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SUMMARY

Gene regulatory networks (GRNs), consisting of transcription factors and their target sites, control neurogen-
esis and cell-fate specification in the developing central nervous system. In this study, we use integrated sin-
gle-cell RNA and single-cell ATAC sequencing (scATAC-seq) analysis in developingmouse and human retina
to identify multiple interconnected, evolutionarily conserved GRNs composed of cell-type-specific transcrip-
tion factors that both activate genes within their own network and inhibit genes in other networks. These
GRNs control temporal patterning in primary progenitors, regulate transition from primary to neurogenic pro-
genitors, and drive specification of each major retinal cell type. We confirm that NFI transcription factors
selectively activate expression of genes promoting late-stage temporal identity in primary retinal progenitors
and identify other transcription factors that regulate rod photoreceptor specification in postnatal retina. This
study inventories cis- and trans-acting factors that control retinal development and can guide cell-based
therapies aimed at replacing retinal neurons lost to disease.

INTRODUCTION

The central nervous system (CNS) consists of many distinct cell

types, which are generated in discrete though often overlapping

temporal windows (Holguera and Desplan, 2018; Oberst et al.,

2019; Paridaen and Huttner, 2014). In both vertebrates and in-

vertebrates, temporal patterning is controlled intrinsically by

dynamically regulated expression of transcription factors (TFs),

which in turn regulate the ability of neural progenitors to prolifer-

ate and generate specific cell types (Cayouette et al., 2003; Doe,

2017; Rossi et al., 2021; Thor, 2017). Multiple individual TFs con-

trol temporal patterning in both Drosophila (Bayraktar and Doe,

2013; Erclik et al., 2017; Konstantinides et al., 2021) and

mammalian (Sagner et al., 2020; Telley et al., 2019) neural pro-

genitors, and large-scale gene expression analysis of developing

CNS has identified many other dynamically expressed TFs

(Carter et al., 2018; La Manno et al., 2021; Tiklová et al., 2019).

However, the high cell type diversity in developing CNS (Zeng

and Sanes, 2017) has hindered identification of the genomic tar-

gets of these transcription factors, the networks into which they

are organized, and the mechanisms by which they control tem-

poral transitions and neurogenesis.

Unlike most brain regions, the retina is a tractable system

for identifying molecular mechanisms controlling temporal

patterning and neurogenesis. The retina is composed of seven

major cell types, whose birth order and molecular properties

are well characterized. Retinal ganglion cells, cone photorecep-

tors, horizontal cells, and GABAergic amacrine cells (ACs) are

specified during early stages of neurogenesis prior to embryonic

day (E)18, although non-GABAergic ACs, bipolar cells (BCs),

M€uller glia (MG), and most rod photoreceptors are specified at

later ages (Bassett and Wallace, 2012; Cepko, 2014; Young,

1985a). Much effort has been directed toward identifying factors

controlling retinal cell identity (Malin and Desplan, 2021; Sanes

Cell Reports 37, 109994, November 16, 2021 ª 2021 The Authors. 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ll
OPEN ACCESS

mailto:jiang.qian@jhmi.edu
mailto:sblack@jhmi.edu
https://doi.org/10.1016/j.celrep.2021.109994
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2021.109994&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


and Zipursky, 2010). Some transcription factors, such as Otx2,

which promotes photoreceptor and BC fate while repressing

AC specification, act as master regulators of retinal cell-fate

specification (Ghinia Tegla et al., 2020; Nishida et al., 2003).

Several recent single-cell RNA sequencing (scRNA-seq) studies

have profiled gene expression in mouse, human, and zebrafish

retinas across neurogenesis (Clark et al., 2019; Cowan et al.,

2020; Lu et al., 2020; Xu et al., 2020). These have identified mul-

tiple TFs that are selectively expressed in early- or late-stage

retinal progenitor cells (RPCs). Genetic analysis has shown that

several of these TFs are required for generation of individual

retinal cell types (Clark et al., 2019; Elliott et al., 2008; Javed

et al., 2020; Liu et al., 2020; Mattar et al., 2015).

Despite these advances, the detailed mechanisms by which

retinal cell-fate specification is regulated remain largely un-

known. Gene expression data alone cannot identify direct regu-

latory relationships between TFs and target genes. Likewise, it is

not clear how TFs selectively expressed in early- or late-stage

RPCs regulate temporal identity. Although RPCs appear to

commit to specific cell fates during terminal mitosis (Cepko,

2014), the molecular mechanisms that control this process are

also unknown. The organization of the gene regulatory networks

(GRNs) that control retinal neurogenesis and cell-fate specifica-

tion remains unexplored at the single-cell level.

To address this, we generated chromatin accessibility profiles

of developingmouse retina using sinlge cell assay for transposon

accessible chromatin (scATAC)-seq.We identified cis-regulatory

elements and putative TF binding sites from scATAC-seq data

and integrated these with existing, age-matched scRNA-seq

data from mouse (Clark et al., 2019) and newly generated

scRNA-seq and scATAC-seq data fromdeveloping human retina

(Thomas et al., 2021) to identify evolutionarily conserved GRNs

that control developmental transitions andcell-fate specification.

Cell-type-specific TFs activate expression of other TFs within

these GRNs, although often also inhibiting (or more rarely acti-

vating) expression of TFs in other networks. We identified

GRNs specific to neuroepithelial-like cells, early- and late-stage

primary and neurogenic RPCs, and all major retinal neuronal

and glial cell types. By modeling regulatory relationships

among TFs in cell-specific GRNs, we canmake and validate pre-

dictions about their function. For instance, we show that the

nuclear factor I (NFI) factors Nfia/b/x, which promote specifica-

tion of late-born retinal cell types (Clark et al., 2019), directly acti-

vate expression of TFs selectively expressed in late-stage RPCs

andMG.Wealso identify activators (Insm1/2) and inhibitors (Tbx3

and Tcf7l1/2) of rod photoreceptor specification and differentia-

tion. This resource provides a roadmap for the research commu-

nity to identify gene regulatory networks that control retinal

development.

RESULTS

scATAC-seq profiling of developing mouse retina
To profile dynamic changes in chromatin accessibility across

retinogenesis, we conducted scATAC-seq analysis using the

103 Genomics Chromium platform on dissociated cell nuclei

obtained from whole mouse retina at 11 time points: E11, E12,

E14, E16, and E18, as well as postnatal day (P) 0, P2, P5, P8,

P11, and P14 (Figure 1A), profiling a total of 108,975 cells (Fig-

ure S1A). The size distribution and position of accessible DNA

sequences relative to transcriptional start sites (TSSs) was

consistent among each sample (Figure S1B), demonstrating

overall high-quality data. High overall correlations are seen

between age-matched scATAC-seq and bulk ATAC-seq RPC

samples at E11 (r = 0.82) and P2 (r = 0.94), although lower corre-

lations were seen between age-mismatched E11 and P2 sam-

ples (Figure S1C; Zibetti et al., 2019). scATAC-seq analysis

detected peaks seen in bulk ATAC-seq data and which reflected

temporal differences in gene expression, as shown for the basic-

helix-loop-helix (bHLH) factor Hes5, which is enriched in late-

stage RPCs (Hojo et al., 2000; Figure S1D).

Clustering and UMAP analysis was then performed on data

obtained from each time point to identify individual cell types,

which were annotated based on differential accessibility of a

panel of well-characterized, cell-type-specific genes (Mendeley

dataset). UMAP analysis of scATAC-seq data showed broad

similarity to age-matched scRNA-seq data (Figure 1B). Several

features were observed from this analysis. First, as reported us-

ing scRNA-seq analysis (Clark et al., 2019), a clear distinction

was seen between early-stage neuroepithelial cells (which we

call RPCs stage 1) and both early-stage and late-stage primary

RPCs (RPCs stage 2 and 3, respectively), with MG arising

directly from late-stage primary RPCs. Distinct populations of

early- and late-stage neurogenic RPCs were also detected,

which RNA velocity analysis indicated arose from early- and

late-stage primary RPCs, respectively (Melsted et al., 2021; Fig-

ures 1B and 1C). Second, fourmajor trajectories of differentiating

neurons were seen: retinal ganglion cells (RGCs); ACs and hori-

zontal cells (HCs); rod and cone photoreceptors; and BCs,

respectively (Figures 1B and S1). Third, the generation of each

retinal cell type and their relative abundancewas similar between

the two datasets (Figure 1D; Mendeley dataset). Neuroepithelial

cells (RPCs stage 1) dominated E11 and E12 samples, although

RGCs, cones, and ACs and HCs were detected by E14. A rapid

transition between early- and late-stage primary and neurogenic

RPCs was seen between E16 and E18, coinciding with a dra-

matic reduction in relative abundance of RGCs, as seen with

scRNA-seq analysis (Clark et al., 2019). Likewise, late-born

BCs and MG were first seen at P5 (Figure 1D). High overall cor-

relation was seen between scATAC-seq and scRNA-seq profiles

of individual cell types (Figure S1E).

A previous study conducted bulk ATAC-seq and chromatin

immunoprecipitation (ChIP)-seq analysis of chromatin modifica-

tions in whole mouse retina across development (Aldiri et al.,

2017). We investigated whether open chromatin regions

(OCRs) detected using scATAC-seq matched genomic annota-

tions defined by hidden Markov modeling (HMM) from age-

matched bulk retinal samples (Aldiri et al., 2017). Although

HMM analysis showed that most genomic regions lacked pre-

dicted regulatory potential at all ages (Aldiri et al., 2017), most

OCRs (identified in P0 and P14 retina using aggregated

scATAC-seq data) overlapped with regions identified as active

promoters or enhancers (as defined using HMM analysis of

bulk ChIP-seq and ATAC-seq data; Figure S1F). A comparison

between OCRs present in specific retinal cell types and age-

matched HMM data revealed that the most abundant cell types
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showed the strongest predicted regulatory potential, with OCRs

in primary and neurogenic RPCs showing high regulatory poten-

tial at P0, as did rod photoreceptor OCRs at P14 (Figure S1F).

However, even in rarer cell types—such as RGCs at P0 or MG

at P14—at least one-third of all OCRs were predicted to show

regulatory potential. These reflect overall changes in retinal cell

composition and highlight the importance of the higher resolu-

tion analysis provided by scATAC-seq data. Genes specific to

specific mature retinal cell types—such as Aqp4 in MG, Tfap2b

in ACs, Opn1sw in cones, Rho in rods, and Cabp5 in BCs—

showed expected cell-type-specific patterns of chromatin

accessibility at P14 (Figure S1G).

Figure 1. Overview of the study

(A) Schematic summary of the study. scATAC-seq of the mouse whole retinas was performed at 11 different time points. Cell types and cell-type-specific

accessible chromatin regions were identified through dimensional reduction and clustering analysis. By integrating age-matched scRNA-seq data with our data,

we reconstructed gene regulatory networks (GRNs) using the IReNA v2 analytic pipeline and identified candidate regulators controlling temporal patterning and

cell-fate specification during the retinal development.

(B) Combined UMAP projection of all mouse retinal cells profiled using scATAC-seq (top) and scRNA-seq data (bottom). Each point (cell) is colored by cell type

(left) and age (right).

(C) Examples of mRNA levels and chromatin accessibility for selected cell-type-specific genes.

