Theory with enough terminology and formalism to understand the abstract game framework 

presented in the next chapter. This framework is the basis of the games implemented and tested 

for knowledge distribution. 
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CHAPTER 5 GAMES AS MECHANISMS FOR KNOWLEDGE FLOW IN CULTURAL ALGORITHMS 

5.0 Introduction 

The CATGame system was developed with a general mechanism for injecting arbitrary games 

for knowledge distribution. The general mechanism is abstract and requires a concrete game to 

be operational. 

Recall that each Knowledge Source is a certain type of search strategy (Chapter 2) and that the 

Cultural Algorithm functions as a hyper-heuristic in order to select the appropriate metaheuristic 

in each context. At the macro level, a desirable property of the KD mechanism is to achieve a 

dynamic balance between the various KS, as the CA proceeds in exploring the problem landscape. 

One notion of balance is that the mix or proportion of KS in the population can be varied in order 

to best facilitate search space exploration and exploitation at a given phase of the problem-solving 

process. Another assumption is that all of the KS maintain at least some presence in the population 

and is not crowded out completely by a dominant KS.  

Games are a convenient way to balance the conflicting demands of exploration and 

exploitation at the macro and micro levels. The general premise here is that individuals in the 

population have the ability to either cooperate or compete for knowledge. The next section 

describes the abstract mechanism for injecting games for knowledge distribution. The structure 

defined here is leveraged in Chapter 6 that defines the mechanisms of the concrete games studied 

for this research. 
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5.1 Abstract Game Mechanism 

The minimal terminology given in the previous section is leveraged now to describe the 

abstract structure of the game theoretic KD mechanism.  This mechanism is structured in terms 

of the following components: Actor; Play; Action; Payoff; Payout; and Outcome: 

Actor Population individual linked to other players via network. (terms 

‘individual’, ‘agent’, ‘player’ and ‘actor’ are used interchangeably in 

this document). 

Play function A function that produces the Action or ‘hand’ that a player plays 

against its neighbors. This function may take utilize the current and 

historic states of all players in addition to other available 

environmental information. 

Payoff function A function that produces the Payout structure – which represents 

the utility to a player – given its own Action and those of its neighbors 

in the game. 

Outcome function Given the population’s collective Actions and Payouts, this 

function produces the updated population where each individual is 

assigned a KS based on the results of the collective game play. 

 

The general mechanism abstracts out the common steps in game play. Specific game types can 

be injected into the mechanism by supplying a game instance which is a record of three functions: 

Play, Payoff and Outcome. In other words, a concrete game can be injected if mutually compatible 
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implementations of these three functions are defined and grouped into a record structure. Such 

a record can be accepted by the general game mechanism. Mutual compatibility means that the 

data structures produced and consumed by these functions are consistent. For example, the Play 

function produces a list of Actions that are consumed by the Payoff function. The general game 

does not care about the details of the Action data structure as long as the Payoff function can 

accept it. The Action and Payout data structures produced and consumed by these functions are 

defined by the concrete game. The general game mechanism abstracts over these details and 

operates at a higher level and is depicted schematically in Figure 5-1. 

 

Figure 5-1: Abstract game interface 

The high-level flow of the mechanism is described next and the corresponding pseudocode is 

given in Listing 5-1. There are two distinct phases. In the first phase, the Play function, supplied by 

the concrete game, is used to play games between an individual and its network neighbors. The 

neighbors for each individual are obtained by using the Network function configured in the current 
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instantiation of the CA. This phase produces a list of Actions for each player; each Action in this 

list is directed towards a neighbor. The first phase where an agent plays its hands against each of 

its neighbors is pictorially depicted in Figure 5-2. 

 

Figure 5-2: In the 1st phase each network individual 

plays actions against its neighbors, utilizing current and 

historic information 

 

Figure 5-3: In the 2nd phase, actions played by an 

individual’s neighbors are collected to determine payout 

In the second phase, all Actions are aligned so that all Actions pertaining to a single individual 

are grouped together. These are the Actions the individual played against each of its neighbors 

and the Actions the neighbors played only against the said individual (Figure 5-3). From each such 

group the Payout for each individual is determined by using the Payoff function given by the 

concrete game. The general game mechanism then takes the Payouts for all individuals and passes 

them to the Outcome function (also supplied by the concrete game). The Outcome function 

produces a new population of individuals, each with a KS assignment determined by the 

associated Payout. 
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game = {Play, Payoff, Outcome}  
 
GameKD (Pop, Network, game) 
  Actions  Empty  
  Payouts  Empty 
   
  “1st phase – determine and play actions against each neighbor” 
 
  FOR p in Pop DO 
     neighbors  Network(p)  
     Actions[p]  game.Play (p, neighbors)   
  END FOR 
 
  “2nd phase – determine payout based on actions neighbors played against 
   indidvidual in 1st phase” 
 
  FOR p in Pop DO 
     neighbors  Network(p) 
     neighborActions  [FOR j in ns → Actions[j]]  
     Payouts[p]  game.Payoff(p, pAction, neighborActions) 
  END FOR 
 
  Pop  game.Outcome(Pop, Payouts, Actions) 
  Return Pop   

Listing 5-1 Pseudocode for a general game mechanism for Knowledge Distribution 

To enable a truly abstract mechanism, the data types of the Action and Payout structures are 

also determined by the injected game. This is achieved via generic programming capability of the 

implementation language F# (Microsoft Corporation). The abstract mechanism is able to deal with 

any data structures that the injected game chooses to use. For example, the Actions produced by 

Play may be single values (e.g. fitness of the individual) or may be tuples (e.g. fitness with some 

other score). The general game mechanism is unaffected as long the corresponding Playoff 

function can accept the same structure. The main rationale for using generic programming is to 

allow for a wide variety of games to be studied under the general mechanism. This is the strength 

of this approach. The alternative would be to specify a more rigid (and less abstract) mechanism. 

Such a mechanism could be easier to use but it will not allow an expansive set of games to be 

studied. 
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The pseudocode in Listing 5-1 is now elaborated with a simple game for knowledge distribution. 

The game is posed as follows. Each individual plays the action 0 or 1 against its neighbors based 

on whether the individual’s fitness improved since the previous generation or not. Each individual 

looks at its neighbors and adopts the KS that is the most frequent among neighbors who played 

1. If no such neighbors exist, the individual retains its current KS. Ties are broken with random 

selection. Listing 5-2 is the pseudocode for injecting this game into the generic mechanism. The 

central idea is to define the Play, Payoff and Outcome functions and then package them up into a 

game record for injection. 
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Listing 5-2: Pseudocode for a sample game 

//definition: supporting function definition needed by Play 
//returns 1 if fitness improved from the previous generation, 0 otherwise 
fitnessImproved : Indivdual -> {0,1} 
 
//defintion: return the most frequent entry in the list 
//if there are multiple entries with the same count 
//then a random selection from the top most frequent is returned 
//if the list is empty, null is returned 
mostFrequent : (KS list) -> KS 
 
//define Play function 
def Play (indivdual, neighbors) = 
   action <- fitnessImproved (indvidual)    //decide which action to take 
   actions <- []                              
   //play action against each neighbor (each item is 4-tuple) 
   For n In neighbors Do 
     actions <- actions :: (individual.Id, n.Id, action, indivdiual.KS) 
   End For 
   Return actions      //Action structure is 4-tuple list                                   
 
//define Payoff function 
def Payoff (indvidual, indvidualAction, neighborActions) = 
   ksSelected <- [] 
   For (id,nId,action,KS) In neighborActions Do 
      if action = 1 then 
         oneActions <- oneActions :: KS     //collect KS for action=1 
   End For 
   maxKS <- mostFrequent (ksSelected) 
   newKS <- if maxKS = null then individual.KS else maxKS 
   Return (individual.Id,newKS)            //Payout is tuple of id and KS 
 
//define Outcome function 
def Outcome(pop,payouts) = 
   pop’ <- [] 
   For p in pop do 
     (id,newKS) <- payouts[p.Id] 
     p.KS <- newKS 
     pop’[id] <- p’ 
   End For 
   Return pop’ 
      
game = {Play, Payoff, Outcome}       //game is a record of 3 functions 
                                     //ready to be injected into the  
                                     //generic mechanism in Listing 5-1 
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Note the generic mechanism is flexible because instead of accepting just a data structure (e.g. 

a payoff table) the mechanism can accept both code plus data structures. This makes it versatile 

and able to handle a diverse set of scenarios. 

Much of game theory is concerned with finding a solution to a posed game as the strategy 

adopted by each player. The collective set of player strategies is the solution of the game. 

Assuming rational players, the action played by an agent should be the best response to the best 

responses of its peers, determined jointly, i.e. the Nash equilibrium (Nash, 1950). For many games, 

finding a solution is a computationally hard, especially for more than 2 players. In the proposed 

framework, each agent is concurrently participating in many games, with usually more than 2 

players per game. To clarify, each agent is playing a game against its neighbors that are in turn 

playing different games with their neighbors. The final result is a set of interlinked games. There 

are no known (computationally tractable) analytical methods for solving such a complex set of 

interlinked games. To address this situation, one takes the view that each agent unilaterally 

decides to take action based on its and its neighbors’ current and prior states, without regard to 

the actions that other agents make take in the current round (i.e. take a hedonic approach). Here 

the interest is in the emergent properties of the system given bounded rationality decisions of the 

agents. 

5.2 Chapter Summary 

This brief chapter explained the abstract game framework that can be used to inject arbitrary 

games for knowledge distribution. It provides the background to understand the concrete games 

that use this framework and are described in the next chapter. The mechanism described is 
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general and more-or-less can handle any arbitrary game for knowledge distribution. As such, it 

serves as way of facilitating future research on this topic. 
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CHAPTER 6 CATGAME – COOPERATIVE/COMPETITIVE GAMES FOR KNOWLEDGE 

DISTRIBUTION 

6.0 Introduction 

The abstract game mechanism presented in Chapter 5 is exercised with 3 specific games, 

namely: 

• N-Player Iterated Prisoner’s Dilemma  

• Stag-Hunt 

• Stackelberg 

Each of these games is described in this chapter. For each, the historical background and 

perspective is given first followed by the implementation in relation to the abstract game 

mechanism described in Chapter 5. 

The definition of ‘player’ is required for any game. In CATGame, two perspective can be taken: 

a) the player is a population individual who plays against its neighbors as determined by the 

network topology; or b) the player is a Knowledge Source in the Belief Space playing against other 

Knowledge Sources. Both perspectives are covered by the three studied games here. Competitive 

knowledge distribution is relatively easy to grasp – viz. a ‘winner’ Knowledge Source gets to 

influence the population individual. But what does it mean to cooperate in this context? The 

notion of cooperation is not as clear but is developed and clarified for the 3 games, in the 

respective sections.  

All of the tested game mechanisms implement a concept from simulated annealing where the 

influence level (temperature or ‘explorativeness’) of the “stem cell” knowledge – Domain – is 
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reduced the longer an individual retains Domain from generation to generation up to a configured 

minimum. The influence level is reset whenever an individual is assigned Domain to replace a non-

Domain knowledge. 

6.1 Iterated Prisoners Dilemma – cooperation emerges over repeated interaction 

The Prisoner’s Dilemma (PD) game is probably the most studied game of the three as its can be 

applied in a number of scenarios (see 4.1) in the social sciences, military strategy, business and 

economics.  The analytical solution for a single-shot (not repeated) Prisoner’s Dilemma is to Defect 

(Axelrod & Hamilton, 1981). However, cooperation can emerge if the game is played repeatedly. 

Evidence that Iterated Prisoner’s Dilemma (IPD) leads to cooperation comes from the fact that the 

winning strategy in Axelrod’s famous tournament was tit-for-tat. Essentially the tit-for-tat strategy 

is: cooperate in the current round if the opponent cooperated in the prior round, defect 

otherwise. Glossing over the many nuances uncovered by years of research on this subject, one 

can justify IPD as a viable game for knowledge distribution when both cooperation and 

competition are desired. 

IPD is usually analyzed as a two-player game but here the multiplayer version – n-player 

Prisoner’s Dilemma (NPD) – is required  as the number of players is more than two for any realistic 

knowledge distribution scenario in CA. A version of NPD is the well-known “Tragedy of the 

Commons” (Chappelow, 2019) that is often used to explain the depletion of common resources.  

The payoff matrix for an NPD game is shown in Table 6-1  (Yao & Darwen, 1994) where the top 

row is number of cooperating players starting. The 2nd and 3rd rows are rewards for cooperation 

and defection, respectively. Both depend on the number of cooperating players in the game. 
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Table 6-1: Payoff Matrix for n-Player Prisoner’s Dilemma  

No. of 

Cooperators 

0 1 … x … N-1 

Cooperate 𝐶0 𝐶1 … 𝐶𝑥 … 𝐶𝑛−1 

Defect 𝐷0 𝐷1 … 𝐷𝑥 … 𝐷𝑛−1 

 

The matrix is the same for every player (i.e. the game is symmetric). N is the total number of 

players in the game and so N-1 is the number of players other than the player whose perspective 

is represented by the matrix, denoted as 𝑃𝑐𝑢𝑟𝑟.  Each of the N players play their hand: Cooperate 

or Defect. If x other players cooperate (where x is between 0 & N-1) then the payoff for 𝑃𝑐𝑢𝑟𝑟 will 

be 𝐶𝑥 if 𝑃𝑐𝑢𝑟𝑟 decides to cooperate and 𝐷𝑥 otherwise. The following conditions need to hold for 

the game to be considered NPD: 

• 𝐷𝑥 > 𝐶𝑥 (defection provides a higher reward than cooperation) 

• 𝐷𝑥+1 > 𝐷𝑥 (the more cooperators there are the higher the reward for defecting) 

• 𝐶𝑥+1 > 𝐶𝑥 (same applies for cooperators) 

• 𝐶𝑛−1 > 𝐷0 (if everyone cooperates, the reward is higher for each than if everyone defects) 

To summarize, the reward for both cooperators and defectors increases with the number of 

cooperators but for any individual player the reward for defection is always higher. And total 

cooperation is more rewarding than total defection. 
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While such a payoff matrix may be constructed for any given scenario, usually the matrix is 

compressed into a payoff function by making some simplifying assumptions. The key 

consideration is that depending on how 𝐶𝑥  and 𝐷𝑥  are determined, there may be 𝑥, 𝑦 (𝑥 < 𝑦) 

where 𝐶𝑥 > 𝐷0 and 𝐷𝑦 < 𝐶𝑛−1 which implies that the number of cooperators are between x and 

y for such a scenario. 

The scheme for IPD based knowledge distribution is adapted from the NPD game. However, to 

use IPD for knowledge distribution, further details are required such as who are the players in the 

game; how should the players choose their actions; what happens when cooperating or defecting 

players receive their payoff (i.e. what should the knowledge distribution outcome be); etc. These 

are provided in the next section. 

6.1.1 IPD Adaption for CATGame Knowledge Distribution 

The IPD game for knowledge distribution is structured as follows: 

• Players: Population individual and its immediate (1-hop) network neighbors 

• Action: Cooperate if player’s fitness was worse from prior generation, defect otherwise 

• Outcome: Player choose defection for knowledge distribution if average defection reward 

is above a certain threshold, cooperation otherwise. 

Note that in the case of CA population network, each player is playing a different game with its 

neighbors. As well, each player is participating in as many different games as there are neighbors 

(i.e. the degree of the regular network). In other words, there does not exist complete symmetry 

and reciprocity. 
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Figure 6-1: In n-player Iterated Prisoners Dilemma each individual chooses to either Cooperate (C) or Defect (D) against all its 

network neighbors 

Recall the phases of game play outlined in Chapter 5. In the first phase, a population individual 

chooses to play D (for defect) if its fitness improved since prior generation, C (for cooperate) 

otherwise. A player can choose only one of the two actions. D implies that an individual will want 

retain a Knowledge Source as it is improving – there is no incentive to cooperate. Otherwise the 

player will want to cooperate but the final outcome for the player is determined by the player’s 

action and those of its neighbors. This is where the payoff matrix in Table 6-1 comes into play. 

How many of the neighbors also want to cooperate? The detail decision process is described later 

in Listing 6-2 but in general if enough neighbors are cooperative, the player will be classified as 

cooperator. Otherwise it will be classified as a defector. Knowledge assignment (i.e. the outcome) 

depends on this classification (i.e. the payout). As an illustration, Figure 6-1 depicts an individual 

playing the C (cooperate) action against its neighbors. In the second phase, the actions played by 



56 
 

 
 

an individual’s neighbors (C or D) (Figure 6-2) are collected to make the final determination about 

the payoff and the its implication for knowledge distribution.  

If the individual is classified as a defector, it retains its current knowledge assignment. If is 

classified as cooperator then it gets an assignment based on its ‘social rank’ among its peers. If the 

player is performing relatively well in terms of fitness as compared to its peers (neighbors), it will 

be assigned a relatively exploitative KS otherwise a relatively exploratory one. All knowledge 

sources are ordered on the explorative-exploitative scale. The ‘social rank’ of the player (relative 

to its neighbors) determines which KS is chosen from the ordered set of KS. Thus, cooperation in 

the context of IPD means behaving according to “your rank in society”. If the individual is not doing 

well (relative to its neighbors) then it should try harder by adopting a relatively exploratory 

strategy. If the individual is doing well relatively then it should adopt a more exploitative strategy. 

Under cooperation the individual does not make a unilateral (egoistic) decision. It looks at the 

(bounded) context and decides on what is the best for the collective as a whole. 

To utilize the generic mechanism defined in Listing 5-1, a concrete game needs to be supplied 

that is a tuple (or record) of three functions – Play, Payoff and Outcome. These functions are 

formally defined using mathematical notation in this section. Listing 6-1 is a set of supporting 

definitions for specifying the game functions that are also referenced in later sections. 
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Figure 6-2: The payout for the individual is jointly determined by the individual and neighbors' actions. The payout 

determines whether the individual will adopt cooperative or comptetitive behavior for knowledge distribution with respect 

to its neighbors 

Listing 6-1: Definitions to support game-based knowledge distribution 

𝑔𝑎𝑚𝑒 = (𝑃𝑙𝑎𝑦, 𝑃𝑎𝑦𝑜𝑓𝑓, 𝑂𝑢𝑡𝑐𝑜𝑚𝑒) From Listing 5-1 a game is a triple of 3 
functions 
 

𝐾 = {𝐻, 𝑆, 𝑁, 𝑇, 𝐷} Set of Knowledge sources 
 

𝑃𝑜𝑝 = {(𝑘, 𝑓, 𝑗) | 𝑘 ∈ 𝐾, 𝑓 ∈  ℝ, 𝑗 ∈ ℤ +}  
 

𝑃𝑜𝑝′ = 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡 𝑜𝑓 𝑃𝑜𝑝 
 
 

Population is a triple of k=Knoweldge 
Source, f=fitness and j=number of 
generations the indivudal had the same 
k. Assume the triple has a unique 
identity not shown here 
 

𝑃𝑟𝑖𝑜𝑟𝐹𝑖𝑡 ∶ 𝑃𝑜𝑝 →  ℝ Function that provides the fitness in 
the prior generation of a population 
individual (its implementation is 
context dependent) 
 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 ∶ 𝑃𝑜𝑝 → 𝑁𝑏𝑟𝑠, 𝑁𝑏𝑟𝑠 ⊆ 𝑃𝑜𝑝′ Network function definition 
 

𝑃𝑙𝑎𝑦 ∶ 𝑃𝑜𝑝 → 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 → 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 
 

Play function defintion. The function 
takes a population indivdual and the 
network function to produce a set of 
actions played by the individual 
against its neighbors 
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𝑃𝑎𝑦𝑜𝑓𝑓 ∶ 𝑃𝑜𝑝 → 𝐴𝑐𝑡𝑖𝑜𝑛 →  𝐴𝑐𝑡𝑖𝑜𝑛𝑠′ → 𝑃𝑎𝑦𝑜𝑢𝑡 Payoff function definition - computes 
the payout for a population indvidual 
given its own action and those of its 
neighbors towards the individual 
 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ∶ 𝑃𝑜𝑝′ → 𝑃𝑎𝑦𝑜𝑢𝑡′ → 𝐴𝑐𝑡𝑖𝑜𝑛𝑠′ → 𝑃𝑜𝑝′  Outcome function definition - takes 
the population the payouts and actions 
for all individuals and returns an 
updated popultation with new KS 
assignements  
 

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = < 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 > 
𝐴𝑐𝑡𝑖𝑜𝑛𝑠′ = 𝑝𝑜𝑤𝑒𝑠𝑒𝑡 𝑜𝑓 𝐴𝑐𝑡𝑖𝑜𝑛 
𝑃𝑎𝑦𝑜𝑢𝑡 = < 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 > 
𝑃𝑎𝑦𝑜𝑢𝑡′ = 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡 𝑜𝑓 𝑃𝑎𝑦𝑜𝑢𝑡 

The Actions are Payout structures for 
each game is definded by each game 
individually. Here they are defined 
generically to complete the type 
signatures required for injected 
games. 

 

Given the supporting definitions in Listing 6-1, the implementation of the IPD knowledge 

distribution is in Listing 6-2. 

Listing 6-2: IPD game definition 

𝐴 = {𝐶, 𝐷} 
 

The set of actions 
players play in the 1st 
phase 

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = {(𝑝1, 𝑝2, 𝑎) | 𝑝1 ∈ 𝑃𝑜𝑝, 𝑝2 ∈ 𝑃𝑜𝑝, 𝑎 ∈ 𝐴)} 
𝐴𝑐𝑡𝑖𝑜𝑛𝑠′ = 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡 𝑜𝑓 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 

 

IPD Actions is a triple 
of values representing 
the action played by an 
individual against its 
neighbor 
 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒, 𝐷𝑒𝑓𝑒𝑐𝑡} 
𝑃𝑎𝑦𝑜𝑢𝑡 = {(𝑝, 𝑑) | 𝑝 ∈ 𝑃𝑜𝑝, 𝑑 ∈ 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛} 
𝑃𝑎𝑦𝑜𝑢𝑡′ = 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡 𝑜𝑓 𝑃𝑎𝑦𝑜𝑢𝑡 

 

Payout structure is a 
set of tuples that maps 
to a decision taken by 
each indivdual in the 2nd 
phase, after all games 
have been played and all 
actions known 
 

𝑃𝑙𝑎𝑦 (𝑝)(𝑛𝑒𝑡𝑤𝑜𝑟𝑘) = 

    𝑎 ← {
𝐷 : 𝑝. 𝑓 > 𝑃𝑟𝑖𝑜𝑟𝐹𝑖𝑡(𝑝)

𝐶 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

    𝑛𝑏𝑟𝑠 ← 𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑝) 
    𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← {(𝑝, 𝑛, 𝑎) | 𝑛 ∈ 𝑛𝑏𝑟𝑠 }  
    𝑟𝑒𝑡𝑢𝑟𝑛 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 
 

Play implementation for 
IPD 
 
p.f is short hand for 
the fitness value of a 
population individual 
triple 

𝑃𝑎𝑦𝑜𝑓𝑓 (𝑝) (𝑎) (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑐𝑡𝑖𝑜𝑛𝑠) = 
    𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← {𝑎} ∪ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑐𝑡𝑖𝑜𝑛𝑠 

Payoff implemetnation 
for IDP 
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    𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ← {𝑑 | 𝑑 ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑑 = 𝐷} 

    𝑎𝑣𝑔𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑜𝑛 ←
|𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠| ∗ 𝐴𝐿𝑃𝐻𝐴

|𝑎𝑐𝑡𝑖𝑜𝑛𝑠|
 

    𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ←  {
𝐷𝑒𝑓𝑒𝑐𝑡 : 𝑎𝑣𝑔𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑜𝑛 > 1.0

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 

ALPHA = 1.5 
 
If enough neighbors are 
defecting (i.e have 
played action D) then 
defect otherwise 
cooperate.  
 
By using ALPHA > 1 the 
game is biased towards 
defection 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 (𝑛𝑒𝑡𝑤𝑜𝑟𝑘) (𝑝𝑜𝑝) (𝑝𝑎𝑦𝑜𝑢𝑡𝑠) (𝑎𝑐𝑡𝑖𝑜𝑛𝑠) =  
    𝑛𝑒𝑤𝑃𝑜𝑝 ← {𝐷𝑖𝑠𝑡(𝑝) (𝐷𝑠𝑐𝑛(𝑝) (𝑝𝑎𝑦𝑜𝑢𝑡𝑠)), 𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑝)) | 𝑝 ∈ 𝑝𝑜𝑝} 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑜𝑝 

Outcome function 
implementation. It 
relies on supporting 
functions Dist and Dscn 
that are given below 

𝐷𝑠𝑐𝑛 ∶ 𝑃𝑜𝑝 → 𝑃𝑎𝑦𝑜𝑢𝑡′ → 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 Function definition to 
return a decision 
(cooperate or defect) 
made by population 
individual given the 
decisions (payouts) for 
all individuals 

𝐷𝑖𝑠𝑡 ∶ 𝑃𝑜𝑝 → 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 → 𝑁𝑏𝑟𝑠 → 𝑃𝑜𝑝 Function definition for 
returning an updated 
population individual 
given its decision (to 
cooperate or not) and 
its neighbors  

𝐷𝑖𝑠𝑡 (𝑝)(𝑑)(𝑛ℎ𝑏𝑟𝑠) = 
  (𝑘, 𝑓, 𝑗) ← 𝑝 

  𝑛𝑒𝑤𝐾 = {
𝐶𝑜𝑜𝑝𝐷𝑖𝑠𝑡 (𝑝) (𝑛ℎ𝑏𝑟𝑠) : 𝑑 = 𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒

𝐶𝑜𝑚𝑝𝐷𝑖𝑠𝑡(𝑝) (𝑛ℎ𝑏𝑟𝑠) : 𝑑 = 𝐷𝑒𝑓𝑒𝑐𝑡
 

  𝑛𝑒𝑤𝐽 =  {
𝑗 + 1 : 𝑘 = 𝑛𝑒𝑤𝐾

0 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  𝑛𝑒𝑤𝑃 = (𝑛𝑒𝑤𝐾, 𝑓, 𝑛𝑒𝑤𝐽) 
  𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃 

Dist function 
implementation. It 
relies on several 
functions that are 
defined and described 
below 

𝑆𝑜𝑐𝑖𝑎𝑙𝑅𝑎𝑛𝑘 ∶ 𝑃𝑜𝑝 → 𝑁𝑏𝑟𝑠 →  ℤ 
 

Given a population 
indivdual and its 
neighbors this funtion 
returns the rank of the 
indivdual among its 
neighbors based on 
relative fitness 

𝐾𝑆𝑓𝑜𝑟𝑅𝑎𝑛𝑘 ∶  ℤ → 𝐾 
 

Given an integer rank 
from the SocialRank 
function, this function 
returns a Knoweldge 
Source. The Knowledge 
sources are ordered from 
explorative to 
exploitative. A low rank 
is associated with 
(relatively) explorative 
KS and high rank with 
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exploitative. The 
premise is that if an 
individual is performing 
comparatively well, it 
should continue to 
exploit the local region 
it is in. This is a 
configurable value to 
enable the provision of 
different rankigns of KS 
for different problem 
types. 

𝐶𝑜𝑜𝑝𝐷𝑖𝑠𝑡 = 𝑆𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑘 ∘ 𝐾𝑆𝐹𝑜𝑟𝑅𝑎𝑛𝑘 Cooperative 
distribution: Function 
composed of SocialRank 
and KSForRank determines 
K when individal decides 
to be Cooperative 

𝐶𝑜𝑚𝑝𝐷𝑖𝑠𝑡 ∶ 𝑃𝑜𝑝 → 𝑁𝑏𝑟𝑠 → 𝐾 Competitive 
distribution: Function 
that determines K when 
individual decides to be 
Competitive. Here the 
locally dominant 
Knowledge Source is 
returned using weighted 
average fitness to rank 
the Knowledge Sources of 
individual and its 
neighbors. 

𝑔𝑎𝑚𝑒 = (𝑃𝑙𝑎𝑦, 𝑃𝑎𝑦𝑓𝑓, 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ∘ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘) The game tuple for IPD 
game injection. Note 
that to match the 
required definition for 
the Outcome function for 
game injection, the 
Outcome function defined 
above is composed with 
the Network function so 
the type signatures 
match. 

 

In summary, IPD knowledge distribution is an adaption of the n-player IPD. In the 1st phase, 

players unilaterally play defect (A=D) if their current fitness is better than prior fitness. In the 2nd 

phase, if enough players did defect in a player’s neighborhood, the outcome for the player is the 

Defect decision, otherwise its Cooperate. If the final decision is to Cooperate, the Knowledge 
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Source assigned is based on the ‘social rank’ of the agent and the exploitative-to-explorative 

ordering of the Knowledge Sources. For Defect, the agent just keeps the current assignment. 

Reusing some of the definitions in Listing 6-1, the Stag-Hunt game is defined next. 

6.2 Stag-Hunt – Cooperation by default 

Stag-Hunt can be considered an extension of IPD with an explicit notion of time involved. The 

players by default cooperate to hunt a stag but as time goes by and no stag is sighted, the players 

become impatient and can defect to hunt a rabbit. Stag-Hunt comes from evolutionary game 

theory (Weibull, 1995) whereas IPD is well studied in both classical and evolutionary game theory. 

Contemporary evolutionary game research is usually performed with computer simulation (Dong, 

Xu, & Fan, 2019) (Wang, Luo, Ding, & Wang, 2018) because the dynamics can be complex and not 

always capturable analytically, as is possible for classical games. A payoff matrix type formulation 

thus is not very instructive for n-player evolutionary games. 

While IPD is a series of single-shot games, Stag-Hunt is a game that is played over some units 

of time. The useful notion of time in CA is generations (i.e. when a new population is generated). 

For CA knowledge distribution, the Stag-Hunt game is played continuously across generations till 

the optimization run is terminated. For CA knowledge distribution, there is a configured number 

of cooperative generations followed by an evaluative one. This is pictorially depicted in Figure 6-3; 

here there are 3 cooperative generations followed by one evaluative one. 
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Figure 6-3: In Stag-Hunt individuals cooperate for a fixed number of generations and then evaluate – a pattern that is 

repeated till max number of generations is reached 

During the cooperative phase, all individuals cooperate – where the notion of cooperation is 

very similar to the altruistic one used in IPD (section 6.1) i.e. one based on ‘social rank’. Note that 

Stag-Hunt is cooperative by default. All individuals are cooperating in the cooperative generations 

whereas in IPD the decision to cooperate or defect is made individually by each player at each 

generation. 

 In an evaluative generation, each individual evaluates whether to continue cooperation or to 

defect. If the individual’s fitness is improved since the last evaluative generation (or the initial 

fitness), it defects by keeping its current knowledge assignment. Otherwise it cooperates but 

instead of choosing a KS based on social rank, it chooses the locally dominant KS. Here “locally 

dominant” means the KS that has the highest weighed average fitness among the individual’s 

current KS (direct influence) and those of its neighbors.  

Under Stag-Hunt there are two types of cooperation. First is based on social rank and is similar 

to the one in IPD. This type is used by all individuals in a cooperative generation. Second is based 

on adopting a strategy that is performing the best overall in the local neighborhood (bounded 

context).  It is used in an evaluative generation under the decision to cooperate. The structure of 

the Stag-Hunt is given next followed by its detailed formulation using mathematical notation.  
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6.2.1 Stag-Hunt Adaptation for CATGame 

The Stag-Hunt game is structured as follows: 

• Players: The population individual and its immediate (1-hop) network neighbors 

• Action: The players play their fitness value as the (continuous) action in the 1st phase, 

regardless of cooperative or evaluative generation. The actions are used later in the 2nd 

phase to determine how knowledge is distributed.  

• Outcome: In a cooperative generation, a cooperative strategy is used for every player 

where the KS assigned is determined from the player’s social rank (similar to IPD), as 

depicted in Figure 6-4. Each player receives the fitness values of the neighbors as the 

actions taken by the neighbors. It then determines its social rank by comparing its own 

fitness with those of the neighbors’. Based on the rank it adopts a KS from an ordered set. 

If the rank is relatively low it will adopt a relatively exploratory KS and vice-a-versa. In an 

evaluative generation a player defects by keeping its current KS, if the player’s fitness 

improved since prior evaluation otherwise the player accepts the locally dominant KS 

(Figure 6-5). As explained earlier, the locally dominant KS is the one with the highest 

weighted average fitness in the neighborhood. This is still a type of cooperation but one 

that is done in the evaluative generation.  
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Figure 6-4: In a cooperative generation, the individual is ranked between the fitness of its highest and lowest fit neighbors on 

a continuous scale. Based on its rank, the individual is assigned the best matched KS from a ranked list 

 

Figure 6-5: In an evaluative generation, individual is assigned a KS that has the best weighted fitness among individual and 

neighbors, if the individuals fitness has not improved 

A formal definition of the Stag-Hunt game for CA knowledge distribution is given in Listing 6-3. 
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Listing 6-3: Stag-Hunt game definition 

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = {(𝑝1, 𝑝2, 𝑎) | 𝑝1 ∈ 𝑃𝑜𝑝, 𝑝2 ∈ 𝑃𝑜𝑝, 𝑎 ∈ ℝ)} 
𝐴𝑐𝑡𝑖𝑜𝑛𝑠′ = 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡 𝑜𝑓 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 

 

Stag-Hunt Actions 
structure is a triple of 
values representing the 
action played by an 
individual against its 
neighbor. Here the 1st 
phase action is the 
fitness value (which is 
continuous) 
 

𝑃𝑎𝑦𝑜𝑢𝑡 = 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 
𝑃𝑎𝑦𝑜𝑢𝑡′ = 𝐴𝑐𝑡𝑖𝑜𝑛𝑠′ 

The payout structure is 
the same as the Actions 
structure in Stag-Hunt 
game. 
 

𝑃𝑙𝑎𝑦 (𝑝) (𝑛𝑒𝑡𝑤𝑜𝑟𝑘) =  
 
     𝑎 ← 𝑝. 𝑓 
 
  𝑛𝑏𝑟𝑠 ← 𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑝) 
 
  𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← {(𝑝, 𝑛, 𝑎) | 𝑛 ∈ 𝑛𝑏𝑟𝑠 }  
 
  𝑟𝑒𝑡𝑢𝑟𝑛 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 
 

Play implementation for 
Stag-Hunt 
 
p.f is short hand for 
the fitness value of a 
population individual 
triple 

𝑃𝑎𝑦𝑜𝑓𝑓 (𝑝)(𝑎)(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑐𝑡𝑖𝑜𝑛𝑠) = 
 
  𝑝𝑎𝑦𝑜𝑢𝑡 ← {𝑎} ∪ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑐𝑡𝑖𝑜𝑛𝑠 
 
  𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑎𝑦𝑜𝑢𝑡 
 
  

Payoff function in Stag-
Hunt passes the 
collected actions for 
each individual as the 
Payout structure to be 
used in the outcome 
function. These are 
actions that the 
individual played 
against each of its 
neighbors and those that 
the neighbors played 
against just this 
individual. It 
represents all the 
actions pertaining to a 
single individual 
 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 (𝑛𝑒𝑡𝑤𝑜𝑟𝑘) (𝑝𝑜𝑝) (𝑝𝑎𝑦𝑜𝑢𝑡𝑠) (𝑎𝑐𝑡𝑖𝑜𝑛𝑠) =  

    𝑛𝑒𝑤𝑃𝑜𝑝 ← {𝐷𝑖𝑠𝑡 (𝑝)(𝐼𝑛𝑑𝑣𝑝 (𝑝)(𝑝𝑎𝑦𝑜𝑢𝑡𝑠))(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)| 𝑝 ∈ 𝑝𝑜𝑝} 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑜𝑝 

Outcome function 
implementation. It 
relies on supporting 
functions Dist and 
IndvPayouts that are 
given below 

𝐼𝑛𝑑𝑣𝑃 → 𝑃𝑜𝑝 → 𝑃𝑎𝑦𝑜𝑢𝑡′ → 𝑃𝑎𝑦𝑜𝑢𝑡 Function definition to 
return the Payout for 
the given individual 
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from the Payouts 
collected for all users. 
The generic game 
mechanism (Chapter 5) 
packages all payouts 
into a single collection 
for all users. This 
function seperates out 
the ones for the supplie 
d user as that is 
required in the Outcome 
function 
 

𝐷𝑖𝑠𝑡 ∶ 𝑃𝑜𝑝 → 𝑃𝑎𝑦𝑜𝑢𝑡 → 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 → 𝑃𝑜𝑝 Function definition for 
returning an updated 
population individual 
given its Payout 
structure 
  

𝐷𝑖𝑠𝑡 (𝑝)(𝑝𝑎𝑦𝑜𝑢𝑡)(𝑛𝑒𝑡𝑤𝑜𝑟𝑘) = 
  (𝑘, 𝑓, 𝑗) ← 𝑝 

  𝑛𝑒𝑤𝐾 = {
𝐶𝑜𝑜𝑝𝐷𝑖𝑠𝑡(𝑝)(𝑝𝑎𝑦𝑜𝑢𝑡)(𝑛𝑒𝑡𝑤𝑜𝑟𝑘) : 𝐼𝑠𝐶𝑜𝑜𝑝𝐺𝑒𝑛( )

𝐸𝑣𝑎𝑙𝐷𝑖𝑠𝑡(𝑝)(𝑝𝑎𝑦𝑜𝑢𝑡)(𝑛𝑒𝑡𝑤𝑜𝑟𝑘) : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  𝑛𝑒𝑤𝐽 =  {
𝑗 + 1 : 𝑘 = 𝑛𝑒𝑤𝐾

0 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  𝑛𝑒𝑤𝑃 = (𝑛𝑒𝑤𝐾, 𝑓, 𝑛𝑒𝑤𝐽) 
 
 
  𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃 

Stag-Hunt Dist function 
implementation. It 
relies on several 
functions that are 
defined and described 
below 

𝐼𝑠𝐶𝑜𝑜𝑝𝐺𝑒𝑛 ∶ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} Supporting function that 
returns true if the 
current generation is 
cooperative, false 
otherwise (i.e. 
evaluative) 
 

𝑆𝑜𝑐𝑖𝑎𝑙𝑅𝑎𝑛𝑘 ∶ 𝑃𝑜𝑝 → 𝑁𝑏𝑟𝑠 → 𝑃𝑎𝑦𝑜𝑢𝑡 →  ℤ 
 

Stag-Hunt version of 
social rank Given a 
population indivdual and 
its neighbors and the 
payout, this funtion 
returns the rank of the 
indivdual among its 
neighbors based on 
relative fitness (see 
Figure 6-4) 
 

𝐾𝑆𝑓𝑜𝑟𝑅𝑎𝑛𝑘 ∶  ℤ → 𝐾 
 

Given an integer rank 
from the SocialRank 
function, this function 
returns a Knoweldge 
Source. The Knowledge 
sources are ordered from 
explorative to 
exploitative. A low rank 
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is associated with 
(relatively) explorative 
KS and high rank with 
exploitative. The 
premise is that if an 
individual is performing 
comparatively well, it 
should continue to 
exploit the local region 
it is in. This is a 
configurable value to 
enable the provision of 
different rankigns of KS 
for different problem 
types. 
 

𝐶𝑜𝑜𝑝𝐷𝑖𝑠𝑡 = 𝑃𝑜𝑝 → 𝑃𝑎𝑦𝑜𝑢𝑡 → 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 → 𝐾 Cooperative distribution 
function defintion for 
Stag-Hunt. Implmentation 
given next 
 

𝐶𝑜𝑜𝑝𝐷𝑖𝑠𝑡 (𝑝)(𝑝𝑎𝑦𝑜𝑢𝑡)(𝑛𝑒𝑡𝑤𝑜𝑟𝑘) = 
   𝑛𝑏𝑟𝑠 ← 𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑝) 
   𝑛𝑒𝑤𝐾 ← (𝑆𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑘 ∘ 𝐾𝑆𝑓𝑜𝑟𝑅𝑎𝑛𝑘)(𝑝)(𝑛𝑏𝑟𝑠)(𝑝𝑎𝑦𝑜𝑢𝑡) 
  𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝐾 
 

Implementation of the 
cooperative distribution 
function defined above 

𝐸𝑣𝑎𝑙𝐷𝑖𝑠𝑡 ∶ 𝑃𝑜𝑝 → 𝑃𝑎𝑦𝑜𝑢𝑡 → 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 → 𝐾 Evaluative distribution: 
Function that determines 
K in an evalutive 
generation  
 

𝐸𝑣𝑎𝑙𝐷𝑖𝑠𝑡 (𝑝)(𝑝𝑎𝑦𝑜𝑢𝑡)(𝑛𝑒𝑡𝑤𝑜𝑟𝑘) =  
   𝑛𝑏𝑟𝑠 ← 𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑝) 
   (𝑘, 𝑓, 𝑗) ← 𝑝 

   𝑛𝑒𝑤𝐾 ← {
𝑘 : 𝑃𝑟𝑖𝑜𝑟𝐹𝑖𝑡(𝑝) < 𝑓

𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡𝐾(𝑝𝑜𝑝)(𝑛𝑏𝑟𝑠)(𝑝𝑎𝑦𝑜𝑢𝑡) : 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒
 

   𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝐾 
 

Evaluative distribution 
function implementation 
 

𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡𝐾 → 𝑃𝑜𝑝 → 𝑁𝑏𝑟𝑠 − 𝑃𝑎𝑦𝑜𝑢𝑡 → 𝐾 Function defintion to 
return the locally 
dominant K given the 
indviduals, it neighbors 
and Payout (see Figure 
6-5) 

𝑔𝑎𝑚𝑒 = (𝑃𝑙𝑎𝑦, 𝑃𝑎𝑦𝑓𝑓, 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ∘ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘) The game tuple for Stag-
Hunt game injection. 
Note that to match the 
required definition for 
the Outcome function for 
game injection, the 
Outcome function defined 
above is composed with 
the Network function so 
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that the type signatures 
match. 

