Real-Time Message Routing and Scheduling

Ronald Koch ${ }^{1}$, Britta Peis ${ }^{1}$, Martin Skutella ${ }^{1}$, and Andreas Wiese ${ }^{1}$
TU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany, www.math.tu-berlin.de/coga/**

Abstract

Exchanging messages between nodes of a network (e.g., embedded computers) is a fundamental issue in real-time systems involving critical routing and scheduling decisions. In order for messages to meet their deadlines, one has to determine a suitable (short) origin-destination path for each message and resolve conflicts between messages whose paths share a communication link of the network. With this paper we contribute to the theoretic foundations of real-time systems. On the one hand, we provide efficient routing strategies yielding origin-destination paths of bounded dilation and congestion. In particular, we can give good a priori guarantees on the time required to send a given set of messages which, under certain reasonable conditions, implies that all messages can be scheduled to reach their destination on time. Finally, for message routing along a directed path (which is already $\mathcal{N} \mathcal{P}$-hard), we identify a natural class of instances for which a simple scheduling heuristic yields provably optimal solutions.

1 Introduction

In a distributed real-time system, processes residing at different nodes of the network communicate by passing messages. One of the most challenging and important tasks for the design of a distributed system is the problem of sending a given set of messages through the network from the respective origin- to the destination nodes on time.

The message routing problem. To model the problem we represent the communication network by a (directed or undirected) graph $G=(V, E)$, whose edges correspond to the communication links of the network. In the message routing problem, each message $M_{i}=\left(s_{i}, t_{i}, d_{i}\right)$ of a given set of messages $\left\{M_{i}\right\}_{i \in I}$ consists of d_{i} packets of unit size that have to be sent from the origin node $s_{i} \in V$ to the destination node $t_{i} \in V$ within a certain time horizon $T>0$. Usual constraints are (see e.g., [14], [15], or [13, Chapter 37]):
(i) it takes one time unit to send a packet on any edge $e \in E$,
(ii) at most one packet can traverse an edge per time unit,
(iii) a message has to be completely received by a node before the node can start to transmit it to any other node.

[^0]The last constraint is due to integrity checks performed by each node and implies that each message M_{i} has to be sent along a unique path P_{i} from its origin to its destination node.

Example 1 Consider the problem illustrated in Figure 2 (see Section A) where three messages need to be routed through a grid graph within a time horizon of twelve time units. Suppose we decide to send each message along the (unique) shortest path. Then, after three time steps there is a conflict between the second packet of message 1 and the first packet of message 2; both want to traverse edge e in time step four. No matter which message is assigned a higher priority, we need at least 13 time steps to send all messages from their sources to their destinations. On the other hand, if we choose the longer path $\{a, b, c, d, f, g\}$ for message 1, all messages can be sent within twelve time units since all paths are edge-disjoint.

Store-and-forward packet routing. In the special case where each message consists of only one packet, message routing reduces to store-and-forward packet routing, a fundamental routing problem in interconnection networks (see, e.g., Leighton's survey [10]). Store-and-forward packet routing can be formulated as an integral dynamic mulitcommodity flow problem with unit capacities and unit transit times on the edges. While this problem is known to be $\mathcal{N} \mathcal{P}$-hard [6], store-and-forward packet routing can be solved efficiently by calculating a maximum flow over time in case all packets share the same origin and destination. In contrast, the message routing problem turns out to be $\mathcal{N} \mathcal{P}$-hard even in the special case where all messages have the same origin and destination [14]. Thus, message routing is considerably harder than packet routing.

Routing and scheduling. A natural approach for solving the message routing problem is the following two-stage strategy. In the first stage (the routing stage), determine the set of paths $\left\{P_{i}\right\}_{i \in I}$. Then, in the second stage (the scheduling stage), resolve conflicts between messages sharing an edge. Of course, in order to determine good solutions, the paths chosen in the routing stage must feature certain desirable properties that guarantee the existence of good solutions to the second stage scheduling problem.

Congestion and dilation. If the paths $\left\{P_{i}\right\}_{i \in I}$ are given, we immediately obtain two trivial lower bounds on the minimum amount of time needed to send all messages, which we call the makespan of the problem. The first one is the congestion

$$
C=\max _{e \in E} \sum_{i \in I: e \in P_{i}} d_{i},
$$

i.e., the maximum number of packets that have to traverse a single edge. The second one is the dilation

$$
D=\max _{i}\left(d_{i}\left|P_{i}\right|\right)
$$

i.e., the maximum time necessary to send a message without any delays from its origin to its destination. As usual, $\left|P_{i}\right|$ denotes the number of edges in path P_{i}.

As we will see in the following, C and D not only provide lower bounds on the makespan but also good upper bounds in terms of C and D can be determined.