(D) The relative abundance of retinal cell types is similar between age-matched scATAC-seq (left panel) and scRNA-seq (right panel). Bar plots show fraction of

cells (y axis) at each time point of each cell type (x axis). ACs, amacrine cells; BCs, bipolar cells; HCs, horizontal cells; MG,M€uller glia; NGs, neurogenic progenitor

cells; RGCs, retinal ganglion cells; RPCs, retinal progenitor cells.
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Analysis of dynamic chromatin accessibility and TF
activity during mouse retinal development
Next, we analyzed scATAC-seq data to identify cell-type-specific

cis-regulatory elements (Figure 2A; Mendeley dataset). Patterns

ofchromatinaccessibilityofwell-characterized,cell-type-specific

genes generally correlate with their mRNA expression (Fig-

ureS2A), although some transcription factors expressed in neuro-

genic RPCs, such as Atoh7 andOlig2, also showed high levels of

accessibility in early-born neurons. All major retinal cell types

showed many specific peaks of chromatin accessibility, with

MG (12,757 peaks) and RGCs (8,576 peaks) showing the

most and early neurogenic RPCs showing the fewest peaks

(1,497). Next, we identified changes in gene expression associ-

ated with these cell-type-specific accessibility regions. For each

cell-type-specific accessible peak, we calculated the peak-gene

correlation and identified genes whose expression was positively

correlated with regions of chromatin accessibility, identifying po-

tential cell-type-specific enhancers and promoters. In total, we

Figure 2. Single-cell regulatory landscape of mouse retinal development

(A) Heatmap of cell-type-specific peaks. The numbers of cell-type-specific peaks are indicated at left. Cell types are shown at the bottom.

(B) Heatmaps of the expression level of positively correlated genes. Cell types are shown at the bottom of the plot.

(C) Representative genes along with GO enrichment for each cluster. The x axis indicates the �log10(p value) of the GO term.

(D) Heatmap of the chromVAR Z score for cell-type-specific motifs. The number of motifs in each cell type is indicated at left. Cell types are indicated at the

bottom. Representative motif logos are shown on the right.

(E) Examples of TF footprint profiles for Tfap2a, Pou4f2, Otx2, and Nfix in indicated scATAC-seq clusters. Tn5 insertion tracks are shown below.
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identified 11,203correspondinggenes for all cell types (Figure 2B;

Mendeley dataset). These includeNrl andNr2e3 in rods,Mlc1 and

Aqp4 in MG, and Sfrp2 and Foxp1 in stage 1+2 RPCs. Gene

Ontology (GO) analysis reveals that genes associated with pro-

genitor-specific differentially accessible regions (DARs) are en-

riched for cell cycle regulation; genes associated with rod- and

cone-specificDARs for phototransduction; andgenesassociated

with neurogenic RPC-specific DARs for regulation of develop-

ment (Figure 2C; Mendeley dataset).

We next analyzed the activity of TFs that could interact with the

DARs. We measured the gain or loss of global chromatin acces-

sibility in DARs containing individual TF motifs by using chrom-

VAR software (Figure 2D; Mendeley dataset; Schep et al.,

2017). Many TFs showed some degree of cell type specificity,

with the number of cell-type-specific motifs ranging from 641 in

MG to 41 in BCs (Mendeley dataset).We further validated chrom-

VAR scores by using footprinting analysis for known TF markers

selectively expressed in specific retinal cell types. These include

Tfap2amotifs in ACs and HCs; Pou4f2motifs in RGCs;Otx2mo-

tifs in photoreceptors; and Nfix motifs in MG (Figures 2E and

S2B). Integrated scRNA-seq and scATAC-seq analysis can

thus identify targets of known cell-type-specific TFs in mice.

Comparison of mouse and human scATAC-seq data
reveals evolutionary-conserved regulatory elements
and motif activities
To identify evolutionarily conserved regulatory elements and TFs

controlling retinal neurogenesis and cell-fate specification, we

compared our mouse data to scATAC-seq and scRNA-seq data

obtained from whole human fetal retinas at six developmental

time points, ranging from 7.5 to 19 gestational weeks (Thomas

etal., 2021). As in themouse,UMAPanalysis identifiedeachmajor

cell type (FiguresS3AandS3B;Mendeleydataset) and resembled

anaggregateUMAPplot of scRNA-seqanalysis of developinghu-

man retina (Figure S3C). We next identified evolutionarily

conserved cell-type-specific regulatory elements for all major

retinal cell types. 3%–15%of these elementswere conserved be-

tween mouse and human, with RGCs showing the highest and

cones and MG the lowest conservation (Figure 3A). This may in

part reflect oversampling of early time points in the human data,

as these samples are enriched for RGCs and have fewMG (Men-

deley dataset). The low conservation of cone-specific elements is

consistent with the finding that cones are the most transcription-

ally divergent retinal cell type betweenmice and humans (Lu et al.,

2020). Overall, 8.3% of mouse peaks and 6.4% of human peaks

were evolutionarily conserved (Figure 3B; Mendeley dataset).

No enrichment was seen in evolutionarily conserved peaks rela-

tive to all peaks in either species, with the exception of evolution-

arily conserved human peaks showing greater enrichment for

TSSs (4.9% versus 2.1%; p < 2.2e�16).

To analyze the evolutionary conservation of trans-acting fac-

tors regulating cell-type-specific gene expression, we compared

cell-type-specific active motifs in mouse and human cell types

based on chromVAR score (Schep et al., 2017). As expected,

we observed a higher percentage of conserved active motifs

of cell-type-specific regulatory elements, with numbers of

conserved cell-type-specific motifs ranging from 122/161 in

cones to 50/641 in MG. Cell-type-specific active motifs include

well-characterized TFs, such as Sox9,Neurod1, Pou4f2, Tfap2a,

and Crx (Figure 3C; Mendeley dataset). Similar developmental

patterns of TF footprinting were seen for many of these TFs, as

illustrated byNeurod1 in late neurogenic RPCs andSox9 in stage

3 RPCs and MG (Figure 3D; Mendeley dataset). Using the same

analytic approach applied to mouse retina, we can also identify

targets of known cell-type-specific TFs in developing human

retina.

GRNs controlling temporal patterning of retinal
progenitors
Because the generation of all retinal cell types is ultimately

controlled by the dynamic temporal patterning of primary

RPCs during neurogenesis (Cepko, 2014; Zechner et al., 2020),

we next set out to identify the GRNs that control this process.

To identify key TFs controlling temporal patterning, we first con-

structed these GRNs by integrating scRNA-seq and scATAC-

seq data using a modified form of the Integrated Regulatory

Network Analysis (IReNA) analysis pipeline (Hoang et al., 2020;

Figures S4A and S4B). We then extracted predicted regulatory

relationships among stage-specific TFs, identifying positive

feedback loops of co-expressed TFs used to maintain stage-

specific identity and negative feedback loops used to ensure

mutually exclusive expression of TFs specific to different stages.

We further filtered TFs based on their regulatory strength in cell-

specific GRNs and whether their expression pattern was

conserved between mouse and human retina (Figures 4A and

S4A).

We focused on four major cell states, including stage 1–3

RPCs and MG, to study GRNs controlling temporal patterning

of neurogenesis. We first performed pseudotime analysis for

both scATAC-seq and scRNA-seq data from primary progeni-

tors and MG, as previously described (Hoang et al., 2020; Lu

et al., 2020; Figure 4B). Our scRNA-seq and scATAC-seq data

suggest that many primary RPCs progressively transition be-

tween stages 1, 2, and 3 before eventually becoming MG (Fig-

ure 4C). Analysis of scRNA-seq identified differentially ex-

pressed genes (DEGs) during each of these stages, with Foxp1

and Sfrp2 enriched in stage 1 RPCs, Fgf15 and Pou3f1 in stage

2, Ascl1 in stage 3, and Nfia/b/x and Hes5 in MG (Figure 4D),

matching reported results (Clark et al., 2019). scATAC-seq

data were then used to identify correlated accessible regions

(CARs) associated with these DEGs (Figure 4D; Mendeley data-

set). CARs include the accessible peaks near TSSs and distal

accessible peaks (regions <100 kb from the TSS) either posi-

tively or negatively correlated with the DEGs (Figure S4B; Men-

deley dataset). Dynamic regulation of both positive and negative

correlated elements can be clearly seen in the case of Hes1,

which is most highly expressed in S3 RPCs and MG (Figure 4E).

At the Hes1 locus, one distal and two proximal positively corre-

lated elements show increased accessibility across pseudotime,

although three negatively correlated elements show decreased

accessibility. Accessibility at the TSS, however, does not change

(Figure 4E).

We next inferred patterns of TF binding by integrating TF

expression patterns identified using scRNA-seqwith footprinting

in CARs identified by scATAC-seq (Figure S4B). This allowed us

to identify TF-TF regulatory relationships among each of the four
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cell states (Figure 4F; Mendeley dataset). Many state-specific

TFs were connected in positive-feedback loops that may main-

tain expression of state-specific TFs, while also repressing TFs

specific to other cell states. Each cell state possessed a self-

activating GRN, with the stage 1 and 3 RPC- and MG-specific

networks predicted to be strong and the stage 2 RPC network

relatively weak. GRNs specific to stage 1 and 2 RPCs showed

both positive and negative regulatory relationships between

one another, with positive regulatory relationships slightly domi-

nating. A similar situation was seen with stage 3 RPCs and MG,

although positive regulatory relationships between these net-

works were relatively stronger. Strong negative regulatory rela-

tionships were seen between stage 1 and 2 RPCs and stage 3

RPCs and MG, respectively (Figure 4F).

Nfia/b/x promote late-stage RPC temporal identity
We next sought to predict which TFs play an essential role in

controlling RPC andMG temporal identity by integrating multiple

data, which included gene regulatory relationships, gene

expression specificity, and evolutionary conservation of gene

expression patterns (Mendeley dataset). NFI family members

were among the top TFs predicted to activate expression of

TFs specific to stage 3 RPCs and MG (Figure 4G). Previous ge-

netic analysis suggests that NFI factorsNfia,Nfib, andNfixmight

both control temporal identity in retinal progenitors and forma-

tion of late-born retinal cell types (Clark et al., 2019). However,

it is not known whether Nfia/b/x are necessary to activate

expression of genes specific to late-stage RPCs. Likewise,

althoughNFIA/B/X overexpression in late-stage RPCs promotes

Figure 3. Conserved single-cell regulatory landscape in mouse and human retinal development

(A) Heatmap of evolutionarily conserved cell-type-specific peaks. Numbers of peaks are indicated at left. Cell types are shown at the bottom. Representative

conserved and positively correlated genes are shown on the right.

(B) Pie chart depicts percentage of total and conserved peaks from mouse (top) and human (bottom). TES, transactional end site; TSS, transcriptional start site.

(C) Heatmap of the chromVAR Z score of the conserved cell-type-specific motifs from mouse (left) and human (right). The number of motifs is indicated at left.

Cluster identities are indicated at the bottom. Representative motif logos are shown on the right.

(D) TF footprint profile of Neurod1 and Sox9 from selected mouse and human retinal cell types.

6 Cell Reports 37, 109994, November 16, 2021

Resource
ll

OPEN ACCESS



Figure 4. Model of GRNs controlling temporal patterning of retinal progenitors

(A) Schematic of the analytic pipeline used to identify TFs controlling retinal development. The role of feedback loops (double positive and double negative) in

controlling transitions between cell states and during the retinal-cell-fate specification is shown in the Waddington epigenetic landscape model.

(B) UMAPs of retinal progenitors from scRNA-seq (left) and scATAC-seq (right). Cells are colored by pseudotime and cell type.

(C) A model for transitions of primary retinal progenitors and MG during E11–P8.