 

Stag-Hunt can be considered a version of IPD where the element of time is explicitly considered. 

Unlike IPD where cooperation emerges over repeated interaction, Stag-Hunt is cooperative by 

default. Individuals periodically check to see if they want to defect or not but generally cooperate. 

In terms of knowledge distribution, cooperative behavior is very similar to that for IPD’s in that an 

individual will obtain a new KS as a function of its social rank among peers. 

6.3 Stackelberg – A structured model for cooperation 

The structure of this game is modeled after Stackelberg pricing model in microeconomics 

(Evans, 2014). Stackelberg, Cournot, and Bertrand are related models of oligopoly market 

competition. Unlike perfect competition (where participants have no control over prices) or 

monopoly (where there exists complete pricing power), in oligopoly, the firms have a degree of 

pricing power, determined by their “strategic complementarities” (Julien, 2011). But importantly 

for CA knowledge distribution, the market interaction can give rise to implicit cooperation as 

production (and pricing) decisions emerge from the inherent market structure. 

In the classic Stackelberg model (Julien, 2011)  there are two firms – a leader (or first-mover) 

and a follower. The leader firm moves first to set production and target price by taking into 

account the reaction of the follower firm. It knows how the follower will react and so it sets 

production and price that is at the expected equilibrium between the two firms. The leader has 

the first-mover advantage and will be able to command a higher price as a result, especially if the 

cost of entry is high (Annen, 2019). 
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Unlike the previously discussed two games (IPD and Stag-Hunt), the Stackelberg game is played 

between the Knowledge Sources that reside in the Belief Space. The adaption of Stackelberg for 

CA knowledge distribution is described next. 

6.3.1 Stackelberg Adaptation for CATGame 

The application of the Stackelberg concept for CA knowledge distribution is as follows: 

• Players: Knowledge Sources in the Belief Space 

• Action: Knowledge Source play their strength in terms of their current weighted average 

fitness represented in the population 

• Outcome: The strongest Knowledge Source moves first and acquires the top n/k players in 

the population where n is the number of population individuals and k is the number of 

Knowledge Sources. The next KS takes the next strongest n/k player and so on 

Here the Knowledge Sources act as firms in the Stackelberg model. The first-mover is the 

Knowledge Source that is the strongest in the current generation; it acquires the best performing 

individuals. Other Knowledge Sources take turns in order of their strength and acquire remaining 

individuals in a step-by-step manner. The overall population is equally divided among the available 

Knowledge Sources. This process is conceptually represented in Listing 6-4 and schematically in 

Figure 6-6. 

Listing 6-4 Knowledge Sources assignments under Stackelberg 

𝑃 = < 𝑝1, 𝑝2, … , 𝑝𝑖, … , 𝑝𝑛 >   is ranked list of population indviduals by 
fitness 
 

𝑓𝑖𝑡𝑖  is the fitness of the 𝑖𝑡ℎ individual 
 

𝐾 = {𝐻, 𝑆, 𝑁, 𝑇, 𝐷}  is the set of KS used 
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𝑞 =  |𝐾|  is the number of KS in the 𝐾 set (5 in most 
cases) 
 

𝑊𝑘 ∈𝐾 =
1

∑ 𝑓𝑖𝑡𝑖𝑖
 ∑ 𝑓𝑖𝑡𝑖| 𝑘𝑖 = 𝑘

𝑖

 
is the relative weight of each KS in the 
population 
 

∑ 𝑊𝑘 = 1
𝑘

 the total weight for all KS sums to 1 
 

𝑅 =< 𝑘1, 𝑘2, … , 𝑘𝑞 > ,    𝑘 ∈ 𝐾  is a ranking of KS by weight; strongest KS first 
 

𝑆 = < 𝑃1, 𝑃2, … , 𝑃𝑞 >  is a partitioning of the population into q 
portions. Each partition  is of size 1/𝑞 [or 

𝑓𝑙𝑜𝑜𝑟 (
1

𝑞
) to be exact] except for the last one that 

consists of the remaining individuals after 𝑞 − 1 
partitions have been taken, respecting the 
ranking in P 
 

𝑓𝑜𝑟 𝑝 𝑖𝑛 𝑃1 → 𝑝. 𝐾𝑆 ← 𝑅1  
𝑓𝑜𝑟 𝑝 𝑖𝑛 𝑃2 → 𝑝. 𝐾𝑆 ← 𝑅2 
… 
𝑓𝑜𝑟 𝑝 𝑖𝑛 𝑃𝑞 → 𝑝. 𝐾𝑆 ← 𝑅𝑞 

The top performing indviduals get the top KS and 
so forth for each partition 

 

 

Figure 6-6: In Stackelberg the fittest KS takes the top 1/kth of the population and so on, where k is the number of configured 

KS 

While the true players are Knowledge Sources in the Stackelberg game, the game still has to be 

structured in a manner to be injectable into the generic game described in Chapter 5. The formal 

specification for Stackelberg follows a model similar to the specifications of other games described 

earlier. The formal specification for the Stackelberg game is given in Listing 6-5.  
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Listing 6-5: Stackelberg game specification 

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = {(𝑝1, 𝑝2, 𝑎) | 𝑝1 ∈ 𝑃𝑜𝑝, 𝑝2 ∈ 𝑃𝑜𝑝, 𝑎 ∈ ℝ)} 
𝐴𝑐𝑡𝑖𝑜𝑛𝑠′ = 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡 𝑜𝑓 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 

 

Stackelberg Actions 
structure is a triple of 
values representing the 
action played by an 
individual against its 
neighbor. Here the 1st 
phase action is the 
fitness value (which is 
continuous). Eventually 
these will be funneled 
into calculating the 
weighted fitness for 
Knowledge Sources. The 
game framework requries 
information to come from 
population individuals, 
which this structure 
contains. 
 

𝑃𝑎𝑦𝑜𝑢𝑡 = 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 
𝑃𝑎𝑦𝑜𝑢𝑡′ = 𝐴𝑐𝑡𝑖𝑜𝑛𝑠′ 

The payout structure is 
the same as the Actions 
structure in 
Stackelberg. 
 

𝐼𝑠𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐺𝑒𝑛: {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} In Stackleberg, 
knowledge distribution 
is performed after a 
configured number of 
generations. This 
utility function 
provides whether the 
current generation is 
for distribution 

𝑃𝑙𝑎𝑦 (𝑝)(𝑛𝑒𝑡𝑤𝑜𝑟𝑘) =  
   𝑎 ← 𝑝. 𝑓 
   𝑛𝑏𝑟𝑠 ← 𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑝) 
   𝑎𝑐𝑡𝑠 ← {(𝑝, 𝑛, 𝑎) | 𝑛 ∈ 𝑛𝑏𝑟𝑠 }  

   𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← {
𝑎𝑐𝑡𝑠 : 𝐼𝑠𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒𝐺𝑒𝑛()

{} : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

   𝑟𝑒𝑡𝑢𝑟𝑛 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 
 

Play implementation for 
Stackelberg 
 
p.f is short hand for 
the fitness value of a 
population individual 
triple. Actions are only 
collected during a 
distributive generation 
 

𝑃𝑎𝑦𝑜𝑓𝑓 (𝑝) (𝑎) (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑐𝑡𝑖𝑜𝑛𝑠) = 
    𝑝𝑜𝑢𝑡 ← {𝑎} ∪ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑐𝑡𝑖𝑜𝑛𝑠 

   𝑝𝑎𝑦𝑜𝑢𝑡 ← {
𝑝𝑜𝑢𝑡 : 𝐼𝑠𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒𝐺𝑒𝑛()

{} : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑎𝑦𝑜𝑢𝑡 
 
  

Payoff function in 
Stackelberg returns an 
empty set if its not a 
distributive generation. 
Othewise it passes the 
collected actions for 
the given individual as 
the Payout structure (to 
be used in the outcome 
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function). These are 
actions that the 
individual played 
against each of its 
neighbors and those that 
the neighbors played 
against just this 
individual. It 
represents all the 
actions pertaining to a 
single individual 
 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 (𝑝𝑜𝑝) (𝑝𝑎𝑦𝑜𝑢𝑡𝑠) (𝑎𝑐𝑡𝑖𝑜𝑛𝑠) =  

    𝑛𝑒𝑤𝑃𝑜𝑝 ← {
𝐷𝑖𝑠𝑡(𝑝𝑜𝑝, 𝑝𝑎𝑦𝑜𝑢𝑡𝑠) : 𝐼𝑠𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒𝐺𝑒𝑛( )

𝑝𝑜𝑝 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑃𝑜𝑝 

Outcome function 
implementation. It 
relies on the Dist 
supporting function 
given below 

𝐷𝑖𝑠𝑡 ∶ 𝑃𝑜𝑝′ → 𝑃𝑎𝑦𝑜𝑢𝑡′ → 𝑃𝑜𝑝′ Fuction definition to 
return an updated 
population (with new 
Knowledge Source 
assignments) given 
current population and 
all the payouts from the 
game 
  

𝑅𝑎𝑛𝑘𝐾𝑆 ∶ 𝑃𝑎𝑦𝑜𝑢𝑡′ → < 𝑘 | 𝑘 ∈ 𝐾 > Function definition to 
provide an ordered set 
of Knowledge Sources – 
denoted with <…> - given 
the Payouts from all 
individuals in the 
population. The 
Knowledge Sources are 
ranked by the sum of the 
fitness values of the 
indivduals they control 
 
 

𝑅𝑎𝑛𝑘𝑃𝑜𝑝: 𝑛𝑢𝑚𝐾𝑠 → 𝑃𝑜𝑝′ → < 𝑠𝑝 | 𝑠𝑝  ⊆ 𝑃𝑜𝑝′ >  Function definition to 
return ordered set of  
subsets (chunks) of the 
population. The number 
of chunks is the number 
of KS in the system. The 
first chunk contains the 
most fit individuals and 
so on 
 

𝐴𝑠𝑠𝑖𝑛𝑔𝐾𝑆: 𝑃𝑜𝑝′ → 𝐾 → 𝑃𝑜𝑝′ 
 
𝐴𝑠𝑠𝑖𝑔𝑛𝐾𝑆(𝑝𝑜𝑝, 𝑘) = 𝑟𝑒𝑡𝑢𝑟𝑛 {𝑆𝑒𝑡𝐾𝑆 (𝑝) (𝑘) | 𝑝 ∈ 𝑝𝑜𝑝} 
 

Function definition and 
implementation to assign 
new Knowledge Source to 
a population chunk 
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𝑆𝑒𝑡𝐾𝑆: 𝑃𝑜𝑝 → 𝐾 → 𝑃𝑜𝑝 
 
𝑆𝑒𝑡𝐾𝑆(𝑝)(𝑛𝑒𝑤𝐾) = 
    (𝑘, 𝑓, 𝑗) ← 𝑝 

    𝑛𝑒𝑤𝑗 ←  {
𝑗 + 1 : 𝑘 = 𝑛𝑒𝑤𝐾

0 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

    𝑟𝑒𝑡𝑢𝑟𝑛 (𝑛𝑒𝑤𝐾, 𝑓, 𝑛𝑒𝑤𝐽) 
 

Function definition and 
implementation to assign 
a new Knowledge Source 
to a population 
individual 

𝐷𝑖𝑠𝑡 (𝑝𝑜𝑝)(payouts) = 
   rankedKs ← RankKS(payouts) 
   rankedChnks ← RankPop(|𝑟𝑎𝑛𝑘𝑒𝑑𝐾𝑠|, pop) 
   𝑟𝑎𝑛𝑘𝑒𝑑𝐾𝑠 = < 𝑘1, 𝑘2, … , 𝑘𝑖, … |  𝑖 = 1 . . |𝑟𝑎𝑛𝑘𝑒𝑑𝐾𝑠| > 
   𝑟𝑎𝑛𝑘𝑒𝑑𝐶ℎ𝑛𝑘𝑠 = < 𝑐1, 𝑐2, … , 𝑐𝑖, … |  𝑖 = 𝑖 . . |𝑟𝑎𝑛𝑘𝑒𝑑𝐾𝑠| > 
   𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐶ℎ𝑛𝑘𝑠 ← < 𝐴𝑠𝑠𝑖𝑔𝑛𝐾𝑆(𝑐𝑖)(𝑘𝑖) | i = 1. . |rankedKs| > 

   pop2 ←  ⋃ 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐶ℎ𝑛𝑘𝑠 

   newPop ←  {
𝑝𝑜𝑝2 : 𝐼𝑠𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒𝐺𝑒𝑛( )

𝑝𝑜𝑝 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  return newPop 
 
 

Stag-Hunt Dist function 
implementation. It 
relies on several 
functions that are 
defined and described 
below 

𝑔𝑎𝑚𝑒 = (𝑃𝑙𝑎𝑦, 𝑃𝑎𝑦𝑓𝑓, 𝑂𝑢𝑡𝑐𝑜𝑚𝑒) The game tuple for 
Stackelberg game 
injection.  

 

6.4 Chapter Summary 

The three game-based knowledge distribution mechanisms that are implemented and tested 

in this research were described in detail in this section. These mechanisms are inspired by the 

following: Iterated Prisoner’s Dilemma from classical Game Theory; Stag-Hunt from evolutionary 

Game Theory; and Stackelberg from microeconomics. All use the game framework defined in 

Chapter 5. Stackelberg is a model where implicit cooperation emerges as a property of the market 

structure. The Stackelberg inspired game for CA knowledge distribution has Knowledge Sources 

taking turns to claim the best performing individuals in order or their strength. When compared 

to IPD and Stag-Hunt, Stackelberg is more structured in that the population individuals are 

generally evenly divided among the Knowledge Sources. It can be likened to a more centrally 

planned economy where resource allocation decisions are made at a higher level. By contrast in 
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IPD and Stag-Hunt, the decisions are made locally by each individual based on the individual’s 

social rank among its peers. From an economic perspective, IPD and Stag-Hunt – in the context of 

CA knowledge distribution – behave more like a free market system. 
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CHAPTER 7 EXPERIMENTAL FRAMEWORK FOR UNDERSTANDING SYSTEM LEARNING IN 

DYNAMIC ENVIRONMENTS 

7.0 Introduction 

CA is meant for knowledge-driven problem solving in complex environments. An example of 

such is the multi-objective systems modelling of prehistoric environments (Stanley S. D., 2020). 

For the numerical optimization system CATGame, the Cones World dynamic environment 

generator is used. Cones World is an adaptation of the DF1 generator (Morrison & De Jong, 1999) 

for use in Cultural Algorithms. The landscapes generated by Cones World are periodically modified 

with a sequence generator based on the logistic equation (Eq 7-2). This serves as a mechanism to 

create dynamic environments. The complexity is controlled by the ‘a’ multiplier (henceforth 

referred to as A or A value) of the logistic equation. This process is explained in greater detail in 

section 7.1. 

The testbed allows the performance landscaped to be replaced with a new one while the 

optimization is underway. This is akin to pulling the proverbial rug from under the system. The A 

values control how hard the rug is pulled (on a periodic basis). A robust system should be able 

adapt quickly to changing environmental conditions. A resilient system should be able to 

withstand even large shocks without leading to system collapse (Figure 7-1). The testbed system 

is run with varying degrees of shocks applied to understand the behavior of the knowledge 

distribution mechanisms under different levels of dynamic complexity. The metric that captures 

the overall system performance is the number of generations to find optimum after each 

landscape change. Section 7.2 explains this performance metric and the core experimental setup. 
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Operation of the Knowledge Sources – i.e. how they guide the population individual through 

the search landscape is constant across the different distribution mechanisms tested. Since the 

performance difference is only due to how knowledge is distributed via the network, several 

metrics related to characteristics of the ‘social’ network are collected. These include diffusion 

(section 7.3); Schelling’s segregation index  (section 7.4); and others related to capturing the flow 

of knowledge in a graph e.g. Page-Rank (Wills, 2006)(section 7.5). The social metrics are intended 

to shed a brighter light into the emergent patterns of knowledge flow with respect to complexity 

changes. 

 

Figure 7-1: Resilience and robustness of complex systems 

The main question that this research addresses is whether the hitherto unapplied cooperative 

approach to CA knowledge distribution is effective for certain categories of complex problems. As 

noted earlier there are two notions of complexity being addressed – dynamic complexity for 
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numerical optimization problems and hierarchical complexity for deep learning models; the 

former is addressed by CATGame and later by the CATNeuro system. As this chapter relates to 

numerical problems, the hypotheses arising from the primary question for numerical problems 

are posed in this chapter. A labeling scheme is defined to refer to hypotheses with the pattern ‘Hy 

Chapter-#’. To start, hypothesis Hy 7-1 reflects the primary research question with respect to 

dynamically complexity for numerical problems. 

Cooperative knowledge distribution is effective for problem solving in 

dynamically complex environments 

  Hy 7-1 

 

The following sections describe the experimental testbed and the metrics collected in more 

detail. Several other hypotheses are posited in the following sections in proximity with the 

description of the said metrics. The analysis and interpretation of the experimental data collected 

with the testbed, are presented in Chapter 8. 

7.1 Cones World with Dynamic Landscapes 

The Cones World test problem generator is a relatively simple method of constructing real-

valued optimization problems of arbitrary complexity for benchmarking purposes. Complexity is 

controlled via the various parameters of the Cones World such as number of cones; the ranges of 

their heights; range of the radii; and the number of dimensions. A sample 2-D Cones World 

landscape is presented in Figure 7-2. 
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Figure 7-2: Cones World sample (source: CA papers) 

The Cones World landscape consists of a set of superimposed cones. The height of the 

landscape is the value of the fitness function; it is given by  Eq 7-1. The input to the fitness function 

is an n-dimensional point location in the problem hyperspace. Thus, the number input parameters 

is equal to the number of dimensions chosen for the Cones World testbed. All testing was done 

with 2D landscapes that are easier to visualize and therefore analyze than higher dimensional 

ones. The problem can always be made sufficiently complex by choosing appropriate values of 

other parameters such as the number of cones (i.e. the number of local maxima). 

Cones World surface 

height at the given 

location: 

f(〈x1,x2,…,xn〉)= max
j=1,k

(Hj-Rj∙√∑(xi-Cj,i)
2

n

i=1

) 

 

 Eq 7-1 

 where 𝑓 returns the height of the landscape surface at 
the given coordinates 𝑥1, 𝑥2, … , 𝑥𝑛; 𝑘 is the number of 
cones; 𝑛 is the dimensionality; 𝐻𝑗 is the height of the 

cone 𝑗; 𝑅𝑗 is the radius of cone 𝑗; and 𝐶𝑖𝑗 is the 

coordinate of cone 𝑗 in dimension 𝑖. 
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To create a sequence of landscapes needed for the testbed, the Cones World uses a sequence 

generator based on the logistic equation (Eq 7-2) (Langton, 1990).  The logistic equation is a 

recursive function. 

Logistic equation: 𝒙𝒊 = 𝑨 ∗ 𝒙𝒊−𝟏 ∗ (𝟏 −  𝒙𝒊−𝟏)   Eq 7-2 

 

Figure 7-3 shows the sequence of values generated from the logistic equation. To get the next 

value in the sequence, the previous value is fed back into the equation. The change between the 

two values is controlled by the A multiplier (also known as the ‘r’ multiplier). In Figure 7-3, the x-

axis is the sequence number, y-axis is the value of the output at that position and each ribbon 

corresponds to a different ‘r’ or A values. Values of A between 1 and 3, produce almost flat ribbons 

– i.e. there is linear change between successive values. As r increases the change between 

successive values becomes larger and more unpredictable. The system switches to non-linear at 

A=3.1 and becomes chaotic at A=3.9 (not shown).  
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Figure 7-3: Logistic function behavior by A-Value (source: CA papers) 

The values generated from the logistic sequence generator are used to modify the heights of 

the cones in the Cones World landscape to produce a new landscape for the testbed when 

required. For a particular run, the A value is kept fixed for landscape generation. To test with 

different levels of complexity – i.e. shocks to the system – the experimental runs are conducted 

with four different A values namely 1.0, 3.1, 3.6, and 3.9. 

7.2 Generations-to-Solution the Basic Performance Metric 

Using the dynamic landscape generation system described earlier, the basic metric to measure 

the response of the system to change or shock is the number of generations to solution. Say the 

system is in some state. Now change is introduced. The peak point (optimum) shifts to some 

unknown position. The CA system scrambles to locate the new peak. How long does it take? The 

number of generations to solution or G2S is the primary measure of performance used to compare 

the performance of the tested knowledge distribution mechanism vis-à-vis the dynamic 
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complexity factors. Cooperative mechanisms are expected to show better resilience than 

competitive mechanisms (Hy 7-2). 

Cooperative knowledge distribution exhibits better robustness than 

competitive distribution 

  Hy 7-2 

 

In general, the shorter the average G2S value the more robust the system. However, it could 

be more instructive to plot the G2S values obtained from a sequence of landscape changes, to 

better understand performance over time. 

 

Figure 7-4: Generations-to-solution curve depicting possible responses to system change 

Figure 7-4 shows the possible responses of three different hypothetical knowledge distribution 

mechanisms to illustrate the performance patterns that may emerge. The KD1 system starts out 

well but is unable to track the changes thrown at it and its performance (in terms of G2S) becomes 
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worse over the progression of landscape changes (i.e. it takes increasingly longer to find the 

solution). Such a mechanism may be well suited to problem solving in static environments. The 

KD2 mechanism seems to adapt quickly and tracks the changes well. By contrast KD3 is a slow 

learner; its performance gradually becomes better over the progression. 

The way a mechanism responds to change over time is a useful characteristic as it can provide 

guidance for where best the mechanism may be applicable.  

7.3 Social Stress or Diffusion 

Social Stress or Diffusion, as the name implies, is a social metric. It is an attempt to measure 

the duress in the system. In all knowledge distribution mechanisms, the immediate neighbors 

have a bearing on each other and hence the distance between them in search space is of interest. 
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Figure 7-5: Social tension is reflected by how far apart are network neighbors in parameter space 

Diffusion is measured as the Euclidean distance between two neighbors averaged over the 

population.  Pictorially, distance is represented in Figure 7-5 and the distance equation is Eq 7-3. 

Euclidean distance 

in search space: 
𝒅(𝒑𝟏, 𝒑𝟐) =  √𝟏/𝒏 (∑ (𝒑𝟏𝒊 − 𝒑𝟐𝒊)

𝟐

𝒊
)  

Where: 
 p1 and p2 are the parameters of two population individuals 
 i = 0,1, 2, … (n-1) indexes the parameter array, n is the number 
of dimensions  

 Eq 7-3 

 

As with G2S (previous section) the Diffusion metric for each run is plotted over the progression 

of landscape sequences to obtain a temporal view of diffusion. We can expect diffusion to be 
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higher for more complex environments – i.e. landscape sequences generated with higher A values 

(Hy 7-3). The maximum parameter distance is 2 [range of landscape location in each dimension is 

(-1, +1) and n=2] and therefore the maximum value is 2.0 for two neighbors by Eq 7-3. However, 

the observed average Diffusion values for the population are in the 0.5-1.0 range. 

Diffusion is higher for more dynamically complex environments   Hy 7-3 

 

7.4 Segregation Index 

In a seminal work, Thomas Schelling (Schelling, 1971) showed that the racial segregation in 

large cities (like Chicago) could be explained by slight biases in peoples preferences about what 

type of neighborhood, in terms of racial mix, they would prefer to reside in. Computer simulations 

conducted by Schelling showed that even slight biases in racial preferences lead to stark 

segregation at the city level. 

Following Schelling’s work, a test knowledge distribution was constructed to see if such 

segregation could be observed in the CA population space. The test knowledge distribution run 

results are shown Figure 7-6. Under this mechanism, each individual has a slight bias to be 

surrounded by individuals that have the same KS as the individual does. This results in a highly 

segregated population overall. Figure 7-6 is a view of the population arranged in a regular hexagon 

topology. Each individual thus has six neighbors and the topology is toroidal (i.e. it wraps around 

to form a sphere). Each circle is an individual where the color represents the Knowledge Source 

acquired via the Schelling-like rule. The key at the bottom of the figure provides a mapping from 

color to KS. This side experiment provides visual evidence that segregation as studied by Schelling 

for real-life social systems can also emerges in artificial social systems like the one CA has. 
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Figure 7-6: Stark segregation of Knowledge in population due to application of Schelling-like rule 

The core idea behind Segregation Index is measuring the imbalance in proportions of 

subgroups in a local neighborhood with respect to proportions in the population at large. For 

example, say US population can be divided into two subgroups 𝑅  and 𝐷 where the overall 

proportion is 0.50/0.50. Divide US into smaller regions geographically. For each region can test 

how far the proportions of 𝑅 and 𝐷 are from the ideal 0.50/0.50. This will be the measure of 

segregation in that region. Table 7-1 shows the calculation of Schelling’s Segregation Index for 

different regional proportions. 𝑅, 𝐷  are population proportions and 𝑅𝑛, 𝐷𝑛  represent regional 

proportions. 
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Table 7-1: Calculation of Regional Segregation with Different Subgroup Proportions 

Neighborhood 

proportions 𝑹𝒏 and 𝑫𝒏 

Segregation 

 

|𝑹 −  𝑹𝒏|  + |𝑫 − 𝑫𝒏| 

Comment 

𝑹𝒏 𝑫𝒏 

0.50 0.50 |.5 – .5| + |.5 – .5| = 0 The neighborhood 

proportion is ideal 

0.0 1.0 |.5 – 0.0 | + |.5 – 1.0| = 2.0 Max value is 2 

.70 .30 |.5 - .7| + |.5 - .3| = 0.4  

  

The first example has the 𝑅𝑛/𝐷𝑛 at 0.5/0.5 same as for the overall population and segregation 

index works out to be zero. The second example represents extreme segregation where 𝑅𝑛/𝐷𝑛 is 

0.0/1.0 and that produces a value of 2.0. Thus, the Segregation Index ranges from 0.0 to 2.0. The 

third example with a 0.7/0.3 split produces an intermediate value of 0.4. The calculation of 

Segregation Index for a CA population configuration is given in Eq 7-4. 

CA Population 

segregation: 
𝐏𝐨𝐩 𝐒𝐞𝐠 =  

𝟏

𝒏
∑ ∑ |𝒑𝒓𝒊 − 𝑷𝒊|

𝒊
𝒓

  

Where: 
𝒊 indexes the Knowledge Source 
𝒓 indexes the population individual 

𝑷𝒊 is the proportion of the 𝒊𝒕𝒉 Knowledge Source in the CA run 
(usually its 1/5 as there are 5 KS) 

𝒑𝒓𝒊  is the proportion of the 𝒊𝒕𝒉  Knowledge Source in 𝒓′𝒔 
neighborhood 
𝒏 is the number of population individuals 

 Eq 7-4 
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Figure 7-7: An example of low segregation network 

 

Figure 7-8: An example of a high segregated network 

Also, Figure 7-7 (low segregation population) and Figure 7-8 (high segregation population) are 

examples of segregation index represented visually over a population of 36 individuals. The inner 

circle represents the population individual and its color the Knowledge Source. The outer ring 

corresponds to the segregation index for that individual’s neighborhood. “Seg. Scale” is the key 

for decoding Segregation Index color. As expected, low segregation population individuals are 

surrounded by a greater variety of Knowledge Sources, in contrast with high segregation 

individuals. 

It is difficult to judge a-priori the levels of segregation manifested by the tested knowledge 

distribution mechanisms with respect to the complexity factors. However, expect that the 

segregation level will be higher for higher complexity environments due to the greater level of 

stress placed on the individuals to solve a more complex problem (Hy 7-4).   
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Segregation is higher for higher complexity environments   Hy 7-4 

 

Also, in general it is expected that Stag-Hunt and IPD mechanisms will produce higher 

segregation than WTD (Hy 7-5). This comes down to the mechanics of these mechanisms. The 

WTD mechanism requires compensation for lost Knowledge Sources that evens out the 

knowledge assignments somewhat. If this is not done, some Knowledge Sources entirely could be 

removed from the population, never to be regained. The WTD mechanism injects back Knowledge 

Sources that have been driven out after each distribution. Twenty percent of randomly selected 

individuals (from the total population) receive Knowledge Sources that were excluded in the 

natural assignment step. There are no such compensating mechanisms for IPD or Stag-Hunt – 

assignments are all due to the natural process followed. Both mechanisms allow Knowledge 

Sources to be regained even if they are driven out in some generation. As a result, the segregation 

will likely be higher as some Knowledge Sources may be absent in some generations. 

Stag-Hunt and IPD distributions will produce higher segregation than 

WTD distributions 

  Hy 7-5 

 

Following similar reasoning, it is expected Stackelberg should produce the lowest segregation 

of all (Hy 7-6). Stackelberg – for CA knowledge distribution – is a somewhat structured approach 

where each Knowledge Source takes turns to acquire a piece of the evenly divided population pie 

and so, as a result, all Knowledge Sources are expected to be present in every generation. Note 

that even if all Knowledge Sources are represented in a population, segregation could still be high 

if they are clustered together into local groups. 
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Stackelberg produces lowest segregation among the mechanisms tested   Hy 7-6 

 

Both Diffusion and Segregation are metrics that pertain to entire populations – i.e. are 

aggregate metrics. While these are analyzed with respect to time in Chapter 8, information could 

be lost due to aggregation at each timestep. To understand the mechanism of knowledge 

distribution at a finer grained level, an approach is required that captures the dynamics of 

knowledge flow over time. The next section explains some methods derived from network analysis 

that should provide further insight into the inner workings of the knowledge distribution 

mechanisms. 

7.5 Understanding the Dynamics of Communal Knowledge Flow 

The CA population exists in the context of a social network (or fabric) of some topology (usually 

regular). The knowledge distribution mechanisms leverage the social connections for distributing 

knowledge. The flow of knowledge over the network, driven by the workings of the knowledge 

distribution mechanisms, is thus of high interest. Patterns of knowledge flow should highlight the 

differences between how the mechanisms operate. 

The tools used for analyzing knowledge flow come from a variety of disciplines. First off is the 

Frequent Pattern Growth algorithm (Agrawal, Imieliński, & Swami, 1993). It is used to find 

communities of Knowledge Sources in a population. Its formulation and use are explained in 

section 7.5.1 .  Then, a method related to visualizing weighted graphs is discussed in 7.5.2 . Finally, 

the famous Page Rank (Wills, 2006) algorithm from Google is discussed in 7.5.3 ; and its use for CA 

knowledge distribution analysis clarified. 
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7.5.1 Frequent Pattern Growth - A mechanism for Community Detection in Social Networks 

There are many community detection methods in graphical networks (Lancichinetti & 

Fortunato, 2009), however a simple and effective approach is to use market basket type analysis 

to detect local communities in the network. Kumar, et al from IBM (Kumar, Raghavan, 

Rajagopalan, & Tomkins, 1999) first described the use of such methods for mining communities in 

cyber space. For CA community detection, a method is required that can find clusters for 

Knowledge Sources. This is based on the type of the node rather than the link strength between 

nodes – the premise for most other community detection methods. 

There are two primary algorithms for market basket analysis – apriori (Wu, et al., 2007) and 

frequent pattern growth (FPG). FPG is faster than apriori as it first constructs a tree and then mines 

it for frequent items.  
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Figure 7-9: Combination of History (Dark Blue) and Situational (Red) Knowledge forms the dominant community type is this 

network as indicated by the colored outer ring 

The idea of using FPG for community detection is to find what Knowledge Sources are present 

in a local neighborhood – i.e. around a population individual. For the population, count all the 

instances of the unique patterns that occur around each individual and take the top n patterns as 

the strongest communities.  

FPG is an efficient way of counting such the patterns (called frequent itemsets). Figure 7-9 is 

an example of the application of this method for community detection in graphs. Here only the 

top community detected, comprised of History and Situational Knowledge Sources, is marked with 

a light blue outer ring. Note that this method does not preclude an individual to be part of several 

communities at the same time. For example, in Figure 7-9 another dominant pattern is pairing of 

Domain and Situational KS. Many individuals who are in History-Situational communities are also 
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in Domain-Situational. One example of an individual who is part of both communities is 3rd from 

the left in the top row.  

Also, community size (number of unique Knowledge Sources in the community) may be 

between 1 to the number of Knowledge Sources in the system. For example, if all individuals have 

the same Knowledge Source then there is only one community comprising of the single Knowledge 

Source. The possible number of distinct communities is 32 for 5 Knowledge Sources. 

 

Figure 7-10: Timeline of community memberships of a single pop. Individual 

The emergence of communities, especially if communities persist over time, is an insight into 

how a knowledge distribution mechanism is functioning for a given level of complexity. However, 

community analysis can be taken a step further by tracking change over time. It is very likely that 

an individual is part of several communities in one generation, several others in the generation 

after, and so forth. This pattern is pictorially represented in Figure 7-10. The letter pattern 

“D_H_T” represents a combination of Domain-History-Topographical community. Other letter 
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patterns can be similarly deciphered. Figure 7-10 is a view from the point of view of single 

individual over time. It shows the community-to-community transitions for that individual. 

 

Figure 7-11 - Community membership transitions for a single individual over n generations can be folded into a weighted 

graph where the arc weights represent the number of corresponding transitions observed in the run 

The sequence of community-to-community transitions for an individual can be folded into a 

single weighted graph (Figure 7-11). The nodes represent communities and arcs the transitions. 

The weight of the arcs is the number of times that transition occurred in the sequence of 

generations for a particular run. The graph is a compact view of the entire dynamic process of 

knowledge flow for a single individual. This construction is really a stepping stone towards the 

construction of a population-wide weighted graph and is not very useful by itself. All such graphs, 

each corresponding to a population individual, can be merged together to form a single view. This 

is described further in the next section. 
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7.5.2 Crystalizing Knowledge Flow Dynamics as a Weighted Graph 

If one merges the community-to-community transition graphs across all individuals, one can 

obtain a weighted graph that is a compact, emergent view of a knowledge distribution 

mechanism’s operation. 

 

Figure 7-12:  A weighted graph of community-to-community transitions aggregated across entire population presented as a 

‘chord’ diagram. Such a diagram captures the dynamics of communal knowledge flow in a single view 

Figure 7-12 is a representation of a weighted graph as a ‘chord’ diagram (Jalali, 2016). This 

particular view was generated from the Microsoft Power BI (Microsoft, 2019) tool using the Chord 

diagram extension from the chart gallery. The color scheme is selected by the tool itself and is 
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based on the ordering of the labels (communities in this case) arranged in order of importance in 

a counter-clockwise manner, starting from the top. If two similar charts have slightly different 

node orderings, the colors selected for the two charts will be very different. Thus, the node colors 

are way of differentiating charts quickly. 

The community labeling scheme for the chord diagrams, and others explained later, is as 

follows: 

• ‘D’ = Domain 

• ‘H’ = History 

• ‘N’ = Normative 

• ‘S’ = Situational 

• ‘T’ = Topographic 

• Composite communities are labeled with the letter assignments joined by underscores 

(‘_’), e.g. ‘D_N_T’ = combination of Domain, Normative and Topographic  

• For composite communities, alphabet ordering is maintained so ‘D_N_T’ will always 

appear as such and not as ‘T_D_N’, for example. 

In the chord diagram, the graph nodes are the segments around the circumference. The greater 

the importance of the node, the longer the length of the corresponding segment. The arcs are 

represented as the ‘chords’ between the nodes. The thickness of the arc represents its combined 

weight (i.e. both ways). The color of arc matches (is closer to the color of) the node with the higher 
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inflow. Self-loops are represented as stubby arcs. The arcs connected to a node (segment) are 

ordered in a counter-clockwise manner relative to the outgoing weight. 

In Power BI the chord diagrams are interactive.  Charts allow for interactive filtering that can 

be used to remove infrequent transitions. This feature can considerably reduce visual clutter. Also 

hovering the mouse over different parts of the chart provides more detail.  

The weighted community transition graph, represented by the chord diagram, can be 

considered to be the signature of a distribution mechanism. As such one can expect the diagrams 

to appear to be quite different for each of the distribution mechanisms tested (Hy 7-7). While it is 

hard to hypothesize about any particular feature of the graphs as these are emergent 

phenomenon, it can be argued that if the mechanisms were to operate more or less in the same 

way, their graph signatures would also be similar. 

The community transition weighted graphs for the tested knowledge 

distribution mechanisms are visibly distinguishable from each other 

  Hy 7-7 

 

This reasoning can be extended to the reaction of the distribution mechanism when it is 

subjected do environments of varying complexity – as controlled by the A value. For different 

levels of complexity one can expect the mechanism to respond differently with discernable 

manifestations in the corresponding weighted transition graphs (Hy 7-8). 

The community transition weighted graphs for a tested knowledge 

distribution mechanism are appreciably different for different A values  

  Hy 7-8 
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Weighed transition graphs, as visualized by chord diagrams, may be useful but still a weak 

differentiator of knowledge distribution mechanisms as one is asked to rely on somewhat 

subjective visual judgement. Using additional methods, the case for signature-based 

differentiation can be made stronger. This is discussed in the next section. 

7.5.3 Page Rank for measuring Community Influence in Knowledge Flow Graphs 

Community-to-community transition graphs, presented in the previous section, are seen as a 

means of providing a unique signature for each of the tested distribution mechanisms. However 

apart from visual differentiation, these views do not provide much useful information.  

 

Figure 7-13: The importance of communities in a communal knowledge-flow graph can be extracted via Google’s Page-Rank 

algorithm. Here, example results are presented in a ‘tree’ chart 

A further refinement of the weighted graph approach helps to extract more useful information 

for comparative analysis. The arc weights in the prior weighted graphs are transition counts. These 

weights can be normalized so that they represent transition probabilities. This means that the 

weights for all outgoing arcs for any node sum to 1.0. Such a graph can be treated as a Markov 

chain and as such is amenable to analysis via the Page Rank (Wills, 2006) (Wu, et al., 2007) 

algorithm.  

Page Rank is an iterative method of computing the stationary distribution of a Markov Chain. 

The significant outcome, however, is that the graph nodes are ranked in terms of importance. 

Google devised Page Rank to rank pages in search results. Since then, the algorithm has been 
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widely used in many areas where the problem involves graph analysis, e.g. biology (Gong, et al., 

2014); natural language processing (Pershina, He, & Grishman, 2015); and sociology (Lu, Wang, 

Gao, & Liu, 2015).  

Applying Page Rank to a normalized community transition graph nets the ranked list of 

communities. Such a list can be visualized as a ‘tree’ chart as shown in Figure 7-13. The 

communities are ordered by importance. Here importance means the proportion of time the 

individuals in a population are found to be in such a community. The area of the box representing 

a community in the tree diagram is proportional to the importance weight calculated by Page 

Rank. The color of the box represents the exploratory factor of the community. Red hues 

represent communities comprised of exploratory knowledge sources and Green hues represent 

exploitative ones. 

The Page Rank derived tree chart provides a clearer view of the signature of a distribution 

mechanism than the chord diagram. First the communities are clearly ranked in order and it 

should be easy to spot the differences between diagrams of different mechanisms, if such 

differences exist. Second, the information contained in the tree charts for a given mechanism, for 

different A values can be stacked together into another useful view. Figure 7-14 is an example of 

such a view. It is a ‘parallel chords’ diagram. It shows the rank of each community with respect to 

each A value. Horizontal lines connect each community across the A value vertical lines. As such it 

allows one to easily spot changes in community rank ordering with respect to environmental 

complexity. 

Apart from providing a visual signature for the distribution mechanisms, the tree diagram also 

allows one to assess the explorative-exploitative nature of the distribution mechanisms. Features 
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from such views can be extracted and related to the G2S performances of different distribution 

mechanisms, to provide further insight. This graph can be used to measure whether the 

community rankings for the tested distribution mechanisms are different from each other, 

reflecting their different internal mechanisms (Hy 7-9). 

