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Abstract. We present Helmholtz or Helmholtz like equations for the approximation of the time-
harmonic wave propagation in gases with small viscosity, which are completed with local boundary
conditions on rigid walls. We derived approximative models based on the method of multiple scales
for the pressure and the velocity separately, both up to order 2. Approximations to the pressure are
described by the Helmholtz equations with impedance boundary conditions, which relate its normal
derivative to the pressure itself. The boundary conditions from first order on are of Wentzell type and
include a second tangential derivative of the pressure proportional to the square root of the viscosity,
and take thereby absorption inside the viscosity boundary layer of the underlying velocity into account.

The velocity approximations are described by Helmholtz like equations for the velocity, where the
Laplace operator is replaced by ∇div, and the local boundary conditions relate the normal veloc-
ity component to its divergence. The velocity approximations are for the so-called far field and do
not exhibit a boundary layer. Including a boundary corrector, the so called near field, the velocity
approximation is accurate even up to the domain boundary.

The boundary conditions are stable and asymptotically exact, which is justified by a complete
mathematical analysis. The results of some numerical experiments are presented to illustrate the
theoretical foundation.
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1. Introduction

In this study we are investigating the acoustic equations as a perturbation of the Navier-Stokes equations
around a stagnant uniform fluid, with mean density ρ0 and without heat flux. For gases the (dynamic) viscosity
η is very small and leads to viscosity boundary layers close to walls. To resolve the boundary layers with
(quasi-)uniform meshes, the mesh size has to be of the same order, which leads to very large linear systems
to be solved. This is especially the case for the very small boundary layers of acoustic waves. In its turn, the
pressure field does not possess a boundary layer, however, this fact cannot be used without some preliminary
adjustments as there are no existing physical boundary conditions for pressure.

In an earlier work [11] we derived a complete asymptotic expansion for the problem based on the technique of
multiscale expansion in powers of

√
η which takes into account curvature effects. This asymptotic expansion was

rigorously justified with optimal error estimates. In this article we propose and justify, based on the asymptotic
expansion in [11], (effective) impedance boundary conditions for the velocity as well as the pressure for possibly
curved boundaries. Similar techniques to derive approximative models have been used for thin sheets [4,8,12] or
for conducting bodies [5]. The advantage of using this approach lies in the fact that the solution can be divided
into the far field with specified boundary condition, i.e., impedance boundary condition, and a correcting near
field, which helps to avoid resolving the boundary layer.

The article is subdivided as follows. In Sec. 2 we define the model problem of the viscous acoustic equations
for velocity and pressure and state the impedance boundary conditions for the velocity and for the pressure
as well as the stability and modelling error estimates. Sec. 3 is dedicated to the derivation of the impedance
boundary condition on the basis of the asymptotic expansion presented in [11]. The well-posedness as well as
estimates of the modelling error of the approximative models with the impedance boundary conditions will be
shown in Sec. 4. Results of some numerical experiments in Sec. 5 shall emphasize the validity of the theoretical
findings.

2. Model problem definition and main results

2.1. Geometry and model problem

Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω (Fig. 1(a)). The boundary shall be described
by a mapping x∂Ω(t) from an interval Γ ⊂ R. We assume the boundary to be C∞ such that points close to ∂Ω
can be uniquely written as

x(t, s) = x∂Ω(t)− sn(t) (2.1)

where n(t) is the outer normalised normal vector and s the distance from the boundary (see Fig. 1(a)). Without
loss of generality we can assume |x′∂Ω(t)| = 1 for all t ∈ Γ. The orthogonal unit vectors in these tangential and
normal coordinate directions are et(t) = −n⊥(t) , where we use the notation u⊥ = (u2,−u1)> for a turned
vector clockwise by 90◦, and es(t) = −n(t). Furthermore, let s0 ∈ R such that all points with distance smaller
than s0 to the ∂Ω have a unique closest point on the boundary.

We consider the time-harmonic acoustic velocity v and acoustic pressure p (the time regime is e−iωt, ω ∈ R+)
which are described by the coupled system

−iωρ0v +∇p− η∆v − η′∇ div v = f , in Ω, (2.2a)

−iωp+ ρ0c
2 div v = 0, in Ω, (2.2b)

v = 0, on ∂Ω. (2.2c)

In the momentum equation (2.2a) with some known source term f the viscous dissipation in the momentum
is not neglected as we consider near wall regions. Here, ρ0 is the density of the media, c is the speed of sound,
η > 0 is the dynamic viscosity and η′ the second (volume) viscosity. Both shall take small values and we call
γ′ = η′/η their quotient. The system is completed by no-slip boundary conditions.

It is well-known that the acoustic velocity field exhibits a boundary layer of thickness O(
√
η) starting at

the rigid wall, see e. g. [11]. In the following we propose definitions of far field velocities, which approximate
the acoustic velocity outside the boundary layer, correcting near field velocities and approximative pressure
distributions. We propose two alternative definitions,

• a definition of the far field velocity by a PDE including an impedance boundary condition and a-
posteriori computation of the pressure (see Sec. 2.2), and



3

Ω

∂Ω

s
t

n(t)

f

(a)

∂Ω

∂Ω

∂Ω

Ω

f

(b)

Figure 1. (a) Definition of a general domain with a local coordinate system (t, s) close to the
wall; (b) Definition of a torus domain for numerical simulations.

• a definition of the pressure by a PDE including an impedance boundary condition and a-posteriori
computation of the far field velocity (see Sec. 2.3).

2.2. Impedance boundary conditions for the velocity

In this section we propose approximative models for the far field velocity of order 0, 1 and 2, which especially
incorporate impedance boundary conditions. Approximations on the pressure can be computed from the far
field velocities. The far field velocity can be used as approximation away from the boundary and has to be
corrected by the near field velocity.

Definitions

The approximative model of order 0 is given by

∇div vappr,0 +
ω2

c2
vappr,0 =

iω

ρ0c2
f , in Ω, (2.3a)

vappr,0 · n = 0, on ∂Ω, (2.3b)

that of order 1 by

∇ div vappr,1 +
ω2

c2
vappr,1 =

iω

ρ0c2
f , in Ω, (2.4a)

vappr,1 · n− (1 + i)
c2

ω2

√
η

2ωρ0
∂2
t div vappr,1 =

(i− 1)

ωρ0

√
η

2ωρ0
∂t(f · n⊥), on ∂Ω, (2.4b)

and(
1− iω(η + η′)

ρ0c2

)
∇ div vappr,2 +

ω2

c2
vappr,2 =

iω

ρ0c2
f +

η

ρ2
0c

2
curl2D curl2D f , in Ω, (2.5a)

vappr,2 · n−
c2

ω2

(
(1 + i)

√
η

2ωρ0
∂2
t div vappr,2 +

iη

2ωρ0
∂t(κ∂t div vappr,2)

)
=

(i− 1)

ωρ0

√
η

2ωρ0
∂t(f · n⊥)− η

2ω2ρ2
0

∂t(κ f · n⊥), on ∂Ω, (2.5b)

defines the approximative model of order 2. Compare also the impedance boundary conditions of 1st order in [1].
The impedance boundary conditions (2.4b) and (2.5b) have similarities with Wentzell’s boundary conditions,
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where, however, the second tangential derivative applies to the Neumann trace div vappr,N , and not to the
Dirichlet trace, which is here vappr,N · n. For their functional framework and a mixed variational formulation
see the proof of stability of an auxilliary system in Lemma 4.1 in Sec. 4.2.

When the far field velocity is computed, we may obtain a-posteriori the far field pressure in Ω of order 0, 1
and 2 by

pappr,N = − iρ0c
2

ω
div vappr,N , (2.6)

Close to the wall the far field velocities has to be corrected by a function

vBLappr,N =

√
2 η

ωρ0
curl2D(φappr,Nχ), (2.7)

where χ is an admissible cut-off function (see Definition 4.6), φappr,N (x) = φ̃appr,N (t, s
√

ωρ0
2η ) in the so-called

χ-neighbourhood of the boundary and

φ̃appr,N (t, S) :=
1

2
(1 + i) e−(1−i)S

N∑
`=0

(
2 η

ωρ0

) `
2

E`(vappr,N · n⊥)(t, S). (2.8)

Here, the operators E`, which were recursively defined in [11, Lemma A.1] (the parameter η0 = ωρ0/2 has to
be used in their definition), will be given for ` = 0, 1, 2 in (3.7).

Analysis

Lemma 2.1 (Stability, existence and uniqueness of vappr,N , pappr,N ). Let ω2

c2 be distinct from the Neumann
eigenvalue of −∆ and let the source function f be smooth enough. Then, the system (2.3)–(2.6) provides a
unique solution (vappr,N , pappr,N ) ∈ (H1(Ω))2 × L2(Ω) for N = 0, 1, 2 respectively.

The proof will be given later in Sec. 4.4, which is based on a stability result for an auxilliary system given in
Sec. 4.2 and the asymptotic equivalence of the approximative models and the asymptotic expansion in Sec. 4.3.

Remark 2.2 (Asymptotic equivalence). We use the notion asymptotic equivalence of two functions u1
appr(η)

and u2
appr(η), approximating a function u(η) (solution of the original system), if the difference in norm of the

two functions is asymptotically at the same order than the difference of one of the two to the solution u(η).

