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Abstract Deterministic models for project scheduling and control suf- 

fer from the fact that they assume complete information and neglect 

random influences that occur during project execution. A typical con- 

sequence is the underestimation of the expected project duration and 

cost frequently observed in practice. To cope with these phenomena, we 

consider scheduling models in which processing times are random but 

precedence and resource constraints are fixed. Scheduling is done by poli- 

cies which consist of an an online process of decisions that are based on 

the observed past and the a priori knowledge of the distribution of pro- 

cessing times. We give an informal survey on different classes of policies 

and show that suitable combinatorial properties of such policies give in- 

sights into optimality, computational methods, and their approximation 

behavior. In particular, we present recent constant-factor approximation 

algorithms for simple policies in machine scheduling that are based on a 

suitable polyhedral relaxation of the performance space of policies. 

1 Uncertainty in scheduling 

In real-life projects, it usually does not suffice to find good schedules for fixed 

deterministic processing times, since these times mostly are only rough estimates 

and subject to unpredictable changes due to unforeseen events such as weather 

conditions, obstruction of resource usage, delay of jobs and others. 

In order to model such influences, the processing time of a job j € V is 

assumed to be a random variable p;. Then p = (pi, p2,...,Pn) denotes the 

(random) vector of processing times, which is distributed according to a joint 

probability distribution Q. This distribution Q is assumed to be known and may 

also contain stochastic dependencies. Furthermore, like in deterministic models, 

we have precedence constraints given by a directed acyclic graph G = (V, £) 

and resource constraints. In the classification scheme of [1], these problems are 

denoted by PS | prec, p; = sto | k, where « is the objective (e.g. the project 

makespan Ciynax or the sum of weighted completion times )7 w;C;). 
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The necessity to deal with uncertainty in project planning becomes obvi- 

ous if one compares the “deterministic makespan” Ciax(F(p1),-..,E(pn)) ob- 

tained from the expected processing times E(p;) with the expected makespan 

E(Cmax(p)). Even in the absence of resource constraints, there is a systematic 

underestimation Cmax(E(p1),---,E(Pn)) < E(Cmax(P1,---;Pn)) which may be- 
come arbitrarily large with increasing number of jobs or increasing variances of 

the processing times [7]. Equality holds if and only if there is one path that 

is the longest with probability 1. This systematic underestimation of the ex- 

pected makespan has already been observed by Fulkerson [2]. The error becomes 
even worse if one compares the deterministic value Cmax(E£(p1),-.-,£(pn)) with 
quantiles t, such that Prob{Cmax(p) < tq} > q for large values of ¢g (say q = 0.9 
or 0.95). 

A simple example is given in Figure 1 for a project with n parallel jobs 

that are independent and uniformly distributed on [0,2]. Then the deterministic 
makespan Cyax(E(p1),---;E(Pn)) = 1, while Prob(Cnax < 1) + 0 for n > ov. 
Similarly, all quantiles t, — 2 for n > oo (and q> 0). 

This is the reason why good practical planning tools should incorporate 

stochastic methods. 
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Figure 1. Distribution function of the makespan for n = 1, 2,4,8 parallel jobs that are 

independent and uniformly distributed on [0,2]. 

2 Planning with policies 

If the problem involves only precedence constraints, every job can be scheduled 

at its earliest start, ie., when its last predecessor completes. This is no longer 

possible when resource constraints are present. Planning is then done by policies 

or strategies that dynamically make scheduling decisions based on the observed 

past and the a priori knowledge about the processing time distributions. This can 

be seen as a special stochastic dynamic optimization problem or as an online 

algorithm against a “randomizing” adversary who draws job processing times 
according to a known distribution. 

This model is somewhat related to certain online scenarios, which recently 

have received quite some attention. These scenarios are also based on the as- 

sumption that the scheduler does not have access to the whole instance at once,



but rather learns the input piece by piece over time and has to make decisions 

based on partial knowledge only. When carried to an extreme, there is both a 

lack of knowledge on jobs arriving in the future and the running time of every 
job is unknown until it completes. In these models, online algorithms are usually 

analyzed with respect to optimum offline solutions, whereas here we compare 

ourselves with the best possible policy which is subject to the same uncertainty. 

