
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

4-27-2021 

Phenotype of peripheral NK cells in latent, active, and meningeal Phenotype of peripheral NK cells in latent, active, and meningeal 

tuberculosis tuberculosis 

José Alberto Choreño-Parra 
Escuela Nacional de Ciencias Biológicas 

Shabaana A. Khader 
Washington University School of Medicine in St. Louis 

et al 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

Recommended Citation Recommended Citation 
Choreño-Parra, José Alberto; Khader, Shabaana A.; and et al, ,"Phenotype of peripheral NK cells in latent, 
active, and meningeal tuberculosis." Journal of Immunology Research. 2021,. . (2021). 
https://digitalcommons.wustl.edu/open_access_pubs/11067 

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been 
accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. 
For more information, please contact scales@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F11067&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scales@wustl.edu


Research Article
Phenotype of Peripheral NK Cells in Latent, Active, and
Meningeal Tuberculosis

José Alberto Choreño-Parra ,1,2 Luis Armando Jiménez-Álvarez ,1,2

Ellis Daniela Maldonado-Díaz ,3 Graciela Cárdenas ,3

Luis Alejandro Fernández-Lopez ,1,2 José Luis Soto-Hernandez ,3

Marcela Muñoz-Torrico ,4 Gustavo Ramírez-Martínez ,2 Alfredo Cruz-Lagunas ,2

Armando Vega-López ,5 María Lilia Domínguez-López ,1 Carlos Sánchez-Garibay ,6

Parménides Guadarrama-Ortíz ,7 Silvia Giono ,8 Luis Antonio Jiménez-Zamudio ,1

Shabaana A. Khader ,9 Ethel A. García-Latorre ,1 Citlaltepetl Salinas-Lara ,6

and Joaquín Zúñiga 2,10

1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Inmunoquímica I, Mexico City, Mexico
2Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”,
Mexico City, Mexico
3Neuroinfectology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
4Tuberculosis Clinic, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
5Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Mexico City, Mexico
6Department of Neuropathology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
7Centro Especializado en Neurocirugía y Neurociencias México (CENNM), Mexico City, Mexico
8Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Mexico City, Mexico
9Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
10Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Mexico City, Mexico

Correspondence should be addressed to Ethel A. García-Latorre; ethelagarcia@hotmail.com,
Citlaltepetl Salinas-Lara; cisala69@hotmail.com, and Joaquín Zúñiga; joazu@yahoo.com

Received 24 February 2021; Revised 8 April 2021; Accepted 16 April 2021; Published 28 April 2021

Academic Editor: Zhipeng Xu

Copyright © 2021 José Alberto Choreño-Parra et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

The mechanisms underlying the immunopathology of tuberculous meningitis (TBM), the most severe clinical form of
extrapulmonary tuberculosis (TB), are not understood. It is currently believed that the spread of Mycobacterium tuberculosis
(Mtb) from the lung is an early event that occurs before the establishment of adaptive immunity. Hence, several innate immune
mechanisms may participate in the containment of Mtb infection and prevent extrapulmonary disease manifestations. Natural
killer (NK) cells participate in defensive processes that distinguish latent TB infection (LTBI) from active pulmonary TB (PTB).
However, their role in TBM is unknown. Here, we performed a cross-sectional analysis of circulating NK cellCID="C008"
value="s" phenotype in a prospective cohort of TBM patients (n = 10) using flow cytometry. Also, we addressed the responses of
memory-like NK cell subpopulations to the contact with Mtb antigens in vitro. Finally, we determined plasma levels of soluble
NKG2D receptor ligands in our cohort of TBM patients by enzyme-linked immunosorbent assay (ELISA). Our comparative
groups consisted of individuals with LTBI (n = 11) and PTB (n = 27) patients. We found that NK cells from TBM patients
showed lower absolute frequencies, higher CD69 expression, and poor expansion of the CD45RO+ memory-like subpopulation
upon Mtb exposure in vitro compared to LTBI individuals. In addition, a reduction in the frequency of CD56brightCD16- NK
cells characterized TBM patients but not LTBI or PTB subjects. Our study expands on earlier reports about the role of NK cells
in TBM showing a reduced frequency of cytokine-producing cells compared to LTBI and PTB.
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1. Introduction

Mycobacterium tuberculosis (Mtb), the causative agent of
tuberculosis (TB), remains the leading cause of death associ-
ated with a single pathogen [1]. Approximately a quarter of
the world population has latent TB infection (LTBI) [2],
and 10% of the infected individuals are at risk of developing
active pulmonary TB (PTB) [1]. The limited protective effec-
tiveness of the bacillus Calmette-Guerin (BCG) TB vaccine
contributes to this global crisis. Moreover, the broad clinical
spectrum of TB delays the diagnosis and initiation of antibi-
otic therapy, thus impeding an adequate control of Mtb
transmission. In this regard, different clinical scenarios can
result from human-Mtb interactions. As mentioned above,
90% of infected humans with LTBI develop adaptive immune
responses that control but do not eliminate Mtb, remaining
asymptomatic. Another group of Mtb-infected individuals
cannot establish or maintain protective immune mecha-
nisms, thus progressing to active PTB. From these, most indi-
viduals manifest clinical data of Mtb infection limited to the
lung, whereas in a small group of TB patients, the bacillus
spreads to extrapulmonary organs [3].

