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ABSTRACT

Single nucleotide polymorphism (SNP)
association studies searching for differ-
ences in allele frequencies between cases
and controls have been widely used for ge-
netic analysis. Individual genotyping is pro-
hibitively expensive in large sample sizes.
Pooling of samples provides the obvious ad-
vantage of higher throughput and lower
cost. Here we report our results with the
analysis of SNP allele frequencies in DNA
pools using Pyrosequencing technology.
For seven different SNPs, we observed a
mean difference of 1.1 ± 0.6% between al-
lele frequencies determined in two different
DNA pools (n = 150 cases and 150 con-
trols) compared to individually genotyped
samples.

INTRODUCTION

Linkage analysis in families with
multiple affected individuals has be-
come a standard method for discover-
ing Mendelian disease genes (7). How-
ever, for most complex genetic
diseases, a single gene is neither neces-
sary nor sufficient for the disease etiol-
ogy, and the standard positional cloning
methods are inadequate to identify the
genes. Linkage disequilibrium map-
ping in unrelated cases and controls has
recently been proposed for this endeav-
or (5). Because the distance over which
disequilibrium extends between mark-
ers and disease loci are never known,
nor the degree of genetic risk con-
tributed by any particular locus, one is
tempted to genotype closely spaced
markers in as many cases and controls
as can be identified. Single nucleotide
polymorphisms (SNPs), while biallelic,
have been preferred over simple se-
quence repeat polymorphisms for this
type of analysis, as SNPs are more
abundant in the genome (9). Thus,
many have sought rapid and cost-effi-
cient methods for SNP genotyping.
Pooling of DNA is a means of quickly
finding regions of linkage disequilibri-
um with disease loci, thus requiring the
accurate determination of allele fre-
quencies in DNA pools (2). We now re-
port that Pyrosequencing (Pyrose-
quencing AB, Uppsala, Sweden), a
real-time sequencing method that em-
ploys an enzyme cascade system to
monitor the release of inorganic py-
rophosphate during nucleotide incorpo-
ration, is suitable for the genotyping of
DNA pools. As each nucleotide is in-
corporated, the pyrophosphate released

is quantitated by a luciferase reaction
that results in a peak that is represented
on a Pyrogram (Pyrosequencing
AB). The PSQ96 Pyrosequencer and
the accompanying allele quantification
software (Pyrosequencing AB) enabled
us to determine rapidly and accurately
the SNP allele frequencies in DNA
pools containing 150 individuals. This
method does not preclude larger sam-
ples.

MATERIALS AND METHODS

Patient Population

Cases (type 2 diabetes mellitus) and
controls were of Ashkenazi Jewish de-
scent as described previously (8).

DNA Isolation and Quantification

The DNA samples were isolated
from whole blood using the Puregene
kit as described (Gentra Systems, Min-
neapolis, MN, USA). DNA was quanti-
fied with the TKO 100 Mini-Fluorome-
ter and Hoechst dye method as
described (Hoefer Scientific Instru-
ments, San Francisco, CA, USA). For
the purposes of creating DNA pools,
efforts to determine DNA concentra-
tions accurately for each sample are
critical, as errors will skew the propor-
tion of each genotype in the pool. Spec-
trophotometric analysis was avoided
because substances such as protein and
salts may give spurious results (13). On
the other hand, the larger the number of
samples in the pool, the less important
the individual quantifications become,
as random errors in individual samples
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tend to be minimized in large samples.
Individual working samples were dilut-
ed with high-purity water to 10 ng/µL
in sterile 1.2-mL polypropylene tubes,
arranged in 96-well format racks, and
stored at 4°C in a dedicated refrigerator
separate from PCR products.

