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Abstract. The analysis of general linear variable coefficient delay differential-algebraic systems (DDAEs) is

presented. The solvability for DDAEs is investigated and a reformulation procedure to regularize a given DDAE is

developed. Based on this regularization procedure existence and uniqueness of solutions and consistency of initial

functions is analyzed as well as other structural properties of DDAEs like smoothness requirements. We also present

some examples to demonstrate that for the numerical solution of a DDAE, a reformulation of the system before

applying numerical methods is essential.
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1. Introduction. In this paper we study general linear delay differential-algebraic equations

(DDAEs) with variable coefficients of the form

E(t)ẋ(t) = A(t)x(t) +B(t)∆τx(t) + f(t), (1.1)

on the time interval I = [0,∞), where ẋ denotes the first (time) derivative of the vector valued

function x, ∆τ denotes the shift (backward) operator, i.e., ∆τx : t 7→ x(t − τ), with a single

constant delay τ > 0. The coefficients are matrix functions E, A, B : I → Cm,n, f : I → Cm.

Most of the results in this paper can also be extended to multiple delays, but here we only discuss

the single delay case.

Note that DDAEs of the form (1.1) include many classes of dynamical systems. In particular,

we focus on: differential-algebraic equations (DAEs)

E(t)ẋ(t) = A(t)x(t) + f(t), (1.2)

difference equations

0 = A(t)x(t) +B(t)∆τx(t) + f(t), (1.3)

and also delay-differential equations

ẋ(t) = A(t)x(t) +B(t)∆τx(t) + f(t). (1.4)

Standard DAEs without delay of the form (1.2) are common mathematical models in many applica-

tion areas, such as multibody systems, electrical circuit simulation, control theory, fluid dynamics,

chemical engineering, see e. g. [1, 5, 17, 21, 26] and the references therein. However, in a more

realistic way, evolution phenomena arising in physics, biology, chemistry, or engineering should be

modeled with hereditary characteristics such as memory and time delays, and thus naturally delay
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differential-algebraic equations arise. The delay may arise due to the computing time needed for

extensive computations [12], due to interconnects for networks [20, 29], in lossless transmission

lines [18, 30], or in fluid flow models [19, 24]. In particular, linear delay differential-algebraic

equations arise after linearizing general nonlinear delay differential-algebraic equations of the form

F (t, x(t), ẋ(t),∆τx(t)) = 0

around a non-constant trajectory. We demonstrate that by the following example.

Example 1.1. The dynamical behavior of a system in fluid mechanics and turbulence mod-

eling is often described by the incompressible Navier-Stokes equation of the form

∂u

∂t
− ν∆u+∇p+ (u · ∇)u = F,

∇ · u = 0,

where ν > 0 is the viscosity, u = u(t, ξ) is the velocity field which is a function of the time t and

the position ξ, p is the pressure, F is the external force. Recently, there has been an increasing

interest in the situation where the trajectories of some fluid particles have a delay τ to follow the

fluid [22, 25]. Furthermore, from the control perspective, it is favorable to control the system by

some external force G = G(t, u(t − τ, ξ)) which involves some hereditary characteristics [9, 11].

This leads to the following time-delayed version of the incompressible Navier-Stokes equation

∂u

∂t
− ν∆u+∇p+ (u(t− τ, ξ) · ∇)u = F +G(t, u(t− τ, ξ)),

∇ · u = 0,

together with suitable initial and boundary conditions. Then, using linearization around a tra-

jectory and discretizing the space variable by finite difference or finite element methods [14], one

obtains a delay differential-algebraic system of the form (1.1).

To achieve uniqueness of solutions, for DDEs of the form (1.4) one typically has to prescribe

initial functions of the form

x|[−τ,0] = φ : [−τ, 0]→ Cn. (1.5)

However, as for standard DAEs these functions cannot be described arbitrarily but must satisfy

certain consistency conditions, and as we will see, certain extra smoothness requirements.

Although DAEs are well studied analytically and numerically, see e. g. [5, 13, 17, 21], the

theoretical understanding of DDAEs and the development of appropriate numerical methods is

far from complete even for the case of linear systems with constant coefficients. Only few results

are available, see e. g., [2, 3, 6, 7, 8, 16, 27].

The main difficulty in the theoretical analysis so far is the lack of a suitable regularity analysis

and a suitable reformulation of the problem which allows to investigate structural properties like

existence, uniqueness of solutions, consistency and smoothness requirements for an initial function

and an inhomogeneity.

On the other hand, from the numerical point of view, directly applying numerical methods

such as Runge-Kutta or BDF methods to a given DDAE may fail or provide a wrong solution.

However, if we first reformulate a given DDAE to a suitable form, then these methods work fine.

This observation is demonstrated in the following example.

Example 1.2. Consider the system[
0 0

1 −t

] [
ẋ1(t)

ẋ2(t)

]
=

[
1 −(t− 1)

1 t

] [
x1(t− τ)

x2(t− τ)

]
+

[
0

2− 2t

]
, (1.6)
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in the time interval t ∈ I = [0,∞), with delay τ = 1 and initial function φ(t) =

[
t

1

]
, t ∈ [−τ, 0].

Despite the fact that this system has a unique solution xe(t) =

[
t

1

]
, numerical methods such as

Runge-Kutta or BDF methods do not work for system (1.6), since the Jacobian of the discretized

system of the non-delay part is singular. However, if one first reformulates system (1.6) by shifting

forward the first equation and then adding its derivative to the second equation to get[
0

0

]
=

[
1 −t
0 −1

] [
x1(t)

x2(t)

]
+

[
0 0

1 t

] [
x1(t− τ)

x2(t− τ)

]
+

[
0

2− 2t

]
, (1.7)

then these numerical methods successfully work for (1.7). The numerical integration is demon-

strated in Figure 1.1, where we have used the 3 stage Radau IIA method of [15] with step size

h = 0.01 for system (1.7).
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Fig. 1.1. Solution of system (1.7) together with the relative error ||x(t)− xe(t)||∞/||xe(t)||∞

It is the aim of this paper to derive a reformulation as in Example 1.2 for general linear variable

coefficient DDAEs by extending the algebraic approach introduced in [21, 28]. The outline of the

paper is as follows. In Section 2 we recall some preliminary concepts and some auxiliary lemmas

that will be used later. As a preparation step, Section 3 studies two special cases of the DDAE

(1.1), the systems (1.2) and (1.3). Then, our main results for the analysis of system (1.1) will be

presented in Section 4. We introduce a reformulation procedure which brings the systems into a

form that allows to read off all the constraints that are contained in the system and to analyze

theoretical aspects such as solvability, uniqueness, consistency, and the necessary smoothness

requirements. We finish with some examples to illustrate our results and to demonstrate the

necessity of a reformulation procedure to DDAEs.

