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Tensor Networks and Hierarchical Tensors for the Solution
of High-dimensional Partial Differential Equations

Markus Bachmayr - Reinhold Schneider -
André Uschmajew

Abstract Hierarchical tensors can be regarded as a generalisation, preserving many
crucial features, of the singular value decomposition to higher-order tensors. For a
given tensor product space, a recursive decomposition of the set of coordinates into
a dimension tree gives a hierarchy of nested subspaces and corresponding nested
bases. The dimensions of these subspaces yield a notion of multilinear rank. This rank
tuple, as well as quasi-optimal low-rank approximations by rank truncation, can be
obtained by a hierarchical singular value decomposition. For fixed multilinear ranks,
the storage and operation complexity of these hierarchical representations scale only
linearly in the order of the tensor. As in the matrix case, the set of hierarchical tensors
of a given multilinear rank is not a convex set, but forms an open smooth manifold.
A number of techniques for the computation of low-rank approximations have been
developed, including local optimisation techniques on Riemannian manifolds as well
as truncated iteration methods, which can be applied for solving high-dimensional
partial differential equations. In a number of important cases, quasi-optimality of
approximation ranks and computational complexity have been analysed. This article
gives a survey of these developments. We also discuss applications to problems in
uncertainty quantification, to the solution of the electronic Schrédinger equation in the
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strongly correlated regime, and to the computation of metastable states in molecular
dynamics.

Keywords hierarchical tensors - low-rank approximation - high-dimensional partial
differential equations
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1 Introduction

The numerical solution of high-dimensional partial differential equations remains
one of the most challenging tasks in numerical mathematics. A naive discretisation
based on well-established methods for solving PDEs numerically, such as finite
differences, finite elements or spectral elements, suffers severely from the so-called
curse of dimensionality. This notion refers to the exponential scaling &'(n?) of the
computational complexity with respect to the dimension d of the discretised domain.
For example, if d = 10 and we consider n = 100 basis functions in each coordinate
direction, this leads to a discretisation space of dimension 100'°. Even for low-
dimensional univariate spaces, e.g., n = 2, but with d = 500, one has to deal with a
space of dimension 2°%. It is therefore clear that one needs to find additional structures
to design tractable methods for such large-scale problems.

Many established methods for large-scale problems rely on the framework of sparse
and nonlinear approximation theory in certain dictionaries [37]. These dictionaries
are fixed in advance, and their appropriate choice is crucial. Low-rank approximation
can be regarded as a related approach, but with the dictionary consisting of general
separable functions — going back to one of the oldest ideas in applied mathematics,
namely separation of variables. As this dictionary is uncountable large, the actual
basis functions used for a given problem have to be computed adaptively.

On the level of matrix- or bivariate approximation, the singular value decomposi-
tion (SVD) provides a tool to find such problem-adapted, separable basis functions.
Related concepts underlie model order reduction techniques such as proper ortho-
gonal decompositions and reduced bases [115]. In fact, one might say that low-rank
matrix approximation is one of the most versatile concepts in computational sciences.
Generalizing these principles to higher-order tensor has proven to be a promising, yet
nontrivial, way to tackle high-dimensional problems and multivariate functions [83, 16,
61]. This article presents a survey of low-rank tensor techniques from the perspective
of hierarchical tensors, and complements former review articles [83,63,59,66] with
novel aspects. A more detailed review of tensor networks for signal processing and
big data applications, with detailed explanations and visualizations for all prominent
low-rank tensor formats can be found in [25]. For an exhaustive treatment, we also
recommend the monograph [61].

Regarding low-rank decomposition, the transition from linear to multi-linear
algebra, is not as straightforward and harmless as one might expect. The canonical
polyadic format [72] represents a tensor u of order d as a sum of elementary tensor
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products, or rank-one tensors,
r
u(iy,...,i Z Clig), du=1,..,ny, p=1,....d, (L.1)

with ij € R, For tensors of order two, the CP format simply represents the factor-
ization of a rank-r matrix, and therefore is a natural representation for higher-order
tensors as well. Correspondingly, the minimal r required in (1.1) is called the canonical
rank of u.

If r is small, the CP representation (1.1) is extremely data-sparse. From the per-
spective of numerical analysis, however, it turns out to have several disadvantages in
case d > 2. For example, the set of tensors of canonical at most r is not closed [123].
This is reflected by the fact that for most optimisation problems involving tensors
of low CP rank no robust methods exist. For further results concerning difficulties
with the CP representation and rank of higher-order tensors, we refer to [123,71,61,
132], and highlight the concise overview [96]. Many of these issues have also been
investigated from the perspective of algebraic geometry, see the monograph [91].

The present article is intended to provide an introduction and a survey of a some-
how alternative route. Instead of directly extending matrices techniques to analogous
notions for tensors, the strategy here is to reduce questions of tensor approximation
to matrix analysis. This can be accomplished by the hierarchical tensor (HT) format,
introduced by Hackbusch and Kiihn [65], and the tensor train (TT) format, developed
by Oseledets and Tyrtyshnikov [106,110,109,107]. They provide alternative data-
sparse tensor decompositions with stability properties comparable to the SVD in the
matrix case, and can be regarded as multi-level versions of the Tucker format [129,
83]. Whereas the data complexity of the Tucker format intrinsically suffers from an
exponential scaling with respect to dimensionality, the HT and TT format have the
potential of bringing this down to a linear scaling, as long as the ranks are moderate.
This compromise between numerical stability and potential data sparsity makes the
HT and TT formats promising model class for representing and approximating tensors.

However, circumventing the curse of dimensionality by introducing a non-linear
(here: multi-linear) parameterization comes at the price of introducing a curse of
nonlinearity, or more precisely, a curse of non-convexity. Our model class of low rank
hierarchical tensors is no longer a linear space nor a convex set. Therefore, it becomes
notoriously difficult to find globally optimal solutions to approximation problems, and
first-order optimality conditions remain local. In principle, the explicit multi-linear
representation of hierarchical tensors is amenable to block optimisation techniques
like variants of the celebrated alternating least squares method, e.g. [23,68,35,16,31,
83,74,87,128,108, 142,41], but their convergence analysis is typically a challenging
task as the multilinear structure does not meet classical textbook assumptions on block
optimisation. Another class of local optimisation algorithms can be designed using
the fact that, at least for fixed rank parameters, the model class is a smooth embedded
manifold in tensor space, and explicit descriptions of its tangent space are available
[82,75,134,101,67,4,135,85,32,100]. However, here one his faced with a technical
difficulty that this manifold is not closed: its closure only constitutes an algebraic
variety [119].
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An important tool available for hierarchical tensor representation is the hierarchical
singular value decomposition (HSVD) [56], as it can be used to find a quasi-best low-
rank approximation using only matrix procedures with full error control. The HSVD
is an extension of the higher-order singular value decomposition [36] to different
types of hierarchical tensor models, including TT [109,105,61]. This enables the
construction of iterative methods based on low-rank truncations of iterates, such as
tensor variants of iterative singular value thresholding algorithms [81,64,86,10,8,17].

Historically, the parameterization in a hierarchical tensor framework has evolved
independently in the quantum physics community, in the form of renormalization
group ideas [138,51], and more explicitly in the framework of matrix product and
tensor network states [120], including the HSVD for matrix product states [136]. An
further independent source of such developments can also be found in quantum dy-
namics, with the multi-layer multi-configurational time dependent Hartree (MCTDH)
method [14,137,98]. We refer the interested reader to the survey articles [59,95,126]
and to the monograph [61].

Although the resulting tensor representations have been used in different contexts,
the perspective of hierarchical subspace approximation in [65] and [61] seems to
be completely new. Here, we would like to outline how this concept enables one to
overcome most of the difficulties with the parameterization by the canonical format.
Most of the important properties of hierarchical tensors can easily be deduced from
the underlying very basic definitions. For a more detailed analysis, we refer to the
respective original papers. We do not aim to give a complete treatment, rather but to
demonstrate the potential of hierarchical low-rank tensor representations from their
basic principles. They provide a universal and versatile tool, with basic algorithms
that are relatively simple to implement (requiring only basic linear algebra operations)
and easily adaptable to various different settings.

An application of hierarchical tensors of particular interest, on which we focus
here, is the treatment of high-dimensional partial differential equations. In this article,
we will consider three major examples in further detail: PDEs depending on countably
many parameters, which arise in particular in deterministic formulations of stochastic
problems; the many-particle Schrédinger equation in quantum physics; and the Fokker-
Planck equation describing a mechanical system in a stochastic environment. A further
example of an application of practical importance are chemical master equations, for
which we refer to [38,39].

This article is arranged as follows: Section 2 covers basic notions of low-rank
expansions and tensor networks. In Section 3 we consider subspace-based represent-
ations and basic properties of hierarchical tensor representations, which play a role
in the algorithms using fixed hierarchical ranks discussed in Section 4. In Section
5, we turn to questions of convergence of hierarchical tensor approximations with
respect to the ranks, and consider thresholding algorithms operating on representations
of variable ranks in Section 6. Finally, in Section 7, we describe in more detail the
mentioned applications to high-dimensional PDEs.
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2 Tensor product parameterization

In this section, we consider basic notions of low-rank tensor formats and tensor
networks and how linear algebra operations can be carried out on such representations.
2.1 Tensor product spaces and multivariate functions

We start with some preliminaries. In this paper, we consider the d-fold topological
tensor product

d
V=@ % 2.1)
u=1
of separable K-Hilbert spaces 71,...,%,. For concreteness, we will focus on the real

field K = R, although many parts are easy to extend to the complex field K = C. The
confinement to Hilbert spaces constitutes a certain restriction, but still covers are broad
range of applications. The topological difficulties that arise in a general Banach space
setting are beyond the scope of the present paper, see [48,61]. Avoiding them allows
us to put clearer focus on the numerical aspect of tensor product approximation.

We do not give the definition the topological tensor product of Hilbert spaces (2.1)
in full detail (see [61]), but only recall the properties necessary for our later purposes.
Let ny, € NU {0} be the dimension of #},. We set

7y = {1, ng} , ifny <o
N , else,

and ¥ = . x --- x Jy. Fixing an orthonormal basis {efL tiy € S} for each 7, we
obtain a unitary isomorphism @* : ¢2(.7,) — ¥}, by
o (c):= Y c(iel', celP(A).
i€gy
Then {e}l ® ~~~®efd: it,...,ig € F} is an orthonormal basis of ¥, and & := @' ®
---® @? is a unitary isomorphism from ¢*(.#) to 7.

Such a fixed choice of orthonormal basis allows us to identify the elements of ¥’
with their coefficient tensors u € £2(.%),

(i1y.. o ig) = u(iy,...,ig) €R iy €Sy u=1,...,d,

often called hypermatrices, depending on discrete variables iy, usually called indices.
In conclusion, we will focus in the following on the space ﬁz(f ), which is itself a
tensor product of Hilbert spaces, namely,

C(I)=P(A) R0 Iy). (2.2)

Note that the corresponding multilinear tensor product map of d univariate ¢>-functions
is defined pointwise as (u' ®---®@u?)(iy,...,iz) = u'(i1)---u?(iyg). Tensors of this
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form are called elementary tensors or rank-one tensors. Also the terminology decom-
posable tensors is used in differential geometry.

Let n = max{n, : p = 1,...,d}, be the maximal dimension of 7. Then the
number of possibly non-zero entries in the representation of u is n; ---ng = 0'(n?).
This is often referred to as the curse of dimensionality. In the present paper we intend to
circumvent the curse of dimensionality. Indeed this is a common issue in the previously
mentioned examples of high-dimensional PDEs.

In very abstract terms, all low-rank tensor decompositions considered below
ultimately decompose the tensor u € £2(.#) such that

u(iy, ..., ig) = t(C'(iy),...,C4y),C4,...,CP), (2.3)

where T: W =W X ... Wy X Wy X -+ X #p — R is multilinear on a Cartesian
product of vector spaces #;, v =1,...,D. The choice of these vector spaces and the
map T determines the format, and the tensors in its range are considered as “low-rank™.
An example is the CP representation (1.1).

Remark 2.1 Since @ is multilinear as well, we obtain a representations of the very
same multilinear structure (2.3) for the corresponding elements of 7,

()= (' @207 ((&1,....8) = 7(C (&),...,C (&), CT,....C)).