Remark 2.3. For N = 2 the system (2.5)–(2.6) provides a unique solution (vappr,2, pappr,2) ∈ (H1(Ω))2×L2(Ω)
for any ω > 0.

Theorem 2.4 (Modelling error). Let the assumptions of Lemma 2.1 be satisfied. Then the approximative
solution (vappr,N , pappr,N ) ∈ (H1(Ω))2 × L2(Ω), of (2.3)–(2.6) for N = 0, 1, 2 satisfies

‖v − vappr,N − vBLappr,N‖H(div,Ω) + η
1
4 ‖ curl2D(v − vappr,N − vBLappr,N )‖L2(Ω)

+ ‖p− pappr,N‖H1(Ω) ≤ C η
N+1

2 , (2.9a)

and for any δ > 0

‖v − vappr,N‖(H1(Ω\Ωδ))2 ≤ Cδ,N η
N+1

2 , (2.9b)

where Ωδ is the original domain without a δ-neighbourhood of ∂Ω and where the constants C, Cδ,N > 0 do not
depend on η.

The proof will be given in Sec. 4.4.

2.3. Impedance boundary conditions for the pressure

In this section we present approximative models for the far field pressureof order 0, 1 and 2, which includes
in particular impedance boundary conditions. This is different to the original equations in which no boundary
conditions for the pressure, but for both velocity components, are imposed. In analogy to the previous section
we propose formulas for velocity approximations. We call the pressure approximations qappr,N , N = 0, 1, 2,
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which we will define by differential equations in this section, which are not necessaryly identical to the pressures
pappr,N , N = 0, 1, 2, which were resulting in a post-processing step from the velocity vappr,N . Furthermore, we
denote with wappr,N the velocity defined a-posteriori from the pressure qappr,N .

Definitions

The approximative model of order 0 is given by

∆qappr,0 +
ω2

c2
qappr,0 = div f , (2.10a)

∇qappr,0 · n = f · n. (2.10b)

We define a model of order 1 by

∆qappr,1 +
ω2

c2
qappr,1 = div f , (2.11a)

∇qappr,1 · n + (1 + i)

√
η

2ωρ0
∂2
t qappr,1 = f · n− (1 + i)

√
η

2ωρ0
∂t(f · n⊥), (2.11b)

and for order 2 we define (
1− iω(η + η′)

ρ0c2

)
∆qappr,2 +

ω2

c2
qappr,2 = div f , (2.12a)

∇qappr,2 · n + (1 + i)

√
η

2ωρ0
∂2
t qappr,2 +

iη

2ωρ0
∂t(κ∂tqappr,2) = (2.12b)

=
(

1 +
iω(η + η′)

ρ0c2

)
f · n− (1 + i)

√
η

2ωρ0
∂t(f · n⊥)− iη

2ωρ0
∂t(κf · n⊥)− iη

ωρ0
curl2D curl2D f · n.

When the far field pressure is computed we may obtain a-posteriori the far field velocity of order 0, 1 and 2 by

wappr,N =
i

ρ0ω
(f −∇qappr,N ), for N = 0, 1, in Ω, (2.13a)

wappr,2 =
i

ρ0ω
(f −∇qappr,2)− η + η′

ρ2
0c

2
∇qappr,2 +

η

ρ2
0ω

2
curl2D curl2D f , in Ω, (2.13b)

The near field velocity wBL
appr,N is then given by (2.7) and (2.8) if vappr,N is replaced by wappr,N .

The impedance boundary conditions (2.11b) and (2.12b) are of Wentzell type. See [2, 10] for the functional
framework and variational formulation.

Analysis

Lemma 2.5 (Asymptotic equivalence of the two approximate solutions). Let the assumptions of Lemma 2.1 be
satisfied. Then, the approximate solutions (vappr,N , pappr,N ) and (wappr,N , qappr,N ) for N = 0, 1 are identical,
just as the boundary layer correctors vBLappr,N and wBL

appr,N , and for N = 2 it holds with a constant C independent
of η that

‖vappr,2 −wappr,2‖H(div,Ω) + η−
1
4 ‖vBLappr,2 −wBL

appr,2‖H(div,Ω)

+ η
1
4 ‖ curl2D(vBLappr,2 −wBL

appr,2)‖L2(Ω) + ‖pappr,2 − qappr,2‖H1(Ω) ≤ C η
3/2.

Furthermore, curl2D(vappr,2 −wappr,2) ≡ 0.

The proof will be given in Sec. 4.5.
As the two approximations are identical for N = 0, 1 or have the same asymptotic behaviour for N = 2 up

to O(η3/2) we can conclude directly the following stability result and estimate on the modelling error of the
approximation solution (wappr,N , qappr,N ).

Lemma 2.6 (Stability, existence and uniqueness of wappr,N , qappr,N ). Let the assumptions of Lemma 2.1 be
satisfied. Then, the system (2.10)–(2.13) provides a unique solution (wappr,N , qappr,N ) ∈ (H1(Ω))2 ×H1(Ω) for
N = 0, 1, 2 respectively.
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Theorem 2.7 (Modelling error). Let the assumptions of Lemma 2.1 be satisfied. Then, the approximative
solution (wappr,N , qappr,N ) for N = 0, 1, 2 satisfies

‖v −wappr,N −wBL
appr,N‖H(div,Ω) + η

1
4 ‖ curl2D(v −wappr,N − vBLappr,N )‖L2(Ω)

+ ‖p− qappr,N‖H1(Ω) ≤ C η
N+1

2 , (2.14a)

and for any δ > 0

‖v −wappr,N‖(H1(Ω\Ωδ))2 ≤ Cδ,N η
N+1

2 , (2.14b)

where Ωδ is the original domain without a δ-neighbourhood of ∂Ω and where the constants C, Cδ,N > 0 do not
depend on η.

3. Derivation of impedance boundary conditions

3.1. Equations for asymptotically small viscosity

To investigate the solution of (2.2) for small viscosities, we introduce a small dimensionless parameter ε �
1, ε ∈ R+ and replace η, η′ by ε2ωρ0/2, ε2γ′ωρ0/2 (corresponding to η0 = ωρ0/2, η′0 = γ′ ωρ0/2 in [11]),
respectively. In this way the boundary layer thickness will become proportional to ε. The solution of (2.2),
respectively, will be labelled vε and pε due to its dependence on ε , i.e.

−iωρ0v
ε +∇pε − ε2ωρ0

2
∆vε − ε2 γ

′ ωρ0

2
∇ div vε = f , in Ω, (3.1a)

−iωpε + ρ0c
2 div vε = 0, in Ω, (3.1b)

vε = 0, on ∂Ω. (3.1c)

Earlier we have proved stability for such a problem for the non-resonant case, which we consider here as well,
i.e., for vanishing viscosity and so absorption, the kernel of the system is empty – there is no eigensolution. The
eigenvalues of the limit problem coincide with the Neumann eigenvalue of −∆.

Lemma 3.1 (Stability for the non-resonant case). For any f ∈ (H0(div,Ω)) ∩H(curl2D,Ω))′ the system (3.1)

has a unique solution (vε, pε) ∈ H0(div,Ω)∩H(curl2D,Ω)×L2(Ω). If ω2

c2 is not a Neumann eigenvalue of −∆,
then there exists a constant C > 0 independent of ε, such that

‖vε‖H(div,Ω) + ε ‖ curl2D vε‖L2(Ω) + ‖pε‖L2(Ω) ≤ C ‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ , (3.2a)

‖∇pε‖L2(Ω) ≤ C ‖f‖L2(Ω). (3.2b)

For any ω > 0 and for C1,1 boundary ∂Ω it holds

ε ‖vε‖(H1(Ω))2 ≤ C ‖f‖(H0(div,Ω)∩H(curl2D,Ω))′ . (3.2c)

A proof can be found in [11, Lemma 2.2]. Even so in this work C∞ was assumed, the proof of (3.2a), (3.2b)
does not rely on a higher regularity assumption, see [6].

3.2. Asymptotic expansion

With the above introduced small parameter ε =
√

2η/(ωρ0) and using the curvilinear coordinates (t, s),
which we have introduced in (2.1), close to the boundary the solution of (3.1) inspired by the framework of
Vishik and Lyusternik [13] could be written as

v=

∞∑
j=0

εj
(
vj + ε curl2D(φjχ)

)
; p=

∞∑
j=0

εjpj , (3.3)

where vj(x, y) and pj(x, y) are terms of the far field expansion, the near field terms φj(t, sε ) represent the

boundary layer close to the wall, curl2D = (∂y,−∂x)>, and χ is an admissible cut-off function.