2. Notation and preliminaries. In the following we denote by N (N0) the set of natural

numbers (including 0), by R (C) the set of real (complex) numbers. By Cm,n we denote the

complex matrices of size m × n and by I (In) the identity matrix (of size n × n). As usual x(j)

is the j-th derivative of a function x : I → Cn. By ∆−τ we denote a shift (forward) operator

∆−τ : M(t) 7→M(t+ τ). By Iτ we denote the time interval [−τ,∞). By Ck(I,Cn) we denote the

space of k-times continuously differentiable functions from I to Cn.

For differential-algebraic equations, one frequently uses the concept of classical solutions, i.e.,

functions x : I→ Cn that are continuously differentiable and satisfy (1.1) with B = 0 pointwise, see

e.g. [4, 5]. However, in the theory of delay differential equations, there is no reason why E(0)ẋ(0)

which arises in (1.1) should be equal to E(0)φ̇(0−). For delay differential-algebraic equations, it
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has been observed in [3, 6, 15] that a discontinuity of ẋ at t = 0 may propagate with time, and

typically ẋ is discontinuous at every point jτ, j ∈ N0. To deal with this property of DDAEs, we

use the following solution concept.

Definition 2.1. A function x : Iτ → Cn is called a piecewise differentiable solution of (1.1),

if it is continuous, piecewise continuously differentiable and satisfies (1.1) at every t ∈ I\ ∪
j∈N0

{jτ}.

Throughout this paper whenever we speak of a solution, we mean a piecewise differentiable

solution.

Remark 2.2. It is possible that if the initial function φ is discontinuous, then this may lead

to solutions that are only piecewise continuous, but here we do not discuss such solutions and

assume that the initial function φ is continuous.

As for standard DAEs one cannot prescribe arbitrary initial conditions, but they have to obey

certain consistency conditions.

Definition 2.3. An initial function φ is called consistent with (1.1) if the associated initial

value problem (1.1), (1.5) has at least one solution. System (1.1) is called solvable (resp. regular)

if for every consistent initial function φ, the associated initial value problem (1.1), (1.5) has a

solution (resp. has a unique solution).

We will make frequent use of the following results, compare Theorems 3.9, 3.25 in [21].

Theorem 2.4. Let E ∈ C`(I,Cm,n), ` ∈ N0 ∪ {∞}, with constant rankE(t) = r for all t ∈ I.
Then there exist pointwise nonsingular functions U ∈ C`(I,Cm,m) and V ∈ C`(I,Cn,n), such that

UHEV =

[
Σ 0

0 0

]
, or UHE =

[
E1

0

]
,

with pointwise nonsingular Σ ∈ C`(I,Cr,r), and E1 has full row rank r.

Theorem 2.5. Let I ⊂ R be a closed interval and M ∈ C(I,Cm,n). Then there exist open

intervals Ij ⊂ I, j ∈ N, with ⋃
j∈N

Ij = I, Ii ∩ Ij = ∅ for i 6= j,

and integers rj ∈ N0, j ∈ N such that

rankM(t) = rj for all t ∈ Ij .

For two matrix functions P ∈ C(I,Cp,n), Q ∈ C(I,Cq,n), the pair (P,Q) is said to have no hidden

redundancy if

rank

[
P (t)

Q(t)

]
= rankP (t) + rankQ(t)

for all t ∈ I.

Lemma 2.6. Suppose that for P ∈ C(I,Cp,n), Q ∈ C(I,Cq,n), the pair (P,Q) has no hidden

redundancy. Let U1 ∈ C(I,Cp,p), U2 ∈ C(I,Cq,q), V ∈ C(I,Cn,n) be pointwise invertible functions.

Then, the pair of functions (U1PV,U2QV ) has no hidden redundancy.

Proof. The proof follows from the observation that a pair of matrix functions has no hidden

redundancy if and only if the intersection of the two vector spaces spanned by the rows of the two
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matrices contains only the vector 0.

The following lemma shows how one can remove the hidden redundancy of a pair of matrix-valued

functions.

Lemma 2.7. For the pair (P,Q) with P ∈ C(I,Cp,n), Q ∈ C(I,Cq,n), assume that there exist

two integers rQ 6 r[P ;Q] such that rankQ(t) = rQ and rank

[
P (t)

Q(t)

]
= r[P ;Q] for all t ∈ I. Then,

there exists

[
S 0

Z1 Z2

]
∈ C(I,Cp,p+q) that satisfies the following conditions.

i)

[
S

Z1

]
∈ C(I,Cp,p) is pointwise nonsingular,

ii) Z1P + Z2Q = 0,

iii) the function SP has pointwise full row rank, and the pair (SP,Q) has no hidden redun-

dancy.

Proof. Since Q has constant rank on I, one can apply Theorem 2.4 to factorize Q, and then

partition P conformably to getIp 0

0 UH11

0 UH12

[P
Q

] [
V11 V12

]
=

P1 P2

Σ 0

0 0

 p

rQ
q − rQ

, (2.1)

where U1 =
[
U11 U12

]
∈ C(I,Cq,q), V1 =

[
V11 V12

]
∈ C(I,Cn,n) are pointwise nonsingular

functions, and Σ ∈ C(I,CrQ,rQ) is pointwise nonsingular. The sizes of the block rows in (2.1) are

p, rQ, q − rQ. Moreover, note that in (2.1), P2 also has constant rank due to

rank(P2(t)) = rank

([
Ip 0

0 UH1

] [
P

Q

] [
V11 V12

])
− rank(Σ) = r[P ;Q] − rQ.

Then, by Theorem 2.4, there exists a pointwise nonsingular function UH2 =

[
S

Z1

]
∈ C(I,Cp,p) such

that

UH2 P2 =

[
S

Z1

]
P2 =

[
P12

0

]
, (2.2)

where P12 has pointwise full row rank r[P ;Q] − rQ.

Combining (2.1) and (2.2), one obtains
S 0

Z1 0

0 UH11

0 UH12


[
P

Q

] [
V11 V12

]
=


P11 P12

P21 0

Σ 0

0 0

 ,
where P12 has pointwise full row rank and Σ is pointwise nonsingular on I.

By definition, the function pair (
[
P11 P12

]
,

[
Σ 0

0 0

]
) has no hidden redundancy, and due to

Lemma 2.6, so does (SP,Q). Since P12 has pointwise full row rank, so does SP =
[
P11 P12

]
V −1

1 .

Furthermore, setting Z2 := P21Σ−1UH11 we obtain

Z1P − Z2Q =
(
[P21 0]− P21Σ−1[Σ 0]

)
V −1

1 = 0,

which completes the proof.
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Remark 2.8. Note that in Lemma 2.7, the matrix-valued function

[
S

Z1

]
can be chosen to

have pointwise orthonormal columns. This orthonormal representation is preferred for stability

reasons in numerical computations.

