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Introduction

Although numerical methods have been used for many centuries to solve problems in
science and engineering, the importance of computation grew tremendously with the advent
of digital computers. It became immediately clear that many of the classical analytic and
numerical methods and algorithms could not be implemented directly as computer codes,
although they were well-suited for hand computations. What was the reason?” When doing
computations by hand a person can choose the accuracy of each elementary calculation
and then estimate, based on intuition and experience, its influence on the final result. In
contrast, when computations are done automatically, intuitive error control is usually not
possible and the effect of errors on the intermediate calculations must be estimated in a
more systematic way. Due to this observation, starting essentially with the works of J. Von
Neumann and A. Turing, modern numerical analysis evolved as a fundamental component
of machine computation. One of the central themes of this analysis is the solution of
computational problems in finite precision (or machine) arithmetic taking into account the
properties of both the mathematical problem and the numerical algorithm for its solution.
On the basis of such an analysis, numerical methods may be evaluated and compared with
respect to the accuracy that can be achieved.

When solving a computational problem on a digital computer, the accuracy of the com-
puted solution generally depends on three major factors:

1. The properties of the machine arithmetic—in particular, the rounding unit (or the
relative machine precision) and the range of this arithmetic.

2. The properties of the computational problem—in particular, the sensitivity of its
solution relative to changes in the data, often estimated by the conditioning of the
problem.

3. The properties of the computational algorithm—in particular, the numerical stability
of this algorithm.



It should be noted that only by taking into account all three factors are we able to estimate
the accuracy of the computed solution.

In this article we will discuss the sensitivity of three important problems in linear control
theory that are solved frequently in a number of applications. These problems are pole
placement, linear-quadratic optimal control, and optimal H., control. Let us briefly recall
these problems.

Consider a linear time invariant dynamical system in state space form

& = Az + Bu, z(ty) = 2°, (1)

where z(t) € R™ is the state at the time ¢, 2° is an initial vector, u(t) € R™ is the control
input of the system and the matrices A € R™" B € R™™ are constant. (Here R™™
denotes the set of real n x m matrices). The classical pole placement problem is to find
a state feedback control law u = Kz such that the closed loop system & = (A + BK)z
has prescribed poles or, in linear algebra terminology, that the spectrum of the closed loop
system matrix A+ BK is a given collection P of complex numbers symmetric with respect
to the real axis. For a discussion of the theory of pole placement and related problems,
we refer the reader to classical monographs in linear control theory such as [1]. Here, we
discuss the conditioning of the pole placement problem. This topic has generated some
controversy in the literature and we will bring different viewpoints together.

Another important basic problem in control is the linear quadratic control problem. The
objective of this problem is to find a control u such that the closed-loop system is asymp-
totically stable and the performance index

so= [T ] & 2] ] )

is minimized. Here Q = QT € R™", R = RT € R"™™ is positive definite and { SQT }S; ]

is positive semidefinite. An important feature of this problem is that the optimal control
can be realized as a linear state feedback u = Kx. The classical theory for this problem
can be found in the monographs [2]-[4]. In the present paper we show that the classical
approach of using Riccati equations is not generally the best way to solve this problem.

The third problem included in our discussion is the optimal H., control problem, which
arises in the context of robust control in the frequency domain, see [5]. In this problem
one studies the linear system

i = Az + Biu+ Bow, x(tp) = a°,
z = C’lx + Dnu + D12w, (3)
y = Cox+ Doju+ Doypw,

where A € R™", B, € R"" C) € RP*" for k = 1,2, and D;; € RP*™ for 4,5 = 1,2. Here
u(t) € R™ is the control, w(t) € R™? represents noise, modeling errors or an unknown



part of the system, y(t) € RP? describes measured outputs, and z(¢) € RP' describes the
regulated outputs. The objective of optimal H,, control is to find a controller

qg = éq + § Y, ( 4)
u = Cq+ Dy,
that internally stabilizes the system and minimizes the H.,-norm of the closed-loop transfer
function T3,, from w to z. For an explicit formula of the transfer function, see [5]. Although
this problem is frequently solved in practice, the sensitivity analysis and the development
of reliable numerical methods are far from mature. Consequently, we highlight some of the
questions that need to be studied.
The sensitivity of computational problems and its impact on the results of computations
are discussed in several textbooks and monographs such as [3],[6],[7].

Basic concepts of numerical analysis

In this section we discuss the three factors that determine the accuracy of the results of
a numerical computation in further detail. Readers familiar with floating point arithmetic,
conditioning, and stability may proceed to the next section.

Floating point arithmetic

In this subsection we recall some of the basics of floating point arithmetic. A digital
computer has only a finite number of internal states and hence it can operate with a finite,
although possibly very large, set of numbers called machine numbers. As a result, we have
the so-called machine arithmetic, which consists of the set of machine numbers together
with the rules for performing algebraic operations on these numbers.

There are different machine arithmetics, the most widely used being the ANSI/IEEE
754-1985 Standard for Binary Floating Point Arithmetic [8],[6, Chap. 2]. In the following
we consider several issues that are essential in every computing environment. For a detailed
treatment of this topic see [6]. For simplicity we consider real arithmetic.

Let M C R be the set of machine numbers. The set M is finite, contains the zero 0 and
is symmetric with respect to 0, i.e., if z € Ml then —x € M.

In order to map x € R into M, rounding is used to represent x by the number 7 € M
(denoted also as rd(z)), which is closest to z, including a rule for breaking ties when z is
equidistant from two machine numbers. Of course, ¥ = z if and only if x € M. We shall
use the hat notation to denote quantities computed in machine arithmetic.

Some strange things may happen in M: an arithmetic operation may not be performed
even if the operands are from M the associative law is violated;and the distributive law
may be violated.

Since M is finite, there is a large positive number L € M such that any x € R can be
approximated in M if and only if |x| < L. Moreover, there is a very small positive number



[ € M such that if |x| < [ then T = 0 even when = # 0. We say that a number = € R is in
the standard range of M if | < |x| < L. In the IEEE double precision arithmetic we have
L~10%% [ ~107% [§],[6, Chap. 2|.

If a number x with |z| > L appears as initial data or as an intermediate result in a
computational procedure realized in M, then the computations are usually terminated.
This event is called an overflow and must be avoided. If a number z # 0 with |z| < {
appears during the computations then it is rounded to ¥ = 0, and this event is known
as underflow. Although not so destructive as overflow, underflow should also be avoided.
Over- and underflow may be avoided by appropriate scaling of the data.