Tuberculous meningitis (TBM) is the most severe form of
extrapulmonary TB due to its high morbidity and mortality
rates [4]. Unfortunately, the factors controlling the Mtb dis-
semination into the central nervous system (CNS) and the
immunopathology of TBM are not completely defined [5].
The current understanding of the immune determinants of
the clinical outcome of TB is based on the study of T cell
adaptive immune responses. This approach has revealed
novel correlates of protection which do not always provide
sterilizing immunity in animal models and have shown low
prognostic value to predict disease progression in LTBI indi-
viduals [6, 7]. More recently, targeting diverse components of
the innate immune system has emerged as an attractive
approach for TB vaccine development [8–11]. This strategy
is based on novel discoveries about the importance of specific
myeloid cell subtypes and innate lymphoid cell (ILC) subsets
for protective immunity against Mtb.

NK cells are innate lymphocytes that exert cytotoxic and
cytokine-production activities and can mediate recall
responses against previously recognized stimuli, resembling
memory lymphocytes [12]. Therefore, these cells are crucial
for immune responses against several pathogens, including
Mtb [9, 13]. NK cells infiltrate the lungs of PTB patients
and can respond to contact with the bacillus in vitro [14–
18]. In animal TB models, these cells can compensate for
the absence of adaptive lymphocytes, mediating early effector
activities that control the pulmonary infection with Mtb [19].
Several phenotypical and functional deficiencies are dis-
played by peripheral NK cells from PTB patients compared
to LTBI individuals, supporting a role for NK cells in
defenses against pulmonary Mtb [15, 20–24]. Strikingly,
NK cell subsets with adaptive properties expand in mice, pri-
mates, and humans with TB, making them potential targets
for vaccines [25–28]. However, the phenotype and function
of NK cells in TB patients that develop extrapulmonary dis-
ease manifestations, including TBM, has not been extensively
addressed. This is important, since the dissemination of Mtb

is an early event during which NK cells and other innate
immune cells may participate [29].

Here, we characterized the immunophenotype of circu-
lating NK cells in patients with TBM and compared it with
LTBI and PTB subjects. Our results provide novel insights
into the role of NK cells in immunity against Mtb.

2. Materials and Methods

2.1. Human Participants. We conducted a prospective study
in adult patients with acute TBM that attended and were
admitted to the Neuroinfectology Department of the Insti-
tuto Nacional de Neurología y Neurocirugía Manuel Velasco
Suarez (INNyN), in Mexico City, from January of 2017 to
December of 2018. Only those individuals that met the clin-
ical criteria for probable or definitive TBM, according to the
case definition established in Cape Town, South Africa, in
2009 [30], were eligible.

Peripheral blood samples were obtained from enrolled
participants on admission. Our comparative cohorts
included LTBI and PTB patients recruited at the TB clinic
of the Instituto Nacional de Enfermedades Respiratorias
Ismael Cosío Villegas (INER), in Mexico City. The LTBI
group included healthy close contacts of PTB patients with
positive results in the QuantiFERON®-TB Gold Plus test
(QIAGEN, Hilden, Germany). The PTB group included
patients with laboratory-confirmed TB diagnosis by positive
results in sputum smear microscopy, sputum/bronchoalveo-
lar lavage (BAL) culture, and GeneXpert MTB/RIF test
(Cepheid, CA, USA). A group of age- and sex-matched
healthy volunteer donors was recruited and considered as
controls (HC).

Solid-organ transplant recipients and patients with
human immunodeficiency virus (HIV) infection, receiving
immunosuppressive treatment, diagnosed with cancer, dia-
betes, or autoimmune diseases, were excluded from the
study. Clinical and demographic data from participants were
obtained by direct clinical interview, physical examination,
and review of their medical records.

2.2. Sample Processing. Peripheral blood mononuclear cells
(PBMCs) were isolated by centrifugation gradient using
Ficoll-Paque™ PLUS (GE Healthcare, Life Sciences, PA,
USA) as described before. Plasma aliquots for protein deter-
minations were stored at -80°C until use.

2.3. In Vitro Assays. Freshly isolated PBMCs from HC, LTBI,
PTB, and TBM individuals were exposed to Mtb antigens
in vitro as previously described [15]. Briefly, cells were plated
at a density of 2:5 × 106 cells per mL in complete Roswell
Park Memorial Institute (RPMI-1640) medium supple-
mented with 2mM L-glutamine and 10% fetal bovine serum
(FBS) and cultured with 25μg/mL of a cell wall (CW) extract
of Mtb H37Rv at 37°C, 5% CO2, for 48 hours. The H37Rv
CW preparation was gently provided by Dr. Shabaana A.
Khader, from the Department of Molecular Microbiology,
Washington University School of Medicine in St Louis,
MO, USA.
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2.4. Flow Cytometry. Freshly isolated or Mtb H37Rv CW-
stimulated PBMCs were stained with appropriate dilutions
of the following specific fluorochrome-labeled antibodies:
BV510 anti-human CD3 (OKT3, BioLegend, USA), BV510
anti-human CD14 (M5-E2, BioLegend, USA), PerCP anti-
human CD56 (HCD56, BioLegend, USA), APC/Cy7 anti-
human CD16 (3G8, BioLegend, USA), APC anti-human
NKG2D (1D11, BioLegend, USA), PE anti-human NKp46
(9E2, BioLegend, USA), BV421 anti-human CD69, (FN50,
BioLegend, USA), FITC anti-human CD45RO (UCHL1, Bio-
Legend, USA), and AlexaFluor700™ anti-human CD27
(O323, 302814, USA). After staining, samples were washed
with Cell Staining Buffer (BioLegend, 420201, USA), resus-
pended in 4% paraformaldehyde, and acquired in a BD
FACS™ Aria II cytometer (BD Biosciences, USA) using
FACSDiva software. Tubes with microbeads (Anti-Mouse
Ig, κ/Negative Control Compensation Particles Set, BD™
CompBead, BD Biosciences, USA) were stained with single
fluorochrome-labeled antibodies and served to set a com-
pensation matrix. Cells were gated based on their forward/-
side scatter characteristics and a fluorescence minus one
(FMO) control for each specific marker. Human NK cells
were defined as CD3-CD14-CD56+. We acquired at least 1
× 104 CD3-CD14-CD56+ NK cells from each sample. The
compensation set up and calculation of the frequency of spe-
cific cell subsets were made using FlowJo (FlowJo, LLC, Ash-
land, OR, USA).

