A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells

Matthew Mahoney ${ }^{1,2}$, Vishnu C. Damalanka ${ }^{1}$, Michael A. Tartell ${ }^{3,4}$, Dong hee Chung ${ }^{5}$, André Luiz Lourenço ${ }^{5}$, Dustin Pwee ${ }^{6}$, Anne E. Mayer Bridwell ${ }^{3}$, Markus Hoffmann ${ }^{7,9}$, Jorine Voss ${ }^{1}$, Partha Karmakar ${ }^{1}$, Nurit P. Azouz ${ }^{8}$, Andrea M. Klingler ${ }^{8}$, Paul W. Rothlauf ${ }^{3,4}$, Cassandra E. Thompson ${ }^{3}$, Melody Lee ${ }^{5}$, Lidija Klampfer ${ }^{2}$, Christina Stallings ${ }^{3}$, Marc E. Rothenberg ${ }^{8}$, Stefan Pöhlmann ${ }^{7,9}$, Sean P. Whelan ${ }^{3}$, Anthony J. O’Donoghue ${ }^{6}$, Charles S. Craik ${ }^{5}$, James W. Janetka ${ }^{1,2}$

Table of Contents

1. Single point inhibition data using recombinant protease domain/FRET substrate for 4-6. [Figure S1]
2. Protease selectivity data for $\mathbf{1}$ (ZFH7116) and $\mathbf{2}$ (VD2173). [Tables S1 and S2]
3. Synthesis and NMR and HPLC-MS spectra of new compounds 2, 4-7, 19-21. [Schemes S1-S3]
4. K_{m} curve for Boc-QAR-AMC using full-length TMPRSS2 (3 nM). [Figure S2]
5. IC_{50} inhibition curves of full-length TMPRSS2/Boc-QAR-AMC. [Figure S3]
6. Cell-based enzyme activity of compounds $\mathbf{1}$ and $\mathbf{2}$ in HEK-293 cells. [Figure S4]
7. Acute toxicity of MM3122 (4) data. [Figure S5]
8. Activity of $\mathbf{1}$ and $\mathbf{2}$ and Camostat using Vero cells in pseudotype [Figure S6] and chimeric VSV-SARS-CoV-2 viruses [Figure S7].
9. Expression and purification of TMPRSS2 protease domain. [Figure S8]
10. Single point inhibition data using recombinant protease domain and FRET peptide.

Figure S1: Compounds ($300 \mu \mathrm{M}$) were tested against the protease domain of Human Recombinant TMPRSS2 (3 nM) having (MCA)K-KARSAFA-K(Dnp) as substrate (1nM)

2. Enzyme selectivity data of ZFH7116 (1), VD2173 (2), Camostat and Nafamostat ${ }^{3}$ from a panel 43 serine and cysteine proteases.

Table S1. Protease selectivity of ZFH7116 (1) and VD2173 (2). NA = not active; all data provided in supplementary material.

Target	$\begin{aligned} & \text { VD2173 } \\ & \text { IC50 (M) } \end{aligned}$	$\begin{aligned} & \text { ZFH7116 } \\ & \text { IC50 (M) } \end{aligned}$	Camostat IC50 (M)	Nafamostat IC50 (M)
Cathepsin B	$2.24 \mathrm{E}-07$	NA	NA	NA
Cathepsin H	$1.04 \mathrm{E}-05$	NA	NA	NA
Cathepsin L	NA	7.14E-06	NA	NA
Cathepsin S	$1.99 \mathrm{E}-06$	$8.95 \mathrm{E}-08$	>1.00E-05	NA
Cathepsin V	NA	$1.00 \mathrm{E}-05$	NA	NA
Chymotrypsin	NA	>2.00E-05	NA	NA
FVIla	$6.15 \mathrm{E}-06$	$2.54 \mathrm{E}-06$	3.55E-06	$2.75 \mathrm{E}-07$
FXa	$4.89 \mathrm{E}-07$	$8.66 \mathrm{E}-08$	9.91E-06	$1.11 \mathrm{E}-06$
FXIa	$7.89 \mathrm{E}-09$	$1.60 \mathrm{E}-08$	$3.46 \mathrm{E}-09$	$8.56 \mathrm{E}-10$
Kallikrein 1	$1.98 \mathrm{E}-05$	$2.28 \mathrm{E}-07$	$>1.00 \mathrm{E}-05$	$2.39 \mathrm{E}-06$
Kallikrein 5	$3.27 \mathrm{E}-07$	8.07E-08	$1.01 \mathrm{E}-06$	$6.37 \mathrm{E}-07$
Kallikrein 12	$5.85 \mathrm{E}-06$	$5.60 \mathrm{E}-07$	$1.31 \mathrm{E}-06$	$3.59 \mathrm{E}-07$
Kallikrein 13	$1.47 \mathrm{E}-06$	5.99E-07	$8.45 \mathrm{E}-07$	$3.02 \mathrm{E}-07$
Kallikrein 14	$4.86 \mathrm{E}-08$	$1.95 \mathrm{E}-08$	$9.99 \mathrm{E}-07$	2.15E-09
Matriptase 2	<1.02E-09	<1.02E-09	7.80E-09	<5.08E-10
Papain	2.67E-08	1.97E-05	NA	NA
Plasma Kallikrein	$1.39 \mathrm{E}-08$	$2.34 \mathrm{E}-09$	8.36E-10	<5.08E-10
Plasmin	$1.73 \mathrm{E}-06$	$1.34 \mathrm{E}-07$	5.62E-09	$1.04 \mathrm{E}-09$
Proteinase A	$7.59 \mathrm{E}-06$	$1.88 \mathrm{E}-06$	NA	NA
Proteinase K	2.21E-08	$5.19 \mathrm{E}-09$	NA	NA
Thrombin a	$2.14 \mathrm{E}-07$	$1.33 \mathrm{E}-06$	3.62E-06	$3.03 \mathrm{E}-07$
Trypsin	<1.02E-09	<1.02E-09	5.24E-10	<5.08E-10
Tryptase b2	1.10E-09	<1.02E-09	<5.08E-10	<5.08E-10
Tryptase g1	$2.34 \mathrm{E}-09$	<1.02E-09	<5.08E-10	<5.08E-10
Urokinase	5.01E-09	7.82E-06	$1.64 \mathrm{E}-08$	<5.08E-10

Table S2. Full protease selectivity data of ZFH7116 (1) and VD2173 (2).
Report of Protease Profiling for:
Washington Univ. St. Louis
Quotation \# 20200430-WUSM-JJ-Pro-RV02
Two compounds were received as powder stock and resuspended to $\mathbf{1 0} \mathbf{~ m M}$ in DMSO.