Note that our model is also more moderate than online scheduling in the sense 

that the number of jobs to be scheduled as well as their joint processing time 

distribution are known in advance. We refer to [16] for an overview on the other 
online scheduling models. 

Our model with random processing times has been studied in machine schedul- 
ing, but much less in project scheduling. The survey [9] has stayed representative 

for most of the work until the mid 90ties. 

A policy I takes actions at decision points, which are t = 0 (project start), 

job completions, and tentative decision times where information becomes avail- 

able. An action at time t consists in choosing a feasible set of jobs to be started at 

t, where feasible means that precedence and resource constraints are respected, 

and in choosing the next tentative decision time t?!#""°¢. The actual next decision 
time is the minimum of ¢?!#""¢¢ and the first job completion after t. 

The decision which action to take may of course only exploit information 

of the past up to time t¢ and the given distribution Q (non-anticipative char- 

acter of policies). After every job has been scheduled, we have a realization 
p= (pi,---;Pn) of processing times and I has constructed a schedule H[p| = 

($1, S2,..., Sn) of starting times S; for the jobs j. If «”(p) denotes the “cost” of 

that schedule, and E(«/(p)) the expected cost under policy IZ, the aim then is 

to find a policy that minimizes the expected cost (e.g., the expected makespan). 
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Figure 2. Optimal policies may involve tentative decision times. 

As an example, consider the problem in Figure 2. The precedence constraints 

are given by the digraph in the upper left corner. The two encircled jobs 2 and 3 

compete for the same scarce resource and may not be scheduled simultaneously.



There are two possible realizations x* and y that occur with probability 5 each. 

The aim is to minimize the expected makespan. If one starts jobs 1 and 2, say, 

at time 0, one achieves only an expected makespan of 14. Observing job 1 at 

the tentative decision time ¢?!#""°¢ = 1 yields 13 instead. The example shows in 
particular that jobs may start at times where no other job ends. 

In general, there need not exist an optimal policy. This can only be guar- 

anteed under assumptions on the cost function « (e.g. continuity) or the dis- 

tribution Q (e.g. finite discrete or with a Lebesgue density), see [9] for more 
details. 

Stability issues constitute an important reason for considering only restricted 

classes of policies. Data deficiencies and the use of approximate methods (e.g. 

simulation) require that the optimum expected cost OPT(&,Q) for an “approx- 

imate” cost function K and distribution Q is “close” to the optimum expected 

cost OPT («,Q) when & and Q are “close” to « and Q, respectively. (This can be 

made precise by considering uniform convergence K — «& of cost functions and 

weak convergence Q — Q of probability distributions.) 

Unfortunately, the class of all policies is unstable. The above example illus- 

trates why. Consider Q* as an approximation to Q = lim;49 Q*. For Q, one is 

no longer able to obtain information by observing job 1, and thus only achieves 

an average makespan of 14. Figure 3 illustrates this. 
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Figure 3. The class of all policies is unstable. 

The main reason for this instability is the fact that policies may use small, 

almost “not observable” pieces of information for their decision. This can be 

overcome by restricting to robust policies. These are policies that start jobs only 

at completion of other jobs (no tentative decision times) and use only “robust” 

information from the past, viz. only the fact whether a job is completed, busy, 

or not yet started.



3 Robust classes of policies 

Policies may be classified by their way of resolving the “essential” resource con- 

flicts. These conflicts can be modeled by looking at the set F of forbidden sets of 

jobs. Every proper subset F’ C F of such aset F € F can in principle be sched- 

uled simultaneously, but the set F itself cannot because of the limited resources. 

In the above example, F = {{2,3}}. For a scheduling problem with m identical 
machines, F consists of all (m+ 1)-element independent sets of the digraph G 

of precedence constraints. 