2.5. Plasma Protein Quantifications. Plasma levels of MHC
class I polypeptide-related sequence A (MIC-A), MHC class
I polypeptide-related sequence B (MIC-B), and UL16 bind-
ing protein 1 (ULBP-1) were determined by enzyme-linked
immunosorbent assay (ELISA) using commercial kits
(MBS175982, MBS177192, and MBS3800229, MyBioSource,
USA), and following the manufacturer’s instructions.

2.6. Study Approval. The current study was reviewed and
approved by the Institutional Review Board of the INER
(project number B04-15) and the Ethics Committee of the
INNyN (project number 160/16) in Mexico City. All patients
or their legal guardians provided written consent to partici-
pate in the study. Blood samples were processed and stored
according to the Mexican Constitution law NOM-012-
SSA3-2012, which establishes criteria for executing clinical
research projects in humans.

2.7. Statistical Analysis. Descriptive statistics were used to
characterize the study population clinically. Specific tests
are mentioned in figure and table legends. Statistical analyses
were performed using GraphPad Prism 8 (La Jolla, CA,
USA). Two-tailed p values ≤ 0.05 were considered as signifi-
cant: ∗p ≤ 0:05, ∗∗p ≤ 0:01, ∗∗∗p ≤ 0:001, and ∗∗∗∗p ≤ 0:0001.

3. Results

3.1. Participant Characteristics. TBM is an infrequent but
severe complication of extrapulmonary TB [4]. As such, we
were able to recruit only ten patients with TBM over two
years for the present study. From these patients, six were
females and four males, with a median age of 35 years. Our

comparative cohorts consisted of 27 patients with active
PTB and 11 individuals with LTBI. Their main clinical fea-
tures are summarized in Table 1. Thirty-seven percent of
PTB participants were infected with multi-drug resistant
(MDR) Mtb strains. Meanwhile, four patients in the TBM
group met the criteria for a definitive disease, as the infection
was confirmed by positive culture of cerebrospinal fluid
(CSF). The remaining six patients were categorized as prob-
able TBM, according to their clinical, radiological, and labo-
ratory test characteristics [30], which are further described in
Table 2. Enrolled patients with probable and definitive TBM
presented meningeal signs (70%), fever (50%), motor deficit
(50%), sensitive deficit (30%), and cranial nerve palsies
(30%) as their main clinical manifestations. Also, TBM
patients typically showed lymphocytic pleocytosis, low glu-
cose levels, elevated proteins, and increased adenosine deam-
inase (ADA) in the CSF analysis, as well as vasculitis,
hydrocephalus, and basal meningeal enhancement in the
brain magnetic resonance imaging (MRI; see Table 2). Two
TBM patients died due to severe neurological manifestations.
Interestingly, most recruited participants with meningitis
denied a history of PTB, and chest X-ray images obtained
at hospital admission showed no lung involvement in six
TBM patients. This supports a possible neurotropism of
some Mtb strains, as suggested before [31].

3.2. Peripheral NK Cell Subpopulations in TBM Patients. Pre-
vious investigations addressing the role of NK cells in human
TB have revealed phenotypical deficiencies in PTB patients
compared to LTBI individuals [15, 20–24], suggesting the
protective participation of NK cells during pulmonary Mtb
infection. However, little evidence exists about the phenotype
of these cells in patients with extrapulmonary manifestations
of the disease. Here, we focused part of our study on deter-
mining the relative frequency of some of the main NK cell
subpopulations in humans with TBM and made a compari-
son with LTBI and PTB subjects. For this purpose, we use
flow cytometry in PBMC samples obtained from all study
participant groups. Figure 1(a) shows the gating strategy used
for enumerating NK cells.

Our analyses showed no differences in the percentage of
total lymphocytes in PBMCs between groups (Figure 1(b)).
Strikingly, NK cells were significantly less abundant in
TBM patients (3.57%, 1.83%-5.42%, interquartile range
[IQR]) compared to LTBI individuals (6.95%, 4.07%-9.28%,
IQR, p = 0:0232). Similarly, PTB patients also showed lower
percentages of total NK cells (3.7%, 2.57%-6.13%, IQR) than
LTBI subjects (p = 0:0074; Figures 1(c) and 1(d)). These find-
ings coincide with previous reports of diminished amounts of
total NK cells as a hallmark of active pulmonary Mtb infec-
tion in humans [15, 20–24]. Hence, our results demonstrate
that circulating NK cells are also depleted from the circula-
tion in patients with extrapulmonary manifestations of TB,
like TBM.

