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Abstract. Exchanging messages between nodes of a network (e.g., em-
bedded computers) is a fundamental issue in real-time systems involving
critical routing and scheduling decisions. In order for messages to meet
their deadlines, one has to determine a suitable (short) origin-destination
path for each message and resolve conflicts between messages whose
paths share a communication link of the network. With this paper we
contribute to the theoretic foundations of real-time systems. On the one
hand, we provide efficient routing strategies yielding origin-destination
paths of bounded dilation and congestion. In particular, we can give good
a priori guarantees on the time required to send a given set of messages
which, under certain reasonable conditions, implies that all messages
can be scheduled to reach their destination on time. Finally, for message
routing along a directed path (which is already NP-hard), we identify a
natural class of instances for which a simple scheduling heuristic yields
provably optimal solutions.

1 Introduction

In a distributed real-time system, processes residing at different nodes of the
network communicate by passing messages. One of the most challenging and
important tasks for the design of a distributed system is the problem of sending
a given set of messages through the network from the respective origin- to the
destination nodes on time.

The message routing problem. To model the problem we represent the com-
munication network by a (directed or undirected) graph G = (V, E), whose edges
correspond to the communication links of the network. In the message routing
problem, each message Mi = (si, ti, di) of a given set of messages {Mi}i∈I con-
sists of di packets of unit size that have to be sent from the origin node si ∈ V
to the destination node ti ∈ V within a certain time horizon T > 0. Usual
constraints are (see e.g., [14], [15], or [13, Chapter 37]):

(i) it takes one time unit to send a packet on any edge e ∈ E,
(ii) at most one packet can traverse an edge per time unit,
(iii) a message has to be completely received by a node before the node can

start to transmit it to any other node.
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The last constraint is due to integrity checks performed by each node and implies
that each message Mi has to be sent along a unique path Pi from its origin to
its destination node.

Example 1 Consider the problem illustrated in Figure 2 (see Section A) where
three messages need to be routed through a grid graph within a time horizon of
twelve time units. Suppose we decide to send each message along the (unique)
shortest path. Then, after three time steps there is a conflict between the second
packet of message 1 and the first packet of message 2; both want to traverse
edge e in time step four. No matter which message is assigned a higher priority,
we need at least 13 time steps to send all messages from their sources to their
destinations. On the other hand, if we choose the longer path {a, b, c, d, f, g} for
message 1, all messages can be sent within twelve time units since all paths are
edge-disjoint.

Store-and-forward packet routing. In the special case where each message
consists of only one packet, message routing reduces to store-and-forward packet
routing, a fundamental routing problem in interconnection networks (see, e.g.,
Leighton’s survey [10]). Store-and-forward packet routing can be formulated as
an integral dynamic mulitcommodity flow problem with unit capacities and unit
transit times on the edges. While this problem is known to beNP-hard [6], store-
and-forward packet routing can be solved efficiently by calculating a maximum
flow over time in case all packets share the same origin and destination. In
contrast, the message routing problem turns out to be NP-hard even in the
special case where all messages have the same origin and destination [14]. Thus,
message routing is considerably harder than packet routing.

Routing and scheduling. A natural approach for solving the message routing
problem is the following two-stage strategy. In the first stage (the routing stage),
determine the set of paths {Pi}i∈I . Then, in the second stage (the scheduling
stage), resolve conflicts between messages sharing an edge. Of course, in order
to determine good solutions, the paths chosen in the routing stage must feature
certain desirable properties that guarantee the existence of good solutions to the
second stage scheduling problem.

Congestion and dilation. If the paths {Pi}i∈I are given, we immediately
obtain two trivial lower bounds on the minimum amount of time needed to send
all messages, which we call the makespan of the problem. The first one is the
congestion

C = max
e∈E

∑

i∈I:e∈Pi

di,

i.e., the maximum number of packets that have to traverse a single edge. The
second one is the dilation

D = max
i

(di|Pi|),

i.e., the maximum time necessary to send a message without any delays from its
origin to its destination. As usual, |Pi| denotes the number of edges in path Pi.



As we will see in the following, C and D not only provide lower bounds on the
makespan but also good upper bounds in terms of C and D can be determined.