Community importance weights for the tested distribution mechanisms 

are different from each other, reflecting their different operational 

characteristics 

  Hy 7-9 
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Figure 7-14: Changes in community rank with respect to change in A-value (complexity) - presented as a ‘parallel coordinates’ 

chart. 

Further, the tested distribution mechanisms should respond differently to varying levels of 

environmental complexity. This should be reflected in the community rankings across the tested 

A values for each mechanism (Hy 7-10). 
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Community importance rankings for the tested distribution mechanisms 

vary by environmental complexity 

  Hy 7-10 

 

Another view of responsiveness to varying complexity can be created based on changes in the 

explorative-exploitative balance of each mechanism with respect to changes in A values. Here the 

32 possible communities are collapsed into 3 categories, Explorative, Neutral and Exploitative. The 

method used is as follows: 

• Assign each Knowledge Source a numerical rank based on where it falls on the explorative-

exploitative scale 

• Average the ranks for Knowledge Sources within a community to obtain the community 

rank 

• Bin each community into 1 of 3 categories based on the calculated rank and set thresholds 

for Explorative, Neutral and Exploitative categories. 

Listing 7-1 : Community categorization 

𝑇 = 5, 𝑁 = 4, 𝐷 = 3, 𝐻 = 2, 𝑆 = 1,
∗= 0 

Rank assigned to each Knowledge Source 
based on where it places on the 
explorative-exploitative continuum. 
‘*’ represents the no community found 
case (very rare) 
 

D_H_T = (3 + 2 + 5) / 3 = 3.33 Example calculation of exploratory-
exploitative ranking for a community 
comprimising of 3 Knowledge Sources 
 

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑟) =  {
𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑣𝑒 𝑟 > 3

𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝑟 = 3
𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑣𝑒 𝑟 < 3

  

 
 

Function to categorize a commnity as 
Explorative, Neutral or Exploitative 
based on its calculated rank 
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Listing 7-1 shows the supporting calculations for the method of ranking and categorization 

described above. With just 3 categories to work with, it is easier to perform meaningful statistical 

tests for the response of a distribution mechanism in the face of environmental complexity – a 

process that is explained next. 

The underlying community-to-community transition counts are aggregated into category-to-

category transitions (Figure 7-15). For a particular A value then there are only three nodes in the 

network namely, Explorative, Neutral, and Exploitative. An arc between say Explorative → Neutral 

represents the transitions from all explorative communities to Domain (which is the only neutral 

category); and so forth for the other arcs. 

 

Figure 7-15: Category-to-category transition graph constructed by aggregating community-to-community transition counts 

The counts underpinning an arc are collected from several sample runs. Hence, for each arc, 

the mean and standard deviation are available. Consider the arc Explorative → Neutral for some 

distribution mechanism when A = 1. Now consider the corresponding arc for the transition graph 

when A = 3.1 – the next level up for A. The means and standard deviations are available for both. 

Explorative 

Exploitative 

Neutral 
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Are the means significantly different for the Explorative → Neutral arcs when A = 1 and when A = 

3.1? This is an answerable question; the data are available. 

Two-sample t-tests are performed to test for statistical differences between corresponding 

arcs, for successive A values – 1 → 3.1; 3.1 → 3.6; and 3.6→3.9. These are significant transitions 

in complexity. The 1 → 3.1 transition is from linear changes to non-linear changes; 3.1 → 3.6 is 

from non-linear to highly non-linear; and 3.6→3.9 is from highly non-linear to near chaotic 

changes. Such tests can answer the question whether or not the distribution mechanisms are 

responsive to varying levels complexity, with statistical rigor. 

The information from a) statistical significance testing and b) changes in arc transition weights 

can be combined into a single, compact view with the help of a ‘Sankey’ diagram - see Figure 7-16. 

Admittedly, this chart is a little confusing at first glance, so detailed explanation is provided next. 

 

Figure 7-16: Changes in communal explorative-exploitative balance driven by complexity changes viewed as a 'Sankey' 

diagram 



104 
 

 
 

First a quick word about Sankey diagrams (Riehmann, Hanfler, & Froehlich, 2005). These are 

generally used to visualize flow but really are a way of visualizing multiple linked graphs 

simultaneously. Figure 7-16 has 3 distinct sections separated by vertical ‘posts’ (gray bars). The 

left most set of posts are for A=1 and from left-to-right the posts are for A=3.1, A=3.6 and finally 

A=3.9. There are 3 posts in each set; these are for the three types of nodes Explorative, Neutral 

and Exploitative. The posts are labeled, e.g. “Explorative 1.0”, “Neutral 3.1”, etc.  The first part of 

the name is the node type and second part the A value. 

The links between vertical posts represent the change in the transition rates between 

corresponding arcs for adjacent A values. For example, consider the arc from “Explorative 1.0” to 

“Neutral 3.1”. It represents the change in the Explorative→Neutral arc weight between A=1.0 

graph and A=3.1 graph. If the change is positive, the arc is Blue otherwise its Red. The width of the 

arc represents the amount of change. Finally, if the change is not statistically significant, the arc is 

drawn as a thin line. 

The Sankey chart as conceived for this analysis is information rich. It is a compact way of 

capturing a distribution mechanism’s response to environmental complexity.  The Sankey chart, 

while informative for a single distribution mechanism, is not suitable for comparing multiple 

mechanisms together. One issue with the chart is that the scale is relative to the chart so different 

charts are not comparable. However, a Sankey chart is still useful for judging whether or not a 

mechanism is responsive to changes in environmental complexity (Hy 7-11 & Hy 7-12 below). For 

example, if most of the arcs are thin lines (i.e. the changes are not statistically significant) the 

conclusion can be drawn that the associated mechanism is not responsive to changes in 

environmental complexity. 



105 
 

 
 

The tested distribution mechanisms are responsive to changes in 

environmental complexity 

  Hy 7-11 

 

Cooperative distribution mechanisms are more responsive to changes in 

environmental complexity than competitive mechanism 

  Hy 7-12 

 

The Sankey chart depicts the significant changes in exploration/exploitation balance via arc 

thickness however it is difficult to determine the exact magnitude of the change – especially net 

effects. And because of relative scale, it is difficult compare the different mechanisms together. 

Nevertheless, the information contained by the Sankey chart is transformable into a shape that 

makes the goal comparing distribution mechanisms achievable. 

From the information developed for the Sankey chart, the net changes in the explorative-

exploitative balance can be tracked. Consider for example the Explorative category and the change 

1.0 → 3.1 in A. The net change to Explorative is calculated by summing the significant flows in and 

out of Explorative category as shown in Listing 7-2. Generalizing, the net flows for all categories, 

for all adjacent A value can thus be calculated. 

Listing 7-2: Example - net changes to Explorative A: 1.0 → 3.1 

𝐸 = {𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑣𝑒, 𝑁𝑒𝑢𝑡𝑟𝑎𝑙, 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑣𝑒} 
 
𝑁𝑒𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡𝑜 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑣𝑒𝑎1→𝑎2 =△ 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑣𝑒 𝐼𝑛𝑓𝑙𝑜𝑤𝑠𝑎1→𝑎2 −△ 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑣𝑒 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑎1→𝑎2  
 

=  ∑ 𝑒𝑎1 → 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑣𝑒𝑎2

𝑒 ∈𝐸

− ∑ 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑣𝑒𝑎1 → 𝑒𝑎2

𝑒 ∈ 𝐸

 

 
𝑎1 = 1.0, 𝑎2 = 3.1, ( → ) =  𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑓𝑙𝑜𝑤 
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Net changes are simpler quantities, easier to visualize and compare. A sample visualization is 

provided in Figure 7-17. 

 

Figure 7-17: An example of  Net flow changes by adjacent A values for a hypothetical distribution mechanisms 

The tracking of net flows (Figure 7-17) is one way to relate the performance of distribution 

mechanisms to how these mechanisms respond to changes in environmental complexity. For 

example, a mechanism that responds by consistently increasing resources to explorative 

communities as A is increased can expected to perform better (Hy 7-13). 

Better performing distribution mechanisms will exhibit consistent 

responses to changes in environmental complexity 

  Hy 7-13 

 

Net flow thus is one of the analytical tools, along with other tools discussed in this chapter, to 

peer into the workings of the distribution mechanisms and draw insights that might be useful for 

improving the mechanism in future. Thus far this chapter has focused on analytical methods to 
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drive the design of experiments at the conceptual level. The detail setup of experiments, the 

configurations used and the data collected is described next. 

7.6 Experimental Setup 

The primary goal of the thesis is to understand the performance of knowledge distribution 

mechanisms that encompass cooperation with those that are purely competitive. The inspiration 

for cooperative mechanisms comes from classical and evolutionary Game theory. The purely 

competitive mechanism selected is Weighted Majority, which is the default for Cultural 

Algorithms. 

Table 7-2 provides the detail settings of the experimental parameters employed to test the 

hypotheses given above. 

Table 7-2: Parameter Settings for Experimental Runs 

Parameter Value  Comment 

Knowledge Distribution 

Mechanisms 

Stag-Hunt (SHS) 

Iterated Prisoner Dilemma 

(IPD) 

Stackelberg (STK) 

Weighted Majority (WTD) 

In the experimental 

analysis section, the KD 

mechanisms are 

referenced via the 

abbreviations used here 

A – values 1.0, 3.1, 3.6, 3.9  

Population size 36  
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Network topology Hexagonal  

Cones World number of 

cones per landscape 

1000 All KD mechanisms 

were tested on the exact 

same landscapes 

generated in the 

sequence, to make the 

performance differences 

more meaningful 

Number of generations per 

landscape 

2500 The system was 

allowed to run for a fix 

number of generations 

per landscape.  

Number of landscapes in 

sequence per run 

50 Number of 

generations per run = 

50*2500 = 125000 

Number of runs (sample 

size)  

200 per KD-A combination  

Threshold distance for 

solution 

0.001  
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Cone parameters modified 

for landscape sequence 

Height Modifying height is 

equivalent to relocation 

cones as the peak can 

move 

 

Detailed data was collected for each generation into a log file. The format of the log file is in 

Table 7-3. Over 1 Terabyte of log data was collected and analyzed. 

Table 7-3: CATGame Log File Format 

Column Description 

Sample Sample number, 1, 2, …, 200 

KD Distribution mechanism WTD, SHS, IPD, STK 

EnvSnsty Not used 

LandscapeNum The sequence number of the landscape in the sequence, 1, 2, …, 50 

A 1.0, 3.1, 3.6, 3.9 

GenCount Population generation counter resets after landscape change, 1,2, …, 2500 

Best Height of the best cone found thus far 

Max Ground truth best for the landscape 

Seg Average segregation index of the population at the end of the current 

generation 
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Dffsn Average Diffusion for the population at the end of the current generation 

Net Network topology (Hexagon) 

IndvSeg Segregation index of each population individual, delimited by ‘|’ 

IndvDffsn Diffusion of each population individual, delimited by ‘|’ 

IndvKS Knowledge source for each population individual, delimited by ‘|’ 

 

All experimental runs were performed on the Wayne State’s grid computing environment. 

Details of the configuration used are provided Table 7-4. 

Table 7-4: Wayne State Grid Computing Environment Particulars 

Category Value 

Environment Wayne State grid computing environment 

Number of jobs (that can run in parallel) 1600 = num KD * num A * num samples  

= 4 * 4 * 200  

Hardware requirements for grid resource 4 cores with 500MB RAM 

Size of log data collected 1.04 Terabyte 

 

Experiments were conducted in line with the experimental framework presented in this section 

and the required data recorded in log files. The analysis of the log file results is presented in the 

next chapter. 
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7.7 Chapter Summary 

This chapter described the experimental framework used to test and compare the three game 

distribution mechanisms vs. the stalwart Weighted Majority, for the CATGame system. The core 

idea is to observe the performance and the ‘social’ behavior of the CATGame system when 

configured with each of the four mechanisms. The testbed is a dynamic environment generator 

created by hybridizing the Cones World system with the logistic equation (Eq 7-2). The logistic 

equation is used as a sequence generator to modify the height of the cones periodically to 

generate new landscapes, while the performance optimization is still underway. The main 

performance metric is the average number of generations to reach solution for each change in 

the landscape. 

CA has a social aspect due to the networked population. The social network is leveraged by the 

KD mechanisms. The ‘social’ response of the system to varying levels of dynamic complexity can 

be studied with the help of social metrics. Diffusion and Segregation capture static aspects of the 

network. To understand dynamic aspects, Markovian methods that track patterns of communal 

knowledge flow over time, are also described. The next chapter analyzes the data collected under 

the experimental framework described in this chapter. 
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CHAPTER 8 CATGAME EXPERIMENTAL RESULTS FOR CONES WORLD BENCHMARK 

8.0 Introduction 

Following the experiment designs detailed in Chapter 7, experiments were conducted on the 

Wayne State’s grid computing environment. A total of 1600 jobs were run and over a terabyte of 

log data collected for analysis. Log data analysis results are presented in the sections of this 

chapter. In the charts presented the tested KD mechanisms are referred to by short names. The 

mapping is a follows: WTD → Weighted Majority; IPD → Iterated Prisoner’s Dilemma; SHS → Stag-

Hunt; and STD → Stackelberg. 

Section 8.1 contains the results of basic performance analysis – mean generations-to-solution 

(G2S) – for each distribution mechanism, by A value and by landscape sequence number. Note: 

the sample size is 200 – i.e. each combination of A value and distribution mechanism is run 200 

times to obtain statistically significant results. For each A value, first a chart is presented that 

compares the mean G2S over the 50-landscape sequence. And then a table that gives detailed 

values by landscape and also provides the two-sample t-test results for the hypotheses that IPD, 

SHS and STK mean G2S are less that WTD mean G2S, respectively. Section 8.2 presents analysis 

for the Diffusion statistic for each A value-KD combination. The diffusion statistics are also 

obtained from log results. Section 8.3 looks at the Segregation patterns obtained from the log data 

for A value-KD combinations. Representative samples of high and low Segregation population 

snapshots are also provided for qualitative assessment.  Charts showing overall trends of 

Segregation by landscape are presented. The aggregate view of Segregation for A value-KD 

combinations is presented as the final chart of this section. Section 8.4 focuses on the dynamic 

view of knowledge flow resulting from the distribution strategy used by each of the KD 
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mechanisms and in response to changes in environmental complexity.  Here an analysis of the 

community-to-community transition graphs is presented. Several types of visualizations are 

discussed:  

• Chord diagram views of weighed graphs 

• Tree diagrams for Page Rank results 

• Parallel-chords diagrams for tracing rank changes with respect to A values 

• Sankey charts for statistically significant changes in knowledge flow in response to 

environmental complexity 

• Net flow changes in explorative-exploitative balance by A values 

Finally, section 8.5 presents the summary of the analytical results and draws conclusions about 

the hypotheses posed in Chapter 7. 

8.1 Performance Analysis 

The base performance results are presented for each of the A-value-KD combinations in this 

section. The results are organized by A value so the performance of the distribution mechanisms 

can be directly compared for a given level of environmental complexity.  

Trend charts for each A value are presented in Figure 8-1, Figure 8-2, Figure 8-3 and Figure 8-4. 

All charts are drawn to same scale for easier comparative analysis. Detailed numerical data for 

each A value is provided in Table 8-1, Table 8-2, Table 8-3 and Table 8-4. The tables include two-

sample T-Test results performed for each landscape in the sequence (1 … 50). As mentioned 

before, the sample size for each T-Test is 200. The hypotheses are that the mean G2S for each of 
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the game KDs is less than that of WTD – i.e. one-tail.  In other words, the performance of game KD 

is expected to be better than WTD for every landscape in the sequence.  The T-Test columns in 

the table show the outcomes based on p<=0.05 (95% confidence) for the tests. If T-Test p <= 0.05 

the column contains +1 otherwise it contains -1. These column values are converted to ‘check 

mark’ and ‘cross’ icons (using Excel’s conditional formatting option) to visually highlight the 

results. 

Analysis by landscape sequence is more interesting and informative as the performance of the 

mechanisms varies over the progression of the sequences. For A = 1, the environment’s dynamic 

complexity is very low. The change is gradual. The trend lines in Figure 8-1 show that WTD settles 

down to competitive performance after about 10 landscapes. WTD’s G2S value equals that for IPD 

after 10 landscapes. STK on the other starts out well but then steadily its performance worsens – 

i.e. STK is not tracking environmental changes well. SHS (Stag-Hunt) starts well and then performs 

best all the way through.  
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Figure 8-1: Mean generations to solution A=1 

The data underlying the chart in Figure 8-1 is listed in Table 8-1. As can be expected from 

inspecting the chart, IPD performs significantly better in early landscapes but then is on par with 

WTD. This is borne out by the T-Test results for IPD vs WTD. STK is statistically significantly better 

than WTD in the first 2 generations but then the one-tail T-Test is not significant. And in fact, the 

performance is much worse than WTD as depicted in the corresponding chart. SHS is statistically 

better than WTD for all landscapes except for landscape #16. The corresponding chart also shows 

a minor up tick at #16 for SHS. 
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Table 8-1: A=1, Two Sample T-Tests (P<0.05), Mean G2S: {IPD,SHS,STK} < WTD, by Landscape Sequence # 

 

Landscape WTD Mean WTD Stdv. IPD Mean IPD Stdv.

TTest 

IPD < 

WTD SHS Mean SHS Stdv.

TTest 

SHS < 

WTD STK Mean STK Stdv.

TTest 

STK < 

WTD

1 766.915 809.699 175.380 353.271 1 117.235 269.411 1 250.085 394.635 1

2 311.985 587.532 96.130 277.886 1 35.590 218.089 1 192.425 494.579 1

3 237.930 508.694 94.685 234.787 1 27.250 196.698 1 195.955 478.257 -1

4 168.480 394.045 53.795 97.606 1 20.500 103.186 1 251.495 560.880 -1

5 168.320 454.257 57.310 83.744 1 11.860 60.101 1 274.315 638.700 -1

6 151.880 405.286 67.180 158.407 1 10.700 58.607 1 304.785 681.366 -1

7 94.400 219.313 57.985 159.700 1 12.605 52.419 1 290.540 665.886 -1

8 92.975 242.981 60.195 120.779 1 14.315 53.889 1 324.040 679.655 -1

9 95.585 261.194 61.195 186.537 -1 16.290 76.520 1 250.010 607.030 -1

10 77.645 222.615 61.325 198.225 -1 15.555 78.984 1 314.220 703.343 -1

11 62.150 109.071 53.545 101.937 -1 12.000 56.169 1 308.000 689.352 -1

12 81.850 239.262 47.620 77.715 1 11.815 91.045 1 335.430 726.295 -1

13 65.135 151.502 57.685 132.556 -1 10.275 36.392 1 348.850 755.467 -1

14 57.510 99.048 52.365 105.558 -1 7.075 50.772 1 356.295 739.290 -1

15 56.565 94.609 67.760 164.902 -1 7.810 44.638 1 389.800 788.860 -1

16 68.255 195.146 66.735 194.164 -1 36.850 209.586 -1 333.425 723.865 -1

17 73.015 214.724 44.735 67.405 1 9.230 50.401 1 399.040 794.970 -1

18 54.155 95.076 48.665 100.362 -1 14.120 58.049 1 400.135 799.080 -1

19 73.515 206.798 40.900 54.909 1 10.650 45.635 1 427.960 821.356 -1

20 54.595 92.785 39.035 54.829 1 7.125 29.240 1 388.375 778.656 -1

21 59.445 122.924 42.720 80.201 -1 6.770 25.162 1 418.800 829.890 -1

22 48.065 87.186 44.635 85.559 -1 20.415 111.899 1 432.670 827.644 -1

23 67.695 210.112 43.730 76.334 -1 5.050 22.180 1 423.580 819.541 -1

24 63.110 153.568 50.590 113.320 -1 12.170 76.801 1 429.130 822.740 -1

25 61.825 181.462 42.130 58.530 -1 7.590 38.211 1 400.265 788.196 -1

26 54.865 131.300 49.635 118.743 -1 8.930 49.148 1 425.455 835.117 -1

27 61.175 193.732 44.640 64.723 -1 7.830 46.940 1 416.540 833.842 -1

28 51.260 96.820 42.400 57.954 -1 14.530 93.808 1 442.715 836.251 -1

29 55.780 184.012 51.110 107.175 -1 10.895 80.185 1 443.605 853.336 -1

30 56.850 188.138 51.005 86.323 -1 10.165 44.853 1 487.470 887.364 -1

31 39.645 56.592 44.675 66.962 -1 7.535 37.571 1 407.220 793.622 -1

32 54.805 187.584 52.100 107.935 -1 8.020 56.719 1 409.035 809.620 -1

33 46.670 81.155 40.930 73.247 -1 10.935 56.621 1 409.100 827.707 -1

34 42.555 63.685 37.035 47.971 -1 10.110 57.554 1 449.255 831.573 -1

35 49.650 142.008 41.435 76.443 -1 2.415 10.846 1 463.365 848.689 -1

36 42.175 94.815 48.745 85.739 -1 14.065 107.412 1 458.950 854.459 -1

37 50.325 180.067 42.640 74.990 -1 8.585 51.533 1 440.250 828.141 -1

38 48.830 97.362 46.545 85.299 -1 4.250 15.639 1 451.650 851.897 -1

39 54.005 138.554 42.680 62.202 -1 5.700 30.381 1 485.135 883.463 -1

40 40.335 66.468 46.980 75.602 -1 10.020 50.878 1 446.300 856.528 -1

41 35.815 53.205 43.045 82.252 -1 3.790 13.968 1 455.805 858.635 -1

42 37.520 63.592 39.100 80.622 -1 15.275 123.612 1 506.525 907.526 -1

43 46.445 114.691 48.595 125.638 -1 9.695 48.977 1 477.570 877.761 -1

44 48.500 145.577 55.315 118.305 -1 5.910 22.290 1 476.375 886.260 -1

45 48.725 115.337 46.805 78.842 -1 5.085 22.909 1 466.600 877.711 -1

46 44.400 70.695 43.885 93.234 -1 6.795 31.698 1 502.450 906.193 -1

47 33.210 51.469 43.565 82.566 -1 7.980 36.514 1 468.965 883.215 -1

48 49.800 127.121 60.550 189.036 -1 2.065 8.790 1 472.620 874.147 -1

49 42.195 63.700 38.755 68.907 -1 4.550 23.560 1 443.865 819.473 -1

50 41.580 59.575 43.120 75.250 -1 14.615 122.639 1 440.055 853.218 -1
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Figure 8-2: Mean generations to solution A=3.1 

For A=3.1 the corresponding chart and table are in  Figure 8-2 and Table 8-2. At A=3.1 a simple 

cycle is introduced. Here again WTD settles down to stable performance but it takes longer – 

landscape 20 (in contrast to 10 for the previous A value). Also, the settled G2S value is higher than 

for A=1. 

At A = 3.1, IPD separates itself from WTD.  As shown in Table 8-2, the T-Test results for IPD are 

all positive except for a single landscape - #18. Although IPD is biased towards defection, 

cooperation can emerge over repeated interactions. The fruits of limited cooperation become 

apparent when environmental change is moderately complex.  
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Table 8-2: A=3.1, Two Sample T-Tests (P<0.05), Mean G2S: {IPD,SHS,STK} < WTD, by Landscape Sequence # 

 

Landscape WTD MeanWTD Stdv. IPD Mean IPD Stdv.

TTest 

IPD < 

WTD SHS Mean SHS Stdv.

TTest 

SHS < 

WTD STK Mean STK Stdv.

TTest 

STK < 

WTD

1 634.640 753.930 198.815 358.242 1 136.905 315.152 1 206.245 314.660 1

2 906.265 919.400 237.005 283.683 1 152.055 347.956 1 539.820 783.832 1

3 669.555 865.619 179.920 343.975 1 153.360 345.446 1 512.210 804.292 1

4 494.730 689.906 243.295 430.012 1 128.800 243.500 1 665.680 926.064 -1

5 390.150 585.016 188.510 331.550 1 127.955 283.396 1 622.845 935.369 -1

6 336.685 511.467 172.520 307.199 1 137.245 312.991 1 714.145 974.085 -1

7 316.385 494.257 200.165 381.172 1 143.165 328.881 1 714.660 976.989 -1

8 333.235 473.662 194.675 359.921 1 191.235 410.370 1 782.630 1009.315 -1

9 280.735 417.607 158.660 230.399 1 111.010 195.150 1 833.985 1045.860 -1

10 287.480 436.747 195.440 348.006 1 124.605 278.760 1 851.115 1041.465 -1

11 312.550 382.584 167.085 250.802 1 126.385 253.439 1 817.960 1029.492 -1

12 245.170 328.444 168.605 309.381 1 132.865 298.523 1 881.270 1061.412 -1

13 318.970 438.738 180.805 317.272 1 125.415 312.027 1 870.005 1064.697 -1

14 261.585 394.754 198.670 338.686 1 115.880 273.901 1 859.420 1045.630 -1

15 240.635 338.770 165.185 261.520 1 93.055 200.881 1 900.260 1076.293 -1

16 298.365 408.174 189.860 333.687 1 118.965 315.876 1 892.520 1061.965 -1

17 259.615 355.368 145.315 290.919 1 121.610 300.744 1 880.500 1070.456 -1

18 257.780 313.938 216.045 395.194 -1 140.485 341.639 1 930.925 1058.405 -1

19 261.330 267.105 174.920 293.128 1 98.520 216.401 1 881.575 1089.975 -1

20 288.005 358.051 194.745 380.384 1 134.355 295.908 1 922.680 1089.942 -1

21 256.540 328.159 156.505 310.191 1 107.205 303.285 1 946.325 1095.166 -1

22 230.010 294.379 156.485 263.583 1 103.915 232.261 1 976.625 1115.042 -1

23 288.375 372.178 145.010 199.659 1 108.710 262.208 1 936.410 1117.774 -1

24 284.210 379.634 185.455 286.977 1 121.085 251.163 1 1016.125 1109.854 -1

25 229.200 307.376 173.825 300.785 1 108.525 218.248 1 988.855 1090.862 -1

26 270.995 333.403 167.200 265.443 1 149.105 375.619 1 978.450 1109.479 -1

27 260.125 337.739 161.385 344.419 1 90.695 244.261 1 976.850 1134.055 -1

28 290.840 378.233 216.130 316.582 1 149.745 386.325 1 1020.145 1113.572 -1

29 255.415 299.437 126.885 267.769 1 85.575 178.614 1 978.540 1112.065 -1

30 285.845 363.202 213.520 373.054 1 184.945 423.834 1 980.095 1110.086 -1

31 263.360 341.957 149.130 299.261 1 80.195 195.042 1 978.195 1120.450 -1

32 316.450 404.714 229.550 419.036 1 125.450 267.915 1 1030.410 1127.200 -1

33 253.415 339.655 187.690 389.285 1 127.250 344.475 1 1001.610 1137.683 -1

34 274.080 361.972 153.825 307.644 1 112.425 303.851 1 984.125 1129.468 -1

35 213.850 274.986 121.690 230.028 1 103.945 275.889 1 1087.690 1158.428 -1

36 247.105 325.090 174.490 239.626 1 94.815 199.958 1 1071.925 1144.100 -1

37 228.960 284.929 122.420 241.249 1 71.680 108.891 1 1076.190 1142.302 -1

38 250.200 276.726 164.080 278.756 1 142.800 354.376 1 1083.085 1149.561 -1

39 238.390 308.158 157.650 286.012 1 95.860 153.230 1 1050.255 1149.602 -1

40 308.155 367.380 224.705 443.522 1 166.000 436.341 1 1143.940 1147.126 -1

41 276.150 371.125 140.755 200.309 1 103.250 255.636 1 1072.080 1135.136 -1

42 307.670 413.476 222.065 418.457 1 129.280 313.803 1 1088.015 1133.865 -1

43 261.770 367.902 165.005 352.106 1 96.870 225.662 1 1055.780 1121.037 -1

44 266.070 320.002 137.500 253.560 1 95.450 169.421 1 1062.575 1152.055 -1

45 282.525 327.201 116.605 217.012 1 105.165 253.010 1 1090.665 1134.082 -1

46 306.870 405.512 179.355 336.770 1 123.585 311.118 1 1151.260 1163.228 -1

47 281.740 368.820 157.645 318.990 1 99.840 223.751 1 1081.025 1147.262 -1

48 266.390 297.291 145.355 214.023 1 116.885 284.526 1 1133.885 1134.958 -1

49 236.920 297.533 137.930 219.518 1 71.525 130.835 1 1087.180 1142.061 -1

50 278.635 360.957 188.345 327.316 1 90.145 166.059 1 1132.210 1140.896 -1
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Figure 8-3: Mean generations to solution A=3.6 

For A=3.1 the corresponding chart and table are in  Figure 8-2 and Table 8-2. At A=3.1 a simple 

cycle is introduced. Here again WTD settles down to stable performance but it takes longer – 

landscape 20 (in contrast to 10 for the previous A value). Also, the settled G2S value is higher than 

for A=1. 

At A = 3.1 when the signal becomes non-linear, IPD separates itself from WTD.  As shown in 

Table 8-2, the T-Test results for IPD are all positive except the for the 18th landscape in the 

sequence. Although IPD is biased towards defection, cooperation can emerge over repeated 

interactions. The fruits of limited cooperation become apparent when environmental change is 
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moderately complex. SHS still performs the best at A=3.1, without any caveats.  Also, all 

distribution mechanisms settle at a higher G2S as expected due to higher level of dynamic 

complexity at A=3.1 vs. A=1.0. 

The general trend, seen with A=1 and A=3.1 continues, with A=3.6 (Figure 8-3 & Table 8-3). At 

A=3.6 the change is nonlinear and thus the environmental dynamic complexity is much higher 

than with A=3.1. IPD clearly performs better than WTD but the difference seems to be a little less 

than with A=3.1. In A=3.6, IPD is not significantly better than WTD in 3 out of 50 landscapes (#31, 

#44 & #46). Whereas, with A=3.1, IPD was significantly better than WTD in all but 1 landscape. 

SHS is significantly better across the board. STK is better for the first landscape and then 

progressively its performance deteriorates. As well, due to greater environmental complexity, 

WTD’s downward adjustment is a little slower than with A=3.1. 
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Table 8-3: A=3.6, Two Sample T-Tests (P<0.05), Mean G2S: {IPD,SHS,STK} < WTD, by Landscape Sequence # 

 

Landscape WTD MeanWTD Stdv. IPD Mean IPD Stdv.

TTest 

IPD < 

WTD SHS Mean SHS Stdv.

TTest 

SHS < 

WTD STK Mean STK Stdv.

TTest 

STK < 

WTD

1 678.355 806.743 226.205 443.161 1 163.535 414.050 1 252.820 408.300 1

2 703.350 781.262 272.985 420.238 1 94.875 135.917 1 616.600 857.887 -1

3 587.275 767.052 193.685 349.120 1 141.070 303.592 1 631.115 885.759 -1

4 512.735 714.996 179.980 276.945 1 139.545 277.266 1 799.085 980.432 -1

5 506.420 700.092 191.200 316.653 1 149.040 318.002 1 766.490 969.206 -1

6 416.230 567.251 204.725 367.145 1 124.205 201.621 1 843.140 1031.689 -1

7 352.415 513.681 202.275 366.366 1 170.265 352.338 1 832.755 1019.471 -1

8 303.515 432.498 185.925 318.015 1 153.735 341.717 1 811.630 1034.849 -1

9 295.675 403.588 175.635 325.565 1 158.250 378.039 1 906.250 1065.279 -1

10 302.820 440.483 194.080 347.544 1 131.720 287.249 1 899.990 1070.563 -1

11 254.050 359.478 173.585 295.989 1 129.085 299.050 1 863.675 1071.202 -1

12 311.440 418.643 175.825 241.652 1 138.790 215.337 1 966.600 1089.462 -1

13 291.435 421.853 155.245 262.907 1 128.940 283.490 1 899.915 1063.163 -1

14 284.130 399.136 160.580 257.073 1 118.770 235.150 1 958.110 1078.424 -1

15 296.345 398.085 170.640 300.263 1 130.595 359.534 1 913.245 1091.829 -1

16 285.925 370.783 220.230 358.542 1 113.245 280.344 1 1001.805 1095.050 -1

17 264.370 357.814 142.815 199.473 1 115.165 278.183 1 982.515 1105.724 -1

18 315.440 459.060 204.245 352.107 1 133.645 285.919 1 1008.450 1100.266 -1

19 303.905 390.982 197.725 341.859 1 110.270 206.846 1 1022.515 1100.841 -1

20 309.225 377.867 201.330 295.030 1 150.195 329.300 1 1020.780 1110.377 -1

21 283.635 384.917 127.525 179.687 1 122.810 299.968 1 1005.320 1110.695 -1

22 282.675 360.463 149.510 207.418 1 116.670 238.737 1 1052.775 1112.949 -1

23 267.210 326.100 141.190 291.094 1 109.745 262.474 1 1109.990 1145.379 -1

24 225.360 285.573 158.550 237.865 1 107.630 252.929 1 1001.910 1131.247 -1

25 285.830 375.117 179.035 306.953 1 119.315 229.931 1 1040.365 1135.070 -1

26 259.550 307.056 190.360 341.653 1 123.645 306.516 1 1124.675 1142.822 -1

27 249.730 329.600 184.705 308.088 1 137.030 321.605 1 1062.240 1133.042 -1

28 310.700 430.214 154.845 177.569 1 158.740 351.032 1 1135.610 1134.730 -1

29 284.815 359.878 170.175 295.158 1 117.895 259.020 1 1162.385 1159.136 -1

30 268.275 334.069 187.245 338.320 1 126.335 279.549 1 1149.165 1148.168 -1

31 231.540 293.565 182.805 300.537 -1 114.995 271.305 1 1124.195 1148.748 -1

32 271.400 343.463 180.565 336.429 1 100.270 257.214 1 1160.180 1148.057 -1

33 324.445 355.557 140.840 248.271 1 93.585 244.944 1 1086.490 1134.842 -1

34 270.765 383.771 194.760 297.568 1 124.620 343.534 1 1174.625 1158.750 -1

35 307.525 385.738 184.925 324.526 1 86.495 145.250 1 1148.200 1146.618 -1

36 261.755 356.352 170.130 286.679 1 110.450 290.062 1 1156.165 1154.519 -1

37 294.745 399.426 142.475 258.205 1 97.725 254.225 1 1202.240 1162.205 -1

38 311.000 404.321 143.375 228.957 1 109.140 170.767 1 1159.020 1159.761 -1

39 289.030 390.274 178.905 376.293 1 98.230 232.736 1 1213.340 1173.599 -1

40 265.245 364.760 185.985 286.676 1 101.380 235.880 1 1154.605 1148.657 -1

41 216.425 279.654 135.590 211.719 1 124.835 389.038 1 1116.180 1136.277 -1

42 295.485 390.751 181.745 322.566 1 94.755 218.543 1 1242.485 1150.237 -1

43 292.635 355.951 144.755 242.122 1 96.305 202.990 1 1138.920 1149.368 -1

44 270.245 330.704 219.555 389.882 -1 158.765 346.930 1 1159.085 1142.769 -1

45 287.020 372.742 134.385 174.694 1 94.205 213.422 1 1153.400 1152.112 -1

46 262.460 317.709 215.275 417.042 -1 132.375 258.831 1 1166.145 1156.556 -1

47 270.810 366.029 152.710 238.173 1 119.710 287.569 1 1182.225 1159.406 -1

48 347.495 474.985 206.270 374.717 1 118.890 259.253 1 1211.020 1156.954 -1

49 245.190 292.021 130.855 253.260 1 101.625 183.823 1 1187.960 1163.997 -1

50 321.775 376.985 164.925 265.311 1 102.145 209.826 1 1187.890 1168.143 -1
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Figure 8-4: Mean generations to solution =3.9 

At A = 3.9 the environment’s dynamic complexity is on the edge of chaos. The trends 

established with lower values of A continue with A=3.9 (Figure 8-4., Table 8-4). Statistical tests in 

Table 8-4 show that IPD mostly performs better than WTD at A=3.9. STK performs statistically 

better than WTD very early on then its performance progressively worsens. SHS consistently 

performs better. WTD settles down at about the same rate with A=3.9 as with A=3.6. 
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Table 8-4: A=3.9, Two Sample T-Tests (P<0.05), Mean G2S: {IPD,SHS,STK} < WTD, by Landscape Sequence # 

 

Landscape WTD MeanWTD Stdv. IPD Mean IPD Stdv.

TTest 

IPD < 

WTD SHS Mean SHS Stdv.

TTest 

SHS < 

WTD STK Mean STK Stdv.

TTest 

STK < 

WTD

1 658.125 738.335 232.470 469.185 1 172.670 395.331 1 264.490 457.034 1

2 778.990 852.226 164.525 224.830 1 123.285 280.323 1 541.000 809.937 1

3 622.170 750.684 152.090 202.376 1 111.360 200.598 1 641.685 882.553 -1

4 495.915 685.381 198.140 365.820 1 207.895 480.219 1 715.150 942.862 -1

5 478.155 661.925 176.405 279.389 1 105.860 233.076 1 714.845 955.912 -1

6 429.610 612.780 205.630 363.744 1 115.675 244.865 1 738.905 982.533 -1

7 360.280 478.720 153.150 221.530 1 99.090 145.590 1 729.710 979.655 -1

8 393.185 574.334 146.210 229.752 1 139.885 360.769 1 817.100 1022.064 -1

9 345.265 512.110 198.655 378.997 1 94.750 183.120 1 803.995 1046.507 -1

10 319.010 431.579 142.550 268.464 1 109.780 273.393 1 837.310 1052.451 -1

11 278.080 415.575 133.185 181.987 1 127.500 303.290 1 809.780 1031.316 -1

12 269.840 384.726 236.990 379.933 -1 185.945 423.787 1 892.145 1056.615 -1

13 263.475 314.551 151.560 221.917 1 115.795 260.736 1 803.750 1036.633 -1

14 268.400 372.968 214.550 396.312 -1 143.785 378.652 1 888.950 1078.127 -1

15 302.710 410.775 161.150 310.784 1 140.335 378.433 1 873.145 1053.503 -1

16 287.490 353.976 170.605 322.213 1 114.315 262.136 1 876.180 1064.710 -1

17 239.310 356.938 215.390 424.734 -1 147.170 349.422 1 932.710 1071.828 -1

18 276.985 352.255 170.040 309.080 1 83.860 127.849 1 890.005 1067.872 -1

19 264.955 337.042 143.350 209.021 1 97.005 213.145 1 962.115 1096.631 -1

20 247.170 285.171 167.810 274.940 1 111.780 237.390 1 934.825 1084.664 -1

21 274.505 366.359 201.155 428.644 1 91.120 260.109 1 888.800 1092.058 -1

22 238.035 301.154 153.995 271.352 1 111.480 282.977 1 948.195 1094.160 -1

23 278.875 338.613 156.360 241.431 1 117.555 230.563 1 906.185 1077.485 -1

24 260.810 344.514 111.085 214.082 1 104.805 284.772 1 929.700 1088.808 -1

25 276.235 341.515 132.690 223.165 1 69.845 112.674 1 941.165 1091.861 -1

26 295.100 372.720 157.620 281.807 1 97.385 182.604 1 983.525 1110.013 -1

27 276.600 381.810 134.570 180.922 1 108.955 294.696 1 979.830 1099.626 -1

28 306.950 379.238 166.965 274.936 1 89.615 202.504 1 977.950 1113.934 -1

29 284.425 353.618 141.015 226.911 1 89.280 138.102 1 1060.655 1130.608 -1

30 302.830 385.269 131.905 235.492 1 120.450 277.559 1 1021.735 1119.163 -1

31 254.365 328.916 118.810 166.633 1 71.730 161.467 1 1040.530 1144.690 -1

32 287.945 335.622 178.445 306.456 1 111.310 263.640 1 1061.255 1106.323 -1

33 287.270 420.029 156.395 320.850 1 106.940 170.897 1 1045.715 1136.995 -1

34 260.505 339.803 160.980 297.446 1 100.945 247.726 1 1065.185 1136.721 -1

35 348.905 489.428 150.080 295.892 1 90.230 230.574 1 1072.615 1147.182 -1

36 290.055 373.703 161.900 237.958 1 113.165 262.112 1 1041.025 1145.788 -1

37 244.125 264.003 149.480 315.497 1 65.775 91.103 1 1079.160 1145.213 -1

38 245.295 342.091 171.650 267.471 1 101.475 254.092 1 1098.910 1142.119 -1

39 259.855 315.545 134.090 188.440 1 100.305 251.171 1 1078.815 1150.752 -1

40 288.695 374.682 159.515 253.543 1 103.190 265.159 1 1088.695 1135.440 -1

41 319.800 466.599 153.255 321.555 1 129.180 330.752 1 1058.355 1155.785 -1

42 277.655 347.013 137.935 184.991 1 108.430 296.037 1 1133.150 1154.890 -1

43 288.045 440.326 141.895 223.071 1 89.155 232.627 1 1118.665 1144.351 -1

44 253.755 310.214 138.020 226.154 1 113.710 325.007 1 1132.665 1141.417 -1

45 276.335 345.992 179.095 321.316 1 124.640 313.564 1 1117.275 1139.332 -1

46 282.660 351.702 205.875 380.063 1 107.465 252.657 1 1127.210 1133.731 -1

47 248.065 317.842 125.925 186.678 1 101.925 288.568 1 1151.380 1158.025 -1

48 293.170 386.899 149.055 251.481 1 94.430 244.561 1 1130.625 1152.795 -1

49 274.050 292.353 130.600 192.523 1 78.605 91.004 1 1139.400 1150.857 -1

50 303.725 435.204 135.605 252.836 1 97.180 237.694 1 1103.525 1144.508 -1
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In summary, game-based distribution mechanisms that encompass cooperation, generally 

perform better than WTD – the purely competitive mechanism – however, the game-based 

mechanisms don’t get a blanket pass. STK cannot seem to be able to track changes well in a 

dynamic environment, even if its initial performance is always better than WTD. The WTD 

mechanism takes some time to learn to respond to environmental changes. Its initial performance 

is quite off the mark but it settles down into a steady rhythm in later stages. However, from the 

observed data the best mechanism SHS is statistically better than WTD in almost all cases. SHS 

finds the solution in about 100 less generations than WTD does, for A>=3.1.  Subsequent sections 

in this chapter analyze the properties of the distribution mechanisms from different perspectives 

to try to develop insights into the observed performance characteristics. 