A related job shop scheduling problem. Given paths $\left\{P_{i}\right\}_{i \in I}$, it remains to declare priorities on the messages whenever two packets of different messages meet at an intermediate node and want to use the same outgoing edge. However, this is exactly an instance of the well-studied acyclic preemptive job shop scheduling problem. Every edge corresponds to a machine and a message is a job that has to be consecutively processed on the machines corresponding to the edges on its path. In shop scheduling, the processing requirement of a job is usually machine-dependent. In our case, however, we have the special property that the processing requirement of a job/message is identical (namely equal to the size of the message) on each machine/edge on its path.

It is well-known that even this special case of acyclic preemptive job shop scheduling is $\mathcal{N} \mathcal{P}$-hard and even $\mathcal{N} \mathcal{P}$-hard to approximate with performance guarantee $\frac{5}{4}-\epsilon$ for any $\epsilon>0$ [19]. On the positive side, Feige and Scheideler [2] prove the existence of a schedule with makespan $\mathcal{O}\left(C+D \log \log d_{\max }\right)$ for the preemptive job shop scheduling problem in general by using the nonconstructive General Lovász Local Lemma (LLL). (Here, $d_{\text {max }}$ denotes the maximum operation-length, resp. message-size.) An algorithmic version of the General LLL can be found in [1]. In the special case where all operation lengths are identical, Leighton et al. [11], [12] even establish an efficient randomized algorithm which computes a schedule with makespan $\mathcal{O}(C+D)$.

Desirable properties of paths. We now return to our discussion of the twostage approach to message routing discussed above. As a consequence of the scheduling results mentioned in the previous paragraph, a promising approach is to determine a set of paths in the routing stage such that $C+D$ is relatively small. The first constant-factor approximation for the special case of store-andforward packet routing, established by Srinivasan and Teo [18], is also based on this idea. Basically, Srinivasan and Teo establish a constant-factor approximation for the problem to find paths minimizing $C+D$. Combining this result with the $\mathcal{O}(C+D)$-schedule for acyclic job shop scheduling with constant operation lengths (proved in [11],[12]), they obtain a constant-factor approximation for packet routing. A similar idea has been used by Fleischer and Skutella [3] in the general context of dynamic network flow problems.

Our contributions. In Section 2 we describe an algorithm that, given a set of messages $\left\{M_{i}\right\}_{i \in I}$ on a communication network, and a desired dilation Δ, finds a set of paths of dilation at most Δ and congestion smaller than $C^{*}(\Delta)+\Delta$, where $C^{*}(\Delta)$ denotes the congestion of an optimal fractional solution with dilation at most Δ. The dilation Δ that is given to the algorithm as an input can be chosen arbitrarily (e.g., $\Delta=T / 2$). Of course, the smaller the dilation Δ, the larger is the optimal congestion $C^{*}(\Delta)$. In practice it is thus reasonable to try several values of $\Delta \leq T$ in order to find a good tradeoff between dilation and congestion. In theory, one can, for example, use binary search in order to determine Δ such
that $\Delta+C^{*}(\Delta)$ or $\Delta+\left(C^{*}(\Delta)+\Delta\right)\left(\right.$ or some other function of Δ and $\left.C^{*}(\Delta)\right)$ is minimal.

Although our algorithm can be applied for arbitrary message lengths, it even improves upon the performance guarantee of [18] for the special case of store-and-forward packet routing by a multiplicative factor of two. The main difference between our approach and the approach in [18] is our use of a path-based linear programming formulation which turns out to be efficiently solvable as the corresponding separation problem is a special case of the length-bounded shortest path problem. (The latter can be solved with a modification of Dijkstra's algorithm). Given an optimal solution to the linear program, we iteratively round ${ }^{1}$ the fractional solution into an integral one, and guarantee that the congestion is not increased by more than Δ.

Our path-finding algorithm works for arbitrary directed or undirected graphs. Combined with either approximation algorithms for the acyclic job shop scheduling problem, or with suitable priority heuristics, it therefore returns solutions for the message routing problem in general. In many situations in practice, however, the communication graphs are very simple. It therefore makes sense to consider the problem on special graph classes. In Section 3 we consider the message routing problem on directed paths (which is already $\mathcal{N} \mathcal{P}$-hard [14]), and show that the Farthest-Destination-First Algorithm works optimally on a directed path P in case the messages are not nested, i.e., in case

$$
s_{i}<_{P} s_{j} \quad \Longrightarrow \quad t_{i} \leq_{P} t_{j} \quad \forall i, j \in I .
$$

2 Routing with small congestion and dilation

Note that any set of edge-disjoint paths $\left\{P_{i}\right\}_{i \in I}$, where the length of each path P_{i} is bounded by $\frac{T}{d_{i}}$, forms a solution to the message routing problem: all messages can be sent directly without any delay from their origin to their destination nodes where they arrive before time T. Of course, such length-bounded edgedisjoint paths do not necessarily exist (it is $\mathcal{N} \mathcal{P}$-hard to decide whether they do exist or not [4]). However, some delays are allowed if the path-lengths do not meet the upper bounds $\left(\frac{T}{d_{i}}\right)_{i \in I}$. Thus, we restrict to shorter paths on which we minimize the congestion.