3. Analysis of differential-algebraic and difference equations. As a

preparation step for the analysis of DDAEs, this section is devoted to two special cases of the

DDAE (1.1), the differential-algebraic equation (1.2) and the difference equation (1.3). We recall

that the considered time interval is I = [0,∞). For notational convenience, in this section we omit

the time-variable t in all matrix-valued and vector-valued functions.

3.1. Differential-algebraic equations. With M :=
[
E −A

]
, we can rewrite system (1.2)

in the form

M

[
ẋ

x

]
= f. (3.1)

Making use of Theorem 2.5 and restricting ourselves if necessary to subintervals, we may assume

that the following assumption holds.

Assumption 3.1. For the pair of matrix valued functions (E,A) of the DAE (1.2), there

exist integers r, a such that

rank(E) = r, rank(M) = r + a for all t ∈ I. (3.2)

Lemma 3.2. Consider the DAE (1.2) and suppose that Assumption 3.1 holds for the pair

(E,A). Then, there exists a pointwise nonsingular function P1 ∈ C(I,Cm,m) such that by scaling

system (3.1) with P1 from the left one obtains a new system in the block upper triangular formM11 M12

0 M22

0 0

[ẋ
x

]
=

f1

f2

f3

 r

a

v = m− r − a
, (3.3)

where the functions M11 ∈ C(I,Cr,n), M22 ∈ C(I,Ca,n) have pointwise full row rank.

Proof. We first compress the block column E of M with a pointwise nonsingular function

PE : I→ Cm,m via Theorem (2.4) or a smooth QR-decomposition, see [10], yielding

PEM =

[
M̃11 M̃12

0 M̃22

]
r

m− r ,

such that M̃11 has full row rank. Continuing, by compressing the second block column from the sec-

ond block row with a pointwise nonsingular function

PA =

[
I 0

0 P̃A

]
: I→ Cm,m, P̃AM̃22 =

[
M22

0

]
where M22 has full row rank a. Setting P1 := PAPE

we arrive at (3.3).

Again, to be able to apply Lemma 2.7, we assume that the following assumption holds.

Assumption 3.3. For the DAE (1.2) and the equivalent DAE (3.3), the functions M11, M22

satisfy the constant rank identity

rank

([
M11

M22

])
= m̂, for all t ∈ I.
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Applying Lemma 2.7 to the pair (M11,M22), Assumption 3.3 implies the existence of matrix

functions S, Z1, Z2 of appropriate sizes that have the following properties

i) the function

[
S

Z1

]
∈ C(I,Cr,r) is pointwise nonsingular,

ii) Z1M11 + Z2M22 = 0,

iii) the function pair (SM11,M22) has no hidden redundancy.

(3.4)

Scaling system (3.3) with the function

P2 := diag

([
S

Z1

]
, Ia, Iv

)
∈ C(I,Cm,m),

we obtain 
SM11 SM12

Z1M11 Z1M12

0 M22

0 0

[ẋx
]

=


Sf1

Z1f1

f2

0


d

s

a

v

, (3.5)

where r = d+ s.

Clearly, one can see that the step of transforming system (3.1) via (3.3) to (3.5) is nothing else

than scaling a system with pointwise nonsingular functions, and hence, this preserves the solution

set of system (3.1). We then reduce the number of differential equations in (3.5) from r to d by

removing the block Z1M11 as in the following lemma.

Lemma 3.4. Consider the DAE (3.5), and the matrix-valued functions S, Z1, Z2 defined by

Lemma 2.7 applies to (3.3). Then, system (3.5) has the same solution set as the equation
SM11 SM12

0 Z1M12 + Z2Ṁ22

0 M22

0 0

[ẋx
]

=


Sf1

Z1f1 + Z2ḟ2

f2

0


d

s

a

v

. (3.6)

Consequently, the DAE (1.2) has the same solution set as system (3.6).

Proof. By differentiating the third block equation of (3.5) and scaling it with Z2, we obtain

Z2M22ẋ+ Z2Ṁ22x = Z2ḟ2. (3.7)

We see that the difference between system (3.5) and system (3.6) is only the second block equation,

where a differential equation is replaced by an algebraic equation. This step is done by simply

adding equation (3.7) to the second block equation of (3.5), and making use of the identity (3.4).

Vice versa, one can subtract equation (3.7) from the second block equation of (3.6), and therefore,

obtain (3.5). This guarantees that systems (3.5) and (3.6) have the same solution set, and therefore,

systems (1.2) and (3.6) also have the same solution set.

In (3.6) the number of differential equations has been reduced to d = r − s and we can continue

this reduction process leading to the following procedure.

Procedure 3.5.

Input: A DAE of the form (1.2) and its algebraic form (3.1).

Begin: Set i = 0 and let E0 = E, A0 = A, f0 = f, M0 =
[
E0 −A0

]
.
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Step 1. Assume that there exist two integers ri, ai such that

rank(Ei) = ri, rank(M i) = ri + ai for all t ∈ I.

Determine a pointwise nonsingular function P1 ∈ C(I,Cm,m) such that by scaling the equation

M i

[
ẋ

x

]
= f i from the left with P1 we obtain

M11 M12

0 M22

0 0

[ẋ
x

]
=

f1

f2

f3

 ri

ai

vi
, (3.8)

with vi = m − ri − ai and where the functions M11 ∈ C(I,Cri,n), and M22 ∈ C(I,Cai,n) have

pointwise full row rank.

Step 2. Suppose that there exists an integer m̂ such that

rank

([
M11

M22

])
= m̂, for all t ∈ I.

If the function pair (M11,M22) has no hidden redundancy, i.e., if m̂ = ri + ai then STOP with

the resulting system (3.8),

else if si = ri + ai − m̂ > 0 then proceed to Step 3.

Step 3. Determine functions S, Z1, Z2 of appropriate sizes such that

i) the matrix-valued function

[
S

Z1

]
∈ C(I,Cri,ri) is pointwise nonsingular,

ii) Z1M11 + Z2M22 = 0,

iii) the function pair (SM11,M22) has no hidden redundancy.

Set

P2 := diag

([
S

Z1

]
, Iai , Ivi

)
∈ C(I,Cm,m),

and scale system (3.8) with P2 from the left to obtain
SM11 SM12

Z1M11 Z1M12

0 M22

0 0

[ẋx
]

=


Sf1

Z1f1

f2

0


di

si

ai

vi

. (3.9)

Step 4. Remove the block Z1M11 in system (3.9) (as in Lemma 3.4) to obtain
SM11 SM12

0 Z1M12 + Z2Ṁ22

0 M22

0 0

[ẋx
]

=


Sf1

Z1f1 + Z2ḟ2

f2

0


di

si

ai

vi

.