Example 1 Consider the computation of the norm y = ||z|| = /2% + 23 of the vector
x = |21, 25)7, where the data x, 2 and the result y are in the standard range [I, L] of M.
In particular, we have [ < |z;| < L. If, however, we have 22 > L then the direct calculation
of y will give overflow. Another difficulty arises when 22 < [ and 22 < [. Then we have
the underflow rd(z?) = rd(23) = 0 resulting in the wrong answer § = 0, while the correct
answer is y > [y/2. Overflow may be avoided by using the scaling &; 1= x;/s, s 1= |z1|+ |23
(provided s < L) and computing the result from y = /& + £3. Underflow can also be
avoided by this scaling (we shall have at least § > [ when 22 < [ and 23 < ).

Another important characteristic of M is the rounding unit (relative machine precision,
or machine epsilon), denoted by e, which is half the distance from 1 to the next larger
floating point number. If 1/L < |z| < L then the relative error in the approximation of
by its machine analogue 7 satisfies the bound

|z — 7]

<e.

EI .

In IEEE double precision arithmetic we have ¢ ~ 1.1 x 107!¢, which implies that round-
ing is performed with a small relative error. Most machine arithmetics, including IEEE
arithmetic, are built to satisfy the property that arithmetic operations on two numbers are
performed accurately in M, with a relative error of order of the rounding unit e.

Computational problems

The second important feature in assessing the results of computations in finite arithmetic
is the formulation of the computational problem. Most problems can be written in explicit
form as y = f(x) or in implicit form by means of the equation ¢(z,y) = 0. Here typically
the data x and the result y are elements of vector spaces X and ), respectively, and
f: X =Y p: X x)Y — )Y are given functions.

Suppose that the data x are perturbed to x + dx, where the perturbation may result
from measurement, modeling, or rounding errors. Then the result y is changed to y + dvy,
where dy = f(x + dx) — f(x). Thus, oy depends on both the data = and its perturbation
ox.



The estimation of the sensitivity of the problem, i.e., of some quantitative measure p(dy)
of the size of dy as a function of the corresponding measure u(dx) of dz is the aim of
perturbation analysis of computational problems. If x = [z1,...,2,]T andy = [y1,..., yn|"
are vectors, then we may use a vector norm, pu(z) = ||z|| as the quantitative measure.

To illustrate the idea of perturbation analysis we consider the solution of the Lyapunov
equation, which is another basic problem in computational control.

Example 2 Consider the Lyapunov equation A7 X 4+ XA = C, where A, C, and the solu-
tion X are real 6 x 6 matrices with C' = CT and X = X”. For a particular example of this
equation we generated 10000 additive perturbations dciy, dcia, dcog in the corresponding
entries of the right hand side C', each of size 107% x ||C||, and computed the variations dz1,
0x12, 0x99 in the entries of the solution X. In Figure 1 we show the perturbations in the
right hand side, the corresponding variations in the solution, and an appropriate sensitivity
estimate. The sensitivity estimate is an upper bound on the size of perturbations in the
solution and is in the form of a linear estimate ||[0.X || < 3||dC| for some positive constant
(. Clearly, for some directions the corresponding perturbations dC' lead to relatively small
changes in the solution. Hence the norm-based sensitivity estimate is pessimistic for these
particular perturbations.

To derive sensitivity estimates, we need some basic mathematical concepts. Recall that
a function f : X — Y is Lipschitz continuous at a point x € X if there exists r > 0 and
M > 0 such that ||f(z + dz) — f(z)|| < M||dz| for all ||§z|| < r. The smallest quantity

IS (2 + dz) — f(2)]]
1]

M = M(z,r) = inf{ 20z # 0, |0z Sr} (5)

is the Lipschitz constant of f in the r-neighborhood of x. Lipschitz continuous functions
satisfy the perturbation bound

|0y|| < M(z,r)||dz] for all |ox] <.

A computational problem y = f(x), where f is Lipschitz continuous at x, is regular at
x; otherwise the problem is singular. If x is not in the domain of f, then the problem is
singular.

Example 3 Consider the polynomial equation
(=1 =y’ —py’ '+ + (=1 =0,

which has a multiple solution y = 1. If the constant term (—1)? is perturbed to (—1)?—1077,
then the perturbed equation will have p different roots y; = 1+ 0.1¢;, i = 1,...,p, where
€1,...,€p are the primitive pth roots of 1. Thus a relative change of 1077 in one of the
coefficients leads to a relative change of 0.1 in the solution.



In order to characterize when a problem has the property that small changes in the data
can lead to large changes in the result, we introduce the concept of condition number. For
a regular problem, let M(x,r) be as in (5). Then the number K(x) := lim,_o M (z,7) is
called the absolute condition number of the computational problem y = f(x). For singular
problems we set K (x) = o0.

We have

10yl] < K (z)|[0x]| + (dz), (6)

where the scalar quantity Q(h) > 0 satisfies Q(h)/||h|| — 0 for b — 0.
Suppose now that x # 0 and y = f(x) # 0. Then setting 0, := ||0z||/||x|, oy = ||oy||/||¥|l
we have the bound
Oy < k(2)dx +w(0x),  w(h) = Qh)/|y],

where ||w(h)||/||]|| — 0 for h — 0 and k(z) := K(ZB)% is the relative condition number of

the problem y = f(x).

Condition numbers can be defined analogously for implicit problems of the form ¢ (z,y) =
0, where x is the data and y is the solution.

A regular problem y = f(x) is well-conditioned (respectively, ill-conditioned) if the rela-
tive condition number k(z) is small (respectively, large) in the context of the given machine
arithmetic.

The computer solution of an ill-conditioned problem may lead to large errors. In practice,
the following rule of thumb may be used for the computational problem y = f(z).

Suppose that ek(x) < 1. Then one can expect approzimately —log,,(ek(x)) correct deci-
mal digits in the largest components of the computed solution vector y.

Indeed, as a result of rounding the data x we work with ¥ = x + dx, where ||dz|| < ¢||z]|.
If no additional errors are made during the computation, then the computed result is
y = f(z) and we have

1f (@) = ()]l < K(z)||6z]] + Q(z) < eK(z)]z] + Q(z).
Thus the relative error in the computed result satisfies the approximate inequality

7=l _ K@l _
o] Iyl

However, this rule of thumb may give pessimistic results, since it describes a worst case
situation [9].

Closely related to the sensitivity is the problem of estimating the distance to the nearest
singular problem. Consider a computational problem y = f(x). The quantity

Dist(f, ) = min{||h|| : the problem y = f(x + h) is singular},

is the absolute distance to singularity of the problem y = f(x). Similarly, for « # 0, the
quantity Dist(f,z)/||x| is the relative distance to singularity of the problem. For many
problems the relative distance to singularity and the relative condition number of the
problem are inversely proportional [9].



Example 4 The problem of solving the linear system Ay = b with a square matrix A and
data = = (A, b) is regular if and only if the matrix A is nonsingular. The relative distance
to singularity for an invertible matrix A is 1/cond(A), where cond(A) := || A ||A™Y|| is the
relative condition number of A relative to inversion [6, Thm. 6.5].