(legend continued on next page)
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cell cycle exit and generation of late-born cell types (Clark et al.,

2019), it is not known whether their misexpression in early-stage

RPCs confers late-stage temporal identity. To address these

questions, we used ex vivo electroporation to overexpress hu-

man homologs of NFIA/B/X in E14 retina and profiled changes

in gene expression and chromatin accessibility in fluores-

cence-activated cell sorting (FACS)-isolated electroporated

cells at E16 and P0 using scRNA-seq and scATAC-seq. We

performed similar analysis in P2 and P14 Nfia/b/x conditional

knockout (cKO) retina (Figures 5A and S5A).

scATAC-seq analysis showed that NFIA/B/X overexpression

induced increased chromatin accessibility at sequences con-

taining the consensus NFI motif, as reported in non-neuronal

cells (Denny et al., 2016), although loss of function of Nfia/b/x

reduced accessibility at these sites (Figure 5B). Relative to ret-

inas electroporated with a control GFP plasmid, E16 retinas

overexpressing NFIA/B/X showed fewer RGCs and more RPCs

when analyzed by both scRNA-seq and scATAC-seq (Figure 5C).

At P0, scRNA-seq analysis and immunohistochemistry show

that NFIA/B/X-overexpressing retinas contain more primary

RPCs and photoreceptors and fewer RGCs compared to the

control (Figures 5C and 5D). scATAC-seq analysis of P2 Nfia/

b/x cKO retinas showed more RPCs and fewer rod photorecep-

tors and AC and HC neurons (Figure 5C). In P14 Nfia/b/x cKO

retina, more RPCs were detected, although bipolar neurons

were absent (Figure 5C).

To determine whether gain or loss of function of Nfia/b/x

altered the expression of genes and patterns of chromatin

accessibility specific to the three RPC states or MG, we per-

formed gene set enrichment analysis (GSEA) and peak set

enrichment analysis (PSEA). Overexpression of NFIA/B/X upre-

gulated MG-enriched genes in primary RPCs by E16 (Figures

5E and S5B; Mendeley dataset). By P0, this effect wasmore pro-

nounced, with stage 3 RPC-enriched genes also upregulated.

Furthermore, stage 1 RPC-enriched genes were downregulated

relative to GFP controls (Figures 5E and S5B). The opposite

pattern was seen in Nfia/b/x cKO retina, with stage 3 RPC and

MG-enriched genes downregulated and stage 2 RPC-enriched

genes upregulated at P2. By P14, downregulation of MG-en-

riched genes and upregulation of stage 1 and stage 2 RPC-en-

riched genes was more prominent (Figures 5E and S5B).

Changes in patterns of chromatin accessibility matched those

of gene expression, with NFIA/B/X overexpression inducing

RPCs to adopt a state resembling MG and the loss of function

inducing a state that resembled stage 1 and 2 RPCs (Figures

5F and S5C). Motif analysis indicated that NFIA/B/X motifs

were enriched in DARs upregulated following NFIA/B/X overex-

pression and downregulated in Nfia/b/x cKO retina (Figure S5C).

These data show that NFI factors directly regulate temporal

patterning in RPCs.

To identify genes directly regulated by Nfia/b/x, we performed

ChIP-seq analysis on P2 wild-type retina using antibodies that

recognize all three NFI factors (Mendeley dataset). We identified

13,680 Nfia/b/x ChIP-seq peaks (Figure S5D), most of which

(83.9%) are located in open chromatin (Figure S5E). These peaks

are mostly in intergenic and intronic regions. NFI factor binding

sites are enriched in stage 3 RPC-specific accessible regions

(Figure S5F). We then asked whether changes in RPC identity

are directly mediated by NFIA/B/X. In E16 NFIA/B/X-overex-

pressing primary RPCs, 61% (425/702) of DARs specific to stage

3 RPCs and/or MG were directly bound by NFIA/B/X, but only

4/22 of DARs specific to stage 1 and/or 2 RPCs were directly

bound (Figure 5G). In P2 Nfia/b/x cKO retina, 51% (869/1,689)

of DARs specific to stage 3 RPCs and/or MG overlapped with

NFIA/B/X ChIP-seq peaks, in contrast to only 13% (48/371)

DARs specific to stage 1 and/or 2 RPCs. Similar pattern was

seen in P14 Nfia/b/x cKO retina (Figure 5G). This result suggests

that DARs specific to stage 3 RPCs and/or MG could be directly

regulated by the binding of Nfia/b/x at these regions and was

further confirmed by the comparison of temporal identity-associ-

ated DEGs and Nfia/b/x ChIP-seq peaks (Figure S5G). In sum-

mary, our analysis suggests that NFI factors alter the chromatin

accessible regions specific to late progenitor-specific genes by

direct binding to these regions and in turn activates expression

of stage 3 RPCs and/or MG genes and represses the expression

of early progenitor-specific genes. By this mechanism, NFI fac-

tors control temporal identity in retinal progenitors and formation

of late-born retinal cell types.

GRNs that control specification of retinal neurons
We applied the same approach to identify GRNs controlling neu-

rogenesis and the specification of individual types of neurons. To

do this, we generated three combined datasets, corresponding

to early, intermediate, and late stages of retinal neurogenesis,

identifying DEGs and CARs that are selectively active as cells

adopt different identities (Mendeley dataset). The early dataset

consisted of E14 and E16 and included all early-stage neuro-

genic progenitors, as well as differentiating RGCs, cone photore-

ceptors, and early-born ACs and HCs (Figure 6A). The intermedi-

ate dataset consisted of E18, P0, and P2 and included late-stage

neurogenic progenitors, as well as differentiating rod photore-

ceptors and late-born ACs (Figure S6A). The late dataset con-

sisted of P5 and P8 and included late-stage neurogenic progen-

itors and differentiating rods and BCs (Figure S6E).

(D) Heatmaps show expression of cell-type-specific DEGs (left) and their correlated accessible regions (CARs) (right) across pseudotime. The left bar indicates

cell types (RPCs S1–S3 and MG) and the classes of CARs (TSS, positively correlated and negatively correlated).

(E) Genome track visualization of the Hes1 locus. Each track represents the aggregated scATAC-seq signals across the RPC-MG trajectory. Inferred links of

Hes1-associated CARs (correlated accessible regions) are shown at top. Expression level of Hes1 measured by scRNA-seq across the RPC-MG trajectory is

shown at right.

(F) Full network diagram on the left showing TF pairs linked by reciprocal positive or negative regulatory relationships during the RPC-MG transition. Each node

represents an individual cell-type-specific TF. Each edge represents a statistically significant feedback relation between TF pairs. Simplified intermodular

regulatory networks of retinal progenitors are shown on the right. Colored nodes represent specific cell types. Connections indicate statistically significant

regulations among modules. The width of connections indicates their regulatory enrichment fold.

(G) The top 10 TFs predicted to activate expression of genes specific to stage 3RPCs, as inferred from IReNA v2 analysis (left). Bar plots show expression levels of

these TFs in mouse and human stage 3 RPCs progenitors (right).
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We then used pseudotime analysis to analyze four major

developmental trajectories in the aggregated early development

dataset. Specifically, these were (1) the transitions from stage 2

primary RPCs to early neurogenic RPCs, (2) from early neuro-

genic RPCs to RGCs, (3) from early neurogenic RPCs to

GABAergic ACs and HCs, and (4) from early neurogenic RPCs

to cone photoreceptors (Figure 6B). To identify GRNs controlling

these transitions, we identified both DEGs and CARs for each

developmental trajectory (Figure 6C) and inferred putative regu-

latory relationships among cell-specific TFs (Figures 6D and 6E),

as previously done for primary RPCs and MG. A similar analysis

was performed for intermediate stages of neurogenesis, when

glycinergic and non-GABAergic, non-glycinergic (nGnG) ACs

and rods are generated (Figures S6B–S6D), and late stages of

neurogenesis, when rods and BCs are generated (Figures

S6F–S6H). This identified many TFs predicted to selectively acti-

vate or repress genes specific to individual cell types (Mendeley

dataset).

GRNs controlling neuronal cell-fate specification showed

many similarities with GRNs controlling state changes in primary

RPCs (Figure 4F). Cell type identity is maintained by strong pos-

itive regulatory relationships among cell-type-specific TFs (Fig-

ures 6E–6G; Mendeley dataset). Regulatory relationships among

different cell types often contain both positive and negative com-

ponents. GRNs specific to primary RPCs and all neuronal sub-

types are connected by many regulatory relationships, which

are almost all negative. In contrast, GRNs specific to most

neuronal cell types are generally connected by fewer negative

regulatory relationships, and positive regulatory relationships

predominantly connect GRNs of some transcriptionally similar

cell types, such as RGC, AC, and HC. Regulatory relationships

between neurogenic and primary RPCs are more dynamic. It is

weakly positive at early stages of neurogenesis, weakly negative

during intermediate stages, and strongly positive at late stages.

This shift may reflect the fact that a rapid increase in the relative

fraction of neurogenic RPCs relative to primary RPCs occurs

during late neurogenesis (Clark et al., 2019). The regulatory rela-

tionship between neurogenic RPCs and neuronal networks is

likewise dynamic. During early stages of neurogenesis, neuro-

genic RPC networks strongly inhibit RGC networks, weakly

inhibit horizontal and early-born amacrine networks, and also

weakly activate cone networks (Figure 6E). At intermediate

stages, they weakly inhibit late-born amacrine networks and

also weakly inhibit rod networks (Figure 6F). At late stages,

they strongly inhibit rod networks but activate bipolar networks

(Figure 6G). Notably, these regulations roughly correspond to

the order in which these neuronal subtypes are generated during

retinal development, with RGCs formed first and BCs last (Cepko

et al., 1996).

Identification of TFs that control neurogenesis and cell-
fate specification in postnatal retina
Our GRN analysis predicts that many TFs will act as either pos-

itive or negative regulators of neurogenesis and/or cell-fate

specification. Many of these predicted regulatory relationships

have been previously validated using genetic analysis (Fig-

ure S7A; Mendeley dataset). Considering TFs with the highest

number of predicted regulatory relationships active in E18–P2

retina, for instance, we find that Otx2, Crx, Prdm1, Rax, Rorb,

Nrl, and Nr2e3 are all predicted to activate expression of rod-

specific genes (Akhmedov et al., 2000; Brzezinski et al., 2010;

Furukawa et al., 1997; Irie et al., 2015; Jia et al., 2009; Mears

et al., 2001; Nishida et al., 2003); Pax6, Tfap2a, and Tfap2b are

predicted to repress photoreceptor specification (Jin et al.,

2015; Remez et al., 2017); and Zfp36l1/2, Nfia, Hes1/5, Sox2/

8/9, and Lhx2 are predicted to both promote RPC maintenance

and inhibit rod differentiation (Bosze et al., 2020; Clark et al.,

2019; Marquardt et al., 2001; de Melo et al., 2016; Muto et al.,

2009; Roy et al., 2013; Taranova et al., 2006; Wall et al., 2009;

Wu et al., 2020). Knockdown of Nfib, which is predicted to be

one of the top activators of rod-specific genes, has also been

shown to reduce rod-specific gene expression in human orga-

noid cultures (Xie et al., 2020). Given our success in predicting

the function of these TFs, we conducted gain- and loss-of-

function analysis via electroporation for several previously un-

characterized candidate TFs on retinal explants. We analyzed

the resulting phenotypes using scRNA-seq and immunohisto-

chemistry to determine whether other TFs with high numbers

of regulatory relationships showed predicted phenotypes (Fig-

ure 7A). We analyzed five different TFs: Insm1; Insm2; Tcf7l1;

Tcf7l2; and Tbx3. Insm1 and Insm2 are predicted to activate

genes specific to neurogenic progenitors and rod photorecep-

tors. In contrast, Tcf7l1/2 are predicted to inhibit neurogenesis

and promote a stage 3 primary RPC and MG identity. Lastly,

Tbx3 is predicted to inhibit rod specification while promoting

amacrine formation (Figures S7A–S7C).