Increase i by 1, set

Ei :=


SM11

0

0

0

 , Ai :=−


SM12

Z1M12 + Z2Ṁ22

M22

0

 , f i=


Sf1

Z1f1 + Z2ḟ2

f2

0

 , M i :=
[
Ei −Ai

]
,
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and repeat the process from Step 1.

End.

Since ri+1 = di = ri−si, and si > 0 for all i except for the last iteration, Procedure 3.5 terminates

after a finite number of iterations.

In the following we set µ = min{i ∈ N0, s
i = 0}, which is a a characteristic quantity of the

DAE (1.2).

Theorem 3.6. Consider the DAE (1.2) and assume that Procedure 3.5 proceeds until termi-

nation, i.e., all the constant rank assumptions in Procedure 3.5 are fulfilled. Then, system (1.2)

has the same solution set as the resulting DAE (3.8) which we denote byM̂11 M̂12

0 M̂22

0 0

[ẋ
x

]
=

f̂1

f̂2

f̂3

 , (3.10)

where

[
M̂11

M̂22

]
has pointwise full row rank, and the f̂i (i = 1, 2, 3) are functions of f, ḟ , . . . , f (µ).

Proof. After carrying out Procedure 3.5, we obtain a system of the form (3.10), where M̂11, M̂22

have pointwise full row rank and the pair (M̂11, M̂22) has no hidden redundancy. By definition,

this means that

rank

([
M̂11

M̂22

])
= rank(M̂11) + rank(M̂22),

and hence,

[
M̂11

M̂22

]
has pointwise full row rank. Furthermore, due to Lemma 3.4 the solution set of

system (1.2) is preserved in every step, thus it follows that (1.2) and (3.10) have the same solution

set.

3.2. Difference equations. Analogous to the case of differential-algebraic

equations, we may also treat the difference equation (1.3) via an algebraic method. Here we

propose, without proof, modifications of Procedure 3.5 and of Theorem 3.6 for the case of differ-

ence equations.

Procedure 3.7.

Input: A difference equation of the form (1.3) expressed in the algebraic form

[
A B

] [ x

∆τx

]
= −f,

in the time interval I.

Begin: Set i = 0 and let A0 := A, B0 := B, f0 := f, W 0 :=
[
A0 B0

]
.

Step 1. Assume that there exist two integers wi1, w
i
2 such that

rank(Ai) = wi1, rank(W i) = wi1 + wi2, for all t ∈ I.

Determine a pointwise nonsingular function P1 ∈ C(I,Cm,m) and scale the equation W i

[
x

∆τx

]
=
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−f i with P1 to obtain W11 W12

0 W22

0 0

[ x

∆τx

]
= −

f1

f2

f3

 wi1
wi2
wi3

, (3.11)

with wi3 = m− wi1 − wi2 and where the functions W11 ∈ C(I,Cwi1,n), and W22 ∈ C(I,Cwi2,n) have

pointwise full row rank.

Step 2. Suppose that there exists an integer w̃ such that

rank(

[
W11

∆−τW22

]
) = w̃, for all t ∈ I.

If the pair (W11,∆−τW22) has no hidden redundancy, i.e., if w̃ = wi1 +wi2, then STOP with the

resulting system (3.11),

else if si = wi1 + wi2 − w̃ > 0 then proceed to Step 3.

Step 3. Determine functions S, Z1, Z2 of appropriate sizes such that

i) the matrix-valued function

[
S

Z1

]
∈ C(I,Cwi1,wi1) is pointwise nonsingular,

ii) Z1W11 + Z2∆−τW22 = 0,

iii) the function pair (SW11,∆−τW22) has no hidden redundancy.

(3.12)

Set P2 := diag

([
S

Z1

]
, Iwi2 , Iwi3

)
∈ C(I,Cm,m), and scale system (3.11) from the left by P2 to

obtain 
SW11 SW12

Z1W11 Z1W12

0 W22

0 0

[ x

∆τx

]
= −


Sf1

Z1f1

f2

0


di

si

wi2
wi3

, (3.13)

where wi1 = di + si.

Step 4. Shift forward the third block equation of system (3.13), and then scale it with Z2 from

the left to obtain

Z2∆−τW22x = −Z2∆−τf2.

Add this equation to the second block equation of (3.13), and use the identity (3.12) to obtain
SW11 SW12

0 Z1W12

0 W22

0 0

[ x

∆τx

]
= −


Sf1

Z1f1 + Z2∆−τf2

f2

0

 .
Increase i by 1, set

Ai :=


SW11

0

0

0

 , Bi :=

SW12

Z1W12

W22

0

 , f i :=


Sf1

Z1f1+Z2∆−τf2

f2

0

 , W i :=
[
Ai Bi

]
,
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and repeat the process from Step 1.

End.

Analogous to Procedure 3.5, Procedure 3.7 applied to the difference equation (1.3) will terminate

after a finite number of steps, which immediately leads to the following theorem.

Theorem 3.8. Consider the difference equation (1.3) and assume that Procedure 3.7 proceeds

until termination, i.e., all the constant rank assumptions in Procedure 3.7 are fulfilled. Then, (1.3)

has the same solution set as the resulting difference equation (3.11) which we will denote byŴ11 Ŵ12

0 Ŵ22

0 0

[ x

∆τx

]
= −

f̂1

f̂2

f̂3

 ŵ1

ŵ2

ŵ3

, (3.14)

where the function

[
Ŵ11

∆−τŴ22

]
: t 7→

[
Ŵ11

Ŵ22(t+ τ)

]
has pointwise full row rank. The size of the

block row equations are ŵ1, ŵ2 and ŵ3 = m− ŵ1 − ŵ2.

It will turn out later that during our reformulation procedure for general delay differential-

algebraic equations, sometimes we need to differentiate difference equations, but it is possible that

some components of the function ∆τx may not be differentiable, and therefore differentiating an

equation that does not contain ∆τx is more advantageous than differentiating one that contains

it. Thus, we suggest to use a scaling, e.g. via Gaussian elimination, to reduce the number of

difference equations that involve ∆τx in system (3.14) as in the following corollary.

Corollary 3.9. Consider the difference equation (1.3) and the resulting system (3.14) ob-

tained by applying Procedure 3.7 to (1.3). Furthermore, suppose that in system (3.14) the pair

(Ŵ12, Ŵ22) satisfies

rank

([
Ŵ12

Ŵ22

])
= ŵ4, for all t ∈ I,

for some integer ŵ4. Then, there exist a pointwise nonsingular matrix-valued function P3 ∈
C(I,Cm,m) such that by scaling system (3.14) with P3 from the left one obtainsW̃11 W̃12

0 Ŵ22

0 0

[ x

∆τx

]
= −

f̃1

f̂2

f̂3

 ŵ1

ŵ2

ŵ3

, (3.15)

where the function

[
W̃11

∆−τŴ22

]
has pointwise full row rank, and the pair (W̃12, Ŵ22) has no hidden

redundancy.