8.2 Social Stress / Diffusion Analysis 

In section 8.1, the focus was on performance characteristics of the distribution mechanisms 

which are analyzed qualitatively and with statistical rigor. The rest of the sections are focused on 

the emergent properties manifested by the distribution mechanisms, reflecting their inner 

workings in some way. Qualitative & quantitative analysis and a variety of visualization techniques 

are leveraged to try to derive useful insights in these mechanisms. 

The charts presented in Figure 8-5, Figure 8-6, Figure 8-7, and Figure 8-8 are Diffusion trends 

for A = 1, 3.1, 3.6 and 3.9, respectively. Each chart contrasts the values of Diffusion for each 

distribution mechanism, over the landscape sequence. From the charts, it is clear that each 

mechanism operates within a set range. STK has the lowest diffusion, followed by WTD, SHS and 

then IPD. These patterns persist for all tested A values. Statistical tests for the difference in means 

between WTD and the rest of the KDs are given in Appendix II. The data are consistent with the 



125 
 

 
 

charts. The mean value of WTD for each A and each landscape in the sequence is statistically 

different from the corresponding means of the other mechanisms, for almost all landscapes. Some 

exceptions are seen for the first few landscapes in each sequence. While statistical tests are not 

performed for the pairwise difference between two mechanisms, for all possible pairs, the sample 

size is large enough at 200 to impart confidence in the mean values. This is because the standard 

deviations are fairly low compared to the means, in the tables presented in Appendix II. 

 

Figure 8-5: Diffusion A=1.0 
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Figure 8-6: Diffusion A=3.1 

 

Figure 8-7: Diffusion A=3.6 
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Figure 8-8: Diffusion A=3.9 

One can infer a weak relationship between Diffusion and performance characteristics of the 

distribution mechanisms. STK seems to stress its population individuals the least and it also 

performs the worst in terms of G2S as discussed in the previous section. The better performing 

mechanisms IPD and SHS place the highest stress on individuals. However, there may be an 

optimal level of stress as IPD places greater stress than SHS but still performs worse in terms of 

G2S than SHS. 

The charts in Figure 8-9, Figure 8-10, Figure 8-11 and Figure 8-12 are Diffusion values grouped 

by distribution mechanism to allow comparison of Diffusion for the same mechanism at different 

A. Diffusion is not appreciably different for the different A values for the same mechanism. For 

each mechanism, two-sample t-tests in general are not significant for the difference in means 

between successive A values, e.g. 1→3.1; 3.1→3.6; and 3.6→3.9. One exception is for WTD 
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(Figure 8-9). Here the Diffusion for A = 1 is statistically than for A=3.1 for 18 out of 50 landscapes 

(see Appendix III.V). Another observation is that for WTD the Diffusion starts low and settles to a 

steady level at about landscape 10. This corresponds to the initial learning by WTD as seen in the 

G2S charts presented in the previous section. 

 

Figure 8-9: WTD diffusion by complexity 



129 
 

 
 

 

Figure 8-10: IPD diffusion by complexity 

 

Figure 8-11: Stag-Hunt diffusion by complexity 
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Figure 8-12: Stackelberg diffusion by complexity 

For SHS, there is a marked cycle in the Diffusion values over the landscapes. The cycle 

corresponds to the existence of cooperative and evaluative generations in the SHS mechanism’s 

repertoire (see 6.2).  

Diffusion for STK is not only the lowest among all tested distribution mechanisms, there is also 

a slight downtrend in Diffusion across all A. Otherwise, there is no appreciable difference between 

Diffusion for the different A values. 

To summarize, the Diffusion values for the game mechanisms are statistically different from 

those for WTD (with minor exceptions – see Appendix II). For each mechanism, Diffusion is not 

statistically different between successive A changes (for almost all landscapes). The exception is 

for WTD for A=1→A-3.1 (linear to non-linear transition) where statistical difference exists for 

18/50 landscapes (see Appendix II.e). As Diffusion is a measure of stress in the system, these 
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results show that each mechanism places a different level of stress but that level does not vary 

much by changes in environmental complexity. 

8.3 Segregation Analysis 

Diffusion is a measure of the spatial diversity of a node’s neighbors. In contrast Segregation 

Index (also referred to as segregation in this document) is a measure of clustering or grouping of 

Knowledge Sources among neighbors (7.4).  The next four charts – Figure 8-13, Figure 8-14, Figure 

8-15 and Figure 8-16 – show segregation by the tested A values, allowing one to compare the 

distribution mechanisms together for each A. Statistical testing shows that the segregation values 

for the  game mechanisms are statistically different from WTD’s for the majority of the landscapes, 

across the tested A values (Appendix III).  

The general pattern followed by the distribution mechanisms for each A value is about the 

same for segregation. On average, WTD shows the lowest segregation. STK shows a steady 

increase from very low segregation to high of about 0.8 (range is 0.0-2.0, Table 7-1). SHS reaches 

highest segregation levels and shows a pronounced cycle due to periodicity of cooperative and 

evaluative distributions (section 6.2). The SHS peaks correspond to evaluative generations when 

some individuals may defect to keep their current knowledge assignments causing higher 

segregation. In cooperative generations the knowledge assignments are more varied due to the 

‘social rank’ based allocation, leading to comparatively lower segregation. IPD shows steady 

segregation around 0.7 with a slight upward trend for A > 1.0. WTD is purely competitive and gives 

a rather flat line across all A values. In contrast, the cooperative mechanisms show higher 

segregation. Although not evident here, the analysis of social dynamics presented in the next 

section shows that IPD and SHS tend to favor exploration and STK favors exploitation. The higher 



132 
 

 
 

segregation shown by the game mechanisms is due the aforementioned biases as these result in 

preponderance of certain types of KS over others. 

 

Figure 8-13: Segregation A=1 
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Figure 8-14: Segregation A=3.1 

 

Figure 8-15: Segregation A=3.6 



134 
 

 
 

 

Figure 8-16: Segregation A=3.9 

Given that the range is between 0.0 and 2.0 for Segregation, at the aggregate level (i.e. 

averaged over 200 samples) Segregation stays below 0.9 for all distribution mechanisms. This 

shows that all mechanisms maintain a healthy diversity of knowledge in local neighborhoods. 

Segregation close to 0.0 means all Knowledge Sources are evenly distributed in the population. 

Whereas a value close to 2.0 means that only one or two Knowledge Sources cover the entire 

population. 

The fact that SHS performs the best in terms of G2S, implies that a segregation level towards 

0.8 may be ideal. In addition, however, maintaining a steady level of segregation may not be best 

as WTD does that and still does not perform as well (in terms of G2S) as IPD or SHS. It may well be 

that segregation that modulates between a range is required for best performance. 
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The next set of charts are organized by distribution mechanism. Segregation trend for each 

distribution mechanism by A shows each mechanism’s response to A in terms of the level of 

segregation. Also provided for each distribution mechanism are representative samples of 

population snapshots of low and high segregation, by A. These are provided for qualitative 

assessment and to show some examples of the mechanisms at work. The snapshots are randomly 

selected from population sets that are +/- 1 standard deviations away from the mean segregation 

of the mechanism.  

As a baseline, WTD (Figure 8-17) shows a steady level of segregation around 0.65 that does not 

seem to vary much as A increases. Statistical testing for the difference in segregation levels 

between successive A values (e.g. A=1 → A=3.1, etc.) shows that for almost all landscapes there 

is no statistical difference. WTD’s low segregation and unresponsiveness to A is likely because the 

Knowledge Sources that have been driven out by the voting mechanism are added back in to 20% 

of the population, at random (section 7.4). Samples of population snapshots showing low and high 

Segregation are given in Figure 8-17 and Figure 8-18. 
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Figure 8-17: WTD segregation by complexity and landscape sequence 

 

Figure 8-18: WTD high segregation landscape examples 
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Figure 8-19: WTD low segregation landscape examples 

Figure 8-20 show the Segregation Index trends as A increases for IPD. Unlike WTD, here there 

is a clear separation between segregation at A = 1 and A > 1. It shows that IPD is responsive when 

environmental complexity changes from linear (A=1) to non-linear (A =3.1).  This difference is 

statistically significant (see Appendix III.e) for almost all landscapes. Changes in segregation levels 

for other transitions (i.e. A=3.1→3.6; A=3.6→3.9) are not statically significant (by landscape) 

except for a few landscapes (Appendix III.e). Also, for non-linear environmental complexity IPD 

shows a slight positive slope in the trend lines. 

High and low segregation snapshots given in Figure 8-21 and Figure 8-22, respective, show a 

dominance of Topographic knowledge. By contrast, equivalent figures for WTD (Figure 8-18, 

Figure 8-19) show dominance of Domain knowledge that can be exploratory or exploitative based 
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on the context (like stem cells in Biology). These show that IPD allocates more resources to 

exploration because Topographic is an explorative Knowledge Source. 

 

Figure 8-20: IPD segregation by complexity and landscape sequence 
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Figure 8-21: IPD high segregation landscape examples 

 

Figure 8-22: IPD low segregation landscape examples 
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Segregation trends for SHS (Figure 8-23) shows that segregation levels for all A values is are 

close. Statistical testing showed no difference for segregation levels between successive A, per 

landscape, except for a few landscapes. High and low Segregation snapshot examples (Figure 8-24, 

Figure 8-25) show dominance of Topographic and Domain knowledge in the population. This 

shows neutral to exploratory bias for SHS resource allocation. 

 

Figure 8-23: Stag-Hunt segregation by complexity and landscape sequence 
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Figure 8-24: Stag-Hunt high segregation landscape examples 

 

Figure 8-25: Stag-Hunt low segregation landscape examples 
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STK (Figure 8-26) starts with very low Segregation Index at 0.45 and then steadily rises to 0.8.  

Segregation is seen as plateauing at 0.8 as the slopes of the trend lines are flatting out towards 

the end of the landscape sequence. This is no discernable difference in segregation levels by 

landscape for the different A values. Statistical testing also validates this visual assessment. For 

STK no landscapes were found where segregation is significantly different between successive A 

values. This shows that STK is not responsive to changes in environmental complexity. From the 

population snapshots (Figure 8-27, Figure 8-28) for STK, it can be seen that STK  is allocating much 

resources to exploitation in high segregation cases as compared to WTD (Figure 8-18). 

 

Figure 8-26: Stackelberg segregation by complexity and landscape sequence 
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Figure 8-27: Stackelberg high segregation landscape examples 
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Figure 8-28: Stackelberg low segregation landscape examples 

Thus far the analysis was focused on Segregation Index trends by landscape sequence. It was 

found that cooperative mechanisms have higher segregation in general on a per landscape basis. 

Also, in general, except for the IPD A=1 → 3.1 case, none of the mechanisms show statistically 

significant changes in segregation levels for successive A transitions, on a per landscape basis. The 

trend lines still provide useful insights such as the cyclic nature of segregation in SHS (Figure 8-23), 

flat and low segregation for WTD (Figure 8-17) and the increase in segregation levels by landscape 

for STK (Figure 8-26). 

Now the analysis is focused on overall segregation by KD-A ignoring the landscape sequence, 

i.e. the aggregate segregation levels for each KD-A combination. The sample size for each mean 

value (segregation by KD-A) is very large. Each mean is based on close to a billion data points 

(number of runs * population size * number of generations per landscape * number of landscapes 
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in sequence = 200 * 36 * 2500 * 50 = 900M). And therefore, difference between any two mean 

values is statistically significant. The mean segregation values are shown in Table 8-5 and t-tests 

for significance between successive A for each KD in Table 8-6. Figure 8-29 shows average 

segregation with +/- 1 standard deviation bands for each KD-A combination. 

Table 8-5: Average Segregation by KD and A 

KD A Mean Std. Deviation 

WTD 3.9 0.63804 0.136789738 

WTD 3.6 0.637074 0.136375862 

WTD 3.1 0.637499 0.136509734 

WTD 1 0.635276 0.135036359 

STK 3.9 0.698276 0.161027065 

STK 3.6 0.703175 0.158131383 

STK 3.1 0.707844 0.157221999 

STK 1 0.706842 0.157270233 

SHS 3.9 0.727804 0.155380488 

SHS 3.6 0.71921 0.154454508 

SHS 3.1 0.719512 0.154879267 

SHS 1 0.702398 0.150377916 

IPD 3.9 0.740624 0.131153711 

IPD 3.6 0.726136 0.131002041 

IPD 3.1 0.731641 0.132611557 

IPD 1 0.676802 0.127004235 

 

Table 8-6: T-Tests for Difference in Segregation between Successive A values by KD 

KD From A To A p value, t-test for 
difference in means 

WTD 1 3.1 0.000 

WTD 3.1 3.6 0.002 

WTD 3.6 3.9 0.000 

STK 1 3.1 0.000 

STK 3.1 3.6 0.000 

STK 3.6 3.9 0.000 

SHS 1 3.1 0.000 

SHS 3.1 3.6 0.051 
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SHS 3.6 3.9 0.000 

IPD 1 3.1 0.000 

IPD 3.1 3.6 0.000 

IPD 3.6 3.9 0.000 

 

 

Figure 8-29: Schelling index summary for each KD and A value combination 

Due to the large sample size, all means are close to true means and any differences are 

significant statistically. As per Table 8-5 all mechanisms show a slight decrease in segregation for 

the transition A=3.1 to A=3.6. The is likely due to the underlying harmonics of the data generating 

process. Since segregation is an emergent property the exact reason for this anomaly cannot be 

fully understood. Apart from this anomaly, there are some clear trends.  
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WTD shows a very slight but overall positive increase in segregation levels as A increases. As do 

IPD and SHS. IPD shows the most difference, followed by SHS. STK on the other hand shows an 

overall negative relationship with A. The data shows that better performing mechanisms (in terms 

of G2S) are responsive to changes in A by increasing segregation levels in the population for the 

distribution of knowledge. In contrast, the worst performer STK decreases segregation in response 

to increase in environmental complexity. However, the aggregate level data masks other useful 

features such as the modulation in segregation levels by the best performing mechanism SHS, 

which is apparent in the landscape-sequence view of the data. One can surmise that under 

conditions of stress (high environmental complexity), increased segregation is the valid response. 

This is borne out by the analysis performed in the next section. 

8.4 Communal Knowledge Flow Analysis 

In this section the focus is on the dynamics of knowledge flow, as outlined in section 7.5. This 

section starts with the chord diagrams for the weighted graphs representing community-to-

community transitions. Then Page Rank based charts are presented – tree and parallel chords 

charts by A. After that are presented Sankey charts that show statistically significant changes or 

deltas in knowledge flow due to A. Finally, a summary of view of knowledge flow deltas captures 

useful insights relating knowledge flow to performance characteristics. 

Note that the analysis presented here has a natural progression; data underlying chord 

diagrams represents raw transition counts. For Page Rank and community rank this data is 

normalized to a Markov Chain. For the Sanky charts, the raw count data is converted to mean and 

standard deviation of change in transitions over the 200 samples collected for each KD-A 

combination. 



148 
 

 
 

For the chord diagrams, the transition weights are the count of transitions across all 200 

samples with 50 landscapes each. The total number of transitions for a KD-A combination is in the 

order 1 billion: 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 200 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗ 50 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑠 ∗ 2500 𝑔𝑒𝑛𝑒𝑟𝑡𝑖𝑜𝑛𝑠 ∗ 36  𝑝𝑜𝑝. ≅

1𝐵. Note that an individual may be part of several communities at the same time (Figure 7-10). 

The transitions are counted from community-to-community. So multiple transitions may be 

generated from one individual depending on the before and after communities the individual is 

part of. To make the charts more readable, only links with transition weights over 100K are shown. 

The labeling scheme described in section 7.5 is used but as an example, ‘D_T’ is a community 

composed of Domain and Topographic Knowledge Sources. The WTD chord diagrams for 

community-to-community transitions are shown in Figure 8 30, Figure 8 31, Figure 8 32, and Figure 

8 33. Each chart is for a specific A value. The charts are in order of decreasing community 

importance, in a counter-clockwise arrangement. For WTD, the strongest community is ‘D’ (for 

Domain), then ‘D_T’, ‘D_N’ and so on. These three combined all represent the emphasis on 

exploration. 
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Figure 8-30: WTD A=1 communal knowledge flow graph 

All the charts for WTD show more-or-less the same pattern of community dominance. The ‘D’ 

community has a large self-loop that indicates that individuals tend to retain ‘D’ across 

generations. The self-loops of the other major communities (‘D_T’, ‘D_N’, ‘D_H’, etc.) are much 

smaller that tells that individuals in these tend to switch to other communities in the next 

generation, relatively speaking. The top 5 transitions (arcs) all involve Domain knowledge, ‘D’. This 

indicates that WTD allocates considerable resources to Domain. Domain is placed in the middle of 

the exploratory-exploitative scale and can function on both sides of the divide. However, excessive 

reliance on Domain may be one of the reasons that WTD does not perform as well as IPD or SHS. 
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Figure 8-31: WTD A=3.1 communal knowledge flow graph 

 

Figure 8-32: WTD A=3.6 communal knowledge flow graph 
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Figure 8-33: WTD A=3.9 communal knowledge flow graph 

The chord diagrams for IPD are in Figure 8-34, Figure 8-35, Figure 8-36 and Figure 8-37. Here 

the dominant communities are ‘T’ (Topographic) and ‘D_T’. Both have large self-loops and are also 

strongly inter-connected. The next one down is ‘D’ by itself. It is strongly connected to the other 

two as well. IPD allocates relatively more resources to Topographic and Domain knowledge with 

a bias towards Topographic. 

Unlike, WTD, IPD shows some sensitivity to A as the community ordering changes from A=1.0 

to A=3.1. The change is detectable towards the tail end of the chord diagram. From A=3.1 and 

onward there is no change in ordering.  

Note that the chord diagrams are drawn using Microsoft PowerBI tool. The color scheme is 

based on the counter-clockwise order of the labels (communities). Charts with the same pattern 

will have the same scheme. This is evident upon comparison of IPD A=1 and A={3.1, 3.6, 3.9} 
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charts. The color scheme is a quick way of assessing if two charts have the same order of 

community dominance. 

 

Figure 8-34: IPD 1.0 communal knowledge flow graph 
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Figure 8-35: IPD A=3.1 communal knowledge flow graph 

 

Figure 8-36: IPD A=3.9 communal knowledge flow graph 
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Figure 8-37: IPD A=3.6 communal knowledge flow graph 

For SHS, the community-to-community transition charts are given in Figure 8-38, Figure 8-39, 

Figure 8-40 and  Figure 8-41, for the different A values. The charts show a clear dominance Domain 

knowledge paired with Topographic Figure 8-41(‘D_T’).    Unlike for WTD and IPD, where a single 

letter community is dominant (‘D’ for WTD and ‘T’ for IPD), a paired community is dominant for 

SHS.  

As with IPD, SHS also shows strong inter-connections between ‘D_T’, ‘T’ and ‘D’ communities. 

However, the self-loops are slightly smaller for SHS than IPD, means that there are more 

transitions between communities there. Also, for SHS the links from the top 3 communities to the 

next level down – ‘D_N_T’ - are also stronger when compared with IPD. These facts indicate that 

SHS is mixing the Knowledge Sources at a higher rate than IPD. SHS allocates most resources to 
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regional exploration (Topographic) and local exploration (Domain). Considering the ‘social rank’ 

based knowledge distribution for SHS (section 6.2), the indication is that individuals are moved 

over long distances in the search space under Topographic influence and then (if they are 

performing relatively well) explore the local landscape under the Domain influence to find the 

local peak. This seems to suggest that SHS is balancing exploration and exploitation well. 

 

Figure 8-38: Stag-Hunt A=1 communal knowledge flow graph 
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Figure 8-39: Stag-Hunt A=3.1 communal knowledge flow graph 

 

Figure 8-40: Stag-Hunt A=3.6 communal knowledge flow graph 
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Figure 8-41: Stag-Hunt A=3.9 communal knowledge flow graph 

 

Figure 8-42: Stackelberg A=1.0 communal knowledge flow graph 
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The STK chord diagrams (Figure 8-42, Figure 8-43, Figure 8-44, Figure 8-45) visually are very 

distinct from those for WTD, IPD and SHS. Situational is now the dominant knowledge but another 

exploitative knowledge, History, is also ranked high. The diagrams show that STK allocates 

relatively more resources to exploitation when compared with WTD, IPD and SHS, respectively. 

Like WTD and SHS, STK also does not show any differentiation with respect to A values, in the 

chord diagrams.  

Another aspect for STK is that the allocation of resources is more or less evenly divided between 

the top communities – ‘S’, ‘N’, ‘H’, ‘T’ and ‘D’. The allocation among the top communities of other 

distribution mechanisms is more varied. For STK, the self-loops and the arcs between communities 

are relatively even. This indicates that rates of transitions between top communities are quite 

balanced. 

While the STK chord charts indicate a more even allocation between Knowledge Sources (with 

slight priority for exploitation), this does not translate to better performance in terms of 

generations-to-solution. A plausible explanation is that under STK, knowledge distribution is 

structured like in a centrally planned system. Thus, the allocation of resources is not based on local 

needs and as a result the whole system is relatively inefficient when interacting with a dynamic 

environment. IPD and SHS by contrast make adjustments by utilizing local knowledge and are 

more akin to market-based systems and therefore provide more efficient utilization of resources. 
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Figure 8-43: Stackelberg A=3.1 communal knowledge flow graph 

 

Figure 8-44: Stackelberg A=3.6 communal knowledge flow graph 
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Figure 8-45: Stackelberg 3.9 communal knowledge flow graph 

The chord diagrams provide a good sense of community dominance and interaction among 

communities (arc links). Page Rank, however, provides a more robust answer to community 

importance questions. The iterative Page Rank algorithm settles the weight or importance of each 

community with convergence and so is more definitive in this regard. Page Rank determined 

community weights can be visualized as tree charts – that depict relative mass – and as parallel 

chord charts – that, combined with A values, provide a clear view of the changes in community 

rank by A. Chord charts capture the dynamics more explicitly; by contrast, Page Rank output is a 

static view that implicitly incorporates dynamics. 

As explained in section 7.5, the data for Page Rank is derived from the data used by the chord 

charts. The chord charts are based on raw transition counts. These are normalized such that the 

weighted graph becomes a Markov Chain – i.e. weights of all outgoing edges of a node sum to 1. 
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Also as noted earlier (section 7.5) Red hues in the tree charts indicate relatively exploratory 

communities and Green relatively exploitative. The boxes in a tree chart are ordered by weight, 

left to right. 

Comparing the chord charts with Page Rank derived charts, it is evident that Page Rank is a 

more sensitive mechanism for ranking communities. As an example, consider the chord charts for 

WTD (Figure 8-30, Figure 8-31, Figure 8-32, Figure 8-33) with the corresponding tree charts in 

Figure 8-46 and parallel chord chart in Figure 8-47. The Page Rank based charts capture 

community rank changes that are not evident in the chord charts. The parallel chord chart shows 

the changes in rank only without considering the relative weight or importance of each community 

– which is captured by the tree chart. Combined, the two charts provide a useful view of the inner 

workings of distribution mechanisms in terms of allocation of compute resources and sensitivity 

to A. 

For WTD, the tree charts in Figure 8-46, show a strong dominance of Domain (‘D’) knowledge. 

Almost 25% of the mass is allocated to ‘D’ alone.  Combined with Normative and Topographic, 

Domain occupies almost 45%-50% of the total allocation.  The color hues show that WTD allocates 

about 50%-60% of the resources to explorative communities. Hues Redder than that for ‘D’ are 

considered exploratory. 
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Figure 8-46: WTD Page-Rank determined community importance by A value 

Some A-driven community rank changes are discernable in WTD tree charts (Figure 8-46) but 

these are progressively harder to spot moving from left to right. The parallel chord diagram in 

Figure 8-47 shows all changes clearly.  

WTD shows considerable sensitivity in terms of community rank changes between A=1 and 

A=3.1 i.e. transition from linear to non-linear phase. It is relatively inert between A=3.1 and A=3.6 

(non-linear → highly-non-linear). And then shows sensitivity between A=3.6 and A=3.9 (highly 

non-linear → chaotic) but less than that for the linear → non-linear transition. Since all A value 

changes are accompanied by community rank changes, it is surmised that WTD is a mechanism 

that is responsive to changes in environmental complexity. Note that even low-weight community 

changes are meaningful since the total for all transitions is in the order of a billion. 
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Figure 8-47: WTD changes in community rank by A value 

IPD and Stag-Hunt are related since Stag-Hunt is an evolutionary game theory variant of IPD 

that is from classical game theory. Also, both use ‘social rank’ as a mechanism to distribute 

knowledge. IPD is biased toward competitive behavior where Stag-Hunt is more cooperative inf 

function. Due to their similarities, the two are considered together for this part of the analysis. 
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Figure 8-48: IPD Page-Rank determined community importance by A value 

 

Figure 8-49: Stag-Hunt Page-Rank determined community importance by A value 
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The tree charts for IPD and SHS are in Figure 8-48 and Figure 8-49, respectively; the parallel 

chords charts are in Figure 8-50 and Figure 8-51. Domain and Topographic knowledge are 

dominant in both, with IPD allocating slightly more to Topographic. As noted earlier, SHS provides 

more mixing of knowledge due to having smaller self-loops than IPD, noticeable in the 

corresponding chord charts (Figure 8-34, Figure 8-38) – even though overall allocation is similar. 
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Figure 8-50: IPD changes in community rank by A value 
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Figure 8-51: Stag-Hunt changes in community rank by A value 

When compared with WTD (Figure 8-46), both IPD (Figure 8-48) and SHS (Figure 8-49) allocate 

more resources to exploration. IPD and SHS show 60%-70% allocation to exploratory communities 

where WTD is in the 50%-60% range. 
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From the community rank perspective, IPD shows greater sensitivity to increases in A  (Figure 

8-50) than SHS (Figure 8-51). SHS shows changes in community rank for A=1 to A=3.1 (linear → 

non-linear) transition but thereafter it is not responsive; no rank changes are present for other A 

transitions. How can it be that SHS performs well in terms of generations-to-solution but is 

relatively inert to A? The answer is that rank changes are but one view into responsiveness to A. 

Another method of gauging responsiveness is through Sankey chart analysis, which is discussed 

later in this section. SHS is sensitive to A but not enough to affect community rankings at higher 

levels of A. 

For both IPD and SHS, the ranks of the top communities remain stable as A increases (Figure 

8-50, Figure 8-50). This indicates that IPD and SHS have found stable allocations for top 

communities that work well for the tested levels of environmental dynamic complexity. 

 

Figure 8-52: Stackelberg Page-Rank determined community importance by A value 
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As seen earlier, STK (Figure 8-52) knowledge allocations are quite different from the rest. Here 

the single letter communities are dominant and the allocations are relatively even between them. 

The changes in community ranking due to A are quite discernable even with the tree chart view.  

By contrast to WTD, IPD and SHS, STK allocates more resources to exploitation. The tree chart 

(Figure 8-52) for STK shows a roughly even split between explorative and exploitative 

communities. And for all but A=3.9, the exploitative Situational knowledge is the dominant 

community. 
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Figure 8-53: Stackelberg changes in community rank by A-value 

The parallel chord chart (Figure 8-53) shows that STK is very sensitive to A as is evident by the 

significant number of rank changes across the board. While STK seems to be responsive to 

environmental dynamic complexity, its diminutive generations-to-solutions performance 

indicates that STK’s responsiveness is not supporting its performance. The higher performing IPD 
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and SHS mechanisms show stable ranks, at least for the top communities. It can thus be concluded 

that STK is overly responsive and is not able to find a stable footing to tackle dynamic 

environments.  

Community rank order changes is one gauge of responsiveness to A increases. However, as was 

discovered for SHS, it is not a sensitive enough gauge. SHS seems inert to A at higher levels – as 

per the parallel chords diagram for SHS (Figure 8-51). SHS performs the best in terms generations-

to-solution and hence a more sensitive mechanism to track responsiveness is required. Going back 

to the raw transition counts collected for the chord diagrams, the counts are transformed in the 

following ways (see section 7.5 for details): 

• The transitions counts are grouped into Explorative, Neutral and Exploitative ‘categories’ 

(for each A-KD combination) using the explorative index for each community (see Listing 

7-1). Three categories are easier to reason with than 32 communities, for sensitivity 

analysis 

• Sample mean and standard deviation (over the 200 samples per A-KD combination) are 

calculated to enable statistical significance testing. For each A-KD combination there are 9 

means (and associated standard deviations) as follows: 

o Explorative → Explorative 

▪ I.e. count of transitions from Explorative communities back to Explorative 

communities in the next generation 

o Explorative → Neutral 

o Explorative → Exploitative 
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o Neutral → Neutral 

o Neutral → Explorative. 

o … 

• Statistically significant deltas or change in transition counts are calculated with respect to 

each A increment  

o Consider the transition Explorative→Neutral, for A=1 → A=3.1  

o Are the means for Explorative→Neutral transition significantly different from 

under A=1 and A=3.1? 

o This is answerable by performing a two-sample t-test (for the difference in means) 

o For each A step (e.g. A=1 → A=3.1; A=3.1 → A=3.6; …) measure the changes in 

transition counts for each of the 9 transitions where the change is statistically 

significant 

• The above transformations yield a series of weighted graphs – one for each A increment 

o The nodes are categories: Explorative, Neutral Exploitative 

o The arcs represent changes in transition counts (or net change in flow) 

o Each arc weight is the actual difference in counts for adjacent A values, if the 

change was statistically significant, otherwise its zero 

The 3 graphs for the 3 increments (1 → 3.1; 3.1 → 3.6; 3.6 → 3.9) can be viewed in a single 

Sankey chart as some of the nodes are shared between the graphs. For example, the “Explorative 

3.1” node in 1→3.1 is the same node for 3.1→3.6. The Sankey chart is set of chord diagrams that 
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are flattened out. Because the graphs share some nodes, they can be compactly viewed in the 

same chart. 

The Sankey charts, constructed as described above, are shown in Figure 8-54, Figure 8-55, 

Figure 8-56 & Figure 8-57 for WTD, IPD, SHS & STK, respectively. These are all considered together 

as they are useful gauges for comparing responsiveness to A changes, for the tested distribution 

mechanisms. Statistically significant changes to increased entropy are represented by colored 

arcs. Red arcs represent decrease in transition counts and Green increase. For not statistically 

significant changes the corresponding arcs are drawn as thin Black lines. The magnitude of the 

change (either positive or negative) is represented by an arc’s thickness.  

 

Figure 8-54: WTD - changes in explorative-exploitative balance due to complexity changes 

 



174 
 

 
 

 

Figure 8-55: IPD - changes in explorative-exploitative balance due to complexity changes 

 

Figure 8-56: Stag-Hunt - changes in explorative-exploitative balance due to complexity changes 
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Figure 8-57: Stackelberg - changes in explorative-exploitative balance due to complexity changes 

The title of each chart shows the total number of statistically significant changes made as A 

increases. Each Sankey chart is the profile of responsiveness to A for the corresponding 

distribution mechanism. The charts show that all tested mechanisms are responsive to changes in 

environment dynamic complexity. Somewhat surprisingly WTD is the most responsive with 23 

statistically significant changes followed by STK (22), SHS (20) and IPD (15).  Sankey chart for SHS 

(Figure 8-56) shows that SHS is responsive to all A increments; this is not picked up by community 

rank changes in Figure 8-51. 

There is a responsiveness story embedded in the deltas of the knowledge flows as depicted by 

the Sankey charts but it’s hard to extract that as such. One reason is that the charts are not 

comparable with each other as each chart is scaled relative to itself. Squeezing the information 

contained in the Sankey diagrams a little further provides additional insights. 
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The Sankey charts show changes in transition rates with respect to A increments, between all 

combinations of the 3 categories (Explorative, Neutral, Exploitative). Projecting the net changes 

(in and out) for each category onto a separate view allows one to compare the responsiveness 

behavior of the different mechanisms on an equal footing (see section 7.5 for additional details). 

The net flow changes for Explorative,  Exploitative and Neutral categories are provided in Figure 

8-58, Figure 8-59 and Figure 8-60, respectively. Compare the net change in transition counts for 

Explorative communities (Figure 8-58) across the A increments and for the tested distribution 

mechanisms. SHS at 1→3.1 exhibits the largest influx. This shows that when environmental 

complexity increases from static to linear, SHS responds by diverting the most resources to 

exploration.  Also, for other increments, (3.1→3.6 and 3.6→3.9) SHS is consistent in further 

increasing allocation to exploration. All of the other mechanisms are not consistent in that they 

do not consistently increase allocation to exploration with increasing environment dynamic 

complexity. 
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Figure 8-58: Net flow changes for Explorative communities by KD and A 

 

Figure 8-59: Net flow changes for Exploitative communities for KD and A 
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For SHS, the opposite is true in the case of Exploitation (Figure 8-59 Figure 8-58). SHS 

consistently diverts resources away from exploitation as A increases, as does IPD. The other 

distribution mechanisms do not respond consistently. 

The balance of flow changes come from the Neutral category (Figure 8-60). The results are 

mixed for all but the chart shows that SHS diverts resources from Neutral communities for 

exploration for the 1→3.1 change. 

 

Figure 8-60: Net flow changes for Neutral communities by KD and A 

This section focused on the dynamics of knowledge flow grounded on the formation of 

knowledge communities and community-to-community transitions of the population individuals, 

across generations. The goal was to shed light on the inner workings of the distribution 

mechanisms, in relation to their performance and with respect to changes in environmental 
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dynamic complexity. Through graph-based analytical methods, insights were derived on the 

allocation of compute resources and the responsiveness of the mechanisms to complexity. The 

next chapter summarizes the goals and findings of this research and draws conclusions about the 

hypotheses posited in Chapter 7. 

8.5 Summary and Conclusions 

Knowledge distribution is a key determiner of CA performance and is an active area of research 

in Cultural Algorithms (Al-Tirawi & Reynolds, 2018) (Reynolds & Kinnaird-Heether, 2013). The 

knowledge distribution mechanisms researched thus far have all been competitive mechanisms. 

The goal of this research is to investigate mechanisms that also span cooperation. The rich field of 

Game theory is used as the source and inspiration for new distribution mechanisms.  Three new 

game-based distribution mechanisms are devised and tested namely, Iterated Prisoner’s 

Dilemma, Stag-Hunt and Stackelberg.  

A new CA software system, CATGame, is constructed for this purpose. The system supports a 

generic mechanism to inject and use arbitrary games for knowledge distribution. The game 

distribution mechanisms leverage this framework. The new mechanisms are benchmarked against 

the default CA mechanism Weighted Majority. CATGame is meant to solve numerical optimization 

problems. A separate system, CATNeuro, is also constructed to understand the effectiveness of a 

competitive/cooperative distribution mechanism in the domain of neural architecture search. 

Chapter 9 and Chapter 10 are dedicated to CATNeuro software system. 

Here the performance of the distribution mechanisms in CATGame are tested via a modified 

Cones World test benchmark that incorporates the logistic equation (Eq 7-2) to create dynamic 

problem landscapes whose complexity is controlled by the A multiplier of the logistic equation. 
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The design of experiment and research hypotheses are documented in Chapter 7. Analysis of the 

data collected from experimental runs is provided in the prior sections of this chapter. 

Briefly, section 8.1 analyzes the base performance of the tested mechanism in terms of 

generations-to-solution. Section 8.2 contrasts the Diffusion metric for the distribution 

mechanisms. And, 8.3 comprehends the segregation of the population under the different 

mechanisms and in response to environmental dynamic complexity. Finally, 8.4 looks at the 

dynamics of knowledge flow in the ‘social’ network under the various mechanisms to uncover the 

resource allocation patterns in response to the rate of environmental change.  

Each of the hypotheses posed in Chapter 7 are now taken up. Each of these are discussed next 

and inferences are drawn about whether these holds and what are the caveats, if any. 

Hy 7-1 “Cooperative knowledge distribution is effective for problem 

solving in dynamically complex environments” 

{holds with 

exceptions} 

 The performance characteristics of the distribution mechanisms 

(Table 8-1, Table 8-2, Table 8-3 and Table 8-4) clearly indicate that at 

least two of the mechanisms – that are inclusive of cooperation – 

perform well when compared with the default competitive 

mechanism WTD. Stag-Hunt supports the most cooperation and also 

performs the best. However, Stackelberg (as interpreted for 

knowledge distribution) performs well for static environments but 

cannot keep up with others in dynamic environments. Stackelberg 

employs a structured model of cooperation that does not 

incorporate local knowledge and consequently is less efficient in 

resource allocation. Comparatively speaking, Stackelberg allocates 

more resources to exploitation (Figure 8-52) than others. By 

contrast, knowledge flow analysis shows that the best performer 
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allocates progressively more resources to exploration as complexity 

increases (Figure 8-58). Thus, the hypothesis holds for the type of 

cooperation that incorporates local knowledge into decision making. 

If the decision making is centralized or oblivious of local conditions, 

it does not seem to hold. 

Hy 7-2 

 

“Cooperative knowledge distribution exhibits better robustness 

than competitive distribution” 

{holds with 

exceptions} 

 Robustness is about how quickly a system adjusts to change. The 

basic performance charts (Figure 8-1, Figure 8-2, Figure 8-3, Figure 

8-4) show that two of the 3 cooperative mechanisms (IPD and Stag-

Hunt) are robust as they settle to a base rate of performance 

relatively quickly in the face of periodic environment change. WTD, 

the competitive mechanism, take longer to settle as A values 

increase. For mild complexity (A=1) WTD is on par with the best 

after 10 landscapes. However, as complexity increases, WTD takes 

increasing longer to settle. Stackelberg is the contrarian cooperative 

mechanism and in fact is not robust at all as its performance 

becomes progressively worse, at least for the 50-landscape horizon 

used in the experiment. As the Page Rank derived tree charts show 

(Figure 8-46, Figure 8-48, Figure 8-49, Figure 8-52) Stackelberg 

allocates more resources to exploitation where the better 

performing mechanisms devote more to exploration. Once again it 

can be surmised that cooperative systems that incorporate local 

knowledge are more resilient than ones that are centrally planned. 

Also, competitive mechanisms are less resilient in general but still 

more than those with oligopolistic cooperation. 

 

Hy 7-3 “Diffusion is higher for more dynamically complex environments” {does not 

hold} 
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 The Diffusion trend charts for each KD (Figure 8-9, Figure 8-10, 

Figure 8-11, Figure 8-12) show that the only mechanisms that shows 

some sensitivity to A is WTD. The Diffusion for WTD is distinctly 

lower for A=1; for non-linear A values is no discernable distinction. 

In general, this hypothesis does not hold but there are exceptions. 

 

Hy 7-4 “Segregation is higher for higher complexity environments” {holds with 

exceptions} 

 The segregation trend-by-landscape charts for each KD (Figure 8-17, 

Figure 8-18, Figure 8-19, Figure 8-21) show that IPD exhibits some 

separation in segregation with respect to A whereas SHS, WTD and 

STK do not. However, at the aggregate level, Figure 8-29, both IPD 

and SHS show a distinct response to increasing A with increasing 

segregation levels. It seems that higher performing mechanisms 

tend to increase segregation in response to complexity.  

Consequently, this hypothesis partially holds. It holds for ‘social 

rank’ based distribution mechanisms (IPD, Stag-Hunt) and not for 

the oligopolistic one. 