Compound ID	Concentration (mM)	Original Stock Volume (uL)	Exact weight (mg)	MW
VD2173	10	382	3.0	785.84
ZFH7116	10	349	3.2	918.00

The compound was tested in a 10-dose IC50 with a 3 -fold serial dilution starting at $\mathbf{2 0} \mathbf{u M}$ against $\mathbf{4 3}$ proteases.
Control compounds were tested in a 10-dose IC50 with 3-fold serial dilution starting at 10 uM*.
(*Start at different concentrations for some enzymes)
Compound fluorescence : Compounds exhibit no fluorescent background that could interfere with the assay.
The protease activities were monitored as a time-course measurement of the increase in fluorescence signal from fluorescently-labeled peptide substrate, and initial linear portion of slope (signal/min) was analyzed.

Data pages include slope, \% Enzyme Activity (No inhibitor control as 100\% Activity), curve fit, and IC50.
The obtained IC50 values are summarized in the table below.
(Curve fits were performed when the activities at the highest concentration of compounds were less than 65%)

Summary Table:

		Compound IC50 (M)		

* Empty cells	* IC50 value	* IC50 value
indicate no	higher than	lower than
inhibition or	$2.00 \mathrm{E}-05 \mathrm{M}$ is	$1.02 \mathrm{E}-09 \mathrm{M}$ is
compound activity	estimated	estimated
that could not be fit	based on the	based on the
to an IC50 curve	best curve	best curve

2 compounds were located at RBC as 10 mM DMSO stock.

Compound ID	Concentration (mM)	Original Stock Volume (uL)	Exact weight (mg)	MW
VD2173	10	382	3.0	785.84
ZFH7116	10	349	3.2	918.00

The compounds were tested in a 10-dose IC50 with a 3 -fold serial dilution starting at $\mathbf{2 0} \mathbf{u M}$ against 1 protease.
Control compounds were tested in a 10-dose IC50 with 3-fold serial dilution starting at $1 \mathbf{u M}$.
(*Start at different concentrations for some enzymes)
Compound fluorescence : Compounds exhibit no fluorescent background that could interfere with the assay.
The protease activities were monitored as a time-course measurement of the increase in fluorescence signal from fluorescently-labeled peptide substrate, and initial linear portion of slope (signal/min) was analyzed.

Data pages include slope, \% Enzyme Activity (No inhibitor control as 100\% Activity), curve fit, and IC50.
The obtained IC50 values are summarized in the table below.
(Curve fits were performed when the activities at the highest concentration of compounds were less than 65%.)

Summary Table:

3. Synthesis and NMR and HPLC-MS spectra of new compounds 2, 4-7, 19-21.

Synthesis of peptidyl ketobenzothiazoles (kbts), 4-7

We have previously published methodology for the synthesis of the kbt peptide inhibitors ${ }^{1}$. As shown in Scheme 1, we first construct the tripeptide (e.g. 6) or tetrapeptide (e.g. 4) on the 2-chlorotrityl resin using standard Fmoc-solid phase peptide synthesis protocols including HBTU for amide bond coupling and 20\% piperidine for

Scheme S1. Synthesis of acyclic P4-P1 tetrapeptide ketobenzothiazoles (kbts), 4-7.

Fmoc deprotection steps. The peptide is then capped with an acetyl group using acetic anhydride. Cleavage of the 2-chlorotrityl resin without removal of the protecting groups is accomplished using HFIP, then $\mathrm{H}-\mathrm{Arg}(\mathrm{Mtr})$-kbt is installed with HATU or EDC/HOBt in DMF. Final deprotection of the amino
acid sidechains using TFA:water:thioanisole (95:2.5:2.5 \%v/v) generates the target compounds which are purified by reverse phase prep HPLC.

Scheme S2. Cycloamide synthesis (2, 19 and 20)

Cyclic peptide VD2173 (2) was synthesized following the generic procedure outlined in Scheme 2 in which is also used for the construction of 19 and 20. Synthesis of the tripeptide cyclization precursors are synthesized on Wang resin using standard Fmoc solid phase peptide synthesis (SPPS) using 2HBTU for coupling steps and 20% piperidine for Fmoc removal steps. After the final Fmoc deprotection, the tripeptide is acetylated and then the Asp and Lys protecting groups are removed with 4 N HCl . Cyclization is performed using EDCI and HOBt on the resin followed by TFA cleavage, then a final HATU coupling
with H-Arg-(Pbf)-kbt followed by Arg deprotection to give the cyclic peptides which are purified by reverse phase prep HPLC.

Scheme S3. Synthesis of cyclic peptide aryl ether 21

Compound 21 was prepared from Fmoc-allylglycine as shown in Scheme 3. N-Deprotection followed by esterification and acetylation gives Ac-allylglycine which is then coupled to H -Leu-OMe using EDC/HOBt. The resulting dipeptide ester is hydrolyzed with LiOH and then coupled to $\mathrm{H}-\mathrm{Tyr}(\mathrm{Oallyl})-\mathrm{OMe}$ once again with EDC/HOBt to yield the cyclization precursor. Olefin metathesis cyclization is accomplished with Grubbs $2^{\text {nd }}$ generation catalyst to give key aryl allyl ether cyclic peptide intermediate. Ester hydrolysis followed by amide coupling to $\mathrm{H}-\mathrm{Arg}(\mathrm{Pbf})-\mathrm{kbt}$ and final deprotection with TFA as before gives $\mathbf{2 1}$ which is purified by prep HPLC.

General synthesis, purification, and analytical chemistry procedures. Starting materials, reagents, and solvents were purchased from commercial vendors unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian 400 MHz NMR instrument. The chemical shifts were reported as $\delta \mathrm{ppm}$ relative to TMS using residual solvent peak as the reference unless otherwise noted. The following abbreviations were used to express the multiplicities: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad. High-performed liquid chromatography (HPLC) was carried out on GILSON GX-281 using Waters C18 $5 \mu \mathrm{M}, 4.6^{*} 50 \mathrm{~mm}$ and Waters Prep $\mathrm{C} 185 \mu \mathrm{M}, 19 * 150 \mathrm{~mm}$ reverse phase columns, eluted with a gradient system of 5:95 to 95:5 acetonitrile:water with a buffer consisting of 0.05% TFA. Mass spectra (MS) were performed on HPLC/MSD using electrospray ionization (ESI) for detection. All reactions were monitored by thin layer chromatography (TLC) carried out on Merck silica gel plates (0.25 mm thick, 60F254), visualized by using UV (254 nm) or dyes such as KMnO_{4}, pAnisaldehyde and CAMA (Cerium Ammonium Molybdate or Hanessian's Stain). Silica gel chromatography was carried out on a Teledyne ISCO CombiFlash purification system using pre-packed silica gel columns (12g to 330 g sizes). All compounds used for biological assays are greater than 95% purity based on NMR and HPLC by absorbance at 220 nm and 254 nm wavelengths.