Given a suitable value $\Delta \leq T$ (which can, for example, be determined by binary search), we define for each $i \in I$ the set of paths

$$
\mathcal{P}_{i}:=\left\{s_{i}, t_{i} \text {-paths in } G \text { of length at most } \frac{\Delta}{d_{i}}\right\}
$$

and $\mathcal{P}:=\bigcup_{i \in I} \mathcal{P}_{i}$. Among \mathcal{P}, we are looking for a set of representatives $\left\{P_{i}\right\}_{i \in I}$ with minimal congestion. That is, we are interested in an optimal integral solu-

[^1]tion to the following linear program
\[

$$
\begin{array}{ll}
\min & C \\
\text { s.t. } & \sum_{P \in \mathcal{P}_{i}} x_{P} \geq 1 \\
\sum_{i \in I} \sum_{P \in \mathcal{P}_{i}: e \in P} d_{i} x_{P} \leq C & \forall i \in I, \\
x_{P} \geq 0 & \forall e \in E \\
& \forall P \in \mathcal{P} .
\end{array}
$$
\]

Note that the paths in the support of any feasible integral solution $\hat{x} \in\{0,1\}^{|\mathcal{P}|}$ of the linear program above with objective value \hat{C} yield a set of representatives $\left\{P_{i}\right\}_{i \in I}$ with dilation at most Δ and congestion \hat{C} : the first set of constraints ensures that at least one path is found for each message, while the second set of constraints guarantees that the total number of packets traversing a single edge does not exceed \hat{C}.

2.1 Optimal fractional solutions

To find a good integral solution to the linear program above, we first determine an optimal fractional solution x^{*} with objective value C^{*}, and then, in a second step, round x^{*} to an integral solution $\hat{x} \in\{0,1\}^{|\mathcal{P}|}$ whose congestion is at most $C^{*}+\Delta$. At first sight, it seems to be impossible to find an optimal fractional solution in polynomial time, since the number of variables is in general exponential in the size of the underlying network G. However, if we consider the dual linear program, we get

$$
\begin{array}{ll}
\max & \sum_{i \in I} z_{i} \\
\text { s.t. } & \sum_{e \in E} y_{e} \leq 1
\end{array}
$$

The corresponding separation problem can be formulated as a length-bounded shortest path problem: find a shortest s_{i}, t_{i}-path with respect to the edge costs y_{e} among those paths containing at most $\frac{\Delta}{d_{i}}$ edges. In contrast to the general lengthbounded shortest path problem with arbitrary edge lengths (which is known to be $\mathcal{N} \mathcal{P}$-hard [4]), this problem can be solved efficiently with a modification of Dijkstra's algorithm (sketch: in each iteration of Dijkstra's algorithm determine a shortest path among those with at most $1,2, \ldots$ edges). Thus, by the equivalence of optimization and separation [5], an optimal fractional solution to the dual and thus also to the primal linear program can be found in polynomial time. In practice, column generation seems to be the most suitable technique to actually solve the primal linear programming problem.

2.2 Iterative rounding

Given the upper bound Δ on the dilation of paths and an optimal fractional solution x^{*} with objective value C^{*} to the corresponding linear program, we now describe how to round the fractional solution to an integral one while increasing congestion at most by Δ.

In the rounding algorithm described below, we iteratively solve a linear programming relaxation and fix a path P_{i} for message i as soon as the corresponding variable $x_{P_{i}}$ attains value 1 . In the following, F is the set of those messages i for which a path P_{i} has already been fixed. Initially, F is empty. The messages in F are removed from I such that I only contains the messages for which a path remains to be fixed. In each step of the algorithm, we thus solve the following linear program $(L P)$:

$$
\begin{array}{ll}
\min C & \\
\sum_{P \in \mathcal{P}_{i}} x_{P} \geq 1 & \forall i \in I \\
\sum_{i \in I} \sum_{P \in \mathcal{P}_{i}: e \in P} d_{i} x_{P} \leq C-\sum_{i \in F: e \in P_{i}} d_{i} & \forall e \in E \tag{2}\\
x_{P} \geq 0 & \forall P \in \mathcal{P} .
\end{array}
$$

The basic idea of the algorithm is as follows: in each iteration, we fix the integral variables and drop at least one of the constraints, before we solve the $(L P)$ again. That is, in each iteration, whenever there is an index i with $x_{P}^{*}=1$ for some $P \in \mathcal{P}_{i}$, we move index i from I to F. Moreover, we remove all paths not in the support of x^{*} from \mathcal{P}. After fixing the integral variables, we can easily find a constraint of type (2) which can be dropped from the updated (LP): the reason is that even if all remaining variables are rounded up to 1 , the right-hand side of the inequality is not violated by more than Δ (see Theorem 1).