A related job shop scheduling problem. Given paths {Pi}i∈I , it remains
to declare priorities on the messages whenever two packets of different messages
meet at an intermediate node and want to use the same outgoing edge. How-
ever, this is exactly an instance of the well-studied acyclic preemptive job shop
scheduling problem. Every edge corresponds to a machine and a message is a
job that has to be consecutively processed on the machines corresponding to
the edges on its path. In shop scheduling, the processing requirement of a job is
usually machine-dependent. In our case, however, we have the special property
that the processing requirement of a job/message is identical (namely equal to
the size of the message) on each machine/edge on its path.

It is well-known that even this special case of acyclic preemptive job shop
scheduling is NP-hard and even NP-hard to approximate with performance
guarantee 5

4
− ǫ for any ǫ > 0 [19]. On the positive side, Feige and Schei-

deler [2] prove the existence of a schedule with makespan O(C + D log log dmax)
for the preemptive job shop scheduling problem in general by using the non-
constructive General Lovász Local Lemma (LLL). (Here, dmax denotes the max-
imum operation-length, resp. message-size.) An algorithmic version of the Gen-
eral LLL can be found in [1]. In the special case where all operation lengths
are identical, Leighton et al. [11], [12] even establish an efficient randomized
algorithm which computes a schedule with makespan O(C + D).

Desirable properties of paths. We now return to our discussion of the two-
stage approach to message routing discussed above. As a consequence of the
scheduling results mentioned in the previous paragraph, a promising approach
is to determine a set of paths in the routing stage such that C + D is relatively
small. The first constant-factor approximation for the special case of store-and-
forward packet routing, established by Srinivasan and Teo [18], is also based on
this idea. Basically, Srinivasan and Teo establish a constant-factor approximation
for the problem to find paths minimizing C + D. Combining this result with
the O(C + D)-schedule for acyclic job shop scheduling with constant operation
lengths (proved in [11],[12]), they obtain a constant-factor approximation for
packet routing. A similar idea has been used by Fleischer and Skutella [3] in the
general context of dynamic network flow problems.

Our contributions. In Section 2 we describe an algorithm that, given a set of
messages {Mi}i∈I on a communication network, and a desired dilation ∆, finds a
set of paths of dilation at most ∆ and congestion smaller than C∗(∆)+∆, where
C∗(∆) denotes the congestion of an optimal fractional solution with dilation at
most ∆. The dilation ∆ that is given to the algorithm as an input can be chosen
arbitrarily (e.g., ∆ = T/2). Of course, the smaller the dilation ∆, the larger
is the optimal congestion C∗(∆). In practice it is thus reasonable to try several
values of ∆ ≤ T in order to find a good tradeoff between dilation and congestion.
In theory, one can, for example, use binary search in order to determine ∆ such



that ∆ + C∗(∆) or ∆ + (C∗(∆) + ∆) (or some other function of ∆ and C∗(∆))
is minimal.

Although our algorithm can be applied for arbitrary message lengths, it even
improves upon the performance guarantee of [18] for the special case of store-
and-forward packet routing by a multiplicative factor of two. The main difference
between our approach and the approach in [18] is our use of a path-based linear
programming formulation which turns out to be efficiently solvable as the cor-
responding separation problem is a special case of the length-bounded shortest
path problem. (The latter can be solved with a modification of Dijkstra’s algo-
rithm). Given an optimal solution to the linear program, we iteratively round1

the fractional solution into an integral one, and guarantee that the congestion is
not increased by more than ∆.

Our path-finding algorithm works for arbitrary directed or undirected graphs.
Combined with either approximation algorithms for the acyclic job shop schedul-
ing problem, or with suitable priority heuristics, it therefore returns solutions for
the message routing problem in general. In many situations in practice, however,
the communication graphs are very simple. It therefore makes sense to consider
the problem on special graph classes. In Section 3 we consider the message rout-
ing problem on directed paths (which is already NP-hard [14]), and show that
the Farthest-Destination-First Algorithm works optimally on a directed path P
in case the messages are not nested, i.e., in case

si <P sj =⇒ ti ≤P tj ∀i, j ∈ I.