Construction of DNA Pools

The DNA samples were gently
mixed on a rocking platform to ensure
homogeneity before pipetting. Equal
volumes of each sample were delivered
to a sterile 55-mL polypropylene solu-
tion basin (Labcor Products, Frederick,
MD, USA) using an accurately calibrat-
ed multichannel pipet. Once all the indi-
vidual samples for that particular pool
were dispensed, the basin containing the
DNA was rocked (carefully to avoid
spillage) for several minutes to do a pre-
liminary mixing. The DNA was then
pipetted into a 50-mL polypropylene

tube, making every effort to recover all
liquid in the basin; further mixing was
done by rocking the tube for about 1 h.
The pooled DNA was placed into 1-mL
aliquots in sterile 1.5-mL polypropylene
microtubes and stored at 4°C in the ded-
icated refrigerator. The tops of stored
tubes were wrapped with Parafilm®. As
a quality control, the uniformity of the
mixing procedure was verified by geno-
typing replicate aliquots of the pools for
several SNPs. The total volume of the
pool was determined by the number of
SNPs to be tested in the overall study.
Each SNP assay required a minimum of
200 ng (25 ng × 8 replicates equals 20
µL of 10 ng/µL) of pooled DNA. To as-
say approximately 2500 SNPs required
a pool total volume of 50 mL (333 µL
each of the 150 individual DNAs at 10
ng/µL). The volume and concentration
of the pool could be adjusted to meet the
laboratory’s own requirements and
availability of DNA.

PCR

The reaction consisted of 2.5 µL
GeneAmp 10× Buffer II (Applied
Biosystems, Foster City, CA, USA),
2–3 µL 25 mM MgCl2 solution, 0.5 µL
each 20 mM dNTP (Amersham Bio-
sciences, Piscataway, NJ, USA), 1 µL
10 pmol/µL 5′ biotin-TEG labeled,
HPLC-purified primer, and 1 µL 10
pmol/µL unlabeled primer (IDT,
Coralville, IA, USA), 0.25 µL (1.25 U)
AmpliTaq Gold® (Applied Biosys-
tems), 2.5 µL 10 ng/µL DNA (pool or
individual), and sterile water to 25 µL
total volume. Before pipetting, the DNA
pool was gently vortex mixed to ensure
that the solution was homogeneous.
Thermal cycling was done interchange-
ably on a GeneAmp 9700 (Applied
Biosystems) or PTC-200 (MJ Re-
search, Watertown, MA, USA) using
the following profile: heated lid, 95°C
for 10 min, 45 cycles of 95°C for 45 s,
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annealing temperature (56°C–62°C) for
45 s, 72°C for 1 min, and a final hold at
4°C. Forty-five cycles ensure that all
PCR components were exhausted. PCR
primers were designed with Primer 3
Software (code available at http://www.
genome.wi.mit.edu/genome_software/
other/primer3.html), and the predicted
reaction conditions (annealing tempera-
ture and MgCl2) were tested on several
nonessential DNA samples. In more
than 100 assays tested, the stipulated
conditions for primer sets were optimal
more than 95% of the time. Fragment
sizes of 100–500 bp have been success-
fully analyzed.

PCR Plate Setup

Plates (96-well) were set up with
eight replicates of the case pool in col-
umn A and eight replicates of the con-
trol pool in column B. A variable num-
ber of replicates from 3 to 10 were
tested, and it was found that eight repli-
cates most consistently resulted in a
standard deviation of 2 or below. The
number of replicates for each pool
could be modified to meet the strin-
gency of the application. Column C
was used for quality-control samples
and contained four individual DNA
samples and four primer controls. The
remaining columns on the plate were

set up in the same way for the other
SNPs to be tested. Chimney-top-style
PCR plates (Phoenix Research Prod-
ucts, Hayward, CA, USA) were used as
the deeper wells prevent spillage in
downstream manipulations. The indi-
vidual genotypes helped define any un-
usual characteristics about each SNP,
such as preferential allele amplification
(see Discussion section). The primer
controls as described in the company
protocol further defined the quality of
the particular SNP assay, such as base-
line noise caused by primer dimeriza-
tion (Pyrosequencing AB). Four differ-
ent SNPs were assayed on one plate.