For instance, if 7 is a function space on a tensor product domain D = Dy X --- X Dy
on which point evaluation is defined, and (e' ®---®e?)(x1,...,x7) = €' (x1)---e?(xy)
for x € D, then formally (dispensing for the moment with possible convergence issues),
exploiting the multilinearity properties, we obtain

D(u)(xy,...,x7) = (Z e/ (x1)C' (i), Z e (xg)C%(iy),CH! ...,CD>

11:l ld 1
=@ (CY)(x1),...,0¢(CY) (x4),CI ... CP),

and the same applies to other tensor product functionals on #'. Since in the present
case of Hilbert spaces (2.1), the identification with £2(.#) via & thus also preserves
the considered low-rank structures, we exclusively work on basis representations in
/*(.#) in what follows.

2.2 The canonical tensor format

The canonical tensor format, also called CP (canonical polyadic) decomposition,
CANDECOMP or PARAFAC, represents a tensor of order d as a sum of elementary
tensor products u =Y ;_, C,i @ CZ, that is

.
u(iy,...i Z (i1,k) - C¥(ia,k), 2.4)
with ¢} = CH(-,k) € £*(.#,) [72,23,68]. The minimal r such that such a decompos-

ition exists is called the canonical rank (or simply rank) of the tensor u. It can be
infinite.
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Depending on the rank, the representation in the canonical tensor format has a
potentially extremely low complexity. Namely, it requires at most rdn nonzero entries,
where n = max |fu | Another feature (in the case d > 2) are the strong uniqueness
properties of the representation (assuming the r equals the rank) which led to its big
success in signal processing and data analysis, see [89,83,26] and references therein.

In view of the present motivating high-dimensional partial differential equation,
one can observe that the involved operator can usually be represented in the form
of a canonical tensor operator, and the right hand side is also very often of the form
above. This implies that the operator and the right hand sides can be stored within this
data-sparse representation. This motivates the basic assumption in numerical tensor
calculus that all input data can be represented in a sparse tensor form. Then there is
a reasonable hope that the solution of such a high-dimensional PDE might also be
approximated by a tensor in the canonical tensor format with moderate r. The precise
justification for this hope is subject to ongoing research, but many known numerical
solutions obtained by tensor product ansatz functions like (trigonometric) polynomials,
sparse grids, Gaussian kernels and so on are in fact low-rank approximations, mostly
in the canonical format. However, the key idea in non-linear low-rank approximation
is to not fix possible basis functions in (2.4) in advance. Then we have an extremely
large library of functions at our disposal. Motivated by the seminal papers [15,16], we
will pursue this idea throughout the present article.

From a theoretical viewpoint, the canonical tensor representation (2.4) is a straight-
forward generalisation of low rank matrix representation, as it coincides with it when
d = 2. As it turns out, however, the parameterization of tensors via the canonical
representation (2.4) is not as harmless as it seems to be. For example, for d > 2, the
following difficulties appear:

— The canonical tensor rank is (in case of finite-dimensional spaces) NP-hard to
compute [71].

— The set of tensors of the above form with canonical rank at most r is not closed
[123] (border rank problem). As a consequence, a best approximation of a tensor
by one of smaller canonical rank might not exist. This is in strong contrast to the
matrix case d = 2, see Sec. 3.1.

— In fact, the set of tensor of rank at most r does not form an algebraic variety [91].

Further surprising and fascinating difficulties with the canonical tensor rank in case
d > 2 with references are listed in [90, 83, 132,96]. Deep theory of algebraic geometry
has been invoked for the investigation of these problems, see the monograph [91] for
the state of the art. The problem of non-closedness can be often cured by imposing
further conditions such symmetry [91], nonnegativity [97] or norm bounds on factors
[123].

In this paper we show a way to avoid all these difficulties by considering another
type of low-rank representation, namely the hierarchical tensor representation [61],
but at the price of a slightly higher computational and conceptual complexity. Roughly
speaking, the principle of hierarchical tensor representations is to reduce the treatment
of higher-order tensors to matrix analysis.
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2.3 Low-rank formats via additional contractions

For fixed choice of r, the canonical tensor format is multilinear with respect to every
matrix C* := (C* (i,k)) €Ty k= A generalised concept of low-rank tensor formats
consists in considering classes of tensors which are images of more general multilinear
parameterization. They can be formally derived as extension of the canonical format,
by allowing the C* to potentially depend on more contraction variables ki, ... kg,
that is, C* (i, k1,. .., kg). For clarity, we will call the indices iy, physical variables. We
may even introduce components CY (ky,...,kg),d+1 < v < D, that do not depend on
any physical variable. By summing over all the newly introduced contraction indices
over a fixed range ky = 1,...,ry, we obtain the tensor representation

r rE d D
u(is,..ig) =Y - Y [I1C*Gu.kr,-.ke) T] CV(kise-oskm),  (2.5)

k=1 km=1u=1 v=d+1

which separates the physical variables. Again, we can regard u as elements of the
image of a multilinear map 7,

u=1(C,...,CP), (2.6)

parametrizing a certain class of “low-rank” tensors. By t = (ry,...,rg) we indicate
that this map 7, and with it the notion of rank, depends on the representation ranks
Fly...,FE.

The disadvantage compared to the canonical format is that the component tensors
have order p, instead of 2, where 1 < p, < D is the number of contraction variables
in CV which are actually active.! In cases of interest introduced below (like the HT or
TT format), this number is small, say p = max{p, : v=1,...,D} <3, so that we do
not sacrifice too much in terms of complexity. With r = max{r,, : n =1,...,E}, the
data complexity of the format (2.5) is bounded by &'(nDrP).

2.4 Tensor networks

Among the general low-rank formats (2.5) we will confine to a subclass where the
contractions, that is, the summations over the contraction variables can be graphically
visualized as a tensor network.

Tensor networks are a useful and versatile graphical tool for describing decom-
positions of multi-variate functions (tensors) into nested summations over contraction
indices. In principle, they are easy to understand, but a rigorous description can be te-
dious. A possible way is consider the low-rank formats (2.5) that separate the physical
indices as a special case of the following more general form

Il

e D
u(il,...,id): Z Z Hcv(il,...,id,kl,...,kE). (27)
k=1 kg=lv=I

I A contraction index ky is called inactive in CV, if CV does not depend on this index. The other indices
are called active. The notation will be adjusted to reflect the dependence on active indices only later for
special cases.
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The main difference to (2.5) is that the components may depend on more than one
physical index.

Definition 2.2 We call the multilinear parameterization (2.7) a tensor network, if

(i) each physical variable i, u = 1,...,d, is active in exactly one component C";
(ii) each contraction index ky, n = 1,..., E, is active in precisely two components C",
1<v<D,

see also [46,120] and the references given there.

We note that the canonical tensor format (2.4) is not a tensor network, since the
contraction variable k relates to all physical variables i, .

Tensor networks can be represented as graphs with nodes v = 1,...,D, repres-
enting component C", and every contraction index k,, 7 = 1,...,E, representing an
edge connecting the two nodes in which they are active. In this way, edges connecting
to nodes represent a summation over the corresponding contraction variable. Among
all nodes, the ones in which a physical variable i,, 4 = 1,...,d, is active, play a
special role and get an additional label, which in our pictures will be visualized by an
additional open edge connected to the node. Conversely, the number of open edges in
a tensor network determines the order of tensors under considerations.

The basic examples of tensor networks are plain vectors, matrices and higher-order
tensors without any contraction indices. For example a vector i — u(i) is a node with
single edge i, a matrix (i1,ip) — U(i1,i2) is a node with two edges i1, iy, and a d-th
order tensor is a node with d edges connected to it:

r + >

vector matrix third-order tensor

Low-rank matrix decompositions like A = UV’ or A =UZV7 are tensor networks,
the latter containing a node with no physical index:

—0—0— —0—0—0—
uv’ uzv’

Note that these graphs to not show which physical variables belong to which open
edge. To emphasize a concrete choice one can attach the labels n;, to them. Also the
range of the contraction indices can be specified. As an example, we illustrate how to
contract and decontract a tensor of order d = 4 by a rank-r matrix decomposition that
separates physical indices (i1,iy) from (i3, i4), using, e.g., SVD:

.
u(iy, ip, i3, i4) = ZCl(il,iz,k)Cz(i3,i4,k)
k=1
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(a) Tucker format (b) hierarchical Tucker (HT) format  (c) tensor train (TT) format

Fig. 2.1 Important examples of (tree) tensor networks.

i i4 i i4

153 i3 ip i3

Diagrammatic representations of a similar kind are also common in quantum physics
for keeping track of summations, for instance Feynman and Goldstein diagrams.

It is easy to estimate the storage complexity of a tensor network. Every node
requires the storage of a tensor whose order equals the number of edges connected to
it. Let again p be a bound for the number of connected (active) contraction variables
for a node, and g a bound for the number of physical indices. Let again n, < n for
all u, and r <r for all 1, then the storage requirement for every node is bounded
by n?r?. Computationally efficient tensor network representations of multi-variate
functions arise by bounding p and r, and only considering networks with ¢ = 1, that
is, with strict separation of all physical indices (in the diagram a node then has at
most one open edge). Such tensor networks form a subset of the general “low-rank”
formats considered in (2.5). The Tucker, hierarchical Tucker (HT), and tensor train
(TT) formats are examples, and will be treated in detail in Sec. 3. In case d = 4, they
are represented by the tensor networks depicted in Fig. 2.1.

By allowing large enough representation ranks, it is always possible to represent
a d-th order tensor in any of these formats, but the required values r = max,, can
differ substantially depending on the choice of format. A potential disadvantage of
the Tucker format is that p = d, which implies a curse of dimension for large d. In
contrast, p =3 in HT and TT.

An important property of the Tucker, HT and TT format is that they are tree tensor
networks.

Definition 2.3 A tensor network is called a tree tensor network if its graph is a tree,
that is, contains no loops.

Among the general tensor networks, the networks with tree structure have favorable
topological properties that make them more amenable to numerical utilization. For
instance, tensors representable in tree networks with fixed rank bounds r, form closed
sets, and the ranks have clear interpretation as matrix ranks, as will be explained in
Section 3. In contrast, it has been shown that the set of tensors represented by a tensor
network whose graph has closed loops is not closed in the Zariski sense [92]. In fact,
there is no evidence that the more general tensor network parameterization with loops
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do not suffer from similar problems as the canonical tensor format, which is not even
a tensor network. In the following, we therefore restrict to tree tensor networks.

2.5 Linear algebra operations

For two tensors given in the same tree tensor network presentation it is easy to perform
standard linear algebra operations, such as summation, Hadamard (pointwise) product,
and inner products. Also the application of a linear operator to such a tensor can be
performed in this representation if the operator is in the “compatible” form.

For instance, a matrix-vector product b = Au results in a vector, and is obtained as
a single contraction b(i) = Y}, A(i,k)u(k). Hence it has the following tensor network
representation.

—B—®@ = b

As a further illustration, consider a fourth-order tensor represented in the TT

format (see Sec. 3.4):

i i i3 is
SERCER 1 2 3 4
u(iy, iz, i3,ia) = Z Z Z G (i1,k1)G"(k1,i2,k2)G” (ka,i3,k3)G" (k3,is)
K=l k=1

A linear operator A in TT format has the following form:

i i 3 iq

N ki@k&@ké .

J1 J2 J3 Ja

The application of A to u is illustrated by:

e LN LN ol

il 1) i3 i4
Al A2 A3 A?
TPT®T
J1 J2 J3 Ja

Summing over connected edges n, related to physical variables results again in a TT
tensor @t = Au, but with possibly larger Ry < ryy sy instead of ry,

L@ e K

Ji J2 J3 Ja




12 Markus Bachmayr et al.

R Ry Rs
Wiz = Y Y Y G (k)G Ko, k)G (K. 3. k)G (0. a).
Ki=1ky=1k)=1
It can be seen that the overall complexity of computing Au is linear in d, quadratic in
n and only polynomial in the ranks.

To estimate the complexity of standard linear algebra operations, one observes that
summing tensor in tree network representations leads to summation of ranks, while
multiplicative operations like matrix-vector products or Hadamard products lead to
multiplication of ranks. Luckily, this is only an upper estimate for the ranks. How to
recompress the resulting parameterization with and without loss of accuracy will be
shown later. Details about linear algebra operations are beyond the scope of this paper,
but can be found in [61,106,25].

3 Tree tensor networks as nested subspace representations

In this section we explain how the deficiencies of the canonical format are cured using
tree tensor network parameterizations. Tree tensor networks have the fundamental
property that if one edge of the tree is removed, exactly two subtrees are obtained. This
technique allows to apply matrix techniques to tree tensor networks and constitutes
the main difference to the canonical tensor format.