Another difficulty is the mathematical representation of the computational problem that
needs to be solved. In particular, in control theory, several different frameworks are used.
A classical example for such different frameworks is the representation of linear systems
via matrices and vectors, as in the classical state space form (1), as rational matrix func-
tions (via the Laplace transform), or even in a polynomial setting [10],[11]. These different
approaches have different mathematical properties and taste often determines which frame-
work is preferred.

From a numerical point of view, however, the chosen approach is typically not a matter
of taste, since the sensitivity is drastically different. Numerical analysts usually prefer the
matrix/vector setting over polynomial or rational functions, while for users of computer al-
gebra systems the polynomial or rational approach is often more attractive. The reason for
the preference for the matrix/vector approach in numerical methods is that the sensitivity
of the polynomial or rational representation is usually higher than that of a matrix/vector
representation. This fact is often ignored in choosing frameworks that are mathematically
more elegant but numerically inadequate.

Example 5 [12] Consider the computation of the eigenvalues of the matrix

A = Q" diag(1,2,...,20)Q, where @Q is a random orthogonal matrix. Clearly the matrix is
symmetric and therefore diagonalizable with nicely separated eigenvalues 1,2, ...,20. The
problem of computing the eigenvalues of A is well-conditioned, and numerical methods
such as the symmetric QR algorithm lead to highly accurate results, see [13]. For example,
eig from MATLAB [14] yields all eigenvalues to at least 15 correct digits.

The usual textbook approach for computing eigenvalues taught in first year linear algebra
is that the eigenvalues of A are the roots of the characteristic polynomial det(\ — A) =
(A=1)(A—=2)--- (A —20). Using a numerical method such as roots from MATLAB to
compute the roots of this polynomial, however, yields highly inaccurate large eigenvalues
20.0003, 18.9970, 18.0117, 16.9695, 16.0508, 14.9319, 14.0683, 12.9471, 12.0345, 10.9836,
10.0062, 8.9983, 8.0003. The accuracy of the small eigenvalues is slightly better. There
are several reasons for the inaccuracy. First, the coefficients of the polynomial range in the
interval [1,20!] ~ [1,2.4 x 10'®] and cannot all be represented accurately in IEEE double
precision arithmetic, while the entries of the matrix range in the ball of radius 20 around
the origin. Second, the sensitivity of the larger roots with respect to perturbations in the
coefficients is very large in this case.

In this section we have discussed the sensitivity and conditioning of a computational
problem. This sensitivity is a property of the problem and its mathematical representation
in the context of the machine arithmetic used, and should not be confused with the prop-
erties of the computational method that is implemented to solve the problem. In practice,



linear sensitivity estimates of the type 6, < k(x)d, are usually used, occasionally leading to
underestimation of the actual perturbation in the solution. Rigorous perturbation bounds
can be derived by using non-linear perturbation analysis [15].

Computational algorithms

In this subsection we discuss properties of computational algorithms and the accuracy of
the computed result.
An algorithm for computing y = f(z) is a decomposition

f:FroFr—lo"'oFla (7)

which gives a sequence z, = Fy(xp_1), k = 1,...,r, with g = z and y = z,. Although
the computation of Fj(£) requires simple algebraic operations on £ such as arithmetic
operations or taking roots, the computation may also be a more complicated subproblem
such as solving a system of linear equations or computing the eigenvalues of a matrix.

The algorithm either gives the exact answer in exact arithmetic or, for some problems,
such as eigenvalue problems or the solution of differential equations, gives an approximate
answer in exact arithmetic. We will not analyze the latter case here, but rather will
investigate what happens with the computed value of z, when the computations are done
in machine arithmetic.

It is important to mention that two different algorithms, say (7) and f = 0P, j0---0P;
for computing y = f(x), may give completely different results in machine arithmetic,
although in exact arithmetic they are equivalent.

In what follows, we suppose that the data x is in the standard range of the machine
arithmetic with characteristics L, [, e, and that the computations do not lead to overflow
or to a destructive underflow. As a result, the answer computed by the algorithm (7) is ¥.
Our goal is to estimate the absolute error F := ||y — y|| and the relative error e := E/||y||
(for y # 0) of the computed solution ¥ in the case of a regular problem y = f(x) when x
belongs to a given set Xj.

Definition 1 [12/,/6],[3] The algorithm (7) is numerically stable on the set X, if the
computed quantity y fory = f(x), © € Xy, is close to the solution f(Z) of a problem with
data T near to x in the sense that

[y — f@)| < eallyll, 7 — 2| < ebll]], (8)
where the constants a,b > 0 do not depend on x € Xj.

For a problem with inexact data, perhaps itself being subject to rounding errors, numer-
ical stability is in general the most we can ask of an algorithm. If in Definition 1 we take
a = 0, then the algorithm is numerically backward stable. Backward error analysis, intro-
duced by Wilkinson [12], can be used to show that the solution computed by an algorithm
is the exact solution of a perturbed problem, where the perturbation is the equivalent data
error.



As in [3], using the inequalities (8) and || f(z + dx) — f(x)]| < K(2)||dz| + Q(x) (see
(6)), we obtain the absolute error estimate

17— f(@) + f(2) = f2)]

[y = F@I + If @) = f(@)]l
eallyl| + K(2)||z — zf| + QT — )
eally|| + ebK (x)||z| + QT — z).

E =y -yl

IA A IA

Dividing by ||y|| yields the relative error estimate

=Tl o oo lel B0
o] ol T

Since w(Z — x)/e — 0 for € — 0, by ignoring this term, we have the approximate estimate

x
e<e (a + bK(x)H) = e(a + bk(x)) (9)
)
for the relative error in the computed solution.
Inequality (9) clearly shows the influence of the three major factors that determine the
accuracy of the computed solution:

— the machine arithmetic (the rounding unit ¢ and implicitly the range of M through
the requirement to avoid over- and underflow);

— the computational problem (the relative condition number k(x));
— the computational algorithm (the constants a and b).

Inequality (9) is an example of a condition number based accuracy estimate for the solu-
tion, computed in machine arithmetic. In order to assess and trust the accuracy of results,
condition and accuracy estimates should accompany every computational procedure. Many
modern software packages provide such estimates [16],[17]. However, it is unfortunately
common practice in industrial use to turn these facilities off, even though this service will
warn the user of numerical methods about possible failure.

As we have seen in (7), computational problems are typically modularized, for example,
they can be decomposed and solved as a sequence of subproblems. This decomposition
facilitates the use of computational modules and is one of the reasons for the success
of numerical analysis. One should be aware, however, that modularization can lead to
substantial numerical difficulties. Such difficulties arise if one or more of the created
subproblems F; is ill-conditioned or singular.