Template Preparation and
Pyrosequencing

The PCR product was immobilized,
and single-strand isolation was per-
formed with Dynabeads M-280
Strepavidin (Dynal Biotech, Oslo, Nor-
way) as described (Pyrosequencing
AB). For products over 300 bp, a 30-
min hybridization at 65°C was done
with 15 µL beads/sample. We utilized
Hydra 96-well microdispensing ro-
bots (Robbins Scientific, Sunnyvale,
CA, USA) to pipet the hybridized PCR
products and denaturing, washing, and
annealing buffers to the PSQ plates
(Pyrosequencing AB).  The sequencing

reactions were performed as described
(Pyrosequencing AB). No optimization
was required.

Allele Quantification Software

Allele frequencies in the samples
were assessed by SNP Software AQ
(Pyrosequencing AB) as described, and
the data were exported to a Microsoft®
Excel® spreadsheet for further analysis. 

Denaturing HPLC

The PCR was performed as previ-
ously described. Heteroduplex DNA
was formed and analyzed as described
with the Wave technology (Transge-
nomic, Omaha, NE, USA).

RESULTS AND DISCUSSION

To establish the accuracy of SNP al-
lele frequency estimates in DNA pools,
we first examined the correlation be-
tween allele frequencies and Pyrogram
peak heights.  To illustrate the readout,
homozygous C/C, T/T, or heterozygous
C/T individuals for a particular SNP are
shown in Figure 1A. In this example,
the C/C individual has a peak at the C
nucleotide that is equal in height to the
peak of the T/T individual at the T nu-
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Figure 1. C/T SNP Pyrogram and allele frequencies. (A) Pyrogram for a C/T SNP sequence. (B) Regression line between allele frequencies and Pyrogram
peak heights in a mixing experiment between two individuals homozygous for a particular SNP. Each point is the mean of duplicate determinations.
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cleotide. In contrast, the C/T individual
has peak heights at both the C and T
bases that are half the height of those in
the homozygotes. Control nucleotides
that are not part of the actual sequence,
in this case Gs, are dispensed immedi-
ately before and after the nucleotides
that comprise the SNP. The presence of
peaks for these control bases implies
that the assay has a problem and that
new conditions are indicated. The E
and S positions are the enzyme and
substrate respectively in the reaction.

Next, a mixing experiment was per-
formed in duplicate with the two differ-
ent homozygotes (C/C and T/T) in vari-
ous proportions from 1:99, 5:95, 10:90,
etc. down to 90:10, 95:5, and 99:1. The
SNP Software AQ then converted the
peak heights to allele frequencies (Fig-
ure 1B). The R2 statistic for the regres-
sion line relating peak height versus es-
timated allele frequency was 0.9963,
and a test for the significance of the re-
gression line yielded a P value less than
0.0001, indicating that Pyrogram peak
heights accurately reflect allele fre-

quencies. With this assurance, we con-
structed DNA pools and compared the
allele frequencies of pooled DNA with
the allele frequencies determined by
genotyping the individuals that com-
prised the pools.

Two DNA pools were assembled,
one from 150 cases and the other from
150 controls as described above, and al-
lele frequencies were ascertained for
seven different SNPs. The reported mi-
nor allele frequencies ranged from less

DRUG DISCOVERY
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Figure 2. Significance versus percentage difference between cases and controls. Differences in allele
frequencies were determined as described in the text. Pvalues were calculated using the two-sample test
for binomial proportions.