 

Hy 7-5 “Stag-Hunt and IPD distributions will produce higher segregation 

than WTD distributions” 

{holds} 

 This hypotheses holds and clear evidence exists in Segregation trend 

charts Figure 8-13, Figure 8-14, Figure 8-15, and Figure 8-16. The 

Segregation levels for IPD and Stag-Hunt remain consistently higher 

than those for WTD. The reason for this is that in WTD the 

Knowledge Sources that are forced out due to the voting 

mechanisms, are added back to 20% of the randomly selected 

population that lowers overall Segregation. This is done to protect 

against the “tyranny of the majority” (Moeckli, 2018). The US 

electoral college system of voting is a similar measure. Without this 
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provision, certain types of knowledge could be lost at some point 

and not regained. The cooperative mechanisms on the other hand 

are self-adjusting and don’t need a similar provision. 

Hy 7-6 “Stackelberg produces lowest segregation among the mechanisms 

tested” 

{does not 

hold} 

 Given that Stackelberg uses a structured model of cooperation, it 

was expected that it would maintain low segregation levels as all 

Knowledge Sources get an equal share, albeit in the order of their 

relative strength (section  6.3). However, what emerges is a picture 

of increasing Segregation over the sequence of 50 landscapes 

(Figure 8-26). For all complexity values, Stackelberg does start with 

low Segregation levels (at 0.45) but these continue to rise and are 

seen to reach 0.8 at the end of the landscape sequence. 

Considering, that Stackelberg does not perform well in dynamic 

environments (Figure 8-1, Figure 8-2, Figure 8-3, Figure 8-4) its 

continually changing Segregation levels suggest that it does not find 

an equilibrium state of knowledge levels, at least within the test 

limit of 50 landscapes. Thus, it can be concluded that this hypothesis 

does not hold. 

 

Hy 7-7 “The community transition weighted graphs for the tested 

knowledge distribution mechanisms are visibly distinguishable 

from each other” 

{holds} 

 The community-to-community transitions graphs for the different 

distribution mechanisms are: WTD Figure 8-30, Figure 8-31, Figure 

8-32, & Figure 8-33; IPD Figure 8-34, Figure 8-35, Figure 8-36 & 

Figure 8-37; Stag-Hunt Figure 8-38, Figure 8-39, Figure 8-40 & Figure 

8-41; and Stackelberg Figure 8-42, Figure 8-43, Figure 8-44& Figure 

8-45. The chord diagrams are a reflection of the inner workings of 

 



184 
 

 
 

the corresponding mechanisms. These diagrams crystalize the 

dynamics of the knowledge flow for each KD-A combination into a 

single view. The chord diagrams show that each mechanism 

operates distinctly. The patterns are very similar within a 

mechanism across the different A values but quite distinct between 

the mechanisms. Consequently, it is concluded this hypothesis holds 

without caveats. 

Hy 7-8 “The community transition weighted graphs for a tested 

knowledge distribution mechanism are appreciably different for 

different A values” 

{does not 

hold} 

 Hy 7-8 is related to Hy 7-7 discussed above. Here the supposition 

was that the chord charts for the different A values for the same 

mechanism are also visibly distinct from each other. As mentioned 

in the analysis for Hy 7-7 above, this is not case. There are some 

differences between the chord diagrams of the same mechanism 

but in general it does not hold. The premise underlying this 

hypothesis was that chord diagrams would be sensitive enough to 

allow one to also distinguish the responsiveness of the mechanisms 

to environmental complexity. Given that this hypothesis does not 

hold, additional, more sensitive analytical methods were required to 

understand the responsiveness (see Figure 8-54, Figure 8-55, Figure 

8-56, and Figure 8-57). 

 

Hy 7-9 “Community importance weights for the tested distribution 

mechanisms are different from each other, reflecting their different 

operational characteristics” 

{holds} 

 The page rank derived tree charts (Figure 8-46, Figure 8-48, Figure 

8-49 and Figure 8-52) show that this is indeed the case. It is 

expected given that Hy 7-7 was found to hold. The Page Rank data is 
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derived from the underlying data used for the chord diagrams and 

so the two support each other. 

Hy 7-10 “Community importance rankings for the tested distribution 

mechanisms vary by environmental complexity” 

{holds with 

exceptions} 

 The parallel coordinates charts (Figure 8-47, Figure 8-50, Figure 8-51 

and Figure 8-53) show that this hypothesis mostly holds but not in 

all cases. Stag-Hunt’s responsiveness is not surfaced in the 

corresponding parallel chords chart. In the strictest sense, this 

hypothesis does not hold, however, since it is true for 3 out of the 4 

cases, one can state it holds but with some exceptions. In fact, the 

lack of sensitivity of the parallel chords analysis also prompted 

development of additional methods to measure sensitivity. 

 

Hy 7-11 “The tested distribution mechanisms are responsive to changes in 

environmental complexity” 

{holds} 

 This hypothesis is a direct statement relating the mechanisms’ 

responsiveness to A. As mentioned above, initial analytical methods 

were not sensitive enough to uncover the A value relationship. 

However, the explorative-exploitation community balance analysis 

clearly indicates that all mechanisms show statistically significant 

responses to A changes, in terms of compute resource allocations. 

See Figure 8-54, Figure 8-55, Figure 8-56 and Figure 8-57. This 

hypothesis holds without caveat. 

 

Hy 7-12 “Cooperative distribution mechanisms are more responsive to 

changes in environmental complexity than competitive 

mechanism” 

{does not 

hold} 

 Going by the analysis presented in Figure 8-54, Figure 8-55, Figure 

8-56 and Figure 8-57, this hypothesis does not hold. The most 
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sensitive mechanism is the competitive mechanism WTD in terms of 

the number of statistically significant changes to net flow driven by 

changes in A. 

Hy 7-13 

 

“Better performing distribution mechanisms will exhibit consistent 

responses to changes in environmental complexity” 

{holds} 

 This hypothesis only holds for Stag-Hunt, which is the top 

performing mechanism and shows consistent allocation changes in 

response to A as seen in Figure 8-58 and Figure 8-59. The changes 

are subtle but still statistically significant. While not true for all case, 

this hypothesis holds for the best mechanism tested and so is 

considered to hold for the purpose of this analysis. 

 

  

In summary, CA knowledge distribution mechanisms that span cooperation as well as 

competition perform better than the default competitive mechanism, Weighted Majority, when 

faced with dynamic environments of varying complexity. However, this is not true for all such 

mechanisms. The research concludes that ‘social rank’ based cooperation (IPD and Stag-Hunt) 

performs significantly better overall complexity levels except non-linear (A=1). Here SHS performs 

significantly better but IPD does not. While structured or oligopolistic cooperation, seen in 

Stackelberg, does not perform better that WTD for all complexity levels. 

The Stackelberg model works well for static environments but is not able to track changes in 

dynamic environments. The rigid or centrally planned method of cooperation does not take local 

knowledge into account and hence resource allocation is not optimal. Stackelberg 

disproportionately allocates more resources to exploitation when compared with others. 
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The Weighted Majority ‘wisdom of the crowd’ model is competitive in low complexity 

environments (i.e. A=1 / linear) but then is not able to keep up with ‘social rank’ based cooperation 

under IPD and Stag-Hunt, the non-linear complexities tested. 

The best performing mechanism Stag-Hunt is also the most cooperative. Stag-Hunt is a 

variation of IPD. Stag-Hunt is from Evolutionary Game theory while IPD is from classical Game 

theory. Stag-Hunt is biased toward cooperation where IPD is biased towards defection.  

Once it was clear that cooperation improves CA knowledge distribution, a new challenge was 

taken up in order to test cooperative knowledge distribution in a completely different domain 

from numerical optimization.  The next two chapters describe the CATNeuro system that 

evaluates competitive and cooperative mechanisms in relation to optimization of neural network 

architectures. 
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CHAPTER 9 CATNEURO – A CA-DRIVEN FRAMEWORK FOR DEEP LEARNING 

9.0 Introduction 

Experimental results with the Cones World show that Stag-Hunt performs well for numeric 

optimization problems, especially in dynamic environments (i.e. where the optima may change 

over time) as compared to the baseline CA knowledge distribution mechanism, Weighted 

Majority. However, to better understand whether game-based, cooperative knowledge 

distribution is indeed a robust addition to the CA family, requires additional evidence. Thus, the 

CATNeuro system was constructed to test how effective cooperative knowledge distribution can 

be in a domain vastly different from numerical optimization. The CATNeuro system optimizes the 

structure and parameters of deep learning models using an implementation of Cultural Algorithms 

adapted for such a task. CATNeuro can be configured to use either Stag-Hunt or Weighted 

Majority distribution mechanism. 

Contemporary deep learning models are multi-layered directed graphs (quite different from 

traditional multi-layer perceptrons) (Goodfellow, Bengio, & Courville, 2016).  Many times, it is not 

clear what is the best architecture for a given problem. Researchers often spend many months 

trying to find the optimal architecture. CATNeuro can assist researchers in optimizing deep 

learning model structures by performing an intelligent search in this space. At the very least 

CATNeuro can out point out promising candidate architectures that researchers can investigate 

further. 

As noted earlier, Cultural Algorithms are better suited to problem solving in complex 

environments (Figure 1-1) because the CA stores and uses more information than other 

evolutionary optimization methods. CA information overhead can be amortized better when 
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working with problems in complex domains. Deep learning model optimization is a very complex 

problem. The training time for a single model is in the order of minutes (if not hours) and therefore 

any CA information overhead is miniscule by comparison. 

This chapter describes the CATNeuro system and the experimental framework used to evaluate 

the effectiveness of CATNeuro with Stag-Hunt and WTD for deep learning model optimization. 

Stag-Hunt was selected since it was the best performing cooperative mechanism and WTD was to 

baseline its performance. 

The test bed problem selected is the construction of a deep learning model that can be used 

as a controller to play a fighting video game. Section 9.1 provides an overview of the FightingICE 

game system used for evaluating CATNeuro. Section 9.2 gives an overview of a neuro-evolution 

methodology named NEAT that provides the inspiration for the CATNeuro search mechanism. The 

detailed description of the CATNeuro system is provided in 9.3. Section 9.5 details the mechanism 

used to train the controller, which relies partly on ideas from the reinforcement learning 

literature. They are used to generate the training data for the neural network. The training 

regimen is described in 9.6. Section 9.7 describes the experimental framework used to evaluate 

the performance of Stag-Hunt and Weighted Majority distribution mechanisms for optimization 

in the space of neural network architectures. The experimental results are analyzed in Chapter 10. 

9.1 ICE Competition Fighting Game 

The FightingICE is a research test bed for AI maintained by Intelligent Computer Entertainment 

(ICE) Lab, Ritsumeikan University, Japan. ICE holds an annual competition for competing AI 

controllers  (Fighting Game AI Competition, 2018). The game is a 2D street fighting game (Figure 



190 
 

 
 

9-1). Each player has 56 actions available that it can play from. The actions are a mix of offense, 

defense and positioning moves. 

 

Figure 9-1: ICE competition fighting game screen capture 

The game controller must supply one of the 56 actions when requested by the game 

framework. The game framework provides access to the game state but its delayed by 15 frames. 

States for both players are provided by the game framework. The AI for the controller is a function 

that essentially maps the game state (current and historical) to an action.  

The game is fast paced so decisions have to be supplied in a timely manner. The rules of the 

games are somewhat complex. The hits between players transfer energy from one player to 

another. Stored energy can be used to throw projectiles with greater damage potential. It takes a 

while for human player to master the game. 
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The championship winning AIs are coded by human experts who understand the game well. 

They know how to exploit different situations in the game and make moves that are precisely 

timed. As per current knowledge no purely machine learned AI has been able to beat a human 

developed AI. 

The controller framework developed to play the game accepts a deep learning model that 

conforms to certain specifications for input and output. The input to the model is 72x1 vector that 

represents current and historical game state (Table 9-2). The output is a 56x1 vector that 

represents a probability distribution over the 56 actions. At each frame, the controller calls the 

configured model with the state vector and samples from the output distribution to select the 

action to play. 

The CA-driven controller is played against two types of opponents that are described below: 

• Jerry Mizuno AI (JM) – is an AI controller supplied with the FightingICE. It is a AI developed 

by academics at Ritsumeikan University (which is the home of FightingICE).  JM uses a 

combination of K Nearest Neighbors (KNN) and fuzzy logic (Chu & Thawonmas, 2017). It 

can be considered a benchmark AI where the fighting decisions are mostly made 

algorithmically. 

• 2018 champion called “Thunder”. Thunder is a championship level AI that is very advanced 

(FightingICE 2018 Championship Results). It was developed by (presumably) an expert 

human player and programmer Eita Aoki who seemingly is well aware of the game rules. 

Thunder is fast and seems to exhibit high-level strategies (e.g. has offense and defense 

modes). It also exploits specific game situations like pinning the opponent in a corner with 
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repeated, strikes. It was not expected that the controller would be able to beat this 

champion.  However, playing against a strong player is good for differentiating between 

the performances of the underlying models more precisely. As developed, the 

reinforcement learning based CATNeuro AI controller learns from observation. Specific 

game rules were not encoded into the controller (i.e. the controller is not model based). 

In general, it is difficult for a purely AI-driven approach to infer specific game rules given 

limited computed resources.  

The CATNeuro system is configured to evolve models that conform to the input/output 

requirements of the controller framework. The system is free to structure the model however as 

long the input/output constraints are not violated. Also, the graph sizes of the various populations 

(Blueprint and Modules) are limited so that overly large models are not produced through the 

process of graph evolution. 

To evolve the deep learning models, training data is required. The training data should conform 

to the input/output specification – i.e. input should be a 72x1 vector and output a 56x1 vector. 

The construction of the training data is an involved process that takes a day or two to complete 

and is comprised of several steps. The next section provides a brief overview of Reinforcement 

Learning that is the basis for the creation of the training data for the controller models. A more 

detailed description of the process to acquire the training data in provided in section 9.5. 

9.2 Neuro Evolution of Augmented Topologies (NEAT) 

The NEAT methodology was developed by Stanley and Miikkulainen and is described in detail 

in the NEAT paper (Stanley & Miikkulainen, 2002).  NEAT is a population-based methodology 

where each individual is a directed graph. The population is evolved via operations on directed 
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graphs. These are described later in this section. The core idea of NEAT is to start simple and 

progressively ‘complexify’ the graphs by adding nodes and connections.   

The CATNeuro adaption of NEAT applies the same operations as defined by NEAT but there are 

many differences between the two methodologies. Firstly, NEAT does not have a social network 

that binds the population and thus has no notion of knowledge distribution or Belief Space, etc. 

Secondly, the graph operations are applied randomly in NEAT where the operations are organized 

under the five Knowledge Sources under CA and applied through the workings of the knowledge 

distribution mechanism (see Table 2-1). Thirdly, to manage complex graph structures CATNeuro 

also relies on the topological sort of the graphs whereas NEAT only uses a simpler mechanism 

based on innovation numbers (Stanley, Bryant, & Miikkulainen, 2005). Fourthly, the distance 

metric used to gauge similarity of any two graphs is materially different between CATNeuro and 

NEAT; CATNeuro defines a graph distance metric that is finer grained than the innovation number-

based method used in NEAT. 

9.2.1 Graph Operations under NEAT 

The basic graph operations under NEAT are: 

• Toggle Connection 

• Add Connection 

• Add Node 

• Crossover 

• Mutate Parameter 
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Each graph connection contains a Boolean switch that can be switched On or Off through 

mutation.  The Toggle Connection operation is demonstrated in Figure 9-2. When the switch is off, 

the connection is dropped when the graph is translated into a deep learning model (described in 

the next section).  

Figure 9-2 (and other related figures in this section) show before and after-operation views of 

graphs. The changes are highlighted in Yellow. The number associated with each connection is the 

innovation number (Stanley, Bryant, & Miikkulainen, 2005).  A counter is maintained that is 

incremented whenever a new connection is added. The innovation number can be used to 

determine the order of connections; useful for the crossover operation (described later) among 

others.  

Another counter is maintained for internal nodes (i.e. not input or output). This counter is 

incremented whenever a new node is added. The node numbers are taken from this counter. This 

is useful for knowing the order of nodes and is used to prevent cycles in the graph (among other 

uses). 
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Figure 9-2: Toggle connection operation - connection #1 switched off 

The Add Connection operation is shown in Figure 9-3. Under this operation the graph is 

mutated by adding a new connection between two previously unconnected nodes. In CATNeuro, 

topological sort is performed in order to ensure that cycles are not introduced when adding a new 

connection. Connections are only added from nodes earlier in the sort to those that come later. 
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Figure 9-3: Add connection operation - connection #12 add between node ‘3’ and node ‘4’ 

The Add Node operation is demonstrated in Figure 9-4. In the Add Node operation, an existing 

connection is split by adding a new node in between. However, the way this is performed is a little 

involved. First a connection is chosen and it is disabled. A new node is created. Then a new 

connection is added from the source of the disabled connection to the newly created node. Finally, 

a connection is added form the newly created node to the target of the disabled connection. For 

example, in Figure 9-4, the connection #1 between ‘1’ and ‘out’ is selected. The #1 connection is 

disabled and two new connections #8 and #9 are added that connect ‘1’ and ‘out’ via the new 

node ‘5’. Connections are referred to with hash followed by number (e.g. #1) and nodes with 

number within single quotes (e.g. ‘3’). 

Finally, the Crossover operation is demonstrated in Figure 9-5. Here two graphs are merged 

into a single graph. The merge operation orders the connections of both graphs by innovation 
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numbers. A merge operation is performed that keeps the common connections from both but 

adds any differences from either graph. Finally, any cycles that could have been introduced are 

removed. 

 

Figure 9-4: Node add operation - node ‘5’ was added between node ‘1’ and node ‘out’ while the existing connection between 

‘1’ and ‘out’ was toggled off 
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Figure 9-5: Crossover graph operation - merges two graphs 

The Mutate Parameter does not modify the structure of the graph but changes some property 

of one of the non-input nodes. The properties these nodes can hold are discussed in the next 

section. The NEAT inspired graph operations are the basis of the graph evolution under CATNeuro, 

however there are many other operational details for CATNeuro that are covered next. 

9.3 CATNeuro System 

CATNeuro is actually an ensemble of populations. Each individual in every population contains 

a directed graph. These are evolved via the graph operations described earlier. A population is a 

species unto itself. Speciation is used to protect and nurture individuals so that they are not 

eliminated too early from the pool (Howard & Berlocher, 1998).  One population is for Blueprint 

individuals and the rest for Modules - a concept taken from the “CoDeepNEAT” system 

(Miikkulainen, et al., 2017).  
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The Blueprint individuals define the macro structure of a deep learning model graph. Each 

internal node of the Blueprint individual is replaced with the graph of an individual selected from 

one of the Module species – when the Blueprint is ‘assembled’ just prior to evaluation. An example 

of such a structure is given in Figure 9-6. The process of assembly is explained later in this section. 

Blueprint internal nodes reference Module species – i.e. they contain the id of one of the 

available Module species that the CATNeuro is configured to run with. Under the Mutate 

Parameter operation, this id is modified to point to one of the available Module species. 

The internal nodes of Module graphs refer to deep learning operations, e.g. Dense Layer, 

Normalization layer, etc. (Goodfellow, Bengio, & Courville, 2016). Under the Mutate Parameter 

operation the parameters of the operation are modified. For example, for the Dense layer, the 

number of dimensions are evolved; for the Normalization layer the type of normalization is chosen 

from either Batch Normalization (Ioffe & Szegedy, 2015) or Layer Normalization (He, Zhang, Ren, 

& Sun, 2015); etc.. A randomly selected deep learning operation is assigned to a new node when 

it is created for a Module individual. Thereafter only the parameters are evolved.  
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Figure 9-6: Two-level graph – ‘Blueprint’ outer graph with embedded ‘module species’ subgraphs – blueprint and species 

populations are evolved separately 

There is no limit to the number of module species. (For the CATNeuro experiment conducted 

in this research, three module species were used).  
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The input and output nodes of the Blueprint species individual’s graph are configured to be the 

input and output required for the task at hand. For example, if the task is binary classification of 

images then the input node would represent the dimensions of the input images, e.g. 224x224x3 

for width x height x number of colors. And the output node would be a 2x1 vector (for the two 

classes). The system allows for multiple input nodes but is restricted to a single output node. 

The input and output nodes for a Module individual’s graph are just connectors. When a 

Blueprint is assembled, its each  of its internal nodes is replaced by a randomly selected Module 

individual’s graph from the Module species that the Blueprint node points to. The input and 

output nodes of the selected Module individual’s graph respectively connect to all the incoming 

and outgoing connections of the replaced Blueprint node. In Figure 9-6, input nodes are 

represented by ellipses with single line borders and output nodes by ellipses with double-lined 

borders. The Blueprint node ‘14’ has the incoming connection #17 that is stipulated to connect to 

‘1’ input node of the embedded Module individual. Similarly, the ‘3’ output node of the embedded 

Module individual is stipulated to connect to #16 – the outgoing connection for Blueprint node 

‘14’. 

Following CoDeepNEAT (Miikkulainen, et al., 2017), all Blueprint nodes that point to the same 

species are replaced with the same randomly selected individual from that Module species. Many 

recent advances in deep learning are attributed to cellular or modular structures that are used 

repeatedly in the network (Szegedy, et al., 2015) (He, Zhang, Ren, & Sun, 2015). The use of 

Modules is there to help find such modular structures. Such structures control the unconstrained 

growth of the neural networks. In addition they can be used to grow or shrink the network capacity 

by adding or removing such units. 
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Before a Blueprint individual can be evaluated, it has to be assembled. A Blueprint individual’s 

internal nodes are replaced with selected Module individuals to obtain a structure called Network 

Assembly.  The Network Assembly is translated into a deep learning model for a particular library 

(e.g. Tensorflow, PyTorch, CNTK, etc.). The translation of a Network Assembly to a deep learning 

model for a specific library is performed by a configurable component called Evaluator. 

When CATNeuro is initialized for a particular task it is configured with an Evaluator. A Network 

Assembly is an abstract representation of a deep learning model. The job of the Evaluator is to 

convert that into a concrete model; train the model using whatever training data the Evaluator is 

configured with; and return the training loss and model size (Figure 9-7). 

The CATNeuro system is multi-objective since it trades off performance (training loss) against 

the model size (number of parameters in the model). The pareto ranking function is also a 

pluggable component. It can be chosen to suite the task at hand. The ‘fitness’ associated with each 

individual is a 2x1 vector (for loss and size). By contrast the individual fitness is a single number 

CATGame. 
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Figure 9-7: Translate Network Assembly to concrete model and train using training data 

After all Network Assemblies have been evaluated, the fitness is assigned as follows: 

• Blueprint individuals are assigned fitness values (loss and model size) returned from the 

Evaluator 

• Module individuals are assigned the average fitness (loss and model size) of all the 

Blueprint individuals where they were used 

By using average fitness for Module individuals, the individuals are protected and not 

eliminated too early in the process. After evaluation and fitness assignment each population is 

evolved following the standard process (Chapter 2): 

• Induct top individuals into the Belief Space via the Acceptance function 

• Update the Belief Space with the Update function 

• Distribute knowledge in the population network and evolve each individual via the 

assigned Knowledge Source – in the Influence function  
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The Belief Space and any other internal state needed to evolve populations is maintained 

separately for each population. In addition, CATNeuro maintains the top n Network Assemblies 

discovered thus far. The multi-objective ranking of Network Assemblies is done with the 

configured ranking function. Each Network Assembly contains enough information to be 

translatable into a deep learning model when required. The output of the CATNeuro systems is 

the ranked list of best Network Assemblies when it stops. The procedure for running CATNeuro is 

as follows: 

1. Construct Network Assemblies 

2. Evaluate Network Assemblies 

3. Check for termination condition 

4. If terminating then stop else 

a. evolve populations to obtain new generations  

b. go to 1 

The termination condition may be a MAX number of generations or it could be an expression 

such as “stop when no improvement is found in x generations”. 

The Knowledge Sources operate somewhat differently in CATNeuro than in CATGame. Each 

Knowledge Source has two associated functions: acceptance for the induction of the knowledge 

from the population space; and influence for the impartation of knowledge to the next generation. 

Under CATNeuro, the Knowledge Sources conceptually are the same as for CATGame but the 
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implementation can be very different, especially for the influence function. The influence and 

acceptance functions for CATNeuro Knowledge Sources are discussed next. 

9.3.1 Influence Functions 

In numeric optimization problems there is generally good locality – i.e. small changes in 

parameter values lead to correspondingly small changes in fitness. The exploration-exploitation 

balance requires some underlying idea of locality to be meaningful. The cooperative knowledge 

distribution of Stag-Hunt is quite reliant on balancing exploration with exploitation. Such locality 

is harder to establish for graph evolution since the changes that are discreet. For example, adding 

a new connection may potentially make a big difference to the fitness of the model. However, in 

general one would expect adding a connection to be more disruptive than say toggling a 

connection; adding a node to be more disruptive than adding a connection; and so on. 

Using a probabilistic notion of locality, the available graph operations are associated with 

Knowledge Sources with weight distributions (see Table 9-1). The Knowledge Sources can thus be 

ranked on the explorative-exploitative scale. Exploitative Knowledge Sources (e.g. History) are 

biased towards selecting graph operations that will make relatively less disruptive changes. The 

Knowledge Source influence function samples from the associated distribution to select an 

operation to apply when modifying a population individual. The explorative-exploitative ranking 

in CATNeuro however is different from that in CATGame. For example, Normative knowledge is 

considered exploitative in CATNeuro – unlike in CATGame – as it does not modify the graph 

structure; it only modifies the parameters of the graph nodes or some meta parameters 

associated with Blueprint individuals, such as the learning rate used for neural network training. 
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Table 9-1: Knowledge Source Mapping to Graph Operations with Associated Weights 

KNOWLEDGE SOURCE MUTATION SELECTION POLICY 

HISTORY 

 

SITUATIONAL 

 

DOMAIN 

 

TOPOGRAPHICAL 

 

NORMATIVE 

 

 

The weights associated with each KS are normalized into true probabilities before sampling for 

a graph operation. The unnormalized weights are easier to modify when tuning them by hand. 
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The weights were selected with limited empirical testing. Future work will include focus on better 

turning of the weights by training networks across a variety of tasks. 

The CATNeuro populations can be configured with some restrictions. The number of nodes can 

be restricted so the graph does not grow beyond a certain size. For Module species, restricting 

graph size is desirable so modular components remain small and reusable and not become too 

specialized. When a graph reaches the allowed maximum size, the Add Node operation is removed 

from the probability distribution of actions (Table 9-1) so that a different operation is selected 

instead. The CATNeuro population also can be restricted to use only a subset of the graph 

evolution operations. This is done in the case of small Module populations so resources are 

focused on more fruitful regions of the search space. 

9.3.2 Acceptance Functions 

The induction of knowledge from the population space into the Belief Space is conceptually 

similar to that in CATGame. Unlike the influence functions however, the acceptance functions are 

generally less affected. Note that since there are multiple populations in CATNeuro the internal 

state needed by Knowledge Sources to operate is separate for each population. For example, 

Normative knowledge maintains separate parameter densities for each population. The CATNeuro 

versions of the acceptance functions for the KS are described next with differences from CATGame 

highlighted.  

Topographic: In CATGame, Topographic knowledge clusters individuals into promising regions 

of the search space using the K-means algorithm and the Euclidean distance metric – inspired by 

BSO (Shi, 2011). Topographic does the same in CATNeuro except that the distance metric used is 

a specially constructed graph distance metric.  
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History: History is very similar in both because it just needs to keep track of the best individuals 

over time. 

Normative: In CATGame Normative maintains promising ranges of numerical values.  In 

CATNeuro, Normative is conceptually similar but the implementation is very different. Normative 

in CATNeuro needs to handle categorical (non-continuous) values in many cases (e.g. Module 

species ids). Since there is no natural ordering for ids, the concept of range does not apply. 

Normative knowledge instead maintains probability densities for the parameters it tracks. When 

it needs to evolve parameters, Normative samples from spin wheels for categorical parameters 

and Kernel Density estimates for continuous parameters (Cosma Shalizi CMU, 2009)  (see Figure 

9-8). 

 

Figure 9-8: Examples of probability densities maintained by Normative knowledge for two types of parameters 

The probability values are calculated by incorporating the fitness (training loss only) of the best 

performing individuals across generations. Normative uses this data for the Mutate Parameter 

graph operation. However, with some probability, this operation may also be performed by other 

KS (History and Situational). Normative thus share’s its internal state with other KS so that they 

are able to apply the Mutate Parameter operation as well. The density estimates are maintained 
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by the aforementioned innovation numbers. Recall that each connection in the graph is assigned 

an innovation number; it is a global, monotonically increasing value. As a graph evolves the added 

innovation numbers stay the same and therefore can be used as anchors for pinning density 

estimates to. Each estimate applies to the target of the corresponding connection. For example, 

if the target is a node that references modules (in Blueprints) then the density estimates are for 

module ids. These estimates are only sampled when there are enough samples available. Real 

valued parameters (e.g. learning rate) are sampled using the Gaussian kernel with bandwidth 

equal to 
1

10
𝑡ℎ the configured range of the parameter. For discrete valued parameters, the system 

maintains non-zero probabilities for all cases so that there is always some chance of selecting any 

available case. 

Situational: Situational maintains a list of top n exemplars in both CATNeuro and CATGame.  

Domain: In CATNeuro, when Domain modifies an individual under its influence, it can either 

mutate the graph of the individual in question or replace its graph with the mutated graph of a 

randomly selected top performer. NEAT is greedy so Domain propagates the current generation 

top performers with a configured probability. Thus, Domain inducts the current generation top 

performers in CATNeuro. In CATGame, Domain does not maintain any state as it uses parameter 

slopes for influence that are calculated at the time the influence function is applied. 

9.3.3 Knowledge Distribution 

Knowledge distribution in CATNeuro is similar to that in CATGame. Weighted Majority uses an 

algorithm that for all practical purposes is the same as for CATGame (see 3.2). The Stag-Hunt 

distribution is slightly different. Due to a stricter requirement around ranking of Knowledge 

Sources from exploitative to explorative. In the CATNeuro adaption of Stag-Hunt there are p 
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cooperative generations followed by one evaluative one. In a cooperative generation individual 𝑖 

behaves cooperatively. In an evaluative generate 𝑖 behaves individualistically. 

Considering the cooperative case, as before (section 3.2) 𝐾  is the set of KS; 𝑖  indexes the 

population; and 𝑗  indexes 𝑖′𝑠  neighbors; 𝐹 = {𝑟|𝑟 ∈ ℝ}  is set of real numbers and 𝐹𝑖 ⊆ 𝐹 =

{𝑓𝑖𝑡𝑖1, 𝑓𝑖𝑡𝑖2, … , 𝑓𝑖𝑡𝑖𝑗, … } be the fitness of 𝑖′𝑠 neighbors in the current generation. 𝑆𝑜𝑐𝑖𝑎𝑙𝑅𝑎𝑛𝑘 ∶

 ℝ × 𝐹 →  ℤ is function that returns ‘social’ rank of 𝑖 based on its and neighbors’ fitness values; 

𝑠𝑟𝑖 = 𝑆𝑜𝑐𝑖𝑎𝑙𝑅𝑎𝑛𝑘(𝑓𝑖𝑡𝑖 , 𝐹𝑖). Let 𝑃: 𝐾 →  ℤ be a probability distribution where ∑ 𝑃(𝑘)𝑘∈𝐾 = 1. 

Also, 𝐾𝑆𝑓𝑜𝑟𝑅𝑎𝑛𝑘 ∶  ℤ → 𝑃 return a probability distribution over K given a rank. In CATNeuro the 

Knowledge Source assigned is sampled from the returned probability distribution; defined as 

𝑆𝑎𝑚𝑝𝑙𝑒: 𝑃 → 𝐾. The probabilities are constructed so that a low rank will return a probability 

distribution that is biased towards explorative Knowledge Sources. And vice-a-versa for a high 

rank. Since Knowledge Sources are not deterministically explorative or exploitative due to poor 

locality of graph operations, the knowledge assignments are done probabilistically to compensate. 

The new KS assigned to 𝑘𝑖𝑛𝑒𝑤 = 𝑆𝑎𝑚𝑝𝑙𝑒(𝐾𝑆𝐹𝑜𝑟𝑅𝑎𝑛𝑘(𝑠𝑟𝑖)). 

In the evaluative case, let  𝑂 = < 𝑘0, 𝑘1, … , 𝑘𝑛−1 > be an ordering of KS according to each’s 

explorative potential; 𝑜𝑘  is offset of 𝑘  in this ordering and 𝑂[𝑞] returns the 𝑘  at offset 𝑞 .  Let 

𝑒𝑖 , 𝑒2, . . , 𝑒𝑔, … index evaluative generations and 𝑓𝑖𝑡𝑖𝑒𝑔
be 𝑖′𝑠  fitness in generation 𝑒𝑔 . Then, 

𝑘𝑖𝑛𝑒𝑤 =  {
𝑂[𝑂𝑘𝑖

− 1 𝑚𝑜𝑑 𝑛] 𝑓𝑖𝑡𝑖𝑒𝑔
≥ 𝑓𝑖𝑡𝑖𝑒𝑔−1

𝑂[𝑂𝑘𝑖
+ 1 𝑚𝑜𝑑 𝑛] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . 

If 𝑖′𝑠 fitness has improved since the previous evaluative generation then it adopts the next 

most exploitative KS in the ladder (and wraps around if at bottom) and vice-a-versa. Here 𝑖 acts 

alone without considering it’s neighbors. The mechanism thus associates more explorative 
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strategies to comparatively underperforming individuals (as compared to its neighbors) and vice-

a-versa. The exploration-exploitation balance is performed using the local signal of ‘social’ rank.  

In summary, the CATNeuro system optimizes in the space of directed graphs where CATGame 

searches in a real-valued hyperspace. CATNeuro utilizes speciation through multiple populations. 

By contrast CATGame uses a single population. There are many other differences between the 

two systems. However, the knowledge distribution mechanisms are largely similar between the 

two and operate on the same principles. Stag-Hunt was seen to perform well against a complex, 

dynamic environment. Now it is put to test for a hierarchically complex optimization problem. The 

performance of Stag-Hunt in a different domain will provide further insights into whether 

cooperative mechanisms are indeed beneficial for problem solving in highly complex domains. The 

performance of Weighted Majority and Stag-Hunt distribution systems are compared on the 

optimization of deep learning model for a controller to play a fighting game. The fighting game 

used for the experiment is described in the next section. 

9.4 A Brief Overview of Reinforcement Learning 

The deep learning model used for the ICE game controller has to be trained to play the game 

effectively and for this significant amount of training data is required. The most relevant discipline 

for creating data for such a task is the field of Reinforcement Learning (RL). RL is a form of machine 

learning that fits between supervised learning and unsupervised learning. In RL an agent interacts 

with the world or environment to achieve a goal. The agent: 

a. Has a capacity to take actions that affect the environment  

b. Can observe or receive feedback from the environment 
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c. Is motivated to achieve a high-level goal through a reward structure  

For the ICE game, the agent would be the deep learning model (embedded in the controller 

application). The model selects an action to take after observing the state of the game at every 

time step. The goal is to win each round by trying to land the maximum number of hits on the 

opponent while protecting oneself from being hit. Such a setup is labeled a Markov Decision 

Process (MDP) (also Markov Reward Process) (Kober, Bagnell, & Peters, 2013) and is commonly 

used in the field of robotics, multi-agent systems, games and control applications. 

An MDP is a 4-tuple (S, A, R, P) where: 

• 𝑆 =  𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠  

• 𝐴 =  𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠  

• 𝑅 ∶  𝑆  𝐴 𝑥 × 𝑆 → ℝ  𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

• 𝑃: 𝑆 ×  𝐴 ×  𝑆 → [0,1]𝑖𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

A policy Π: S ×  A → ℝ is the probability of tacking action 𝑎 ∈  𝐴 when in state 𝑠 ∈ 𝑆, i.e. 

Π(𝑠, 𝑎) = 𝑃(𝑎|𝑠).. In most scenarios, the rewards associated with future time steps is discounted 

by a discounted by a discount factor Υ ∈ [0, 1). The value function V is the expected sum of future 

rewards given an MDP and policy Π and is defined as: 

Value function: 
𝑽𝝅 = 𝑬 [∑ 𝚼𝒕𝒓𝒕|𝒔𝟎 = 𝒔

∞

𝒕=𝟎

] 
 Eq 9-1 

 

The goal of Reinforcement Learning is to find the optimal policy 𝜋∗  that maximizes the 

expected sum of future rewards. There are a wide variety of settings and algorithms that can be 

use to achieve the optimum policy (Sutton & Barto, 2018). 
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Reinforcement Learning is a vast subject that has a long history (Sutton & Barto, 2018). It has 

recently resurged in popularity due to high profile achievements such as beating the world 

champion Lee Sedol at the game of Go (Silver, et al., 2017). 

Figure 9-9 is a partial taxonomy of RL algorithms. In model-based algorithms the agent is either 

given a model or learns a model of the environment and then operates accordingly to interact 

with the world. A recent example is the AlphaZero (Schrittwieser, et al., 2019) model from Google 

Deep Mind that is a successor to AlphaGo noted earlier. AlphaZero is programmed with explicit 

rules of the game Go.  

 

Figure 9-9: A partial taxonomy of Reinforcement Learning algorithms 

Model-free algorithms don’t have to construct a model of the world but instead focus on what 

action to take in a given state, to progress towards the goal. Model-free can be divided into value-
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based and policy-based. Value-based methods focus on determining the value of states or state-

action pairs from which an optimal policy can be derived as in Eq 9-1.  Policy-based methods 

instead learn the policy directly from experience obtained in interacting with the environment. In 

some situations, the number of states or state-action pairs is prohibitively large and its not feasible 

use value-based methods. RL is an active area of research. The seminal policy optimization 

approach named VPG for (vanilla) Policy Gradient,  was introduced by Sutton  et al. in 1999 

(Sutton, McAllester, Singh, & Mansour, 1999). Since then many variations and improvements have 

been developed such as Trust Region Policy optimization (TRPO) (Schulman, Levine, Moritz, 

Jordan, & Abbeel, 2015) and Proximal Policy optimization (PPO) (Schulman, Wolski, Dhariwal, 

Radford, & Klimov, 2017). 

For completeness, it should be mentioned that the so-called Actor-Critic methods combine 

features of policy and value based approaches together for Reinforcement Learning (Konda & 

Tsitsiklis, 2002). 

One recent breakthrough was in 2015 when Deep Mind published deep Q-network (DQN) 

(Mnih, et al., 2015) that achieved human-level performance on Atari games. DQN used a value-

based method called Q-learning (Sutton & Barto, 2018) but with a deep neural network to 

approximate the value function. The term Deep Reinforcement Learning (DRL) is used when a 

deep neural network is exploited to approximate the value or policy function. DRL has re-

energized the field of Reinforcement Learning. Other recent development in Deep RL algorithms 

are Hindsight Experience Replay (HER) (Andrychowicz, et al., 2017) and BEAR (Kumar, Fu, Tucker, 

& Levine, 2019).  
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The next section describes the Reinforcement Learning based strategy used for creating the 

training data for the evolution of FightingICE controllers. 

9.5 Training Regime for ICE Game Controller 

A policy-based RL approach is followed for training data creation. (As an aside, a value-based 

approached based on Q-learning was also tried but it did not work well due to the large state 

space involved).  

 

Figure 9-10: Policy table constructed with reinforcement learning provides a mapping from game state to an action policy 

Conceptually the process to acquire training data is as follows: 

1. Create an empty dictionary structure (Policy Table) that maps a 72x1 vector (key) to a 56x1 

vector (value) – see Figure 9-10. This table maps game state to action distribution and will 

be populated as described in subsequent steps 

2. Play 100 or so games using a controller that makes random moves against Thunder AI and 

record raw game frames (non-pixel data only) to obtain a large collection of realistic game 

states. Here P1 (player 1) is designated as the ‘controller’ player and P2 as the opponent. 

Thunder AI was used as the opponent in all subsequent steps 

3. Use the recorded frames to play different scenarios using the ICE provided simulator. (The 

ICE game package comes with a simulator that can be used to simulate game play from 
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any recorded frame; the starting frame and a sequence of actions for each of the players 

is required to make use of the simulator) 

4. For each scenario (recorded frame), extract the corresponding 72x1 state vector and save 

that into the Policy Table mapped to a uniform 56x1 vector (i.e. any action is equally likely). 

5. Play each scenario 10 times with different randomly chosen sequence of actions for P1 and 

the actual recorded sequence of actions for P2 

6. For each simulated play, note the score and if P1 won, update the Policy Table to increase 

the probabilities of the actions taken using methods from Reinforcement Learning (Sutton 

& Barto, 2018) and vice versa 

7. Iterate over all of the recorded frames repeatedly until the Policy Table converges 

8. The Policy Table is the training data for the neural network models 

9. Train a neural network model using the previous iteration of the Policy Table. Use this 

intermediate model in the controller to play and record new game frames. Now instead of 

taking random actions, the actions are chosen from a model trained with the previous 

iteration of the Policy Table. 