7

The method of multiscale expansion separates the far and near field terms. We restrict ourselves to j = 0, 1, 2,
as these will be used for the derivation of the impedance boundary conditions where the equations for general
j ∈ N can be found in [11]. The far field velocity terms vj satisfy the PDEs

∇div vj +
ω2

c2
vj =

iω

ρ0c2
f · δj=0 +

iω2

2c2
∆vj−2 +

iγ′ω2

2c2
∇ div vj−2, in Ω, (3.4a)

vj · n =

j∑
`=1

(G`(∂t div vj−`) +Hj(f), on ∂Ω, (3.4b)

where v−1 = v−2 = 0, G` : C∞(Γ) → C∞(Γ) and H` : C∞(Γ) → C∞(Γ) are tangential differential operators
acting on traces of terms of lower orders or the trace of f on ∂Ω, respectively. Furthermore, δj=0 stands for the
Kronecker symbol which is 1 if j = 0 and 0 otherwise. The operators G` and H` up to ` = 2 are given by

G0(v) = 0, H0(f) = 0, (3.5a)

G1(v) = (1 + i)
c2

2ω2
∂tv, H1(f) = −(1− i)

1

2ωρ0
∂t(f · n⊥), (3.5b)

G2(v) =
c2

ω2

( i

4
∂t(κv)

)
, H2(f) = − 1

4ωρ0
∂t(κ f · n⊥). (3.5c)

The near field terms vjBL =
√

2 η
ωρ0

curl2D(φjχ) for φj(x) = φ̃j(t, S) for S = s
√

ωρ0
2 η are defined by (cf. [11,

Lemma A.1])

φ̃j(t, S) =
1

2
(1 + i) e−(1−i)S

j∑
`=0

(E`(v
j−` · n⊥))(t, S), (3.6)

with the operators E` : C∞(Γ)→ C∞(Γ× [0,∞)) for ` = 0, 1, 2

E0(v) = v, (3.7a)

E1(v) =
1

4
(3 + i)κSv, (3.7b)

E2(v) =
i(1 + γ′)ω2

2c2
v +

1

4

(
i + (1 + i)S

)(3

4
κ2v + ∂2

t v
)

+
3

8
κ2S2v. (3.7c)

The far field pressure terms pj satisfy the PDE

∆pj +
ω2

c2
pj = div f · δj=0 +

i(1 + γ′)ω2

2c2
∆pj−2, in Ω, (3.8a)

∇pj · n =

j∑
`=1

J`(p
j−`) +Kj(f), on ∂Ω, (3.8b)

where p−1 = p−2 = 0, and J` : C∞(Γ) → C∞(Γ) and K` : (C∞(Ω))2 → C∞(Γ) are tangential differential
operstors acting on traces of terms of lower orders on ∂Ω or on f , respectively. The operators J` and K` up to
` = 2 (cf. [11, Sec. 2.4.2]) are given by

J0(v) = 0, K0(f) = f · n, (3.9a)

J1(v) = −1

2
(1 + i) ∂2

t v, K1(f) = −1

2
(1 + i) ∂t(f · n⊥), (3.9b)

J2(v) = − i

4
∂t(κ∂tv), K2(f) = − i

4
∂t(κf · n⊥) +

i(1 + γ′)ω2

2c2
f · n− i

2
curl2D curl2D f · n. (3.9c)



8

3.3. Derivation of the impedance boundary conditions for velocity and pressure

Now, we are going to derive the approximative velocity and pressure models for vappr,N and pappr,N including

impedance boundary conditions given in Sec. 2.2. Let vε,N :=
∑N
j=0 ε

nvj . Then, by (3.4b) we have

vε,N · n =

N∑
j=0

εj
j∑
`=1

G`(∂t div vj−`) +

N∑
j=0

εjHj(f)

=

N∑
`=1

ε`
N∑
j=`

εjG`(∂t div vj−`) +

N∑
j=0

εjHj(f)

=

N∑
`=1

ε`
N−∑̀
j=0

εjG`(∂t div vj) +

N∑
j=0

εjHj(f)

=

N∑
`=1

ε`G`(v
ε,N ) +

N∑
j=0

εjHj(f)− εN+1
N∑
`=1

`−1∑
j=0

εjG`(∂t div vj+1−N−`)

Moving all the terms with vε,N from the right hand side to the left hand side and neglecting the terms of order
εN+1 on the right hand side and using the equality η = ε2ωρ0/2, we obtain the boundary conditions for vappr,N ,

vappr,N · n−
N∑
`=1

(
√

2η/(ωρ0))`G`(∂t div vappr,N ) =
N∑
j=0

(
√

2η/(ωρ0))jHj(f), (3.10)

which is (2.3b), (2.4b) and (2.5b) for N = 0, 1, 2.
To obtain the approximative PDEs we are going to simplify (3.4a). Applying curl2D to (3.4a) we obtain

curl2D vj =
i

ωρ0
curl2D f · δj=0 −

i

2
curl2D curl2D curl2D vj−2.

By recursion in j we obtain an expression of curl2D vj in terms of f only (see (2.11) in [11]). Inserting this
expression into (3.4a) we obtain

∇ div vj +
ω2

c2
vj =

j∑
`=1

L`(v
j−`) +Mj(f)

with L` ≡ 0 if ` 6= 2, Mj ≡ 0 if j is odd and otherwise

L2 =
i(1 + γ′)ω2

2c2
∇ div, Mj =

iω

ρ0c2

(
− i

2
curl2D curl2D

)j/2
f .

Now, in the same away as above, where G` and Hj are replaced by L` and Mj , we find for the approximative
velocities (2.3a), (2.3a) and for N ≥ 2(

1− iω(η + η′)

ρ0c2

)
∇ div vappr,N +

ω2

c2
vappr,N =

N∑
j=0

(
√

2η/(ωρ0))jMj(f),

which is equivalent to (2.5a) for N = 2.
Note, that it is possible to keep a term with curl2D curl2D vappr,N on the left hand side and with the gain of

the simple source term iω
ρ0c2

f on the right hand side (for any N). However, this PDE needs a further boundary

condition, e. g., a prescribed trace of curl2D vappr,N in terms of f .
With the same technique as above, but with J` and Kj instead of G` and Hj , we get the boundary conditions

for the approximative pressure

∇qappr,N · n−
N∑
`=1

(
√

2η/(ωρ0))`J`(qappr,N ) =

N∑
j=0

(
√

2η/(ωρ0))jKj(f),
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which is (2.10b), (2.11b) and (2.12b) for N = 0, 1, 2.
Similarly, but even simpler than the PDEs for vappr,N those for qappr,N are derived, leading to (2.10a)

and (2.11a) for N = 0, 1 and for N ≥ 2

(
1− iω(η + η′)

ρ0c2

)
∆qappr,N +

ω2

c2
qappr,N = div f ,

which is (2.11a) for N = 2.

4. Justification of the approximative models

For some frequencies the limit system of vanishing viscosity does not have a unique solution, which has
consequences on the stability and error estimates for the systems of order 1 and 2 as well. We discuss the
eigensolution for the limit system in Sec. 4.1. In the following stability and error analysis we then exclude those
eigenfrequencies. We then in Sec. 4.2 introduce an auxilliary system, which differs from the system of order 1
and 2 only by the source term of the PDE and prove its stability. The approximative solution of the system for
the velocity vappr,N and a-posteriori computed pressure pappr,N is asymptotically equivalent to the asymptotic
expansion up to order N , which we will show in Sec. 4.3. The stability analysis and error analysis of these
systems of order 1 and 2 will be discussed in Sec. 4.4. Finally, in Sec. 4.5 we show that the approximative solution
of the system for the pressure qappr,N and a-posteriori computed velocity wappr,N is identical or asymptotically
equivalent to approximation (vappr,N , pappr,N ), on which the stability and error statement for (wappr,N , qappr,N )
is based on.

4.1. Eigensolutions and well-posedness for the limit problem

We concider the approximative model of 0 order for the velocity (2.3)

−∇div v − ω2

c2
v = f̃ , in Ω

v · n = 0, on ∂Ω

We begin with the case of resonance frequency ω = ω0, i.e., ω0

c is an eigenvalue, and seek a solution as a
decomposition

v =

N∑
i=1

αiψi + u0

where ψi ∈ E(ω0), i.e. in the eigenfunctions space (finite dimension), and u0 is perpendicular to all eigenfunc-
tions, i.e.

∫
Ω

u0 ·ψi dx = 0, i = 1, . . . , N . For all eigenfunctions it holds

−∇divψi −
ω2

c2
ψi = 0, in Ω

ψi · n = 0, on ∂Ω

If the compatibility condition of the source function 〈f̃ ,ψi〉L2(Ω) = 0, i = 1, . . . , N is fulfilled, by Fredholm
alternative [9] u0 exists and is bounded. However, in practise it is rather unlikely that the source is orthogonal
to all eigenfunctions and at eigenfrequencies an existence of the limit model is not guaranteed.

Throughout the article we assume that frequency is not an eigenfrequency, ω 6= ω0.