3.1 Priority policies 

A well-known class of robust policies is the class of priority policies. They settle 

the resource conflicts by a priority list L, i.e., at every decision time, they start as 

many jobs as possible in the order of L. Though simple and easy to implement, 

they exhibit a rather unsatisfactory stability behavior (Graham anomalies). Let 

us view a policy ZT as a function 17 : IR” — IR” that maps every vector p = 

(pi,--+,Pn) of processing times to a schedule H[p] = (Si, S2,...,S;,) of starting 

times S; for the jobs j. In this interpretation as a function, priority policies are 

in general neither continuous nor monotone. This is illustrated in Figure 4 on 

one of Graham’s examples [5]. When p changes continuously and monotonously 

from y into x, Z[p|7 = S7 jumps discontinuously and I[p|; = Ss decreases while 
Pp grows. 
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Figure 4. Priority policies are neither continuous nor monotone. 

  

              

3.2 Preselective policies 

Policies with a much better stability behavior are the preselective policies intro- 

duced in [8]. They solve every resource conflict given by a forbidden set F € F



by choosing a priori a waiting job jr € F that can only start after at least one 

job j € F \ {jr} has completed. This defines a disjunctive waiting condition 
(F \ jr, jr) for every forbidden set F € F. A preselective policy then does early 
start scheduling w.r.t. the precedence constraints and the system W of waiting 

conditions obtained from choosing waiting jobs for the forbidden sets. The same 

idea is known in deterministic scheduling as delaying alternatives, see e. g. [1, 

Section 3.1]. 

A very useful combinatorial model for preselective policies has been intro- 

duced in [13]. Waiting conditions and ordinary precedence constraints are mod- 
eled by an AND/OR graph that contains AND-nodes for the ordinary precedence 

constraints and OR-nodes for the disjunctive precedence constraints. Figure 5 
shows how. 
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Figure 5. AND/OR graph induced by a preselective policy. 

Since preselective policies do early start scheduling, it follows that the start 

time of a job j is the minimum length of a longest path to node j in the AND/OR 

graph, where the minimum is taken over the different alternatives in the OR- 

nodes. As a consequence, preselective policies are continuous and monotone (in 

the function interpretation) and thus avoid the Graham anomalies (see Figure 6). 
Surprisingly, also the reverse is true, i.e. every continuous robust policy is prese- 

lective and every monotone policy IJ is dominated by a preselective policy, i.e., 

there is a preselective policy H’ with ' < I [15]. This implies in particular 

that Graham anomalies come in pairs (discontinuous and not monotone). 

There are several interesting and natural questions related to AND/OR graphs 

(or preselective policies). One is feasibility, since AND/OR graph may contain 
cycles. Here feasibility means that all jobs 7 € V can be arranged is a linear list 

L such that all waiting conditions given by the AND/OR graph are satisfied (all 

AND predecessors of a job j occur before j in L, and at least one OR predecessor 

occurs before j in L). Another question is transitivity, i.e., is a new waiting 

condition “j waits for at least one job from V’ C V ” implied by the given ones? 

Or transitive reduction, i.e., is there a unique “minimal” AND/OR graph that is 

equivalent to a given one (in the sense that they admit the same linear lists)? 

All these questions have been addressed in [13]. Feasibility can be detected in 
linear time. A variant of feasibility checking computes transitively forced waiting
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Figure 6. A preselective policy for Graham’s example. 

conditions, and there is a unique minimal representation that can be constructed 

in polynomial time. 

The AND/OR graph is also useful for several computational tasks related to 
preselective policies. 

First, it provides the right structure to compute the start times [[p] of a 
policy I for a given realization p of processing times. This can be done by a 

Dijkstra-like algorithm since all processing times p; are positive, see [12]. For 
general arc weights, the complexity status of computing earliest start times in 

AND/OR graphs is open. The corresponding decision problem “Is the earliest start 

of node v at most ¢ ?” is in NPM coNP and only pseudopolynomial algorithms 

are known to compute the earliest start times. This problem is closely related to 

mean-payoff games considered e.g. in [19]. This and other relationships as well as 
more applications of AND/OR graphs (such as disassembly in scheduling [4]) are 
discussed in [12]. [12] also derives a polynomial algorithm to compute the earliest 
start times when all arc weights are non-negative. This is already a non-trivial 

task that requires checking for certain 2-connected subgraphs with arc weights 

0, which can be done by a variant of the feasibility checking algorithm. 