Delta 
(pools versus 

SNP Pools Individuals individuals)

ID130 (C/T)a Controls 17.8 ± 0.4% C (n = 4) 18.2% C 0.4%
Cases 14.6 ± 0.3% C (n = 10) 15.4% C 0.8%

ID146 (C/T)a Controls 1.4 ± 0.6% T (n = 4) 2.8% T 1.4%
Cases 2.5 ± 0.2% T (n = 10) 1.4% T 1.1%

PKIG (C/T) Controls 15.5 ± 0.5% T (n = 8) 15.0% T 0.5%
Cases 15 ± 0.4% T (n = 10) 15.0% T 0.4%

EPPIN3 (G/T) Controls 20.1 ± 0.3% G (n = 3) 21.7% G 1.6%
Cases 24.3 ± 0.4% G (n = 10) 26.0% G 1.7%

MYBL86 (A/G) Controls 7.4 ± 0.3% G (n = 8) 6.2% G 1.2%
Cases 12.9 ± 0.5% G (n = 8) 11.7% G 1.2%

MYBL42 (A/T) Controls 20.4 ± 0.3% A (n = 8) 22.5% A 2.1%
Cases 27.4 ± 0.3% A (n = 8) 27.5% A 0.1%

HNF47 (A/G) Controls 41.9 ± 0.7% G (n = 8) 39.8% G 1.1%
Cases 36.8 ± 0.5% G (n = 8) 34.8% G 2.0%

x- ± SEM 1.1 ± 0.6%

Pools of DNA from 150 cases and 150 controls were constructed, and the allele frequencies were determined in replicates of
the pools and compared to those determined in the same individuals.

All figures are for the minor allele.
aAll pool and individual figures were determined with the Pyrosequencer, except for the individual determinations of these two
SNPs, which were determined by denaturing HPLC.

Table 1. Estimation of Allele Frequencies in Pooled DNA Samples Compared to Individual Genotyping
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than 5% to 50%. SNPs that contain three
or more of the same nucleotide adjacent
to the polymorphic site were not select-
ed because the light response following
incorporation of several identical nu-
cleotides is not linear (10). In our pools,
minor allele frequencies for the SNPs
varied from 1.4% to 41.9%. The DNA
pools were assayed as few as three to as
many as 10 times (Table 1), and standard
errors for the replicates from 0.2% to
0.7% were observed. Two different
methods of individual genotyping were
employed: denaturing HPLC and
PSQ96, as indicated in Table 1. The rela-
tionships between the allele frequencies
estimated in pools compared to allele
frequencies determined by individually
genotyping are shown. The differences
between pools and individual genotypes
varied from 0.0% to 2.1%, with mean
difference of 1.1 ± 0.6% (x- ± SEM).

To assess whether SNP allele fre-
quencies differ between cases and con-
trols, the measurement error, along
with the number of individuals tested,
must be considered. Therefore, we in-
corporated the error in allele frequency
determination by Pyrosequencing that
we observed by analysis of the seven
SNPs shown in Table 1 and determined
estimates of significance for n = 300 or
n = 600 individuals (Figure 2). We esti-
mated that allele frequencies that dif-
fered between cases and controls by at
least 8% for n = 300 individuals would
be required to give a difference signifi-
cant at the P < 0.05 level, and at least
5.2% for n = 600 individuals. The P
values for the graph were calculated us-
ing the two-sample test for binomial
proportions (normal theory test) (11),
including twice the measurement vari-
ance in the calculation of the z statistic.
For illustrative purposes, we fixed one
allele frequency at 0.30 and varied the
second, incrementally adjusting it from
0.30 down to 0.15. Note that for SNPs
for which the minor allele is less fre-
quent (<0.30), a smaller difference be-
tween the allele frequencies of cases
and controls may also be significant.
For example, allele frequencies in cas-
es and controls of 5% and 10% yield a
significant P value (P = 0.027, ncases =
ncontrols = 300), while frequencies of
25% and 30% do not (P = 0.109, ncases
= ncontrols = 300), despite the fact that
the difference between cases and con-

trols is 5% in both instances. In prac-
tice, the significance of the difference
between pools of cases and controls is
calculated directly using the two-sam-
ple test for binomial proportions.

Below we describe some of the posi-
tive and negative aspects we have en-
countered in Pyrosequencing and sug-
gest methods for maximizing results.
One of the advantages of this system is
its ease of use in a small laboratory set-
ting. Because the run and analysis times
are relatively short, we may convenient-
ly share the instrument with two other
laboratories. Furthermore, the instru-
ment has required little maintenance.