10. Again, use the simulator and the newly recorded frames to update the Policy Table till it 

converges. Now, instead of random actions, the actions for P1 are chosen as follows: 

a. If a state has been played before, then choose actions from the current policy table 

in an epsilon-greedy way. With epsilon probability (e.g. 95%) sample the current 

policy associated with the state and with 1 – epsilon probability (e.g. 5% in this 
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case) choose a random action. (Epsilon-greedy approach is a way to balance 

exploration with exploitation). 

b. Otherwise choose a random sequence of actions 

11. Repeat the process starting from step #9 an additional n times to get the final Policy Table 

that will be used for evaluation of the distribution mechanisms – see Figure 9-11. The 

number n is chosen till there is no appreciable improvement in game play. Here it was 3 

iterations of the process. 

About 1GB worth of raw game frames were recorded that resulted in a Policy Table of about 

1M rows – i.e. distinct states. It takes about 24 hours for the Policy Table to converge. The Policy 

Table is a discrete mapping from game state to action distribution. The deep learning model 

trained on the Policy Table is a continuous mapping - i.e. it can provide an action distribution even 

if the input state vector does not exist in the Policy Table. The deep learning model is a highly 

compressed representation of the Policy Table – it is usually less than 100KB in size. Thus, the 

model is better suited for use in the controller (than the underlying table). 
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Figure 9-11: AI controller is trained on saved game frames; the process is boot strapped with a random AI and iteratively 

improved with better trained AIs 

Table 9-2 provides the layout of the 72x1 input state vector. The information in the input vector 

is the current position and speed of the two players (P1 & P2); players’ scores and energies; 

whether or any attacks or projectiles are active; P2 action history; and P1 and P2 position history. 

Player P1 is being controlled by the CA controller and P2 by “Thunder” AI.  

The 72x1 input vector is sliced into 8 ‘semantic’ units labelled by the “Semantic unit” column 

in Table 9-2. The 8 semantic units are carved up from the 72x1 vector so as to provide more 

context for neural network architecture selection. In deep learning models, one type of learning 

is finding the right representations of the input data that help in solving the problem at hand. 

Usually the lower layers of the network process raw input and find embeddings (Roweis & Saul, 

2000) that capture the semantics of the input in some abstract manner. Dividing up the input into 

logical sections should help this process. A minimal neural network architecture structure with the 

8 semantic inputs is shown in Figure 9-12.  
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Table 9-2: Policy Table Input State Layout Structure 

Offset Description Semantic unit 

0,1 P1 x y position s1 

2,3 P1 speedX  speedY s1 

4 P1 energy level s1 

5,6,7,8 P1 state: air | stand | crouch | down s1 

9,10 P1 attack: speedX speedX prj1 

11,12 P1 attack: settingSpeedX settingSpeedY prj1 

13 P1 attack: is_projectile prj1 

14 P1 attack: is_active prj1 

15 P1 attack: is_downProp prj1 

16,17,18,19 P1 attack: 4 attack types (THROW_A, THROW_B, 

THROW_HIT, THROW_SUFFER) 

prj1 

20 P1 action: 1 of 56 actions a1 

21-41 P2 state – repetition of P1 state s2; prj2; a2 

42-47 P2 6 historical actions  a2 

48-59 P1 last 6 x,y positions posH1 

60-71 P2 last 6 x,y positions posH2 
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Figure 9-12:  Graphical structure of a minimal model – 8 ‘semantic’ inputs, 1 intermediate node and 1 output node 

In order to construct the Policy Table, the raw game frames are read in sequence. A sliding 

window of 10 frames is used so that an input state vector with the required history of P2 actions 

can be constructed Figure 9-13. 
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Figure 9-13: Reinforcement learning process to learn policy for discrete states 

The simulator can be configured to simulate a given number of frames starting from the 

provided frame and a sequence of actions for both players. A sequence of 3 actions for each player 

are simulated for 100 frames. The time horizon for a single action is up to 20 frames so 100 frames 

are sufficient to complete all 3 actions. The game is fast paced so a sequence of the next 3 actions 

is sufficient time-horizon for action planning. The simulator completes one action before choosing 

the next action in the given sequence. The action sequence for P2 is taken from the raw game 

frames. The action sequence for P1 are either randomly generated or based on the currently 

available Policy Table. 

The final Policy Table is the data for neural network training. A series of candidate models are 

generated with CATNeuro – configured to run with each of the distribution mechanisms – and 

tested in the controller. This process is explained next. 
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9.6 Neural Architecture Search with CATNeuro 

A deep learning model trained from the Policy Table is a compact representation of the Policy 

Table. It is faster to use; much more compact; and supports mapping from any game state even if 

the state does not exist in the Policy Table. Therefore, using a derived model is better for game 

play than using the underlying table directly. If the state space of a game is small or can be 

discretized effectively than a Policy Table would be a good choice but here that is not the case. 

With most deep learning models, it is not clear what is the right architecture at the outset. 

Discovering an architecture is a time-consuming process that involves trial-and-error. A neural 

architecture search tool like CATNeuro can assist by shortening the search time or freeing up 

human time by substituting it with machine time. 

The Evaluator component used for this task (see section 9.3) is configured to train models with 

a sample of the Policy Table. This was done to shorten the training time for CATNeuro. A sample 

of 130K rows was randomly selected from the full 1M row Policy Table. With the full Policy Table 

this would have been very time consuming. Even with the small sample, the time to complete 6 

CATNeuro runs was is in the range of 24 to 36 hours on single GPU box. A population size of 36 is 

used so each generation (or time-step) requires 36 graph evolutions and subsequent translations 

and training. The vast majority of the time is consumed by model training. The models have to be 

trained on a Graphical Processing Unit (GPU), which is a limited resource. The current hardware 

configuration is limited to a single GPU and therefore it takes 20-30 minutes per generation. 

However, the training is parallelizable so each model can be concurrently trained on a separate 

GPU; such a configuration, if available, would drastically reduce the time required to evolve each 

generation. 
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The sample Policy Table is further split 70/30 into training and evaluation sets (Figure 9-14). 

This is done to prevent overfitting. The candidate models generated by CATNeuro are trained on 

the training set and tested on the evaluation set. The training is done in iterations called epochs. 

Each epoch is a full sweep of the training set. Each model is tested on the evaluation set after each 

epoch. If the evaluation loss is higher than after a previous epoch, the training is stopped. Training 

further would risk overfitting. 

 

Figure 9-14: CATNeuro neural architecture search process 

The termination condition expression is “stop if no improvement is seen in 10 generations”. 

CATNeuro usually runs for 20 to 60 generations before termination. 

CATNeuro is configured to output the 20 best models per run. The top 10% of the models from 

each run are trained on the full Policy Table (again with 70/30 split to prevent overfitting). The 

fully trained models are then tested in the controller and game statistics are recorded for 

assessment and comparison. The next section describes the experimental setup in more detail. 
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9.7 Experimental Setup and Evaluation Methodology for Game Controller Models 

CATNeuro is run 6 times for each KD mechanism in order to evolve deep learning models using 

a sample of the Policy Table for training.  This process takes 2 or 3 days and therefore the sample 

size was kept quite small. The training is done on an Acer Predator laptop with a mobile version 

of the NVidia GTX 1080 GPU. A GPU is required for training models. The experimental parameter 

settings are given in Table 9-3. 

Top 10% of the models are taken from each run and trained on the full Policy Table and then 

run in the controller to play against the Jerry Mizuno AI and the 2018 champion Thunder. Jerry 

Mizuno is supplied by Ritsumeikan University, the maintainers of FightingICE. It is considered a 

benchmark AI controller where the game decisions are made algorithmically using KNN and fuzzy 

logic (Chu & Thawonmas, 2017). Pertinent data from all played games are recorded in log files. 

The format of the log files is in Table 9-4. Beyond the scores for P1 (CATNeuro controller) and P2 

(Jerry Mizuno and Thunder) and the number of hits to each, the log file data is also used to extract 

the action distribution for P1 and P2. There are 56 actions available to the player. A more versatile 

or general model will have a wider repertoire of responses and therefore should have relatively 

more balanced distribution over actions. A weaker model will tend to overuse certain actions.  

Therefore, the breadth of responses is an important basis of comparison for the models produced 

under the two distribution mechanisms.  

Table 9-3: Parameters Settings for CATNeuro Experiment 

Parameter Value  Comment 
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Knowledge Distribution 

Mechanisms 

Stag-Hunt  

Weighted Majority (WTD) 

 

Population size 36 For all populations 

Blueprint and Modules 

Network topology Hexagonal  

Number of Module species 3  

Blueprint limits 20 total nodes New nodes are not 

added after this limit is 

reached 

Module 1 limits 3 nodes 

Only Mutate Parameter 

operation allowed 

This species is meant 

to support embedding 

functionality (Roweis & 

Saul, 2000)  

Module 2 and 3 limits 4 nodes  

Termination condition Stop if no improvement seen 

in 10 generations 

 

Sample size 6 per KD mechanism 6 runs of CATNeuro 

for each KD mechanism 

can take 24-36 hours 
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Models evaluated with 

game controller 

12 per KD mechanism The top 10% of the 

models produced (i.e. 2 

out of 20 * 6) from each 

run were trained with 

the full Policy Table and 

used for testing in the 

game controller 

Deep learning library Microsoft CNTK The current Evaluator 

only supports CNTK 

(Seide & Agarwal, 2016). 

Future versions are 

planned to include 

Tensorflow and PyTorch 

Game character  Zen  For both P1 and P2 

Number of games played 

per model 

10 Each game has 3 

rounds  

 

Table 9-4: CATNeuro Log File Format for Game Statistics 

Column Description 
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P1 Action Action taken by player 1. P1 is played by CATNeuro 

controller 

P1 Last Hit Frame Frame number of when P1 was last hit 

P1 Score P1 score (also called HP) 

P1 Eng P1 energy level 

P2 Action Action taken by P2. P2 is played by 2018 champion 

“Thunder” AI or “Jerry Mizuno” 

P2 Last Hit Frame Frame number of when P2 was last hit 

P2 Score P2 score 

P2 Eng P2 energy level 

 

9.7.1 Basic Performance Analysis 

The log file data is aggregated to measure the basic game performance of the models produced 

by the two KD mechanisms against each of the two opponents, Jerry Mizuno and Thunder. The 

performance comparison is on the basis of: 

• Hits landed on opponent aggregated across all models and by best model by KD 

• Hits received from opponent aggregated across all models and by best model by KD 

• Relative score (player score – opponent score) 

Statistical tests for difference in means are performed by calculating the mean standard 

deviations of the values on a per round basis. Each round is an independent game segment. The 

number of rounds per each KD-opponent combination is 360, sufficient for statistical testing. 
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9.7.2 Relative Action Distribution Analysis 

Figure 9-15 is an example of a 100% stacked column chart that puts the relative action 

distribution of two hypothetical distribution mechanisms head-to-head. In this example, KD1 has 

higher penetration in 3 of the 4 actions shown and therefore is the mechanism that produces 

more versatile models. The relative action distribution charts provide a view into how different 

the strategies of the two players are, on a relative basis.  

 

Figure 9-15: Hypothetical relative action distribution between two models of two distribution mechanisms 

The relative action distribution analysis is a view into the high-level strategies adopted by the 

opposing players. It does not convey the repeated sequence of actions or ‘combos’ that may be 

prevalent in the attendant strategies. For this, combo analysis was performed which is now 

explained. 
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9.7.3 Combo Analysis 

The main idea is to find sequences of actions that match the pattern described next. Find 

combinations of 3 distinct actions done in a sequence where the number of frames does not 

exceed 30 between the 1st and 2nd actions & 2nd and 3rd actions. Such sequences are classified as 

combos. The limit of 30 frames is taken from the FightingICE game documentation. Hits landed 

with 30 frames of each other are considered together and can boost the score beyond the sum of 

the individual hit scores. An example is AIR_A → AIR → AIR_DA. It is two air attacks interspaced 

with the AIR action. 

The individual combos are then aggregated into higher level patterns to reduce the data 

complexity and ease analysis. Each action is either offensive (O), defensive (D) or tactical (T). 

(Tactical actions are positioning actions, such as jump, forward walk, etc.). Each combo is binned 

into a category defined by the permutation of the letters from the set {‘O’, ‘D’, ‘T’}. Hence the OTD 

category will contain all combos that have the [offense] → [defense] → [tactic] pattern. 

Permutations where all categories are the same (e.g. OOO) are excluded from consideration. 

For each category the counts are determined by round. The data is then aggregated to find 

mean and standard deviation for each category and KD mechanism over the 360 rounds. This data 

then is used to compare the two KD mechanisms using statistical testing and data visualization. 

9.7.4 Model Properties 

In addition to the log file data, the properties of the models produced by each of the 

mechanism are also analyzed. The CATNeuro system is configured to output the best 20 models 

found during a run. Only the best 2 are used in the controller for game play. However, all 20 are 

analyzed with respect to structural and other properties to gain further insight into the operation 
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of the tested distribution mechanisms. With 6 runs, there are 6*20=120 models available per 

mechanism. The aggregated properties of each mechanism’s models are compared and 

contrasted. These properties are described in Table 9-5. 

Table 9-5: Model Properties Analyzed 

Model metric Comments 

Training Loss The training loss returned by the Evaluator after training 

the model. For the task at hand, loss is the mean squared 

error between the model output and ground truth from the 

training data. It is the 1st value in the fitness vector 

Number of parameter 

weights 

The total number of weights in the deep learning model 

that are optimized in the training. This a measure of model 

size. It is the 2nd value in the fitness vector 

Number of nodes The total number of nodes in the model produced. It 

includes the input and output nodes of the Blueprint 

individual and all of the embedded Module individuals. It is 

another measure of model size. 

 

Maximum path length The length of the maximum path from the input to the 

output. The maximum lengths of the module subgraphs in 
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the path are included in the path length. It is another 

measure of model size – the depth of the model. 

Number of edges The total number of edges in the graph including those 

in embedded Module subgraphs. It is another measure of 

model size 

Generations to discovery The number of generations the after which a ‘best’ 

model was discovered. As noted earlier, a CATNeuro run 

stops when no improvement is discovered for 10 

generations. A mechanism that is continually able to find 

frequent improvements will have ‘best’ models that are 

found in later generations as it will tend to run for longer. 

This is an metric is an important measure of KD 

performance.  

 

Due to the number of samples possible, statistical testing is used to make judgements about 

the differences in parameters listed in Table 9-5. However, an alternative approach is to visually 

compare the probability densities instead (Cosma Shalizi CMU, 2009).  
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Figure 9-16: Sample probability density comparison chart 

A hypothetical example of such a chart is shown in Figure 9 14. This chart can be used to 

compare the distributions of the same parameter type for two different groups. Each density 

curve can be thought of as a smoothed version of a histogram. In the example chart, the KD1 

distribution (Blue) is clearly shifted to the right and seems to be flatter. And KD2’s distribution is 

peakier and shifted to the left. X-axis has the values of the parameter type that is being compared. 

Y-axis is the probability. The area of each curve will sum to 1.0. This chart is a useful way of 

understanding how the ‘mass’ of a group of values is distributed. 

The parameters listed in Table 9-5 are compared with density charts similar to the example in 

Figure 9-16. Conclusions about parameter differences are drawn on the basis of the density curves 

associated with Stag-Hunt and WTD mechanisms. 

Structural and other numeric properties of the graphical models are another quantitative way 

of comparing models produced under Stag-Hunt and WTD. Since the models are directed graphs 

that have a certain structure, the models can also be assessed qualitatively. The best 6 models 
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associated with each mechanism are drawn with the help of the Microsoft Automated Graph 

Layout Library (Microsoft Research). This tool produces graph layouts that are human readable, if 

the number of nodes is less than 100 or so. The models produced from the two distribution 

mechanisms are compared and assessed with respect to their visual structure. 

The experimental framework discussed thus far provides a language or basis for postulating 

formal hypotheses about the expected outcomes. These are posited and discussed next. 

Experimental results from CATGame show that cooperative distribution allocates compute 

resources more efficiently when faced with complex, dynamic environments, than the standard 

CA distribution mechanism Weighted Majority. Correspondingly is it expected that cooperative 

distribution will perform better in the hierarchically complex domain of neural architecture search 

(Hy 9-1). 

Cooperative knowledge distribution will yield more versatile models   Hy 9-1 

  

The termination condition used does not the cap the number of generations to a fixed number. 

Instead optimization is allowed to run till no improvement is detected in 10 generations.  Given 

that Stag-Hunt balances resources well between exploration and exploitation, it should be able to 

find small improvements more frequently and should sustain search for longer (Hy 9-2). 

Cooperative knowledge distribution will sustain longer search runs   Hy 9-2 

 

Since NEAT (section 9.1) is largely an additive process it follows that the longer the search 

process continues the larger the models are likely to be in terms of the number of nodes, edges, 
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etc.  (Hy 9-3).  Many of the properties listed in Table 9-5 relate to model size – e.g. number of 

nodes; number of edges; number of tunable parameters; etc. All are expected to be consistent 

with respect to each other. 

Longer search runs produce larger models   Hy 9-3 

 

Given better search performance of Stag-Hunt in CATGame, it is postulated that this 

mechanism will find better models in CATNeuro as well. The prima facia performance measure 

under CATNeuro is the training loss. Training loss is the error between the ground truth of the 

training data the output produced by the model. The game performance is a secondary measure 

because the search process cannot directly optimize that. As mentioned earlier, loss is measured 

as mean square error. A lower value indicates that the model is more faithfully able to match the 

training data (Hy 9-4) and this is a desirable goal. One issue with neural network (and other 

machine learning models) is that they can overfit the training data. To prevent overfitting, the 

models are trained on the training set and then periodically evaluated on the test set. Initially loss 

on the training set and the test set decrease but after a point the training loss continues to 

decrease but the test loss (i.e. loss on the test set) may start to rise. Beyond that point the model 

is in danger of being overfit. In CATNeuro the training is stopped when test loss starts to increase 

and therefore the chance of overfit is low. 

The training loss is lower for cooperative distribution mechanism   Hy 9-4 
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In CATGame, the performance differential between WTD and cooperative mechanisms 

widened with increasing environmental complexity (i.e. higher A-value). In CATNeuro there are 

two levels of environmental complexity faced by the models – the mid-level benchmark opponent 

Jerry Mizuno and the 2018 champion Thunder. It is postulated (Hy 9-5) that the cooperative 

mechanism Stag-Hunt should perform better than the competitive WTD, when faced with the 

more challenging opponent than when facing the benchmark AI. 

Cooperative distribution performs better than competitive distribution 

under more complex environmental conditions 

  Hy 9-5 

 

9.8 Chapter Summary  

This chapter described the CATNeuro system designed to optimize deep learning model 

architectures. Partial inspiration for CATNeuro comes from the NEAT methodology for neuro-

evolution but the two are quite different in many important ways. For example, CATNeuro uses a 

population bound with a ‘social’ network where NEAT does not. Also, being a Cultural Algorithms 

system CATNeuro has a Belief Space component comprised of Knowledge Sources. The Influence 

function distributes knowledge among the population. The population individuals are evolved 

under the influence of the associated Knowledge Sources. By contrast, NEAT uses a randomized 

greedy evolutionary strategy. The particular operations of the Knowledge Source to perform in 

the space of directed graphs are also described in detail. 

CATNeuro has multiple populations to support speciation. The Blueprint population is there to 

evolve macro structures of the deep learning models. Modules are for the evolution of reusable, 

modular or cellular components.  Modules are mixed into Blueprints in order to create Network 
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Assemblies that are abstract representation of models. These are then translated into concreted 

models for a particular deep learning library (e.g. Tensorflow) and trained with the training data 

for the optimization task. The training results provide a way of assigning fitness values to all 

population individuals. The fitness values are required by CATNeuro to guide the optimization 

process. 

The implementations of the Stag-Hunt and Weighted Majority distribution mechanisms are 

both described here for CATNeuro. In order to evaluate the performance of Stag-Hunt with 

respect to WTD, the FightingICE game test bed is employed. A reinforcement learning based 

method is used to create the training data required for CATNeuro optimization. The model training 

regimen used is also documented. The models produced via CATNeuro runs are then used in a 

game controller to play multiple games against a benchmark AI and a top-level AI that was the 

2018 ICE champion. Finally, the experimental setup to compare the performances of Stag-Hunt 

and WTD based models is presented to support the testing of specific hypotheses. The next 

chapter analyzes the results of running CATNeuro as per the experimental framework to evolve 

controller models and then using the models to play games against the selected opponent AI. Also 

analyzed are the features and properties of the models produced by the two distribution 

mechanisms. 
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CHAPTER 10  CATNEURO KNOWLEDGE DISTRIBUTION PERFORMANCE ANALYSIS 

10.0 Introduction 

As per the experimental framework defined in the previous chapter, CATNeuro was run 6 times 

each for Stag-Hunt and WTD distribution mechanisms. The top 2 (10%) models from each run 

were played against the benchmark “Jerry Mizuno” AI and the 2018 champion “Thunder” AI for 

10 games each. Section 10.1 compares and analyses the performance of the Stag-Hunt and WTD 

models used in game play. The data for the analysis comes from about 100mb of logged data 

collected during game play. The aggregate performance over all models is discussed as well that 

for best models by different metrics.  Section 10.2 compares the action distribution of the Stag 

Hunt and WTD players and those of the opponents when playing against the CATNeuro players. 

Section 10.4 compares the properties of the models produced under the Stag-Hunt and WTD 

mechanisms. Model properties are aggregated from 120 models for each mechanism (see 9.7). 

Finally, section 10.5 summarizes the results of the analyses done in the prior sections of this 

chapter.  It also draws conclusions about the hypotheses postulated in  9.7. 

Also, for demonstration purposes, the video samples of game play are available here: 

• Stag-Hunt vs Thunder: https://www.youtube.com/watch?v=pc4ls8MzOV4  

• Stag-Hunt vs Jerry Mizuno: https://www.youtube.com/watch?v=ciKTgyMKvG0  

10.1 Game Performance Comparison  

The aggregate game performance of the models produced by Stag-Hunt and WTD is discussed 

first. Followed by performance for best models when playing Jerry Mizuno and then best models 

when playing Thunder. 

https://www.youtube.com/watch?v=pc4ls8MzOV4
https://www.youtube.com/watch?v=ciKTgyMKvG0
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10.1.1 Aggregate Model Performance Results 

Aggregate results for Stag-Hunt and WTD models against Jerry Mizuno are given in Table 10-1 

for hits landed on opponent and Table 10-2 for hits received from the opponent. Both Stag-Hunt 

and WTD generated models perform well against the benchmark AI, Jerry Mizuno. The hits landed 

by CATNeuro models is much higher than hits received. However, the models produced form both 

KD mechanisms perform equally well against the opponent. There are no statistically significant 

differences between the hits landed and hits received values between Stag-Hunt and WTD when 

playing against Jerry Mizuno. 

Table 10-1: Performance Summary - CATNeuro vs. Jerry Mizuno - Hits to Opp. 

Performance Summary - CATNeuro vs. Jerry Mizuno Opp. 

Average hits to opp. per round 

 

Stag-Hunt WTD 

Avg. hits / round 25.63 25.64 

Standard Deviation 4.88 4.46 

Two-sample t-test p value 0.987 (samples=360) 

 

Table 10-2: Performance Summary - CATNeuro vs. Jerry Mizuno – Hits received from Opp. 

Performance Summary - CATNeuro vs. Jerry Mizuno Opp. 

Average hits received from opp. per round 
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Stag-Hunt WTD 

Avg hits received / round 18.57 18.51 

Standard Deviation 3.52 3.56 

Two-sample t-test p value  0.809 (samples=360) 

 

The corresponding results against Thunder are given in Table 10-3 (hits-to-opponent) and Table 

10-4 (hits received from opponent). Thunder is a much stronger opponent than Jerry Mizuno. Both 

Stag-Hunt and WTD produced models cannot compete against Thunder. However, here Stag-Hunt 

produced models perform significantly better when than the WTD produced models in terms of 

the hits-to-opponent metric. The difference is statistically significant in favor of Stag-Hunt. 

Table 10-3: Performance Summary - CATNeuro vs. Thunder - Hits to Opp. 

Performance Summary - CATNeuro vs. Thunder Opp. 

Average hits to opp. per round 

 

Stag-Hunt WTD 

Avg hits to opp. / round 10.48 9.38 

Standard Deviation 4.25 3.91 

Two-sample t-test p value 0.0003 (samples=360) 
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This is not case for hits received. There is no significant difference between Stag-Hunt and WTD 

models for hits received from opponent Thunder. 

Thunder was programmed by a human expert. It contains explicit knowledge of game rules and 

can exploit specification situations in the game. Conversely, Jerry Mizuno is mostly algorithmically 

driven with a combination of Fuzzy Logic and K-nearest neighbors (KNN) methods (Chu & 

Thawonmas, 2017). It would be very hard for a purely AI driven approach to master the game 

unless much more compute resources are deployed. As a reference, Deep Mind’s, Alpha Go used 

40 days of training time to achieve a critical performance breakthrough (Deep Mind, 2017). Even 

then, the system was given the rules of Go in the form of code – the AI did not learn the rules by 

itself. 

Table 10-4: Performance Summary - CATNeuro vs. Thunder - Hits received from Opp. 

Performance Summary - CATNeuro vs. Thunder Opp. 

Average hits received from opp. per round 

 
Stag-Hunt WTD 

Avg hits recv. from opp. / 

round 

36.74 36.78 

Standard Deviation 6.28 7.18 

Two-sample t-test p value 0.9384 (samples=360) 
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Each game has three rounds. The hits to/received-from results on a per round basis are given 

in Table 10-5 for Jerry Mizuno and Table 10-6 for Thunder. 

Table 10-5: Hits by Round – Jerry Mizuno Opp. 

Hits by Round – Jerry Mizuno Opp. 

Avg (Min, Max) 

Type 1 2 3 

Stag-Hunt hits to opp. 26 (17,43) 26 (16,36) 25 (14,36) 

WTD hits to opp. 26 (14,36) 26 (15,41) 25 (15,36) 

Hits t-test p-values 0.7146 0.5241 0.2969 

Stag-Hunt hits recv. from 

opp. 

19 (12,28) 18 (9,26) 19 (6,27) 

WTD hits recv. from opp. 18 (9,27) 19 (12,29) 19 (9,34) 

Hits recv. t-test p-values 0.5474 0.6624 0.8028 

 

Table 10-6: Hits by Round – Thunder Opp. 

Hits by Round – Thunder Opp. 

Avg (Min, Max) 

Type 1 2 3 
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Stag-Hunt hits to opp. 11 (4,25) 11 (2,25) 10 (1,21) 

WTD hits to opp. 9 (2,22) 9 (2,19) 9 (2,21) 

Hits to opp. t-test p-values 0.0195 0.0157 0.1266 

Stag-Hunt hits recv. from 

opp. 

38 (22,53) 36 (23,59) 37 (23,53) 

WTD hits recv. from opp. 37 (18,56) 37 (21,56) 37 (23,54) 

Hits recv. t-test p-values 0.1948 0.1403 0.9357 

 

The statistical test results for differences in the means between Stag-Hunt and WTD for each 

round are also included in the tables. Here again Stag-Hunt performs statistically better (on a per 

round basis) but only for the hits-to-opponent measure. 

Another measure is the relative score – it’s the score achieved by the CATNeuro player minus 

that achieved by the opponent. The relative-score distributions for Stag-Hunt and WTD are shown 

in Figure 10-1 for Jerry Mizuno and  Figure 10-2 for Thunder. Y-axis is probability and x-axis is the 

relative-score. The distributions represent the relative-scores achieved by the Stag-Hunt and WTD 

models, respectively, in the games played. The title of the chart also shows the means and the t-

test for the differences between the means. For Thunder, at 17% probability of the means being 

the same, it is not as significant as the p-value for hits-to-opponent metric (Table 10-3) but it is 

still meaningful. With additional samples, the p-value should indicate better significance. As-is, the 

relative-score is additional confirmation that when facing the stronger opponent, the Stag-Hunt 
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derived models perform better than WTD derived ones. For reference, equivalent data for Jerry 

Mizuno does not show statistical significance (Figure 10-1). Both approaches did well against the 

AI model. 

 

Figure 10-1: Relative-score density plot for Stag-Hunt and WTD when playing Jerry Mizuno 
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Figure 10-2: Relative-score density plot for Stag-Hunt and WTD when playing Thunder 

 

10.1.2 Best Model Performance Results for Jerry Mizuno 

Best models for Stag-Hunt and WTD when playing Jerry Mizuno AI are shown in tables Table 

10-7 and Table 10-8. The best models are described in terms of: 

a. The number of hits to opponent  

b. The relative score (player score – opp. score) 

The associated graphical depictions of the neural network models for (a) are given in Figure 

10-3 for WTD and  Figure 10-4 for Stag-Hunt. And for (b) the corresponding models are in Figure 

10-5 for WTD and Figure 10-6 for Stag-Hunt. 
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The relative score is the difference between the score achieved by CATNeuro model minus that 

for the opponent (Jerry Mizuno in this section). The scores are on a per round basis. As there are 

three rounds per game and the ten games are played by each model, the statistics are based on a 

sample size of 30. 

Table 10-7: Best Model (hits to opp.) - CATNeuro vs. Jerry Mizuno Opp. 

Best Model (hits to opp.) - CATNeuro vs. Jerry Mizuno Opp. 

Average hits to opp. per round 

 
Stag-Hunt WTD 

Avg hits to opp. / round 26.93 27.4 

Standard Deviation 4.71 4.1 

Two-sample t-test p value 0.6837 (samples=30) 

 

Table 10-8: Best Model (relative-score) - CATNeuro vs. Jerry Mizuno Opp. 

Best Model (relative-score) - CATNeuro vs. Jerry Mizuno Opp. 

Relative Score = player score – opp. score 

 Stag-

Hunt 

WTD 

Relative score 25.5 10 

Standard Deviation 72.57 89.3 
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Two-sample t-test p value 0.4636 (samples =30) 

 

The results for the best models, against Jerry Mizuno, do not show significant differences 

between Stag-Hunt and WTD. They both do equally well. For the relative-score model, (Table 10-8) 

seemingly Stag-Hunt average is quite a bit better than WTD but the difference is not statistically 

significant. 

In terms of the graphical models that achieve the best score by hits-to-opponent (Figure 10-3 

for WTD and Figure 10-4 Stag-Hunt), the WTD model is much larger and deeper whereas the Stag-

Hunt is smaller and shallower. This is consistent with the aggregate statistics for model sizes and 

depth (discussed later in section 10.4); Stag-Hunt models tend to be smaller. 

The case is different for best models in terms of relative-score (Figure 10-5 for WTD and Figure 

10-6 for Stag-Hunt). Here the Stag-Hunt model is larger and deeper than the equivalent WTD 

model. Hits-to-opponent measures the offensive posture of the models but relative-score 

measures the balance between offence and defense. A larger model make sense in that it will 

retain more of the information available in the training data – especially if the training loss is also 

lower, which is the case here. 
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Figure 10-3: WTD vs. Jerry Mizuno best model by hits to opp. [Training Loss:1.86, Tunable Parms:8620, Nodes:24, Conns=34, 

Depth=17] 
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Figure 10-4: Stag-Hunt vs. Jerry Mizuno best model by hits to opp. [Training Loss:1.88, Tunable Parms:2293, Nodes:14, 

Conns=14, Depth=8] 
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Figure 10-5: WTD vs. Jerry Mizuno best model by relative-score [Training Loss:1.85, Tunable Parms:7744, Nodes:22, 

Conns=29, Depth=11] 

 



250 
 

 
 

 

Figure 10-6: Stag-Hunt vs. Jerry Mizuno best model by relative-score [Training Loss:1.84, Tunable Parms:9636, Nodes:25, 

Conns=32, Depth=14] 
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10.1.3 Best Model Performance Results for Thunder 

The previous section compared the best model performance results and graphical model 

structures for Jerry Mizuno a benchmark AI supplied with FightingICE. This section discusses 

equivalent results models for Thunder, the 2018 champion. 

Results for the best models by hits-to-opponent are given in Table 10-9 and those for relative-

score are in Table 10-10. 

Table 10-9: Best Model (hits to opp.) - CATNeuro vs. Thunder Opp. 

Best Model (hits to opp.) - CATNeuro vs. Thunder Opp. 

Average hits to opp. per round 

 
Stag-Hunt WTD 

Avg hits to opp. / round 11.6 11.17 

Standard Deviation 3.52 3.49 

Two-sample t-test p value 0.6339 (samples=30) 

 

Table 10-10: Best Model (relative-score) - CATNeuro vs. Thunder Opp. 

Best Model (relative-score) - CATNeuro vs. Thunder Opp. 

Relative Score = player score – opp. score 

 Stag-

Hunt 

WTD 
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Relative score -395.07 -394.37 

Standard Deviation 126.03 101.87 

Two-sample t-test p value 0.9812 (samples=30) 

 

The tables show that for the best models produced by Stag-Hunt and WTD, there are no 

significant differences between the equivalent models. The best models perform equally well. This 

shows that WTD is able to produce good models but its less consistent than Stat-Hunt as borne 

out by the aggregate results discussed earlier (Figure 10-2).  

The corresponding graphical models are in Figure 10-7 (WTD for hits to opp.); Figure 10-8 (Stag-

Hunt hits to opp.); Figure 10-9 (WTD for relative-score); and Figure 10-10 (Stag-Hunt for relative-

score).  
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Figure 10-7: WTD vs. Thunder best model by hits to opp. [Training Loss:1.91, Tunable Parms:9619, Nodes:27, Conns=37, 

Depth=9] 

The equivalent graphical models for Stag-Hunt are smaller in terms of the number of tunable 

parameters or weights and deeper than those for WTD. For the hits-to-opponent best models, 

WTD has 9619 tunable weights and a depth of 9. By contrast, the Stag-Hunt has 9556 weights and 

depth of 16. These patterns hold true for the relative-score best models. This shows that Stag-

Hunt is able to produce smaller (but deeper models) than WTD, that perform equally well against 

the opponent. 
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Figure 10-8: Stag-Hunt vs. Thunder best model by hits to opp. [Training Loss:1.85, Tunable Parms:9556, Nodes:27, Conns=39, 

Depth=16] 
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Figure 10-9: WTD vs. Thunder best model by relative-score [[Training Loss:1.85, Tunable Parms:7744, Nodes:22, Conns=29, 

Depth=11] 
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Figure 10-10: Stag-Hunt vs. Thunder best model by relative-score [Training Loss:1.81, Tunable Parms:4925, Nodes:26, 

Conns=39, Depth=16] 
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This section compared the aggregate and best model performances of the models produced 

by the two KD mechanisms. Both the game scores and the graphical model were compared. The 

next section compares the action distributions of the Stag-Hunt and WTD models used for game 

play. 

10.2 Action Distribution Comparison 

As described in section 9.1, the controller in the FightingICE game can chose from of one of 56 

actions. The actions can be classified as offense, defense or positioning (tactical movement). Not 

all actions are necessarily played by all controllers. This section compares the action distributions 

in a “head-to-head” manner for the Stag-Hunt and WTD models used in game play. Two 

perspectives can be taken a) the action distribution of the CATNeuro players when they are playing 

against the same opponent and b) the action distribution of the opponent when playing Stag-Hunt 

vs when playing WTD.  

For both mechanisms, the distribution over actions is quite uneven (i.e. the frequencies of the 

actions vary considerably) and raw counts or histograms are not very informative. The projection 

of the same data on a head-to-head basis (see Figure 10-11 for an example) is easier to use for 

analysis and insights. The action distributions add to the understanding of players’ skill in the sense 

that a more skillful player will display a greater variety of actions. The presentations of the data in 

this way is labelled “relative action distribution”. Note that the data is just what side (top or 

bottom) plays the action higher number of times. If the corresponding colored bar crosses over 

the green line in the middle, it means that the count is higher for that side. The charts are relative, 

i.e. they are do not denote absolute counts; an action may only be played a few times by each 

player or 100’s of times during the course of a round in the game. This limits the usefulness of the 
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charts but even so some insights can be obtained. Such charts make the comparison easier as the 

frequency of actions between the two players can be directly compared. 

The relative lengths of the colored bars can be used to visually judge the relative difference 

between the counts of the corresponding action. However, a simpler metric is the count of bars 

of one color that are longer than opposing bars of the other color. Such counts are given in the 

title area of each relative action distribution chart. Again, referring to Figure 10-11, the number of 

actions where Stag-Hunt dominates is 29. The corresponding value for WTD is 24. This metric will 

be referred to several times in the following analysis so its best to give a name. Let it be HAC for 

“higher action count” so HAC for Stag-Hunt is 29 and that for WTD is 24 in Figure 10-11. The 

relative action distributions for the Jerry Mizuno and Thunder are discussed separately next. 

10.2.1 Action Distributions – Jerry Mizuno 

This section discusses the relative action distributions for the CATNeuro players vs. Jerry 

Mizuno for both a) aggregated across all models; b) for best models for Stag-Hunt and WTD with 

respect to hits-to-opponent; and c) for best models with respect to relative-score. 
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Figure 10-11: Jerry Mizuno - Relative Action distribution Stag-Hunt vs. WTD for Player Actions 
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Figure 10-12: Jerry Mizuno - Relative Action distribution Stag-Hunt vs. WTD for Opponent Actions 
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Figure 10-13: Jerry Mizuno - Relative Action distribution Stag-Hunt vs. WTD for Player Actions [best model hits to opp.] 
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Figure 10-14: Jerry Mizuno - Relative Action distribution Stag-Hunt vs. WTD for Opponent Actions [best model hits to opp.] 
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Figure 10-15: Jerry Mizuno - Relative Action distribution Stag-Hunt vs. WTD for Player Actions [best model relative-score] 
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Figure 10-16: Jerry Mizuno - Relative Action distribution Stag-Hunt vs. WTD for Opponent Actions [best model relative-score] 
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Figure 10-17: Thunder - Relative Action distribution Stag-Hunt vs. WTD for Player Actions 
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Figure 10-18: Thunder - Relative Action distribution Stag-Hunt vs. WTD for Opponent Actions 
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Figure 10-19: Thunder - Relative Action distribution Stag-Hunt vs. WTD for Player Actions [best model hits to opp.] 
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Figure 10-20: Thunder - Relative Action distribution Stag-Hunt vs. WTD for Opponent Actions [best model hits to opp.] 
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Figure 10-21:  Thunder - Relative Action distribution Stag-Hunt vs. WTD for Player Actions [best model relative-score] 
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Figure 10-22: Thunder - Relative Action distribution Stag-Hunt vs. WTD for Opponent Actions [best model relative-score] 
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Figure 10-11 is relative action distribution of Stag-Hunt players vs WTD players, aggregated 

across all models. By contrast Figure 10-12 shows the relative action distribution of Jerry Mizuno 

AI when playing Stag-Hunt players vs. when playing WTD players. The titles of the graphs show 

the number of actions for which the count of actions is higher by KD mechanism, i.e. the HAC 

values, introduced earlier. For example, in Figure 10-11, the Stag-Hunt and WTD HAC values are 

29 and 24, respectively. Together, both players used 29 + 24 = 53 actions (out of the available 56) 

at least at one point in the games. 

It is interesting to note that the opponent, Jerry Mizuno has a HAC (25) that is twice as higher 

when playing against WTD players than against Stag-Hunt players (12). This indicates that on 

average Jerry Mizuno uses a greater variety of actions against WTD. In other words, on the whole, 

WTD forces Jerry Mizuno to be more versatile. Also, the total actions played by Jerry Mizuno is 

25+12 = 37. This is quite a bit less than those played by CATNeuro players (53). There are 3 ‘air’ 

actions that Jerry Mizuno used when playing against WTD that it did not use against Stag-Hunt. 

The converse is true for only one action. 

Looking at  Figure 10-11, there seems to be no major differences between WTD and Stag-Hunt 

however  Figure 10-12 shows that, from the opponent’s perspective there are discernable 

differences. Jerry Mizuno is using different strategies (distribution over actions) when playing 

against Stag-Hunt vs WTD. The dynamics are not captured when looking at just the CATNeuro 

player distributions but a more complete picture emerges with the combined view of both the 

players’ and opponent’s distributions. The overall result for Jerry Mizuno surmises that the models 

produced by the two KD mechanism tend to learn different ways of playing the game – i.e. the 

mapping from game-state to action distribution is different.  
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Figure 10-13 and Figure 10-14 are relative action distributions for the best models in terms of 

hits-to-opponent. As before, Figure 10-13 is from the CATNeuro players’ perspective and Figure 

10-14 from the opponent’s. The ‘players action distributions clearly show that two models are 

using different strategies – defense and positioning actions are higher for Stag-Hunt and the mixes 

are different for offense between the two. The HAC for Stag-Hunt (37) is also much higher than 

that for WTD (16).  If anything, the WTD model is stresses offense over defense as it uses two 

attack types that Stag-Hunt never uses. The slightly higher ‘hits score for WTD is maybe an 

indication of that. Figure 10-13 is Jerry Mizuno’s actions when playing against the two KD 

mechanisms. The most interesting aspect is that the combined HAC is 12+19=21. This means that 

the, against the best models, Jerry Mizuno only uses 21 out of the 56 available actions. Since these 

are the most aggressive models it is quite likely the models are pinning the opponent down and 

therefore the opponent can respond with a limit set of actions. 