Example 6 The scalar identity function y = f(x) = x may be decomposed as f = Fyo F7,
where F}(z) = 2° and Fy(2) = z'/%. Here the function F} is not Lipschitz continuous at 0.



But even if the functions F}, F5 are Lipschitz continuous with constants K7, Ky respec-
tively, then it may happen that one (or both) of these constants is large. We obtain the
estimate

[f(x+h)—fx) = [F(Fi(z+h)) = F(Fi(2))]
< Ko||Fi(z +h) = Fi(z)| < KoK ||A]],

where the quantity KsK; may be much larger than the actual Lipschitz constant K of f.

Example 7 Consider the identity function y = f(z) = z in R?. Define Fy(z) = A~'z and
Fy(z) = Az, where the matrix A € R?? is nonsingular. Then K = 1 while both K; = ||A™!|
and Ky = ||A|| may be arbitrarily large. If the computations are carried out with maximum
achievable accuracy, then the computed value for A~z is Fj(z) = (I, + Ey) Az, where
E, = diag(ey,&2) and |g1|, |e2] < e. Similarly, the computed value for A(A™'x) becomes
(I + Ey)AFi(z) = (I + E2)A(Ly + E)) A 'z, where By = diag(es, e4) and |es], |ea] < e.
Suppose that ¢; = —g9 = ~ 10716, ¢ = 4, = 0 and

B a a+1 _ 1
o TR P g

where a = 10%. Then the computed result is 7 = z + £, where £ = [£1,&]T and & =
4a® + 2a — 1, & = 4a® — 2a — 1. Thus, the actual relative error in the solution of the
decomposed problem is 5% ~ 4a% e ~ 4, and there are no correct digits in the computed
result.

In this section we reviewed some of the general principles of numerical analysis. In the
following sections we look at three basic problems in control theory and analyze their
sensitivity.

Pole Placement

Pole placement is an important tool for many applications in modern control theory. In
linear algebra terminology, the pole placement problem is as follows.

Problem 1 For a given pair of matrices S = (A, B) with A € R™", B € R™™ and a given
collection of n complex numbers P = {\,..., \} C C (closed under conjugation), find a
matrix K € R™™ such that the collection of eigenvalues of A+ BK is equal to P.

It is well known, see [1], that a feedback gain matrix K exists for all collections P C C,
(symmetric relative to the real axis) if and only if (A, B) is controllable, i.e., rank[A —
AL, B] = n, for all A € C. There is a large literature on the numerical solution of this
problem, see [18]-[21]. Even though numerical backward stability has been shown for
some of these methods, see [19],[20],]22], it is often observed that the numerical results

10



are inaccurate. In view of our discussion, if a numerically stable method yields highly
inaccurate results, then this inaccuracy must be due to the ill-conditioning of the problem.
The analysis of the conditioning of the pole placement problem, however, led to differing
conclusions, see [23]-[26].

Since controllability is a requirement for the ability to assign arbitrary sets of poles, it
must be expected that numerical difficulties arise when the problem is very near to an
uncontrollable problem. The distance to uncontrollability is defined as the minimum of the
quantity |[[0A, dB]||, where the pair (A + 0A, B + § B) is uncontrollable, see [27]. A bound
for this distance may be determined by computing minyecc 0,[A — A, B, see [27], where
on[A — M, B] denotes the smallest singular value of the matrix [A — A\, B].

As we have seen, numerical problems can also arise when a problem is approached by
means of a multi-step procedure, where an intermediate step is ill-conditioned. For exam-
ple, pole placement is usually a two-step procedure, which first brings the pair (A4, B) to
a simpler form [3],[28] and then assigns the poles in this simpler form. To evaluate of a
particular numerical method, the conditioning of both subproblems needs to be analyzed.

If one studies the literature of the pole placement problem, this ill-conditioning is only
partially reflected and the discussion is quite controversial. This controversy has several
sources which have to do with the non-uniqueness of the solution in the multi-input case,
and also with the representation of the data. Another reason for confusion in the analysis
of the pole placement problem is that one has to define what the solution of the problem is.
Theoretically, this is the feedback matrix K, or the set of all such matrices. But relative to
the computed solution, there are three dlfferent issues. First, there is the computed value
K of K. Second, we have the closed-loop matrix A+ B K or its rounded value rd(A+ B K ).
And third, we have the resulting spectrum of A + BK , which should be equal to P but
usually differs from P. Although all of these quantities are computed “solutions” of the
pole placement problem, they exhibit largely different perturbation behavior. We will now
summarize these different viewpoints.

Perturbation analysis for the gain matrix consists of determining bounds on the change
0K in the gain matrix K as a function of the changes 0 A, 0 B in the system matrices A, B
and the changes d\q,...,d\, in the desired poles. In this case, whether or not the closed-
loop system matrix A + BK or its spectrum is sensitive is not the subject of sensitivity
analysis. Of course, in the multi-input case it is possible to use the n(m — 1)-parametric
freedom (if the rank of B is m) in the gain matrix K to minimize some measure of the
sensitivity of the eigenstructure of A + BK, or to achieve other design purposes, such as
minimizing || K||, or maximizing the stability radius of A+ BK, see [18],[21],][29]. Since for
m > 1 the gain matrix K lies in an unbounded n(m — 1)-dimensional algebraic variety in
R™™ the sensitivity analysis must guarantee that there exists at least one solution to the
perturbed problem for which the perturbation bounds for K hold. At the same time both
the original and perturbed problems may have solutions of arbitrary large norm. Explicit
perturbation bounds for K, both local and non-local, have been derived in [24].

Let A := diag(Ay, ..., A,) and JA := diag(d\y,...,0),). An estimate in terms of relative

11



perturbations 0k := ||[0K||r/|| K || is given by
0k < caba + cpdp + cada + O(]6]1%),

where ¢y = CullA||r/|| K|, cg := Cpl|B|r/||K||F, and cpx := Ci||Al|r/||K||F are the
relative condition numbers with respect to the perturbations in A, B, A, respectively,
a = A/ Allr, 65 == [B]#/|Blr, and 6 = [5A] /[ Alr. Here Ca, C, Cy are
the corresponding absolute condition numbers and 6 := [d4, 85, 05]7. This analysis shows
that the problem of computing the feedback gain K is well- or ill-conditioned if the overall

relative condition number
CpA = Cp+Cp+Cp (10)

is small or large in the context of the machine arithmetic used [24].

In general, the sensitivity of the computation of K does not depend substantially on the
desired spectrum P. At the same time, the eigenstructure (the eigenvalues in particular)
of the matrix A + BK may be sensitive to perturbations in the data. As a result, the
spectrum of the perturbed closed-loop system matrix A + BK may be far from P, even
if K (the computed value for K) is obtained by a numerically stable algorithm or even
exactly.