One of the principal alterations observed in PTB patients
is the reduced frequency of CD56brightCD16- NK cells in the
peripheral blood [23]. This subpopulation is characterized by
a lower maturation state and a higher capacity to produce
cytokines upon stimulation [32]. We also analyzed the

3Journal of Immunology Research



frequency of these cells in our cohorts of TB patients. As
expected, the percentages of CD56brightCD16- NK cells were
slightly lower in PTB (2.75%, 2.11%-3.73%, IQR) than those
in LTBI subjects (3.76%, 2.9%-4.06%, IQR), although the dif-
ference did not reach statistical significance (Figures 1(e) and
1(f)). Remarkably, CD56brightCD16- NK cells were diminished
in TBM patients (1.32%, 0.69%-2.15%, IQR) compared to
LTBI (p = 0:0025) and PTB patients (p = 0:0331). Conversely,
the TBM group differed from the rest of the participants
regarding their higher percentages of NK cells belonging to
the CD56dimCD16+ subpopulation (Figure 1(g)). These cells
are mature and possess an intrinsic cytotoxic function [32].
Of note, the percentage of CD56dimCD16+ correlated with
the body mass index (BMI) of TBM patients (Figure S1).

Together, our results show that CD56brightCD16- NK
cells are reduced in the circulation of TBM patients, and such
a reduction is more significant than in PTB subjects (1.32%,
0.69%-2.15%, IQR vs. 2.75%, 2.11%-3.73%, IQR, p = 0:0331
). These findings may also indicate an active mobilization of
NK cells from the circulation to the sites of infection in
TBM patients. Therefore, we evaluated the expression of
the activation and tissue-homing marker CD69 in peripheral
NK cells [33]. Notably, we found a significantly higher per-
centage of CD69+ NK cells in TBM patients (8.34%, 5.64%-
11.8%, IQR) compared to HC (2.24%, 1.89%-2.77%, IQR, p
= 0:0025) and a slight difference with respect to LTBI indi-
viduals (4.38%, 2.23%-5.4%, IQR, p = 0:0737; Figures 2(a)
and 2(b)). Furthermore, NK cells from TBM patients showed
a higher CD69 mean fluorescence intensity (MFI) than LTBI
subjects (p < 0:05; Figure 2(c)). Similar observations were

made in PTB patients, whereas there were no differences in
the MFI and the percentage of CD69+ NK cells between
TBM and PTB groups.

We also compared the phenotype of circulating NK
cells between probable and definite TBM patients, since
both groups might differ in Mtb burden and thus detect-
ability of the infection. We found that patients with definite
disease showed reduced frequencies of CD56dimCD16+

NK cells (Figure S1). Meanwhile, no differences in total,
CD56brightCD16-, and CD69+ NK cells were observed
between TBM patients. Also, no correlations between NK
cell subsets and prognostic variables such as the Glasgow
Coma Scale (GCS) and British Medical Research Council
stage at admission were observed (Figure S1).

3.3. Expression of Surface-Activating Receptors in Peripheral
NK Cells. A variety of activating and inhibitory receptors
govern the functions of NK cells [34]. Some of these receptors
allow NK cells to recognize pathogen-associated molecular
patterns (PAMPs) and exert effector functions against infec-
tive agents [17, 35, 36]. As such, the deficient expression of
activating receptors may limit the capacity of NK cells to
respond during infections. Thus, we also evaluated the
expression of activating NK cell receptors in our patients to
determine if the lower control and higher severity of infection
in TBM patients were related to possible phenotypical alter-
ations of NK cells.

First, we analyzed the expression of the natural killer cell
p46-related protein (NKp46) receptor, which is a member of
the natural cytotoxicity receptor (NCR) family. NKp46

Table 1: Participant characteristics.

Characteristic
LTBI (n = 11) PTB (n = 27) TBM (n = 10) p values

A B C A vs. B A vs. C B vs. C

Median age (range) 42 (19-80) 43 (18-67) 35 (21-52) 0.8458 0.4159 0.5831

Gender

Female, n (%) 8 (72.72) 14 (51.85) 6 (60.0) 0.2960 0.6594 0.7246

Male, n (%) 3 (27.27) 13 (48.14) 4 (40.0)

Weight, mean (SD) 70.91 (16.57) 54.41 (9.60) 71.39 (12.91) 0.0019 0.9816 0.0008

Height, mean (SD) 1.58 (0.08) 1.62 (0.08) 1.64 (0.09) 0.2572 0.2660 0.7416

BMI, mean (SD) 28.25 (5.71) 20.59 (3.59) 26.09 (3.88) <0.0001 0.3369 0.0061

Drug resistance

MDR, n (%) ND 10 (37.03) ND — — —

Sensitive, n (%) ND 14 (51.85) ND — — —

Undetermined, n (%) ND 3 (11.11) ND — — —

MTB case category

Definitive, n (%) N/A N/A 4 (40.0) — — —

Probable, n (%) N/A N/A 6 (60.0) — — —

Outcome

Deceased, n (%) 0 (0.0) 0 (0.0) 2 (20.0) — — —

Survived, n (%) 11 (100.0) 27 (100.0) 8 (80.0) — — —

Differences between groups were estimated using the chi2 or Mann-Whitney U test, as appropriate. LTBI: latent tuberculosis infection; MDR: multidrug
resistant; MTB: meningeal tuberculosis; N/A: not applicable; ND: not determined; PTB: active pulmonary tuberculosis; SD: standard deviation.
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mediates the recognition and lysis of Mtb-infected human
monocytes after binding to vimentin [37]. Thus, a deficiency
in the expression of NKp46 may render NK cells incapable of
eliminating intracellular reservoirs of Mtb infection. Interest-
ingly, we found a reduction of NKp46+ NK cells in the LTBI
and PTB groups compared to HC, which coincides with a
previous report describing significant downregulation of
NKp46 in LTBI individuals [38]. However, we did not
observe any difference in the percentage of NKp46+ NK cells
relative expression of this marker between TBM, PTB, and
LTBI patients (Figures 3(a)–3(c)). We also compared the
expression of the natural killer group 2 member D (NKG2D)
C-type lectin-like receptor between participant groups. This
molecule mediates the recognition and elimination of Mtb-
infected monocytes upon attachment to the ULBP-1 ligand
on their surface [18]. As for NKp46, NKG2D+ NK cells were
more abundant in HC, but we did not find any difference in
the percentage of NKG2D+ NK cells and the relative expres-
sion of this molecule between TBM patients and the other TB
groups (Figures 3(d)–3(f)).