2 Routing with small congestion and dilation

Note that any set of edge-disjoint paths {Pi}i∈I , where the length of each path Pi

is bounded by T
di

, forms a solution to the message routing problem: all messages
can be sent directly without any delay from their origin to their destination
nodes where they arrive before time T . Of course, such length-bounded edge-
disjoint paths do not necessarily exist (it is NP-hard to decide whether they do
exist or not [4]). However, some delays are allowed if the path-lengths do not
meet the upper bounds ( T

di
)i∈I . Thus, we restrict to shorter paths on which we

minimize the congestion.

Given a suitable value ∆ ≤ T (which can, for example, be determined by
binary search), we define for each i ∈ I the set of paths

Pi :=

{

si, ti-paths in G of length at most
∆

di

}

and P :=
⋃

i∈I Pi. Among P, we are looking for a set of representatives {Pi}i∈I

with minimal congestion. That is, we are interested in an optimal integral solu-

1 In the context of approximation algorithms, iterative rounding has been successfully
applied for the first time by Jain [8].



tion to the following linear program

min C

s.t.
∑

P∈Pi

xP ≥ 1 ∀i ∈ I,

∑

i∈I

∑

P∈Pi:e∈P

dixP ≤ C ∀e ∈ E,

xP ≥ 0 ∀P ∈ P.

Note that the paths in the support of any feasible integral solution x̂ ∈ {0, 1}|P|

of the linear program above with objective value Ĉ yield a set of representatives
{Pi}i∈I with dilation at most ∆ and congestion Ĉ: the first set of constraints
ensures that at least one path is found for each message, while the second set of
constraints guarantees that the total number of packets traversing a single edge
does not exceed Ĉ.

2.1 Optimal fractional solutions

To find a good integral solution to the linear program above, we first determine
an optimal fractional solution x∗ with objective value C∗, and then, in a second
step, round x∗ to an integral solution x̂ ∈ {0, 1}|P| whose congestion is at most
C∗ + ∆. At first sight, it seems to be impossible to find an optimal fractional
solution in polynomial time, since the number of variables is in general exponen-
tial in the size of the underlying network G. However, if we consider the dual
linear program, we get

max
∑

i∈I

zi

s.t.
∑

e∈E

ye ≤ 1

∑

e∈P

ye ≥
zi

di

∀P ∈ Pi, i ∈ I

ye, zi ≥ 0 ∀e ∈ E, i ∈ I.

The corresponding separation problem can be formulated as a length-bounded
shortest path problem: find a shortest si, ti-path with respect to the edge costs ye

among those paths containing at most ∆
di

edges. In contrast to the general length-
bounded shortest path problem with arbitrary edge lengths (which is known to
be NP-hard [4]), this problem can be solved efficiently with a modification of
Dijkstra’s algorithm (sketch: in each iteration of Dijkstra’s algorithm determine a
shortest path among those with at most 1, 2, . . . edges). Thus, by the equivalence
of optimization and separation [5], an optimal fractional solution to the dual
and thus also to the primal linear program can be found in polynomial time. In
practice, column generation seems to be the most suitable technique to actually
solve the primal linear programming problem.



2.2 Iterative rounding

Given the upper bound ∆ on the dilation of paths and an optimal fractional
solution x∗ with objective value C∗ to the corresponding linear program, we now
describe how to round the fractional solution to an integral one while increasing
congestion at most by ∆.

In the rounding algorithm described below, we iteratively solve a linear pro-
gramming relaxation and fix a path Pi for message i as soon as the corresponding
variable xPi

attains value 1. In the following, F is the set of those messages i for
which a path Pi has already been fixed. Initially, F is empty. The messages in
F are removed from I such that I only contains the messages for which a path
remains to be fixed. In each step of the algorithm, we thus solve the following
linear program (LP ):

min C
∑

P∈Pi

xP ≥ 1 ∀i ∈ I (1)

∑

i∈I

∑

P∈Pi:e∈P

dixP ≤ C −
∑

i∈F :e∈Pi

di ∀e ∈ E (2)

xP ≥ 0 ∀P ∈ P.

The basic idea of the algorithm is as follows: in each iteration, we fix the
integral variables and drop at least one of the constraints, before we solve the
(LP ) again. That is, in each iteration, whenever there is an index i with x∗

P = 1
for some P ∈ Pi, we move index i from I to F . Moreover, we remove all paths
not in the support of x∗ from P. After fixing the integral variables, we can easily
find a constraint of type (2) which can be dropped from the updated (LP ): the
reason is that even if all remaining variables are rounded up to 1, the right-hand
side of the inequality is not violated by more than ∆ (see Theorem 1).