Example 8 [25] Let A = diag(1,...,20), P = {—1,...,—20}, let B be formed from the
first m columns of a random 20 x 20 orthogonal matrix. The MATLAB pole placement
code place of the Control System Toolbox Version 4.1, which is an implementation of the
method given in [18], was used to compute the feedback gain K. For m from 1 to 10 the
feedback was computed 20 times with 20 random matrices B with orthonormal columns.
In Table 1 the geometrlc means (over the 20 experiments) of the norm of the computed
feedback matrix K and err= maxj <;<20 \)\ — \;| are listed, with \; and the real parts of the
resulting poles )\Z arranged in increasing order.

For all 400 tests the pair (A, B) was controllable with a large distance to uncontrollability.
Nevertheless, for m = 1 the method produced an error message “Can’t place eigenvalues
there” and, for m = 2,3, a warning “Pole locations are more than 10% in error” was dis-
played. Other pole placement algorithms have similar difficulties for small m, see [25],[26].
The eigenvalues of the closed-loop system are highly sensitive and their computed values
may have positive real parts regardless of how the feedback is computed. If the data of the
problem are slightly perturbed, for example due to measurement errors, then the resulting
feedback design may fail completely.

Analysis of the sensitivity of the spectrum and the eigenvectors of the closed-loop matrix
A+ BK has been carried out in [25],[26]. The major factors in the conditioning of the closed
loop spectrum include the norm of K, the distance to uncontrollability, and the condition
number of the closed loop eigenvector matrix. We have the following possibilities.

— The gain matrix K is very sensitive, for example, since the distance to uncontrol-
lability is small. A small change in A, B may lead to a large difference between K
and K. In general, this difference will result in large errors for the eigenvalues of the
computed closed-loop system matrix.

12



Table 1: Norms of feedback gain matrix and error in assigned spectrum for different values
of m.

K err

2.5 x10%| 2.0 x 10*

1.3 x 10| 1.2 x 10!

23x10°| 1.2 x 1073
3.4x10°] 1.6 x 1076
1.0 x 10* | 3.1 x 108
42x10%| 1.3 x107°
2.1 x10% 1.3 x 10710
1.1 x10% 1.9 x 1071
8.9 x 10%2]6.3 x 10712

—_
S © 00 ootk w3

— The norm of the gain matrix K is very large. Then the difference || K — K||, which
is of order at least || K ||, may also be large, and this gain perturbation will perturb

the eigenvalues of A+ BK.

— The eigenvalues of A + BK are very sensitive to perturbations for any (or for the
particular) choice of K. This situaton occurs, for example, in the case of dead-
beat control of discrete-time systems z(t + 1) = Ax(t) + Bu(t), where the closed-
loop poles are all equal to zero and contained in the same Jordan block. Here, the
perturbations in the eigenvalues of A+ BK may be of order n'/", where 7 is the size
of the perturbations in the data.

These three factors are all independent and may appear alone or in some combination.
Moreover, in some cases the minimum sensitivity of the gain matrix is achieved exactly
when the eigenstructure of the closed-loop system matrix is maximally sensitive.

Example 9 Consider the pole placement problem for the case n = 2, m = 1 with
RIS 10
=[5 ]=-1]
If the desired poles are A1, Ay, then K = [—f3, 0] yields

CA:\/1+2H+\/1+4M4a Ca=2+4p2 Cp = p+ 1+ 2

where p = |\ — A3|/2. Here the minimum sensitivity of K is achieved for A\; = Ay, which
corresponds to maximum sensitivity of the closed-loop poles, since this is the worst case
in the perturbation theory for eigenvalues [13].
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Example 10 In this example based on [24], we study the overall relative condition number
cpa in (10) for computing K for the controllable pair of matrices

03 040 —7 0
-9 0 -3 07 O 0
01 000 —1 1
A=l 40 104 o|"'B7] o
03 040 —7 -1
| -9 0 -2 0 8 0| | 0]
We take \3 = -+ = A\g = —1 and vary A1, \o. In Figure 2 we show the dependence of cpy

on the real part o and imaginary part w of \y = 0 + jw, \s = 0 — jw. We see that the
computation of K remains well conditioned for large variations in Ay, Ay. The minimum of
the overall conditioning is achieved for A;, A near to —1. Choosing all desired poles equal
to —1 yields the gain matrix K = [-6.3, —2.3, —0.7, —3.1, 5.3, 5.35] and the relative
condition numbers ¢y, = 1.420, ¢4 = 37.27, and cg = 2.360.

In Figure 3 we show the distribution of the closed-loop poles (the so-called pseudospec-
trum) for 2000 perturbations in A+ BK of norm 1078, computed by the function ps from
Matrix Computation Toolbox [30]. Clearly, the large sensitivity of the closed-loop poles is
not related to the conditioning of computing K.

So far, we have mentioned only the nonuniqueness of the choice of K in the multi-
input case. There are several possibilities for using this freedom to optimize a robustness
measure: one could minimize || K ||, see [19],[31], or the stability radius of A+ BK, or the
condition number of the closed-loop eigenvector matrix as in [18] (in this case the poles
must be pairwise distinct), or the feedback norm and the eigenvalue sensitivity together
[21]. In general, one should ask the following question.

Does one really have a fized collection of poles or rather, does one have a specific region
in the complex plane where one wants the closed loop poles to be?

If the latter is the case, then not only the minimization over the freedom in K but also
a minimization over the position of the poles in the given set should be used, leading to
the optimized pole placement problem [29],[32], see [33] for such an approach.

Problem 2 For given matrices A € R™", B € R™™ and a given set P C C, find a matrix
K € R™" such that the eigenvalues of A+ BK are contained in P and at the same time
some robustness measure is optimized.

A clear and practical formulation of a general robustness measure, as well as suitable
algorithms for determining the optimal pole assignment, depend on both the application
and the set P. In the stabilization problem P is the left half plane, or in the case of damped
stabilization a subset of the left half plane. If the set P is too small, such as when it has
exactly m points, then optimizing a robustness measure may still yield a sensitive closed
loop spectrum, but if the set P is large, then better results may be obtained. The general
sensitivity analysis for this optimized pole placement problem is an open problem.
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Linear-quadratic control

In this section we discuss the linear-quadratic control problem of minimizing (2) sub-
ject to (1). Application of the maximum principle [2] leads to the equivalent problem
of finding an asymptotically stable solution to the two-point boundary value problem of
Euler-Lagrange equations

x x
E|l | =A| 1|, z(ty) = Y, lim pu(t) =0, (11)
] U e
with the matrix pencil
I 0 O A 0 B
al.—BA=a |0 =T 0| -3 Q AT S (12)
0 0 O ST BT R

and the Lagrange multiplier (costate) p.
If R is well-conditioned with respect to inversion, then (11) may be reduced to the two-
point boundary value problem

[]=nn] e mao=o o

—u t—00

with the Hamiltonian matriz

y_[F G ] _[A-BR'S" BR™'BT
| H —FT | Q- SR'ST —(A-BR'ST)T

These different mathematical representations for computing the optimal control exhibit
different sensitivity.