Second, it can be used to detect implied waiting conditions, which is useful 

if “good” or optimal preselective policies are constructed in a branch and bound 

approach. There, branching is done on the possible choices of waiting jobs for 

a forbidden set F as demonstrated in Figure 7. The algorithm for detecting 

implied waiting conditions can then be used to check if the forbidden set F of 
the current tree node N has already an implicit waiting job that is implied by 

the earlier choices of waiting jobs in ancestors of N. 

This also provides a criterion for dominance shown in [14]: A preselective 

policy is dominated iff no forbidden set F' has a transitively implied waiting job 

that is different from the chosen waiting job.
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Figure 7. Computing preselective policies by branch and bound. 

3.3 Special preselective policies 

There are several interesting subclasses of preselective policies. 

For instance, one may in addition to the waiting job jr from a forbidden 

set F also choose the job t¢ € F for which j must wait. That means that the 

conflict given by F is solved by introducing the additional precedence constraint 

ip < jr. Then the AND/OR graph degenerates into an AND graph, i.e., consists 

like G of ordinary precedence constraints. Feasibility of AND/OR graphs then 

reduces to being acyclic and early start scheduling can be done by longest path 

calculations. This class of policies is known as earliest start policies [8]. They are 
convex functions and every convex policy is already an earliest start policy [15]. 

Another class, the class of linear preselective policies has been introduced in 

[14]. It is motivated by the precedence tree concept used for PS | prec | Cmax, see 

e. g. [1, Section 3.1]), and combines the advantages of preselective policies and 

priority rules. Such a policy ZZ uses a priority list L (that is a topological sort 

of the graph G of precedence constraints) and chooses the waiting jobs jr € F 
as the last job from F in L. It follows that a preselective policy is linear iff the 

corresponding AND/OR graph is acyclic. This class of policies possesses many 

favorable properties regarding domination, stability, computational effectiveness, 

and solution quality. Computational evidence is given in [17]. An example is



presented in Figure 8. Here “Nodes” refers to the number of nodes considered 

in the branch and bound tree. 

Linear preselective policies are related to job-based priority rules known from 

deterministic scheduling. These behave like priority policies, but obey the addi- 

tional constraint that the start times S; preserve the order given by the priority 

list L, ie. S; < Sj if ¢ precedes j in L. Every job based priority rule is linear 

preselective [14] but may be dominated by a better linear preselective policy. 

The advantage of job-based priority policies lies in the fact that they do not 

explicitly need to know the (possibly large) system F of forbidden sets. They 

settle the conflicts online by the condition on the start times. 

Truncated Erlang distribution on [0.2*mean; 2.6*mean] 

57 forbidden sets, 2—5 jobs    
  

Optimum deterministic makespan 203 CPU: .17 sec 

Optimum expected makespan 243.2 

Optimal preselective policy Nodes: 115007 CPU: 3772.01 sec 

Opt. linear preselective policy Nodes: 4209 CPU: 49.85 sec 

Figure 8. Computational results for linear preselective policies. 

3.4 General robust policies 

The class of all robust policies has been studied in [10] under the name set 
policies (as the decision at a decision time ¢ is only based on the knowledge of 

the set of completed jobs and the set of busy jobs). 

These policies behave locally like earliest start policies, i.e., for every robust 

policy IT, there is a partition of IR" into finitely many polyhedral cones such that, 

locally on each cone, JT is an earliest start policy and thus convex, continuous and 

monotone. This shows that Graham anomalies can only occur at the boundaries 

of these cones. 

It turns out that for problems with independent exponential processing time 

distributions and “additive” cost functions, there is an optimal policy that is 

robust. 

Here additive means that there is a set function g : 2” > IR (the cost rate) 

such that K(C1,...,Cn) = f g(U(t))dt, where U(t) denotes the set of jobs that



are still uncompleted at time ¢t. Special cases are & = Cinaz, where g(Q) := 0 and 

g(U) = 1 otherwise, and « = }7w Cj, where g(U) = Vo jcy Wj- 
In more special cases (no precedence constraints, m identical parallel ma- 

chines) there may even be optimal policies that are priority policies (again 

for independent exponential processing time distributions). If K = Ciraz, then 

LEPT (longest expected processing time first) is known to be optimal, while for 

kK = >> Cj, SEPT (longest expected processing time first) is optimal [18]. It is an 
open problem if there is also an optimal priority policy for K = )) w;C;. 