These findings suggest that differences in TB disease sus-
ceptibility are not related with deficiencies in the expression
of NKp46 and NKG2D. Hence, the participation of NK cells

during TBM, if any, is not dependent on NKp46- and
NKG2D-mediated cytotoxicity against infected phagocytes
in vivo. This is in sharp contrast with evidence of the Mtb-
induced upregulation of ligands for activating NK cell recep-
tors in infected cells in vitro. For instance, as mentioned
above, human monocytes infected with Mtb increase the
expression of the NKG2D receptor ligand ULBP-1 [18]. Sim-
ilarly, Mtb-infected dendritic cells (DCs) also upregulate the
molecule MIC-A in their surface [39], which is also recog-
nized by NKG2D. Interestingly, a lower frequency of both
NKp46+ and NKG2D+ NK cells was found in patients with
definite but not probable TBM (Figure S1). This finding
might imply that deficiencies in the expression of activating
receptors are related to higher Mtb burden among TBM
patients despite not being associated with higher risk of
disseminated disease in the overall TB population.

Infected and malignant cells can escape from the activity
of NKG2D by shedding these ligands [40], which then act as
decoy molecules that inactivate the cytotoxic capacity of NK
cells. These soluble products may become detectable in the
serum. To address whether this mechanism of immune eva-
sion is employed by Mtb and operates during TBM, we mea-
sured the serum levels of three different soluble NKG2D
receptor ligands: ULBP-1, MIC-A, and MIC-B. Of note, we
found high serum levels of ULBP-1 only among PTB patients
(4380 pg/mL, 3015 pg/mL–5538 pg/mL, IQR), but not in HC
(2715 pg/mL, 2182 pg/mL–3640pg/mL, IQR, p = 0:0178),
LTBI (2729 pg/mL, 1929 pg/mL–3666 pg/mL, IQR, p =
0:0055), and TBM individuals (2847 pg/mL, 2198 pg/mL–
4120 pg/mL, IQR, p = 0:0364; Figure 4(a)). In contrast, there
were no differences in the levels of MIC-A and MIC-B
between all participant groups (Figures 4(b) and 4(c)).
These observations indicate that the evasion of NK cell
cytotoxicity through the shedding of ULPB-1 from infected
phagocytes may be an important mechanism in the patho-
genesis of PTB but not TBM. However, we cannot rule
out the participation of this phenomenon inside the Mtb-
infected brain during TBM, as we did not explore the CSF
levels of these ligands. Collectively, our results suggest that
NK cell responses are differentially regulated during TBM,
PTB, and LTBI.

3.4. Memory-Like NK Cells in Humans with TBM. A striking
functional property of NK cells is their ability to mediate sec-
ondary responses against antigenic and nonantigenic stimuli,
resembling memory of adaptive lymphocytes. This mecha-
nism provides protection against viruses in mice and might
participate in immunity to human infections [12]. Indeed,
several subpopulations of memory-like NK cells might get
involved in the mechanisms of defense during TB [8, 9].
For instance, BCG-vaccinated mice display an IL-21 depen-
dent expansion of CD27+ NK cells that mediate protective
memory-like responses against Mtb [27]. These CD27+ NK
cells are also expanded in LTBI patients but not healthy indi-
viduals and proliferate upon in vitro exposure to Mtb.

To address whether CD27+ NK cells are relevant during
TBM, we determined the relative frequency of these cells in
the circulation of our study participants. However, we did
not find differences in the percentage of circulating CD27+

Table 2: Clinical and laboratory characteristics of TBM patients.

Characteristic N = 10
Clinical manifestations

Fever 5 (50)

Meningeal signs 7 (70)

Focal deficit 6 (60)

Motor 5 (50)

Sensitive 3 (30)

Cognitive decline 3 (30)

Duration of symptoms (days) 44 (31–68)

GCS on admission, median (range) 14 (7–15)

BMRC stage, median (range) 1 (0–3)

History of PTB 2 (20)

Abnormal chest X-ray 4 (40)

CSF analysis

Leukocytes (cells/mm3) 256.5 (30.75–614.5)

Neutrophils (%) 4 (2.2–7.0)

Lymphocytes (%) 95.5 (51–99)

Glucose (mg/dL) 40 (24–44)

Proteins (mg/dL) 100 (66–198)

ADA (U/L) 11 (2.2–17.7)

Positive culture 2 (20)

Brain MRI

Vasculitis 4 (40)

Hydrocephalus 2 (20)

Basal meningeal enhancement 6 (60)