Figure 10-15 and Figure 10-16 are the corresponding charts for the best models by relative-

score. Relative-score is the difference between a CATNeuro player’s and the opponent’s scores. 

First off, the score difference between Stag-Hunt and WTD is approaching statistical significance 

in favor of Stag-Hunt. The p-value is 17% - with more samples it could be reduced further. Then, 

visually, it can be seen in both charts that strategies followed are all different. Stag-Hunt is more 

aggressive as the HAC for just the offensive actions is higher. Jerry Mizuno (Figure 10-16) is also 

more aggressive against Stag-Hunt as there are 3 offense actions that it uses against Stag-Hunt 

but not against WTD (these are “AIR_A”, “AIR_DB”, “STAND_FA”).  Also, Jerry Mizuno uses the 

“JUMP” action against only Stag-Hunt – most likely to avoid getting hit when on the ground. This 

indicates that Stag-Hunt is more engaged with the opponent as compared to WTD.  
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Note that “AIR_” prefix (for offense actions) is for attacks done when the character is in the air. 

These could be different kinds of kicks, or punches. The exact sequence of moves varies by the 

character type; of which there are two - Zen and Garnet. All games were played with Zen on both 

sides. Similarly, “STAND_” and “CROUCH_” prefixes related to actions while in the standing and 

crouching states, respectively. 

10.2.2 Action Distributions – Thunder 

This section performs similar analysis for the Thunder opponent as was done for Jerry Mizuno 

in the previous section. Figure 10-17 and  Figure 10-18 are aggregate-level charts from the players’ 

and the opponent’s perspectives, respectively. Here Stag-Hunt does statistically better than WTD 

but that is not really apparent from the action distributions in Figure 10-17; except that Stag-Hunt 

uses more of the “AIR_F_D_DFB”, “STAND_D_DB_BB” and “STAND_F_D_DFA” attacks (the 

differences are visually discernable). Form the opponent’s perspective (Figure 10-18), at the 

aggregate level, the action distributions of Thunder when playing Stag-Hunt vs. when playing WTD 

are about the same except for two actions. Against Stag-Hunt, Thunder uses “THROW_A” attack 

much more often and does not seem to use the “AIR_FA” attack. On the whole the HAC value for 

Stag-Hunt (30) is higher than for WTD (22). This implies that Thunder is forced to display more 

versatility against Stag-Hunt. In contrast, it was noted earlier that Jerry Mizuno (the weaker 

opponent) displayed more versatility against WTD (Figure 10-12). Also Thunder uses more types 

of actions (30+22=52) than Jerry Mizuno (12+25=37) at the aggregate level. This also shows that 

Thunder is the stronger player. 

Figure 10-19 and Figure 10-20 are relative distributions from the players’ and the opponent 

Thunder’s perspectives, for the best models by hits-to-opponent. The overall performance of Stag-
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Hunt and WTD models (Figure 10-19) is not statistically different but the strategies followed are 

quite different. The HAC score for the Stag-Hunt model (31) is much higher than for WTD (19). This 

shows that the Stag-Hunt model is relatively more versatile that the WTD one. Comparatively, 

Stag-Hunt is more offensive, and WTD is more defensive. The HAC value for the just the offense 

actions is 17 for Stag-Hunt vs. 9 for WTD. The defense HAC is 1 for Stag-Hunt and 4 for WTD. 

From Thunder’s perspective (Figure 10-20) it is also apparent that Stag-Hunt is the more 

aggressive model. The HAC of Thunder’s defense actions is 5 to 0 for Stag-Hunt opponent vs WTD; 

i.e. Thunder is forced to be more defensive when playing against the Stag-Hunt model. The offense 

HAC for Thunder is about the same against both, overall, although there is a marked difference in 

some specific actions. This shows that models from both KDs are engaging well with Thunder but 

Stag-Hunt is trying to land more hits, which Thunder is defending well against. 

Figure 10-21 and Figure 10-22 are relative distributions for the best model by relative-score. 

Here the results are statistically significant in favor of Stag-Hunt. It is somewhat surprising that 

WTD is dominates in terms of HAC, across the board. This implies that Stag-Hunt is able to win 

with an overreliance on a few specific, well-timed moves or ‘combos’. The aspect of timeliness is 

not captured in this view of the data. However, a peek into timeliness can be obtained by 

observing what the opponent is doing.  

 Figure 10-22 shows that Thunder’s HAC against Stag-Hunt (28) is distinctly higher than against 

WTD (16). Thus, Thunder needs to be more versatile when playing against Stag-Hunt. This 

indicates that Stag-Hunt is making more timely moves (or using combos) that are forcing Thunder 

to respond accordingly. 
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This section showed the relative action distributions for the CATNeuro players vs. Thunder as 

a) aggregated across all models and b) for the best models by hits-to-opponent, and relative-score. 

This view of the data covers the overall stance or action strategies of the players and opponents 

but not the prevalent sequence of actions used by the different players/opponents. The next 

section analyses sequences of actions or combos. 

10.3 Combo Analysis 

As described in section 9.7.3 the combo sequence patterns are aggregated into categories such 

as OTD, OTO, etc. on a per round basis. This data is used to test for statistical differences between 

the two KD mechanisms, against each of the two opponents.   

 

Figure 10-23: Hits by combo type - player vs. Jerry Mizuno 

The hits landed against opponent Jerry Mizuno by the models from both mechanisms, under the 

different combo categories or types, are shown in Figure 10-23. Statistically significant 

differences are marked with an ‘*’. Models from both mechanisms land the majority of the hits 
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under the TOT (tactic-offence-tactic) combo category however there is no statistical difference 

between the hits landed by the two types of CATNeuro players. The TOT category is seen to 

represent agility with offense. WTD does statistically better in OTO, TDO and TDT categories but 

the differences are very small. 

 

Figure 10-24: Hits by combo type - player vs. Thunder 

Similar data against Thunder is shown in Figure 10-24. Against the stronger player, Stag-Hunt 

performs statistically more hits under several of the categories namely, DOT, OTO, TDO, TDT, and 

TOT. Categories with zero counts are not shown. Although the per round differences are minor, 

Stag-Hunt is consistently higher than WTD across all the categories. As with Jerry Mizuno, most 

hits are still landed with the TOT type combos. This data also shows that Thunder is the stronger 

opponent as the hit rates for both CATNeuro players are much lower than those against Jerry 

Mizuno. 

From the above analysis it is evident that Stag-Hunt is able to produce more versatile models 

than WTD does. This difference is only evident when playing against the stronger player, Thunder. 
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Stag-Hunt models are able to land statistically more hits that WTD produced ones across a wide 

spectrum of combo categories. The models considered here and in the prior sections of this 

chapter are the top 10% models used for game play. The properties of the full set of generated 

models are discussed next. 

10.4 Model Properties Comparison 

This section compares the properties of the models generated by WTD and Stag-Hunt 

mechanisms. Out of all the models produced (120), only the top 10% (in terms of lowest training 

loss) were used to play the games with Jerry Mizuno and Thunder. 

Even though the majority of the models were not used to play games, they can still serve as a 

basis of comparison between Stag-Hunt and WTD mechanisms and provide further insight. Each 

CATNeuro run returns the top 20 models discovered in the run. As there are 6 runs per 

mechanism, there are 6 x 20 = 120 models per mechanism used for comparison in this section. 

Note that the models produced are orthogonal with respect to the opponents played against (i.e. 

Jerry Mizuno and Thunder); i.e. the same models were played against both opponents.  

The model properties analyzed were first given in Table 9-5. Each of these will be discussed 

next. The analysis presented for each property includes density plots (as explained earlier in 

section 9.7) as well the means and p-values for statistical significance.  
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Figure 10-25: Stag-Hunt and WTD distributions for the number of nodes contained in the models produced 

Figure 10-25 shows the density and of the number of nodes in the models produced. 

Statistically and visually there is not much difference between the two mechanisms. Models with 

about 24 nodes are produced on average by both mechanisms. Note the count reflects the lowest 

level nodes in each model, including input and output nodes. The count excludes the Blueprint 

nodes that are replaced by module species subgraphs at assembly time. The consistency of Stag-

Hunt is slightly better in Figure 10-25 as mass is more narrowly distributed. And the mode for Stag-

Hunt is higher. 

Figure 10-26 show the density for the total number of edges in the models. From the statistical 

perspective, Stag-Hunt models have a smaller number of edges on the whole. The difference is 

statistically significant. However, looking at the density plots, Stag-Hunt has higher mode and its 
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mass is also more compactly distributed. The greater consistency of Stag-Hunt seems to be a 

persistent theme. 

 

Figure 10-26: Stag-Hunt and WTD distributions for the number of edges in the models produced 

Figure 10-27 is for the maximum path length (or depth) of the models. It is the length of the 

longest path from top to bottom. Statistically, there is no significant difference between the 

models produced by the two KD mechanisms. However, visually the mode for Stag-Hunt is higher 

and as before the probability mass distribution is narrower. 
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Figure 10-27: Stag-Hunt and WTD distributions for the maximum path lengths of the models produced 

The distributions over the number of tunable weights or parameters are shown in Figure 10-28. 

These values are calculated by the deep learning framework used for model training in this 

experiment – CNTK (Seide & Agarwal, 2016). CNTK calculates this value after a Blueprint and 

selected modules have been assembled into a complete deep learning model. It reflects the real-

world size of the model. In general, it is desirable to have smaller models for a variety of reasons, 

provided the model accuracy is acceptable. Smaller models are easier to train and faster to use at 

runtime. This is particularly important for game play because near real-time response is required 

to play the game effectively. Also, smaller models tend to overfit less. The CATNeuro system has 

a pluggable ranking mechanism (multi-objective support) that balances model size with training 

loss to give preference to smaller models given the similar or same loss (accuracy). 
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Here Stag-Hunt is statistically better in that it produces smaller models that have about 1300 

less weights to train, on average (7625 – 6291 = 1334). Figure 10-28 shows that there is more to 

the story than just the statistics. Unlike the other density plots discussed thus far, the mass for 

Stag-Hunt is more widely distributed. It is bi-modal where the higher mode matches that for WTD 

at 9K and the other peaks at around 5.5K. All-in-all the chart shows that Stag-Hunt can find smaller 

models that are also good performers. The performance aspect – in terms of training loss – will be 

discussed next.  

 

Figure 10-28: Stag-Hunt and WTD distributions for the number of parameter weights for the models produced 

Figure 10-29 shows the training loss density. It is the mean squared error loss between the 

training data and the model output. Here again Stag-Hunt does better with statistical significance. 

Moreover, the mass distribution is narrower indicating that Stag-Hunt is more consistently able to 

find good solutions. 
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Figure 10-29: Stag-Hunt and WTD distributions for training loss 

The final chart in this series is the number of generations at which the best model was found, 

shown in  Figure 10-30. There are no meaningful differences between the number of generations 

taken by the two KD mechanisms to find the best model, either statistically or visually. Also, the 

range is quite large. The termination condition used was “terminate if no improvement in 10 

generations”. In the majority of the cases the best models were found at close to 30 generations 

however some were found after 70 generations. As mentioned before the training time is quite 

long and a single run can take a day or so on a single GPU machine. 
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Figure 10-30: Stag-Hunt and WTD distributions for the generations at which the best models were discovered 

10.5 Summary and Conclusions 

For the CATNeuro system, 6 samples were taken with each KD mechanisms. A total of 120 

models were produced for each and the top 10% played against both Jerry Mizuno and Thunder. 

The prior sections discussed the performance of the game models (10.1);  the strategic variation 

in the models as reflected in the relative action distributions (10.2); and the overall properties of 

the models produced (10.4).  

For the game performance, Stag-Hunt performs statistically better in: 

a. The hits-to-opponent metric, at the aggregate level, against Thunder (Table 10-1) 

b. Relative-score aggregated across all models, again when playing Thunder (Figure 10-2) 
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c. Best model by relative-score against Jerry Mizuno (Figure 10-16) 

d. Best model by relative-score against Thunder (Figure 10-21) 

More differences are apparent between two KD mechanism when playing the stronger 

opponent Thunder. For the benchmark AI Jerry Mizuno, both mechanisms perform equally well, 

except for c) above. 

The relative action distributions reveal the strategies followed by each of the players – be it 

CATNeuro or opponents. As expected, the weaker opponent Jerry Mizuno uses a considerably 

smaller number of actions than Thunder does. At the aggregate level, how the opponents respond 

is more informative than the action distributions of the CATNeuro players themselves. This is 

apparent in Figure 10-12 for Jerry Mizuno where the HAC for Stag-Hunt is much lower than that 

for WTD. These figures are flipped in Figure 10-18 for Thunder where the HAC of Stag-Hunt is 

higher than that for WTD. The stronger opponent uses a greater variety of actions against Stag-

Hunt models. In general, Stag-Hunt produced models that are more offense oriented that WTD 

ones. This is apparent in Figure 10-18 where Thunder uses more defense actions when playing 

against Stag-Hunt models. 

Considering model properties, it is noted that Stag-Hunt: 

a. produces smaller models than WTD does (Figure 10-28) 

b. it is consistently better in terms of training performance (Figure 10-29) 

c. produces models with a smaller number of edges than WTD does (Figure 10-26)  
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However, beyond purely statistical measures, most density plots show that Stag-Hunt is more 

consistent (has narrower distributions) than WTD, except for when it comes to model size for the 

number of tunable parameter weights. 

 

Figure 10-31: Correlation between generations and model size 

10.6 Testing the Hypotheses 

After the experimental results, the hypotheses postulated in 9.7 are discussed and conclusions 

drawn next. 
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Hy 9-1 “Cooperative knowledge distribution will yield more versatile 

models” 

holds 

 The data to answer this question comes from the game performance 

measures, relative action distributions and combo categories. From a 

performance perspective, Stag-Hunt performs better when faced with 

Thunder for the measures listed earlier. However, against the 

benchmark AI Jerry Mizuno there are no significant performance 

differences between Stag-Hunt and WTD (except for one case) since 

both did well against Jerry Mizuno bot for different reasons. Looking 

at the relative action distributions there is also no clear and consistent 

pattern. Firstly, the HAC values for the players are not very telling. 

There is greater differential between the HAC values of the opponent 

when playing CATNeuro. But here again there is lack of consistency as 

HAC values for Jerry Mizuno show that WTD is more versatile but those 

for Thunder show that Stag-Hunt is more versatile. However, the 

definitive evidence that Stag-Hunt produces more versatile models 

comes from the combo analysis performed in section 10.3. Stag-Hunt 

is able to land significantly more hits than WTD, under a variety of 

combo categories, when playing against the stronger player Thunder 

and therefore Hy 9-1 is accepted. 

 

Hy 9-2 “Cooperative knowledge in CATNeuro distribution will sustain longer 

search runs” 

{does not 

hold} 

 This hypothesis is answerable from Figure 10-30 that shows the 

density of the number of generations to find the top models for both 

mechanisms. Both statistically and visually there is nothing to choose 

between Stag-Hunt and WTD and therefore this hypothesis is rejected. 

 

Hy 9-3 “Longer search runs produce larger models” {holds with 

exceptions} 
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 Here a relationship between the search time and model size is being 

postulated. Figure 10-31 shows this relationship graphically along with 

the correlation measures for Stag-Hunt and WTD. Stag-Hunt (0.42) 

exhibits good correlation between search time and model size 

whereas WTD (0.09) does not.  Stag-Hunt behaves as postulated; it 

seems to be more disciplined. The higher correlation for Stag-Hunt is 

also visually apparent (blue dots in the chart). Initially the correlation 

is linear but then number of nodes seem to level off as generations 

increase. This is primarily due to the limits imposed on the models in 

terms of sizes of the population individuals in the CATNeuro 

configuration used for the runs. Hy 9-3, thus partially holds. It holds for 

Stag-Hunt but not for WTD. 

 

Hy 9-4 “The training loss is lower for cooperative distribution mechanism”  {holds} 

 Hy 9-4 is relatively easy to determine. Figure 10-29 shows the training 

loss distributions for Stag-Hunt and WTD. Average Stag-Hunt loss at 

1.862 mean square error is lower than 1.905 for WTD and difference 

is statistically significant. Visually, the distribution of loss for Stag-Hunt 

is also narrower and peakier. This shows that Stag-Hunt is able to more 

consistently produce models with lower training loss and therefore Hy 

9-4 holds. 

 

Hy 9-5 “Cooperative distribution performs better than competitive 

distribution under more complex environmental conditions” 

{holds} 

 As with CATGame, CATNeuro was tested with multiple levels of 

environmental complexity. Here complexity is in the form of the 

strength of the opponents played against - Jerry Mizuno the 

benchmark AI included with FightingICE; and Thunder the 2018 

champion. Considering the aggregate performance results for both 

opponents, Table 10-1 shows the hits-to-opponent metric for Jerry 
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Mizuno and Table 10-3 for Thunder. Against Jerry Mizuno both KD 

mechanisms perform equally well are able to beat the opponent. 

However, against Thunder (representing higher complexity) Stag-Hunt 

performs significantly better. This is somewhat consistent with the 

relative-score measures shown in Figure 10-1 for Jerry Mizuno and 

Figure 10-2 for Thunder. For Jerry Mizuno there is no statistical 

difference between the relative-scores of the two KD mechanisms. 

However, against Thunder, Stag-Hunt performs better than WTD and 

with a p-value of 17%. All told there is strong evidence that 

cooperative distribution performs relatively better when 

environmental complexity is higher and therefore Hy 9-5 is 

established. 

 

The experimental results for the framework developed in section 9.7 were analyzed and 

discussed in this section. Also, the hypotheses postulated in 9.7 were discussed in light of the 

obtained results and conclusion drawn as to each’s validity. The next chapter summarizes the 

research effort and outlines the possible future works emanating from this exploration. 
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CHAPTER 11 CONCLUSIONS AND FUTURE WORK 

11.0 Introduction 

Cultural Algorithms are knowledge-driven stochastic optimization methods meant for problem 

solving in complex systems. Inspired by anthropological processes, the CA brings much machinery 

to bear on such tasks (Chapter 2). From the Belief Space which is a persistent and responsive store 

of knowledge; a socially networked population space; to intelligent knowledge distribution 

mechanisms; it is aptly equipped to tackle the behavior of a complex system. 

The role of the knowledge distribution mechanisms is germane as they are the key allocators 

of computational resources in a CA system; even more so today when CA research focus has 

shifted to solve dynamically and hierarchically complex multi-objective problems. CA knowledge 

distribution mechanisms have steadily grown in their level of information processing capability 

(entropy) to tackle increasingly complex problems (Chapter 3). Earliest system used random 

distribution of knowledge then competitive mechanisms were developed, specifically majority 

weighted.  The focus of this research is on using games for knowledge distribution, particularly 

cooperation-inclusive games since all prior mechanisms have been competitive. 

Game theory is a deep and vast subject area (Chapter 4) but provides a fertile source of ideas 

for knowledge distribution mechanisms. Three distribution mechanisms were studied, inspired by 

several games in classical and evolutionary game theory, namely: Iterated Prisoner’s Dilemma, 

Stag-Hunt and Stackelberg; all of which span both cooperation and competition. IPD and Stag-

Hunt are related in that Stag-Hunt is an evolutionary game theory variant of Prisoner’s Dilemma 

from classical game theory. Stag-Hunt involves the notion of time in a sense missing from IPD 

which is a single-shot game, played repeatedly. 
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CATGame, a new software system, was constructed in order to facilitate this research. It 

contains a generic mechanism that can be used for injecting arbitrary games into the Influence 

function of the CA for knowledge distribution (Chapter 5).  This mechanism is used by concrete 

adaptions of the aforementioned three games (Chapter 6). In this research, the three 

cooperative/competitive mechanisms are contrasted against the default Weighted Majority 

mechanism (3.2) which is purely competitive. 

IPD and Stag-Hunt are played from the perspective of the players in the population space. Each 

individual plays the game with all of its network neighbors. Due to the structure of the population 

space, complete symmetry and reciprocity is not possible. Each individual is playing against players 

who in turn are playing against a slightly different set of players (their respective neighbors). Thus, 

the games cannot be solved in a classical sense of finding the Nash equilibrium – apart from the 

fact that it would be computationally infeasible to do so. Instead, the players make 

cooperative/competitive decisions based on the best available information. Knowledge 

distribution in each is a two-step process where the players first are classified as Cooperator / 

Defector and then based on that, the knowledge assignments are performed. As a Cooperator an 

individual forgoes egoistic behavior and instead behaves according its rank in society (i.e. social 

rank - Listing 6-2, Listing 6-3). A relatively low-ranking individual accepts a relatively explorative 

Knowledge Source and high ranker, a relatively exploitative one. As a Defector the individual keeps 

its current assignment or accepts the locally dominant KS, depending on factors. 

Stackelberg is played from the perspective of the Knowledge Sources that reside in the Belief 

Space. In microeconomics Stackelberg players make production and (implicitly pricing) decisions 

based on their relative strengths and potential first-mover advantage. Inspired by this, Stackelberg 
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KD allocates the best individuals to the strongest KS but in a way that leaves room for the less 

strong KS. The decision making in Stackelberg is more centralized and structured, as in a centrally 

planned economic system. By contrast IPD and Stag-Hunt are more dynamic and utilize more local 

(i.e. neighborhood) information. 

The performance of the new KD cooperative/competitive mechanisms is compared with 

Weighted Majority, a purely competitive mechanism, with a dynamic landscape generator (7.1); 

Cones World. The dynamic complexity is controlled by the setting the A multiplier of the logistic 

equation. Values of A=1.0, 3.1, 3.6 and 3.9 are used. A=1.0 induces linear changes; at A > 3.0 the 

changes become non-linear; and at 3.9 the chaotic values are produced. The optimization 

landscapes are changed after 2500 generations while the optimization run is still underway. A 

total of 50 landscapes are generated in sequence for a single run. Each KD-A combination is run 

200 times to obtain statistically significant results (7.6).  

Resilience is measured by how quickly the system is able to find the new optimum after the 

proverbial rug is pulled from under it. The main performance metric is the generations-to-solution 

or G2S (7.2). G2S is tracked by landscape change. A new landscape in the sequence is created by 

changing the heights of the cones in the previous landscape using the values obtained from the 

logistic sequence generator. 

CA is a ‘social’ system and hence the behavior of the system can be tracked with several social 

metrics. Diffusion (7.3) and Segregation Index (7.4) are social metrics that measure static aspects 

of the system. However, the CA is also a dynamical system and so to understand the dynamic 

aspects Markovian analysis is performed that involves several approaches strung together (7.5). 
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Community formations are detected using the Frequent Pattern Growth algorithm. Community-

to-community transitions are analyzed with Google Page Rank and other graph-based approaches. 

11.1 The CATGame Results 

Experimental data was collected using the Wayne State grid computing facility. Over 1 terabyte 

of detailed log data was collected from the 200 sample runs for each KD-A combination. The 

experimental results are tabulated and presented in Chapter 8. Inferences about the hypotheses 

postulated in section 7.6, are drawn in section 8.5. 

CATGame is a numerical optimization system meant for use in static and dynamic 

environments. The cooperative, game-based knowledge distribution achieved varied results 

under the different levels of complexity. It was found that IPD and Stag-Hunt generally performed 

the best from linear to chaotic; both were the most resilient to environmental changes (8.1). 

Stackelberg on the other hand was not able to track the changes as well. It performed well initially 

(i.e. in the first few landscapes of the sequence) but then its G2S performance became 

progressively worse over the progression of the landscapes. Also, Stackelberg performs 

progressively worse with increasing non-linear complexity. Weighted Majority shows robust 

behavior in the face of complexity. It is quite robust at A=1 but still lags behind IPD and Stag-Hunt 

in the earlier landscapes but catches up to them later in the sequence (Figure 8-1). With higher A 

values, IPD and Stag-Hunt start to distance themselves from the rest (Figure 8-2, Figure 8-3 & 

Figure 8-4). Overall Stag-Hunt is the most resilient of all the mechanisms tested. It quickly adapts 

to environment change levels and tracks the changes well over time. 

If Weighted Majority is the “wisdom of the crowd” then IPD and Stag-Hunt represent 

“cooperation in the context of social rank”.  Social rank directed cooperation does indeed seem 
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to work well in the face of environmental uncertainty. However, the structured cooperation model 

of Stackelberg is not seen as being as effective. One difference between the two types of 

cooperation is that Stackelberg does not take into account local information. It is akin to a centrally 

planned economic system; i.e. where the resource allocation decisions are centralized. The other 

mechanisms (including WTD) have a ‘market’ economy aspect where allocation decisions are 

decentralized and take into account local conditions. The collapse of socialism in recent geo-

political history is perhaps a reminder that excessive centralization is not effective when the pace 

of change is high. 

The static and dynamic social analyses provide further insight into the operations of the 

different KD mechanisms. The most telling is Schelling’s Segregation Index. Higher performing 

mechanisms have consistent response in terms of exhibiting higher average segregation as 

environmental complexity changes from linear to non-linear to chaotic (Figure 8-20). To wit, WTD, 

IPD and Stag-Hunt all exhibit an increase in average segregation in the population as complexity 

changes form linear to chaotic. Further, IPD and Stag-Hunt show a higher degree of change in 

population segregation than WTD. This indicates that IPD and Stag-Hunt are more sensitive to 

environmental changes than WTD. Stackelberg on the other hand is not consistent it its responses. 

Here the segregation first increases and then decreases as change tends to chaotic. Segregation 

index is an emergent phenomenon. It can be seen as response to the degree of stress placed on 

the system. More consistent response means that the underlying mechanisms withstand and 

don’t break down under varying degree of duress. 

The dynamic analysis (8.4) shows that both cooperative mechanisms and the competitive 

mechanism work differently. This is quite evident when observing Page Rank derived tree charts 
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(Figure 8-46, Figure 8-48, Figure 8-50 and Figure 8-52). All mechanisms have different ‘signature’ 

in terms of the community rankings produced by the dynamics. The signatures remain somewhat 

consistent even across A-values. When one compares the chart for Stackelberg with those of the 

other mechanisms, it can be seen that Stackelberg allocates comparatively more resources to 

exploitation. This partly explains the lack of Stackelberg performance in a dynamic environment 

that seems to require higher degree of exploration especially as the environment becomes more 

chaotic. 

The community-to-community transition data is projected into another view. The communities 

are categorized as Explorative, Neutral or Exploitative, depending on each’s explorative index. 

Then statistically significant changes in net flow are measured and plotted by each A transition 

(e.g. 1.0 → 3.1, 3.1 → 3.6, etc.). Net flow here means net change (increase – decrease) into a 

particular category. Take the Explorative category and 1.0 → 3.1 (linear → non-linear) transition. 

The statistically significant inflow ([Neutral; Exploitative] → Explorative) and outflow (Explorative 

→ [Neutral; Exploitative]) are measured and the differences taken. This value is the resource 

increase / decrease into the Explorative category due to the change in A 1.0→3.1. This is done for 

all transitions and all categories. Figure 8-58 and Figure 8-59 show the net flow for Explorative and 

Exploitative categories, respectively. The interesting result is that the best performing mechanism 

– Stag-Hunt – is very consistent in allocating progressively more resources to exploration and 

progressively less resources to exploitation, with each increment in A. None of the other 

mechanisms are completely consistent. This is a strong indication that the underlying mechanism 

of resource allocation in Stag-Hunt is very robust in the face of environmental complexity. It also 

shows if the environment rate of change is higher, comparatively more resources need to be 
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directed to exploration. The observed segregation behavior can also be explained from this result; 

increasing exploration (and decreasing exploitation) changes the mix of the communities in the 

population and therefore increases segregation as explorative KS will tend to dominate. 

Considering that the KD mechanism is the primary factor in the distribution of knowledge (i.e. 

allocation of compute resources) in the CA, it can be concluded that Stag-Hunt is the most 

consistent in making allocation decisions under varying levels of complexity and therefore shows 

as being the most robust in the face of it. 

CATGame was meant to test the behavior of cooperative knowledge distribution under 

dynamic complexity. Another notion of complexity is hierarchical complexity. How well does 

cooperation work to solve hierarchically complex problems? 

To answer this question the CATNeuro system was constructed to find optimal model 

structures for deep learning models. CATNeuro uses CA for Neural Architecture Search (NAS) – an 

emerging field that is currently drawing considerable research interest. The top evolutionary 

computation conference “IEEE World Congress on Computational Intelligence” (WCCI) 2020 has 

an entire track dedicated to Neural Architecture Search. 

CATNeuro uses speciation with multiple populations to evolve optimal models (inspired by 

NEAT and derivative works) (9.1). This is a hierarchical optimization problem (Figure 1-4). Tier one 

is the overall graph structure (blueprint); tier two is the selection of module species that are 

assembled into a particular blueprint; and tier three is the optimization of parameters such as e.g. 

learning rate, dimensions of dense nodes, activation types, etc. 
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11.2 CATNeuro Results 

CATGame is for numerical optimization in dynamic environments and CATNeuro is finding 

optimal graph structures – two very different domains and two different notions of complexity. 

The best performing cooperative mechanism from CATGame – Stag-Hunt – is implemented and 

its performance compared with the default competitive mechanism – Weighed Majority (9.3). 

The test problem is to evolve an optimal model to play the FightingICE game against the two 

selected opponents – the benchmark AI Jerry Mizuno and the 2018 champion Thunder (9.1). The 

test problem favors small and fast models that can play the game at the required frame rate. The 

deep learning model training process requires specialized infrastructure and can take a long time 

(e.g. days in some cases). Keeping the test problem manageably small is helpful but even here it 

can take about a week to complete the training and test cycles (including playing the games with 

the selected opponents). For the particular test case, the train-test cycle time can be minimized if 

access is available to a ‘farm’ of 150 GPUs. The sample size for each KD-A mechanism is only 6 vs. 

200 for the CATGame experiment. Additionally, each sample run for CATGame was over 

2500*50=125000 generations vs. only 30-70 generations for CATNeuro. CATGame produces much 

more data. The kind of statistical analysis done for CATGame is not feasible for CATNeuro. Instead 

the focus is on comparing the performance of the models generated by the two KD mechanisms 

against the two players and the comparison of the structural properties and other aspects of the 

generated models (9.7).  

Data required to train the models was obtained through the application of Reinforcement 

Learning using a policy-based approach (9.4). This process is explained in section 9.5; it takes about 

24 hours to complete and results in a large policy table of about 1M rows and 1G size on disk. 
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CATNeuro runs are performed with a sample of the training data. Top models are then trained on 

the full dataset and played against the opponents. Under the experimental setup (9.7), each 

model is played 10 times against each opponent and the game statistic recorded. 

The experimental results for CATNeuro are organized by: 

a. Game performance (10.1) 

b. Action strategies (10.2) 

c. Combo analysis (10.3) 

d. Model properties (10.4) 

The game performance results show that against the benchmark AI, Jerry Mizuno, models from 

both KD mechanism performed well and won all the games. Both approaches were able to use 

the same basic techniques to defeat the opponent.  

Against the 2018 champion Thunder all games are lost by each mechanism (which is more of a 

function of the available learnings from RL derive training data). However here, Stag-Hunt derived 

models do better than WTD models, with statistical significance, for hits-to-opponent and relative-

score metrics. This shows that Stag-Hunt can extract relatively more information from the training 

data. 

Considering the relative action distributions, no consistent patterns emerge between the two 

types of CATNeuro players, in head-to-head comparison (Figure 10-11, Figure 10-17). However, 

observing the opponent strategies is more telling - i.e. actions distributions of Jerry Mizuno and 

Thunder playing WTD vs. when playing Stag-Hunt, respectively (Figure 10-12, Figure 10-18). One 
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can also gauge a player’s performance by looking at how the opponent chooses to respond. Jerry 

Mizuno responds with greater versatility when playing WTD models (HAC: WTD = 25, Stag-

Hunt=12). Conversely, Thunder shows greater versatility when playing Stag-Hunt (HAC: WTD=22, 

Stag-Hunt=30). The results show that opponents respond differently and hence the models learnt 

by the two KD mechanism behave differently, at the aggregate level. Greater versatility of the 

opponent against a certain player indicates that the player is forcing the opponent to respond 

with greater variety, by making more timely moves. From this perspective, Stag-Hunt is making 

the stronger player Thunder work harder than WTD does. 

The combo analysis provides clear evidence that Stag-Hunt does indeed create more versatile 

models than WTD does. This is evidenced by the fact that Stag-Hunt lands significantly more hits 

on the stronger opponent Thunder under a variety of combo types. 

The model properties comparison shows that Stag-Hunt produces significantly smaller models 

with respect to number of edges (Figure 10-26) and number of learnable weights (Figure 10-28). 

Also, importantly, Stag-Hunt models have lower training loss on average (Figure 10-29). In general, 

smaller (more parsimonious) models are desired, provided accuracy (training loss) is not 

compromised. Stag-Hunt seems better able to balance these conflicting goals. 

Next, several hypotheses postulated in section 9.7 related to NAS and CATNeuro are analyzed 

and addressed in 10.5. The primary question this research set out to answer is whether 

cooperative knowledge distribution improves CA performance in complex environments. Drawing 

much from Game Theory this proposition is studied with respect to dynamic and hierarchical 

notions of complexity. The results show that, for the numerical optimization domain (dynamic 

complexity), cooperation in the context of social rank makes the system more robust and performs 
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better than the default competitive mechanism WTD. WTD is also robust but less so as complexity 

increases. In the neural architecture search domain (hierarchical complexity) the results are mixed 

with a slight edge for cooperation. In vivo (training loss), cooperation performs significantly better 

but in vitro (game play) it is only marginally better. The signal is weaker in the NAS problems and 

therefore “wisdom of the crowd” is about as effective as social rank centered cooperation. 

11.3 Future Direction 

The CATGame system is configured with a generic game mechanism that can be exploited for 

analyzing other cooperative and competitive game mechanisms. Game Theory – both classical and 

evolutionary – have deep reserves to draw from. Exploring other games or evolutionary strategies 

for knowledge distribution will extend the understand for building robust systems in the face of 

complexity. 

Deep learning is a prime area for further exploration. Optimal model topology and 

hyperparameter tuning is an active research area. Model tuning is a time-consuming task that still 

requires much human input and therefore automation to free up human capital is much desired.   

This research shows that evolutionary algorithms are effective means of addressing the NAS 

challenge. By design CA is well suited to solving problems in this domain. 

However, CATNeuro is a new system with many missing features such the ability to construct 

models with convolutions and recurrence. It needs to be extended to provide better coverage of 

the available functionality in deep learning toolkits. The current translation mechanism is for the 

CNTK toolkit only. Translations for other popular toolkits such as Tensorflow, PyTorch and support 

for ONNX (open neural network exchange) formats are fruitful avenues of future work. 
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Training deep learning models is already a very time consuming. Adding stochastic search on 

top greatly extends the time required to find optimal models. If history is an indicator, hardware 

to train deep learning models should become, faster, cheaper and more plentiful. CATNeuro is 

built with parallel model training support but it needs to be developed further to seamless access 

vast arrays of training hardware to reduce search time. Many completing NAS approaches are 

being developed and CATNeuro should be benchmarked against the top contenders to derive 

additional insights for improvements. 
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APPENDIX A CATGAME FUNCTIONAL INTERFACE 

CATGame is written in a strongly-typed functional programming language F#. The equivalent 

to UML diagrams in functional programming is the functional interface; it shows the high-level 

structure in terms of the top data structures and function types. 