Proof. Applying Lemma 2.7 to the pair (Ŵ12, Ŵ22), we can determine matrix-valued functions

Ŝ, Ẑ1, Ẑ2 of appropriate sizes that have the following properties

i) the function

[
Ŝ

Ẑ1

]
∈ C(I,Cŵ1,ŵ1) is pointwise nonsingular,

ii) Ẑ1Ŵ12 + Ẑ2Ŵ22 = 0,

iii) the function ŜŴ12 has pointwise full row rank, and the pair (ŜŴ12, Ŵ22) has no hidden

redundancy.
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Set

P3 :=


Ŝ 0 0

Ẑ1 Ẑ2 0

0 Iŵ2 0

0 0 Iŵ3


ŵ11

ŵ12

ŵ2

ŵ3

,

where ŵ1 = ŵ11 + ŵ12, and scale system (3.14) from the left by P3 to obtain
ŜŴ11 ŜŴ12

Ẑ1Ŵ11 0

0 Ŵ22

0 0


[
x

∆τx

]
= −


Ŝf̂1

Ẑ1f̂1 + Ẑ2f̂2

f̂2

f̂3


ŵ11

ŵ12

ŵ2

ŵ3

. (3.16)

Setting

W̃11 :=

[
Ŝ

Ẑ1

]
Ŵ11, W̃12 :=

[
ŜŴ11

0

]
, f̃1 :=

[
Ŝf̂1

Ẑ1f̂1 + Ẑ2f̂2

]
,

we obtain the desired form (3.15).

The remaining part now is to prove that in system (3.15), the function

[
W̃11

∆−τŴ22

]
has pointwise

full row rank. Note that the pair (W̃11,∆−τŴ22) has no hidden redundancy due to Lemma 2.6,

and the two functions W̃11, Ŵ22 have pointwise full row rank. Therefore, also

[
W̃11

∆−τŴ22

]
has

pointwise full row rank.

By transforming system (3.14) to (3.16), we have reduced the number of difference equations that

contain ∆τx from ŵ1 + ŵ2 to ŵ11 + ŵ2. Furthermore, since the function ŜŴ12 has pointwise

full row rank, we see that it is not possible to reduce any further by scaling, e.g. via Gaussian

elimination.

4. Analysis of general linear DDAEs. This section discusses DDAEs with a single delay

of the form (1.1) and the initial value problem (1.1), (1.5). First, we study a reformulation

procedure to transform the DDAE (1.1) into another system, where all hidden constraints and

solvability conditions can be read off.

As we have seen in Section 3, in order to study differential-algebraic (resp., difference) equations,

it is possible to use differentiation (resp., shift) operators as well as scaling to transform a given

system. Thus, for an arbitrary linear DDAE, in general we can use the following three operations

i) scaling the system with a pointwise nonsingular matrix-valued function,

ii) adding to one equation derivatives of other equations,

iii) shifting forward equations that contain only ∆τx(t) but not x(t).

Previous work about DDAEs typically considered only the first two operations, see e.g. [2, 6, 7, 8],

which are based on the assumption that the associated DAE

E(t)ẋ(t) = A(t)x(t) + g(t), (4.1a)

has a unique solution for every smooth enough inhomogeneity g. In this case, the DDAE (1.1)

can be interpreted as a DAE (4.1a) by introducing a new inhomogeneity

g(t) := B(t)∆τx(t) + f(t). (4.1b)
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In this special case with a prescribed past function ∆τx(t) on the interval [(k − 1)τ, kτ ], k ∈ N0,

one can solve x|[kτ,(k+1)τ ] from the DAE (4.1a), and consequently the function x will be determined

recursively by solving a sequence of DAEs.

However, this method is no longer appropriate for general DDAEs, where the associated DAE

(4.1a) is over- or underdetermined. This fact can be easily seen from the trivial equation

0 · ẋ(t) = 0 · x(t) + x(t− 1)− t, t ∈ I.

Moreover, we also demonstrate in the following example that the two operations differentiation

and shifting do not commute, so the order of their use is crucial. In fact, choosing a wrong order

of those operations may lead to additional (but unnecessary) smoothness requirements.

Example 4.1. Consider the DDAE1 0 0

0 0 0

0 0 0

 ẋ(t) =

0 0 0

1 0 0

0 0 0

x(t) +

0 0 1

0 1 0

1 0 0

∆τx(t) +

f1(t)

f2(t)

f3(t)

 , (4.2)

in the interval t ∈ I.

If one starts with a shift operation first, then shifting the last equation of (4.2) leads to1 0 0

0 0 0

0 0 0

 ẋ(t) =

0 0 0

1 0 0

1 0 0

x(t) +

0 0 1

0 1 0

0 0 0

∆τx(t) +

 f1(t)

f2(t)

f3(t+ τ)

 .
Adding the first derivative of the last equation to the first equation and removing the term ẋ1 on

both sides, one obtains0

0

0

 =

0 0 0

1 0 0

1 0 0

x(t) +

0 0 1

0 1 0

0 0 0

∆τx(t) +

f1(t) + ḟ3(t+ τ)

f2(t)

f3(t+ τ)

 .
Subtracting the last equation from the second one leads to0

0

0

 =

0 0 0

0 0 0

1 0 0

x(t) +

0 0 1

0 1 0

0 0 0

∆τx(t) +

f1(t) + ḟ3(t+ τ)

f2(t)− f3(t+ τ)

f3(t+ τ)

 .
Shifting the first two equations, we obtain the system0

0

0

 =

0 0 1

0 1 0

1 0 0

x(t) +

f1(t+ τ) + ḟ3(t+ 2τ)

f2(t+ τ)− f3(t+ 2τ)

f3(t+ τ)

 . (4.3)

Proceeding this way (using the shift operation first) only 2 shifts and 1 differentiation are used,

and more important, only f3 is required to be continuously differentiable. We now demonstrate

that if one starts with a differentiation first, then unnecessary smoothness requirements for f

follow.