General procedure for synthesis of acyclic peptides ${ }^{1}$

Solid phase peptide coupling and deprotection: Into a reaction vial (with a fritted glass filter) under nitrogen containing H-Leu-2-Cl trityl or H-Phe-2-Cl trityl resin ($0.714 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added $\mathrm{DMF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 / 15 \mathrm{~mL})$. The mixture was shaken at RT for 30 min and then filtered. The resin was washed with DMF (10 mL) 2 times. A mixture of Fmoc-AA-OH (2.5 mmol) in DMF (20 mL), HBTU ($0.853 \mathrm{~g}, 2.25 \mathrm{mmol}$) and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(0.87 \mathrm{~mL}, 5 \mathrm{mmol})$ was stirred at RT for 10 min and then added to the resin. The resultant heterogeneous mixture was shaken at RT overnight and then filtered. The resin was washed with DMF ($20 \mathrm{~mL} \times 4$), dried and then piperidine/DMF $(20 \% \mathrm{v} / \mathrm{v}, 30 \mathrm{~mL})$ was added. The mixture was shaken for $1-4 \mathrm{~h}$ at RT, then filtered and was washed with DMF ($10 \mathrm{~mL} \times 4$). Following the Fmoc deprotection of the dipeptide, the dipeptide is carried on to the next step or coupling of another Fmoc-AA-OH is performed in an identical fashion as described above and then subsequently a final Fmoc deprotection to the tripeptide.

Acetyl capping and cleavage from resin: The peptide-containing resin was suspended in 30 mL of 0.5 M Ac 2 O and $1 \mathrm{M}^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ in DMF and shaken at RT for 1 h . The reaction was filtered, and resin washed with DMF (10 mL $x 4)$ followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 4)$. The resin was then suspended in 30 ml of $25 \% \mathrm{v} / \mathrm{v} \mathrm{HFIP} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and shaken for 1 h . The reaction was filtered, and the filtrate was concentrated and dried in vacuo.

Coupling of Arg (Pbf)-kbt: HCl and final deprotection. To crude peptide acid ($400 \mathrm{mg}, 1.0 \mathrm{mmol}$) dissolved in dry DMF (10 mL) under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$ was added HATU ($456 \mathrm{mg}, 1.20 \mathrm{mmol}$) followed by stirring for 15 min . Next, $\operatorname{Arg}(\mathrm{Pbf})-\mathrm{kbt}: \mathrm{HCl}(638 \mathrm{mg} ; 1.10 \mathrm{mmol})$ and $i \mathrm{Pr}_{2} \mathrm{NEt}(0.87 \mathrm{~mL}, 5.0 \mathrm{mmol})$ were added to the reaction at $0^{\circ} \mathrm{C}$. The reaction was allowed to reach room temperature and then stirred for an additional 2-3 h . DMF was removed under vacuum and water (250 mL) was added to the residue. The precipitate formed was filtered and washed with water $(2 \times 50 \mathrm{~mL})$ then dried under vacuum. The precipitate was suspended in 10 mL TFA/thioanisole/water (95:2.5:2.5 $\mathrm{v} / \mathrm{v} / \mathrm{v}$) and stirred for 2 h at RT. The solvent was removed, and cold ether (100 mL) was added. The resulting precipitate was collected by centrifugation and the crude product was purified by HPLC ($C_{18}, 15 \times 150 \mathrm{~mm}$ column; eluent: acetonitrile/water (0.05% TFA) to give the final compound.
 $2.89(\mathrm{~m}, 2 \mathrm{H}), 2.90-3.22(\mathrm{~m}, 4 \mathrm{H}), 4.37-4.74(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.58(\mathrm{~m}, 1 \mathrm{H}), 6.86-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.36(\mathrm{~m}$, $8 \mathrm{H}), 7.40-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.93-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.22-8.34(\mathrm{~m}, 2 \mathrm{H}), 8.60(\mathrm{t}, \mathrm{J}=7.59 \mathrm{~Hz}, 1 \mathrm{H})$, 10.76 (s, 1 H). ESI-MS [M+H]+ calcd for for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}+667.28$, found 667.5.

Ac-dWFR-kbt, 13. ${ }^{1} \mathrm{H}$ NMR (399 MHz, DMSO-d ${ }_{6}$) d ppm 1.56-2.07 (m, 6 H), 1.93-2.04 (m, 1 H), 2.52-2.81 (m, $4 \mathrm{H}), 2.96-3.08(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.70(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.58(\mathrm{~m}, 1 \mathrm{H}), 6.90-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.09$ $-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.44-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=7.79 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{t}, \mathrm{J}=8.37 \mathrm{~Hz}, 2 \mathrm{H}), 8.47(\mathrm{~d}$, $J=8.95 \mathrm{~Hz}, 1 \mathrm{H}$), $8.63(\mathrm{~d}, \mathrm{~J}=6.62 \mathrm{~Hz}, 1 \mathrm{H}), 10.74(\mathrm{~s}, 1 \mathrm{H})$. ESI-MS [M+H]+ calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}+667.28$, found 667.5.

Ac-QFR-kbt, 6. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2}$) d ppm 0.85-1.23 (m, 10 H), 1.23-1.49 (m, 4 H), 2.15 (dd, J=13.89, $8.41 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, \mathrm{J}=13.69,6.26 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.48(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.89(\mathrm{~m}, 1 \mathrm{H}), 4.86$ - 4.96 (m, 1 H), 6.24-6.42 (m, 7 H), 6.84 (quin, J=7.53 Hz, 3 H), 7.33 (d, J=7.43 Hz, 1 H), $7.37-7.45$ (m, 3 H), 7.73 ($d, J=7.04 \mathrm{~Hz}, 1 \mathrm{H}$). ESI-MS $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{~S}+609.26$, found 609.5.

Ac-IQFR-kbt, 7. H NMR (400 MHz, DMSO- d_{6}) d ppm 0.70-0.84 (m, 7 H) 1.00-1.14 (m, 1 H) 1.31-1.48 (m, 1 H) 1.54-1.84(m, 7 H) 1.84-2.13(m, 7H) 2.72-2.84(m, 1 H) 2.95-3.07(m, 1 H) 3.10-3.21(m, 2 H) 4.08 (t, J=6.85 Hz, 1 H) 4.12-4.21 (m, 1 H) 4.51-4.64 (m, 1 H) 5.45-5.55 (m, 1 H) 6.81 (br. s., 1 H)7.10-7.31 (m, 6 H) 7.497.57 (m, 1 H) $7.64-7.74(\mathrm{~m}, 2 \mathrm{H}) 7.95(\mathrm{t}, \mathrm{J}=9.00 \mathrm{~Hz}, 2 \mathrm{H}) 8.15(\mathrm{~d}, \mathrm{~J}=7.83 \mathrm{~Hz}, 1 \mathrm{H}) 8.28(\mathrm{t}, \mathrm{J}=8.61 \mathrm{~Hz}, 2 \mathrm{H}) 8.56(\mathrm{~d}$, $J=5.87 \mathrm{~Hz}, 1 \mathrm{H})$. ESI-MS $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{~S}+722.34$, found 722.6.