3.1 The matrix case d = 2 revisited

An m x n can be either seen as an element of R” ® R”, a bivariate function, or as
a linear operator from R” to R”. In the general, possibly infinite-dimensional case
this is generalised by the fact that the topological tensor product of 5 = 74 ®
is isometrically isomorphic to the Hilbert space HS(.7%,.741) of Hilbert-Schmidt
operators from .73 to 771 . This space consists of bounded linear operators T : 575 ® 7]
for which ||T||3g = (T,T)us < oo, where the inner product is defined as (S, 7 )us =
2?22:1 <Sei22, Tei22>. Here {eg :ip € J, } is any orthonormal basis of /7. It is an easy
exercise to convince oneself that the choice of basis is irrelevant. The isometric
isomorphism u — T, between 2" and HS (543,51 ) we then consider is constructed

by identifying
vowveAwt —  (uih e HS(UB,4) (3.1

and linear expansion.

The relation to compact operators makes the case d = 2 unique as it enables spectral
theory for obtaining tensor decompositions and low-rank approximations. The nuclear
decomposition of compact operators plays the decisive role. It has been first obtained
by Schmidt for integral operators [117]. A proof can be found in most textbooks on
linear functional analysis or spectral theory. For matrices the decomposition (3.2)
below is called the singular value decomposition (SVD), and can be traced back
even further, see [124] for the history. We will use the same terminology. The best
approximation property stated below was also obtained by Schmidt, and later also
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attributed to Eckart and Young [42]. We state the result in £*(.#] x .%,); see [61] for a
self-contained treatment from a more general tensor perspective.

Theorem 3.1 (E. Schmidt, 1907) Let u € (2(.# x .%,), then there exist orthonormal
systems {U' (k) : k € A1} in (2(H) and {U*(-,k) : k € A} in (>(5), and 61 >
oy > --- >0, such that

min(ny,ny)

u(ii)= Y. o U(i1,k)U(in, k), (3.2)
k=1

with convergence in (*(.%) x ;). A best approximation of u by a tensor of rank
r < min(ny,ny) in the norm of (>(91 x .%3) is provided by

u,(il,ig) = Z Ok U] (il,k)Uz(iz,k),
k=1

and approximation error satisfies

min(ny,ny)

lu-w|*= Y o
k=r+1

The best approximation is unique in case Gy > Oy |.

The numbers oy, are called singular values, the basis elements U! (-, k) and U?(-,k)
are called corresponding left and right singular vectors. They are the eigenvectors of
T, Ty and T,/ T, respectively.

In matrix notation, let U be the (possibly infinite) matrix with entries u(i, ).
Then, using (3.1), the singular value decomposition (3.2) takes the familiar form

U=U,xUZ,

where Uy, = [}, ub,...] have columns uf, u = 1,2, and £ = diag(oy,0>,...).

3.2 Subspace approximation

The problem of finding the best rank-r approximation to a tensor of order two (matrix)
can be interpreted as a subspace approximation problem, and Schmidt’s theorem 3.1
provides a solution.

The problem is as follows: Find subspaces % C ¢2(.#)) and % C (*(.%,) of
dimension r such that

dist(u, % ® %) = ||u — Iy, s 9,u|| = min! (3.3)

Here Ily, ¢4, denotes the orthogonal projection on %) ® %,. The truncated singular
value decomposition u, is the solution to this problem, more precisely the subspaces
spanned by the dominating r left and right singular vectors, respectively, since it holds
that a tensor of order two is of at most r if and only it is contained in such a subspace
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U, @ U .> We highlight that the admissible set over which we minimise the distance
dist(u, %) ® %) is the closure of a Cartesian product of GraBmannians [1,43,91].
Note that the rank of u now can be defined as the minimal r such that the minimal
distance in (3.3) is zero.

In contrast to the representability in canonical tensor format, the interpretation of
low-rank approximation as subspace approximation, which is possible in case d = 2,
provides a different concept which offers advantageous mathematical properties also
in the higher-order case. In the sequel we will pursue on this concept. A direct gener-
alisation of (3.3) to higher-order tensors leads to the by now classical Tucker format
[129,83,61]. Given a tensor u € Ez(f) and dimensions ry,...,r; one is searching for
optimal subspaces %, C ¢*(.%,) of dimension r, such that

dist(n, 21 ®@--- @ %) = ||u— Iy ..9%,u| = min! 3.4)

The (elementwise) minimal tuple of (ry,...,r,;) which minimises the distance to zero
is called the Tucker rank of u. It follows from this definition that a tensor has Tucker
rank at most (r1,...,ry) if and only if u € % ® - - - ® %, with dim(%,) < r. Note that
this in turn is the case if and only if u can be written as

Il ’'d
u(iy,...,ig)= Y, - Y Clir,... ia. k... .kg)U' (ir,k) - U ig,kq). (3.5
k=1 kg=1

For instance, one can choose {UH(-,1),...,U%(-,r)} to be a basis of %,. The multi-
linear representation (3.5) of tensors is called the Tucker format [73,129]. Its tensor
network representation is given in Fig. 2.1(a).

The minimal r; appearing in the Tucker rank of u, as well as the corresponding
subspaces %, can be found constructively and independently from each other as
follows. For u = 1,....d, let fﬁ = XX Iy X Iy X x Iy Then the
spaces (2(., x S0 = C(I)® Ez(fﬁ), which are tensor product spaces of order
two, are all isometrically isomorphic to £2(.#). The corresponding isomorphisms
u — My, (u) are called matricisations. The SVDs of My, (u) provide us with subspaces
%, of minimal dimension r, such that M, (u) € %, ® Ez(fﬁ), that is,

ue (A @ @ (Iy1) @ U RC(Iys1) @+ @ (Iy). (3.6)

Comparing with (3.4), this shows that this r;, cannot be larger than the corresponding
Tucker rank. On the other hand, since (3.6) holds for it = 1,...,d simultaneously, we
get (see, e.g., [61, Lemma 6.28])

UEULR - QU, 3.7

which in combination yields that the %, found in this way solve (3.4). These consid-
erations will be generalised to general tree tensor networks in Sec. 3.5.

Similar to the matrix case one may pose the problem of finding the best approxima-
tion of a tensor u by one of lower Tucker rank. This problem always has a solution [130,

2Ifu=Y; ,ul ®u, then u € span{ul,...,u!} ® span{u?,...,u2}. Conversely, if u is in such a

subspace, then there exist a;; such thatu = Y7_, ¥/_ a;ju] ®u§ =Y u® (Z;Z, a;juﬁ).
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48], but no normal form providing a solution similar to the SVD is currently available.
The higher-order SVD [36] uses the dominant left singular subspaces from the SVDs
of the matricisations My (u), but they only provide quasi-optimal approximations.
This will be explained in more detail Sec. 3.5, albeit somewhat more abstractly than
probably necessary for the Tucker format.

There is a major drawback of the Tucker format, which motivates us to go beyond
it: unless the core tensor C in (3.5) is sparse, the low rank Tucker representation does
not prevent us from the curse of dimensionality. Since, in general, the core tensor
contains ry - - - 4 possibly nonzero entries, its storage complexity scales exponentially
with the dimensions as &'(r?) where r = max{r, : p = 1,...,d}. With n = max{n,, :
u =1,...,d}, the overall complexity for storing the required data (including the
basis vectors U (-, k) is bounded by & (ndr + ). Without further sparsity of the core
tensor, the pure Tucker format is appropriate for tensors of low order only, say d < 4.
Nonetheless, subspace based tensor representation approximation as in the Tucker
format is not a dead end road. We will use it in a hierarchical fashion to circumvent
the curse of dimensionality, at least for a large class of tensors.

3.3 Hierarchical tensor representation

The hierarchical Tucker format or hierarchical tensor format (HT) was introduced
by Hackbusch and Kiihn [65], and extends the idea of subspace approximation to a
hierarchical or multi-level framework. It is a tree tensor network corresponding to the
diagram in Fig. 2.1(b). Here we derive it from a geometric viewpoint. Let us

Reconsider the subspace relation (3.7) with subspaces %, of dimension r,,. For
the representation of u it might be sufficient to have a % 51 C % ® %> of possibly
lower dimension r{; 5; < rir toensure W € %12y @ U3 ® - Q@ Uy Then %12y is a
space of “matrices”, and has a basis { U2} (., Skiioy) tkpiay = 1,..., 112y}, whose
elements can be represented in the basis of % @ %:

1 ¥
U{l’z}(i17i27k{1,2}) =Y ) B{l"z}(kl,k27k{1,2})U1(i1,kl)Uz(izykz)-
Ki=1k=1

One can now continue in several ways, e.g., by choosing a subspace %3} C
U1 2y @Us C U @ Us @ Us. another option is to find a subspace %1 234y € %12} ®
U 4, where %3 4y is defined analogously to %/ 5y, and so on.

For a systematic treatment, this approach is cast into the framework of a partition
tree T (also called dimension tree) containing subsets of {1,...,d} such that

1) o*:={1,...,d} € T, and
(ii) for every o € T with || > 1 there exist o, € T such that o = o U 0 and
o Nop=0.

Such a set T forms a binary tree by introducing edges between fathers and sons.
The vertex o* is then the root of this tree, while the singletons {u}, u=1,...,d
are the leaves. By agreeing that ¢¢; should be the left son of & and o, the right son,
a pre-order traversion through the tree yields the leaves {i} appear according to a
certain permutation ITy of {1,...,d}.
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By T we denote the subset of o which are neither the root, nor a leaf (inner
vertices). In the HT format, to every a € T\ {a*} with sons a;,0, a subspace
U € Qjca £2(.#;) of dimension rg is attached such that the nestedness properties

%ag%oq@%az, (XG’]T,

and 7or(u) € Uer @ U hold true. Here oy denotes the natural isomorphism? between

®Z:1 Ez(ju) and ®ﬁ:1 g2(jHT(“))_
Corresponding bases {U*(-,...,,kg) kg = 1,...,rq} of %y are then recursively
expressed as

Foy Ty
% (ig, kg ) = Z Y B¥(ki ko ko)U% (iq, k1)U (iay,k2), €T, (3.8)
=lky=1

where iy = X uea{iu} denotes, with a slight abuse of notation, the tuple of physical
variables represented by «. Finally, u is recovered as

r *

u(iy,...,i Z Z B* (ky,ky)U% (la*,kl)U% (i, k2)- (3.9)
ki=1ky=1
It will be notationally convenient to set B* = U for leaves a = {u}. If equa-
tion (3.9) is recursively expanded using (3.8), we obtain a multilinear low-rank format
of the form (2.5) with E = |T|— 1, D = |T|, ry = rg, and C* = B? (in some ordering).
Its network representation takes the form of the tree in Fig. 2.1(b), and has the same
topology as the tree T itself, ignoring the edges with open ends which can be seen as
labels indicating physical variables.
The tensors B% will be called component tensors, the terminology transfer tensors
is also common in the literature. In line with (2.6) the tensors which are representable
in the HT format with fixed v = (r) are the images

u= 7'6151 (71, (BY)qet))

of a multilinear map 7 o T ¢

For fixed u and T, the minimal possible ry to represent u as image of 7r, are,
as for the Tucker format, given by ranks of certain matricisations of u. This will be
explained in Sec. 3.5 for general tree tensor networks.

Depending on the contraction lengths ry, the HT format can be efficient, as it
only requires storing the tuple (B%),c1. Every B¢ is a tensor of order at most three.
The number of nodes in the tree T is bounded by 2d — 1 = €(d), including the
root node. Therefore the data complexity for representing u is &'(ndr +dr?), where
n=max{ny :u=1,...,d},r=max{re: a0 € T\ {a*}}. In contrast to the classical
Tucker format it is formally no longer scaling exponentially with the order d.

It is straightforward to extend the concept to partition trees such that vertices are
allowed to have more than two son, but the binary trees are the most common. Note
that the Tucker format itself represents an extreme case where the root decomposes
immediately into d leaves, see Fig. 2.1(a) again.

3 One can think of 7r(u) as a reshape of the tensor u which relabels the physical variables according to
the permutation IT induced by the order of the tree vertices. Note that in the pointwise formula (3.9) it is
not needed.
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3.4 Tensor trains and matrix product representation

As a third example, we consider the tensor train (TT) format as introduced in [107,
109]. As it later turned out, this format plays an important role in physics, where it
is known as matrix product states (MPS). The unlabeled tree tensor network of this
format can be seen in Fig. 2.1(c). When attaching the physical variable n;, in natural
order from left to right, the pointwise multilinear representation is

Il Td—1
u(in,....ig) =Y, ... 'Y G'(it,k1)G*(ki,iz,ka) -+ G (kq—1,iq) (3.10)
k=1 kg_1=1

The TT format is hence of the form (2.5) withD=dand E =d — 1.