Data are displayed as median (IQR) or n (%). ADA: adenosine deaminase;
BMRC: British Medical Research Council; CSF: cerebrospinal fluid; CT:
computed tomography; GCS: Glasgow Coma Scale; MRI: magnetic
resonance imaging; PTB: pulmonary tuberculosis; TBM: tuberculous
meningitis.
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Figure 1: Continued.
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NK cells between HC, LTBI, PTB, and TBM patients
(Figure 5(a)). We also compared the in vitro responses of
CD27+ NK cells against the contact with a CW extract of
Mtb H37Rv. As previously reported [27], we found that cells
from LTBI, but not healthy individuals, proliferate upon
exposure to Mtb antigens (Figure 5(b)). CD27+ NK cells also
expanded in PTB and TBM, although to a lower level than
LTBI individuals. Interestingly, CD27+ NK cells expressed
the activation and tissue-homing marker CD69 with higher
frequency than CD27- NK cells in all participant groups
(Figure 5(c)). This finding suggests that CD27+ NK cells have
an intrinsic higher capacity to respond to Mtb antigens, but
their responsiveness is similar in PTB and TBM patients.
Hence, these data indicate that CD27+ NK cells might not
be relevant for protection against extrapulmonary manifesta-
tions of TB, such as TBM.

Another subgroup of adaptive NK cells that express the
memory marker CD45RO has been isolated from the pleural
fluid of individuals with tuberculous pleural effusion [25, 26].
These cells show increased cytotoxic and cytokine produc-
tion capacity in response to IL-12 and BCG as compared to
their CD45RO- counterpart. As for CD27+ NK cells, we also

compared the frequency of CD45RO+ NK cells in the blood
of HC and subjects with LTBI, PTB, and TBM. This analysis
showed no differences in the percentage of CD45RO+ NK
cells between all participant groups (Figure 5(d)), although
CD45RO+ NK cells were more abundant in the blood of
patients with definite but not probable TBM (Figure S1).
Remarkably, after an in vitro stimulation with Mtb H37Rv
CW, an expansion of CD45RO+ NK cells was observed
only among LTBI individuals but not patients with PTB
and TBM (Figure 5(e)). Moreover, a higher percentage of
CD45RO+ NK cells expressed CD69 than CD45RO- NK
cells in response to Mtb antigens in all participants
(Figure 5(f)). Collectively, these data indicate that
memory-like CD45RO+ NK cells respond to Mtb antigens
and may play a protective role during TB. However, the
responses of these cells do not impact the risk of
progression of PTB to TBM.

4. Discussion

TB of the CNS encompasses a spectrum of manifestations
that includes meningitis, parenchymal tuberculomas,
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Figure 1: Major NK cell subpopulations in patients with TBM. (a) Flow cytometry gating strategy for the analysis of circulating NK cells in
peripheral blood mononuclear cell (PBMC) samples from healthy controls (HC, n = 10), individuals with latent TB infection (LTBI, n = 11),
patients with active pulmonary TB (PTB, n = 27), and patients with tuberculous meningitis (TBM, n = 10). (b) Percentage of lymphocytes
from total PBMCs. (c, d) Percentage of NK cells from total lymphocytes. (e) Analysis of major NK cell subpopulations in the blood. (f)
Percentage of CD56brightCD16- NK cells. (g) Percentage of CD56dimCD16+ NK cells. Differences between groups were analyzed using the
Kruskal-Wallis test and the post hoc Dunn’s test for multiple comparisons. The data shown represent the mean (±SE) values. ∗p ≤ 0:05,
∗∗p ≤ 0:01, and ∗∗∗p ≤ 0:001.
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tuberculous abscesses, and vasculitis. These entities are char-
acterized by an intense inflammatory response that can cause
severe nervous tissue damage [4, 5]. TBM is the most devas-
tating form of extrapulmonary TB due to its high mortality
and neurological sequela. Despite this, the immunopatho-
genesis of TBM is not completely understood so far. Much
of what is currently known relies on descriptions made by
Rich and McCordock almost a century ago [41]. These
researchers proposed that Mtb could reach the CNS a long
time before infected individuals manifest symptoms remain-
ing silent within the brain. Nonetheless, the route and mech-
anisms by which Mtb invades the human brain remained
unclear for many years until recent advances were achieved
using in vitro assays and animal models [42–44].

The CNS is separated from the systemic circulation by
the blood-brain barrier (BBB) and the blood-cerebrospinal
fluid barrier (BCSFB). These barriers limit the access of circu-
lating substances and infectious agents to the nervous system
[45]. Nevertheless, certain neuroinfectious pathogens have
virulence factors that allow them to adhere to the endothe-
lium and cross the BBB [46, 47]. Indeed, some clinical strains

of Mtb isolated from humans with TBM can cause CNS
infection after intratracheal inoculation to mice [31]. Also,
in vitro assays have demonstrated that Mtb can cross the
BBB via transcytosis [42]. The pathogen might also enter
the brain as free mycobacteria or inside an infected monocyte
[43, 44], and specific cytokines induced during the infection
might make BBB more permeable to Mtb [46, 47].