Ac-GQFR-kbt, 4 (MM3122). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta \mathrm{ppm} 1.51-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.87$ (s, 3 H), 1.91-2.11 (m, 3H), 2.71-2.86 (m, 1 H), 2.98-3.08(m, 1 H), 3.11-3.22(m, 2 H), $3.68(\mathrm{~d}, \mathrm{~J}=5.48 \mathrm{~Hz}, 2$ H), 4.10-4.23 (m, 1 H), 4.55 (br. s., 1 H), 5.50 (br. s., 1 H), 6.80 (br. s., 1 H), $7.09-7.32$ (m, 7 H), 7.53 (br. s., 1 H), $7.63-7.75$ (m, $2 H$), 8.02 (d, J=8.22 Hz, 1 H), $8.09-8.21$ (m, 2 H), $8.23-8.34$ (m, 2 H), 8.52 (d, J=6.26 Hz, 1 H).). ESI-MS $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{~S}+, 666.28$, found 666.50 .

Ac-PQFR-kbt, 5. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ ppm 0.87-1.54 (m, 19 H), 2.09-2.24 (m, 1 H), 2.37-2.49 (m, 3
 (m, 6 H), 6.76-6.90 (m, 2 H), 7.23 (d, J=7.43 Hz, 1 H), 7.33 (d, J=7.83 Hz, 1 H), $7.37-7.48(\mathrm{~m}, 2 \mathrm{H}), 8.44$ (d, $J=5.48 \mathrm{~Hz}, 1 \mathrm{H})$.). ESI-MS $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{~S}+706.31$, found 706.50.

H-dWFR-kbt, 14:

Boc-dWF-OMe: Boc-D-Trp-OH (1 g, 3.28 mmol) and HCl.Phe-OMe ($0.708 \mathrm{~g}, 3.28 \mathrm{mmol}$) was taken in dry dichloromethane (10 mL) under nitrogen atmosphere and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and N, N diisopropylethylamine ($1.7 \mathrm{~mL}, 9.84 \mathrm{mmol}$) and propylphosphonic anhydride ($1.9 \mathrm{~mL}, 3.28 \mathrm{mmol}, 50 \%$ solution in EtOAc) were added to the solution drop wise respectively. The reaction mixture was then stirred at $25^{\circ} \mathrm{C}$ under nitrogen atmosphere for 1 hour and the completion of the reaction was confirmed by LC-MS monitoring. On completion the reaction mixture was diluted with 10 mL dichloromethane and washed with 10% citric acid solution, saturated sodium bicarbonate solution and brine respectively. The organic layer was dried over sodium
sulfate and concentrated under reduced pressure. The crude product was triturated with hexane to obtain the title product in pure form as a white solid. Yield: 1.3 g (92.8%). Chemical formula: $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}$, Exact Mass: 465.55, MS(ESI): found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 488.58.

Boc-dWF-OH: Boc-WF-OMe ($0.130 \mathrm{~g}, 0.279 \mathrm{mmol}$) was taken in a $1: 1$ mixture of THF and water and LiOH. $\mathrm{H}_{2} \mathrm{O}$ ($0.035 \mathrm{~g}, 0.873 \mathrm{mmol}$) was added to it. The reaction mixture was stirred for 30 minutes at $25{ }^{\circ} \mathrm{C}$ and the completion of the reaction was confirmed by LCMS monitoring. On completion, the THF was evaporated under reduced pressure and the remaining water layer was cooled to $0^{\circ} \mathrm{C}$. The water layer was then brought to pH 6.5 by slow addition of 0.5 M HCl solution in water. The crude product precipitates out on addition of HCl and it was isolated by filtration. The crude product was dried under reduced pressure and triturated with diethyl ether to obtain the pure title product in pure form as white solid. Yield: $0.102 \mathrm{~g}(80 \%)$. Exact Mass: $451.21, \mathrm{MS}(E S I)$: found: $[\mathrm{M}+\mathrm{H}]^{+}$, 452.26.
Boc-dWFR(Mtr)-kbt: Boc-dWF-OH ($35 \mathrm{mg}, .077 \mathrm{mmol}$) and HATU ($43.9 \mathrm{mg}, 0.115 \mathrm{mmol}$) was taken in dry DMF under nitrogen atmosphere and the reaction mixture was cooled to $0^{\circ} \mathrm{C} . \mathrm{N}, \mathrm{N}$-diisopropylethylamine $(0.04 \mathrm{~mL}$, 0.231 mmol) was then added drop wise to the reaction mixture and the reaction mixture was allowed to stir for 15 minutes followed by addition of $\mathrm{HCl} . \mathrm{Arg}(\mathrm{Mtr})$-kbt ($41.75 \mathrm{mg}, .077 \mathrm{mmol}$). The reaction mixture was stirred for 12 hours at $25^{\circ} \mathrm{C}$ under nitrogen atmosphere and the completion of the reaction was confirmed by LC-MS monitoring. On completion, the reaction mixture was diluted with EtOAc and washed with 10% citric acid solution, saturated sodium bicarbonate solution and brine respectively. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. The crude product was directly taken to the next step without further purification. Chemical formula: $\mathrm{C}_{48} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}_{2}$, Exact Mass: 936.37, MS(ESI): found: $[\mathrm{M}+\mathrm{H}]^{+}, ~ 937.17$.

H-dWFR-kbt (14): Boc-dWFR(Mtr)-kbt (85 mg , crude product from previous step) was taken in 5 mL TFA:thioanisole: $\mathrm{H}_{2} \mathrm{O}(95: 2.5: 2.5)$ and the reaction mixture was stirred for 6 hours at $25{ }^{\circ} \mathrm{C}$. The completion of the reaction was confirmed by LC-MS monitoring. On completion, the reaction mixture was concentrated under reduced pressure and triturated with diethyl ether to obtain the crude product as brown solid. The crude product was then subjected to reverse phase semi-preparative HPLC (Stationary phase: C18 column, mobile phase: $\mathrm{H}_{2} \mathrm{O}$-Acetonitrile with 0.1% TFA in each, $15-65 \%$ Acetonitrile in $\mathrm{H}_{2} \mathrm{O}$ gradient for 20 minutes) to obtain the pure title product Yield: $25 \mathrm{mg}\left(42 \%\right.$ over two steps). Chemical formula: $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{3} \mathrm{~S},{ }^{1} \mathrm{H}$ NMR (400 MHz , METHANOL-d4) δ ppm $8.21(\mathrm{~d}, \mathrm{~J}=6.65 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=7.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.36(\mathrm{~m}, 10 \mathrm{H})$, $7.01-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=1.96 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, \mathrm{~J}=6.65 \mathrm{~Hz}, 4 \mathrm{H}), 3.01-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.84$ ($\mathrm{m}, 1 \mathrm{H}$), $2.65(\mathrm{~s}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 5 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=8.61 \mathrm{~Hz}, 1 \mathrm{H})$ Exact Mass: 624.26, MS (ESI): found: $[\mathrm{M}+\mathrm{H}]^{+}, 625.5$.