Overexpression of either Insm1 or Insm2 at P0 led to a dra-

matic reduction in the relative fraction of primary RPC and MG

cells and an increase in the fraction of amacrine cells and cone

photoreceptors at P5, as measured by scRNA-seq analysis of

FACS-isolated, GFP-positive electroporated cells (Figure 7B).

Insm2 overexpression also led to a modest increase in the frac-

tion of rods. Immunohistochemical analysis of P11 retinas shows

that Insm1 or Insm2 overexpression significantly increases the

Figure 5. Nfia/b/x promote late-stage temporal identity in retinal progenitors

(A) Overview of experimental design for characterizing Nfia/b/x function in retinal progenitors.

(B) Boxplots showing changes in theNfia/b/xmotif enrichment in retinal progenitors following overexpression or knockout ofNfia/b/x. Bars are colored by genotype.

(C) Bar plots showing the fraction of each retinal cell type by ages and genotypes (top: scRNA-seq data; bottom: scATAC-seq data).

(D) Immunostaining showing fewer RGCs and more photoreceptors at P0 following NFIA/B/X overexpression at E14 retinal explants. The fractions of RGCs and

photoreceptors are shown on the right.Error bars indicate standard deviation. n> 5 retinas/group. Scale bars represent 20 mm.

(E) Dot plot showing gene set enrichment results for DEGs enriched in early- and late-stage RPCs and MG following overexpression or knockout of Nfia/b/x.

(F) Dot plot showing peak set enrichment results for DARs enriched in early- and late-stage RPCs and MG following overexpression or knockout of Nfia/b/x.

(G) Venn diagrams showing overlap between direct Nfia/b/x binding regions identified using ChIP-seq and cell-type-specific DARs. The p value on top of each

Venn diagram indicates the significance of their overlap using the hypergeometric test.

(H) Summary of Nfia/b/x action during the transition from early- to late-stage RPCs.
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Figure 6. Model of GRNs controlling specification of retinal neuronal cell types

(A) A diagram showing development of early-born retina cell types (left). UMAPs of scRNA-seq and scATAC-seq data from E14–E16 retina (right) are shown. Color

indicates cell type.

(B) UMAPs showing trajectories constructed from scRNA-seq and scATAC-seq at E14–E16. Color indicates pseudotime state.

(C) Heatmaps showing expression of cell-type-specific DEGs (left) and the accessibility of their corresponding CARs (right) along differentiation trajectories. The

top bars are colored by pseudotime state for each trajectory. The left bar indicates cell type and the classes of CARs.

(D) Networks showing feedback relationships between TF pairs at E14–E16. Each node represents an individual cell-type-specific TF. Each edge represents a

positive- or negative-feedback regulatory relationship between TF pairs.

(E–G) Simplified intermodular GRNs of RPCs and neurons at different stages (E, early-stage; F, intermediate-stage; G, late-stage). Colored nodes represent cell

types. Connections indicate statistically significant regulatory relationships among GRNs specific to each cell type. The width of connections indicates their

regulatory enrichment fold.
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Figure 7. Identification of TFs controlling cell-fate specification in postnatal retina

(A) A schematic diagram for gain- and loss-of-function analysis of candidate TFs in postnatal mouse retina explants.

(B) Bar plots showing the fraction of each cell type at P5 as measured by scRNA-seq analysis of FACS-isolated GFP-positive cells for each treatment condition.

(legend continued on next page)
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fraction of GFP+ cells in the photoreceptor layer and leads to a

corresponding decrease in the MG fraction (Figures 7C, 7D,

and S7E). Both Insm1 and Insm2 strongly activate expression

of rod-specific genes in all other cell types (Figure 7E). Insm1

and Insm2 both accelerate the normal developmental increase

in the expression of rod-specific genes in rod precursors, such

as Gngt1, Sag, and Rho (Figure 7F). In contrast, somatic

CRISPR-mediated loss of function of Insm1/2 reduced the rela-

tive fraction of rods and increased the fraction of primary and

neurogenic RPCs at P5 and also reduced expression of rod-spe-

cific genes, such as Nrl, in rod precursors (Figures 7B, 7E, and

S7F; Mendeley dataset). However, no statistically significant

changes in cell composition were seen following loss of function

of Insm1/2 at P11 (data not shown). Although insm1a has been

reported to be required for rod differentiation in zebrafish (For-

bes-Osborne et al., 2013), our data show that Insm1/2 promote

retinal neurogenesis, rod photoreceptor specification, and rod-

specific gene expression.

Tcf7l1/2 are expressed in RPC and MG and are predicted to

inhibit rod specification while maintaining RPC identity (Figures

S7A and S7B). scRNA-seq analysis of P5 GFP-positive cells

that overexpress TCF7L1/2 revealed a substantial increase in

the fraction of stage 3 RPC and MG cells, with a corresponding

reduction in the fraction of rods (Figure 7B). Immunohistochem-

ical analysis of P11 retinas overexpressing TCF7L1/2 leads to a

reduction in relative fraction of rod photoreceptors and BCs and

a corresponding increase in the fraction of MG (Figures 7C, 7D,

and S7E). In rod precursors, Tcf7l1/2 inhibited expression of

genes enriched in mature rods, such as Gngt1 and Pdc, as

well as TFs that promote rod specification, such as Prdm1 (Fig-

ures 7E and 7F; Mendeley dataset).

Finally, Tbx3 is expressed in ACs and MG and is predicted

to inhibit rod photoreceptor specification (Figures S7A and

S7C). scRNA-seq analysis of P5 GFP-positive cells revealed

that Tbx3 overexpression led to a reduction in rod photore-

ceptors at P5, along with a corresponding increase in the

fraction of not only ACs but also other inner retinal cell types,

including stage 3 RPC and MG and BCs (Figure 7B). Immuno-

histochemical analysis of retinas overexpressing Tbx3 re-

vealed changes in cell composition are maintained at P11

(Figures 7C and S7E). Tbx3 overexpression also reduced

expression of Neurod1 in neurogenic progenitors, which pro-

motes rod differentiation (Akagi et al., 2004; Figures 7E and

7F; Mendeley dataset). These results, which are summarized

in Figure 7G, validate our predicted GRNs and demonstrate

that multiplexed scRNA-seq analysis can be scaled to analyze

the function of major transcriptional regulators of retinal

development.

DISCUSSION

This study provides a comprehensive picture of the cellular-level

landscape of dynamic chromatin accessibility over the full course

of retinal development and provides both amap of both candidate

cis-regulatory elements and TF binding patterns. By integrating

scRNA-seq data with scATAC-seq data, we have reconstructed

transcriptional regulatory networks that control all aspects of

retinal development. We observe similarities between the retinal

and other systems in both general mechanisms and in specific

genes that control this process. Our work fills an important gap

in our understanding of how temporal patterning is controlled.

Although several recent studies have used scATAC-seq to identify

active TFmotifs in the developing brain (Domcke et al., 2020; Kim

et al., 2021; Sarropoulos et al., 2021), only one recent study has

systematically integrated these data to identify GRNs controlling

neurogenesis and specification of major cell types (Di Bella et al.,

2021). Moreover, although previous studies have used ATAC-

seq, ChIP-seq, and HiC analysis to profile changes in chromatin

accessibility, conformation, and covalent modification during

retinal development, the information in these data has been limited

by high cellular heterogeneity (Aldiri et al., 2017; Norrie et al., 2019;

Xie et al., 2020). Our scATAC-seq data allow us to visualize devel-

opmentally dynamic changes in chromatin accessibility within

each major retinal cell type. Furthermore, direct comparison of

stage-matched mouse and human data identifies conservation

of cell-type-specific patterns of both gene expression and chro-

matin accessibility and allows efficient identification of both evolu-

tionary-conserved and species-specific components of GRNs

that control retinal neurogenesis and cell-fate specification.

Integrated scRNA-seq and scATAC-seq analysis reveals the

redundant and complex patterns of gene regulatory relationships

maintaining each cellular state and ensures developmental pro-

cesses remainconsistent and robust in the faceof a variety of envi-

ronmental perturbations. This may explain the observation that

genetic disruption of individual cis-regulatory elements typically

results in only developmental phenotypes that are either modest

or only alter expression of a subset of the cell-type-specific TFs

regulated by these genes (Chan et al., 2020; Ghiasvand et al.,

2011). GRNs controlling retinal development are parallel, redun-

dant, and complex. Much like in Drosophila (Doe, 2017; Rossi

etal., 2021), cell statesaremaintainedbynetworksofTFs thatacti-

vate expression of TFs within cell-type-specific GRNs but often

also repressexpressionofTFs inGRNsspecific toothercell states,

potentially mediating rapid and irreversible transitions between

different stable transcriptional states. Regulatory relationships

among individual cell-type-specificGRNsare temporallydynamic,

often containing a mixture of positive- and negative-feedback

(C andD) Immunohistochemistry and quantification ofMG (SOX9 positive) and photoreceptors (GFP positive in theONL layer) in P11 retina explants in control and

overexpression of INSM1, INSM2, TCF7L1/2, and TBX3. Arrowheads indicate SOX9/GFP double-positive cells. Error bars indicate standard deviation. **p < 0.05;

***p < 0.001; n > 7 retinas/group. Each dot represents a retinal explant. INL, inner nuclear layer; ONL, outer nuclear layer; OS, outer segment. Scale bar represents

30 mm.

(E) GSEA of DEGs from each cell type in each experiment. GSEA was performed with the cell-type-specific gene sets obtained from the combined scRNA-seq

data (E11–P8). Only significant enrichment results (p < 0.05) are shown in the dot plot. Each dot was colored by NES and sized by �log(p value). The x axis

indicates the cell type where DEGs are calculated. The y axis indicates the specific gene sets used in the analysis.

(F) Examples of GSEA results from (E). Heatmaps show DEGs used in the GSEA analysis, with DEGs ranked by log2 fold change, as shown in the middle panel.

The right annotation shows the distribution of significantly enriched gene sets among the DEGs. Representative cell-type-specific genes are also labeled.

(G) Summary of observed phenotypes.
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loops, and reflect developmental changes in the timing of retinal

neurogenesis. For instance, although GRNs of primary RPCs

show only weakly positive or negative regulation of GRNs specific

to neurogenic RPCs between E14 and P2, they strongly activate

neurogenic RPC-specific GRNs at P5 and P8. This may reflect

the increase seen in the relative fraction of terminal neurogenic di-

visions at these ages (Cepko, 2014), as well as the increased frac-

tion of neurogenic RPCs relative to primary RPCs (Clark et al.,

2019). Likewise, neurogenic RPC-specific GRNs most strongly

activate expression of TFs in GRNs specific to the neuronal sub-

types that are generated latest at each stage: cones at E14–E16,

rods at E18–P2, and bipolar cells at P5–P8 (Young, 1985b). Identi-

fying the mechanisms that control these changes in the organiza-

tion of cell-type-specific GRNs awaits further analysis.

Transitions between cell states are driven by changes in both

gene expression and chromatin accessibility. In some cases,

TFs act to alter chromatin accessibility at regulatory sites asso-

ciated with stage-specific genes, prior to initiation of changes

in gene expression (Ma et al., 2020). This is seen with Nfia/b/x,

which are enriched in late-stage RPCs and MG. Nfia/b/x overex-

pression triggers increased accessibility at regulatory sites asso-

ciated with genes expressed in late-stage RPCs and MG,

although loss of function of Nfia/b/x produces the opposite ef-

fect. This leads to activation of expression of these genes and,

indirectly, to repression of genes specific to early-stage RPCs,

inhibiting generation of early-born cell types, such as RGCs,

and promoting rod photoreceptor specification. This establishes

NFI factors as bona fide regulators of temporal patterning in

RPCs and identifies the mechanism by which they regulate

changes in retinal progenitor competence.