Along with these mechanisms, the dissemination of TB to
the CNS also depends on lung defenses’ ability to control the
initial infection. Indeed, some investigations suggest that the
spread of Mtb to extrapulmonary organs is a silent and very
early event that precedes the initiation of antigen-specific
adaptive immune responses in the lung [29]. Hence, the
function of a plethora of innate defense mechanisms might
determine the disease’s course and progression. Among these
innate components of immunity, NK cells play a relevant role
during PTB. Their participation and specific effector func-
tions that improve the control of Mtb have been extensively
revised elsewhere [8, 9, 13]. Despite this, little literature exists
on the role of NK cells in the brain inflammatory response
associated with TBM. This is in part related to the lack of
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Figure 2: Expression of CD69 in peripheral NK cells from patients with TB. (a) The expression of CD69 in peripheral blood NK cells from
healthy controls (HC, n = 10), individuals with latent TB infection (LTBI, n = 11), patients with active pulmonary TB (PTB, n = 27), and
patients with tuberculous meningitis (TBM, n = 10) was assessed by flow cytometry. (b) Percentage of CD69+ NK cells. (c) Mean
fluorescence intensity (MFI) values for CD69 in NK cells. Differences between groups were analyzed using the Kruskal-Wallis test and
post hoc Dunn’s test for multiple comparisons. The data shown represent the mean (±SE) values. ∗p ≤ 0:05 and ∗∗∗p ≤ 0:001.
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Figure 3: Expression of activating receptors in peripheral blood NK cells from patient with TBM. (a) Analysis of the expression of NKp46 in
peripheral blood NK cells from healthy controls (HC, n = 10), individuals with latent TB infection (LTBI, n = 11), patients with active
pulmonary TB (PTB, n = 27), and patients with tuberculous meningitis (TBM, n = 10). (b) Percentage of NKp46+ NK. (c) Mean
fluorescence intensity (MFI) values for NKp46 in NK cells. (d) Analysis of the expression of NKG2D in peripheral blood NK cells. (e)
Percentage of NKG2D+ NK cells. (f) Mean fluorescence intensity (MFI) values for NKG2D in NK cells. Differences between groups were
analyzed using the Kruskal-Wallis test and post hoc Dunn’s test for multiple comparisons. The data shown represent the mean (±SE) values.
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animal models that mimic the spread of pulmonary TB to the
CNS since those that exist use the intracranial or intravenous
route to inoculate the pathogen into the brain [48]. Further-
more, due to the low frequency and complicated differential
diagnosis of the disease, samples from humans with TBM
are scarcely available to be analyzed at the early stages of
infection.

NK cells might play a role in the pathogenesis of different
viral and bacterial infections of the CNS. In some cases, such
as brain infection with herpes viruses, the activity of NK cells
is protective [49, 50]. As such, children with functional and
genetic deficiencies in NK cells are susceptible to herpetic
encephalitis [49], while mice completely deployed of NK
cells and T cells show more severe encephalitis than ani-
mals only deficient of T cells after inoculation with herpes
simplex virus type 1 (HSV-1) [50]. The cytotoxic function
of NK cells protects against a neurovirulent strain of the
simian immunodeficiency virus (SIV) in macaques [51]
and cerebral malaria in humans [52]. Also, the cytokine
production activity of NK cells is crucial against Listeria
monocytogenes neuroinvasion in mice [53], but pathogenic
during Streptococcus pneumoniae meningitis [54]. Despite
these data, studies addressing the relevance of NK cells dur-
ing neuroinfections remain scarce.

In this context, our study is among the first ones that
evaluated a possible role for NK cells during TBM in humans,
providing novel evidence for the field. Our findings demon-
strate that TBM and PTB patients showed similar phenotyp-
ical deficiencies in NK cells compared to LTBI individuals.
Nonetheless, TB patients with CNS infection differ from
those without neuroinvasion by specific alterations in circu-
lating NK cells’ phenotype. The most remarkable abnormal-
ity found only among TBM, but not in LTBI and PTB
patients, was the lower amounts of total and cytokine-
producing CD56bright NK cells in the blood. As aforemen-
tioned, NK cells’ cytokine production is pathogenic for some
CNS bacterial infections [54]. Hence, the lack of total and
CD56bright NK cells in TBM patients may indicate, on the
one hand, that these cells migrated to the CNS. Once inside

the brain, these cells might produce proinflammatory cyto-
kines that contribute to TBM patients’ brain injury and clin-
ical manifestations. On the other hand, the reduced number
of CD56bright NK cells in the blood could be a deficiency that
contributes to the lack of control of Mtb infection in the lung,
thus promoting its dissemination.

Conversely, TBM patients displayed a higher amount of
cytotoxic CD56dimCD16+ NK cells in the circulation. Cyto-
toxicity mediated by NK cells is protective for some neuro-
logical complications of infections [51, 52], and increased
numbers of cytotoxic NK cells in the lung are a hallmark that
defines latency over active disease in macaques infected with
Mtb [28]. Thus, the increased abundance of CD56dimCD16+

NK cells in TBM patients’ blood might reflect an active mobi-
lization of these cells to the CNS as an attempt to control the
local infection. In fact, CD56dimCD16+ NK cells are reduced
in the blood of human immunodeficiency virus- (HIV-) pos-
itive but not HIV-negative TBM patients, further supporting
a possible protective role [55]. Alternatively, protective cyto-
toxic NK cells could get stuck in the blood, so they cannot
move to local infection sites and contribute to eliminating
the pathogen. In this regard, van Laarhoven and colleagues
recently found that total NK cells are depleted from the blood
but enriched in the CSF of a cohort of TBM patients [56],
providing evidence that explains and coincides with some
of our findings.