First adding the first derivative of the second equation to the first equation of (4.2) and

removing the term ẋ1 on both sides leads to0

0

0

 =

0 0 0

1 0 0

0 0 0

x(t) +

0 0 1

0 1 0

1 0 0

∆τx(t) +

0 1 0

0 0 0

0 0 0

∆τ ẋ(t) +

f1(t) + ḟ2(t)

f2(t)

f3(t)

 .
13



Shifting the first and the last equation, one has0 −1 0

0 0 0

0 0 0

 ẋ(t) =

0 0 1

1 0 0

1 0 0

x(t) +

0 0 0

0 1 0

0 0 0

∆τx(t) +

f1(t+ τ) + ḟ2(t+ τ)

f2(t)

f3(t+ τ)

 .
Subtracting the last equation from the second one leads to0 −1 0

0 0 0

0 0 0

 ẋ(t) =

0 0 1

0 0 0

1 0 0

x(t) +

0 0 0

0 1 0

0 0 0

∆τx(t) +

f1(t+ τ) + ḟ2(t+ τ)

f2(t)− f3(t+ τ)

f3(t+ τ)

 .
Shifting the second equation, one then gets0 −1 0

0 0 0

0 0 0

 ẋ(t) =

0 0 1

0 1 0

1 0 0

x(t) +

0 0 0

0 0 0

0 0 0

∆τx(t) +

 f1(t+ τ) + ḟ2(t+ τ)

f2(t+ τ)− f3(t+ 2τ)

f3(t)

 .
Subtracting the first derivative of the second equation from the first one and removing the term

ẋ2(t) on both sides will also lead to system (4.3). However, we have used two differentiations and

two shifts, and more important, during this process the differentiability of not only f3(t) but also

of f2(t) is required, which is unnecessary.

Beside demonstrating the non-commutativity of the differentiation and shift operations, Ex-

ample 4.1 also suggests that one should avoid as much as possible to differentiate equations that

contain the term ∆τx(t). Therefore, before applying a differentiation, one should reduce the num-

ber of difference equations that contain ∆τx(t) to minimum. This step can be easily performed

using Corollary 3.9.

Throughout this section, we assume that Procedures 3.5 and 3.7 are applicable so that we are

able to remove the hidden redundancy in the difference and differential-algebraic parts of system

(1.1). Again, for notational convenience, we omit the time-variable t in all matrix-valued and

vector-valued functions.

First we will remove the hidden redundancy in the difference part of system (1.1), using the

following procedure.

Procedure 4.2.

Input: A DDAE of the form (1.1)

Step 1. Assume that the function E has constant rank, i.e.,

rank(E) = r, for all t ∈ I.

Determine a pointwise non-singular function P ∈ C(I,Cm,m) and scale system (1.1) with P from

the left to obtain [
E1

0

]
ẋ =

[
A1

A2

]
x+

[
B1

B2

]
∆τx+

[
f1

f2

]
, (4.4)

where E1 has pointwise full row rank r.

Step 2. Apply Procedure 3.7 to the lower block equation of system (4.4) to obtain
E1

0

0

0

 ẋ =


A1

Ă2

0

0

x+


B1

B̆2

B̆3

0

∆τx+


f1

f̆2

f̆3

f̆4

 , (4.5)
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where the functions E1,

[
Ă2

∆−τ B̆3

]
have pointwise full row rank.

Step 3. Apply Corollary 3.9 to the difference equation consisting of the second and the third block

row equations of system (4.5) to obtain
E1

0

0

0

 ẋ =


A1

Ã2

0

0

x+


B1

B̃2

B̃3

0

∆τx+


f1

f̃2

f̃3

f̃4

 , (4.6)

where the functions E1,

[
Ã2

∆−τ B̃3

]
have pointwise full row rank, and (B̃2, B̃3) has no hidden

redundancy.

End.

We now turn to the step of removing the hidden redundancy in the differential-algebraic part.

In order to do that, we perform the following procedure.

Procedure 4.3.

Input: A DDAE of the form (4.6) where the functions E1,

[
Ã2

∆−τ B̃3

]
have pointwise full row

rank, and (B̃2, B̃3) has no hidden redundancy.

Step 1. Shift forward the third block equation of system (4.6) to obtain
E1

0

0

0


︸ ︷︷ ︸
Ẽ

ẋ =


A1

Ã2

∆−τ B̃3

0


︸ ︷︷ ︸

Ã

x+


B1

B̃2

0

0


︸ ︷︷ ︸
B̃

∆τx+


f1

f̃2

∆−τ f̃3

f̃4


︸ ︷︷ ︸

f̃

, (4.7)

where the functions E1,

[
Ã2

∆−τ B̃3

]
have pointwise full row rank.

Step 2. Let g̃ := B̃∆τx+ f̃ , and rewrite system (4.7) in the differential-algebraic form

Ẽẋ = Ãx+ g̃ ⇔


E1

0

0

0

 ẋ =


A1

Ã2

∆−τ B̃3

0

x+


g̃1

g̃2

∆−τ f̃3

f̃4

 . (4.8)

Step 3. Apply Procedure 3.5 to remove the hidden redundancy of the pair (Ẽ, Ã) in system (4.8).

Step 4. Shift backward the block equation

0 = ∆−τ B̃3x+ ∆−τ f̃3. (4.9)

in the system achieved from Step 3 to obtain the resulting system
Ê1

0

0

0

0

 ẋ =


Â1

Â2

0

0

0

x+


B̂1,0

B̂2,0

B̃3

B̂3,0

0

∆τx+

µ∑
i=1


0

B̂2,i

0

B̂3,i

0

∆τx
(i) +


f̂1

f̂2

f̃3

f̂3

f̃4

 , (4.10)
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where the matrix-valued function
[
ÊT1 ÂT2 ∆−τ B̃

T
3

]T
has pointwise full row rank.

End.

Due to the observation made in Example 4.1, we first apply Procedure 4.2 and then Procedure

4.3 to system (1.1) to obtain the following lemma.

Lemma 4.4. Consider the application of Procedures 4.2 and then 4.3 to the DDAE (1.1).

Then, system (1.1) has the same solution set as system (4.10).

Proof. First applying Procedure 4.2 to system (1.1), we obtain a resulting system (4.6), where

the functions E1,

[
Ã2

∆−τ B̃3

]
have pointwise full row rank, and the pair (B̃2, B̃3) has no hidden

redundancy. By introducing a new inhomogeneity g̃ as in Step 2 of Procedure 4.3, system (4.7)

can be rewritten in differential-algebraic form (4.8).