This study serves as a broadly useful resource for the commu-

nity for further functional characterization of GRNs that control

retinal neurogenesis and cell-fate specification. Furthermore, it

may help facilitate and improve strategies for reprogramming

of endogenous MG and/or directed differentiation of embryonic

stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to

replace neurons lost due to blinding diseases (Javed and Cayou-

ette, 2017; Lahne et al., 2020; Miltner and La Torre, 2019).

Sequential expression of TFs that promote formation of early-

or late-stage neurogenic RPCs, followed by TFs that drive spec-

ification of rods, cones, or RGCs, could provide a robust

approach to generate these neurons for therapeutic purposes.

Limitations of the study
Other than rod photoreceptors, all major classes of retinal neurons

are present in multiple molecularly distinct subtypes in the mouse

and/or human retina (Masland, 2012). Like the major retinal cell

types, individual neuronal subtypes are generated during different

temporal intervals (Cepko, 2014). Although in principle, the

approachoutlinedhere shouldbeable to identifyGRNscontrolling

retinal neuronal subtype specification, this dataset is not large

enough toaccomplish this.Profilingmuch largernumbersof retinal

cells, however, may make it possible to identify these GRNs.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-GFP ThermoFisher A-6455, RRID:AB_221570

Rabbit anti-GFP Abcam ab290, RRID:AB_303395

Chicken anti-GFP ThermoFisher A10262, RRID:AB_2534023

Goat anti-GFP Rockland Antibodies 600-101-215, RRID: AB_218182

Mouse anti-TFAP2A DSHB 3B5, RRID:AB_528084

Rabbit anti-RBPMS GeneTex GTX118619, RRID:AB_10720427

Goat anti-OTX2 R&D Systems AF1979, RRID:AB_2157172

Rabbit anti-SOX9 MiliporeSigma AB5535, RRID:AB_2239761

Rabbit anti-RBPMS Proteintech 15187-1-AP, RRID:AB_2238431

Mouse anti-CRX Abnova H00001406-M02, RRID:AB_606098

Sheep anti-VSX2 ExAlpha X1180P, RRID:AB_2314191

Donkey anti-Sheep 568 Invitrogen A21099, RRID:AB_2535753

Donkey anti-Mouse 647 Invitrogen A31571, RRID:AB_162542

Donkey anti-Goat 488 Invitrogen A11055, RRID:AB_2534102

Donkey anti-Rabbit 568 Invitrogen A10042, RRID:AB_2534017

Donkey anti-Rabbit 488 Invitrogen A21206, RRID:AB_2535792

Donkey anti-Mouse 568 Invitrogen A21206, RRID:AB_2535792

Donkey anti-Sheep 647 Invitrogen A21448, RRID:AB_1500712

Anti-NFIA Sigma-Aldrich HPA006111, RRID:AB_1854422

Anti-NFIB Active Motif 39091, RRID:AB_2314934

Anti-NFIX Sigma-Aldrich SAB1401263, RRID:AB_10608433

Mouse IgG Diagenode C15400001, RRID:AB_2722553

Rabbit IgG Diagenode C15410206, RRID:AB_2722554

Critical commercial assays

10x scRNaseq 30 v3.1 10X Genomics 1000268

10x scATACseq v1.1 10X Genomics 1000175

PrecisionX Multiplex gRNA Cloning Kit System Biosciences CAS9-GRNA-KIT

GeneArt Genomic Cleavage Detection Kit ThermoFisher A24372

truChIP chromatin shearing kit Covaris 520154

iDeal ChIP-seq kit for transcription factors Diagenode C01010170

Deposited data

All mouse scRNA-seq and scATAC-seq data GEO GSE181251

All human scRNA-Seq and scATAC-Seq data GEO GSE183684

Datasets 1-14 Mendeley Data https://doi.org/10.17632/nrstc3xhwb.1

Interactive web portal for mouse

scATAC-seq

data

St Jude’s Children’s Hospital https://viz.stjude.cloud/blackshaw-lab/

visualization/scatac-seq-analysis-of-

mouse-retinal-development�92

Experimental models: organisms/strains

CD-1 mice Charles River Labs N/A

Tg(Chx10-EGFP/Cre/-ALPP)2Clc mice Dr. Connie Cepko (Rowan and Cepko, 2004)

Nfialox/lox;Nfib lox/lox;Nfixlox/lox mice Dr. Dr. Richard Gronostajski (Clark et al., 2019)

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Seth

Blackshaw (sblack@jhmi.edu).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Insm1 gRNA1 IDT DNA AGTCCACGCCCGTGTCCTAC

Insm1 gRNA2 IDT DNA CGCTCCCGCCGAGCTCAAGA

Insm2 gRNA1 IDT DNA GGTGACCACGTCCCCGGTGC

Insm2 gRNA2 IDT DNA AGACTGGGGCACCCTTACCG

Recombinant DNA

Full-length NFIA ORF ThermoFisher IOH12791

Full-length NFIB ORF ThermoFisher IOH3202

Full-length NFIX ORF ThermoFisher BC117115

Full-length INSM1 ORF Genecopoeia GC-F0042

Full-length INSM2 ORF Genecopoeia GC-Z3358

Full-length TBX3 ORF ThermoFisher IOH12474

Full-length TCF7L1 ORF Genecopoeia GW-C0075

Full-length TCF7L2 ORF ThermoFisher IOH21979

Software and algorithms

Cell Ranger 10X Genomics Version 4.0.0 and 6.0.1

Cell Ranger ATAC 10X Genomics Version 1.2.0

Seurat https://github.com/satijalab/seurat Version 3.1.2

Signac https://github.com/timoast/signac/ Version 0.1.6

ArchR https://github.com/GreenleafLab/ArchR Version 0.9.5

Slingshot https://github.com/kstreet13/slingshot Version 1.4.0

Motifmatchr https://github.com/GreenleafLab/motifmatchr Version 1.8.0

TOBIAS https://github.com/loosolab/TOBIAS Version 0.12.10

Harmony https://github.com/immunogenomics/harmony Version 1.0

MAGIC https://github.com/KrishnaswamyLab/MAGIC Version 2.0.3

chromVAR https://github.com/GreenleafLab/chromVAR Version 1.4.1

MAnorm https://github.com/shao-lab/MAnorm Version 1.0

Trimmomatic https://github.com/usadellab/Trimmomatic Version 0.38

bowtie2 https://github.com/BenLangmead/bowtie2 Version 2.3.5

SAMtools https://github.com/samtools/samtools Version 1.9

Picard https://github.com/broadinstitute/picard Version 2.18.2

MACS2 https://github.com/macs3-project/MACS Version 2.1.2

ComplexHeatmap https://github.com/jokergoo/ComplexHeatmap Version 2.0.0

Fgsea https://github.com/ctlab/fgsea Version 1.12.0

Rtracklayer https://bioconductor.org/packages/release/bioc/

html/rtracklayer.html

Version 1.46.0

CHOPCHOP https://chopchop.cbu.uib.no/ N/A

GraphPad Prism GraphPad Software N/A

ImageJ/Fiji https://imagej.net/software/fiji/ N/A

Cytoscape Cytoscape Consortium Version 3.7.2

BioRender https://biorender.com/ N/A

TargetScanHuman http://www.targetscan.org/vert_72/ Release 7.2, March 2018
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Materials availability
All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

Data and code availability

d All mouse and human scRNA-seq and scATAC-seq data can be accessed at GEO accession numbers GSE181251 and

GSE183684 (Thomas et al., 2021). Supplemental datasets listed in Mendeley dataset are available at https://doi.org/10.

17632/nrstc3xhwb.1.

d Code for IReNA v2 pipeline is available at https://github.com/Pinlyu3/IReNA-v2. Interactive displays of all scRNA-seq and scA-

TAC-seq data can be accessed through the St Jude Cloud Visualization Community at https://viz.stjude.cloud/blackshaw-lab/

visualization/scatac-seq-analysis-of-mouse-retinal-development�92.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
CD1 mice were purchased from Charles River Laboratories. All experimental procedures were pre-approved by the Institutional

Animal Care and Use Committee (IACUC) of the Johns Hopkins University School of Medicine. Mouse embryos or pups at different

time points of retinal development (E11, E12, E14, E16, E18, P0, P2, P5, P8, P11 and P14) were used for this study. Chx10-Cre-

EGFP;Nfiafl/fl;Nfibfl/fl;Nfixfl/fl mice were generated as described previously (Clark et al., 2019).

Human
The Seattle Children’s Hospital (SCH) Institutional Review Board reviewed and approved all tissue procurement procedures. Exper-

iments were performed in accordance with SCH ethical and legal guidelines. Developing human retinas were obtained from the Birth

Defects Research Laboratory at the University of Washington, with ethics board approval and maternal written consent obtained

before specimen collection. Developmental age postconception, sex, and postmortem interval prior to collection are as follows

for each donor: Sample 1: 53 days, female, 7hr 10min. Sample 2: 59 days, male, 7hr 30min. Sample 3: 74 days, male, 6hr 12. Sample

4: 78 days, male, 5hr 39 min. Sample 5: 113 days, female, 7hr 25 min. Sample 3: 132 days, male, 4hr 16 min.

METHOD DETAILS

Retinal cell dissociation
Mice were euthanized, and eyes were removed and incubated in ice-cold PBS. For embryonic stages, embryos were first removed

from the uterus, placed in iced-cold PBS and decapitated. Whole embryo heads were then transferred to a new Petri dish containing

iced-cold PBS, where the skin layer surrounding the eyes were removed to expose the eyeballs. Retinas were then micro-dissected

from the eyeballs, and retinal cells were dissociated using Papain Dissociation System as described previously (Hoang et al., 2020).

Each sample contains a minimum of 4 retinas from 4 animals, regardless of sex. Dissociated cells were resuspended in ice-cold PBS

containing 0.04% bovine serum albumin (BSA). Cell count and viability were assessed by Trypan blue staining.

Ex vivo retinal electroporation and fluorescence-activated cell sorting (FACS)
Retinas from CD1 mouse embryos at day 14 (E14) and postnatal day 0 (P0) were used for ex vivo electroporation as described pre-

viously (de Melo and Blackshaw, 2011). For overexpression studies, pCAGIG was used as a control, while pCAGIG-based plasmids

encoding full-length ORFs were used for overexpression (see Key resources table). For analysis ofNFIA/B/X and TCF7L1/2 function,

equal molar amounts of each plasmid were combined prior to electroporation.

For somatic CRISPR-mediated gene knockout, the CBh promoter of Cas9-P2A-GFP plasmid (Addgene #48138) was replaced by

pCAG promoter (pCAGIG, Addgene #11159) to allow for more robust Cas9-P2A-GFP expression in retinal explants. Dual gRNAs tar-

geting two different exon regions were cloned into a single Cas9 plasmid using PrecisionXMultiplex gRNACloning Kit with U6 andH1

promoters. gRNAswere designed using the CHOPCHOP tool. For combined Insm1/2 knockout, equal molar amounts of each gRNA-

Cas9 plasmidweremixed prior to electroporation. Retinal cells were dissociated from explants for fluorescence-activated cell sorting

(FACS) as described previously (Hoang et al., 2020). GFP+ cells were collected in ice-cold PBS with 10% heat-inactivated fetal

bovine serum (FBS). To determine CRISPR-mediated knockout efficiency, genomic DNA was extracted from GFP+ cells from

Insm1/2 knockout and empty Cas9 control, and subjected for PCR and digestion using GeneArt Genomic Cleavage Detection Kit.