Algorithm 1 (Iterative Rounding Algorithm)
1. Initialize: F ← ∅;
2. Compute a basic optimum solution x∗ to (LP );
3. For i ∈ I, let Pi ← {P ∈ Pi | x∗

P > 0};
4. WHILE ∃i ∈ I and Pi ∈ Pi with x∗(Pi) = 1 DO

– Set I ← I \ {i};
– Set F ← F ∪ {i};

5. Set P ←
⋃

i∈I Pi;
6. WHILE P 6= ∅ DO

– Drop a constraint of type (2) with

∑

i∈I

∑

P∈Pi:e∈P

di < C∗ −
∑

i∈F :e∈Pi

di + ∆;

– GoTo step 2;



It remains to show that the rounding algorithm is well-defined, i.e., we need
to show the following: in case the set P of non-integral components is non-empty,
we can find an edge e ∈ E such that the congestion cannot be violated by more
than ∆, even if all non-integral components are rounded up to one.

Theorem 1. If x∗ is a basic optimum solution to (LP ) with 0 < x∗
P < 1 for all

P ∈ P, then there exists an edge e ∈ E with
∑

i∈I

∑

P∈Pi:e∈P

di < C∗ −
∑

i∈F :e∈Pi

di + ∆.

The theorem can be derived from a more general result shown in [9], stating
that any fractional solution x∗ of a linear equality system Ax = b can be rounded
to an integral vector x̂ satisfying Ax̂ < b+∆, whenever the sum of positive entries
in each column of matrix A is bounded from above by ∆, and the sum of negative
entries in each column is bounded from below by −∆. However, the proof turns
out to be much simpler for our special inequality system:

Proof. Let n = |P|. Since x∗ is a basic feasible solution, there exist linearly
independent tight constraints T1 and T2 of type (1) and (2), respectively, such
that

n = |T1|+ |T2|.

Observe that for each constraint j ∈ T1 we have

∆
∑

P∈Pj

x∗
P = ∆. (3)

Suppose by contradiction that for each e corresponding to a constraint in T2,
we have

∑

i∈I

∑

P∈Pi:e∈P

di ≥ C∗ −
∑

i∈F :e∈Pi

di + ∆. (4)

Since
∑

i∈I

∑

P∈Pi:e∈P

dix
∗
P = C∗ −

∑

i∈F :e∈Pi

di

holds by the tightness of the constraint, equation (4) turns out to be equivalent
to

∑

i∈I

∑

P∈Pi:e∈P

di(1− x∗
P ) ≥ ∆. (5)

Summing up the inequalities of type (3) and (5) for all constraints in T1 and
T2, we get

n∆ ≤
∑

j∈T1

∆
∑

P∈Pj

x∗
P +

∑

e∈T2

∑

i∈I

∑

P∈Pi:e∈P

di(1− x∗
P )

=
∑

i∈I

∑

P∈Pi

(

χT1

i ∆x∗
P +

∑

e∈T2∩P

di(1− x∗
P )

)

≤
∑

i∈I

∑

P∈Pi

(

∆x∗
P + ∆(1− x∗

P )
)

= n∆,



where χT1

i ∈ {0, 1} is an indicator variable with χT1

i = 1 iff i ∈ T1. Since
0 < x∗

P < 1 for all P ∈ P, the second inequality in the derivation above is an
equality only if for all i ∈ I and all paths P ∈ Pi the following two conditions
are satisfied.

1. χT1

i = 1, and
2.

∑

e∈T2∩P di = ∆.

If we now consider each column of (LP) separately, add the column’s entries
corresponding to constraints of type (2) and subtract the column’s entries cor-
responding to constraints of type (1), we achieve a result of 0 in each column.
This demonstrates that T1 and T2 must be linearly dependent constraints. A
contradiction! ⊓⊔

Thus, after at most |E| iterations, the algorithm terminates with an integral
vector x̂ ∈ {0, 1}|P|, whose support contains a path Pi for each message i ∈ I.
It is guaranteed that each path Pi does not contain more than ∆

di
edges, and

that the congestion of the paths violates the congestion of the optimal fractional
solution by at most ∆.