Step 3 of Procedure 4.3 followed by applying Procedure 3.5 to (4.8), this step will preserve the

three lower block row equations, and only transform the first block row equation intoÊ1

0

0

 ẋ =

Â1

Ă2

0

x+

g̃11

g̃12

g̃13

 , (4.11)

where
[
ÊT1 ĂT2 ÃT2 ∆−τ B̃

T
3

]T
has pointwise full row rank. Let µ be the characteristic number

of the DAE (4.8), then Theorem 3.6 implies that g̃11, g̃12, g̃13 are functions of g̃, ˙̃g, . . . , g̃(µ). More

precisely, by resubstituting g̃ by B̃∆τx+ f̃ , (4.11) becomesÊ1

0

0

 ẋ =

Â1

Ĥ2

0

x+

B̂1,0

Ĝ2,0

B̂3,0

∆τx+

µ∑
i=1

 0

Ĝ2,i

B̂3,i

∆τx
(i) +

f̂1

ĥ2

f̂3

 . (4.12)

Combining system (4.12) with three lower block row equations of (4.8), setting

Â2 :=

[
Ĥ2

Ã2

]
, f̂2 :=

[
ĥ2

f̃2

]
, B̂2,0 :=

[
Ĝ2,0

B̃2

]
, B̂2,i :=

[
Ĝ2,i

0

]
, for all i ≥ 1,

and shifting backward the third block row equation of system (4.8), we then get the formulation

(4.10).

Remark 4.5. Note that in the last step of Procedure 4.3 we must shift backward the block

equation (4.9) because of the following reasons:

i) First, one may need to continue by applying Procedure 4.2, and therefore, must remove as much

as possible all the difference equations that contain ∆τx.

ii) The block equation (4.9) does not carry any information about the consistency requirement of

an initial function φ, which is properly obtained from the block equation

0 = B̃3∆τx+ f̃3.

Introducing

M0 := {x : Iτ → Cn| B̃3∆τx+ f̃3 = 0, t ∈ I}, (4.13a)

M̃0 := {x ∈M0|
µ∑
i=0

B̂3,i∆τx
(i) + f̂3 = 0, t ∈ I}, (4.13b)
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we see that M0 (resp., M̃0) are described by the set of constraints for ∆τx before (resp., after)

applying Procedure 4.3, and M̃0 is a subset of M0.

Let us consider the special case of system (4.10), where M0 = M̃0, i.e., the fourth block row

equation of system (4.10) is redundant to the third block row equation.

Theorem 4.6. Consider the DDAE (1.1), its reformulation (4.10), and the sets M0, M̃0

defined by (4.13). Moreover, assume that M0 = M̃0. Then (4.10) (and therefore, (1.1)) has the

same solution set as the system
Ê1

0

0

0

 ẋ=


Â1

Â2

0

0

x+


B̂1,0

B̂2,0

B̃3

0

∆τx+

µ∑
i=1


0

B̂2,i

0

0

∆τx
(i)+


f̂1

f̂2

f̃3

f̃4

 . (4.14)

Here, in (4.14) the function
[
ÊT1 ÂT2 ∆−τ B̃

T
3

]T
has pointwise full row rank.

Proof. Since M0 = M̃0, every function x : Iτ → Cn that satisfies the third equation of (4.10)

will automatically fulfill the fourth equation. Thus, we can remove the fourth equation of system

(4.10) to obtain system (4.14).

Let us mention two important consequences of Theorem 4.6, which characterize the structural

properties of system (1.1).

Corollary 4.7. Consider the DDAE (1.1) and its reformulation (4.10). Moreover, suppose

that the sets M0 and M̃0 defined by (4.13) coincide. Then, the following assertions hold.

i) System (1.1) is solvable if and only if in system (4.10) f̃4 = 0.

ii) System (1.1) is regular if and only if in addition the function[
ÊT1 ÂT2 ∆−τ B̃

T
3

]
is of square size.

iii) Suppose that an initial function φ is µ-times continuously differentiable on [−τ, 0]. Then

it is consistent if and only if

Â2(0)φ(0) +

µ∑
i=0

B̂2,i(0)φ(i)(−τ) + f̂2(0) = 0,

∆−τ B̃3φ+ ∆−τ f̃3 = 0, for all t ∈ [−τ, 0].

The next corollary addresses the smoothness requirements of the initial function φ and the

inhomogeneity f , for the existence of a solution x, which can be easily obtained from (4.14).

Corollary 4.8. Consider the DDAE (1.1) and its reformulation (4.10). Moreover, suppose

that the sets M0 and M̃0 defined by (4.13) coincide. Then, the following assertions hold.

i) Let µ̃ be the largest index i, 1 6 i 6 µ, that B̂2,i, is not identical zero. Then, for any k ∈ N0, to

make sure that the function x|[kτ,(k+1)τ ] is continuous, the function x|[(k−1)τ,kτ ] must be µ̃-times

continuously differentiable.

ii) To guarantee that the solution x exists and it is at least continuous on the time interval [−τ, kτ ],

an initial function φ has to be k · µ̃ times continuously differentiable.

iii) Suppose that the initial function φ is sufficiently smooth, then in order to guarantee that x is

continuous at every point t ∈ I, the function f has to be µ-times continuously differentiable.

In Theorem 4.6 and Corollaries 4.7, 4.8 we have studied the structural properties of the DDAE

(1.1) in the case M0 = M̃0. We now consider the general case, M̃0 ( M0. In the general case, one
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may introduce new variables to transform the high-order system (4.10) into first order form (1.1)

as 

Ê1 0 . . . 0 0

In 0
. . .

. . .

. . . 0

In 0

0 0 . . . 0 0

0 0 . . . 0 0

0 0 . . . 0 0

0 0 . . . 0 0




ẋ

ẍ
...

x(µ)

x(µ+1)

 =



Â1 0 . . . 0 0

In
. . .

In
In

Â2 0 . . . 0 0

0 0 . . . 0 0

0 0 . . . 0 0

0 0 . . . 0 0




x

ẋ
...

x(µ−1)

x(µ)


︸ ︷︷ ︸

χ

+

+



B̂1,0 0 . . . 0 0

0 0 . . . 0 0
. . .

0 0 . . . 0 0

0 0 . . . 0 0

B̂2,0 B̂2,1 . . . B̂2,µ−1 B̂2,µ

B̃3 0 . . . 0 0

B̂3,0 B̂3,1 . . . B̂3,µ−1 B̂3,µ

0 0 . . . 0 0




∆τx

∆τ ẋ
...

∆τx
(µ−1)

∆τx
(µ)


︸ ︷︷ ︸

∆τχ

+



f̂1

0
...

0

0

f̂2

f̃3

f̂3

f̃4


. (4.15)

The advantage of this order reduction is that all the differential-algebraic equations for ∆τx become

algebraic constraints for ∆τχ. However, as has been pointed out in [23], since it is not necessary

to differentiate all components of x really µ times, one should relax the order reduction (4.15) as

follows.

Let x =
[
x1 . . . xn

]T ∈ Cn, and for i = 1, . . . , n, let ρi be the highest order of derivatives

of xi(t− τ) occurring in (4.10), we define

X := ξ(x), ξ : x 7→
[
x1 . . . x

(ρ1)
1 . . . xn . . . x

(ρn)
n

]T
.