Algorithm 1 (Iterative Rounding Algorithm)

1. Initialize: $F \leftarrow \emptyset$;
2. Compute a basic optimum solution x^{*} to (LP);
3. For $i \in I$, let $\mathcal{P}_{i} \leftarrow\left\{P \in \mathcal{P}_{i} \mid x_{P}^{*}>0\right\}$;
4. WHILE $\exists i \in I$ and $P_{i} \in \mathcal{P}_{i}$ with $x^{*}\left(P_{i}\right)=1 D O$

- Set $I \leftarrow I \backslash\{i\}$;
$-\operatorname{Set} F \leftarrow F \cup\{i\} ;$

5. Set $\mathcal{P} \leftarrow \bigcup_{i \in I} \mathcal{P}_{i}$;
6. WHILE $\mathcal{P} \neq \emptyset D O$

- Drop a constraint of type (2) with

$$
\sum_{i \in I} \sum_{P \in \mathcal{P}_{i}: e \in P} d_{i}<C^{*}-\sum_{i \in F: e \in P_{i}} d_{i}+\Delta ;
$$

- GoTo step 2;

It remains to show that the rounding algorithm is well-defined, i.e., we need to show the following: in case the set \mathcal{P} of non-integral components is non-empty, we can find an edge $e \in E$ such that the congestion cannot be violated by more than Δ, even if all non-integral components are rounded up to one.

Theorem 1. If x^{*} is a basic optimum solution to (LP) with $0<x_{P}^{*}<1$ for all $P \in \mathcal{P}$, then there exists an edge $e \in E$ with

$$
\sum_{i \in I} \sum_{P \in \mathcal{P}_{i}: e \in P} d_{i}<C^{*}-\sum_{i \in F: e \in P_{i}} d_{i}+\Delta .
$$

The theorem can be derived from a more general result shown in [9], stating that any fractional solution x^{*} of a linear equality system $A x=b$ can be rounded to an integral vector \hat{x} satisfying $A \hat{x}<b+\Delta$, whenever the sum of positive entries in each column of matrix A is bounded from above by Δ, and the sum of negative entries in each column is bounded from below by $-\Delta$. However, the proof turns out to be much simpler for our special inequality system:

Proof. Let $n=|\mathcal{P}|$. Since x^{*} is a basic feasible solution, there exist linearly independent tight constraints \mathcal{T}_{1} and \mathcal{T}_{2} of type (1) and (2), respectively, such that

$$
n=\left|\mathcal{T}_{1}\right|+\left|\mathcal{T}_{2}\right|
$$

Observe that for each constraint $j \in \mathcal{I}_{1}$ we have

$$
\begin{equation*}
\Delta \sum_{P \in \mathcal{P}_{j}} x_{P}^{*}=\Delta \tag{3}
\end{equation*}
$$

Suppose by contradiction that for each e corresponding to a constraint in \mathcal{T}_{2}, we have

$$
\begin{equation*}
\sum_{i \in I} \sum_{P \in \mathcal{P}_{i}: e \in P} d_{i} \geq C^{*}-\sum_{i \in F: e \in P_{i}} d_{i}+\Delta \tag{4}
\end{equation*}
$$

Since

$$
\sum_{i \in I} \sum_{P \in \mathcal{P}_{i}: e \in P} d_{i} x_{P}^{*}=C^{*}-\sum_{i \in F: e \in P_{i}} d_{i}
$$

holds by the tightness of the constraint, equation (4) turns out to be equivalent to

$$
\begin{equation*}
\sum_{i \in I} \sum_{P \in \mathcal{P}_{i}: e \in P} d_{i}\left(1-x_{P}^{*}\right) \geq \Delta \tag{5}
\end{equation*}
$$

Summing up the inequalities of type (3) and (5) for all constraints in \mathcal{T}_{1} and \mathcal{T}_{2}, we get

$$
\begin{aligned}
n \Delta & \leq \sum_{j \in \mathcal{T}_{1}} \Delta \sum_{P \in \mathcal{P}_{j}} x_{P}^{*}+\sum_{e \in \mathcal{T}_{2}} \sum_{i \in I} \sum_{P \in \mathcal{P}_{i}: e \in P} d_{i}\left(1-x_{P}^{*}\right) \\
& =\sum_{i \in I} \sum_{P \in \mathcal{P}_{i}}\left(\chi_{i}^{\mathcal{T}_{1}} \Delta x_{P}^{*}+\sum_{e \in \mathcal{T}_{2} \cap P} d_{i}\left(1-x_{P}^{*}\right)\right) \\
& \leq \sum_{i \in I} \sum_{P \in \mathcal{P}_{i}}\left(\Delta x_{P}^{*}+\Delta\left(1-x_{P}^{*}\right)\right)=n \Delta,
\end{aligned}
$$

where $\chi_{i}^{\mathcal{T}_{1}} \in\{0,1\}$ is an indicator variable with $\chi_{i}^{\mathcal{T}_{1}}=1$ iff $i \in \mathcal{T}_{1}$. Since $0<x_{P}^{*}<1$ for all $P \in \mathcal{P}$, the second inequality in the derivation above is an equality only if for all $i \in I$ and all paths $P \in \mathcal{P}_{i}$ the following two conditions are satisfied.