H-dWFR-kbt-COOH, 15: The title compound was synthesized using the same procedure as $\mathbf{1 4}$ using $\mathrm{H}-\mathrm{Arg}(\mathrm{Mtr})-$ kbt-COOH: HCl^{1}. Yield: 24 mg (43% over two steps). Chemical formula: $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{~S},{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,

METHANOL-d4) δ ppm 10.58 (br. s., OH), 8.82 (s, 1H), 8.22 - 8.32 (m, 2H), $7.70(\mathrm{dd}, \mathrm{J}=8.02,16.24 \mathrm{~Hz}, 0 \mathrm{H}$), 7.57 $-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=6.26 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=13.30 \mathrm{~Hz}, 0 \mathrm{H}), 7.11-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.55-$ $5.67(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.58(\mathrm{~m}, 0 \mathrm{H}), 4.35(\mathrm{dd}, \mathrm{J}=5.09,10.17 \mathrm{~Hz}, 0 \mathrm{H}), 4.05-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.07-$ $3.27(\mathrm{~m}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=6.06,13.11 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{td}, J=$ 7.14, 13.89 Hz, 1H), 0.91-1.00 (m, 2H), 0.65-0.81 (m, 6H) Exact Mass: 668.253, MS (ESI): found: [M+H] ${ }^{+}$, 669.5.

Ac-Cyclo(DLK)-R- ketobenzothiazole (2, VD2173). Into a reaction vessel (with fritted glass for resin support) containing Fmoc-L-Lys(Boc) Wang resin ($5 \mathrm{~g}, 1.7 \mathrm{mmol}$), DCM (40 mL) was added. The mixture was shaken at RT for 15 min and then filtered. To the dry resin was added piperidine/DMF ($20 \% \mathrm{v} / \mathrm{v}, 40 \mathrm{~mL}$) and the mixture was shaken for 30 min at RT, then filtered. The resin was washed with DMF ($2 \times 30 \mathrm{~mL}$) and DCM ($2 \times 30 \mathrm{~mL}$). Fmoc-Leu-OH ($1.8 \mathrm{~g}, 5.1 \mathrm{mmol}$), HBTU ($2.25 \mathrm{~g}, 5.95 \mathrm{mmol}$), iPr 2 NEt ($1.31 \mathrm{~g}, 10.2 \mathrm{mmol}$), and DMF (50 mL) were added to the vessel and shaken for 12 h , then filtered. The resin was washed with DCM ($2 \times 40 \mathrm{~mL}$) and DMF (2×40 $\mathrm{mL})$, then piperidine/DMF ($20 \% \mathrm{v} / \mathrm{v}, 40 \mathrm{~mL}$) was added and the reaction was shaken for 30 min at RT, then filtered. The resin washed with DCM ($2 \times 30 \mathrm{~mL}$) and DMF ($2 \times 30 \mathrm{~mL}$). Fmoc-Asp(OtBu)-OH ($2.10 \mathrm{~g}, 5.1 \mathrm{mmol}$), HBTU ($2.25 \mathrm{~g}, 5.95 \mathrm{mmol}$), iPr_{2} NEt ($1.31 \mathrm{~g}, 10.2 \mathrm{mmol}$), and DMF (50 mL) were added to the vessel and shaken for 12 h , then filtered. The resin was washed with DCM ($2 \times 40 \mathrm{~mL}$) and DMF ($2 \times 40 \mathrm{~mL}$). The peptide resin was then suspended in a solution of $\mathrm{Ac}_{2} \mathrm{O}(1.04 \mathrm{~g}, 10.2 \mathrm{mmol})$, and $i \operatorname{Pr}_{2} \mathrm{NEt}(3.07 \mathrm{~g}, 23.8 \mathrm{mmol})$ in 40 mL of DMF. The mixture was shaken at RT for 1-2 h, filtered and resin washed with DCM ($2 \times 40 \mathrm{~mL}$) followed by DMF (2×40 mL). To the resin was added 40 mL of dry 4 M HCl in 1, 4 -dioxane followed by shaking for $30-40 \mathrm{~min}$. at RT. The reaction was filtered, and the resin washed with DCM $(2 \times 40 \mathrm{~mL})$ followed by DMF ($2 \times 40 \mathrm{~mL}$). $\mathrm{EDCI}(0.98 \mathrm{~g}, 5.1$ $\mathrm{mmol})$, HOBt ($0.78 \mathrm{~g}, 5.1 \mathrm{mmol}$), $\mathrm{iPr}_{2} \mathrm{NEt}(1.1 \mathrm{~g}, 8.5 \mathrm{mmol})$, and DMF $(80 \mathrm{~mL})$ were added to the resin and the resulting mixture was shaken for overnight at RT. The mixture was filtered and the resin and washed with DCM ($2 \times 40 \mathrm{~mL}$) followed by DMF ($2 \times 40 \mathrm{~mL}$). To the acetyl capped peptide resin was added TFA ($2 \times 35 \mathrm{~mL}$) and shaken for 30 min . The mixture was filtered, and the resin washed with DCM ($2 \times 40 \mathrm{~mL}$). The filtrate was concentrated, and cold ether was added to the residue yielding the crude product as a precipitate which was purified by flash chromatography to give an off-white sold (400 mg).

The macrocyclic tripeptide acid ($400 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in dry DMF (10 mL) under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$ and HATU ($456 \mathrm{mg}, 1.20 \mathrm{mmol}$) was added followed by stirring for 15 min , and then the addition of $\operatorname{Arg}(\mathrm{Pbf})-\mathrm{kbt}: \mathrm{HCl}(638 \mathrm{mg} ; 1.10 \mathrm{mmol})$ and $i \mathrm{Pr}_{2} \mathrm{NEt}(0.87 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction is allowed to reach RT and then stirred for 2-3 h. The DMF was removed in vacuo and water (250 mL) was added to the resulting residue. The precipitate formed was filtered and washed with water ($2 \times 50 \mathrm{~mL}$) and dried. To this precipitate was added 10 mL of TFA/thioanisole/water (95:2.5:2.5 $\mathrm{v} / \mathrm{v} / \mathrm{v}$) and the mixture was stirred for 2
h at RT. The solvent was removed, and then cold ether (100 mL) was added. The crude product was collected by centrifugation. The crude product was purified by HPLC (C_{18}, $15 \times 150 \mathrm{~mm}$ column; eluent: acetonitrile/water (0.05% TFA) to give the title compound as a white solid. Overall yield (20%). 1 H NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta \mathrm{ppm}$ $=8.51(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.0,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.63$ (m, 2 H), 7.53 (br. s., 1 H), $5.44-5.33$ (m, 1 H), 4.60-4.48(m, 1 H), 4.29-4.18(m, 1 H), 3.42 (br. s., 4 H), 3.19 3.06 (m, 3 H), 2.96 (br. s., 1 H), $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.33(\mathrm{~m}, 8 \mathrm{H}), 1.23-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.89-$ $0.74(\mathrm{~m}, 7 \mathrm{H})$. ESI-MS [M+H]+ calcd for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{~S}+672.33$, found 672.5.