Introducing the matrices G* (iy,) = [GH (ky—1,iu,ky)] € R™~1*"%, with the con-
vention ro = rg = 1, Gl(l,il,kl) = Gl(il,kl), and Gd(kd_l,il,l) = Gd(kd_l,id),
formula (3.10) becomes a matrix product,

u(iy,....ig) = G1(i1)G? (i) --- G4 (i), (3.11)

which explains the name matrix product states used in physics. In particular, the
multilinear dependence on the components G* is evident, and may be expressed as
u= ‘L'TT<G1 yo .,Gd).

From the viewpoint of subspace representation, the minimal r, 7 =1,...,d -1,
required for representing u in the TT format are the minimal dimensions of subspaces
U,..vy C ®pi—1 £*(Iy) such that the relations

d

ue%{lwn}@)( %) zz(fﬂ)), n=1,....d—1
p=n+1

hold simultaneously. Again, these subspaces can be obtained as ranges of correspond-
ing matricisations, as will be explained in the next subsection. Regarding nestedness,
we will see that one even has

A tensor in canonical format

I'c

u(iy,....ig) = Y, C'(i1,k) - C4(ig, k)
k=1

can be easily written in TT form, by setting all ry to r., G! = C!, C? = (G*)7, and

CH(iy,k) ifky_ 1=k, =k
GH (k1 iy k) = o K e
( pobotp ”) {O, else,
foru=2,...,d—1.. From (3.11) we conclude immediately that a single point eval-
uation u(ij,...,iy) can be computed easily by matrix multiplication using & (dr?)
arithmetic operations, where r = max{r, : n=1,...,d —1}. With n = max{n, : p =
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1,...,d}, the data required for the TT representation is & (dnr?), as the d compon-
ent tensors G* need to be stored. Depending on r, the TT format hence offers the
possibility to circumvent the curse of dimensionality.

Due to its convenient explicit representation (3.11) we will use the TT format
frequently as a model case for explanation.

3.5 Matricisations and tree rank

After having discussed the most prominent examples of tree tensor networks in the
previous sections, we return to the consideration of a general tree tensor network 7 =
7.(C',...,CP) encoding a representation (2.7) and obeying Definitions 2.2 and 2.3.
The nodes have indices 1,...,D, and the distribution of physical variables i, is fixed
(it is allowed that nodes carry more than one physical index).

The topology of the network is described by the set of its edges. Following [9],
we now introduce a notion of effective edges, which may in fact comprise several
lines in a graphical representation such as Figure 2.1, and correspond precisely to the
matricisations arising in the tensor format. The set of such edges will be denoted by [E.
In slight deviation from (2.7), the contraction indices (ky)ycr and the representation
ranks v = (7 )neg Will now be indexed by the set E.

Since we are dealing with a tree tensor network, along every contraction index
we may split the tree into two disjoint subtrees. Both subtrees must contain vertices
carrying physical variables. Hence such a splitting induces a partition

o ={l,....d}=auoa

by gathering the p for which the physical index iy is in the respective subtree. We
then call the unordered pair {o, «“} an edge.
For instance, for a given partition tree T in the HT case, we have

E={{a,a%: acT\{o'}} (3.12)

as used in [9], with each element of E corresponding to precisely one matricisation
arising in the format. As a consequence of the definition, for each € [E we may pick
a representative 1] € T. Note that in (3.12), the set { ¢, 0 } appears twice as o runs
over T\ {a*}, which is a consequence of the two children of o* corresponding to the
same matricisation; hence |E| = 2d — 3.

In order to introduce the same notion for tree tensor networks, we first give a
construction of a corresponding generalised partition tree T by assigning labels to the
nodes in the tensor network as follows. Pick any node v* to be the root of the tree, for
which we add a* = {1,...,d} to T. This induces a top-down (father-son) ordering in
the whole tree. For all nodes v, we have a partition of the physical variables in the
respective subtree of the form

ocvz( U avl)uﬁv, (3.13)

v/ esons(Vv)
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where By is the set of physical variables attached to v (of course allowing 3, = 0). We
now add all oy, that are obtained recursively in this manner to the set T. It is easy to
see that such a labeling is possible for any choice of v*.

For such a generalised partition tree T of a tree tensor network, we again obtain a
set of effective edges E exactly as in (3.12), and again have a representative [n] € T
foreach n € E.

The difference of the general construction to the particular case (3.12) of the HT
format is that we allow incomplete partitions (complemented by ), and in principle
also further nodes with the same label. In the case of the TT format (3.10), which
corresponds to the network considered in Fig. 2.1(c) with linearly arranged i, starting
from the rightmost node v* = {d}, one obtains the d — 1 edges

{1}, {2,....,a} }, {{1,2},{3,....d}},.... {{1,...,d— 1} {d}}

which in this case comprise the set E.

The main purpose of this section is to show how the minimal representation ranks
(r)nek are obtained from matrix ranks. For every edge n € [E, we have index sets
In = Xpem Hu and I = X ycpe Ly, and, by (2.2), induces a natural isometric
isomorphism

M, : 2(F) — 2(Iy) @ (I5),
called n-matricisation or simply matricisation. The second-order tensor My, (u) rep-
resents a reshape of the hyper-matrix (array) u into a matrix in which the rows are
indexed by .#; and the columns by ﬂﬁ . The order in which these index sets are
traversed is unimportant for what follows.

Definition 3.2 The rank of M, (u) is called the n)-rank of u, and denoted by rank, (u).
The tuple rankg (u) = (ranky (u))ycg is called the tree rank of u for the given tree
tensor network.

Theorem 3.3 A tensor is representable in a tree tensor network T, with edges E if
and only if ranky, (u) < ry for all n € E.

Proof Assume u is representable in the form (2.7). Extracting edge 7 corresponding to
(without loss of generality, only one) contraction index k;, from the tree we obtain two
disjoint subtrees on both sides of 1, with corresponding contraction indices relabelled
as ki,...,ky and kgy1,...,kg_1, respectively; the set of nodes for the components
is partitioned into {1,...,D} = ¥, U¥;. Since in every component C" at most two
contraction indices are active, it follows that

n Il

u(iy,...,ig) = Z (Z ’2 H CV/(ih...,id,kh...,kE)) X

kn=1 k=1  k—=lv'ey

Ts+1 rE—

1 '’
(Z Y JIc (il,...,id,kl,...,kE)). (3.14)
kep1  kp_i=lv'ey”
The edge 7 is of the form 1 = {a, o}, where all physical indices i, with u € « are
active in some CV' with v/ € 7, and those in & are active in some C*” with v" € .
Thus (3.14) implies rank; (u) < ry.
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To prove the converse statement it suffices to show that we can choose r, =
ranky (u). We assume a proper labelling with distinguished node v*. To every edge
7 belongs a subspace %, C Zz(ﬂm]), which is the Hilbert space whose orthonormal
basis are the left singular vectors of My (u) belonging to positive singular values. Its
dimension is ry. In a slight abuse of notation (one has to involve an isomorphism
correcting the permutation of factors in the tensor product) we note that

ue Uy (Iy) (3.15)
for every 1. Here our argumentation will be rather informal to avoid notational

technicalities. One can show that (3.15) in combination with (3.13) yields (in intuitive
notation)

%av < ( ® %OCV/) ®£2(]ﬁv)’ (316)
v/esons(Vv)
and
ue ( R %v) ®C(Ip.,), 3.17)
vesons(v*)
by [61, Lemma 6.28]. Let {UY(-,..., - kp()) 1 knvy = 1,..., () } be abasis of %y,

with n(v) = {ay, a}. We also set UV = u. Now if a node v has no sons, we choose
CY =U". For other v # v*, by (3.16) or (3.17), a tensor C" is obtained by recursive
expansion. By construction, the final representation for u yields a decomposition
according to the tree network. O

3.6 Existence of best approximations

We can state the result of Theorem 3.3 differently. Let 7#%, = 7% (E) denote the
set of all tensor representable in a given tensor tree network with edges E. For every
n €kElet

M2, ={ue (F) ranky(u) <y}
Then Theorem 3.3 states that

Ao ={u:rankg(u) <t} =) ‘///grn' (3.18)
nek

Using the singular value decomposition, it is relatively easy to show that for any finite
rq the set (l/;’rn is weakly sequentially compact [130,48,61,132], and for r, = oo, we
have ./ g = (%(.#). Hence the set /% is weakly sequentially closed. Depending on
the chosen norm, this is even true in tensor product of Banach spaces [48]. A standard
consequence in reflexive Banach spaces like /2(.#) (see, e.g., [143]) is the following.

Theorem 3.4 Everyu € (>(.) admits a best approximation in - ..
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For matrices we know that truncation of the singular value decomposition to rank
r yields the best rank-r approximation of that matrix. The analogous problem to find a
best approximation of tree rank at most ¢ for a tensor u, that is, a best approximation
in /., has no such clear solution and can be NP-hard to compute [71]. As we are
able project onto every set ///an via SVD, the characterization (3.18) suggests to
apply successive projections on these sets to obtain an approximation in .7#%. This
works depending on the order of these projections, and is called hierarchical singular
value truncation.

3.7 Hierarchical singular value decomposition and truncation

The bases of subspaces considered in the explicit construction used to prove The-
orem 3.3 can be chosen arbitrary. When the left singular vectors of My (u) are chosen,
the corresponding decomposition u = 7.(C!,..., CP) is called the hierarchical sin-
gular value decomposition (HSVD) with respect to the tree network with effective
edges E. It was first considered in [36] for the Tucker format, later in [56] for the
HT and in [105,107] for the TT format. It was also introduced before in physics for
the matrix product representation [136]. The HSVD can be used to obtain low-rank
approximations in the tree network. This procedure is called HSVD truncation.

Most technical details will be omitted. In particular, we do not describe how to
practically compute an exact HSVD representation. For an arbitrary tensor this is
typically prohibitively expensive and is therefore avoided in numerical tensor calculus.

However, foru=17,(C ,... CD) already given in the tree tensor network format, the
procedure is quite efficient. The basic idea is as follows. One changes the components
from leaves to root to encode some orthonormal bases in every node except v*, using
e.g., QR decompositions that operate only on (matrix reshapes of) the component
tensors. Afterwards, it is possible to install HOSV bases from root to leaves using only
SVDs on component tensors. Many details are provided in [61].

In the following we assume that u has tree rank s and u = 7,(C!,...,CP) €
H#%~s(E) is an HSVD representation. Let v < s be given. We consider here the case
that all r;, are finite. An HSVD truncation of u to J#Z. can be derived as follows. Let

M, (u) = UTZ7(V)T

be the SVD of My, with £ = diag(o|' (u), 0, (w),...) such that o' (u) > &, (u) >
--- > 0. The truncation of a single My, (u) to rank r,, can be achieved by applying the
orthogonal projection

Py =Py, @1y s () = A2, (3.19)

where f’[n]_,rﬂ is the orthogonal projection onto the span of r; dominant left singular
vectors of My (u). Then Py ,,, (u) is the best approximation of u in the set //lgrn. Note
that Pn_,n = Pn,rn,u itself depends on u.

The projections (P"I”n )nek are now applied consecutively. However, to obtain a
result in .7¢Z, one has to take care of the ordering. Let T be a generalised partition
tree of the tensor network. Considering a @ € T with son &’ we observe the following:
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(i) Applying Py ,,, with = {o, 0} does not destroy the nestedness property (3.15)
at a, simply because the span of only the dominant r;, left singular vectors is a
subset of the full span.

(i) Applying Py, , with n’ ={a’, o/} does not increase the rank of My, (u). This
holds because there exists B C {1,...,d} such that Idyne € Idpye ® 1dg. Thus,
since Pn/,,n, is of the form (3.19), it only acts as a left multiplication on My, (u).

Property (ii) by itself implies that the top-to-bottom application of the projections
Py, will result in a tensor in /.. Property (i) implies that the procedure can be
performed, starting at the root element, by simply setting to zero all entries in the
components that relate to deleted basis elements in the current node or its sons, and
resizing the tensors accordingly.

Let level 1 denote the distance of [1] in the tree to a*, and let L be the maximum
such level. The described procedure describes an operator

. 2 ...
H.: (S) = A, urs (leVHLPWT, u leveg:] Pospa)@), (320

called the hard thresholding operator. Remarkably, as the following result shows, it
provides a quasi-optimal projection. Recall that a best approximation in J#%, exists
by Theorem 3.4.