The classical apporach to solving the boundary value problems (11) and (13) [2],[4],
which is implemented in most design packages, is a two-step procedure. One computes
first X, the positive semidefinite (stabilizing) solution of the associated algebraic Riccati
equation

0=H+XF+F'X - XGX, (14)

and then obtains the optimal stabilizing feedback as u = —R™1(ST + BT X)z.

Another consideration is the deflating subspace approach of Van Dooren [34]. Suppose
(&, A.) has an n-dimensional deflating subspace associated with eigenvalues in the left half
plane. Let this subspace be spanned by the columns of a matrix

Ui
Us
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Then, if U; is invertible, the optimal control is a linear feedback of the form u = Kz =
UsU; 'z. The solution of the associated Riccati equation (14) is then X = U,U; ', see [2]
for details. In this case the solution of the Riccati equation is not needed to determine the
feedback.

By analogy with the discussion of the pole placement problem, we first consider the
distance to the nearest singular problem. The requirement that the closed-loop system
be asymptotically stable leads to the requirement that the system (1) is stabilizable, i.e.
rank[A—A\L,, B] = n, for all A in the closed right half plane. The distance to unstabilizability
is defined as the minimum of the quantity ||[0 A, dB]||, such that the pair (A+0A, B+¢B)
is not stabilizable. This distance can be determined by studying the smallest perturbation
so that the matrix pencil (12) ceases to have exactly n finite eigenvalues in the open left
half complex plane, and hence we have to discuss the perturbation theory of eigenvalues
and invariant subspaces of matrix pencils. Such analysis is beyond the scope of this paper;
see [35],[36] for detaileds

It is clear that the three approaches to determining the feedback gain K may lead to dif-
ferent numerical results due to the different sensitivities of the subproblems. For example,
we see that in order to use the representation (13), the invertibility of R is required, and
thus it is clear that the sensitivity of the computation of K = U3U; " is different from that
of the procedure of first computing X = U,U; ! and then forming K = —R~'(ST + BT X).
Consider the following example.

Example 11 [32] Let U be a randomly generated real orthogonal matrix, let S = 0, and

let
B 2 0 T B 105 0 B 6 0 T
A—U{Ol}U,B—U,R—{O 7},Q—U{O?W}U,

where v > 0. The stabilizing solution of the Riccati equation (14) and the associated
feedback are given by

X:U[g OV}UT,K:—[6 O]UT,

and the resulting closed loop spectrum is {—4, —2}. Since both K and the spectrum are
independent of the value of v and since U is orthogonal, we see that the spectral norm
| K||2 = 6 is small and hence we do not expect large perturbations in the solution X. The
solution procedure based on the Riccati equation, however, depends on ~.

In Table 2 we compare the accuracy of the results obtained by the MATLAB function
care from the MATLAB Control Toolbox [14], which is a solver for algebraic Riccati equa-
tions and those obtained by computing the deflating subspace by the MATLAB function
gz. The Riccati solution is used to compute K = —R~!BTX while, by using the deflating
subspace (15) of a&, — BA., the feedback K is directly obtained as UsU; '. The relative
error in X and K for the two methods as a function of different values of v are listed in
Table 2. We see that direct computation of the optimal control based on computation of
the invariant subspace (using qz) yields smaller relative errors than the solution based on
the Riccati equation (using care).
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Table 2: Comparison of Riccati approach and subspace approach.

[K—K[|,
7| Method =T 5T,

1072 care 7T0x 10711 1.3x 1071
qz 24 x 10716 149 x 1071
1076 care 3.1x10712 ] 32x107"Y
qz 26 x 10715 | 4.7 x 1071
1077 care 21x107% | 1.3 x107*
qz 1.6 x 107" | 5.9 x 107?
10713 care 9.2 x 107° 3.9 x 10!

qz 1.7x 107" | 5.0 x 1074

As in the pole placement problem, we also have to ask what constitutes a solution to
the problem. This solution could be the feedback gain K = —R™'BTX = UsU; ! or the
closed loop matrix A 4+ BK or its spectrum. Examples 8 and 9 (which can be constructed
to come from optimal control) show that these may have very different sensitivity.

The discussion demonstrates the importance of analyzing the sensitivity of the compu-
tational problem, and that a different modularization of the computational problem can
lead to significantly different results. We see that the solution of the linear-quadratic con-
trol problem based on the solution of the algebraic Riccati equation presents a dangerous
detour that may lead to poor results. However, this detour is not necessary, since the
feedback and the closed-loop matrix may be computed from the deflating subspace. The
situation is worse in the case of descriptor systems, see [2], [37], where the Riccati equation
may be unrelated to the solution of the optimal control problem.

On the other hand, the Riccati equation approach is well analyzed, and efficient numerical
software for the solution of algebraic Riccati equation is available, while the development of
structure-preserving solution methods for the eigenvalue problem (12) has not yet matured,
[37]. We need to be able to judge when the conditioning of the Riccati equation is worse
than the conditioning of the optimization problem itself. Therefore, we now discuss the
conditioning of the algebraic Riccati equation (14). We assume that there exists a non-
negative-definite solution X such that F' — G X is stable.

Let the coefficient matrices F, G, H in (14) be subject to perturbations 6F, 0G, 0H,
respectively, so that, instead of the initial data, we have the matrices F=F+ oF, G =
G +6G, and H = H + §H. The aim of perturbation analysis of (14) is to investigate
the variation 0X in the solution X = X + §X due to the perturbations 0F, 0G, 0H. It
is assumed that the data perturbations preserve the symmetric structure of the equation,
i.e., the perturbations 6G and dH are symmetric. If ||0F||, ||0G|| and ||§H|| are sufficiently
small, then the perturbed solution X is well defined [39]. The condition number of the
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Riccati equation (14) is defined as (see [38])

16X7]

NOF|| < allF|, 0G| < |G|, ||[6H SaH}.
o] X] [0 < allF[l, 16G] < al|Gl, 6H]| < ol H|

Kgr= lir% sup {
For sufficiently small o we have (to first order) ||6X||/||X|| < Kra. Let X be the solution of
the Riccati equation computed by a numerical method in finite arithmetic with rounding
unit €. If the method is backward stable, then we can bound the relative error in the
solution by R
|X — X
X

where p(n) depends polynomially on n. This bound shows the importance of the condition
number in the accuracy estimation of the computed solution.