Immunohistochemistry
Explants used for immunohistochemical analyses were cultured to P0 or P11 equivalent (6 or 11 days in vitro), fixed in 4% parafor-

maldehyde in PBS, and processed through sucrose gradients before mounting in OCT compound, cryosectioning (15 mm sections),

and immunohistochemical analyses. Stained slides of retinal explant sections were imaged using a Zeiss LSM 800 confocal
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microscope. For each immunostaining condition, 2-3 single-plane confocal images per retinal explant were counted, with counts

aggregated across individual explants. Individual data points shown in Figures 5D and 7C represent cell counts obtained from indi-

vidual explants.

Single Cell RNA-seq library construction and sequencing
ScRNA-seq analysis was performed on dissociated retinal cells using 10xGenomics. Whole retina was used in all cases except for all

overexpression and somatic CRISPR analysis, where FACS-isolated GFP-positive electroporated cells were analyzed. Briefly, disso-

ciated retinal cells (�10,000 cells per sample) were loaded into a 10xGenomics ChromiumSingle Cell system using ChromiumSingle

Cell 30 Reagents Kits v3.1 (10X Genomics, Pleasanton, CA). scRNA libraries were generated by following the manufacturer’s instruc-

tions. Libraries were pooled and sequenced on Illumina NextSeq 500 or NovaSeq 6000. Sequencing reads were processed through

the Cell Ranger 3.1 pipeline (10x Genomics) using default parameters.

Single Cell ATAC-seq library construction and sequencing
ScATAC-seq was performed using the 10x Genomic single cell ATAC reagent v1.1 kit following the manufacturer’s instruction.

Briefly, dissociated cells were centrifuged at 300xg for 5 min at 4�C. Cell pellet was resuspended in 100 mL of Lysis buffer, mixed

10x by pipetting and incubated on ice for 3 min. Wash buffer (1 ml) was added to the lysed cells, and cell nuclei were centrifuged

at 500xg for 5 min at 4�C. Nuclei pellet was re-suspended in 250 mL of 1x Nuclei buffer. Cell nuclei were then counted using Trypan

blue. Re-suspended cell nuclei (10-15k) were used for transposition and loaded into the 10xGenomics ChromiumSingle Cell system.

Libraries were amplified with 10 PCR cycles and were sequenced on Illumina NextSeq or NovaSeq with �200 million reads per li-

brary. Sequencing data were processed through the Cell Ranger ATAC 1.1.0 pipeline (10x Genomics) using default parameters.

ChIP-seq
Freshly dissected P2 retinas were homogenized and cross-linked for 10 minutes using 1% formaldehyde (ThermoFisher Scientific

Cat# 28906) on a tube rotator at room temperature. Glycine was added to a final concentration of 0.125M to quench the cross-linking

reaction and washed three times with ice-cold PBSwith cOmplete protease inhibitors (Millipore Sigma Cat# 11836170001). The cells

were then prepared for sonication using the truChIP chromatin shearing kit (Covaris Cat# 520154). Briefly, cells were lysed at 4C on a

tube rotator for 10 minutes using the 1X lysis buffer B. Intact nuclei were then collected by centrifugation at 1700xg for 5 minutes and

washed with 1X wash buffer C before being resuspended in 1ml of 1X shearing buffer D3. Nuclei were then transferred to 1mL

milliTUBE with AFA fiber (Covaris Cat# 520130) and sonicated using the E220 focused-ultrasonicator (Covaris Cat# 500239). Chro-

matin immunoprecipitation was then performed on the sheared DNA using the iDeal ChIP-seq kit for transcription factors (Diagenode

Cat# C01010170). One percent of total chromatin was set aside to be used as an input control. Antibodies against targets used for

chromatin immunoprecipitation are NFI (NFIA, NFIB, NFIX), and IgG. Briefly, equal volume of sheared chromatin was incubated over-

night with 3 mg of antibody in iC1b buffer with protease inhibitors and BSA and washed DiaMag Protein A-coated magnetic beads

(Diagenode Cat# C03010020-220) on a tube rotator at 4�C overnight. The magnetic beads were then washed sequentially with wash

buffers iW1, iW2, iW3 and iW4. DNA was then de-crosslinked and eluted for 4 hours at 65C before being purified using IPure beads

(Diagenode Cat# C03010014). The purified DNA was then subjected to sequencing library preparation or qPCR analysis. Libraries

were prepared from 5ng of DNA using the Ovation Ultralow System V2 (Tecan Genomics Cat# 0344NB-32) and sequenced on

the Illumina NextSeq500.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell ATAC-seq analysis
Preprocessing

The Cell Ranger (Zheng et al., 2017) ATAC pipeline was used to process the raw sequencing data for mapping, de-duplication and

identification of Tn5 cut sites. We first convert BCL files to fastq format with the function ‘cellranger-atac mkfastq’. Then, wemapped

the fastq files to the mm10 genome (refdata-cellranger-atac-GRCh38-1.2.0) with the function ‘cellranger-atac count’. This function

outputs the aligned, barcoded, and Tn5 insertion corrected fragment files, which were used for all downstream analysis.

Filtering cells by TSS enrichment, unique fragments, nucleosome banding and doublet score

The ArchR package(Granja et al., 2021) was used to process the fragment files. We calculated the TSS enrichment, unique fragments

and nucleosome banding for each cell with the function ‘createArrowFiles’’. Then we kept the high-quality cells with the following

criteria: 1) The number of unique nuclear fragments > 1000. 2) TSS enrichment score > 10. 3) nucleosome banding score < 4. We

next identified potential doublets with the function ‘addDoubletScores’, and removed doublets using ‘filterDoublets’’ with the

following parameters: cutEnrich = 2, cutScore = -Inf, and filterRatio = 2. Finally, we filtered the fragment files according to the cells

we retained. These cleaned fragment files were used for all downstream analysis.

Generating union peaks

Union peaks were generated for all the samples as described by Satpathy et al. (2019). We first constructed 2.5kb tiled windows

across the mm10 genome and computed a cell-by-window sparse matrix by counting Tn5 insertion (from cleaned fragment files)

overlaps for each cell. Next, we binarized the cell-by-window matrix and created a Seurat object for each sample with the Signac
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(Stuart et al., 2020) package. Then we performed dimension reduction and clustering analysis using the functions ‘RunTFIDF’,

‘RunSVD’, ‘FindNeighbors’ and ‘FindClusters’ with 2-50 dimensions and 0.3 resolution. Next, we call peaks for each identified cluster

in each sample usingMACS2 (Zhang et al., 2008) software with the following parameters: ‘-shift�75–extsize 150–nomodel–callsum-

mits–nolambda–keep-dup all -q 0.05’. We further extended the peak summits on both sides to a final width of 500 bp, and filtered

these fixed-width peaks if they overlapped with mm10 v2 blacklist regions (https://github.com/Boyle-Lab/Blacklist/blob/master/

lists/mm10blacklist.v2.bed.gz). Finally, we kept the top 120,000 fixed-width peaks for each cluster in each sample according to their

-log10(q-value), and then merged them to the final union peak sets using the ‘reduce’ function from the GenomicRanges (Lawrence

et al., 2013) package.

LSI clustering, visualization, and identification of cell types

For each sample, the cell-by-peak matrix was generated by the union peak sets, and was binarized and inputted to the Signac pipe-

line. Then we performed dimension reduction, clustering and UMAP analysis using the standard Signac workflow.

To annotate cell types corresponding to each cluster, we used existing mouse and human scRNA-seq data (Clark et al., 2019;

Thomas et al., 2021) to interpret our scATAC-seq cell types using the CCA (canonical correlation analysis) integration method in

the Seurat package. First, we downloaded the mouse scRNA-seq data (‘‘https://github.com/gofflab/developing_mouse_

retina_scRNASeq’’) and converted them to Seurat objects. Second, for each scATAC-seq sample, we calculate the ‘gene activity’

profile for each cell using the function ‘CreateGeneActivityMatrix’. Finally, for each age-matched sample pair from scATAC-seq

and scRNA-seq data, we identified anchors between them using the function ‘transfer.anchors’, and we used the ‘TransferData’

to obtain the cell type prediction results for each cell. We further filtered out cells with a prediction score < 0.5, and annotated

each cluster according to their predicted cell types.

Integration of E11-P14 single-cell ATAC-seq data

To Integrate and visualize all the cells from the scATAC-seq data (E11 to P14), we used the following 3 steps:

1) Filtering cell types. To better identify differences in chromatin accessibility during retinal development, we removed the cells

which are not annotated as retinal cells in each time point before integration. We kept the following cell types: RPCs, Neuro-

genic, RGC, AC/HC, Cone, Rod, BC and MG. The total cell-by-peak matrix is filtered according to the retinal cells and used in

the downstream analysis.

2) Selecting variable peaks. To remove the potential batch effect, we selected the variable peaks separately in each sample.

Because scATAC-seq data are very sparse, we aimed to aggregate similar cells to create a more dense cell-by-peaks matrix

to facilitate variable peaks calling. First, based on the UMAP embedding, we used the kNN approach to find the 100 nearest

cells for each individual cell. Next we aggregate raw counts for each cell by its corresponding 100 nearest cells to create a

new cell-by-peaks aggregate matrix. We then identified the variable peaks based on the new matrix using Seurat pipelines:

‘NormalizeData’ and ‘’FindVariableFeatures’ (selection.method = ‘‘mvp’’). Finally, we combined all the variable peaks from

each sample into a master variable feature set, which was used in the downstream dimension reduction and clustering

procedure.

3) LSI clustering and visualization. First, we binarized the filtered cell-by-peak matrix from Step 1 and performed the TF-IDF

normalization. Then we used the master variable feature set from Step 2 to perform the dimension reduction with ‘RunSVD.’

Next, we used the 2nd-20th dimensions to identify clusters with a resolution of 1, and calculated the UMAP coordinates for

visualization. Finally, we plotted the 3D UMAP of all retinal cells with the plotly graphing library in Python.

ChromVAR and footprint analysis
We used the chromVAR (Schep et al., 2017) R package to infer global TF activity in each cell. First, we fed the raw cell-by-peak matrix

into chromVAR and to correct for GC bias with the mm10 reference genome. Next, we generated a TF z-score matrix with the mouse

TF Motif database (TransFac2018) using the function ‘computeDeviations’. The z-score for each cell was used to generate the heat-

map and visualization using previously calculated UMAP coordinates.

To analyze and plot TF footprints in different retinal cell types, we used the same methods described in Corces et al. (2018). First,

we predicted the TF binding sites with the TF PWM matrix and the identified accessibility region with the function ‘matchmotifs’ in

the motifmatchr R package. Second, for each motif, we generated 3 tables: 1) Table1: An aggregated observed 6-bp hexamer table

in ± 250bp region relative to the motif centers. 2) Table 2: An aggregated expected 6-bp hexamer table from the mm10 genome. 3)

Table 3: An observed Tn5 insertion signal table around the ± 250bp relative to the motif centers. Next, we obtain the O/E 6-bp hex-

amer table by dividing the two hexamer tables (Table 4 = Table 1/Table2). We then normalized the signal using the O/E 6-bp hexamer

table (Table 5 = Table 3/Table 4) to get the final Tn5 bias-corrected signal.