Ac-Cyclo(DQK)-R- ketobenzothiazole, 20. Synthesized like VD2173. Overall yield (30\%). ${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO-d ${ }_{6}$) $\delta \mathrm{ppm}=9.19(\mathrm{~s}, 1 \mathrm{H}), 8.98-8.81(\mathrm{~m}, 2 \mathrm{H}), 8.78-8.67(\mathrm{~m}, 1 \mathrm{H}), 8.60-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.38-8.24(\mathrm{~m}, 1$ H), 8.24-8.13 (m, 1 H), 7.89-7.81 (m, 1 H), 7.41-7.32 (m, 1 H), 7.29-7.11 (m, 1 H), 6.21-5.98 (m, 2 H), 5.25$5.08(\mathrm{~m}, 1 \mathrm{H}), 4.94-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{br} . \mathrm{s} ., 2 \mathrm{H}), 3.79(\mathrm{t}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 6 \mathrm{H}), 2.69-2.56(\mathrm{~m}$, 3 H), 2.44-2.32 (m, 3 H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 2.25$ (br. s., 5 H). ESI-MS [$\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{10} \mathrm{O}_{7} \mathrm{~S}+687.30$, found 687.50 .

Ac-Cyclo(DMK)-R- ketobenzothiazole, 19. Synthesized like VD2173. Overall yield (27\%). ${ }^{1} \mathrm{H} N M R$ (400MHz, DMSO-d6) δ ppm = 8.54 (d, J = $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $8.31-8.07$ (m, 2 H), 7.93 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (br. s., 1 H), 7.49 (br. s., 1 H), 5.40 (br. s., 1 H), 4.51 (br. s., 1 H), 4.22 (br. s., 1 H), 3.15 (br. s., 6 H), $2.00(d, J=1.2 \mathrm{~Hz}, 4 \mathrm{H}$), 1.88 1.77 (s, 3 H), 1.58 (br. s., 3 H), 1.39-1.03 (m, 16 H). ESI-MS [M+H]+ calcd for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{~S}_{2}+690.28$, found 690.40.

Ac-Cyclo(Allyl-Y)-R- ketobenzothiazole, 21. Fmoc-(L)-glycine ($3.5 \mathrm{~g}, 10 \mathrm{mmol}$) stirred in 20\% piperidine in DMF $(20 \mathrm{~mL})$ for 1 hr . Solvent was removed under reduced pressure, product triturated with DCM and hexanes (1:3), filtered the product and washed with hexanes, dried and used in the next reaction. Above material was dissolved in methanol (10 mL) and cooled the reaction to $0^{\circ} \mathrm{C}$ followed by added thionyl chloride (2 mL) dropwise and stirred for 10 min and ice bath was replaced by a water bath, and the reaction mixture heated to ${ }^{\sim} 50^{\circ} \mathrm{C}$ for 3 hr while stirring. Removal of the solvent left a white residue which was washed with diethyl ether (100 mL) and collected by vacuum filtration to yield the amino acid methyl ester hydrochloride as a solid (1.7 g). Above ester ($500 \mathrm{mg} ; 3.02 \mathrm{mmol}$) was taken in DCM (10 mL) and added DIEA ($1.58 \mathrm{~mL} ; 9.06 \mathrm{mmol}$) and $\mathrm{Ac}_{2} \mathrm{O}$ ($0.86 \mathrm{~mL} ; 9.06$ mmol) at RT and stirred for 3 hrs . Solvent was removed under reduced pressure and crude was purified by flash chromatography using EtOAc and Hexanes (1:9). A solution of ester (395 mg ; 2.5 mmol) in THF (3 mL) was treated with 1 M aqueous $\mathrm{LiOH}(3 \mathrm{~mL})$ and the reaction mixture was stirred for 3 h at RT , and the absence of starting material was monitored by TLC. After the solvent was evaporated off, the residue was diluted with water and the pH was adjusted to ~ 3.0 using 5% aq. HCl . The product was extracted with ethyl acetate (2×50 mL) and the combined organic layer washe with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered off and concentrated, which is used in the next step without further purification. N -acetyl allyl glycine acid (167 mg ;
1.06 mmol) in DMF (5 mL) was stirred with peptide coupling reagent EDCI/HOBt or HATU (1.3 eq) for 30 min . The reaction was cooled to $0-5^{\circ} \mathrm{C}$ and charged with amino acid methyl ester hydrochloride (1.1 eq .) followed by diisopropylethylamine (3.0 eq.). After 15 min , allowed the reaction was brought to RT and stirred overnight. Solvent was removed under reduced pressure and the residue partitioned between EtOAc and 5\% aq. HCl. The separated organic layer was washed with aq. $5 \% \mathrm{HCl}$, saturated NaHCO_{3} solution (2x) and brine (1 x) then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel column chromatography using EtOAc and Hexanes (2:8). A solution of the ester ($343 \mathrm{mg} ; 1.2 \mathrm{mmol}$) in THF (4 mL) was treated with 1 M aqueous LiOH (4 mL). The reaction mixture was stirred for 3 h at RT, and the absence of starting material was monitored by TLC. After the solvent was evaporated off, the residue was diluted with water and the pH was adjusted to ~ 3.0 using 5% aq. HCl . The crude product was extracted into ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine (25 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. N -acetyl dipeptide acid ($135 \mathrm{mg} ; 0.5 \mathrm{mmol}$) was stirred with EDCI (1.3 eq) and HOBt (1.3 eq) in DMF (3 mL) for 30 min . The reaction was cooled to $0-5^{\circ} \mathrm{C}$ and H -L- O-allyl Tyr-OMe. HCl ($130 \mathrm{mg}: 0.55 \mathrm{mmol}$) followed by DIEA (3.0 eq). After 15 min , allowed the reaction to RT and stirred overnight. Solvent was removed under reduced pressure and the residue partitioned between EtOAc and 5% aq. HCl . The separated organic layer was washed with aq. $5 \% \mathrm{HCl}$, saturated NaHCO_{3} solution (2x) and brine (1x) then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel column chromatography using EtOAc and Hexanes (3:7).