1. $\chi_{i}^{\mathcal{T}_{1}}=1$, and
2. $\sum_{e \in \mathcal{T}_{2} \cap P} d_{i}=\Delta$.

If we now consider each column of (LP) separately, add the column's entries corresponding to constraints of type (2) and subtract the column's entries corresponding to constraints of type (1), we achieve a result of 0 in each column. This demonstrates that \mathcal{T}_{1} and \mathcal{T}_{2} must be linearly dependent constraints. A contradiction!

Thus, after at most $|E|$ iterations, the algorithm terminates with an integral vector $\hat{x} \in\{0,1\}^{|\mathcal{P}|}$, whose support contains a path P_{i} for each message $i \in I$. It is guaranteed that each path P_{i} does not contain more than $\frac{\Delta}{d_{i}}$ edges, and that the congestion of the paths violates the congestion of the optimal fractional solution by at most Δ.

Corollary 1. Given Δ, the rounding algorithm determines a set of paths $\left\{P_{i}\right\}_{i \in I}$ with dilation $\leq \Delta$ and congestion $\leq C^{*}+\Delta$, where C^{*} is the minimum possible congestion of fractional paths with dilation Δ.

2.3 Individual deadlines

In a more general model of the message routing problem, each message M_{i} is additionally equipped with a certain deadline $D_{i}>0$, denoting the latest point in time when the message must be received by the destination node t_{i}. We want to emphasize that our algorithm might as well be applied in this more general setting: we simply restrict the path lengths with respect to the deadlines. That is, instead of choosing a value Δ which is not smaller than the overall time horizon T, we choose a factor $q \in(0,1]$ and consider for each message M_{i} the collection of paths

$$
\mathcal{P}_{i}:=\left\{s_{i}, t_{i} \text {-paths in } G \text { of length at most } q \frac{D_{i}}{d_{i}}\right\} .
$$

This guarantees a dilation of at most

$$
\Delta=\max _{i \in I} q D_{i}
$$

and a congestion of at most $C^{*}+\Delta$.

2.4 Arbitrary travel times

The algorithm above can also be applied in a further extension of the message routing problem, where travel times $\tau(e) \in \mathbb{N}_{>0}$ are associated with all edges
$e \in E$. Here $\tau(e)$ denotes the time it takes for one packet to traverse e. Thus, a message of size d_{i} completely traverses edge e in $\tau(e)+d_{i}-1$ time units. Further, if message $i \in I$ is to be sent along path P_{i}, it takes at least

$$
\tau^{i}\left(P_{i}\right):=\sum_{e \in P_{i}}\left(d_{i}+\tau(e)-1\right)
$$

time steps before the message is completely received by its destination node t_{i}. These observations show that the dilation for a given set of paths $\left\{P_{i}\right\}_{i \in I}$ in this more general model becomes

$$
D:=\max _{i \in I} \tau^{i}\left(P_{i}\right)
$$

while the congestion $C=\max _{e \in E} \sum_{i \in I: e \in P_{i}} d_{i}$ remains unchanged. Note that we can adopt our algorithm to handle travel times by defining for a given value $\Delta \leq T$ the collections of paths

$$
\mathcal{P}_{i}:=\left\{s_{i}, t_{i} \text {-paths with } \tau^{i}(P) \leq \Delta\right\} \quad \forall i \in I
$$

However, with arbitrary travel times, the corresponding separation problem to our linear relaxation $(L P)$ is the general length-bounded shortest path problem. While this problem is $\mathcal{N} \mathcal{P}$-hard, it can be solved approximately in the following sense: for any $\epsilon>0$, one can find in time polynomial in the size of the network G and $\frac{1}{\epsilon}$ an s_{i}, t_{i}-path P with $\tau^{i}(P) \leq(1+\epsilon) \Delta$ whose cost is bounded from above by the cost of a shortest path in \mathcal{P}^{i} [7],[16], [17]. As before, the fractional solution (which is know a $(1+\epsilon)$-approximation to the optimal one) can be turned into an integral solution with the rounding algorithm described above, since the inequality $\sum_{e \in P} d_{i} \leq \Delta$ still holds for each path $P \in \mathcal{P}_{i}$ and $i \in I$. Thus, we achieve the following result.

Corollary 2. Even if each edge $e \in E$ is equipped with a travel time $\tau(e) \in \mathbb{N}_{>0}$, a slight modification of the algorithm above returns a set of paths whose dilation is bounded by $(1+\epsilon) \Delta$ and whose congestion differs from the optimal congestion by an additive factor of at most $(1+\epsilon) \Delta$. Here, $\epsilon>0$ can be chosen arbitrarily small.