Single-cell RNA-seq analysis
We processed raw scRNA-seq data with the Cell Ranger software for formatting reads, demultiplexing samples, genomic alignment,

and generating the cell-by-gene count matrix. The ‘cellranger mkfastq’ function was used to convert BCL files to fastq files. The

‘cellranger count’ function was used to process fastq files for each sample with the mm10 mouse reference index provided by

10x Genomics. The cell-by-gene count matrix is the final output from the Cell Ranger pipeline. We used the cell-by-gene count matrix

for all downstream analysis.
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Weapplied the Seurat (Stuart et al., 2019) package to create Seurat objects for each sample with the cell-by-gene countmatrix with

the function ‘CreateSeuratObject’ (min.cells = 3, min.features = 200). After visual checking the violin plot of the total counts for each

cell, we filtered out cells with nCount_RNA < 800 or nCount_RNA > 8000. We further filtered out the cells with amitochondrial fraction

> 10%. Next, we used Scrublet (Wolock et al., 2019) to identify and remove doublets with default parameters. After performing

dimensional reduction and clustering analysis through the standard Seurat pipeline, we annotated the cell types for each cluster ac-

cording to the well-known markers. We filtered out non-neuroretinal cells, such as microglia and astrocytes for each sample. The

cleaned data were used for downstream integration and DEG analysis.

Trajectory inference and pseudotime analysis
We applied Slingshot (Street et al., 2018) software to infer pseudotime based on the UMAP coordinates. We first filtered the UMAP

coordinates matrix by keeping the cells involved in the developmental process we plan to investigate. Then we ran Slingshot with the

filtered UMAP coordinates matrix for each observed trajectory separately (Figure 4: RPCS1 toMG, Figures 6 and S6: RPC to NG, NG

to RGC, NG to AC/HC, NG to Cone, NG to Rod, NG to BC) with the function ‘getLineages‘ and ‘getCurves‘. Then, we applied the

‘slingPseudotime‘ function to calculate pseudotime state for each cell. Finally, we merged the pseudotime to 20-50 bins for each

trajectory, and calculated the average gene expression or average accessibility level for each bin.

Identification of cell-type specific genes, peaks and motif activities
We calculated the cell-type specific genes across all the retina cells with the mouse scRNaseq data. The function ‘FindMarkers‘

in Seurat package were used to identify the marker genes for each cell type with the following parameters: min.pct = 0.1,

logfc.threshold = 1, only.pos = TRUE, p-adjust < 0.01. These gene sets are used in the downstream gene set enrichment

analysis (GSEA).

We calculated the cell-type specific peaks across all the retina cells for mouse and human scATACseq respectively. The function

‘getMarkerFeatures’ in ArchR package were used to calculate the enrichment of peaks for each cell type with the following param-

eters: normBy = ’nFrags’, bias = c(‘‘TSSEnrichment,’’’’log10(nFrags)’’) and testMethod = ‘‘wilcoxon.’’ We then further filtered the re-

sults to get the final specific peak sets with the function ‘‘getMarkers’’: cutOff = ‘‘FDR% 0.01 & Log2FC >= 1.5.’’ These peak sets are

used in the downstream peak set enrichment analysis (PSEA).

The cell-type-specific motifs were identified based on the chromVAR results. First, we identify the significant enriched motif for

each cell type.We converted the chromVARdeviationmatrix to a Seurat object. Thenwe added the cell type information to the Seurat

object and measured the enriched motif for each cell type by the function ‘‘FindAllMarkers’’ with following parameters: only.pos =

TRUE, test.use = ‘LR’, and p value < 0.01. Second, we further filtered the significant motifs according to their average Z-score

and their ranks among the retina cell types. We only kept the motifs for each cell type if they 1) show average chromVAR Z-score

> 1, and 2) average chromVAR Z-score are the highest or the second highest among all the cell types.

Identification of conserved peaks between mouse and human
We compared cell-type specific peaks between mouse (mm10) and human (hg38) using the rtracklayer package in R. we converted

mouse peak region frommm10 assembly to hg38 assembly with the function ‘liftOver’. We then identified the overlapping peak pairs

between mouse converted peaks and human peaks with the function ‘findOverlaps’. We also calculated the overlap ratio for each

pair as: Overlap ratio = width(Mouse converted peak) / width(Overlapping region). Finally, we identified the pairs of peaks as

conserved peak pairs if their overlap ratio > 0.5.

Constructing gene regulatory networks by integrating scRNA-seq and scATAC-seq data
To infer cell-type-specific GRNs from scRNA-seq and scATAC-seq data, we modified IReNA pipeline to IReNA v2 (Figures S4A and

S4B), which contains the following main modules:

1. Selecting candidate genes

The DEGswere used as candidate genes for GRNs construction. For each developmental process which we aim to study inmouse

and human, we identified the enriched genes for each cell type using the function ‘FindMarkers’ in Seurat. In constructing theGRNs of

progenitors transition, the following parameters of ‘FindMarkers’ were used: min.pct = 0.05, logfc.threshold = 0.20, only.pos = TRUE,

p-adjust < 0.01. In constructing GRNs regulating neurogenesis, the following parameters of ‘FindMarkers’ were used: min.pct = 0.1,

logfc.threshold = 0.25, only.pos = TRUE and p-adjust < 0.01.

2. Identifying significant peak-to-gene links

We used the ArchR package to identify the significant peak-to-gene links. First, we integrated the age-matched scRNA-seq and

scATAC-seq data for each time point using unconstrained Integration method with the function ‘addGeneIntegrationMatrix’. Then,

using the function ‘addPeak2GeneLinks’, we calculated the correlation between accessibility peak intensity and gene expression.

Finally, we identified the significant peak-to-gene links with the following cutoff: abs(correlation) > 0.2 and fdr < 1e-6.
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3. Identifying the potential cis-regulatory elements for each candidate gene

We identified potential cis-regulatory elements for each candidate gene based on their location and the peak-to-gene links from

Step 2. We first classified all peaks into three categories according to their genomic location related to their potential target genes: 1)

Promoter. 2) Gene body. 3) Intergenic. For the peaks in the promoter region,we treated all of them as correlated accessible chromatin

regions (CARs) of their overlapping target genes. For the peaks in the gene body region, we defined them asCARs of their overlapping

genes if they met the following criteria: 1) the distance between the peak and the TSS of its overlapping gene is < 100kb. 2) the links

between the peak and its overlapping gene are significant. For the peaks in the intergenic region, we first find their target genes and

construct the peak-gene pairs if the target genes’ TSS are located within the upstream 100kb or downstream 100 kb of the intergenic

peaks. Then we keep the peak-gene pairs if their peak-to-gene links are significant in step 2. These peaks were identified as CARs of

their gene pairs.

4. Predicting cell-type specific TFs binding in cis-regulatory elements

With the cis-regulatory elements identified in step 3, we next predicted the TF binding in these elements for each cell type with the

PWMs extracted from TRANSFACdatabase. First, we searching themotifs in all the cis-regulatory elements with the function ‘match-

Motifs (p.cutoff = 5e-05)’ from the motifmatchr package. Then we filtered these motif regions according to their footprint score and

their corresponding TF’s expression for each cell type.

To calculate the footprint score for each motif region in each cell type, we re-grouped the insertion fragments based on their origin

of cell type and converted these cell-type-specific fragments into bam files using a custom script. Then we fed the bam files to

TOBIAS software and obtained the bias-corrected Tn5 signal (log2(obs/exp)) with the default parameters except: ATACorrect–

read_shift 0 0. Next, we calculated footprint scores including NC, NL and NR for each motif’s binding region. NC indicated the

average bias-corrected Tn5 signal in the center of the motif. NL and NR indicated the average bias-corrected Tn5 signal in the

left and right flanking regions of the motif, respectively. The flanking region is triple the size of the center region. We kept the motifs

with the following criteria: NC < �0.1 and NL > 0.1 and NR > 0.1.

We further removed themotifs binding region for each cell type if the expression level of their corresponding TFs are not enriched in

that cell type (from step 1).

5. Calculating gene-gene correlation

We calculated the expression correlations between all the expressed genes at the single-cell level. First, we extracted the cell-by-

matrix from Seurat objects and filtered out the non-expressed genes in the matrix. Then we applied the MAGIC software to impute

missing values and recover the gene interactions with the cell-by-gene matrix. The output matrix fromMAGIC was used to calculate

gene-gene correlation using the function ‘cor’ in R. To identify the significant gene-gene correlations, we ranked all the gene-gene

correlations (�1X10e8). The top 2.5% correlations were treated as significant positive correlations (p < 0.025) and the bottom 2.5%

correlations were treated as significant negative correlations (p < 0.025).

6. Constructing gene regulatory networks

By integrating data from Step 1-Step 5, We constructed cell-type specific GRNs with the following procedure:

We first obtained the peak-target links from Step 3, and cell-type specific TF-peak links from Step 4. We then merged these

2 types of links to the cell-type specific TF-peak-target relationships. Next, we classified these TF-peak-target relationships

into activation or repression relationships based on the sign of the expression correlation between TF and target from Step 5.

The significant positive/negative correlated TF-targets were selected as the activating/repressive regulatory relationships,

respectively.

Finally, we removed all the duplicated TF-target regulatory relationships for each cell type and merged them to the final GRNs

which were used for the downstream analysis.

7. Identifying and visualizing feedback TF pairs

With the GRNs constructed in the previous steps, we searched for TF pairs connected by either positive or negative feedback reg-

ulatory relationships. The TF pairs that activated each other were identified as ‘double positive’ pairs and the TF pairs repressed each

other were identified as ‘double negative’ pairs. We visualized these feedback TFs pairs using Cytoscape software.

Constructing inter-module regulatory networks
To study the global regulatory relationships among retinal cell types in each development stage, we calculated the regulatory signif-

icance and regulatory tendency between each pair of cell types using a previously described approach (Hoang et al., 2020). We first

filtered the TFs and targets in the GRNs, we only kept the highly enriched TFs and targets for each cell type if their log2 fold change

were > 0.5. Then for each pair of cell types, we counted the regulations from cell type A to cell type B and calculated the significance

of positive or negative regulations using the hypergeometric test respectively. We set p value < 0.01 as a cutoff to determine the
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significant regulations. To further quantify which positive / negative regulatory relationships are present between cell type A and cell

type B, we calculate the regulatory enrichment fold. We first normalized positive or negative regulations by the total number of pos-

itive or negative regulations in that stage, then calculated regulatory enrichment fold as: abs(log2(Rpos/Rneg)), where Rpos indicate

the normalized positive regulations and Rneg indicate the normalized negative regulations.

ChIP-seq data analysis
After removing adaptors with Trimmomatic (Bolger et al., 2014), we mapped the cleaned fastq files to mm10 genome using bowtie2

(Langmead and Salzberg, 2012). We next filtered low quality reads with SAMtools (Li et al., 2009)(MAPQ < 10), and removed PCR

duplicates using Picard tools (http://broadinstitute.github.io/picard/) . For NFI ChIP-seq data, we used IgG and Input samples as con-

trol, and used MACS2 (Zhang et al., 2008) to call peaks with the default parameters except: -q 0.01. Finally, we identified 13,680 NFI

binding peaks and used them in the downstream analysis.

Integration analysis of single-cell RNA-seq or single-cell ATAC-seq data between control and treatment samples
We applied the CCA method from Seurat to integrate the scRNA-seq data from different genotypes at the same age (Figures S5 and

S7). Briefly, we first processed the cleaned seurat objects generated before using the functions ‘NormalizeData’, and ‘FindVariable-

Features’. Next, we integrated all the Seurat objects from different genotypes using the ‘FindIntegrationAnchors’ and ‘IntegrateData’

function with the options: dim.use = 1:50. Finally, we used the integrated dimensions to perform clustering analysis, and calculated

UMAP coordinates for visualization.