4.2. Well-posedness and regularity of an auxilliary system

In this section we analyse a well-posed auxilliary system, which coincides with the approximative velocity
systems of order 1 and 2 up to the source term of the PDE. Here, we assume an asymptotically small gradient
field as source, which we will need for the proof of Lemma 4.4 on the asymptotic equivalence of the approximative
solutions and the asymptotic expansion. The stability of the approximative systems of order 1 and 2, stated in
Lemma 2.1, is then a consequence of this asymptotic equivalence and the stability of the terms of the asymptotic
expansion, and will be shown in Sec. 4.4.
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Lemma 4.1 (Well-posedness of an auxilliary system). Let ω2

c2 be distinct from the Neumann eigenvalues of

−∆, g ∈ L2(∂Ω), h ∈ L2(Ω) with h ∈ H1(∂Ω). Let, furthermore, the constants α1 > 0, α2 ≥ 0, α3 ∈ R and
ηm ∈ {R,∞} be constants independent of η > 0 such that

√
ηm|α3|‖κ‖L∞(∂Ω)/α1 ≤ 1

2 , α2ηm ≤ 1
3 , and h = 0 if

α2 = 0. Then, the system

(1− iα2η)∇ div w +
ω2

c2
w = η

3/4∇h, in Ω, (4.1a)

w · n− (1 + i)
√
η α1∂

2
t div w − iη α3∂t(κ∂t div w) =

√
η ∂tg, on ∂Ω, (4.1b)

has for any η ∈ (0, ηm) a unique solution w ∈ (H1(Ω))2 and there exists a constant C = C(ηm) > 0 not
depending on η such that for all η ∈ (0, ηm)

‖w‖(H1(Ω))2 ≤ C
(
‖g‖L2(∂Ω) + ‖h‖L2(Ω) + η

3
4 ‖∂th‖L2(∂Ω)

)
.

Proof. Let us write the system (4.1) as a mixed variation formulation and introduce a new function λ = div w
on ∂Ω. We seek (w, λ) ∈ (H1(Ω))2 ×H1(∂Ω) such that for all (v′, λ′) ∈ (H1(Ω))2 ×H1(∂Ω)

∫
Ω

(1− iα2η) div w div v′ − ω2

c2
w · v′ dx− (1− iα2η)

∫
∂Ω

λv′ · n dσ(x) = −η
3
4

∫
Ω

h div v′ dx + η
3
4

∫
∂Ω

hv′ · n dσ(x),

(4.2a)∫
∂Ω

w · nλ′ + ((1 + i)
√
η α1 + iη α3κ) ∂tλ∂tλ

′ dσ(x) =

∫
∂Ω

−√η g ∂tλ′ dσ(x). (4.2b)

Subtracting (4.2b) from (4.2a) multiplied with (1 + iα2η) gives

∫
Ω

(1− iα2η) div w div v′ − ω2

c2
w · v′ dx

+

∫
∂Ω

−(1− iα2η)λv′ · n− (1 + iα2η)w · nλ′ − ((1 + i)
√
η α1 + iη α3κ) (1 + iα2η) ∂tλ∂tλ

′ dσ(x)

= −η
3
4

∫
Ω

h div v′ dx + η
3
4

∫
∂Ω

hv′ · n dσ(x) +
√
η (1 + iα2η)

∫
∂Ω

g ∂tλ
′dσ(x). (4.3)

Inserting the test function λ′ = h into (4.2b) and taking the conjugate complex we find

∫
∂Ω

hw · n dσ(x) = −
∫
∂Ω

((1− i)
√
ηα1 − iηα3κ) ∂th ∂tλ dσ(x)−√η

∫
∂Ω

∂th g dσ(x). (4.4)

Now, inserting test functions v′ = w, λ′ = λ into (4.3) and taking the negative imaginary part we obtain

α2η ‖ div w‖2L2(Ω) +
√
η α1(1 + α2η)‖∂tλ‖2L2(∂Ω) + η α3〈κ ∂tλ, ∂tλ〉L2(∂Ω)

≤ η
3
4 Im 〈h,div w〉L2(Ω) − η

3
4 Im 〈h,w · n〉L2(∂Ω) +

√
η (1 + α2η) | 〈g, ∂tλ〉L2(∂Ω) |

≤ η
3
4 Im 〈h,div w〉L2(Ω) + α1η

5
4 Im 〈(1− i) ∂th, ∂tλ〉L2(∂Ω) − α3η

7
4 Im 〈iκ∂th, ∂tλ〉L2(∂Ω)

+ η
5
4 Im 〈∂th, g〉L2(∂Ω) + 4

3

√
η | 〈g, ∂tλ〉L2(∂Ω) |
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where we used (4.4) in the last step and α2η <
1
3 . Now, with

√
η |α3|‖κ‖L∞(∂Ω) <

1
2α1 we get

α2η ‖ div w‖2L2(Ω) + 1
2

√
η α1‖∂tλ‖2L2(∂Ω) ≤ α2η ‖ div w‖2L2(Ω) +

√
η α1‖∂tλ‖2L2(∂Ω) + η α3〈κ ∂tλ, ∂tλ〉L2(∂Ω)

≤ η
3
4 ‖h‖L2(Ω)‖ div w‖L2(Ω) + η

5
4

(√
2α1 + α3‖κ‖L∞(∂Ω)

√
η
)
‖∂th‖L2(∂Ω)‖∂tλ‖L2(∂Ω)

+ η
5
4 ‖∂th‖L2(∂Ω)‖g‖L2(∂Ω) + 4

3

√
η ‖g‖L2(∂Ω)‖∂tλ‖L2(∂Ω)

≤ α2η ‖ div w‖2L2(Ω) +
δα2>0

4α2

√
η‖h‖2L2(Ω) + 9α1η

2‖∂th‖2L2(∂Ω) +
4

α1

√
η‖g‖2L2(∂Ω) +

α1

4

√
η‖∂tλ‖2L2(∂Ω),

where we were using sequentially Cauchy–Schwarz inequality and Young’s inequality. Here δα2>0 stands for the
Kronecker symbol which is 1 if α2 > 0 and 0 otherwise. Subtracting α2η ‖div w‖2L2(Ω) + α1

4

√
η‖∂tλ‖2L2(∂Ω) on

both sides we find

α1

4

√
η‖∂tλ‖2L2(∂Ω) ≤

√
η

(
4

α1
‖g‖2L2(∂Ω) +

δα2>0

4α2
‖h‖2L2(Ω) + 9α1η

3
2 ‖∂th‖2L2(∂Ω)

)
.

Finally, division by 1
4

√
η α1 on both sides and with inequality d2 ≤ a2 + b2 + c2 with d, a, b, c ≥ 0, therefore

d ≤ a+ b+ c, we attain the estimate for the second case

‖∂tλ‖L2(∂Ω) ≤
4

α1
‖g‖L2(∂Ω) +

δα2>0√
α1α2

‖h‖L2(Ω) + 6 η
3
4 ‖∂th‖L2(∂Ω). (4.5)

To show uniqueness we assume g = 0 and h = 0. Then, from the estimate (4.5) ∂tλ = 0, i.e. λ is a constant and
so ∂2

t λ = 0. As div w = λ on ∂Ω, we have in view of (4.1b) w · n = 0 on ∂Ω. If α2 = 0, then Lemma 4.3 of [11]
implies w ≡ 0 in Ω. Otherwise, inserting v′ = w for which v′ · n = 0 into (4.2a) and taking the imaginary part
we find that div w ≡ 0 in Ω. Then, taking the real part we conclude that w ≡ 0 in Ω.

Now, we provide a proof of stability on proof by contradiction. If the statement of the lemma would not
hold, then there would exist a sequence {(wn, λn)}∞n=1 with ‖(wn, λn)‖2(H1(Ω))2×H1(∂Ω) := ‖wn‖2(H1(Ω))2 +

‖λn‖2H1(∂Ω) = 1, such that wn, λn are solutions of (4.2) or (4.2) with (gn, hn) instead of (g, h) where gn, hn → 0

with n → ∞. For each bounded sequence there exists a weakly converging subsequence which we call again
{(wn, λn)}∞n=1. By the Rellich–Kondrachov compactness theorem [9] wn strongly converges in L2(Ω) and λn
strongly converges in L2(∂Ω). In the limit n → ∞ we have wn ⇀ w∞ ∈ (H1(Ω))2, λn ⇀ λ∞ ∈ H1(∂Ω)
and as it was shown above w∞ = 0, λ∞ = 0. By uniqueness of the limit (wn, λn) converge strongly to 0 in
the L2(Ω)×L2(∂Ω)–norm, which contradicts our assumption. That proves stability and the solution (w, λ) is
bounded by (g, h), i.e., there exists a constant C = C(η) which may depend on η, such that

‖(w, λ)‖(H1(Ω))2×H1(∂Ω) ≤ C(η)
(
‖g‖L2(∂Ω) + ‖h‖L2(∂Ω) + η

3
4 ‖∂th‖L2(∂Ω)

)
.

However, it is easy to see that the solution is even bounded independently of η. For this we consider sequences
(gn, hn), ηn → 0 with n → ∞ as well and a sequence {(wn, λn)}∞n=1 with norm 1 as above solution of (4.2)
or (4.2) with (gn, hn) instead of (g, h). When we call (w∞, λ∞) its limit again, we have with ηn → 0 that
w∞ · n = 0 on ∂Ω and so w∞ ≡ 0 in Ω and so λ∞ = div w∞ = 0 on ∂Ω. Again, this is a contradiction.
Consequently, there exists a constant Cm = max

0≤η≤ηm
C(η) independently of η, such that

‖(w, λ)‖(H1(Ω))2×H1(∂Ω) ≤ Cm
(
‖g‖L2(∂Ω) + ‖h‖L2(∂Ω) + η

3
4 ‖∂th‖L2(∂Ω)

)
.