Theorem 3.5 For any u € (*(.%), one has

. 2 .
min fu—v] < Ju-B@| < [T ¥ (o7 @)’ <El min fuv]
VEH < nekk>ry VEH<e

The proof follows more or less immediately along the lines of [56], using the prop-
erties [[u— Py Poul|? < |lu—Pyul|> + |u— Pyul|, which holds for any orthogonal projec-
tions Py, Py, and min_ lu—v[| < minye s, [[u—v|, which follows from (3.18).

There are sequential versions of hard thresholding operators which traverse the tree
in a different ordering, and compute at edge 7 the best 1-rank-r, approximation of
the current iterate by recomputing an SVD. These techniques can be computationally
beneficial, but the error cannot be related to the initial HSVD as easily.

3.8 Hierarchical tensors as differentiable manifolds

We now consider geometric properties of /4 = #;(E) = {u : rankg(u) = t}, that is,
I = ﬂne]E ///r?], where //lrz is the set of tensors with 1-rank exactly 7. We assume
that v is such that J7; is not empty. In contrast to the set .7/, it can be shown that J#;
is a smooth embedded submanifold if all ranks ry are finite [75, 134], which enables
Riemannian optimisation methods on it as discussed later. This generalises the fact
that matrices of fixed rank form smooth manifolds [70].

The cited references consider finite-dimensional tensor product spaces, but the
arguments can be transferred to the present separable Hilbert space setting [132], since
the concept of submanifolds itself generalises ryy quite straightforwardly, see, e.g., [93,
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144]. The case of infinite ranks r;,, however, is more subtle and needs to be treated
with care [48,50].

We will demonstrate some essential features using the example of the TT format.
Lett= (ry,...,r4—1) denote finite TT representation ranks. Repeating (3.11), the set
H~. is then the image of the multilinear map

TTTZWZ:%X~~~X%*>€2(<¢),

where #, = R"v-1 @ 2(#,) @ R™ (with rp = r; = 1), and u = 7r1(G',...,G9) is
defined via
u(ir,....ig) = G'(i))G*(ia) --- G (i) (3.21)

The set # is called the parameter space for the TT format with representation rank .
It is not difficult to deduce from (3.21) that in this case 4 = orp(#*), where #™*
is the open and dense subset of parameters (G',...,G?) for which the embeddings
(reshapes) of every GV into the matrix spaces R"v-1 ® (£2(.#,) @ R'v), respectively
(Rv-1® 2(.#,)) @ R™, have full possible rank r,_, respectively ry. Since 7rr is
continuous, this also shows that . is the closure of % in £2(.%).

A key point that has not been emphasized so far is that the representation (3.21) is
by no means unique. We can replace it with

u(is,...,ig) = [G(in)A'] [(A') ' G (ir)A2] - - [(Ad”)*lGd(id)} . (322

with invertible matrices AV, which yields new components G’ representing the same
tensor. This kind of nonuniqueness occurs in all tree tensor networks and reflects the
fact that in all except one node only the subspaces are important, not the concrete
choice of basis. A central issue in understanding the geometry of tree representations
is to remove these redundancies.

A classical approach, pursued in [134,132], is the introduction of equivalence
classes in the parameter space. To this end, we interpret the transformation (3.22)
as a left action of the Lie group ¢ of regular matrix tuples (A!,...,A?"1) on the
regular parameter space # *. The parameters in an orbit ¢ o (G',...,G%) lead to
the same tensor and are called equvialent. Using simple matrix techniques one can
show that this is the only kind of nonuniqueness that occurs. Hence we can identify
J: with the quotient #* /¥ . Since ¥ acts freely and properly on #*, the quotient
admits a unique manifold structure such that the canonical mapping #* — #* /¥
is a submersion. One now has to show that the induced mapping %rr from #* /¥ to
¢2(.#) is an embedding to conclude that its image /% is an embedded submanifold.
The construction can be extended to general tree tensor networks.

The tangent space Fy.7¢; at u, abbreviated by Z, is of particular importance for
optimisation on .#;. The previous considerations imply that the multilinear map orr
is a submersion from #* to /% Hence the tangent space at u = 7rr(C',...,C%) is
the range of r%T(Cl, ...,€%), and by multilinearity, tangent vectors at u are therefore
of the generic form

u(ir,...,iq) = 8G' (i1)G(ir) --- G (ia)
+ . 4+ G0 -G (i) 8GY (iy).  (3.23)
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As a consequence, a tangent vector du has TT-rank s with s, < 2ry.

Since 7 (G!,...,GY) is not injective (tangentially to the orbit 4 o (G!,...,G9),
the derivative vanishes), the representation (3.23) of tangent vectors cannot be unique.
One has to impose gauge conditions in form of a horizontal space. Typical choices
for the TT format are the spaces %, = #,(G"),v=1,...,d — 1, comprised of §G"
satisfying

r'v—1 ny

Z Z Gv(k\/7],iv,kv)éGv(kvfl,iv,kv):0, kvzl,...,rv.

ky_1=liy=1

These #, are the orthogonal complements in #; of the space of GV for which
there exists an invertible AV such that §G" (iy) = G"(iy)A" for all i,. This can be
used to conclude that every tangent vector of the generic form (3.23) can be uniquely
represented such that

8GY e, v=1,...,d—1, (3.24)

in the fact the different contributions then belong to linearly independent subspaces,
the details are in [75]. It follows that the derivative T}T(Gl, ...,G) maps the subspace
Wy (GY) x - x Wy_1(G4") x #; of # bijectively on F.* In our example, there
is no gauge on the component G¢, but with modified gauge spaces, any component
could play this role.

The orthogonal projection ITy, onto the tangent space .7, is computable in a
straightforward way if the basis vectors implicitly encoded at nodes v =1,...,d — 1
are orthonormal, which in turn is not difficult to achieve (using QR decomposition
from left to right). Then the decomposition of the tangent space induced by (3.23) and
the gauge conditions (3.24) is actually orthogonal. Hence the projection on .7, can
be computed by projecting on the different parts. To do that, let E, = E,(G!,...,G%)
be the linear map §GY — 7r7(G',...,8GY,...G?). Then the components §G" to
represent the orthogonal projection of v € /2(.#) onto %, in the form (3.23) are given
by

sov_ | BB, v=1od—1,
| EZy, v=d.

Here P, is the orthogonal projection onto the gauge space #y,andEf = (ETE, )" 'E]
is the Moore-Penrose inverse of E. Indeed, the assumption that u has TT-rank t im-
plies that the matrix ETE,, is invertible. At v = d it is actually the identity by our
assumption that orthonormal bases are encoded in the other nodes. In operator form,
the projector Il can then be written as

d—1
Mgv=Y E,P; E;v+EE}v.
v=1
The operators E are simple to implement, since they require only the computation
of scalar product of tensors. Furthermore, the inverses (E‘T,Ev)’1 are applied only to

4 Even without assuming our knowledge that .7#; is an embedded submanifold, these considerations
show that Tpr is a smooth map of constant co-rank r12 +---+ r[2171 on #*. This already implies that the
image is a locally embedded submanifold [75].
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the small component spaces #;. This makes the projection onto the tangent space
a flexible and efficient numerical tool for the application of geometric optimisation,
see Sec. 4.2. Estimates of the Lipschitz continuity of —Pg (curvature bounds) are of
interest in this context, with upper bounds given in [101,4].

The generalisation of these considerations to arbitrary tree networks is essentially
straightforward, but can become notationally quite intricate, see [134] for the HT
format.

4 Optimisation with tensor networks and hierarchical tensors and the
Dirac-Frenkel variational principle

In this section, our starting point is the abstract optimisation problem of finding
u" =argminJ(u), veE L,

for a given cost functional J : £2(.#) — R and an admissible set o7 C (*(.%).

In general, a minimiser u* will not have low hierarchical ranks in any tree tensor
network, but we are interested in finding good low-rank approximations to u*. There-
fore, let .7/~ denote again a set of tensors representable in a given tree tensor network
with corresponding tree ranks at most v. Then we wish to solve the following tensor
product optimisation problem

u, = argmin{J(u) :u € € = o N A’ }. 4.1

By fixing the rank, we have fixed the representation complexity of the approximate
solution. In order to achieve a desired accuracy, we have to enrich our model class
(systematically). This is often more important, than to find the very result in the
fixed model class. The results in [71] show that even the task of finding the best rank
approximation is generally NP-hard if d > 3. We know that in fact there are multiple
local minima around the global minimiser. Although the numerical methods in the
present chapter represent the fasted and inexpensive approaches to obtain low rank
approximation by hierarchical tensors, one should be aware that they are considered
as efficient methods to find reasonable approximations.

Typical examples of such optimisation tasks that we have in mind are the following,
see also [46,47].

(a) Best rank-t approximation in ¢2(.#): for given v € ¢2(.#) minimise
J() = u—v|?

over &/ = (*(.#). This is the most basic task we encounter in low-rank tensor
approximation.

(b) Solving linear operator equations: for elliptic self-adjoint A : £2(.%) — ¢>(.#) and
b € (2(.#), we consider & := ¢*(.#) and

J(u) = %(Au,u} —(b,u) 4.2)
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to solve Au = b. For nonsymmetric isomorphisms A, one may resort to a least
squares formulation
J(u) := ||Au—b|?, (4.3)

The latter approach of minimisation of residual norms also carries over to nonlinear
problems.
(c) computing the lowest eigenvalue of symmetric A by minimisation of the Rayleigh
quotient
u* = argmin{J(u) = (Au,u) : [uf® =1}.

This approach can be easily extended if one wants to approximate the N lowest
eigenvalues and corresponding eigenfunctions simultaneously, see e.g. [84,40,
104].

For the existence of a minimiser, the weak sequential closedness of the sets 7%
is crucial. As mentioned before, this property can be violated for tensors described by
the canonical format [123,61], and in general no minimiser exists. However, it does
hold for hierarchical tensors 7%, as was explained in Sec. 3.6. A generalised version
of Theorem 3.4 reads as follows.

Theorem 4.1 Let J be strongly convex over (*(.%), and let o/ C (*(.) be weakly
sequentially closed. Then J attains its minimum on € = of N H’..

As A is assumed elliptic in example (b) (in the nonsymmetric case this means
that the singular values of A are bounded below), the function J is strongly convex,
and one obtains well-posedness of these minimisation problems (this contains (a) as
special case).

Since in case (c) the corresponding set .27 (the unit sphere) is not weakly closed,
such simple arguments do not apply there.

4.1 Alternating linear scheme

We are interested in finding a minimiser, or even less ambitiously, we want to improve
the cost functional along our model class when the admissible set is &7 = £2(.%).

A straightforward approach which suggests itself in view of the multilinearity of
TTT(C' ,...,CP ) is block coordinate descent (BCD). For the task of finding the best
rank-v approximation this approach is classical and called alternating least squares
(ALS), because the optimal choice of a single block is obtained from a least squares
problem. For more general quadratic optimisation problems we refer to BCD methods
as alternating linear schemes.

The idea is to iteratively fix all components C¥ except one. The restriction C¥ —
7.(C!,...,CP) is linear. Thus for quadratic J we obtain again a quadratic optimisation
problem for the unknown component CY, which is of much smaller dimension than
the ambient space £2(.#). Generically, there exist unique solutions of the restricted
problems.

In this way, the nonlinearity imposed by the model class is circumvented at the
price of possibly making very little progress in each step or encountering accumulation
points which are not critical points of the problem. Also the convergence analysis is
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Algorithm 1: Alternating linear scheme

while not converged do
forv=1,...,Ddo
CY « argminJ(z(C',...,C",...,C"))
CV
end
end

challenging, as textbook assumptions on BCD methods are typically not met, see [131,
114,102] for partial results. However, regularisation can cure most convergence is-
sues [142,133].

In practical computations the abstract description in Algorithm 1 is modified to
reorder the tree during the process in such a way that the component to be optimised
becomes the root, and all bases encoded in the other nodes are orthonormalized
accordingly. This does not affect the generated sequence of tensors [114], but permits
much more efficient solution of the local least squares problems. In particular, the
condition of the restricted problems is bounded by the condition of the original
problem [74]. All contractions required to set up the local linear system for a single
component scale only polynomial in r, n, and are hence computable at reasonable
costs.