Interestingly, as reported in the mentioned study [56], we
also found that NK cells from TBM patients highly express
the tissue-homing marker CD69 to a similar level than NK
cells from PTB subjects. In contrast, LTBI individuals
showed a lower expression of CD69 in peripheral NK cells.
These findings reveal that NK cells get activated and mobilize
to tissues only during active but not latent Mtb infection.
Hence, the expression of CD69 in different cells, not only
NK cells, could be a readout that differentiates LTBI from
active pulmonary and disseminated TB disease. Notably,
although the expression of CD69 did not differ between
TBM and PTB patients, a striking characteristic of our cohort
of TBM patients was the absence of clinical and radiological
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Figure 4: Soluble ligands of the NKG2D receptor in the serum of patients with TB. Serum samples from healthy controls (HC, n = 10),
individuals with latent TB infection (LTBI, n = 11), patients with active pulmonary TB (PTB, n = 27), and patients with tuberculous
meningitis (TBM, n = 10) were used for determinations of the levels of soluble NKG2D ligands by ELISA. (a) Serum levels of ULBP-1. (b)
Serum levels of MIC-A. (c) Serum levels of MIC-B. Differences between groups were analyzed using the Kruskal-Wallis test and post hoc
Dunn’s test for multiple comparisons. The data shown represent the mean (±SE) values. ∗p ≤ 0:05 and ∗∗p ≤ 0:01.
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Figure 5: Memory-like NK cells in patients with TBM. (a) The percentage of CD27+ NK cells in peripheral blood mononuclear cell (PBMC)
samples from healthy controls (HC, n = 10), individuals with latent TB infection (LTBI, n = 11), patients with active pulmonary TB (PTB,
n = 27), and patients with tuberculous meningitis (TBM, n = 10) was determined by flow cytometry. (b) PMBCs from HC, LTBI, PTB, and
TBM patients were cultured with a cell wall (CW) extract of Mtb H37Rv for 48 h (n = 5 per group). After the stimulation, the percentage
and fold increase of CD27+ NK cells were determined. (c) The proportion of CD69+ cells was compared between CD27+ and CD27- NK
cells at each group. (d) Percentage of peripheral blood CD45RO+ NK cells. (e) After the stimulation, the percentage and fold increase of
CD45RO+ NK cells were determined. (f) The proportion of CD69+ cells was compared between CD45RO+ and CD45RO- NK cells at each
group. Fold increases were calculated as follows: the percentage of a specific cell subpopulation after culture of PBMCs with Mtb antigens
was divided by the percentage of the same cell subset before such stimulation. Differences between groups were analyzed using the
Kruskal-Wallis test and post hoc Dunn’s test for multiple comparisons. Comparisons between cells from the same group were analyzed
with the Student t-test and p values corrected for multiple comparisons using the Holm method. The data shown represent the mean
(±SE) values. ∗p ≤ 0:05, ∗∗p ≤ 0:01, ∗∗∗p ≤ 0:001, and ∗∗∗∗p ≤ 0:0001.
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data of pulmonary involvement on hospital admission. Hence,
the expression of CD69 in NK cells during acute meningitis
reflects an active mobilization to the CNS in our patients, as
also reported by van Laarhoven and colleagues [56], who dem-
onstrated that NK cells are among the main lymphoid cells
enriched in the CSF of TBM patients. Notwithstanding, their
study does not provide additional data about other phenotyp-
ical characteristics of NK cells during TBM.

Besides the main objectives of our work, we made two
findings that may have important implications in the general
understanding of anti-Mtb immunity. First, we found that,
although memory-like CD45RO+ NK cells are not more
abundant in the blood of LTBI as compared to patients with
PTB and TBM, they are more responsive to the contact with
Mtb antigens during latency. This fact has two possible
explanations: (a) that CD45RO+ NK cells are more func-
tional and participate in protective immunity in LTBI indi-
viduals, or (b) that NK cells with adaptive properties are
depleted from the circulation of subjects with active TB as
they are recruited to the sites of local Mtb infection. An anal-
ysis of the responsiveness of CD45RO+ NK cells from
infected BAL and CSF samples would have clarified this
point. However, as mentioned above, previous investigations
have already demonstrated that CD45RO+ NK cells isolated
from an active site of Mtb infection possess enhanced func-
tional capacities [25, 26].

Secondly, we discover that higher levels of the soluble
NKG2D ligand ULBP-1 are a readout that differentiates
PTB from LTBI and TBM. This observation brings forward
the unrecognized importance of the shredding of soluble
NKGD2 ligands as an evasion mechanism of Mtb or as an
immune defect associated with poor TB control in the lungs,
but not in the CNS and during latency. This process operates
in several cancers making tumors less susceptible to the anti-
tumoral activity of NK cells. Hence, cells infected with Mtb
might also be untargeted by NK cells keeping the intracellular
reservoir of the infection intact, at least during the disease’s
initial stages. Moreover, our findings provide novel evidence
in favor of the possible usage of serum ULBP-1 levels as a
diagnostic biomarker to differentiate LTBI and PTB, which
deserves further validation in future studies.

The main limitation of our work is the low number of
TBM patients recruited. This is because, as we mentioned
before, the incidence of this complication is low. Another
flaw of this study is that we focused our analysis on periph-
eral blood NK cells, whereas previous investigations
addressed their properties both in the circulation and in the
local site of infection [56]. Thus, the protective or pathogenic
nature of the role of NK cells during TBM is not completely
apparent from our data. Also, additional functional assess-
ment of NK cells would have provided complementary
mechanistic information to support the observed differences.
Finally, an important concern is that our experimental design
does not allow the evaluation of a unique NK cell TBM signa-
ture because we did not include a non-TBM extrapulmonary
TB control group.

However, as currently presented, our work represents an
incremental advance in the field, since the phenotypical
changes of peripheral NK cells observed in our cohort of

TBM patients with respect to LTBI and PTB individuals reaf-
firm and complement previous findings suggesting an active
role of these cells in immunity against pulmonary Mtb infec-
tion and prevention of its dissemination. Future studies
should further evaluate the main activities of NK cells in
brain tissue specimens or CSF samples from patients with
TBM and animal models of the disease.
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