This finishes the proof. �

Lemma 4.2 (Higher regularity of an auxilliary system). Let the assumption of Lemma 4.1 be fulfilled, and let

furthermore g ∈ Hr+1/2(∂Ω) and h ∈ H1(Ω) ∩Hr(Ω̃) for some r ∈ N, r ≥ 1 and some Ω̃ ⊆ Ω with ∂Ω̃ ⊆ ∂Ω
and h ∈ H1(∂Ω) . Then, there exist constants C, Cr independent of η such that for the solution w of (4.1) and

any Ω̃⊂ ⊂ Ω̃ it holds

‖w‖(H1(Ω))2∩(Hr+1(Ω̃⊂))2 ≤
Cr
ηr/2

(
‖g‖Hr+1/2(∂Ω) + ‖h‖H1(Ω)∩Hr+2(Ω̃)

)
, (4.6a)

‖ div w‖H1(Ω) ≤
C
√
η

(
‖g‖H3/2(∂Ω) + ‖h‖H1(Ω) + η

3
4 ‖∂th‖L2(∂Ω)

)
. (4.6b)



12

Proof. By Lemma 4.1 the solution w of (4.1) and, hence, div w on ∂Ω are bounded. In particular, w · n ∈
H1/2(∂Ω). Using (4.1b) we find for any s ∈ N0, s ≤ r − 1

‖ div w‖Hs+5/2(∂Ω) ≤ C
(

1
√
η
‖w · n‖Hs+1/2(∂Ω) + ‖g‖Hs+3/2(∂Ω)

)
,

and so div w ∈ H5/2(∂Ω). Note, that u := div w solves the boundary value problem

(1− iα2η)∆u+
ω2

c2
u = η

3
4 ∆h, in Ω,

u = div w, on ∂Ω,

and due to the assumption on the frequency we find div w ∈ H1(Ω) with

‖div w‖H1(Ω) ≤ C
(
η

3
4 |h|H1(Ω) + ‖div w‖H1/2(∂Ω)

)
≤ C

(
η

3
4 |h|H1(Ω) +

1
√
η
‖w · n‖H1/2(∂Ω) + ‖g‖H3/2(∂Ω)

)
.

which implies (4.6b). Now, by Theorem 4.18 in [7] we have for any Ω̃⊂ ⊂ Ω̃ (and Ω̃⊂ = Ω if Ω̃ = Ω) that

‖ div w‖Hs+3(Ω̃⊂) ≤ C
(
‖ div w‖H1(Ω) + ‖ div w‖Hs+5/2(∂Ω) + η

3
4 ‖h‖Hs+3(Ω̃)∩H1(Ω)

)
≤ C

(
1
√
η
‖w · n‖Hs+1/2(∂Ω) + ‖g‖Hs+3/2(∂Ω) + η

3
4 ‖h‖Hs+3(Ω̃)∩H1(Ω)

)
.

As, furthermore, w is given by w = c2

ω2∇ div w we have

‖w‖Hs+2(Ω̃⊂) ≤ C
(

1
√
η
‖w · n‖Hs+1/2(∂Ω) + ‖g‖Hs+3/2(∂Ω) + η

3
4 ‖h‖Hs+3(Ω̃)∩H1(Ω)

)
.

We may choose Ω̃⊂ such that ∂Ω̃⊂ ⊆ ∂Ω and by the trace theorem we can assert that

‖w · n‖Hs+3/2(∂Ω) ≤ ‖w‖Hs+2(Ω̃⊂) ≤ C
(

1
√
η
‖w · n‖Hs+1/2(∂Ω) + ‖g‖Hs+3/2(∂Ω) + η

3
4 ‖h‖Hs+3(Ω̃)∩H1(Ω)

)
and so the statement of the lemma follows by induction in s. �

4.3. Relation of velocity approximations and the related asymptotic expansion

We start with the proof of asymptotic equivalence of the far field approximation and its asymptotic expansion,
followed by the near field approximation.

4.3.1. Far field approximation

Lemma 4.3. Let the assumptions of Lemma 2.1 be fulfilled, in particular, let f ∈ (L2(Ω))2 ∩ (Hm(Ω̃))2 for any

m ∈ N in some neighbourhood Ω̃ ⊂ Ω of ∂Ω, i.e., ∂Ω ⊂ ∂Ω̃ and curl2D f ∈ Hm(Ω) for any m ∈ N. Then, for

any Ω̃⊂ ⊂ Ω̃, any j ∈ N0 and any m ∈ N0 it holds div vj ∈ L2(Ω) ∩Hm+1(Ω̃⊂).

Proof. By Lemma 2.3 in [11] all terms vj ∈ (H1(Ω))2 and by Lemma 4.6 in [11] the terms vj have any Sobolev

regularity in any subdomain of Ω̃⊂ of Ω̃. Using (3.4a) and (2.11) in [11] we find by induction in j

∇ div vj = −ω
2

c2
vj − iω

ρ0c2
f · δj=0 +

i(1 + γ′)ω2

2c2
∇ div vj−2 − iω2

2c2
curl2D curl2D vj−2

= −ω
2

c2
vj − δj is even

iω

ρ0c2

(
− i

2
curl2D curl2D

)j/2
f +

i(1 + γ′)ω2

2c2
∇div vj−2 ∈ (H1(Ω))2 ∩ ((Hm+1(Ω̃⊂)),

and so the statement of the lemma. �
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Lemma 4.4. Let the assumptions of Theorem 2.4 be fulfilled and let f ∈ (L2(Ω))2 ∩ (Hm(Ω̃))2 for any m ∈ N
in some neighbourhood Ω̃ ⊂ Ω of ∂Ω, i.e., ∂Ω ⊂ ∂Ω̃ and curl2D f ∈ Hm(Ω). Then, for any m ≥ 1, any Ω̃⊂ ⊂ Ω̃
and N = 0, 1, 2 there exist constants ηm and Cm,N independent of η such that for the solutions vappr,N of the
approximative models (2.3), (2.4), or (2.5) for N = 0, 1, 2, respectively, for pappr,N for N = 0, 1, 2 given by (2.6)
and any η ∈ (0, ηm) it holds

∥∥∥vappr,N −
N∑
j=0

(
2η

ωρ0

) j
2

vj
∥∥∥

(H1(Ω))2∩(Hm(Ω̃⊂))2
+
∥∥∥pappr,N −

N∑
j=0

(
2η

ωρ0

) j
2

pj
∥∥∥
H1(Ω)

≤ Cm,Nη
N+1

2 . (4.7)

Proof. The approximative model for vappr,0 (including boundary condition) for N = 0 is identical to that of
the first term v0 of the asymptotic expansion, the difference is zero. As also the relations between pappr,0 and
vappr,0 given by (2.6) and between p0 and v0 given by [11, (2.12)] are the same, the pressure approximation
pappr,0 is identical to the first term p0. Hence, the above statement is true for N = 0.

For N = 1, 2 we write an asymptotic expansion of vappr,N in the form

vappr,N ≈ vN,0 +
√

2η
ωρ0

vN,1 + 2η
ωρ0

vN,2 +
(

2η
ωρ0

)3/2

vN,3 + . . . , (4.8)

where vN,j := vj for j = 0, 1, . . . , N , and we call δvappr,N,` the difference

δvappr,N,` = vappr,N −
∑̀
j=0

(
2η
ωρ0

)j/2
vN,j . (4.9)

For the definition of vN,j and estimates on δvappr,N,` we distinguish the cases N = 1 and N = 2, where we
denote by C a generic constant independent of η.

(i) N = 1. The terms v1,j , j ≥ 2 satisfy

∇ div v1,j +
ω2

c2
v1,j = 0, in Ω,

v1,j · n = G1(∂t div v1,j−1), on ∂Ω.

(4.10)

By Lemma 4.3 we have div v1 ∈ Hm+1/2(∂Ω) for any m ∈ N, and so by Lemma 2.3 in [11] v1,j are well defined
and by Lemma 4.6 in [11] it holds v1,j ∈ (Hm(Ω))2 for any m ∈ N and any j ≥ 2. With the equality v1,1 = v1

this implies div v1,j ∈ Hm−3/2(∂Ω) for any m ∈ N and any j ≥ 1. The difference δvappr,1,` solves by (2.4), (3.4)
for j = 0, 1, . . . , ` and (4.10) the system

∇div δvappr,1,` +
ω2

c2
δvappr,1,` = 0, in Ω, (4.11a)

δvappr,1,` · n−
√

2η
ωρ0

G1(∂t div δvappr,1,`) =
(

2η
ωρ0

)(`+1)/2

G1(∂t div v1,`), on ∂Ω, (4.11b)

which coincides with (4.1) for α1 = c2/ω2
√

1/(2ωρ0), α2 = α3 = 0, g = (1 + i)(2η/(ωρ0))`/2 α1∂t div v1,` and
h = 0. So Lemma 4.2 implies

‖δvappr,1,`‖(Hm(Ω))2 ≤ C η
(`−m+1)/2. (4.12)

(ii) N = 2. The terms v2,j , j ≥ 3 of the asymptotic expansion of vappr,2 satisfy