This optimisation procedure for tensor networks is known as the single-site dens-
ity matrix renormalization group (DMRG) algorithm in physics [139]. The two-site
DMRG algorithm (modified ALS [74]) has been developed by White [138] for spin
chain models. It is a substantial modification of the scheme above, casting neigh-
bouring components C¥ and C¥*! together in one, which then has to be optimised.
Afterwards the result is separated again by an appropriately truncated SVD. This
allows an adjustment of representation ranks, but comes at a higher numerical cost. In
the numerical analysis community such algorithms have been used in [80,74, 87,108,
40,84].

4.2 Riemannian gradient descent

The Riemannian optimisation framework [1] assumes that the minimiser u, € %,
of the problem constrained to %, actually belongs to the smooth manifold J#; (cf.
Sec. 3.8). For matrix manifolds this is the case if the global minimiser u* does not
belong to the singular points 7% \ 74, see [119].

Assuming u, € J%, the first-order necessary optimality condition is that the
gradient of J at u, is perpendicular to the tangent space 7, = 4, #%. Hence a
relaxed problem compared to (4.1) consists in finding u € JZ; such that

(VJ(u),8u) =0 forall du € F, 4.4)

where VJ is the gradient of J. Since 7 is an embedded submanifold, a trivial
Riemannian metric is inherited from the ambient space Ez(ﬂ ), and for the Riemannian
gradient one has GradJ(u) = Pz V.J(u), which by (4.4) should be driven to zero.
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As a relatively general way of treating the above problems, we will consider
projected gradient methods. In these methods, one performs gradient steps y"*! :=
u" — @, VJ(u") in the ambient space £>(.#). (More generally, one may take precondi-
tioned gradient steps, which is not considered for brevity.) For the problems considered
above, y"*! is in principle computable whenever the operator and right hand side are
themselves of low rank, which is the case in many applications. The gradient step
is followed by a mapping R : /2(.#) — J#~. to get back on the admissible set. The
iteration is summarised as follows:

yli=u"—o,VJ (u") (gradient step),
=Ry (projection step).

The specification of the above algorithm depends on the step size selection ¢, and on
the choice of the projection operator R : £2(.%) — ..
Let us remark that taking the best approximation

R(y”“) = a.rgmin{||y"+l —z|| 1z € .}

is generally not numerically realisable [71]. A practically feasible choice for the
nonlinear projection R would be the HSVD truncation H, defined in (3.20), which
will be considered in Section 6.1.

Supposing that a retraction (defined below) is available on the tangent space, a
nonlinear projection R can also be realised in two steps, by first projecting (linearly)
onto the tangent space Z» at u”, and subsequently applying the retraction R:

2= P, (u" — OchJ(u")) =u"—a,Pz,VJ(u") (projected gradient step)
=u'+&" &' e T,
v =R, 2" —u") =R, E") (retraction step).

In the first line we used that u” € i (since S is a cone). This algorithm is called
the Riemannian gradient iteration.

Retractions and Riemannian gradient iteration have been introduced in [122]. We
follow the treatment in the monograph [1]. A retraction maps u+ &, where u € 4
and & € .7, smoothly to a point R(u, &) on the manifold such that

lu+&—R(w, &)l = O(IE])

Roughly speaking, a retracting is an approximate exponential map on the manifold,
which itself satisfies the definition of a retraction, but is in general too expensive to
evaluate. Several examples of retractions for hierarchical tensors are known [101, 85,
100].

Let us note that it can in principle occur that an iterate u” is of lower rank, that is,
u" € J;, where s, < ry at least for one 1 € E. In this case u” € J#, is a singular
point, and no longer on the manifold 7%, so the Riemannian gradient algorithm breaks
down. Since 7% is dense in J#%., there exists for arbitrary € > 0 a tensor u} € J&
with |ju —u}|| < €. Practically such a regularised u} is not hard to obtain for a chosen
€ ~ ||VJ(u")]|. Alternatively, the algorithm described above might be regularised in a
sense that it automatically avoids being trapped in a singular point [85].
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In [119], the Riemannian gradient iteration was extended to closures of matrix
manifolds, and convergence results were deduced from the the Lojasiewicz inequality.
We expect that these results can be extended to general tensor manifolds of fixed tree
rank.

4.3 Dirac-Frenkel variational principle

The first order optimality condition can be considered as the stationary case of a more
general time-dependent formulation in the framework of the Dirac—Frenkel variational
principle [98]. We consider an initial value problem

%u =F(u), u(0)=ug € ;. 4.5)
The goal is to approximate the trajectory u(t) of (4.5), which might not be exactly of
low-rank, by a curve u.(¢) in ;. The best approximation u. (t) := argmin, - |lu(z) —
v(t)|| provides in general no practical solution to the problem, since i) the computation
of the exact trajectory is typically infeasible in high-dimensional problems, and ii) it
requires the solution of too many best-approximation problems.

The Dirac-Frenkel variational principle [98] determines an approximate trajectory
on a given manifold u.(¢) € % that minimises

corresponding to the weak formulation ($u, —F(u;), 5u) =0 for all Su € F,.

If the manifold would be a closed linear space, the equations above are simply
the corresponding Galerkin equations. Note also that for the gradient in the limiting
case %u = 0, one obtains the first order condition (4.4). However, this instationary
approach applies also to nonsymmetric operators A : £2(.%) — (2(.%).

Even for the simple differential equation of the form %u(t) = F(t), with solution
u(t) = u(0) + J{ F(s)ds, the Dirac-Frenkel principle leads to a coupled nonlinear
system of ODEs, which is not always easy to solve. This motivated the development
of splitting schemes that integrate the components successively, similarly to ALS [99,
100]. In particular, the splitting is simple to realise for linear differential equations.

When F is a partial differential operator, the Dirac-Frenkel principle leads to meth-
ods for approximating the solutions of instationary PDEs in high dimension by solving
nonlinear systems of low-dimensional differential equations on the tensor manifold
7. This shares some similarities with the way how Hartree-Fock and time-dependent
Hartree-Fock equations for fermions and the Gross-Pitaevskii equation for bosons are
derived. The Dirac-Frenkel principle is well-known in molecular quantum dynamics
as the multi-configuration time-dependent Hartree method (MCTDH) [98, 14] for the
Tucker format. For hierarchical tensors such a method has been formulated in [137,98].
First convergence results have been obtained in [101,4]. The more involved case of
reflexive Banach space has been considered in [50]. Time evolution of matrix product
states (TT format) for spin systems has been considered in detail in [67].

d d

gu(t) — d—ut(t)

; — min, u.(0) =u(0),
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5 Convergence of low-rank approximations

For a tensor of order d with mode sizes n and all hierarchical ranks bounded by r, the
hierarchical format has storage complexity &' (drn+dr?); in the case of the tensor train
format, one obtains & (dnr?). Similar results hold for operations on these formats: the
HSVD, for instance, requires & (dr’n +dr*) or & (dnr®) operations, respectively. For
small 7, one can thus obtain a very strong improvement over the data complexity n? of
the full tensor. In the numerical treatment of PDEs, however, the underlying function
spaces require discretisation. In this context, the above complexity considerations are
thus to some degree only formal, since d, n, and r cannot be considered as independent
parameters.

5.1 Computational complexity

In the context of PDEs, the appropriate question becomes: what is the total complexity
for achieving a prescribed accuracy € > 0 in the relevant function space norm? In this
setting, not only the ranks, but also the dimension n of the univariate trial spaces —
and in the example of Section 7.1 even the tensor order d — need to be considered as
functions of € > 0. This leads to the fundamental question of appropriate notions of
approximability in terms of which one can quantify the dependencies of d(¢), n(¢),
r(€) on €.

Here, we need to consider hierarchical tensors in infinite-dimensional spaces. Let
D C R? be a tensor product domain, e.g., D =1Ij x --- x I; with I1,...,I; CR. As
we have noted, Hilbert function spaces such as L?(D) = ®¢_, L*(I,) and H'(D)
are, by an appropriate choice of basis, isomorphic to £>(N?) = ®ﬁ: | /2(N). This
isomorphism is of Kronecker rank one in the case of L?(D), that is, elementary tensors
are mapped on elementary tensors, which corresponds to the setting of (2.1). However,
this is not the case for H' (D), an important issue discussed further in Section 6.3. For
our present purposes, we may thus restrict ourselves to approximation of tensors in
the high-dimensional sequence space £%(.%).

Besides approximability, a further important question is whether approximate
solutions for any given € can be found at reasonable cost. This is provided, for linear
operator equations Au = b on ¢?(.#), by the adaptive low-rank method in [8]. Assume
that u € £%(.#) belongs to a subset for which accuracy € requires at most the maximum
hierarchical rank r(€) and the maximum mode size n(€). For given €, the method finds
u; in hierarchical format with [[u —ug||2( ») < €, with ranks and mode sizes bounded
up to fixed constants by r(€) and n(¢€), respectively. In addition, if for instance A has
finite rank and can be applied efficiently to each tensor mode, then the total number
of operations required can be bounded by C(d) (dr*(g) +dr*(¢)n(e)), with C(d)
polynomial in d — in other words, up to C(d) one has the operation complexity of
performing the HSVD on the best approximation of accuracy €. This is shown in [8]
for n(¢e) algebraic and r(&) polylogarithmic in €, but analogous results can be derived
for algebraically growing r(€) as well. Similar estimates, with additional logarithmic
factors, are obtained in [6, 7] for problems on Sobolev spaces where A is not of finite
rank. This adaptive scheme is based on iterative thresholding, see also Section 6.1.
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5.2 Low-rank approximability

Since n(g) is strongly tied to the underlying univariate discretisations, let us now
consider in more detail when one can expect to have efficient low-rank approximations
of solutions, that is, slow growth of r(g) as € — 0. The HSVD of tensors yields
information on the approximation error in /> with respect to the hierarchical ranks:
as a consequence of Theorem 3.5, the error of best low-rank approximation of u is
controlled by the decay of its hierarchical singular values.

To quantify the sparsity of sequences, we use weak-¢”-norms. For a given sequence
a=(a;)ren € F*(N), leta} denote the n-th largest of the values |a|. Then for p > 0, the
space w/lP is defined as the collection of sequences for which |alyr 1= sup,cy nl/p a
is finite, and this quantity defines a quasi-norm on w¢? for 0 < p < 1, and a norm for
p > 1. Itis closely related to the ¢”-spaces, since for p < p’, one has |al| ,» < |a|wer <
llaller-

Algebraic decay of the hierarchical singular values can be quantified in terms of

[[ullyer :=max|c™ (w)]wer. (5.1
nek

Note that the p-th Schatten class, which one obtains by replacing w¢? in (5.1) by
¢P, is contained in wf”. For these spaces, from Theorem 3.5 we obtain the following
low-rank approximation error estimate.

Proposition 5.1 Letu € wl% for 0 < p < 2. Then there exists a tensor G such that

= < OVl (marankn (&) withs = 5.

It has been shown in [118] that, for instance, mixed Sobolev spaces are contained
in the Schatten classes; we refer to [118] also for more precise formulation and a
discussion of the resulting data complexity. However, classical notions of regularity in
Sobolev and Besov spaces provide only a partial answer. For these types of regularity,
tensor product bases that achieve the optimal approximation rates are already known,
and in this regard there is not much room for improvement by low-rank approximation.

A central question is therefore for which problems one can obtain low-rank approx-
imability beyond that guaranteed by regularity. In particular, under which conditions
do assumptions on the low-rank approximability of input data imply that the solution
is again of comparable low-rank approximability?

Instead of using regularity as in [118], one can show error bounds that decay algeb-
raically with respect to the ranks also under quite general conditions if the considered
operator has finite ranks [88]. For many problems, one actually observes numerically
a more favourable low-rank approximability with superalgebraic or exponential-type
decay of singular values. However, known estimates that show such strong decay are
tied to specific situations, such as PDEs with finitely many parameters [81,86,5] and
Poisson-type problems [55,33].

There are also relevant counterexamples where the ranks required for a certain
accuracy grow strongly with respect to d. A variety of such counterexamples originate
from ground state computations of quantum lattice systems, such as one- to three-
dimensional spin systems, which in many cases exhibit translation symmetries that
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allow a precise analysis. There is a number of works on area laws in quantum physics,
see e.g. [3] and the references given there. One should note that for problems that are
not amenable to low-rank approximation, also most alternative methods break down.