A solution of acyclic diene precursor ($150 \mathrm{mg}, 0.3076 \mathrm{mmol}$) in DCM ($280 \mathrm{~mL}, 0.2 \mathrm{Mol}$.) degassed for 30 min by purging nitrogen gas and then Grubbs $2^{\text {nd }}$ generation catalyst ($26 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added. The reaction was refluxed for 30 min and then additional Grubbs $2^{\text {nd }}$ generation ($13 \mathrm{mg}, 5 \mathrm{~mol} \%$) was added. The reaction was refluxed for 18 h under nitrogen atmosphere. After depletion of the starting material as monitored by TLC and LCMS, the reaction was cooled to RT and quenched by adding activated charcoal (100 mg) followed by stirring for 1 h . The mixture was filtered through celite bed and washed generously with DCM. The filtrate was concentrated in vacuo and the crude product was purified by silica gel chromatography to yield an off-white solid. A solution of the macrocyclic ester ($50 \mathrm{mg}: 0.10 \mathrm{mmol}$) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was treated with $1 \mathrm{M} \mathrm{aq} .\mathrm{LiOH}(2$ mL) at RT for 3 hrs , and the absence of starting material was monitored by TLC. After the solvent was evaporated off, the residue was diluted with water and the pH was adjusted to ~ 3.0 using $5 \% \mathrm{aq}$. HCl . The product was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and the combined organic layer washe with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered off and concentrated, which is used in the next step without further purification.

The macrocyclic acid ($45 \mathrm{mg}, 0.101 \mathrm{mmol}$) was dissolved in dry DMF (3 mL) under a nitrogen atmosphere at 0 ${ }^{\circ} \mathrm{C}$ and HATU ($50 \mathrm{mg}, 1.30 \mathrm{mmol}$) was added followed by stirring for 15 min , and then the addition of $\operatorname{Arg}(\mathrm{Pbf})$ $\mathrm{kbt}: \mathrm{HCl}(65 \mathrm{mg} ; 0.111 \mathrm{mmol})$ and $i \mathrm{Pr}_{2} \mathrm{NEt}(70 \mathrm{uL}, 0.404 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction is allowed to reach RT and
then stirred for 2-3 h. The DMF was removed in vacuo and water (250 mL) was added to the resulting residue. The precipitate formed was filtered and washed with water $(2 \times 50 \mathrm{~mL})$ and dried. To this precipitate was added 2.5 mL of TFA/thioanisole/water (95:2.5:2.5 $\mathrm{v} / \mathrm{v} / \mathrm{v}$) and the mixture was stirred for 2 h at RT. The solvent was removed, and then cold ether (35 mL) was added. The crude product was collected by centrifugation. The crude product was purified by HPLC ($\mathrm{C}_{18}, 15 \times 150 \mathrm{~mm}$ column; eluent: acetonitrile/water (0.05% TFA) to give the title compound as a white solid. Overall yield (32%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta \mathrm{ppm}=8.79$ ($\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.33$8.25(\mathrm{~m}, 2 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2$ H), 6.67 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.60-5.36 (m, 2 H), 4.72-4.54 (m, 2 H), 4.37-4.25 (m, 1 H), 4.17 (br. s., 1 H), 3.16 (d, J = 6.3 $\mathrm{Hz}, 2 \mathrm{H}), 2.98(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.64$ (br. s., 4 H$), 1.41-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.83-0.72(\mathrm{~m}$, 10 H).

The synthesis of $\mathbf{9}, \mathbf{1 0}, \mathbf{1 1}$, and $\mathbf{1 8}$ have been previously reported. ${ }^{2}$
The synthesis of $\mathbf{1 , 3 , 1 2 , 1 6}$, and $\mathbf{1 7}$ are as previously described. ${ }^{1}$

NMR and HPLC-MS spectra of new compounds 2, 4-7,19-21.

VD2173 (Compound 2)

Acquisition Time (sec)	2.5559	Comment	MM3122 Ac-	FR-kbt		Date	Jun 162020
Date Stamp	Jun 162020	File Name	C:\Mahoney_Raw_NMR\MM3122_20200616_01\PROTON_01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	46.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2411.2898	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree	25.000

Acquisition Time (sec)	2.5559	Comment	MM3122 Ac-GQFR-kbt			Date	Jun 162020
Date Stamp	Jun 162020	File Name	C:\Mahoney_Raw_NMRIMM3122_20200616_01\PROTON 01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	46.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2411.2898	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree C)	25.000

Acquisition Time (sec)	2.5559	Comment	C:\Mahoney_Raw_NMR\MM3122_20200616_01\PROTON_01.fidlfid Jun 162020				
Date Stamp	Jun 162020	File Name					
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	46.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2411.2898	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree	25.000

Ac-Gly-G/a-Phe-Arg-Kbt TFA

 5.18 .20
 MM3122S

DAD1 B, Sig=254,16 Ref=off (APR2020MM3122S.D)

MSD1 TIC, MS File (APR2020IMM3122S.D) API-ES, Pos, Scan, Frag: 90

MSD1 TIC, MS File

\# Meas. Ret	Area	Area \%	
1	3.24	$1.212 e 7$	100.00

MSD1 SPC, time=3.188:3.413 of APR20201MM3122S $. D===>$ Peak at 3.24 min .

Acquisition Time (sec)	2.5559	Comment	MM3123 Ac-PQFR-kbt			Date	Jun 172020
Date Stamp	Jun 172020	File Name	C:\Mahoney_Raw_NMRIMM3131_20200617_01\PROTON 01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	46.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2408.1597	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree	25.000

Acquisition Time (sec)	2.5559	Comment	MM3123 Ac-PQFR-kbt			Date	Jun 172020
Date Stamp	Jun 172020	File Name	C:IMahoney Raw NMRIMM3131_20200617_01\PROTON 01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	46.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2408.1597	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree C)	25.000

Acquisition Time (sec)	2.5559	Comment	MM3123 Ac-PQFR-kbt			Date	Jun 172020
Date Stamp	Jun 172020	File Name	C:IMahoney Raw NMRIMM3131_20200617_01\PROTON 01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	46.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2408.1597	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree C)	25.000


```
\(A c-P_{r o}-6 l_{\mathrm{n}}\) - Phe-Arg-kbt-TFA
Injection Date : 5/18/2020 10:36:21 AM
Sample Name : MM3123S
Acq. Operator : Janetka
Acq. Instrument : Instrument 1
Acq. Method : C:\HPCHEM\I\METHODS\MM10H1MM.M
Last changed : 5/15/2020 12:07:07 PM
```


DAD1 B, Sig=254,16 Ref=off (APR2020MM3123S.D)

DAD1 C, Sig=210, 8 Ref=off

$\#$	Meas. Ret	Area	Area \%
1	3.42	2.760 e 3	100.00

Acquisition Time (sec)	2.5559	Comment	MM3144 Ac-	R-kbt		Date	Jun 172020
Date Stamp	Jun 172020	File Name	C:\Mahoney_Raw_NMRIMM3144_20200617_01\PROTON 01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	48.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2408.1594	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree	25.000

Acquisition Time (sec)	2.5559	Comment	MM3144 Ac-QFR-kbt			Date	Jun 172020
Date Stamp	Jun 172020	File Name	C:IMahoney_Raw_NMRIMM3144_20200617_01\PROTON 01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	48.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2408.1594	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree	25.000