∇ div v2,j +
ω2

c2
v2,j =

i(1 + γ′)ω2

2c2
∇div v2,j−2, in Ω

v2,j · n = G1(∂t div v2,j−1) +G2(∂t div v2,j−2), on ∂Ω

(4.13)
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With the same argumentation as above we achieve regularity for div v2,j ∈ Hm−3/2(∂Ω) for any m ∈ N and any
j ≥ 3. The difference δvappr,2,` solves by (2.5), (3.4) for j = 0, 1, 2 and (4.13) the system(

1− iω(η + η′)

ρ0c2

)
∇ div δvappr,2,`−1 +

ω2

c2
δvappr,2,` =

(
2η
ωρ0

)(`+1)/2 i(1 + γ′)ω2

2c2
∇div(v2,`−1 +

√
2η
ωρ0

v2,`), in Ω,

(4.14a)

δvappr,2,` · n−
√

2η
ωρ0

G1(∂t div δvappr,2,`)

− 2η
ωρ0

G2(∂t div vappr,2,`) =
(

2η
ωρ0

)(`+1)/2
(
G1(∂t div v2,`) (4.14b)

+G2

(
∂t div(v2,`−1 +

√
2η
ωρ0

v2,`)
))
, on ∂Ω,

which is identical to (4.1) with

α1 = c2/ω2
√

1/(2ωρ0), α2 = (1 + γ′)ω/(ρ0c
2), α3 = c2/(2ω3ρ0),

g = iα3
√
η(2η/ωρ0)

(`−1)/2κ ∂t div(v2,`−1 +
√

2η/ωρ0v
2,`) + (1 + i)α1(2η/ωρ0) /̀2∂t div v2,`,

h = iα2
4
√
η(2η/ωρ0)

(`−1)/2 div(v2,`−1 +
√

2η/ωρ0v
2,`).

So Lemma 4.2 implies for any Ω̃⊂ ⊂ Ω̃

‖δvappr,2,`‖(H1(Ω))2∩(Hm(Ω̃⊂))2 ≤ C η
(2`−2m+1)/4. (4.15)

Now, we continue with both cases N = 1, 2. By the triangle inequality and choosing ` = m+ 2N − 1 we obtain

‖vappr,N −
N∑
j=0

(
2η
ωρ0

)j/2
vj‖(H1(Ω))2∩(Hm(Ω̃⊂))2 = ‖δvappr,N,N‖(H1(Ω))2∩(Hm(Ω̃⊂))2

= ‖δvappr,N,m+2N−1 +

m+2N−1∑
j=N+1

(
2η
ωρ0

)j/2
vN,j‖(H1(Ω))2∩(Hm(Ω̃⊂))2

≤ ‖δvappr,N,m+2N−1‖(H1(Ω))2∩(Hm(Ω̃⊂))2 +

m+2N−1∑
j=N+1

(
2η
ωρ0

)j/2
‖vN,j‖(H1(Ω))2∩(Hm(Ω̃⊂))2 ≤ Cmη

N+1
2 , (4.16)

and the statement of the lemma for the velocity follows.
In view of the relation (2.6) between pappr,N and vappr,N and the relation [11, (2.12)] the proof of the estimates

for the pressure for N = 1, 2 are equivalent to show that

∣∣div δvappr,N,N

∣∣
H1(Ω)

=
∣∣ div

(
vappr,N −

N∑
j=0

(
2η

ωρ0

) j
2

vj
)∣∣
H1(Ω)

≤ Cη
N+1

2 .

For N = 1 this is a simple consequence of (4.11a) and the estimate (4.16) for δvappr,1,1,

∣∣div δvappr,1,1

∣∣
H1(Ω)

=
ω2

c2
∥∥ div δvappr,1,1

∥∥
L2(Ω)

≤ C η.

For N = 2 we have in addition to bound div v2,1 ≡ div v1 and div v2,2 ≡ div v2 in the H1(Ω)-seminorm, which
is a consequence of (3.4a) and the assumption on the regularity of curl2D f . We can conclude with (4.14a)
and (4.16) that

∣∣ div δvappr,2,2

∣∣
H1(Ω)

≤ ω2

c2
∥∥div δvappr,2,2

∥∥
L2(Ω)

+ Cη
3/2
∣∣ div v1

∣∣
H1(Ω)

+ Cη2
∣∣ div v2

∣∣
H1(Ω)

. ≤ C η3/2.

This finishes the proof. �



15

4.3.2. Near field approximation

For the analysis of the near field approximation we introduce for J ∈ N0 the function spaces

ΠJ(λ,X) :=
{
φ̃(t, S) = e−λS

J∑
j=0

φ̃j(t)S
j , φ̃j ∈ C, ‖φ̃j‖X <∞, j = 0, . . . , J

}
,

where Reλ > 0, which are equipped with a norm defined by

∥∥φ̃∥∥2

ΠJ (λ,X)
:=

J∑
j=0

2(j + J)!

(2 Reλ)2j

∥∥φ̃j∥∥2

X
. (4.17)

It is easy verified that there exists a function C(λ) such that

∥∥∂Sφ̃∥∥2

ΠJ−1(λ,X)
≤ C(λ)

∥∥φ̃∥∥2

ΠJ (λ,X)
. (4.18)

Here, we will use function spaces X related to the smoothness in tangential direction. Using Lemma A.1
in [11] the following mapping property of the operators E` can be easily shown by induction.

Lemma 4.5. Let ` = N0 and k(`) = 2b `2c. Then, for any λ ∈ C with Reλ > 0 and m ∈ R+ it holds

e−λSE` : Hm(Γ)→ Π`(λ,Hm−k(`)(Γ)).

Definition 4.6 (Admissible cut-off function). We denote a monotone function χ ∈ C∞(Ω) an admissible cut-
off function, if there exist constants 0 < s1 < s0 <

1
2‖κ‖

−1
L∞(Γ) such that χ ≡ 0 outside an s0-neighbourhood

of ∂Ω and otherwise χ(x) = χ̂(s), where χ̂(s) = 1 for s < s1. For an admissible cut-off function χ we call by
χ-neighbourhood the sup supp(χ̂)-neighbourhood of ∂Ω.

Lemma 4.7. Let φ̃ ∈ ΠJ(λ,H2(∂Ω)) for some λ ∈ C with Reλ > 0, χ an admissible cut-off function,

φ(x) = φ̃(t, sε ) in the χ-neighbourhood of the boundary. Then, there exists a constant CJ independent of φ̃ such
that the function v(x) = ε curl2D(φχ) satisfies

∥∥v∥∥
H(div,Ω)

≤ CJ
√
ε
∥∥φ̃∥∥

ΠJ (λ,H1(Γ)
,

∥∥ curl2D v
∥∥
L2(Ω)

≤ CJ√
ε

∥∥φ̃∥∥
ΠJ (λ,H2(Γ)

.

Proof. Due to the presence of the cut-off function it suffices to estimate v in the χ-neighbourhood of the
boundary. Here, we can use the local coordinate system and define v̂ = (v̂t, v̂s)

> such that v(x) = v̂t(t, s) n⊥(t)+
1/(1− sκ(t)) v̂s(t, s) n(t) for s < s0 := sup supp(χ̂). Similiarly to Lemma 4.7 in [11] it follows that there exists
a constant C such that for an operator D ∈ {e>1 , e>2 , curl2D,div},∥∥Dv

∥∥
L2(Ω)

≤ C
∥∥Dv̂

∥∥
L2(Γ×(0,s0))

. (4.19)

Using the definition of v and the representation of curl2D in local coordinates we find that

v̂t(t, s) = −∂Sφ̃(t, sε )χ̂(s)− ε φ̃(t, sε )χ̂′(s), v̂s(t, s) = ε ∂tφ̃(t, sε )χ̂(s).

For the L2(Γ× (0, s0))-norm of div v̂ and curl2D v̂ we need the derivatives

∂sv̂t(t, s) = −ε−1∂2
Sφ̃(t, sε )χ̂(s)− 2 ∂Sφ̃(t, sε )χ̂′(s)− ε φ̃(t, sε )χ̂′′(s),

∂tv̂t(t, s) = −∂t∂Sφ̃(t, sε )χ̂(s)− ε ∂tφ̃(t, sε )χ̂′(s),

∂sv̂s(t, s) = ∂t∂Sφ̃(t, sε )χ̂(s) + ε∂tφ̃(t, sε )χ̂′(s),

∂tv̂s(t, s) = ε ∂2
t φ̃(t, sε )χ̂(s).
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Using the Laplace transform of monomials, Youngs inequality and the definition of the norm of ΠJ(λ,C)
by (4.17) we find that

∫ ∞
0

|φ̃(t, S)|2 dS ≤
J∑
j=0

J∑
k=0

|φ̃j ||φ̃k|
(j + k)!

(2 Reλ)j+k
≤

J∑
j=0

1

(2 Reλ)2j
|φ̃j |2

J∑
k=0

(j + k)!

≤
J∑
j=0

2(j + J)!

(2 Reλ)2j
|φ̃j |2 = ‖φ̃‖2ΠJ (λ,C).