///type definitions for the CA 'interface'  
//defined in a functional programming way 
module rec CA 
 
///CA structure - instance of CA that can be stepped through for optimization 
type CA<'k> = 
    { 
        BeliefSpace             : BeliefSpace<'k> 
        Acceptance              : Acceptance<'k> 
        Update                  : Update<'k> 
        Influence               : Influence<'k> 
        Population              : Population<'k> 
        Network                 : Network<'k> 
        Fitness                 : Fitness 
        Optimization            : OptimizationKind 
        EnvChngSensitivity      : EnvChngSensitivity                                                   
    } 
 
///how should we respond to environmental changes 
//CA may or may not reset set internal state based on this setting 
type EnvChngSensitivity =  
 
    ///CA does not adjust internal state if environment changes  
    | Insensintive  
 
    ///After how many environmental changes to re-adjust. 
    ///A value of 1 means re-adjust to every environment change 
    | Every of int                                           
 
///Instructs CA how to respond to environment change 
type EnvChngeType =  
    | NoChange    //environment did not change 
    | Adjust      //environment changed - adjust internal state accordingly 
    | Track       //environment changed but only note the changes - do not adjust 
internal state 
 
type OptimizationKind = Minimize | Maximize  //minimization or maximization problem 
 
///tree structure of the belief space knowledge source 
type BeliefSpace<'k> = KnowledgeSource<'k> Tree 
 
///knowledge source type 
type KnowledgeSource<'k> =  
    { 
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        ///Knowledge type identifier (Domain, Normative, etc.) 
        Type        : Knowledge 
 
        ///Acceptance function type of a knowledge source 
        Accept      : EnvChngeType -> Individual<'k> array -> Individual<'k> array 
* KnowledgeSource<'k> 
 
        ///Influence function type of a knowledge source 
        Influence   : Population<'k> -> Temperature -> Individual<'k> -> 
Individual<'k> 
    } 
 
type Tree<'a>        = Leaf of 'a | Node of 'a * Tree<'a> list | Roots of Tree<'a> 
list 
 
type Knowledge       = Situational | Historical | Normative | Topgraphical | Domain 
| Other of string 
 
///CA acceptance function type 
type Acceptance<'k>  = BeliefSpace<'k> -> Population<'k> -> Individual<'k> array 
 
///CA update function type 
type Update<'k>      = EnvChngeType -> BeliefSpace<'k> -> Individual<'k> array -> 
BeliefSpace<'k> 
 
///CA influence function type 
type Influence<'k>   = Influence of ( 
                            EnvChngeType                                                
//environment change signal 
                                -> Population<'k>  
                                -> BeliefSpace<'k>  
                                -> Network<'k>  
                                -> Fitness  
                                -> OptimizationKind                                          
                                -> (Population<'k>*BeliefSpace<'k>*Influence<'k>))      
//returns updated population, beliefSpace and influence function 
 
///Population individual (parameterized by KS type) 
type Individual<'k>  = {Id:Id; Parms:float array; Fitness:float; KS:'k} 
 
///Population is an array of indviduals 
type Population<'k>  = Individual<'k> array 
 
///Network function type 
type Network<'k>     = Population<'k> -> Id -> Individual<'k> array 
 
///Fitness function type 
type Fitness         = (float array -> float) ref 
 
///Id of the population individual (alias to int) 
type Id = int 
 
///The level of influence to apply (alias to float) 
type Temperature = float 
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///Parameters and fitness values extracted from 'best' individuals 
type Marker = {MParms:float[]; MFitness:float} 
 
///Structure to hold single step in a CA run 
type TimeStep<'k> = {CA:CA<'k> ; Best:Marker list; Progress:float list; Count:int; 
EnvChngCount:int} 
 
///function type to specify the termination of a CA run 
type TerminationCondition<'k> = TimeStep<'k> -> bool 
 
///Parameter types and ranges for the fitness problem 
//TODO: make this part of the CA structure 
type Parm =  
    /// float parameter type 
    | F of      v:float     * min:float     * max:float  
 
    ///integer parameter type (stepped through as whole integers by optimiztion 
engine) 
    | I of      v:int       * min:int       * max:int 
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APPENDIX B DIFFUSION STATISTICAL TESTS 

Statistical tests for diffusion by A value and landscape sequence number 

B.1 A=1 
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B.2 A=3.1 
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B.3 A=3.6 
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B.4 A=3.9 
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B.5 T-TESTS BY LANDSCAPE AND SUCCESSIVE A VALUES FOR WTD 

 

 

KD=WTD

Landscape μ A=1 σ A=1 μ A=3.1 σ A=3.1 μ A=3.6 σ A=3.6 μ A=3.9 σ A=3.9 μ 1!=3.1 μ 3.1!=3.6 μ 3.6!=3.9

1 0.684882 0.121618 0.640029 0.143723 0.668878 0.13145 0.647377 0.132309 1 1 -1

2 0.687477 0.119064 0.685225 0.13055 0.69923 0.109417 0.692919 0.123214 -1 -1 -1

3 0.684755 0.12406 0.683283 0.124613 0.682715 0.121451 0.712467 0.119656 -1 -1 1

4 0.700683 0.11311 0.714847 0.103599 0.720614 0.098751 0.719282 0.094679 -1 -1 -1

5 0.698064 0.111194 0.711711 0.096364 0.716605 0.100754 0.709817 0.102726 -1 -1 -1

6 0.693739 0.119736 0.724081 0.092492 0.720026 0.086444 0.717085 0.088422 1 -1 -1

7 0.709505 0.105973 0.717974 0.083031 0.726222 0.083856 0.723892 0.086572 -1 -1 -1

8 0.702985 0.104832 0.730318 0.080306 0.722952 0.077389 0.723927 0.088887 1 -1 -1

9 0.695203 0.105259 0.712636 0.084233 0.71899 0.074593 0.723587 0.080256 -1 -1 -1

10 0.712062 0.108715 0.726044 0.085414 0.726248 0.07685 0.729508 0.089599 -1 -1 -1

11 0.69707 0.103368 0.721038 0.092796 0.719231 0.082477 0.719125 0.086582 1 -1 -1

12 0.697958 0.112889 0.722351 0.074053 0.72905 0.075827 0.719902 0.088754 1 -1 -1

13 0.716086 0.104594 0.721093 0.080374 0.734102 0.077008 0.728424 0.084107 -1 -1 -1

14 0.707458 0.104027 0.7251 0.072713 0.733144 0.078487 0.716043 0.081707 -1 -1 1

15 0.701595 0.103989 0.72498 0.080153 0.728979 0.084105 0.724507 0.089817 1 -1 -1

16 0.715643 0.100254 0.736115 0.074458 0.746481 0.074972 0.725345 0.077977 1 -1 1

17 0.701386 0.10257 0.723098 0.076929 0.729853 0.075054 0.723456 0.076541 1 -1 -1

18 0.699386 0.111457 0.732422 0.078128 0.726967 0.080003 0.730167 0.077148 1 -1 -1

19 0.710602 0.101651 0.725352 0.072269 0.730034 0.07687 0.735179 0.085961 -1 -1 -1

20 0.703459 0.107197 0.731414 0.074799 0.720034 0.079476 0.720593 0.072217 1 -1 -1

21 0.704564 0.105387 0.725409 0.078614 0.72309 0.076538 0.728283 0.078811 1 -1 -1

22 0.719116 0.103226 0.731046 0.074876 0.733205 0.082338 0.73087 0.07268 -1 -1 -1

23 0.707719 0.102246 0.721559 0.07301 0.726312 0.080203 0.715477 0.079458 -1 -1 -1

24 0.705619 0.103606 0.720577 0.075168 0.712519 0.079068 0.710512 0.089004 -1 -1 -1

25 0.721959 0.1029 0.735565 0.073085 0.72718 0.078241 0.735105 0.076479 -1 -1 -1

26 0.713581 0.092427 0.727977 0.078886 0.736376 0.074539 0.713214 0.077349 -1 -1 1

27 0.702832 0.099305 0.720186 0.075493 0.715576 0.078802 0.726492 0.078083 1 -1 -1

28 0.719331 0.094545 0.726096 0.073314 0.733959 0.074111 0.723772 0.07856 -1 -1 -1

29 0.710846 0.097283 0.730294 0.074579 0.721935 0.077864 0.72905 0.079058 1 -1 -1

30 0.710787 0.101626 0.72804 0.078514 0.715585 0.073342 0.729755 0.069832 -1 -1 1

31 0.722009 0.09758 0.71999 0.073832 0.732161 0.080065 0.72867 0.076166 -1 -1 -1

32 0.711615 0.093664 0.73116 0.075047 0.733156 0.070388 0.720831 0.081247 1 -1 -1

33 0.718205 0.094413 0.718915 0.079285 0.722094 0.077498 0.722202 0.080084 -1 -1 -1

34 0.721808 0.093274 0.7308 0.073688 0.731382 0.070486 0.732189 0.073135 -1 -1 -1

35 0.712471 0.106477 0.723712 0.073613 0.728637 0.083968 0.72656 0.078442 -1 -1 -1

36 0.703958 0.098777 0.718211 0.077439 0.730155 0.07743 0.724838 0.070115 -1 -1 -1

37 0.728623 0.092716 0.732189 0.072761 0.726527 0.084567 0.731951 0.082573 -1 -1 -1

38 0.718543 0.090921 0.710864 0.081912 0.717458 0.077274 0.728584 0.076383 -1 -1 -1

39 0.70511 0.093918 0.727764 0.078916 0.724391 0.078745 0.721464 0.083333 1 -1 -1

40 0.728001 0.093181 0.733495 0.077549 0.73382 0.077212 0.733598 0.077429 -1 -1 -1

41 0.712711 0.09836 0.720976 0.083972 0.722331 0.080576 0.725232 0.084096 -1 -1 -1

42 0.706687 0.100932 0.716796 0.07727 0.721915 0.075704 0.715111 0.081098 -1 -1 -1

43 0.73096 0.100518 0.721736 0.073172 0.732566 0.07046 0.729054 0.078401 -1 -1 -1

44 0.703552 0.097078 0.725452 0.073637 0.719467 0.074721 0.72388 0.07848 1 -1 -1

45 0.70899 0.096284 0.718843 0.073004 0.720397 0.07695 0.72605 0.07691 -1 -1 -1

46 0.708277 0.090335 0.729812 0.074789 0.720961 0.079163 0.730582 0.076754 1 -1 -1

47 0.712029 0.091367 0.718129 0.0775 0.71442 0.07884 0.730839 0.076673 -1 -1 1

48 0.71104 0.104562 0.729141 0.071806 0.721363 0.086555 0.721349 0.084437 1 -1 -1

49 0.719724 0.096669 0.721022 0.073804 0.736041 0.073314 0.729122 0.085545 -1 1 -1

50 0.711279 0.097382 0.724685 0.077806 0.723235 0.080563 0.719218 0.077729 -1 -1 -1
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APPENDIX C SEGREGATION STATISTICAL TESTS 

C.1 A=1 

 

 

A=1.0

Landscape WTD MeanWTD Stdv. IPD Mean IPD Stdv. TTest IPD != WTD SHS Mean SHS Stdv. TTest SHS != WTD STK Mean STK Stdv. TTest STK != WTD

1 0.656009 0.136437 0.67567 0.121409 -1 0.692123 0.139062 1 0.44514 0.124905 1

2 0.638874 0.136619 0.664599 0.126218 -1 0.66543 0.125283 1 0.505266 0.11745 1

3 0.654591 0.141854 0.667263 0.129044 -1 0.848041 0.149751 1 0.536298 0.125071 1

4 0.641322 0.119186 0.666199 0.115674 1 0.688047 0.134422 1 0.562801 0.119929 1

5 0.636094 0.130697 0.667111 0.115109 1 0.679541 0.130347 1 0.583421 0.123865 1

6 0.643561 0.138008 0.675576 0.125579 1 0.854851 0.162788 1 0.602909 0.127653 1

7 0.636459 0.130996 0.673673 0.126863 1 0.709468 0.140292 1 0.610515 0.133936 -1

8 0.626766 0.14422 0.673845 0.124654 1 0.66974 0.124014 1 0.610553 0.134897 -1

9 0.634161 0.131637 0.676348 0.125458 1 0.847058 0.154191 1 0.633336 0.139142 -1

10 0.64476 0.13729 0.670632 0.129605 -1 0.706942 0.125864 1 0.639254 0.143766 -1

11 0.619073 0.123088 0.678854 0.134538 1 0.687 0.125808 1 0.652594 0.136707 1

12 0.644863 0.135426 0.674953 0.126388 1 0.844728 0.144053 1 0.654982 0.141537 -1

13 0.640202 0.136998 0.687193 0.132185 1 0.672053 0.132856 1 0.670696 0.145464 1

14 0.636877 0.131576 0.680512 0.131511 1 0.675766 0.136117 1 0.673243 0.14964 1

15 0.623646 0.138009 0.668596 0.132834 1 0.849597 0.153379 1 0.687678 0.145196 1

16 0.643199 0.142802 0.67024 0.129318 1 0.708558 0.143448 1 0.685939 0.146465 1

17 0.635658 0.132495 0.657842 0.120724 -1 0.673573 0.130142 1 0.695564 0.149432 1

18 0.642053 0.152564 0.676547 0.125693 1 0.85981 0.145856 1 0.700866 0.146453 1

19 0.63136 0.130191 0.671497 0.139465 1 0.700184 0.140617 1 0.706295 0.142609 1

20 0.633246 0.144173 0.672439 0.130313 1 0.679161 0.140376 1 0.708866 0.147154 1

21 0.635164 0.123132 0.685936 0.127308 1 0.852243 0.143217 1 0.714509 0.141059 1

22 0.631354 0.11741 0.671132 0.119526 1 0.692854 0.123002 1 0.722863 0.145148 1

23 0.633868 0.130251 0.681792 0.110303 1 0.689757 0.1336 1 0.729939 0.146401 1

24 0.637781 0.147404 0.692912 0.121459 1 0.861827 0.146302 1 0.733558 0.13774 1

25 0.616026 0.136763 0.669064 0.12732 1 0.679795 0.130855 1 0.742 0.136625 1

26 0.636287 0.131389 0.672421 0.127897 1 0.672871 0.136328 1 0.741421 0.136547 1

27 0.622646 0.126157 0.690678 0.116903 1 0.838389 0.142126 1 0.741015 0.136805 1

28 0.662067 0.136176 0.67398 0.122793 -1 0.686123 0.132086 -1 0.750892 0.133885 1

29 0.622462 0.130645 0.675883 0.134923 1 0.66095 0.128726 1 0.74555 0.136237 1

30 0.627836 0.122537 0.68119 0.131892 1 0.839009 0.138432 1 0.748895 0.131581 1

31 0.632123 0.132183 0.677959 0.1179 1 0.707006 0.139969 1 0.750947 0.124059 1

32 0.626711 0.132731 0.660892 0.1254 1 0.666231 0.146479 1 0.757035 0.133546 1

33 0.638056 0.139891 0.686889 0.125119 1 0.82312 0.152193 1 0.760939 0.130962 1

34 0.633088 0.149756 0.673804 0.124547 1 0.674702 0.139819 1 0.762737 0.129547 1

35 0.634684 0.122919 0.669433 0.124572 1 0.666196 0.135756 1 0.773137 0.129876 1

36 0.634281 0.131362 0.68688 0.133558 1 0.836921 0.148813 1 0.769868 0.12287 1

37 0.625813 0.137706 0.66081 0.114204 1 0.688342 0.139338 1 0.773219 0.127779 1

38 0.62505 0.127227 0.687208 0.128933 1 0.668503 0.127502 1 0.774898 0.111673 1

39 0.620857 0.12466 0.674564 0.134551 1 0.84393 0.152479 1 0.779602 0.115594 1

40 0.652333 0.138223 0.67017 0.123908 -1 0.681909 0.136132 1 0.77795 0.119601 1

41 0.641649 0.142385 0.684611 0.127441 1 0.68538 0.130309 1 0.781798 0.113262 1

42 0.640953 0.13569 0.668246 0.13934 1 0.853368 0.125599 1 0.789386 0.111522 1

43 0.635482 0.132007 0.664997 0.112136 1 0.691149 0.136708 1 0.787637 0.11272 1

44 0.62462 0.136778 0.678471 0.11528 1 0.66793 0.126683 1 0.791041 0.114233 1

45 0.61324 0.118724 0.667506 0.120855 1 0.875637 0.13579 1 0.789763 0.101044 1

46 0.658114 0.14228 0.672371 0.13285 -1 0.702202 0.135755 1 0.798298 0.103728 1

47 0.613678 0.123653 0.672518 0.130153 1 0.675667 0.126501 1 0.802275 0.104072 1

48 0.62483 0.120949 0.675392 0.121676 1 0.826231 0.142186 1 0.798632 0.106578 1

49 0.608591 0.121599 0.678851 0.121515 1 0.688327 0.127545 1 0.799459 0.103244 1

50 0.64145 0.13814 0.652801 0.12188 -1 0.655389 0.126442 -1 0.805412 0.102423 1
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C.2 A=3.1 

 

A=3.1

Landscape WTD MeanWTD Stdv. IPD Mean IPD Stdv. TTest IPD != WTD SHS Mean SHS Stdv. TTest SHS != WTD STK Mean STK Stdv. TTest STK != WTD

1 0.647681 0.140271 0.709345 0.125705 1 0.698588 0.15233 1 0.457725 0.113279 1

2 0.647789 0.133511 0.684403 0.124466 1 0.649866 0.118928 -1 0.50833 0.12283 1

3 0.646842 0.130996 0.710637 0.130471 1 0.858471 0.142166 1 0.531228 0.114797 1

4 0.633409 0.135589 0.687401 0.133161 1 0.672713 0.141095 1 0.565012 0.112784 1

5 0.636512 0.126892 0.716781 0.138378 1 0.680263 0.136461 1 0.578807 0.127397 1

6 0.627161 0.132222 0.677591 0.134418 1 0.818789 0.144154 1 0.592023 0.129019 1

7 0.632328 0.129962 0.709015 0.133078 1 0.703 0.143914 1 0.606073 0.128884 1

8 0.628863 0.120496 0.683287 0.121645 1 0.670237 0.143362 1 0.631942 0.133339 -1

9 0.634579 0.14501 0.710573 0.13421 1 0.846871 0.135376 1 0.63376 0.135995 -1

10 0.633845 0.141458 0.70148 0.127556 1 0.695848 0.131935 1 0.643699 0.139852 -1

11 0.635184 0.132911 0.726933 0.124523 1 0.697597 0.13421 1 0.648325 0.14501 -1

12 0.639705 0.136362 0.698646 0.133305 1 0.825909 0.149226 1 0.653851 0.141909 -1

13 0.645728 0.134265 0.732439 0.12731 1 0.715784 0.119442 1 0.668351 0.146301 -1

14 0.646991 0.152022 0.707909 0.124563 1 0.674266 0.133293 -1 0.667368 0.143413 -1

15 0.631813 0.126376 0.741436 0.132434 1 0.858851 0.160038 1 0.678442 0.149978 1

16 0.634392 0.124688 0.705038 0.128 1 0.694515 0.135595 1 0.680494 0.149213 1

17 0.6305 0.132131 0.733424 0.124327 1 0.694819 0.136602 1 0.694526 0.151547 1

18 0.62317 0.129693 0.690509 0.128832 1 0.832465 0.148547 1 0.703424 0.151211 1

19 0.635237 0.1245 0.747325 0.115171 1 0.726561 0.139552 1 0.706535 0.149343 1

20 0.634383 0.129773 0.721974 0.125134 1 0.674939 0.142502 1 0.7095 0.152416 1

21 0.625377 0.135309 0.754348 0.139893 1 0.862594 0.15376 1 0.714635 0.146668 1

22 0.651307 0.150332 0.701588 0.118489 1 0.691643 0.131773 1 0.725816 0.143536 1

23 0.623915 0.127753 0.760915 0.128057 1 0.720784 0.133024 1 0.73283 0.141353 1

24 0.644901 0.154638 0.740681 0.130283 1 0.85764 0.141648 1 0.730673 0.144472 1

25 0.625678 0.118351 0.763716 0.126283 1 0.718073 0.153763 1 0.736298 0.140041 1

26 0.638102 0.126363 0.696108 0.130516 1 0.691895 0.139347 1 0.739597 0.141109 1

27 0.651833 0.132312 0.755789 0.136411 1 0.880772 0.131621 1 0.743032 0.141956 1

28 0.641152 0.14269 0.719547 0.13093 1 0.703272 0.139935 1 0.740681 0.137979 1

29 0.631728 0.13025 0.785453 0.132228 1 0.726506 0.139247 1 0.753725 0.134568 1

30 0.627974 0.131852 0.716474 0.120736 1 0.858942 0.153625 1 0.754895 0.130255 1

31 0.646035 0.131268 0.766573 0.125808 1 0.751316 0.143964 1 0.761661 0.133414 1

32 0.648845 0.138756 0.734287 0.128069 1 0.683406 0.126948 1 0.765406 0.126889 1

33 0.628064 0.132513 0.764699 0.132699 1 0.886047 0.140957 1 0.767956 0.129388 1

34 0.641436 0.140306 0.726401 0.117542 1 0.710313 0.148594 1 0.776129 0.127813 1

35 0.638924 0.144202 0.750497 0.131895 1 0.728877 0.142913 1 0.777801 0.113921 1

36 0.629325 0.125598 0.737553 0.133395 1 0.840187 0.145161 1 0.775079 0.115128 1

37 0.636591 0.123861 0.772591 0.128425 1 0.748368 0.14915 1 0.777319 0.120177 1

38 0.64169 0.140562 0.723099 0.128892 1 0.67698 0.140232 1 0.781661 0.119686 1

39 0.641243 0.133088 0.755266 0.136505 1 0.857751 0.141333 1 0.778643 0.119479 1

40 0.64993 0.133084 0.734161 0.132626 1 0.703529 0.136925 1 0.782263 0.11707 1

41 0.624184 0.121199 0.758985 0.130282 1 0.734029 0.145727 1 0.779477 0.117634 1

42 0.643515 0.140682 0.722064 0.127043 1 0.851506 0.14682 1 0.786608 0.108503 1

43 0.629883 0.138547 0.775155 0.132903 1 0.739597 0.132863 1 0.790149 0.108879 1

44 0.62957 0.141989 0.724436 0.122998 1 0.679556 0.131505 1 0.788746 0.110972 1

45 0.634468 0.116721 0.751956 0.131649 1 0.888965 0.14713 1 0.792047 0.107412 1

46 0.647839 0.13963 0.724687 0.137709 1 0.702553 0.145569 1 0.799377 0.10886 1

47 0.645126 0.141288 0.773623 0.138391 1 0.73483 0.150952 1 0.798266 0.094651 1

48 0.633263 0.131451 0.744102 0.123969 1 0.867848 0.147188 1 0.803114 0.099166 1

49 0.640006 0.125628 0.771298 0.129474 1 0.758994 0.149068 1 0.802538 0.09877 1

50 0.638044 0.136152 0.727082 0.130196 1 0.698915 0.139234 1 0.805275 0.086303 1
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C.3 A=3.6 

 

A=3.6

Landscape WTD MeanWTD Stdv. IPD Mean IPD Stdv. TTest IPD != WTD SHS Mean SHS Stdv. TTest SHS != WTD STK Mean STK Stdv. TTest STK != WTD

1 0.655667 0.151484 0.724535 0.119526 1 0.689953 0.148734 1 0.447368 0.1173 1

2 0.645094 0.140195 0.66981 0.135624 -1 0.6685 0.135904 -1 0.506237 0.110489 1

3 0.643289 0.140562 0.727254 0.131196 1 0.861029 0.138316 1 0.541173 0.107896 1

4 0.64152 0.131204 0.697301 0.136779 1 0.702295 0.134713 1 0.558994 0.116876 1

5 0.647591 0.150035 0.722328 0.126756 1 0.694465 0.149966 1 0.590029 0.121803 1

6 0.648213 0.12848 0.694705 0.129997 1 0.860319 0.145436 1 0.590345 0.120307 1

7 0.627158 0.127031 0.726096 0.12711 1 0.71648 0.15058 1 0.607895 0.12719 -1

8 0.641044 0.14239 0.704901 0.124561 1 0.675924 0.136442 1 0.612067 0.132629 1

9 0.642588 0.130163 0.716412 0.137526 1 0.839135 0.137768 1 0.628778 0.13936 -1

10 0.614988 0.131697 0.707579 0.140312 1 0.715734 0.133236 1 0.63583 0.141858 -1

11 0.648114 0.146554 0.727705 0.128822 1 0.700398 0.142862 1 0.642526 0.143025 -1

12 0.637494 0.142876 0.713292 0.127362 1 0.837807 0.142253 1 0.650301 0.134095 -1

13 0.641348 0.132858 0.714368 0.121898 1 0.701529 0.14895 1 0.653494 0.142413 -1

14 0.628617 0.126544 0.698719 0.132197 1 0.671743 0.133466 1 0.651772 0.146861 -1

15 0.637009 0.127456 0.726664 0.137875 1 0.853547 0.132406 1 0.664602 0.148796 1

16 0.641503 0.13312 0.704942 0.125013 1 0.68336 0.138514 1 0.677646 0.145907 1

17 0.633775 0.147505 0.737412 0.125464 1 0.702149 0.145774 1 0.680749 0.144303 1

18 0.644096 0.14362 0.714933 0.133119 1 0.844567 0.143271 1 0.687675 0.149486 1

19 0.637713 0.125544 0.709643 0.131004 1 0.711503 0.140899 1 0.702634 0.145306 1

20 0.636058 0.140047 0.710026 0.117437 1 0.696412 0.132283 1 0.70555 0.141636 1

21 0.637012 0.127238 0.726292 0.137704 1 0.867857 0.160006 1 0.713594 0.139561 1

22 0.634716 0.129373 0.717678 0.119314 1 0.709977 0.146148 1 0.714702 0.142387 1

23 0.656757 0.143165 0.731456 0.128993 1 0.697319 0.141206 1 0.71817 0.142663 1

24 0.652275 0.134741 0.727237 0.11623 1 0.828763 0.140008 1 0.721345 0.14548 1

25 0.632632 0.134916 0.755064 0.132013 1 0.713415 0.140779 1 0.721079 0.142959 1

26 0.651225 0.141297 0.727281 0.130707 1 0.677009 0.135412 -1 0.730026 0.138365 1

27 0.653982 0.135458 0.74214 0.136828 1 0.865099 0.142261 1 0.74169 0.13581 1

28 0.639784 0.147064 0.725228 0.137462 1 0.701594 0.133285 1 0.73717 0.13764 1

29 0.638599 0.135714 0.746436 0.136862 1 0.725465 0.129508 1 0.742787 0.133187 1

30 0.647254 0.139665 0.728211 0.125232 1 0.858532 0.146698 1 0.745029 0.136325 1

31 0.636865 0.131955 0.74424 0.131292 1 0.736243 0.138835 1 0.757234 0.129922 1

32 0.630728 0.13319 0.715485 0.131356 1 0.704009 0.11935 1 0.761298 0.125454 1

33 0.628784 0.128018 0.746632 0.133497 1 0.868099 0.147668 1 0.759418 0.133276 1

34 0.645433 0.134677 0.71883 0.125946 1 0.698526 0.142892 1 0.768947 0.122284 1

35 0.636781 0.149681 0.753175 0.127781 1 0.705029 0.15057 1 0.769541 0.123858 1

36 0.637485 0.140099 0.723816 0.123486 1 0.858871 0.13946 1 0.76981 0.118423 1

37 0.627097 0.121075 0.739263 0.125049 1 0.715172 0.144379 1 0.772994 0.130535 1

38 0.631854 0.139699 0.737965 0.139505 1 0.698553 0.13342 1 0.772737 0.121966 1

39 0.64355 0.131015 0.755468 0.136928 1 0.873447 0.153665 1 0.772646 0.118566 1

40 0.638942 0.132156 0.736289 0.126969 1 0.718137 0.14837 1 0.777409 0.133906 1

41 0.61738 0.123165 0.748421 0.123691 1 0.70086 0.134111 1 0.782702 0.128306 1

42 0.63776 0.128712 0.729167 0.131102 1 0.850018 0.158043 1 0.784161 0.12143 1

43 0.631497 0.13536 0.76305 0.1296 1 0.728561 0.139606 1 0.788763 0.1168 1

44 0.651146 0.144302 0.732965 0.122073 1 0.694143 0.134992 1 0.790374 0.118115 1

45 0.642044 0.127894 0.735187 0.12516 1 0.878556 0.155636 1 0.789053 0.113427 1

46 0.637538 0.14258 0.726313 0.123242 1 0.70338 0.143663 1 0.794219 0.109978 1

47 0.639442 0.134631 0.759687 0.124761 1 0.705281 0.15431 1 0.804175 0.116035 1

48 0.637655 0.118077 0.724702 0.126926 1 0.837632 0.145927 1 0.80195 0.113346 1

49 0.653307 0.148119 0.762737 0.124956 1 0.738561 0.145235 1 0.80131 0.109727 1

50 0.631076 0.127168 0.734047 0.133882 1 0.682447 0.138742 1 0.801743 0.113241 1
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C.4 A=3.9 

 

A=3.9

Landscape WTD MeanWTD Stdv. IPD Mean IPD Stdv. TTest IPD != WTD SHS Mean SHS Stdv. TTest SHS != WTD STK Mean STK Stdv. TTest STK != WTD

1 0.66036 0.144093 0.689222 0.128802 1 0.686289 0.146705 -1 0.459649 0.11334 1

2 0.650231 0.136214 0.703722 0.118223 1 0.692287 0.133915 1 0.498444 0.117565 1

3 0.637848 0.136573 0.705538 0.138933 1 0.847433 0.139673 1 0.532664 0.110527 1

4 0.628164 0.131724 0.712225 0.119928 1 0.720854 0.119217 1 0.550067 0.114919 1

5 0.638096 0.125167 0.733728 0.139951 1 0.712456 0.136809 1 0.571687 0.110093 1

6 0.639605 0.138085 0.717994 0.121871 1 0.872012 0.140268 1 0.591605 0.117615 1

7 0.63783 0.133941 0.738687 0.136943 1 0.713851 0.140829 1 0.594594 0.120028 1

8 0.633746 0.137585 0.716035 0.130804 1 0.710155 0.145369 1 0.618766 0.125653 -1

9 0.63688 0.127563 0.736298 0.132499 1 0.888497 0.144633 1 0.619222 0.135733 -1

10 0.655854 0.136926 0.722459 0.132836 1 0.723035 0.141196 1 0.620485 0.136108 1

11 0.62664 0.139273 0.727135 0.132636 1 0.740211 0.132577 1 0.632851 0.136777 -1

12 0.623643 0.129757 0.74183 0.127577 1 0.864292 0.148277 1 0.648155 0.142604 -1

13 0.639105 0.140843 0.732085 0.129384 1 0.71445 0.135483 1 0.653307 0.145912 -1

14 0.653646 0.147537 0.734944 0.140172 1 0.705743 0.138985 1 0.659588 0.144988 -1

15 0.629509 0.126444 0.736403 0.125422 1 0.855307 0.133567 1 0.667213 0.145253 1

16 0.614193 0.127388 0.745439 0.129792 1 0.724804 0.145888 1 0.674146 0.142089 1

17 0.621465 0.122097 0.737462 0.134359 1 0.697687 0.148715 1 0.675883 0.14822 1

18 0.639161 0.136993 0.733114 0.131628 1 0.874249 0.152737 1 0.683135 0.152513 1

19 0.645661 0.134454 0.748597 0.136143 1 0.722319 0.146275 1 0.695275 0.146043 1

20 0.628199 0.134644 0.748737 0.132605 1 0.710436 0.145848 1 0.699114 0.145099 1

21 0.629722 0.121136 0.735903 0.125448 1 0.852801 0.145082 1 0.695915 0.15112 1

22 0.641316 0.151657 0.758345 0.125373 1 0.734415 0.131267 1 0.702544 0.144426 1

23 0.630149 0.139877 0.724515 0.131749 1 0.709465 0.13344 1 0.710822 0.145224 1

24 0.646997 0.145682 0.75074 0.13296 1 0.876225 0.157825 1 0.72019 0.144962 1

25 0.62036 0.127126 0.742345 0.137319 1 0.719015 0.143619 1 0.713184 0.144016 1

26 0.629158 0.135415 0.737322 0.134123 1 0.706401 0.144472 1 0.72698 0.14527 1

27 0.635152 0.124598 0.752866 0.151428 1 0.850781 0.138903 1 0.731874 0.138742 1

28 0.654939 0.130814 0.737009 0.128719 1 0.733716 0.136062 1 0.744155 0.142876 1

29 0.639401 0.134815 0.755579 0.131193 1 0.723541 0.150423 1 0.740307 0.143694 1

30 0.644266 0.121065 0.756728 0.136024 1 0.880629 0.135542 1 0.744231 0.145263 1

31 0.626956 0.130116 0.753681 0.12624 1 0.707889 0.15004 1 0.74357 0.14263 1

32 0.629857 0.130235 0.740807 0.132637 1 0.705219 0.136395 1 0.74114 0.150376 1

33 0.624813 0.136597 0.731114 0.13499 1 0.879749 0.148144 1 0.74695 0.140229 1

34 0.646673 0.136139 0.737056 0.128886 1 0.707325 0.140159 1 0.753518 0.144717 1

35 0.631278 0.134846 0.754193 0.136364 1 0.702559 0.136785 1 0.760246 0.140384 1

36 0.619205 0.128103 0.76064 0.130624 1 0.879202 0.150863 1 0.765018 0.128682 1

37 0.633123 0.131253 0.74083 0.134462 1 0.746076 0.147355 1 0.768845 0.130372 1

38 0.626886 0.129688 0.737652 0.128404 1 0.725234 0.134035 1 0.772632 0.132174 1

39 0.630854 0.131861 0.741661 0.12614 1 0.877058 0.150453 1 0.779725 0.127346 1

40 0.626436 0.11901 0.741471 0.124093 1 0.720526 0.138623 1 0.779415 0.126355 1

41 0.648301 0.161078 0.743927 0.129685 1 0.691839 0.137332 1 0.784699 0.123716 1

42 0.628901 0.135313 0.768474 0.127686 1 0.867526 0.148416 1 0.788965 0.125869 1

43 0.623857 0.135046 0.755751 0.136731 1 0.711614 0.155123 1 0.792801 0.125322 1

44 0.622096 0.134688 0.759348 0.131621 1 0.716029 0.147172 1 0.789333 0.124772 1

45 0.634994 0.131117 0.755316 0.12447 1 0.878918 0.129254 1 0.789196 0.123433 1

46 0.636471 0.134768 0.748556 0.133895 1 0.72293 0.152885 1 0.796801 0.11648 1

47 0.636851 0.154412 0.755696 0.135818 1 0.707184 0.142987 1 0.797006 0.117929 1

48 0.64383 0.129904 0.750012 0.135068 1 0.877383 0.144543 1 0.797366 0.122332 1

49 0.65293 0.146496 0.752687 0.127591 1 0.724728 0.134173 1 0.803845 0.117631 1

50 0.643155 0.138792 0.75843 0.122282 1 0.716772 0.135188 1 0.803588 0.117175 1
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C.5 IPD: T-TESTS BY LANDSCAPE AND SUCCESSIVE A VALUES 

 

 

KD=IPD

Landscape μ A=1 σ A=1 μ A=3.1 σ A=3.1 μ A=3.6 σ A=3.6 μ A=3.9 σ A=3.9 μ 1!=3.1 μ 3.1!=3.6 μ 3.6!=3.9

1 0.67567 0.121409 0.709345 0.125705 0.724535 0.119526 0.689222 0.128802 1 -1 1

2 0.664599 0.126218 0.684403 0.124466 0.66981 0.135624 0.703722 0.118223 -1 -1 1

3 0.667263 0.129044 0.710637 0.130471 0.727254 0.131196 0.705538 0.138933 1 -1 -1

4 0.666199 0.115674 0.687401 0.133161 0.697301 0.136779 0.712225 0.119928 -1 -1 -1

5 0.667111 0.115109 0.716781 0.138378 0.722328 0.126756 0.733728 0.139951 1 -1 -1

6 0.675576 0.125579 0.677591 0.134418 0.694705 0.129997 0.717994 0.121871 -1 -1 -1

7 0.673673 0.126863 0.709015 0.133078 0.726096 0.12711 0.738687 0.136943 1 -1 -1

8 0.673845 0.124654 0.683287 0.121645 0.704901 0.124561 0.716035 0.130804 -1 -1 -1

9 0.676348 0.125458 0.710573 0.13421 0.716412 0.137526 0.736298 0.132499 1 -1 -1

10 0.670632 0.129605 0.70148 0.127556 0.707579 0.140312 0.722459 0.132836 1 -1 -1

11 0.678854 0.134538 0.726933 0.124523 0.727705 0.128822 0.727135 0.132636 1 -1 -1

12 0.674953 0.126388 0.698646 0.133305 0.713292 0.127362 0.74183 0.127577 -1 -1 1

13 0.687193 0.132185 0.732439 0.12731 0.714368 0.121898 0.732085 0.129384 1 -1 -1

14 0.680512 0.131511 0.707909 0.124563 0.698719 0.132197 0.734944 0.140172 1 -1 1

15 0.668596 0.132834 0.741436 0.132434 0.726664 0.137875 0.736403 0.125422 1 -1 -1

16 0.67024 0.129318 0.705038 0.128 0.704942 0.125013 0.745439 0.129792 1 -1 1

17 0.657842 0.120724 0.733424 0.124327 0.737412 0.125464 0.737462 0.134359 1 -1 -1

18 0.676547 0.125693 0.690509 0.128832 0.714933 0.133119 0.733114 0.131628 -1 -1 -1

19 0.671497 0.139465 0.747325 0.115171 0.709643 0.131004 0.748597 0.136143 1 1 1

20 0.672439 0.130313 0.721974 0.125134 0.710026 0.117437 0.748737 0.132605 1 -1 1

21 0.685936 0.127308 0.754348 0.139893 0.726292 0.137704 0.735903 0.125448 1 1 -1

22 0.671132 0.119526 0.701588 0.118489 0.717678 0.119314 0.758345 0.125373 1 -1 1

23 0.681792 0.110303 0.760915 0.128057 0.731456 0.128993 0.724515 0.131749 1 1 -1

24 0.692912 0.121459 0.740681 0.130283 0.727237 0.11623 0.75074 0.13296 1 -1 -1

25 0.669064 0.12732 0.763716 0.126283 0.755064 0.132013 0.742345 0.137319 1 -1 -1

26 0.672421 0.127897 0.696108 0.130516 0.727281 0.130707 0.737322 0.134123 -1 1 -1

27 0.690678 0.116903 0.755789 0.136411 0.74214 0.136828 0.752866 0.151428 1 -1 -1

28 0.67398 0.122793 0.719547 0.13093 0.725228 0.137462 0.737009 0.128719 1 -1 -1

29 0.675883 0.134923 0.785453 0.132228 0.746436 0.136862 0.755579 0.131193 1 1 -1

30 0.68119 0.131892 0.716474 0.120736 0.728211 0.125232 0.756728 0.136024 1 -1 1

31 0.677959 0.1179 0.766573 0.125808 0.74424 0.131292 0.753681 0.12624 1 -1 -1

32 0.660892 0.1254 0.734287 0.128069 0.715485 0.131356 0.740807 0.132637 1 -1 -1

33 0.686889 0.125119 0.764699 0.132699 0.746632 0.133497 0.731114 0.13499 1 -1 -1

34 0.673804 0.124547 0.726401 0.117542 0.71883 0.125946 0.737056 0.128886 1 -1 -1

35 0.669433 0.124572 0.750497 0.131895 0.753175 0.127781 0.754193 0.136364 1 -1 -1

36 0.68688 0.133558 0.737553 0.133395 0.723816 0.123486 0.76064 0.130624 1 -1 1

37 0.66081 0.114204 0.772591 0.128425 0.739263 0.125049 0.74083 0.134462 1 1 -1

38 0.687208 0.128933 0.723099 0.128892 0.737965 0.139505 0.737652 0.128404 1 -1 -1

39 0.674564 0.134551 0.755266 0.136505 0.755468 0.136928 0.741661 0.12614 1 -1 -1

40 0.67017 0.123908 0.734161 0.132626 0.736289 0.126969 0.741471 0.124093 1 -1 -1

41 0.684611 0.127441 0.758985 0.130282 0.748421 0.123691 0.743927 0.129685 1 -1 -1

42 0.668246 0.13934 0.722064 0.127043 0.729167 0.131102 0.768474 0.127686 1 -1 1

43 0.664997 0.112136 0.775155 0.132903 0.76305 0.1296 0.755751 0.136731 1 -1 -1

44 0.678471 0.11528 0.724436 0.122998 0.732965 0.122073 0.759348 0.131621 1 -1 1

45 0.667506 0.120855 0.751956 0.131649 0.735187 0.12516 0.755316 0.12447 1 -1 -1

46 0.672371 0.13285 0.724687 0.137709 0.726313 0.123242 0.748556 0.133895 1 -1 -1

47 0.672518 0.130153 0.773623 0.138391 0.759687 0.124761 0.755696 0.135818 1 -1 -1

48 0.675392 0.121676 0.744102 0.123969 0.724702 0.126926 0.750012 0.135068 1 -1 -1

49 0.678851 0.121515 0.771298 0.129474 0.762737 0.124956 0.752687 0.127591 1 -1 -1

50 0.652801 0.12188 0.727082 0.130196 0.734047 0.133882 0.75843 0.122282 1 -1 -1
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APPENDIX D CATNEURO BEST MODELS 

The top 12 models produced from the 6 CATNeuro sample runs are shown below – WTD 

followed by Stag-Hunt. 

D.1 WEIGHTED MAJORITY MODELS 
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D.2 STAG-HUNT MODELS 
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CATGAME: A TOOL FOR PROBLEM SOLVING IN COMPLEX DYNAMIC SYSTEMS USING GAME 

THEORETIC KNOWLEDGE DISTRIBUTION IN CULTURAL ALGORITHMS, AND ITS APPLICATION 

(CATNEURO) TO THE DEEP LEARNING OF GAME CONTROLLER 

by 
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Advisor: Dr. Robert G. Reynolds  

Major: Computer Science  
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Cultural Algorithms (CA) are knowledge-intensive, population-based stochastic optimization 

methods that are modeled after human cultures and are suited to solving problems in complex 

environments. The CA Belief Space stores knowledge harvested from prior generations and re-

distributes it to future generations via a knowledge distribution (KD) mechanism. Each of the 

population individuals is then guided through the search space via the associated knowledge. 

Previously, CA implementations have used only competitive KD mechanisms that have performed 

well for problems embedded in static environments. Relatively recently, CA research has evolved 

to encompass dynamic problem environments. Given increasing environmental complexity, a 

natural question arises about whether KD mechanisms that also incorporate cooperation can 

perform better in such environments than purely competitive ones? Borrowing from game theory, 
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game-based KD mechanisms are implemented and tested against the default competitive 

mechanism – Weighted Majority (WTD).  

Two different concepts of complexity are addressed – numerical optimization under dynamic 

environments and hierarchal, multi-objective optimization for evolving deep learning models. The 

former is addressed with the CATGame software system and the later with CATNeuro. 

CATGame implements three types of games that span both cooperation and competition for 

knowledge distribution, namely: Iterated Prisoner's Dilemma (IPD), Stag-Hunt and Stackelberg. 

The performance of the three game mechanisms is compared with the aid of a dynamic problem 

generator called Cones World. Weighted Majority, aka “wisdom of the crowd”, the default CA 

competitive KD mechanism is used as the benchmark. It is shown that games that support both 

cooperation and competition do indeed perform better but not in all cases. The results shed light 

on what kinds of games are suited to problem solving in complex, dynamic environments. 

Specifically, games that balance exploration and exploitation using the local signal of ‘social’ rank 

– Stag-Hunt and IPD – perform better.  Stag-Hunt which is also the most cooperative of the games 

tested, performed the best overall. Dynamic analysis of the ‘social’ aspects of the CA test runs 

shows that Stag-Hunt allocates compute resources more consistently than the others in response 

to environmental complexity changes. Stackelberg where the allocation decisions are centralized, 

like in a centrally planned economic system, is found to be the least adaptive. 

CATNeuro is for solving neural architecture search (NAS) problems. Contemporary ‘deep 

learning’ neural network models are proven effective. However, the network topologies may be 

complex and not immediately obvious for the problem at hand. This has given rise to the 

secondary field of neural architecture search. It is still nascent with many frameworks and 
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approaches now becoming available. This paper describes a NAS method based on graph 

evolution pioneered by NEAT (Neuroevolution of Augmenting Topologies) but driven by the 

evolutionary mechanisms under Cultural Algorithms. Here CATNeuro is applied to find optimal 

network topologies to play a 2D fighting game called FightingICE (derived from “The Rumble Fish” 

video game). A policy-based, reinforcement learning method is used to create the training data 

for network optimization. CATNeuro is still evolving. To inform the development of CATNeuro, in 

this primary foray into NAS, we contrast the performance of CATNeuro with two different 

knowledge distribution mechanisms – the stalwart Weighted Majority and a new one based on 

the Stag-Hunt game from evolutionary game theory that performed the best in CATGame. The 

research shows that Stag-Hunt has a distinct edge over WTD in terms of game performance, model 

accuracy, and model size. It is therefore deemed to be the preferred mechanism for complex, 

hierarchical optimization tasks such as NAS and is planned to be used as the default KD mechanism    

in CATNeuro going forward.
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