The determination of the exact condition number Ky is a difficult task. To a first order
approximation 6.X, can be represented as

S p(n)KR€>

5X = —Q L(GH) — O(6F) + 11(6G), (16)

where U(Z) := FIZ+ZF.,0(Z) = Q N Z"X +XZ), and 1I(Z) := Q (X ZX) are linear
operators in the space of n x n matrices, that determine the sensitivity of X with respect
to the perturbations in F, G, H, respectively, and F. = F — GX. Based on (16) it was
suggested in [38] to use the approximate condition number

_ QAT+ [O1F] -+ TGl

KB )
1X]]

(17)

where |71, [|©]], [|TI]] are the corresponding induced operator norms. Note that [40]

1
QY= —run——
197l = sy
where || 174 7 ||
. F + Fc F
sep(FL, —F.) = < )

Figures 4 and 5 show the relative variations ||0X| /|| X]||F in the solutions of well-
conditioned and ill-conditioned Riccati equations, respectively, for small relative perturba-
tions in the matrices F' and G. While in the case of well-conditioned Riccati equations
the change in the solution is of the order of the perturbations in the data, we see that
in the case of ill-conditioned Riccati equations the change in the solution is 10000 times
larger than the perturbations in the data.

An important practical issue is how to inexpensively estimate the quantities in the con-
dition number (17) and other condition numbers. This estimation is now a routine matter
thanks to the development of efficient matrix norm estimators, and in particular the LA-
PACK norm estimator xLACON, [16],[41],[6, Chap. 15], that computes an estimate of the
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I-norm ||B]|; given only the ability to evaluate matrix-vector products Bz and BTy for
judiciously chosen z and y. The use of this estimator for condition estimation in non-
symmetric eigenproblems and matrix Sylvester equations was developed in [42] and [43],
respectively. For Riccati equations it is possible to take advantage of the solution symme-
try, thus significantly reducing the cost of the estimation.

For the Riccati equation we may use the condition estimator to obtain |||z from the
Lyapunov equation F!Z + ZF, = C. An estimate of ||©||; can be obtained in a similar
manner by solving the Lyapunov equations

FI'Y +YF., = VIX+ XV,
F.Z+ZF' = VIX+XV

while |[II||; can be estimated by solving the equations

FI'Y+YF, = XVX,
F.Z+ZF' = XVX.

As in the case of other condition estimators it is always possible to construct special
examples where the value produced by xLACON underestimates the true value of the cor-
responding norm by an arbitrary factor. However, in practice severe underestimation
happens only in rare circumstances. To demonstrate the performance of these estimators
consider the following example.

Example 12 Consider a family of Riccati equations, constructed as F = TE T !, G =
T_TG()T_l, H= TH()TT, where FO = diag(Fl, Fl), GO = diag(Gl, Gl), HO = diag(Hl, Hl)
are diagonal matrices with F = diag(—1 x 107%, —2, =3 x 10%), H, = diag(3 x 107%,5,7 x
10%), G; = diag(107%,1,10%) and T is a nonsingular transformation matrix. The solution
of the Riccati equation is then given by X = T-7X,T~! where X, is a diagonal matrix
whose entries are determined simply from the entries of Fy, G, Hy. To avoid large rounding
errors in constructing and inverting 7', this matrix is chosen as T' = 15577, where 77 and
T, are elementary reflectors and S is the diagonal matrix given by

Ty = L,—2[1,1,....171,1,..,1]/n,
T, = I,—2[1,—1,1,...,. (=D "1, -1,1,.., (=) /n,
S = diag(l,s,s* ...,s" ), s> 1.

By varying the scalar s it is possible to vary the condition number of 7" with respect to
inversion, since condy(7T) = s"'. The solution is obtained with X; = diag(Xy, X3), and
X, = diag(1,1,1).

In Figure 6 we show the ratio of the error in the solution to estimate (obtained by xLACON)
as functions of k and s. We see that, for large k and s corresponding to ill-conditioned
equations, the error estimate may become pessimistic. This conservatism is due to the fact
that the error estimate is based on an analysis that is pessimistic, and thus a poor estimate
of the solution error is usually due not to the estimator but rather to the estimated error
bound. At the same time, the numerical experiments show that generally the condition
number estimates are always of the same order as the true condition numbers.
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As in the pole placement problem, where the choice of poles may represent extra freedom,
we can use the freedom in the choice of the weighting matrices @), S, R to optimize other
performance criteria to solve an optimized linear-quadratic control problem.

Problem 3 [32] Given matrices A € R*", B € R™™ and a set P C C, determine cost
matrices ), .S, R such that the closed-loop system obtained via the solution of the associated
linear quadratic control problem has eigenvalues that are contained in P, and at the same
time some robustness measure is optimized.

In this section we discussed the sensitivity of the linear quadratic optimal control problem
and, in particular, the solution approach via the solution of algebraic Riccati equations.
In the next section we discuss the optimal H,, control problem.

Suboptimal H,, control

For the third problem we consider the optimal H,, problem. Since, in general, it is diffi-
cult to compute the optimal controller, a modified optimal H., problem is solved. Instead of
looking for the minimum of the norm of the transfer function, one determines the infimum
of the parameter vy for which |7}, |, < 7. The optimal H norm of the transfer function
is thus less than or equal to the minimal v in the modified problem.

The advantage of the modified problem, however, is that it is a one-parameter optimiza-
tion problem. Furthermore, under some extra assumptions, it is easy to classify when, for
a given parameter v > 0, a controller exists such that |T%,|., < 7. The computation of
such an admissible controller is usually called the suboptimal H., problem.

Consider the following assumptions:

A1 The pair (A, By) is stabilizable and the pair (A, Cy) is detectable, that is (AT, CT) is

stabilizable.

A2 Dyy = 0 and both D5 and Ds; have full rank.

A3 The matrix [A_le‘”] 5122] has full column rank for all real w.

A4 The matrix [A_CJ;’I 5211] has full row rank for all real w.

One furthermore needs the symmetric matrices

[ DT ] [ 72[m1 0
Ru(y) = _Di_[Dll D12}__ 0 0}7
(18)
[ Dy ] T T [ '72[171 0
RJ(V) = Doy [ Dy, Dy } - 0 ol

Let o be the largest value of v for which Ry(7) or R;(7y) is singular. Then the solvability
of the suboptimal problem is classified by the following theorem.
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Theorem 2 [5]. Consider system (3), with Ry, Ry as in (18). Under assumptions Al-
A4, there exists an internally stabilizing controller such that the transfer function from w
to z satisfies ||Thwl|co < v if and only if the following four conditions hold.

1. v> .