Now, using the fact that ds = εdS, (4.18) and Lemma 4.8 in [11] to estimate the terms with derivatives of χ̂
we find that∥∥v̂∥∥

H(div,Γ×(0,s0))
≤ C
√
ε ‖φ̃‖ΠJ (λ,H1(Γ)),

∥∥ curl2D v̂
∥∥
L2(Γ×(0,s0))

≤ C√
ε
‖φ̃‖ΠJ (λ,H2(Γ)),

and with (4.19) the statement of the lemma follows. �

Lemma 4.8. Let the assumptions in Lemma 4.4 be fulfilled. Then, for N = 0, 1, 2 there exist constants ηmax

and CN independent of η such that for all η ∈ (0, ηmax)

∥∥∥vBLappr,N −
N∑
j=0

(
2 η

ωρ

) j
2

vjBL

∥∥∥
H(div,Ω)

≤ CN η
2N+3

4 ,

∥∥∥ curl2D
(
vBLappr,N −

N∑
j=0

(
2 η

ωρ

) j
2

vjBL
)∥∥∥
L2(Ω)

≤ CN η
2N+1

4 .

Proof. We have defined the near field velocity vBLappr,N in (2.7) in terms of the near field velocity potential

φappr,N (x) = φ̃appr,N (t, S) for S = s
√

ωρ0
2 η and a cut-off function χ. The near field velocity terms vjBL of

the asymptotic expansion are defined in Sec. 3.2 in a similar way in terms of near field velocity potentials

φj(x) = φ̃j(t, S).
Hence, we start with the estimation of the near field velocity potentials in Γ× [0,∞):

φ̃appr,N −
N∑
j=0

(
2 η

ωρ0

) j
2

φ̃j =
1

2
(1 + i)e−(1−i)S

( N∑
`=0

(
2 η

ωρ0

) `
2

E`(vappr,N · n⊥)−
N∑
j=0

(
2 η

ωρ0

) j
2

j∑
`=0

E`(v
j−` · n⊥)

)

=
1

2
(1 + i)e−(1−i)S

( N∑
`=0

(
2 η

ωρ0

) `
2

E`((vappr,N −
N∑
j=0

(
2 η

ωρ0

) j
2

vj) · n⊥)

+

(
2 η

ωρ0

)N+1
2

N∑
`=1

E`(

`−1∑
j=0

(

(
2 η

ωρ0

) j
2

vN+1−`+j) · n⊥)

)
.

Using Lemma 4.5 we find that for any m ∈ R+

∥∥∥∥φ̃appr,N −
N∑
j=0

(
2 η

ωρ0

) j
2

φ̃j
∥∥∥∥

ΠN (−(1−i),Hm(Γ))

≤ C1,N

∥∥∥∥vappr,N · n⊥ −
(

2 η

ωρ0

) j
2

vj · n⊥
∥∥∥∥
Hm+bN/2c(∂Ω)

+ C2,Nη
N+1

2

N∑
j=0

∥∥∥∥vj · n⊥∥∥∥∥
Hm+bN/2c(∂Ω)

≤ CN η
N+1

2 , (4.20)

where we have used Lemma 4.4 and the fact that for smooth enough boundary ∂Ω the terms vj ·n⊥ ∈ Hm(∂Ω)
for any m ∈ R+ (which can be similarly proven than [11, Lemma 2.3]).

Now, using Lemma 4.7 with ε =
√

2η/(ωρ0) we find the desired statement. �
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4.4. Impedance boundary for velocity: Proof of stability and modelling error

Now, we are in the position to prove the stability and estimates on the modelling error for the approximative
solutions.

Proof of Lemma 2.1. The statement of the lemma is a simple consequence of Lemma 4.4, [11, Lemma 2.3] and
the triangle inequality. �

Proof of Theorem 2.4. The estimates on the velocity in (2.9a) and (2.9b) follow from Lemma 2.2 of [11],
Lemma 4.4, Lemma 4.8 and the triangle inequality.

Due the the equality

pj = − iρ0c
2

ω
div vj

and a similar definition of pappr,N as multiple of div vappr,N in (2.6) the estimate on the pressure in (2.9a)
follows by the estimate on the H1(Ω)-norm of the divergence of the velocities in Lemma 4.4, Lemma 2.2 of [11]
and the triangle inequality. �

4.5. Asymptotic equivalence of the two approximate solutions

For the proof of the asymptotic equivalence of the two approximative solutions we rely on the following lemma
on the asymptotic equivalence of the pressure approximation qappr,N and the related asymptotic expansion of
order N . The proof of this lemma uses elements of the proof of Lemma 4.4 and will be left to the reader.

Lemma 4.9. Let the assumptions of Theorem 2.7 be fulfilled and let f ∈ (L2(Ω))2 ∩ (Hm(Ω̃))2 for any m ∈ N
in some neighbourhood Ω̃ ⊂ Ω of ∂Ω, i.e., ∂Ω ⊂ ∂Ω̃ and curl2D f ∈ Hm(Ω). Then, for any m ≥ 1, any Ω̃⊂ ⊂ Ω̃
there exist constants ηmax,m and Cm,N independent of η such that for the solutions qappr,N of the approximative
models (2.12) and any η ∈ (0, ηmax,m) it holds

∥∥∥qappr,N −
N∑
j=0

(
2η

ωρ0

) j
2

pj

∥∥∥
H1(Ω)∩Hm(Ω̃)

≤ Cm,Nη
N+1

2 .

Proof of Lemma 2.5. The proof consists of two parts, first we proof the identity of the approximation for N = 0
and N = 1, and their equivalence for N = 2.

(i) Let N = 0. We first take the divergence of (2.3a) and second we evaluate the normal component of (2.3a)
on ∂Ω, use (2.3b), and insert pappr,0 given by (2.6) in both cases. This gives (2.10) when qappr,0 is replaced by
pappr,0. Hence, the two pressure approximations are identical.

As (2.3a) and (2.6) implies

vappr,0 =
i

ρ0ω
(f −∇pappr,0)

which exactly the relation between wappr,0 and qappr,0 given by (2.13a). So, the two velocity approximations
are identical too. As the boundary correctors vBLappr,0 and wBL

appr,0 are both defined by (2.7) and (2.8) they are
also identical.

For N = 1 the identity of the approximations follow in exactly the same way.
(ii) Let N = 2. Indeed the pressure approximation pappr,2 given by (2.6) satisfy (2.12a) as qappr,2, however,

it fulfills a different boundary condition than (2.12b). Using Lemma 4.4, Lemma 4.9 and the triangle inequality
we find for any m ≥ 1 that

∥∥pappr,2 − qappr,2

∥∥
H1(Ω)∩Hm(Ω̃)

≤
∥∥pappr,2 −

2∑
j=0

(
2η

ωρ0

) j
2

pj
∥∥
H1(Ω)∩Hm(Ω̃)

+
∥∥qappr,2 −

2∑
j=0

(
2η

ωρ0

) j
2

pj
∥∥
H1(Ω)∩Hm(Ω̃)

≤ Cm η
3/2,

(4.21)

where Cm are constants independent of η. Then, insertion of (2.6) into (2.5a) implies that the a-posteriori
defined velocity is given by

vappr,2 =
i

ρ0ω
(f −∇pappr,2)− η + η′

ρ2
0c

2
∇pappr,2 +

η

ρ2
0ω

2
curl2D curl2D f ,



18

which is exactly the relation between wappr,2 and pappr,2, see (2.13b). Hence, the difference is given by

vappr,2 −wappr,2 =
i

ρ0ω
∇(pappr,2 − qappr,2)− η + η′

ρ2
0c

2
∇(pappr,2 − qappr,2), (4.22)

and (4.21) implies

‖vappr,2 −wappr,2‖(L2(Ω))2∩(Hm−1(Ω̃))2 ≤ Cm η
3/2. (4.23)

Applying curl2D to (4.22) the right hand side vanishes and we see that curl2D vappr,2 ≡ curl2D wappr,2.
Now, applying div to (2.13b) and inserting (2.12a) we find that

div wappr,2 =
iω

ρ0c2
qappr,2,

which exactly the relation between div vappr,2 and pappr,2 given by (2.6). Hence,

div(vappr,2 −wappr,2) = − iω

ρ0c2
(pappr,2 − qappr,2),

and so (4.21) implies with a constant C independent of η

‖ div(vappr,2 −wappr,2)‖L2(Ω) = C η
3/2.

The estimate on the difference of the boundary layer correctors is similar to the proof of Lemma 4.8, and we
give details only if necessary for understanding. As the boundary layer correctors have both the same definition,
see (2.7) and (2.8), and using Lemma 4.5 and (4.7) we find that

η−
1/4‖vBLappr,2 −wBL

appr,2‖H(div,Ω) + η
1/4‖ curl2D(vBLappr,2 −wBL

appr,2)‖L2(Ω) ≤ C ‖(vappr,2 −wappr,2) · n⊥‖H3(∂Ω)

and using (4.23) we find the desired result.
This finishes the proof. �

Order N = 0 Order N = 1 Order N = 2 Exact model

−1

−0.5

0

0.5

1

Mesh

Figure 2. Comparison of the real part of the pressure offer the approximate models of order
N = 0, 1, 2 to the exact pressure (η = 4 · 10−6, ω = 15). The mesh resolving the boundary
layers used in the FEM of higher order is shown in the right subfigure.