Corollary 1. Given ∆, the rounding algorithm determines a set of paths {Pi}i∈I

with dilation ≤ ∆ and congestion ≤ C∗ + ∆, where C∗ is the minimum possible
congestion of fractional paths with dilation ∆.

2.3 Individual deadlines

In a more general model of the message routing problem, each message Mi is
additionally equipped with a certain deadline Di > 0, denoting the latest point
in time when the message must be received by the destination node ti. We want
to emphasize that our algorithm might as well be applied in this more general
setting: we simply restrict the path lengths with respect to the deadlines. That
is, instead of choosing a value ∆ which is not smaller than the overall time
horizon T , we choose a factor q ∈ (0, 1] and consider for each message Mi the
collection of paths

Pi :=

{

si, ti-paths in G of length at most q
Di

di

}

.

This guarantees a dilation of at most

∆ = max
i∈I

qDi

and a congestion of at most C∗ + ∆.

2.4 Arbitrary travel times

The algorithm above can also be applied in a further extension of the message
routing problem, where travel times τ (e) ∈ N>0 are associated with all edges



e ∈ E. Here τ (e) denotes the time it takes for one packet to traverse e. Thus, a
message of size di completely traverses edge e in τ (e)+di−1 time units. Further,
if message i ∈ I is to be sent along path Pi, it takes at least

τ i(Pi) :=
∑

e∈Pi

(di + τ (e)− 1)

time steps before the message is completely received by its destination node ti.
These observations show that the dilation for a given set of paths {Pi}i∈I in this
more general model becomes

D := max
i∈I

τ i(Pi),

while the congestion C = maxe∈E

∑

i∈I:e∈Pi
di remains unchanged. Note that

we can adopt our algorithm to handle travel times by defining for a given value
∆ ≤ T the collections of paths

Pi := {si, ti-paths with τ i(P ) ≤ ∆} ∀i ∈ I.

However, with arbitrary travel times, the corresponding separation problem to
our linear relaxation (LP ) is the general length-bounded shortest path problem.
While this problem is NP-hard, it can be solved approximately in the following
sense: for any ǫ > 0, one can find in time polynomial in the size of the network
G and 1

ǫ
an si, ti-path P with τ i(P ) ≤ (1 + ǫ)∆ whose cost is bounded from

above by the cost of a shortest path in Pi [7],[16], [17]. As before, the fractional
solution (which is know a (1 + ǫ)-approximation to the optimal one) can be
turned into an integral solution with the rounding algorithm described above,
since the inequality

∑

e∈P di ≤ ∆ still holds for each path P ∈ Pi and i ∈ I.
Thus, we achieve the following result.

Corollary 2. Even if each edge e ∈ E is equipped with a travel time τ (e) ∈ N>0,
a slight modification of the algorithm above returns a set of paths whose dilation
is bounded by (1+ ǫ)∆ and whose congestion differs from the optimal congestion
by an additive factor of at most (1 + ǫ)∆. Here, ǫ > 0 can be chosen arbitrarily
small.

Given the set of paths {Pi}i∈I with congestion C and dilation D, the remain-
ing problem of determining priority rules in order to minimize the makespan, can
again be formulated as an acyclic job shop scheduling problem: to incorporate
the travel times, we simply define for each message i ∈ I and each edge e ∈ E
with e ∈ Pi an additional machine ei. After job i has been executed on machine
e for di time steps, it needs to to be processed on machine ei for τ (e)− 1 time
steps, before it can proceed to the next machine corresponding to the successive
edge of e in Pi.

Note that processing times in the resulting acyclic job shop scheduling prob-
lem depend on both, the job and the machine. However, as already mentioned in
the introduction, schedules of length O(C +D log log ℓmax) can be found for this
more general problem. (In our model, ℓmax denotes the maximum of all travel
times and message sizes).