After PCR, a 96-well tray can be
prepared for sequencing in about 10
min using the PSQ96 Sample Prep
Tool. Plates can be processed in batch
fashion and stored until sequenced: one
week at 4°C or for up to six months at
-20°C. The instrument automates the
reaction itself. The operator needs only
to fill an ink jet printer-type cartridge
with nucleotides, enzyme, and sub-
strate provided in a kit and place it in
the machine. The instrument computer
interface is simple; for example, the
sample sheet is in a 96-well format in
which the data entered once can easily
be copied into other cells. Pyrose-
quencing of 96 samples takes only 10
min. The automated analysis of geno-
types takes less than 1 min. Samples
with ambiguous genotypes or errors are
highlighted for user editing. A timesav-
ing feature of the SNP Software AQ is
that it will calculate the minimum and
maximum allele frequencies and stan-
dard deviation for multiple samples
simply by pressing the control key and
selecting the samples of interest. An-
other timesaving feature is a Web-
based SNP sequencing primer design
software (Pyrosequencing AB) that
simplifies the primer design.

Sixty-four out of 67 SNPs tested to
date have been successfully assayed,
which is a 96% success rate. The three
assays that failed yielded low peak
heights, below 2 units. The PCR prod-
ucts were robust and verified by se-
quencing (ABI PRISM Big Dye Ter-
minator Cycle Sequencing Ready
Reaction Kits; Applied Biosystems).
There were no problematic DNA struc-
tures (such as hairpins) near the SNPs.
Different SNP sequencing primers

DRUG DISCOVERY
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were also utilized. The reasons for
these failures remain unresolved.

It should be noted that because of the
chemistry of the Pyrosequencing reac-
tion, incorporation of the A nucleotide
results in an approximately 9% higher
peak relative to peaks for other nu-
cleotides. When estimating the allele
frequencies from pools and comparing
these to allele frequencies measured
from the individual genotypes, an ad-
justment needs to be made. The adjust-
ment factor panel of the SNP Software
AQ allows the operator to correct for this
effect as well as other abnormalities
such as preferential allele amplification
in the PCR or baseline noise in the SNP
Pyrogram. On the other hand, when
comparing the relative allele frequencies
between pools of cases and controls, this
effect will subtract out in both pools.

A limitation of measuring SNP al-
lele frequencies in pools is that one
cannot estimate Hardy-Weinberg equi-
librium or construct haplotypes  To ob-
viate this limitation, once we observe

allele frequencies that appear to differ
between cases and controls, we geno-
type additional nearby SNPs and then
genotype individuals for each SNP and
construct haplotypes (3).

There are reports of other methods to
assess allele frequencies in DNA pools
such as kinetic PCR (4), MALDI-TOF
mass spectrometry (12), TaqMan® (1),
and direct sequencing (6). The kinetic
PCR technique requires no post-PCR
processing, and the correlation between
measured and known allele frequencies
is R2 = 0.997; however, separate PCRs
are necessary to assay the two SNP alle-
les, and the success rate of the assay is
80%. The MALDI-TOF mass spec-
trometry technique also has a good cor-
relation between measured and known
allele frequencies (R2 = 0.997 for one
SNP); however, the standard deviations
of the measured peak areas are typically
10%. The TaqMan assay reports accu-
rate results with low standard devia-
tions; however, the analysis cost is high
and assay optimizations are sometimes
difficult. Direct sequencing of PCR-am-
plified pooled DNA yields only a rough
estimate of the SNP allele frequencies,
with a variance of up to 5%. Since we
have not done any direct comparisons
between Pyrosequencing technology
and the other methods, we cannot draw
any conclusions about their relative
merits.

In summary, we find that Pyrose-
quencing technology yields estimates
of allele frequencies in DNA pools to
within 2% of those defined by individ-
ual genotyping. We predict that this
technology will provide the opportuni-
ty to genotype many more SNPs for po-
sitional cloning and for the evaluation
of candidate genes for diseases.
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