5. Numerical results

For a torus domain with omitted disk, see Fig. 1(b), we have performed numerical simulations for the exact
model (2.2) and the approximative pressure models (2.10)–(2.13). We consider the problem in dimensionless
quantities. The domain is the rectangle [0, 1] × [0, 2], where the left and right sides are identified with each
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other, and the disk of diameter 0.30 is centered at (0.25, 1.5). As source f we use the gradient of the Gaussian
exp(−|x−x0|2/0.005) with x0 = (0.75, 0.5)>. Furthermore, we choose for the speed of sound c = 1, the (mean)
air density as ρ0 = 1 and neglect the second viscosity, η′ = 0.

For the simulation we have used high-order finite elements within the numerical C++ library Concepts [3] to
push the discretisation error below the modelling error. To resolve the boundary layers in the velocity, we refine
the mesh geometrically towards the boundary, see the right picture in Fig. 2. The high gradients of the source
term are considered in a further (geometric) mesh refinement towards the point x0. The far field solution of
the approximative models could be computed to a high precision on a rather coarse mesh as no boundary layer
has to be resolved. Anyhow, we have computed the far field solution on the mesh illustrated in Fig. 2, which
allowed us firstly a straightforward evaluation of norms of the error functions and secondly a representation of
the sum of far and near field on the same mesh. We have chosen the polynomial degree to be 11 to obtain low
enough discretisation errors such that the modelling errors become visible.

For η = 4 · 10−6 and ω = 15 we have illustrated the exact pressure and its approximation qappr,0, qappr,1 and
qappr,2 of order 0, 1 and 2, respectively, in the first four subfigures of Fig. 2. The colour scaling in all the four
subfigures matches to allow for a direct comparison. In this example the approximations of order 0 and order 1
provide a coarse field description, where the pressure amplitude is overestimated. The approximation of order 2,
however, predicts the exact quite well. For this example, however, with η = 1.6 · 10−3 we have illustrated the
boundary layer in the tangential velocity component in Fig. 3, both for the exact model and the approximation
of order 2. The boundary layer thickness is dBL =

√
2η/ωρ0 = 1.46 · 10−2. Here, the approximative far

field velocity wappr,2 and the respective near field were computed from the pressure approximation qappr,2. The
representation of the velocity is in a side view for x1 = 0, for which the first component is tangential to the lower
boundary at x2 = 0. The approximate solution is the sum of the far field, which does not fulfill a homogeneous
Dirichlet boundary condition, and a correcting near field. The far field solution approximates the exact one
away from the boundary very well, see Fig. 3(a). In its turn Fig. 3b) shows the near field correction and the
behaviour of the solutions close to the wall.

To analyse the modelling error in dependence of the viscosity, and hence ε, we have performed numerical
simulations on the simple rectangular torus domain Ω = [0, 1] × [0, 1] (i.e., without the hole of the previous
problem), for which the left and right sides are again identified with each other. The other parameters are
identical to those of the previous problem. The studied frequency ω = 15 is not a Neumann eigenfrequency of
−∆, the closest eigenfrequencies are

√
20π ≈ 14.05 and 5π ≈ 15.71. We compute the error functions on the

subdomain Ωδ = [0, 1]× [0.2, 0.8], which has a distance of δ = 0.2 to the boundary of Ω. This distance is large
enough such that in Ωδ for the studied viscosities the contribution of the exponentially decaying near fields can
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Figure 3. Imaginary part of first velocity component in side view for x1 = 0 with√
η = 4 · 10−2, which is at x2 = 0 tangential to the bottom wall. The exact solution v1 and the

approximate (far field) solution (vappr,2)1 of order 2, the corresponding near field (vBLappr,2)1 and
the sum of both are shown, in (a) for the whole line x1 = 0, and in (b) close to the wall.
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Figure 4. The relative modelling error ‖p − qappr,N‖H1(Ω)/‖p‖H1(Ω) + ‖v − wappr,N‖H(div,Ω)/‖v‖H(div,Ω)

for N = 0, 1, 2 w.r.t. square root of viscosity for (a) a dimensionless frequency value ω = 15 and (b) an

eigenfrequency ω =
√

20π.

be neglected. In Fig. 4(a) we have shown the relative modelling error

‖p− qappr,N‖H1(Ωδ)/‖p‖H1(Ωδ) + ‖v −wappr,N‖H(div,Ωδ)/‖v‖H(div,Ωδ)

for the approximative solutions of order 0, 1 and 2 in dependence of the (square root of the) viscosity. We
observe linear convergence in

√
η for the approximative solution of order 0, quadratic convergence for that of

order 1 and convergence of order 3 for the approximative solution of order 2. These results verify that the
estimates in Theorem 2.4 are sharp. The error is computed on the above mesh with polynomial degree 14 and
included indeed a small discretisation error which becomes visible for small viscosities (

√
η < 5 · 10−3) and the

approximative model of order 2.
The theoretical estimates are for non-resonant frequencies and the constants may blow up if the frequency

tends to a resonant one, i.e., a Neumann eigenfrequency of −∆. The eigenfrequencies for the studied example
are ωk,m = π

√
k2 + 4m2, for k ∈ N,m ∈ N0. In addition we analyse the modelling error in dependence of

the viscosity for an eigenfrequency value ω0= ω2,2 = ω4,1 =
√

20π, see Fig. 4(b). The convergence in this case
looses in order, i.e., linear convergence in

√
η for the approximative solution of order 1, convergence of order

1.7 for order 2 and the approximative solution of order 0 explodes and is not represented in the picture.
Furthermore, we analyse the modelling errors of the three approximative solutions in dependence of the

frequency for the rectangular domain and η = 1.6 · 10−3, see Fig. 5. The approximate solution of order 0 and
so the modelling error blows up close to the eigenfrequencies. However, the approximate solution of order 1
blows up only close to the eigenfrequency values ωk,0 = kπ for k ∈ N. That could be explained by the fact that
for m = 0 in this example the velocity and so its divergence is constant in x1 and the additional term in the
boundary condition of order 1 disappears. In this case, the order 1 approximation at that frequencies becomes
identical to that of order 0. Conversely, the error of the approximate solution of order 2, due to the additional
term in the domain, always stays lower than 3 · 10−2 and, as it was shown earlier, converges w.r.t. viscosity
even at the resonance. Yet, in this work we will leave that sentence without a proof and the numerical results
are presented for illustration reason only.

Note, that the above simulation corresponds for dimensionful quantities for example to a rectangular domain
of size 4 cm× 8 cm, where the hole has a diameter of 1.2 cm, a frequency ω = 5.146 kHz, a speed of sound in air
c = 343 m/s, a mean density of air ρ0 = 1.2 kg/m3. Then, a dynamic viscosity of air η = 17.1 mPa s corresponds
to a dimensionless viscosity of 1.04 · 10−6 (dimensionless value of

√
η would be 1.02 · 10−3), which is close to the

lowest viscosity value studied in the above experiments.

6. Conclusion

In this article the acoustic wave propagation in viscous gases inside a bounded two-dimensional domain has
been studied as a solution of the compressible linearised Navier-Stokes equation. In frequency domain the
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Figure 5. The modelling error ‖p−qappr,N‖H1(Ω)/‖p‖H1(Ω) +‖v−wappr,N‖H(div,Ω)/‖v‖H(div,Ω) for N = 0, 1, 2

w.r.t. dimensionless frequency ω for η = 1.6 · 10−3.

governing equations are decoupled in equations for the velocity and pressure, where the pressure equation lacks
boundary conditions. The velocity exhibits a boundary layer on rigid walls, whose extend scales with the square
root of the viscosity and the finite element discretisation requires a heavy mesh refinement in the neighbourhood
of the wall. Using the technique of multiscale expansion for small viscosities impedance boundary conditions
for velocity and pressure are derived up to second order. The derivation and presented analysis is based on a
previous work by the authors [11], where the complete asymptotic expansion of velocity and pressure has been
derived. It has be shown that the velocity is represented as a sum of a far field expansion, which does not
exhibits a boundary layer, and a correcting near field expansion close to the wall. For the pressure, which does
not exhibit a boundary layer, there is only a far field expansion and a near field expansion is absent.

Using boundary conditions for the pressure presented in this work and respective partial differential equations
pressure approximations are defined independently of respective velocities. The zero-th order condition is the
well-known Neumann boundary condition for rigid walls, and the conditions of first or second order take into
account absorption inside the boundary layer. The velocity boundary condition is for a far field approximation,
whose finite element discretisation does not need a special mesh refinement close to walls. Here a boundary layer
contribution depending on the far field velocity can be added to obtain an overall highly accurate description of
the velocity. The derivation of the boundary conditions for either pressure or velocity include curvature effects,
where the curvature becomes present in the boundary conditions of order 2.

The approximative models including impedance boundary conditions are justified by a stability and error
analysis. The results of the numerical experiments have been provided to illustrate the stability and error
estimates. Although, throughout the article the frequency is assumed to be not an eigenfrequency of the limit
problem for vanishing viscosity, we show by numerical computations that the second order model provides
accurate approximations for all frequencies and the first order model except some of the above mentioned
eigenfrequencies. This results give a foundation for future studies for the case of resonances of the limit problem
in bounded domains.
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