Given the set of paths $\left\{P_{i}\right\}_{i \in I}$ with congestion C and dilation D, the remaining problem of determining priority rules in order to minimize the makespan, can again be formulated as an acyclic job shop scheduling problem: to incorporate the travel times, we simply define for each message $i \in I$ and each edge $e \in E$ with $e \in P_{i}$ an additional machine e^{i}. After job i has been executed on machine e for d_{i} time steps, it needs to to be processed on machine e^{i} for $\tau(e)-1$ time steps, before it can proceed to the next machine corresponding to the successive edge of e in P_{i}.

Note that processing times in the resulting acyclic job shop scheduling problem depend on both, the job and the machine. However, as already mentioned in the introduction, schedules of length $\mathcal{O}\left(C+D \log \log \ell_{\max }\right)$ can be found for this more general problem. (In our model, $\ell_{\max }$ denotes the maximum of all travel times and message sizes).

3 Message routing on paths

In this section we consider instances of the message routing problem where the underlying network is a directed path. Since the path taken by any message is unique on such instances, no routing decisions but only scheduling decisions have to be taken. That is, an algorithm for the message routing problem must only resolve conflicts if two messages want to traverse the same edge at the same point in time. This can be done by assigning priorities to the messages such that a message with higher priority is sent first. More precisely, even if a message is currently being sent while a message with a strictly higher priority arrives, the latter message is sent instantaneously. Thus, an interruption of the message of lower priority occurs. We note that a wrong choice of a priority rule can even lead to arbitrarily bad schedules. (An example can be found in the Section B.)

The Farthest-Destination-First Algorithm (FDFA). It is not hard to see that the Farthest-Destination-First Algorithm leads to an optimal schedule in the special case where all message sizes are identical. FDFA assigns a higher priority to messages which have a farther destination according to the order of the underlying path. In case of ties, messages with a later origin node get higher priority. If both origin and destination of two messages coincide, ties are broken arbitrarily. However, for arbitrary message sizes, message routing on a directed path is known to be $\mathcal{N} \mathcal{P}$-hard [14]. (We refer to the Section B for an example where FDFA is not optimal.)

In this section, we identify a large class of problems where FDFA is guaranteed to be optimal. But before, let us introduce some notation. For a message routing instance the underlying directed path P is given by node set $V(P):=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(P):=\left\{e_{k}:=\left(v_{k}, v_{k+1}\right) \mid k=1, \ldots, n-1\right\}$. We say that a message experiences additional delay or is additionally delayed on edge e in a given schedule, if the starting time of i on e is strictly greater than the end time of i on the predecessor edge. The makespan on an edge e is the earliest point in time when all its messages have been sent through e. A time interval where no message traverses a particular edge is called idle time. (The infinitely long time interval after the makespan of an edge is not called idle time).

We show that the Farthest-Destination-First algorithm computes an optimum solution on non-nested instances. For this we need improved bounds on the minimum makespan combining dilation and congestion.

Lemma 1. Consider an arbitrary feasible schedule. Let $e_{k}, e_{l} \in E(P)$ with $k \leq l$ be two edges of P and $i \in I$ be a message which must pass these edges. Let θ_{i}^{k} the time when i has completely traversed e_{k} and let $d_{i}^{k \rightarrow l}$ be the total amount of messages passing e_{k} and e_{l} and traversing e_{k} after time θ_{i}^{k} (see Figure 4 in the Appendix). Then a lower bound on the makespan occurring on e_{l} is $\theta_{i}^{k}+d_{i}^{k \rightarrow l}+$ $d_{i}(l-k)$.

Proof. See Section C.

Fig. 1. Setting of the proof of Theorem 2

Note that the bounds in the previous lemma depend on the considered schedule. The following corollary states a lower bounds on the minimum makespan on a particular edge over all feasible schedules.

Corollary 3. Let $e_{k}, e_{l} \in E(P)$ with $k \leq l$ be two edges of P and $i \in I$ be a message which must pass both of these edges. Let $d^{k \rightarrow l}$ be the total size of messages passing e_{k} and e_{l}. Then a lower bound on the minimum makespan on edge e_{l} is $d^{k \rightarrow l}+d_{i}(l-k)$.

Proof. Given an arbitrary schedule and a message i passing e_{k} and e_{l} we know $d^{k \rightarrow l} \leq \theta_{i}^{k}+d_{i}^{k \rightarrow l}$. Since $d^{k \rightarrow l}$ and d_{i} are independent of the considered schedule, the corollary follows directly from Lemma 1.

Next we show that FDFA computes a schedule minimizing the makespan if the underlying instance does not contain nested messages. Let $<_{P}$ be the topological order of P. Recall that two messages $i_{1}, i_{2} \in I$ are nested if one is strictly contained in the other one, i.e., if $s_{i_{1}}<_{P} s_{i_{2}} \leq_{P} t_{i_{2}}<_{P} t_{i_{1}}$ or vice versa.
Theorem 2. Consider an instance of the message routing problem where no two messages are nested. Then FDFA computes a schedule which minimizes the makespan on each edge simultaneously.