3 Message routing on paths

In this section we consider instances of the message routing problem where the
underlying network is a directed path. Since the path taken by any message
is unique on such instances, no routing decisions but only scheduling decisions
have to be taken. That is, an algorithm for the message routing problem must
only resolve conflicts if two messages want to traverse the same edge at the same
point in time. This can be done by assigning priorities to the messages such that
a message with higher priority is sent first. More precisely, even if a message is
currently being sent while a message with a strictly higher priority arrives, the
latter message is sent instantaneously. Thus, an interruption of the message of
lower priority occurs. We note that a wrong choice of a priority rule can even
lead to arbitrarily bad schedules. (An example can be found in the Section B.)

The Farthest-Destination-First Algorithm (FDFA). It is not hard to see
that the Farthest-Destination-First Algorithm leads to an optimal schedule in
the special case where all message sizes are identical. FDFA assigns a higher
priority to messages which have a farther destination according to the order of
the underlying path. In case of ties, messages with a later origin node get higher
priority. If both origin and destination of two messages coincide, ties are broken
arbitrarily. However, for arbitrary message sizes, message routing on a directed
path is known to be NP-hard [14]. (We refer to the Section B for an example
where FDFA is not optimal.)

In this section, we identify a large class of problems where FDFA is guar-
anteed to be optimal. But before, let us introduce some notation. For a mes-
sage routing instance the underlying directed path P is given by node set
V (P ) := {v1, . . . , vn} and edge set E(P ) := {ek := (vk, vk+1) | k = 1, . . . , n−1}.
We say that a message experiences additional delay or is additionally delayed
on edge e in a given schedule, if the starting time of i on e is strictly greater
than the end time of i on the predecessor edge. The makespan on an edge e
is the earliest point in time when all its messages have been sent through e. A
time interval where no message traverses a particular edge is called idle time.
(The infinitely long time interval after the makespan of an edge is not called idle
time).

We show that the Farthest-Destination-First algorithm computes an opti-
mum solution on non-nested instances. For this we need improved bounds on
the minimum makespan combining dilation and congestion.

Lemma 1. Consider an arbitrary feasible schedule. Let ek, el ∈ E(P ) with k ≤ l
be two edges of P and i ∈ I be a message which must pass these edges. Let θk

i

the time when i has completely traversed ek and let dk→l
i be the total amount of

messages passing ek and el and traversing ek after time θk
i (see Figure 4 in the

Appendix). Then a lower bound on the makespan occurring on el is θk
i + dk→l

i +
di(l − k).

Proof. See Section C. ⊓⊔
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Fig. 1. Setting of the proof of Theorem 2

Note that the bounds in the previous lemma depend on the considered sched-
ule. The following corollary states a lower bounds on the minimum makespan
on a particular edge over all feasible schedules.

Corollary 3. Let ek, el ∈ E(P ) with k ≤ l be two edges of P and i ∈ I be
a message which must pass both of these edges. Let dk→l be the total size of
messages passing ek and el. Then a lower bound on the minimum makespan on
edge el is dk→l + di(l − k).

Proof. Given an arbitrary schedule and a message i passing ek and el we know
dk→l ≤ θk

i +dk→l
i . Since dk→l and di are independent of the considered schedule,

the corollary follows directly from Lemma 1. ⊓⊔

Next we show that FDFA computes a schedule minimizing the makespan
if the underlying instance does not contain nested messages. Let <P be the
topological order of P . Recall that two messages i1, i2 ∈ I are nested if one is
strictly contained in the other one, i.e., if si1 <P si2 ≤P ti2 <P ti1 or vice versa.

Theorem 2. Consider an instance of the message routing problem where no
two messages are nested. Then FDFA computes a schedule which minimizes the
makespan on each edge simultaneously.

Proof. One simple but important observation we use implicitly many times in
the proof is the following: Since FDFA is applied on nonnested instances, no
message is interrupted by another message.

Let el ∈ E(P ) be an arbitrary edge. We try to find an edge ek with k ≤ l
and a message i such that the lower bound of Corollary 3 equals the makespan
of el in the schedule computed by FDFA. If there is no idle time on el, we are
done by setting k := l and i to an arbitrary message passing el.

Thus, we can assume that there is idle time on el. Let i be the first message
after the last idle time and let k be the largest number not greater than l such
that i is additionally delayed on ek (see Figure 1). If no such edge exists, let ek

be the unique outgoing edge of node si. Now we want to show that

MAKl = dk→l + di(l − k) (6)

which proves optimality of the makespan on el because of Corollary 3. If there
is no idle time on ek before message i is sent, this is implied by the following
three simple observations:



1. Message i is never delayed between ek and el.
2. Every message behind i on el is also behind i on ek.
3. Every message which is sent before i on ek must also pass el.