Acquisition Time (sec)	2.5559	Comment	MM3144 Ac-QFR-kbt			Date	Jun 172020
Date Stamp	Jun 172020	File Name	C:IMahoney_Raw_NMRIMM3144_20200617_01\PROTON 01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	48.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2408.1594	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree	25.000

MSD1 TIC, MS File (JUN2020MM3144S.D) API-ES, Pos, Scan, Frag: 90						
2.700						
1000000						
750000						
500000250000						
0	1	2	3	4	5	mir

$\begin{gathered} \text { DAD } \\ \# \end{gathered}$	$\begin{gathered} i g=2 \\ \text { Ret } \end{gathered}$	Ref=off Area	Area \%
1	2.63	2.039 e 2	8.85
2	2.68	2.101 e 3	91.15

$\begin{gathered} \text { MSD } \\ \# \end{gathered}$	MS Ret	Area	Area \%
1	2.64	2.272 e 5	7.19
2	2.70	2.931 e6	92.81

MSD1 $\overline{\text { SPC }, ~ t i m e ~}=2.601: 2.646$ of JUN20201MM3144S.D $===>$ Peak at 2.64 min.

MSD1 SPC, time $=2.664: 2.754$ of JUN20201MM3144S.D $===>$ Peak at 2.70 min .

Acquisition Time (sec)	2.5559	Comment	MM3116 Ac-IQFR-kbt			Date	Jun 162020
Date Stamp	Jun 162020	File Name	C:IMahoney_Raw_NMRIMM3116_20200616_02\PROTON_01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	46.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2412.4636	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree	25.000

Acquisition Time (sec)	2.5559	Comment	MM3116 Ac-IQFR-kbt			Date	Jun 162020
Date Stamp	Jun 162020	File Name	C:IMahoney Raw NMRIMM3116_20200616_02\PROTON 01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	46.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2412.4636	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree	25.000

Acquisition Time (sec)	2.5559	Comment	MM3116 Ac-IQFR-kbt			Date	Jun 162020
Date Stamp	Jun 162020	File Name	C:\Mahoney_Raw_NMRIMM3116_20200616_02\PROTON_01.fidlfid				
Frequency (MHz)	399.75	Nucleus	1H	Number of Transients	8	Original Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	46.00	Solvent	DMSO-d6
Spectrum Offset (Hz)	2412.4636	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree	25.000

Ac-Ile-GIn-Phe-Ary-Kbt TFA

MW: 721.88

DAD1 B, Sig=254,16 Ref=off (APR20201MM3116F2.D)

| DAD1 B, Sig=254,16 Ref=off | |
| :---: | :---: | :---: | :---: |
| $\#$ Meas. Ret Area Area \%
 -1 3.50 $2.120 e 2$ 100.00 | |

DAD1 C, Sig=210,8 Ref=off

$\#$	Meas. Ret	Area	Area \%
1	3.50	$1.305 e 3$	100.00

MSD1 TIC, MS File

$\#$	Meas. Ret	Area	Area \%
1	3.53	$2.295 e 6$	100.00

VD3173 (Compound 19)

VD3152 (Compound 20)

VD4051 (Compound 21)

MSD1 SPC, time $=3.612: 3.838$ of APR2021IVD4051B.D $===>$ Peak at 3.70 min .				
150000	719.6			
100000		720.6		
50000		721.6		
	600		800	m/2

4. Figure S2. K_{m} curve for Boc-QAR-AMC using full-length TMPRSS2 (Enzyme conc. 3 nM).

TMPRSS2 Km Curve

5. Figure S3. IC_{50} inhibition curves of full-length TMPRSS2/Boc-QAR-AMC (Data in Table 1).

ZFH6095

ZFH6101

ZFH6201-1

ZFH7063

PK-1-18

ZFH7064

MM3116

MM3123

PK-1-89

PK-1-45A1

ZFH7006

MM3144

MM3122

Figure S4. Cell-based TMPRSS2 enzyme inhibition data of ZFH7116 (1) and VD2173 (2) in HEK-293 cells using Boc-QAR-AMC substrate.

7. Acute toxicity of MM3122 (4) data.

8. Activity of $\mathbf{1}$ and $\mathbf{2}$ and Camostat using Vero cells in pseudotype and chimeric VSV-SARS-CoV-2 viruses.

Figure S6. Inhibition of SARS-CoV-2 cell entry into Calu-3 lung epithelial cells by ZFH7116 (1) and VD2173 (2) using VSV-SARS-CoV2-Spike protein Pseudotypes. EC ${ }_{50}$ S are calculated from an average of 3 separate experiments. Camostat, an irreversible serine protease inhibitor, was used as a positive control.

Figure S7. Inhibition of SARS-CoV-2 cell entry into Calu-3 lung epithelial cells by ZFH7116 (1) and VD2173 (2) using VSV-SARS-CoV2-Spike protein Chimeras. EC_{50} S are calculated from an average of 3 separate experiments. Camostat, a non-selective protease inhibitor,
9. Expression and purification of TMPRSS2 protease domain.

Figure S8. Bacterial periplamic expression and purification of TMPRSS2-protease domain. (A) TMPRSS2-protease domain expression construct. N terminal fused pelB signalling peptide allows for secretion of the target protease to the periplasm allowing for correct folding and ease in purification downstream. (B) Michaelis-Menten curve of TMPRSS2-Protease domain against (MCA)-K-KARSAFA-K-(DnP). Initial velocities of peptide cleavage were plotted against substrate concentration. Kinetic values were calculated using GraphPad Prism. (C) Denaturing SDS-PAGE gel of Ni-NTA affinity purification of TMPRSS2-Protase domain. Correct band size for TMPRSS2-protease domain ($\sim 26 \mathrm{kDa}$) shown in Red arrow. (D) SDS-PAGE gel of size exclusion chromatography fractions. Fractions only containing protease domain were collected and pooled. E) Western blot against pooled TMPRSS2-protease domain. Blot using monoclonal TMPRSS2-protease domain antibody (MO5), clone 2F4 confirms purity of sample and no existence of degradation products.

REFERENCES

[1] Han, Z., Harris, P. K., Karmakar, P., Kim, T., Owusu, B. Y., Wildman, S. A., Klampfer, L., and Janetka, J. W. (2016) alphaKetobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer, ChemMedChem 11, 585-599.
[2] Han, Z., Harris, P. K., Jones, D. E., Chugani, R., Kim, T., Agarwal, M., Shen, W., Wildman, S. A., and Janetka, J. W. (2014) Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A Nonkinase Strategy to Block Cell Signaling in Cancer, ACS Med Chem Lett 5, 1219-1224.
[3] Shrimp, J. H., Kales, S. C., Sanderson, P. E., Simeonov, A., Shen, M., and Hall, M. D. (2020) An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19, ACS Pharmacol Transl Sci 3, 997-1007.