6 Iterative thresholding schemes

Let us consider the variational formulation of the original operator equation u =
argminye s~ J(v) with J as in (4.2) or (4.3). In the methods we have considered
in Section 4, this problem is approached in a manner analogous to Ritz-Galerkin
discretisations: one restricts the minimisation to the manifold .77 of hierarchical
tensors with given fixed rank v, or better to its closure 7%, and attempts to solve
such constrained minimisation problems for J. However, since J#; and .7/%, are not
convex, there are generally multiple local minima. Roughly speaking, in this approach
one has fixed the model class and aims to achieve a certain accuracy within this class.
Instead, one can also first prescribe an accuracy to obtain a convex admissible
set 6z := {v € £2(F): ||Av—b|| < €}. Over this admissible set, one may now try to
minimise the computational costs. Roughly speaking, we want to minimise the largest
hierarchical rank of v. This can be seen as a motivation for the various methods based
on rank truncations that we consider in this section. Note that even in the matrix case
d = 2, the functional A — rank(A) is not convex. The nuclear norm can be regarded
as a convex relaxation of this functional, and its minimisation over é; by proximal
gradient techniques leads to soft thresholding iterations as in Section 6.2 below.

6.1 Iterative hard thresholding schemes

Starting from a (preconditioned) gradient step u"*! = u" — C; ! V.J(u") in the ambient
space ¢2(.#), in order to keep our iterates of low rank, we introduce projection or
truncation operators R,,, T,, realised by hard thresholding (3.20) of the singular values
in the HSVD,
v =R, (u" - T,[C, ' VJ(u")]). (6.1)

If we take T,, := I and R, := H, (the HSVD projection (3.20)), this can be considered
as an analogue of iterative hard thresholding in compressive sensing [18] and matrix
recovery [127,52]. In the context of low-rank approximation, such truncated iterations
based on various representation formats have a rather long history, see e.g. [16,81,64,
86,10,8,17].

We consider the choice T, := 1, and R,, := H, in more detail, using the trivial
preconditioner C,, := I. Defining the mapping B on ¢%(.#) by B(u) := u— VJ(u), we
then have the iteration

y"li=B@"), ul:=H.(y"""), neN. (6.2)

Let u be a fixed point of B, that is, a stationary point of J. As a consequence of
Theorem 3.5, denoting by u, the best approximation of u of ranks v, we have the
quasi-optimality property

Iy" = He(y")]| < cally” —uefl; (6.3)
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where c; = v/d — 1 in the case of tensor trains, and ¢; = v/2d — 3 in the case of the
hierarchical format. Making use of this property, one can proceed similarly to [17, §4]:
since u = B(u) and y"*! = B(u"), and by (6.3),
™! — ] < [He(y" ) —y" |+ [B(u") — B(u)]|

< cq|[B(u") —uef|+[|B(u") - B(u)]

< cllu—uef|+(1+cq)[B(u”) = B(u)].
From this, we immediately obtain the following convergence result.
Proposition 6.1 Let |[B(v) —B(w)|| < p||v —w|| for all v,w € (*(.%), where B :=
(14cq)p < 1 with cq as in (6.3). Then for any u® € (?(.7),

Cd

1-B

We thus obtain limsup, ||u” —u|| < ||ju— u.||; for this we need, however, an ex-
tremely restrictive contractivity property for B. For instance, in the case of the least
squares problem (4.3), where one has B=1— wA*A with suitable @ > 0, this amounts
to the requirement

lu” —ul| < B"||u® —ul| +

|la —uy]|. (6.4)

(1=8*)IvI* < lAV[* < (1+8%)|Iv[?, ve(F), (6.5)
with 0 < 8 < 1/4/T+ ¢y, or in other words, cond(A) < \/1+2/cy.

Note that the above arguments can be applied also in the case of nontrivial pre-
conditioners C, in (6.1). Since obtaining such extremely strong preconditioning is
essentially as difficult as solving the original problem, the action of C;, ! will typically
need to be realised by another iterative solver, as considered in [17]. The setting of
Proposition 6.1 in itself may thus be of most interest when it suffices to have (6.5)
only on a small subset of £>(.#), as in compressive sensing-type problems.

A more common approach is to take T, = H;, with each v, adapted to achieve a
certain error bound, for instance such that for an € > 0 each u"*! := H,, (B(u")), now
with a general mapping B in (6.2), satisfies |[u"*! —B(u")|| < €. In this case, in the
setting of Proposition 6.1, but assuming only p < 1 (i.e., contractivity of B), we obtain

o =] < p [0 —u] + . 6.6)
—-p
Note that one now has a much weaker assumption on B, but in contrast to (6.2) one
generally does not obtain information on the ranks of u”. To enforce convergence to u,
the parameter € needs to be decreased over the course of the iteration.

When one proceeds in this manner, the appropriate choice of these truncation
tolerances is crucial: one does not have direct control over the ranks, and they may
become very large when € is chosen too small. A choice of truncation parameters that
ensures that the ranks of u” remain comparable to those required for the current error
[0 — u||, while maintaining convergence, is a central part of the adaptive method for
linear operator equations in [8, 6] that has been mentioned in Section 5.

The choice R, =Tand T, := H,, leads to the basic concept of the AMEn algorithm
[41], although actually a somewhat different componentwise truncation is used for T,
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and this is combined with componentwise solves as in the ALS scheme. Note that the
basic version of this method with R,, =1, for which the analysis was carried out in
[41], increases the ranks of the iterates in every step; the practically realised version in
fact also uses for R,, a particular type of HSVD truncation. Although the theoretically
guaranteed error reduction rates depend quite unfavourably on d, this method shows
very good performance in practical tests.

6.2 Iterative soft thresholding schemes

Soft thresholding of sequences by applying s, (x) := sgn(x) max{|x| — k,0} for a
k > 0 to each entry is a non-expansive mapping on ¢2, cf. [30,34]. A soft thresholding
operation S for matrices (and Hilbert-Schmidt operators) can be defined as application
of sk to the singular values. Then S is non-expansive in the Frobenius (or Hilbert-
Schmidt) norm [20,9].

On this basis, a non-expansive soft thresholding operation for the rank reduction of
hierarchical tensors is constructed in [9] as follows. By Sk we denote soft threshold-
ing applied to the 1-matricisation My, (-), that is, Sx. (v) = My, 0 S, o My (u). The
soft shrinkage operator Sy : £2(.#) — ((.#) is then given as the successive application
of this operation to each matricisation, that is,

SK(V) = SK,T]EO"‘OSKJH (V)7 (6.7)

where 7y,...,Ng is an enumeration of the effective edges E. It is easy to see that the
operator Sy defined in (6.7) is non-expansive on ¢2(.#), that is, for any v,w € ¢*(.%)
and Kk > 0, one has ||Sx(v) — Sc(W)|| < ||v—w].

We now consider the composition of S, with an arbitrary convergent fixed point
iteration with a contractive mapping B: £2(.%) — ¢%(.#), where p € (0, 1) such that

IB(v) ~B(W)| <plv—w], vwel(s). (6.8)

Lemma 6.2 ([9]) Assuming (6.8), let u be the unique fixed point of B. Then for any
Kk > 0, there exists a uniquely determined u* € (*(.7) such that u* = Sy (B(u¥)),
which satisfies

(1+p) 7 [Sk(w) —ull < [ju* —u| < (1—p) (IS (u) —ul|. (6.9)
Letu® € (2(.7), then |[u" —u*|| < p"|[u® —u¥|| for u™! := S, (B(u")).

For fixed x, the thresholded gradient iteration thus converges (at the same rate p as
the unperturbed iteration) to a modified solution u*, and the distance of u* to the exact
solution u is proportional to the error of thresholding u. This needs to be contrasted
with (6.4) and (6.6) in the case of hard thresholding, where the thresholded iterations
are not ensured to converge, but only to enter a neighbourhood of the solution, and
properties like (6.9) that establish a relation to best approximation errors are much
harder to obtain (for instance, by strong contractivity of B as in Proposition 6.1).

Here we now consider the particular case of a quadratic minimisation problem (4.2)
with symmetric elliptic A, corresponding to a linear operator equation, where B =
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I— wA with a suitable @ > 0. For this problem, based on Lemma 6.2, in [9] a linearly
convergent iteration of the form u"*! := S, (B(u")) with x, — 0 is constructed,
where each iterate u” is guaranteed to have quasi-optimal ranks. More specifically, for
instance if u belongs to w/? as defined in Section 5, then with a constant C > 0,
< Cd? k - I 1
[w, —ul| < Cd”lul|y,» (rr%)éran n(w)) ", 5= > 2

An analogous quasi-optimality statement holds in the case of exponential-type decay
o'(u) = ﬁ(e_d‘ﬁ) with some ¢, 8 > 0.

The central issue in achieving these bounds is how to choose k;,. Clearly, the
K, need to decrease sufficiently to provide progress of the iteration toward u, but if
they decrease too rapidly this can lead to very large tensor ranks of the iterates. As
shown in [9], both linear convergence and the above quasi-optimality property hold
if one proceeds as follows: whenever ||u,4; —u,|| < 2‘1‘;—"‘)/3||Aun+1 —b|| holds, set

Kntr1 = %K‘n; otherwise set k;,+1 = K;,. The resulting procedure is universal in the sense
that in order to achieve the stated rank bounds, nothing needs to be known a priori
about the low-rank approximability of u.

This method has not been combined with an adaptive choice of discretisation so
far, but the asymptotic bounds on the ranks of each iterate that this method provides
are somewhat stronger than those in [8,6], in the sense that they do not depend on the
low-rank structure of A.

6.3 Sobolev norms and preconditioning

Sofar ¥ = ®d:1 % has been assumed to be a Hilbert space with a cross norm, that is,
lluly = [Jut][# ---[Jug]|#, for all rank-one tensors u =u; ®---®@uy € ¥'. Examples
of such spaces are L2-spaces, as well as certain mixed Sobolev spaces, over tensor
product domains. Indeed, if ¥ is endowed with a cross norm, by choice of suitable
bases for the #};, one obtains an isomorphism (2(N4) — ¥ of Kronecker rank one.
Unfortunately, Sobolev norms do not have this property. For instance, in the import-
ant case of the standard H|} (D)-norm ||v||12_16 o= ZZ:I |0y, v||* on a tensor product

domain with homogeneous Dirichlet boundary data, for instance D := (0, l)d , this is
related to the fact that the Laplacian is not a rank-one operator. Applying the inverse of
the homogeneous Dirichlet Laplacian on D in the corresponding eigenfunction basis
representation amounts to multiplication by the diagonal operator with entries

2 (vi+...+v))h, veNd (6.10)

Since the eigenfunctions are separable, but the tensor (6.10) does not have a finite-rank
representation, the inverse of the Laplacian therefore does not have a representation of
finite rank either.

It does, however, have efficient low-rank approximations based on exponential
sums [19]. For instance, it is shown in [33] that if f € H"*S(D) for 6 > 0, then for
A:=—A,

o

|47 7= &)l < Cexp(=ZV2) Ifllg-res (6.11)
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where C > 0 and ,
E(A) =Y o e %A (6.12)
k=1

with certain @, o.x > 0. Since the operators e, t > 0, are of rank one, this yields
almost exponentially convergent rank-r approximations of the inverse Laplacian.

Approximations of the type (6.12) can also be used for preconditioning. They are
particularly useful in the context of diagonal preconditioners for wavelet represent-
ations of elliptic operators, where the diagonal elements have a form analogous to
(6.10). In this case, the operator exponentials in an approximation of the form (6.12)
reduce to the exponentials of the diagonal entries corresponding to each tensor mode.
In contrast to (6.11), however, in this case sequences of the form (6.10) need to be
approximated up to a certain relative accuracy. As a consequence, the required rank of
the exponential sum then also depends on the considered discretisation subspace. This
is analysed in detail in [6,7].

On finite-dimensional subspaces, one can also use multilevel preconditioners such
as BPX with tensor structure. This has been considered for space-time formulations
of parabolic problems in [2]; in the elliptic case, the analysis of BPX — including the
question of d-dependence — is still open in this context.

7 Applications

In principle, high-dimensional partial differential equations on product domains can
be discretised directly by tensor product basis functions. This is suitable in our first
example of uncertainty quantification problems. We also discuss two further examples,
one from quantum chemistry and another one from molecular dynamics, where such
a direct approach is not adequate. In these applications, certain reformulations that
exploit specific features are much better suited, and we describe how our general
setting of tensor approximations can be adapted to these cases.

7.1 Uncertainty quantification

We consider linear diffusion problems on a domain D C R, m = 1,2, 3, with given
parameter-dependent diffusion coefficients a(x,y) for x € D and y € U, and with the
set of parameter values U to be specified. The parameterized problem reads

—V;- (a(xay)vx”(x7y)) =f(x), xeD,yeU,

with appropriate boundary conditions, for instance homogeneous Dirichlet conditions
u(x,y) =0forall y € U and x € dD. In our setting, we aim to solve such problems in
the Bochner space % = L?(U,H} (D), 1t), where  is an appropriate measure.