2. There exists a positive semidefinite solution Xpg of the algebraic Riccati equation
associated with the Hamiltonian matriz

_ AH('Y) GH(V)
H(y) = [HHw) —Aﬁm]

_ A 0 o Bl B2 R_l(’}/) DlTlcl B?
—CcTo, —AT —CTDyy —CTDy, | 7H pLc, BT |-

3. There exists a positive semidefinite solution X; of the algebraic Riccati equation
associated with the Hamiltonian matrix

As(v) GJ(V)]

J p—

™) {HJ(W) —A5(7)
AT 0] [ cf ] g [ DuBL G
_B,BT —A B, DY, —p, DL |\ V| DLBT ¢y, |

4. V2> p(XuXy), where p(+) denotes the spectral radius.

The optimal solution of the modified H,, control problem is obtained by finding the
smallest admissible vy such that conditions 1-4 in Theorem 2 hold. This formulation of the
problem allows to compute the suboptimal controllers as well.

As before, in order to assess the sensitivity, we must first decide which of the problems
(and in which mathematical formulation) we wish to solve. Sensitivity analysis of the
optimal H., control problem is still an open problem, and in general it is not clear how
to compute this minimum. Also, for the suboptimal H,, control problem the sensitivity is
not completely understood, although progress has been made in recent years, [44],[45].

We will not repeat the discussion of the previous sections, but it should be clear by
now that the sensitivity of different formulations may differ significantly. It is obvious
that many factors contribute to the distance of this problem to the nearest problem that
does not satisfy assumptions A1-A4, including the distance to the nearest unstabilizable
problem. The current situation is even more complicated, since the method involves a
nonlinear optimization procedure, and hence the problem of computing the suboptimal
controller may be singular or close to singular for different values of ~.

The part of the sensitivity analysis that is most complete [46] is that of the suboptimal
H, control problem, where for given matrices A, By, By, C1, Cs, D11, D13, Doy, Dog =0
and for given 7 > Ymodopt the sensitivity of the resulting controller (4) under perturbations
0A, 0B1,...,0D91,0D9 = 0, v in the data is studied. These formulas are not presented
here, but it should be obvious that the conditioning of the two Riccati equations for Xy
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and X, as well as the distance to singularity of the matrices Ry, R;, plays a major role.
One of the major difficulties is the ill-conditioning of one or both Riccati equations near the
suboptimal . In Figure 7 we show the conditioning of the Riccati equations involving X g
and X; for a sixth-order system. With v going to 7y = 10.1806399112943 the sensitivity
of the second Riccati equation tends to infinity. As a consequence, most optimization
methods will not be able to determine the optimal controller.

There are many more numerical difficulties in the computation of the optimal or subop-
timal H., controller. These difficulties and their solution is beyond the scope of this paper
and is work in progress, [44].

Example 13 [44] Consider the system

-1 01]0 0]1

A | By | By 0O —-1]0 0|1

Cl D11 D12 - 1 0 % 0 O

Co | Do | O 0 1[0 |1

1 110 1]0

Then (19) becomes

i—vQ 0 0

Ry(v) = Ry(y) = 0 -7 3

0 % 1

The positive semidefinite Riccati solution corresponding to J () is X; = 0 and the positive
semidefinite Riccati solution corresponding to H(7) is

5 1, 1 11
Ny 2 |2 3(1++/5) 1+v5 2
H= 12y, B S R W I
( 2 ) +v5 2 6 (1+/5)(2+V5)
As ~ approaches its minimal value, for the suboptimal H, problem 7Ymodopt = %, the

Riccati solution Xy tends to infinity, Ry and R; become singular, and the Hamiltonian
matrix H(v) becomes ill-defined. The fourth condition in Theorem 2 never fails, because
p(X;Xp) =0 for all ¥ > Ymodopt-

This example demonstrates that the conditioning of the suboptimal H,, control prob-
lem can deteriorate near the optimum, and clearly in this case an iterative method that
approaches Ymodops Will have to be terminated before the optimum is reached. Alternative
formulations of the modified optimal H., control problem, where these difficulties do not
occur, are currently being investigated, [44]. In these formulations Riccati equations as
well as the inversion of the matrices Ry, R; is avoided.
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Conclusion and challenges

We have discussed the sensitivity of certain problems of linear control theory, including
pole assignment, full state-feedback linear-quadratic, and H,, control. We have demon-
strated that the mathematical formulation and the splitting of the problem into subprob-
lems are essential factors in the conditioning of these problems. We have shown that
standard approaches implemented in numerical toolboxes, which present widely accepted
approaches in numerical control, may face problems due to ill-conditioning. Some of these
can be avoided by reformulating the problem, but several open problems remain. Another
survey paper would be required to discuss all the recent developments in perturbation and
error estimates, we refer the reader to the working notes of the SLICOT library [17] (see
also http://www.win.tue.nl/niconet/NIC2/slicot.html) and the recent monograph
[7]. Further analysis and software is needed, in particular, for the following important
problems in control theory:

— solution of general quadratic and fractional-affine equations;

— solution of structured eigenvalue problems arising in control;

— computation of the matrices of the optimal and suboptimal controller for some H
control problems;

— computation of the distance to uncontrollability (unobservability);
— computation or bounding of the distance to unstabilizability (undetectability);

— investigation and computation of the sensitivity of general classes of H,, control
problems.

To assess the accuracy of calculations and to trust numerical results, such condition and
accuracy estimates should accompany computational procedures and must be included in
the corresponding computer codes. Users must be aware of possible difficulties accompa-
nying the computational process and know how to avoid them. These issues should also
become an essential part of the curriculum for scientists and engineers in learning how to
use and develop modern computational software.
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Figure 1: Perturbed Solutions of Lyapunov Equation and a Sensitivity Estimate. The small
sphere shows the perturbations of the right hand side, the ellipsoid represents the corre-
sponding variations in the solution, and the large sphere shows the norm-based sensitivity
estimate. For some perturbations the sensitivity estimate is very pessimistic.
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Figure 2: Pole Assignment Conditioning as a Function of Real and Imaginary Parts of
A1, A2. The minimum of the condition number is achieved for \;, Ay near —1.
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Figure 3: Sensitivity of Closed-Loop Poles. For this example, the poles are sensitive due
to their multiplicity and the associated eigenstructure.
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Figure 4: Perturbed Solutions of a Well-Conditioned Riccati Equation. The magnitude of

variations in the solution is of the same order as the magnitude of perturbations in the
data.
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Figure 5: Perturbed Solutions of Ill-Conditioned Riccati Equation. The magnitude of
variations in the solution is much larger than the magnitude of perturbations in the data.
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Figure 6: Accuracy of the Error Estimate for a Family of Riccati Equations. The accuracy
is reduced for ill-conditioned equations.
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Figure 7: Conditioning of the Solutions of Riccati Equations as a Function of ~. The
condition number of the second Riccati equation tends to infinity as v approaches ~q.
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