Proof. One simple but important observation we use implicitly many times in the proof is the following: Since FDFA is applied on nonnested instances, no message is interrupted by another message.

Let $e_{l} \in E(P)$ be an arbitrary edge. We try to find an edge e_{k} with $k \leq l$ and a message i such that the lower bound of Corollary 3 equals the makespan of e_{l} in the schedule computed by FDFA. If there is no idle time on e_{l}, we are done by setting $k:=l$ and i to an arbitrary message passing e_{l}.

Thus, we can assume that there is idle time on e_{l}. Let i be the first message after the last idle time and let k be the largest number not greater than l such that i is additionally delayed on e_{k} (see Figure 1). If no such edge exists, let e_{k} be the unique outgoing edge of node s_{i}. Now we want to show that

$$
\begin{equation*}
\mathrm{MAK}_{l}=d^{k \rightarrow l}+d_{i}(l-k) \tag{6}
\end{equation*}
$$

which proves optimality of the makespan on e_{l} because of Corollary 3. If there is no idle time on e_{k} before message i is sent, this is implied by the following three simple observations:

1. Message i is never delayed between e_{k} and e_{l}.
2. Every message behind i on e_{l} is also behind i on e_{k}.
3. Every message which is sent before i on e_{k} must also pass e_{l}.

The first observation is implied by the definition of i and e_{k} and the two latter by the fact that FDFA is applied on nonnested instances.

So assume that there is idle time on e_{k} before i and let J be the set of messages which are sent on e_{k} before i and after the last idle time on e_{k} before i is sent (see Figure 1). Since there is idle time before the messages in J, all these messages have to pass e_{k-1}. Further, they also have to pass e_{l} implying $d_{j^{\prime}} \leq d_{i}$ for all $j^{\prime} \in J$ (Otherwise i would be additionally delayed on $e_{k}+1$). Now let $j \in J$ be the message which is sent first on e_{k} among all messages in J. Since there is idle time before j, message j is sent on e_{k-1} exactly d_{j} time units earlier. But because i experiences additional delay on e_{k}, there is not enough space between j and i on e_{k-1} in order to sent all other jobs of J. This is a contradiction. Thus, there is no idle time on e_{k} before i. This concludes the proof.

Acknowledgements. The authors are much indebted to Fritz Eisenbrand for helpful discussions on the topic of this paper.

References

1. A. Czumaj and C. Scheideler, A new algorithmic approach to the general Lovász Local Lemma with applications to scheduling and satisfiability problems, in Proc. of the thirty-second annual ACM symposium on Theory of computing, Portland, USA, 2000, pp. 38-47.
2. U. Feige and C. Scheideler, Improved bounds for acyclic job shop scheduling, Combinatorica, 3 (2002), pp. 361-399.
3. L. Fleischer and M. Skutella, Quickest flows over time, SIAM Journal on Computing, 36 (2007), pp. 1600-1630.
4. M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman and Co., New York, 1979.
5. M. Grtschel, L. Lovsz, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1 (1981), pp. 169-197.
6. A. Hall, S. Hippler, and M. Skutella, Multicommodity flows over time: Efficient algorithms and complexity, Theoretical Computer Science, 379 (2007), pp. 387-404.
7. R. Hassin, Approximation schemes for the restricted shortest path problem, Math. Oper. Research, 17 (1992), pp. 36-42.
8. K. Jain, A factor 2 approximation algorithm for the generalized steiner network problem, Combinatorica, 21 (2001), pp. 39-60.
9. R. M. Karp, F. T. Leigthon, R. L. Rivest, C. D. Thompson, U. V. Vazirani, and V. V. Vazirani, Global wire routing in two-dimensional arrays, Algorithmica, 2 (1987), pp. 113-129.
10. F. Leighton, Methods for message routing in parallel machines, in Proceedings of the ACM Symposium on the Theory of Computing, 1992, pp. 77-96.
11. F. T. Leigthon, B. M. Maggs, and S. B. Rao, Packet routing and job shop scheduling in O(congestion+dilation) steps, Combinatorica, 14 (1994), pp. 167-186.
12. F. T. Leigthon, B. M. Maggs, and A. Richa, Fast algorithms for finding O(congestion+dilation) packet routing schedules, Combinatorica, 19 (1999), pp. 375-401.
13. J. Y.-T. Leung, Handbook of Scheduling: Algorithms, Models and Performance Analysis, Chapman and Hall/CRC, 2004.
14. J. Y.-T. Leung, T. W. Tam, C. S. Wong, and G. H. Young, Routing messages with release time and deadline constraints, Journal of Parallel and Distributed Computing, 31 (1995), pp. 65-76.
15. - Online routing of real-time messages, Journal of Parallel and Distributed Computing, 34 (1996), pp. 211-217.
16. D. H. Lorenz and D. Raz, A simple efficient approximation scheme for the restricted shortest path problem, Oper. Res. Letters, 28 (2001), pp. 213-219.
17. C. A. Phillips, The network inhibition problem, in Proc. of the 25th Annual ACM Symposium on the Theory of Computing, San Diego, CA, 1993, pp. 776-785.
18. A. Srinivasan and C.-P. Teo, A constant-factor approximation algorithm for packet routing and balancing local vs. global criteria, SIAM Journal on Computing, 30 (2001), pp. 2051-2068.
19. D. P. Williamson, L. A. Hall, J. A. Hoogeveen, C. A. J. Hurkens, J. K. Lenstra, A. V. Sevast'janov, and D. B. Shmoys, Short shop schedules, Operations Research, 45 (1997), pp. 288-294.