Examples of particular parameterizations that arise in deterministic formulations
of stochastic problems are the affine case

a(x,y) = ao(x)+ Y yrar(x), (7.1)
k=1
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where U = [—1,1]" and u the uniform measure on U, and the lognormal case
a(x,y) = exp (ao + Z iay(x ) (7.2)

where U = RY and y is the tensor product of standard Gaussian measures (so that the
yi correspond to independent identically distributed normal random variables).

In each case, the solution u can be expressed as a tensor product polynomial expan-
sion (also referred to as polynomial chaos) of the form u(x,y) = Y u(x, k) [T pi, (i),
where py, £ € N, are the univariate polynomials orthonormal with respect to the under-
lying univariate measure, and the summation over k runs over the finitely supported
multi-indices in NON. We refer to [53,54,94,141,13,27,28,121] and the references
therein.

In both cases (7.1) and (7.2), due to the Cartesian product structure of U, the
underlying energy space ¥ ~ HJ (D) ® Ly(U, i) is a (countable) tensor product of
Hilbert spaces, endowed with a cross norm. By truncation of the expansions in (7.1),
(7.2), one obtains a finite tensor product.

In this form, tensor decompositions can be used for solving these problems, for
instance combined with a finite element discretisation of H& (D), cf. [44]. The total
solution error is then influenced by the finite element discretisation, the truncation
of coefficient expansions and polynomial degrees, and by the tensor approximation
ranks. An adaptive scheme that balances these error contributions by a posteriori error
estimators, using tensor train representations and ALS for tensor optimisation with
increasing ranks after a few iterations, can be found with numerical tests in [45].

7.2 Quantum physics — fermionic systems

The electronic Schrodinger equation describes the stationary motion of a non-relativistic
quantum mechanical system of N electrons in a field of K classical nuclei of charge
Zy € N and fixed positions Ry, € R3,n =1,...,K.Itis an operator eigenvalue equation
for the Hamilton operator H, given by

'y 39 —1)
H:=—= Ag + Vexe + Vext :
247 = xe:—xz;\ s 1|X5—Rn|

which acts on wave functions '¥' that depend on the N spatial coordinates x; € R3
and on the N spin coordinates s¢ € Z; of the electrons. By the Pauli principle, the
wave functions ¥ needs to be antisymmetric with respect to the particle variables, that
is, it needs to change sign under exchange of two distinct variable pairs (xg,s¢ ) and
(xg,sc), see e.g. [125]. The corresponding space of wave functions is (see e.g. [21])

N
HY = [H' (R} x 75,C)]" N \ L(R® x Z,,C),
g=1
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where the symbol A denotes the antisymmetric tensor product (exterior product). For
the sake of simplicity, we focus on the approximation of ground states, where one
aims to find

¥ = argmin{(®,HP) : (®,P) =1, ® € Hy}

and the corresponding energy Ey = (¥, H¥). It is sufficient in the present setting to
consider only real-valued functions, that is, C can be replaced by R.

Discretisations can be constructed based on antisymmetric tensor products of
single-particle basis functions, so-called Slater determinants. For a given orthonormal
one-particle set

{ou:p=1,....d} C H(R’ x Z,), (7.3)

the corresponding Slater determinants @ A« -+ A @y, < -+ < Ug, form an orthonor-
mal basis of a space #;¢, called the Full-CI space. A Ritz-Galerkin approximation to
¥ can then be obtained by minimising over the finite-dimensional subspace “//A‘,l C H},
which leads to the discretised eigenvalue problem of finding the lowest E € R and
corresponding ¥ € ”VA‘,Z such that

(®,HY) =E(®,¥) forall ®c 7. (7.4)

Starting from a single-particle basis (7.3), where d is greater than the number N
of electrons, every ordered selection vy,..., vy of N < d indices corresponds to an
N-particle Slater determinant ¥ [y, ..., Vy]. The index of each such basis function
can be encoded by a binary string 8 = (fi,...,Bs) of length d, where f; = 1 if
i€ {vi,...,vy}, and B; = 0 otherwise. Setting e’ := (1, 0)7, e! := (0, 1)7 € R?, the
linear mapping defined by

d
l: lP_g‘L[Vl,...,V]\/] — eﬁl®...®eﬁd € B = ®]R2
u=1

is a unitary isomorphism between the Fock space %y = ®%,_, 74 and %,. The
solution of the discretised N-electron Schrédinger equation (7.4) is an element of .%,
subject to the constraint that it contains only N-particle Slater determinants, which are
eigenfunctions of the particle number operator P with eigenvalue N.

On %, one can apply tensor approximation techniques without having to deal
explicitly with the antisymmetry requirement. The representation of the discretised
Hamiltonian H : %; — %, is given by H=10H o1". For a given particle number
N, we have to restrict the eigenvalue problem to the subspace ker(P — NT), with the
discrete particle number operator P =10 Po1". For electrically neutral systems, the
exact ground state is an N-particle function, and this constraint can be dropped.

The discrete Hamilton operator H has a canonical tensor product representation
in terms of the one- and two-electron integrals. By the Slater-Condon rules [69,125],
one finds

d d
— qqt P4 qtqf
H= Y nlala,+ ) gldalala,a,
pyg=1 Pig;1s=1

where the coefficients i}, g, are given by

hg = <(pp7 {%A +Vext}(Pq>v g;;,sq = <‘Pp@7 (| ! |71 * (Pq@)>~
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Here the discrete annihilation operators a, and creation operators af] can be written
as Kronecker products of the 2 x 2-matrices

(01 . (00 (10 (10
v=(o0) v =(V8) s=(5) 1=(61)

wherea, :==S®...S®ARXI®...®I with A appearing in the p-th position. Note
that compared to the dimension 2¢ of the ambient space %, representation ranks of
H thus scale only as & (d4). For further details, see also [126,95] and the references
given there.

With the representation of the particle number operator P = 2777 Y a;aq, finding
the ground state of the discretised Schrodinger equation in binary variational form
amounts to solving

min {(Hv,v) : (v,v) =1, Pv=Nv}. (7.5)

VEﬂd

Treating this problem by hierarchical tensor representations (e.g., by tensor trains,
in this context usually referred to as matrix product states) for the d-fold tensor
product space %,, one can obtain approximations of the wave function ¥ that provide
insight into separation of quantum systems into subsystems and their entanglement.
The formulation (7.5) is fundamental in the modern formulation of many-particle
quantum mechanics in terms of second quantization. For a recent survey of related
MPS techniques in physics see [120].

The practical application of the concepts described above in quantum chemistry
is challenging due to the high accuracy requirements. For numerical examples, we
refer to, e.g., [126,24,140]. The approach can be especially advantageous in the case
of strongly correlated problems, such as the dissociation of molecules as considered
in [103], which cannot be treated by classical methods such as Coupled Cluster.
The tensor structure can also be exploited for the efficient computation of several
eigenstates [84,40].

Remark 7.1 Variants of the above binary coding can also be used in a much more
general context. This leads to vector-tensorization [60,63], in the tensor train context
also called quantized TT representation [111,78], which can be applied to vectors
x € KV, K € {R,C}, with N = 2¢ that are identified with tensors u € @¢_, K?. This
identification can be realised by writing each index j € {0,...,2¢ — 1} in its binary
representation j = Zf;ol ¢i2!, ¢; €{0,1}. The identification j ~ (cy,...,cq4), ¢; € {0,1}
defines a tensor u of order d with entries u(cy,...,cz) := x(j). In many cases of
interest, the hierarchical representations or approximations of these tensors have low
ranks. In particular, for polynomials, exponentials, and trigonometric functions, the
ranks are bounded independently of the grid size, and almost exponentially convergent
approximations can be constructed for functions with isolated singularities [57,77,76].
There is also a relation to multiresolution analysis [79].
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7.3 Langevin dynamics and Fokker-Planck equations

Let us consider the Langevin equation, which constitutes a stochastic differential
equation (SDE) of the form

2 1
dx(t) = —VV (x(r))dr + \/;th, =T x(t) € RY, (7.6)

where W; is an d-dimensional Brownian motion, see e.g. [112]. The corresponding
Fokker-Planck equation describes the transition probability, and is given by

Sru(x,t) = Lu(x,t) := V- (u(x,1)VV (x)) + %Au(x,t), u(x,0) = up(x).

Here the transition probability is the conditional probability density u(x,#) = p(x,|x0,0)
for a particle starting at xo to be found at time ¢ at point x.

For simplicity, let us assume that x € D = [—R, R]¢ with homogeneous Neumann
boundary conditions. Under rather general conditions, the operator L has a discrete
spectrum 0 =Ap > A1 > ...4; > ..., A; = —ooif j — co and smooth eigenfunctions
¢j, j € Np. It is easy to check that @y(x) = %e’ﬁv(") is an eigenfunction ¢y for
the eigenvalue Ay = 0, with some normalisation constant % satisfying [, @o(x)dx =
1. Under reasonable conditions [112] it can be shown that ¢y is the stationary or
equilibrium distribution, @y(x) = limy_,e u(x,1).

Instead of L, see e.g. [39], we consider the transfer operator defined by mapping a
given probability density uo(x) to a density at some time T > 0,

uo(x) — Toug(x) == u(x,t), x€D:=[-R,R]%

In general T; can be defined by a stochastic transition function p(x,y; 7), which
describes the conditional probability of the system travelling from x to y in a finite
time step T > 0. We do not require explicit knowledge of p, but we make use of the fact
that it satisfies the detailed balance condition n(x) p(x,y,T) = n(y) p(y,x, T), where
= % Then 77 is self-adjoint with respect to the inner product with weight 7,

(V) = /D w(x) v(x) 7(x) dx,

that is, (Tru,v)r = (u, Trv)z. It has the same eigenfunctions ¢; as the Fokker-Planck
operator L and eigenvalues 0; = et , with 0; € [0, 1], which accumulate at zero. For
the description of meta-stable states, we are interested in the first eigenfunctions ¢,
J=0,1,...,m, where the corresponding eigenvalues o; of T; are close to one. This
provides a good approximation of the dynamics after the fast eigenmodes correspond-
ing to 0; ~ 0 are damped out.

In contrast to L, the operator T; is bounded in L, (D), and the eigenvalue problem
can be tackled by Galerkin methods using a basis &%, k € .# and the weighted
inner product (-,-)z: with the ansatz @; = Y u; 1 @, the unknown coefficients u and
approximate eigenvalues o are solutions of a generalised discrete eigenvalue problem
Mu = ¢ M, where My = (@, T; ®;) r and Mgk = (D, DY) 7.
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We do not have a low-rank representation of the operator 7; at our disposal.
Nevertheless, if sufficiently long trajectories of the SDE (7.6), that is, x(#) for #; = kh,
k=1,...,K, are available, then the matrix entries My s and Mg_ , can be computed by
Monte Carlo integration.

Typical choices of basis functions &y are, for instance, piecewise constant func-
tions (Markov state models [116]) or Gaussians combined with collocation (diffusion
maps [29]). Here we propose a tensor product basis obtained from univariate basis
functions x; — X, (%;), x; € R, combined with a low-rank tensor representation of
basis coefficients.

For instance, combining tensor train (TT) representations with DMRG iteration for
finding good low-rank approximations of the eigenfunctions, in preliminary numerical
tests we observe that surprisingly small ranks are sufficient to obtain comparable
accuracy as with state-of-the-art alternative methods. This will be reported on in more
detail in a forthcoming work.

8 Conclusion

In view of the rapidly growing literature on the subject of this article, the overview
that we have given here is necessarily incomplete. Still, we would like to mention
some further topics of interest:

— Adaptive sampling techniques analogous to adaptive cross approximation (ACA)
[105,12], which provide powerful tools to recover not only matrices, but also
low-rank hierarchical tensors,

Tensor completion or tensor recovery [85,32,113], the counterpart to matrix re-
covery in compressive sensing,

Applications of hierarchical tensors in machine learning [25,26],

Greedy methods, based on successive best rank-one approximations [49,22],
Rank-adaptive alternating optimisation methods based on local residuals or low-
rank approximations of global residuals [41,40, 84],

— HSVD truncation estimates in L*°-norm, see [62],

Optimisation of the dimension tree for the hierarchical format [11], which can give
substantially more favorable ranks [58].

Some aspects of low-rank approximations can be considered as topics of future
research. For instance, so far the exploitation of sparsity of the component tensors
has not been addressed. Combination of hierarchical tensor representations with
linear transformations of variables (as in ridge function approximations) has not been
explored so far either.
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