The first observation is implied by the definition of i and ek and the two latter
by the fact that FDFA is applied on nonnested instances.

So assume that there is idle time on ek before i and let J be the set of
messages which are sent on ek before i and after the last idle time on ek before i
is sent (see Figure 1). Since there is idle time before the messages in J , all these
messages have to pass ek−1. Further, they also have to pass el implying dj′ ≤ di

for all j′ ∈ J (Otherwise i would be additionally delayed on ek+1). Now let j ∈ J
be the message which is sent first on ek among all messages in J . Since there is
idle time before j, message j is sent on ek−1 exactly dj time units earlier. But
because i experiences additional delay on ek, there is not enough space between
j and i on ek−1 in order to sent all other jobs of J . This is a contradiction. Thus,
there is no idle time on ek before i. This concludes the proof. ⊓⊔
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A Example: Message routing problem

The following figure illustrates the message routing instance described in Exam-
ple 1.

s1
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t t

t1

23
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b

dc
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Fig. 2. Message routing problem with three messages and time horizon twelve. The
messages consist of two, three, and four packets, respectively.

B Message routing on a directed path: Examples

The following example illustrates that a wrong choice of a priority rule can lead
to arbitrarily bad schedules.

Example 2 Suppose n messages {Mi}
n−1
i=0 start at the same origin node and

need to be sent along a directed path. Each message Mi consists of di = 2i

packets and needs to traverse 2n−i edges before it reaches its destination. First
we consider a schedule, where messages with farther destination get a higher
priority. In order to send message i we wait at the origin until the first i − 1
messages are sent and then traverse the path without any additonal delay. Thus
message i arrives at its destination at time

∑i−1

k=0
2k +2i ·2n−i ≤ 2n+1. Therefore

the optimal makespan is at most 2n+1.
In contrast, we next consider a schedule where messages with farther desti-

nation are assigned lower priorities. Then the makespan is determined by the
completion time of the smallest message 0. Furthermore, any message i is sent
without additional delay on its last 2n−i − 2n−i−1 + 1 edges and each message
smaller than i is sent immediately after i on these edges. Thus each messages i
adds at least (2n−i−2n−i−1)2i = 2n−2n−1 time units to the completion time of
message 0. Thus the makespan of this schedule is at least n(2n−2n−1) = n

4
2n+1.

This shows that the gap to the optimal makespan can grow linearly in the number
of messages.



In this example the Farthest-Destination-First Algorithm leads to an optimal
schedule. However, the following example shows that FDFA is not optimal in
general.

Example 3 Consider a directed path consisting of four edges and three messages
1, 2, and 3. Message 1 must be sent from the first to the last edge and has size
1, whereas messages 2 and 3 must be sent from the second to the third edge and
have both size 1 + ǫ for small enough ǫ > 0 (see Figure 3).
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Fig. 3. Schedules of Example 3 showing that the approximation ratio of FDFA is not
less than 5

4
. The optimum schedule is illustrated above the FDFA-schedule.

Then the optimum solution has a makespan of 4 + 2ǫ and the solution of
FDFA has a makespan of 5 + 2ǫ. Thus the performance guarantee of FDFA
cannot be better than 5

4
.

C Proof of Lemma 1

Proof. The proof is illustrated in Figure 4. We prove this by induction over l−k.
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Fig. 4. Setting of Lemma 1



If l− k = 0 then the statement is of course true. Let MAKl be the makespan of
edge l. By the induction hypothesis we know for given k and l with l − k ≥ 1
that

MAKl ≥ θk+1
i + dk+1→l

i + di(l − k − 1). (7)

Further let ∆ be the total size of messages passing ek and el, traversing ek after
time θk

i and ek+1 before time θk+1
i . Then we get:

θk+1
i ≥ θk

i + di + ∆ (8)

∆ ≥ dk→l
i − dk+1→l

i (9)

Combining these inequalities leads to

MAKl ≥ θk
i + dk→l

i + di(l − k). (10)

This completes the proof.