A Example: Message routing problem

The following figure illustrates the message routing instance described in Example 1.

Fig. 2. Message routing problem with three messages and time horizon twelve. The messages consist of two, three, and four packets, respectively.

B Message routing on a directed path: Examples

The following example illustrates that a wrong choice of a priority rule can lead to arbitrarily bad schedules.

Example 2 Suppose n messages $\left\{M_{i}\right\}_{i=0}^{n-1}$ start at the same origin node and need to be sent along a directed path. Each message M_{i} consists of $d_{i}=2^{i}$ packets and needs to traverse 2^{n-i} edges before it reaches its destination. First we consider a schedule, where messages with farther destination get a higher priority. In order to send message i we wait at the origin until the first $i-1$ messages are sent and then traverse the path without any additonal delay. Thus message i arrives at its destination at time $\sum_{k=0}^{i-1} 2^{k}+2^{i} \cdot 2^{n-i} \leq 2^{n+1}$. Therefore the optimal makespan is at most 2^{n+1}.

In contrast, we next consider a schedule where messages with farther destination are assigned lower priorities. Then the makespan is determined by the completion time of the smallest message 0 . Furthermore, any message i is sent without additional delay on its last $2^{n-i}-2^{n-i-1}+1$ edges and each message smaller than i is sent immediately after i on these edges. Thus each messages i adds at least $\left(2^{n-i}-2^{n-i-1}\right) 2^{i}=2^{n}-2^{n-1}$ time units to the completion time of message 0 . Thus the makespan of this schedule is at least $n\left(2^{n}-2^{n-1}\right)=\frac{n}{4} 2^{n+1}$. This shows that the gap to the optimal makespan can grow linearly in the number of messages.

In this example the Farthest-Destination-First Algorithm leads to an optimal schedule. However, the following example shows that FDFA is not optimal in general.

Example 3 Consider a directed path consisting of four edges and three messages 1, 2, and 3. Message 1 must be sent from the first to the last edge and has size 1, whereas messages 2 and 3 must be sent from the second to the third edge and have both size $1+\epsilon$ for small enough $\epsilon>0$ (see Figure 3).

Fig. 3. Schedules of Example 3 showing that the approximation ratio of FDFA is not less than $\frac{5}{4}$. The optimum schedule is illustrated above the FDFA-schedule.

Then the optimum solution has a makespan of $4+2 \epsilon$ and the solution of FDFA has a makespan of $5+2 \epsilon$. Thus the performance guarantee of FDFA cannot be better than $\frac{5}{4}$.

C Proof of Lemma 1

Proof. The proof is illustrated in Figure 4. We prove this by induction over $l-k$.

Fig. 4. Setting of Lemma 1

If $l-k=0$ then the statement is of course true. Let MAK_{l} be the makespan of edge l. By the induction hypothesis we know for given k and l with $l-k \geq 1$ that

$$
\begin{equation*}
\mathrm{MAK}_{l} \geq \theta_{i}^{k+1}+d_{i}^{k+1 \rightarrow l}+d_{i}(l-k-1) \tag{7}
\end{equation*}
$$

Further let Δ be the total size of messages passing e_{k} and e_{l}, traversing e_{k} after time θ_{i}^{k} and e_{k+1} before time θ_{i}^{k+1}. Then we get:

$$
\begin{align*}
& \theta_{i}^{k+1} \geq \theta_{i}^{k}+d_{i}+\Delta \tag{8}\\
& \Delta \geq d_{i}^{k \rightarrow l}-d_{i}^{k+1 \rightarrow l} \tag{9}
\end{align*}
$$

Combining these inequalities leads to

$$
\begin{equation*}
\mathrm{MAK}_{l} \geq \theta_{i}^{k}+d_{i}^{k \rightarrow l}+d_{i}(l-k) \tag{10}
\end{equation*}
$$

This completes the proof.

[^0]: ** supported by DFG Focus Program 1307 within the project "Algorithm Engineering for Real-time Scheduling and Routing".

[^1]: ${ }^{1}$ In the context of approximation algorithms, iterative rounding has been successfully applied for the first time by Jain [8].