4 How good are simple policies? 

Compared to its deterministic counterpart, only little is known about the ap- 

proximation behavior of (simple) policies for arbitrary processing time distribu- 

tions. A first step into this direction is taken in [11] for the problem of min- 
imizing the average weighted completion on identical parallel machines, i.e., 

P| rj, py = sto | ¥) jC). 
This approach is based on a suitable polyhedral relaxation of the “perfor- 

mance space” € = {(E(Cf/),..., E(C#)) | IZ policy} of all vectors of expected 
completion times achieved by any policy. The optimal solution of an LP over this 

polyhedral relaxation is then used to construct priority and linear preselective 

policies, and these are shown to have constant factor performance guarantees, 

even in the presence of release dates. This generalizes several previous results 

from deterministic scheduling and also yields a worst case performance guarantee 

for the well known WSEPT heuristic. 

We will illustrate this in the simplest case P | pj; = sto | )> wj;C; and refer 
to [11] for more information and also related work on the optimal control of 
stochastic systems [3]. 

A policy is called an a-approzimation if its expected cost is always within a 

factor of a of the optimum value, and if it can be determined and executed in 

polynomial time with respect to the input size of the problem. To cope with the 

input size of a stochastic scheduling problem, which includes non-discrete data in 

general, we assume that the input is specified by the number of jobs, the number 

of machines, and the encoding lengths of weights w,, release dates r;, expected 

processing times E[p,], and, as the sole stochastic information, an upper bound 

A on the coefficients of variation of all processing time distributions pj, 7 = 

1,...,n. The coefficient of variation of a given random variable X is the ratio 

V Var[X]/E[X]. Thus, it is particularly sufficient if all second moments E[p‘] are 
given. This notion of input size is motivated by the fact that from a practitioner’s 

point of view the expected processing times of jobs together with the assumption 

of some typical distribution “around them” is realistic and usually suffices to 

describe a stochastic scheduling problem. Note, however, that the performance 

guarantees obtained actually hold with respect to optimal policies that make use 

of the complete knowledge of the distributions of processing times. 

The polyhedral relaxation P is derived by a pointwise argument from known 

valid inequalities in completion time variables for the deterministic case [6]. 
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Besides E(C;) > E(p;) the crucial valid inequalities are 

Y Fw) HC) > ((Lew)) + Lee)?) 
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~ "Im > Var(Py) for all ACV. 
jE 

They differ from the deterministic counterpart in the term involving the vari- 

ances of the processing times. With the upper bound A on the coefficients of 

variation they may be rewritten as 
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The LP relaxation min{)7j-y wj Cj | C € P} can be solved in polynomial 

time by purely combinatorial methods in O(n) time [11]. An optimal solution 
CLP = (CLP ,...,C£”) to this LP defines an ordering L of jobs according to 
nondecreasing values of Cyr . This list Z is then used to define a priority policy 
or linear preselective policy for the original problem. 

If II denotes such a policy, clearly Dey wjCy? < OPT < Dyev Wi E(C5), 

and the goal is to prove })j< 7 wjE(Cj) < a Viey wjCy?, for some a > 1. This 
leads to a performance guarantee of a for the policy Hf and also to a (dual) 
guarantee for the quality of the LP lower bound: });<y wjE(C;) < a-OPT and 

iev wyCPP > 4 OPT. 

The performance guarantee thus obtained is @ = 2 — 4 + max{1, m=) A}, 

which may be improved to a = (1+ (Arn 1)) by the use of a specific priority 
policy (weighted expected processing time first). For problems with release dates, 
this priority policy can be arbitrarily bad, and the best guarantee is given by a 

job-based priority policy defined via the LP. The guarantees become stronger if 

A < 1, which is the case for distributions that are NBUE (new better than used 

in expectation), which seems to be a reasonable class for applications. 

These are the first non-trivial approximation algorithms with constant perfor- 

mance guarantees for stochastic scheduling problems. It is an open problem how 

to derive such algorithms for stochastic problems with precedence constraints. 
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