We applied the Harmony (Korsunsky et al., 2019) package to integrate the scATAC-seq data from different genotypes at the same

age (Figure S5). Briefly, we first merged the cell-by-peak matrix from the same age, then inputted the cell-by-peak matrix into the

Signac analysis pipeline. We normalized and obtained a low-dimensional representation of the cell-by-peak matrix using the func-

tions ‘FindTopFeatures’, ‘RunTFIDF’ and ‘RunSVD’. Next, we integrated all the cells from different genotypes (Ctrl versus NFI Over-

express or Ctrl versus NFI TKO) using the ‘RunHarmony’ function with the options: dim.use = 2:50, group.by.vars = ‘genotypes’,

reduction = ‘lsi’ and project.dim = FALSE. Finally, we used the harmony dimensions to perform clustering analysis, and calculated

UMAP coordinates for visualization.

Inferring Nfia/b/x targets in progenitors
Wepredicted NFI target genes by integrating the information obtained from scRNA-seq, scATAC-seq and ChIP-seq analysis with the

following steps (Figure S5G):

1.Identify DEGs resulting from NFIA/B/X overexpression and Nfia/b/x conditional knockout.

We performed the differential gene expression analysis between control RPC/MGcells andNfia/b/x TKOorNFIA/B/X overexpress-

ing RPC/MG cells (Figure S5B) using the function ‘FindMarkers’ with the options: min.pct = 0.1, logfc.threshold = 0.25. Then we

selected the DEGs with adjusted p value < 0.01.

2. Identify DARs following NFIA/B/X overexpression or Nfia/b/x conditional knockout.

To explore which ATAC regions are changed following NFIA/B/X overexpression or Nfia/b/x conditional knockout (Figure S5C),

we applied the MAnorm (Shao et al., 2012) algorithm to perform the differential peak analysis. First, we selected cells in the ‘RPC’

and ‘MG’ cluster and then separated these cells according to their genotypes (control, NFIA/B/X overexpression or Nfia/b/x con-

ditional knockout). Next, we aggregated the cells in the same condition by summing their count signals for each peak, and created

a new condition-by-peak count matrix, and fed this into the MAnorm pipeline. We performed the MAnorm test and identified the

differential peaks using the cutoff: LOG_p > 5, abs (M_value_rescaled) > 0.5 and A_value_scaled > 4.

3. Predict NFIA/B/X regulatory targets in RPC/MG

We predicted the NFIA/B/X regulatory targets by integrating the information fromDEGs, DARs,Nfia/b/xChIP-seq peaks and peak-

to-gene links (that showed dynamic regulation across the RPC-MG developmental process) for each experiment. (Figures 5G and

S5G)

First, we identified the Nfia/b/x-binding DARs by overlapping the Nfia/b/x ChIP-seq peaks with the DARs upon NFIA/B/X overex-

pression or Nfia/b/x conditional knockout. For each Nfia/b/x-binding DAR, we then predicted their target genes using the same

method described in the RPC-MG GRNs construction: For the Nfia/b/x-binding DARs in the TSS region, their overlapping genes

are considered as their regulatory target if these genes are also DEGs. For the Nfia/b/x-binding DARs in the gene body region, their

overlapping genes are considered as their regulatory target if they meet: 1) The distance between the DARs and the TSS of its target

gene is < 100kb. 2) The link between the DARs and its target gene is significant. 3) Their target genes are DEGs. For the Nfia/b/x-

binding DARs in the intergenic region, all the genes are considered as target genes if they meet: 1) The distance between the

DARs and the TSS of its target gene is < 100kb. 2) The links between the DARs and its target gene are significant. 3) Their target genes

are DEGs.
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Differential gene expression analysis with single-cell RNaseq data
To identify DEGs resulting from Insm1,Insm2,Tbx3,Tcf7l1/l2 overexpression and Insm1/2CRISPR-mediated knockdown for each cell

type (Figures 7E and 7F), we used the Wilcoxon Rank Sum Test with the function ‘FindMarkers’ from the Seurat package with the

options: min.pct = 0.1, logfc.threshold = 0.25. Then we selected DEGs with adjusted p value < 0.01.

Gene/peaks set enrichment analysis
We performed Gene/peak set enrichment analysis using the fgsea package in R with the default parameters (Korotkevich et al.,

2021). The significant DEGs and DARswere ranked based on their log2 fold change (treatment / control). The retina cell-type-specific

gene sets and peak sets we used in the GSEA / PSEA were generated using all retinal cells as mentioned before.

GO term analysis
To understandwhat biological functions are enriched in the gene set we are interested, we applied Gorilla (Eden et al., 2009) algorithm

to calculate the enriched Gene Ontology terms for our gene sets with the default parameters (P value threshold = 0.001, ontology =

‘Process’).
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Supplemental Figure 1 (related to Figure 1): Quality control of scATAC-seq data. 
(A)  Number of fragments per cell. Bars (cells) are colored by sample and ordered along the x-axis according to fragment number 
(high to low). The numbers of cells for each time point that passed QC are indicated on the top. 
(B)  Fragment size distribution (left) and transcriptional start site enrichment profiles (right) of single-cell ATAC-seq. Lines are 
colored by sample.  
(C)  Comparison between aggregated scATAC-seq of primary RPCs and bulk ATAC-seq of Chx10-GFP+ retinal progenitors at 
E11 and P2 (Stein-O’Brien et al., 2019).  
(D)  Chromatin accessibility plot for the Hes5 gene locus, showing the similarity between scATAC-seq data and bulk ATAC-seq 
data. The samples and data types are indicated on the left. 
(E)  Heatmap showing the Pearson correlations between gene expression and gene accessibility for each retinal cell type. Cell type 
identities are indicated on the top (scRNA-seq) and right (scATAC-seq) of the heatmap. 
(F)  The percentages of HMM regions in the cell-type-specific accessible regions at P0 (left) and P14 (right). Bars are colored by 
11 different HMM states (Aldiri et al., 2017). 
(G)  Examples of HMM tracks and cell type-specific aggregate scATAC-seq signal for five marker gene loci in P14: Aqp4, Tfap2b, 
Opn1sw, Rho, and Capb5. 

 





Supplemental Figure 2 (related to Figure 2): Examples of cell-type-specific regulatory elements and motifs. 
(A)  Aggregated accessibility profiles of representative cell-type-specific regulatory elements. Each track shows the aggregated 
scATAC-seq profile from each cell type. The nearest and positively correlated gene of each region is labeled at the top of the plot. 
The coordinates of these regions are shown at the bottom. 
(B)  UMAP projection of the scATAC-seq profile shows the activity of the representative cell-type-specific motifs. Cells are 
colored by chromVAR z-score. The motif ID is indicated at the top of each plot. 

 





Supplemental Figure 3 (related to Figure 3): UMAP projection of human retinal scATAC-seq and scRNA-seq data. 
(A)  UMAP projection and clustering results of human retinal scATAC-seq from gestational day 53-132. 
(B)  UMAP projection and clustering results of human retinal scRNA-seq from gestational day 53-132. 
(C)  UMAP projection and clustering results of human retinal and retinal organoid scRNA-seq from culture day 24-postnatal day 8 
(Lu et al., 2020). 

 





Supplemental Figure 4 (related to Figures 4 and 6): Analytic flowchart for IReNA v2. 
(A)  Workflow of Integrated Regulatory Network Analysis (IReNA v2) integrating scRNA-seq and scATACseq data to reconstruct 
the gene regulatory network (see Methods for detailed description). ArchR, MACS2, TOBIAS and motifmatchr software packages 
were used in IReNA v2.  
(B)  Schematic diagram of the integrating method used in IReNA v2 to identify positive and negative transcriptional regulators 
controlling progenitor state transitions and cell fate specification (see Methods). 

 





Supplemental Figure 5 (related to Figure 5): Nfia/b/x promote late-stage RPCs temporal identity. 
(A)  UMAPs and clustering results of scRNA-seq data and scRNA-seq data. Shading indicates cell type.  
(B)  Heatmaps of DEGs in primary RPCs/MG . Each row represents a DEG, and each column represents a cell (left). The DEGs are 
ordered by their log2 fold change (treatment/control) as shown in the middle panel. The distributions of cell-type-specific genes 
among DEGs were shown on the right panel. 
(C)  Heatmaps of CARs in primary RPCs/MG. Each row represents a DAR, and each column represents a different condition (left). 
The DARs are ordered by their log2 fold change (treatment/control) as shown in the middle panel. The distributions of cell-type-
specific peaks among DARs were shown on the right panel. The top5 enriched motifs are listed on the right. 
(D)  Heatmaps showing Nfia/b/x ChIP-seq signal at P2. Around 13,680 peaks were identified. 
(E)  Comparison of Nfia/b/x binding regions with gene annotation and accessible regions in P2. 
(F)  Bar plot showing that Nfia/b/x binding regions are strongly enriched in stage 3 RPC-specific accessible regions. 
(G)  Venn diagrams showing the overlaps between predicted Nfia/b/x regulated genes and cell-type-specific DEGs. The p-value on 
the top of each Venn diagram indicates the significance of their overlap as determined by the hypergeometric test. 

 





Supplemental Figure 6 (related to Figure 6): Gene regulatory networks controlling specification of retinal neurons. 
(A,E)  Models of retinal cell states during intermediate (A) and late stages of retinal neurogenesis (E). UMAPs of scRNA-seq and 
scATAC-seq data from E18-P2 retina (A) and P5-P8 retina (E). Shading indicates cell type. 
(B,F)  UMAPs showing differentiation trajectories inferred from scRNA-seq and scATAC-seq at intermediate (B: E18-P2) and late 
stages (F: P5-P8) of retinal neurogenesis. Shading indicates pseudotime status. 
(C,G)  Heatmaps showing the expression of cell type-specific DEGs (left) and the accessibility of their corresponding CARs (right) 
along these differentiation trajectories. The top bars are colored by pseudotime state for each trajectory.The left bar indicates cell 
types and the classes of CARs .  
(D,H)  Networks showing feedback relationships among TF pairs selectively expressed in primary and neurogenic RPCs, as well as 
postmitotic neurons (left). Each node represents an individual TF. Each edge represents a positive or negative feedback regulatory 
relationship between TF pairs. 

 





Supplemental Figure 7 (related to Figure 7): Identification of TFs controlling neurogenesis in postnatal retina. 
(A)  Candidate TFs predicted to control rod specification inferred from E18-P2 GRNs, rank ordered by the number of cell type-
specific TFs and non-TF genes predicted to be directly regulated by each TF. Gene names outlined in red indicate regulatory 
relationships previously validated using genetic analysis. 
(B)  Candidate TFs predicted to maintain RPC cell status inferred from the E18-P2 GRNs. 
(C)  UMAP plots showing Insm1/2, Tbx3, and Tcf7l1/2 expression at E18-P2 in mouse retina (left). UMAPs showing INSM1/2, 
TBX3, and TCF7L1/2 expression at gestational week 14-20 in the human retina (right). 
(D)  UMAP plots of scRNA-seq data from following gain and loss of function analysis of candidate TFs. 
(E)  Immunohistochemistry of bipolar cells (OTX2-positive cells in the INL layer), amacrine cells (TFAP2A-positive) and 
photoreceptors (GFP-positive in the ONL layer) in P11 retina explants in control and overexpression of Insm1, Insm2, Tcf7l1/2, and 
Tbx3. Yellow and white arrowheads indicate OTX2+/GFP+ and TFAP2A+/GFP+ cells, respectively. ONL, outer nuclear layer; 
INL, inner nuclear layer; OS, outer segment. Scale bar = 30μm. 
(F) Efficiency of somatic CRISPR-mediated deletion of Insm1 and Insm2. Genomic DNA was extracted from FACS-sorted GFP + 
cells from control Cas9 and Insm1/2 sgRNA+Cas9-electroporated P5 retinal explants. Targeted genomic DNA locations were PCR-
amplified and subjected to endonuclease cleave assay.  
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