By introducing the variable X, and the corresponding relation

ẋi
(j−1) = x

(j)
i , i = 1, . . . , n, j = 1, . . . , ρi,

we do not make any extra smoothness assumption and obtain a reduced-order system which will

be denoted by

E1Ẋ = A1X + B1∆τX + F1. (4.16)

The function x solves system (1.1) if and only if X solves system (4.16). Furthermore, once

knowing the value of X at the point t, one also knows the value of x(t).

Applying Procedures 4.2, 4.3 to system (4.16), we construct two sequences of sets {Mj , j ∈
N0}, {M̃j , j ∈ N0} by the following procedure.

Procedure 4.9.

Input: A DDAE of the form (1.1)
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Begin: Set j = 0 and let E0 := E, A0 := A, B0 = B, F0 := f , X0 := ξ0(x) := x.

Step 1. Apply Procedure 4.2 to the equation

EjẊj = AjXj + Bj∆τX
j + F j ,

to obtain 
E1
0

0

0

 Ẋj =


A1

Ã2

0

0

Xj +


B1

B̃2

B̃3

0

∆τX
j +


F1

F̃2

F̃3

F̃4

 , (4.17)

where the functions E1,

[
Ã2

∆−τ B̃3

]
have pointwise full row rank, and the pair (B̃2, B̃3) has no hidden

redundancy.

Step 2. Apply Procedure 4.3 to system (4.17) to obtain
Ê1
0

0

0

0

 Ẋj =


Â1

Â2

0

0

0

Xj +


B̂1,0

B̂2,0

B̃3

B̂3,0

0

∆τX
j +

µj∑
i=1


0

B̂2,i

0

B̂3,i

0

∆τ (Xj)(i) +


F̂1

F̂2

F̃3

F̂3

F̃4

 , (4.18)

where the function
[
ÊT1 ÂT2 ∆−τ B̃T3

]T
has pointwise full row rank.

Let

Mj := {x : Iτ → Cn| B̃3∆τX
j + F̃3 = 0, t ∈ I},

M̃j := {x ∈Mj |
µj∑
i=0

B̂3,i∆τ (Xj)(i) + F̂3 = 0, t ∈ I},

where Xj =
(
ξj−1 ◦ · · · ◦ ξ0

)
(x) : Iτ → Cηj with ηj is the length of the vector-valued function Xj.

If Mj = M̃j then STOP with the resulting system (4.18),

else proceed to Step 3.

Step 3. Let ρi be the highest order of derivatives of (∆τX
j)i (the i-th component of ∆τX

j),

i = 1, . . . , ηj. Introduce a new variable

Xj+1 =ξj+1(Xj), ξj+1 : Xj 7→
[
(Xj)1 . . . (Xj)

(ρ1)
1 . . . (Xj)ηj . . . (Xj)

(ρηj )
ηj

]T
,

and rewrite system (4.18) as the first-order DDAE in Xj+1 according to (4.16)

Ej+1Ẋj+1 = Aj+1Xj+1 + Bj+1∆τX
j+1 + F j+1,

and repeat the process from Step 1.

End.

To show that Procedure 4.9 terminates after a finite number of steps, we observe that as

discussed for system (4.15), by the order reduction, all the differential-algebraic equations for

19



∆−τX
j will become algebraic equations for ∆−τX

j+1. Therefore, M̃j ⊇ Mj+1 for every j ∈ N0

which leads to the relation

M0 ⊇ M̃0 ⊇ · · · ⊇Mj ⊇ M̃j ⊇Mj+1 ⊇ M̃j+1 ⊇ . . .

Since the sequence {Mj | j ∈ N0} is decreasing, it follows that there exists some j ∈ N0 such that

Mj = Mj+1 and. therefore, the relation Mj ⊇ M̃j ⊇ Mj+1 implies that Mj = M̃j . So Procedure

4.9 terminates after finitely many iterations.

Let ω := min{j ∈ N0| Mj = M̃j}, then the final system obtained by applying Procedure 4.9

to the DDAE (1.1) is system (4.18) for j = ω which we denote by
Ĕ1
0

0

0

0

 Ẋω =


Ă1

Ă2

0

0

0

Xω +


B̆1,0

B̆2,0

B̆3

B̆3,0

0

∆τX
ω +

µω∑
i=1


0

B̆2,i

0

B̆3,i

0

∆τ (Xω)(i) +


F̆1

F̆2

F̆3

H̆3

F̆4

 , (4.19)

where the fourth block row equation is redundant to the third block row equation due to Mω = M̃ω,

and therefore can be omitted as in (4.14). Moreover, the matrix-valued function
[
ĔT1 ĂT2 ∆−τ B̆T3

]T
has pointwise full row rank.

We summarize our results above in the following theorem, which characterizes the solvability

analysis of the DDAE (1.1).

Theorem 4.10. Consider the DDAE (1.1) and assume that Procedure 4.9 proceeds until

termination with the resulting system
Ĕ1
0

0

0

 Ẋω =


Ă1

Ă2

0

0

Xω +


B̆1,0

B̆2,0

B̆3

0

∆τX
ω +

µω∑
i=1


0

B̆2,i

0

0

∆τ (Xω)(i) +


F̆1

F̆2

F̆3

F̆4

 , (4.20)

where the matrix-valued function
[
ĔT1 ĂT2 ∆−τ B̆T3

]T
has pointwise full row rank. Then the

DDAE (1.1) is solvable (resp. regular) if and only if system (4.20) has a solution (resp., has a

unique solution). Precisely, provided that an initial function φ is sufficiently smooth, then system

(1.1) is solvable if and only if

F̆4 = 0,

and it is regular if in addition the matrix-valued function
[
ĔT1 ĂT2 ∆−τ B̆T3

]
has as many rows

as columns. Furthermore, components of x(t) are also elements of Xω(t), so by solving system

(4.20), we also obtain the solution x(t) of system (1.1).

Proof. By interchanging the roles of x and Xω, the proof can be obtained by using the same

argument as in the proof of Theorem 4.6.

Remark 4.11. The fact that Mω = M̃ω brings us back to the same situation as the case

M0 = M̃0, and we obtain similar results as Corollaries 4.7, 4.8 by interchanging the roles of x and

Xω. Consequently, the structural properties, i.e., consistency and smoothness requirements for

initial functions and inhomogeneities of (1.1) will follow. Moreover, for the numerical analysis it is

useful to shift the third block row equation of system (4.20) before applying a numerical method.
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Fig. 5.1. Solution of system (5.2) together with the relative error ||x(t)− xe(t)||∞/||xe(t)||∞

5. Numerical Examples. We illustrate our results by considering the numerical solution of

two DDAEs of the form (1.1). As integration scheme we use a 3 stage Radau IIA method, which

has been successfully implemented in the solver RADAR5 [15]. In the following two examples,

we will show that the Radau IIA method may fail to handle DDAEs of the form (1.1). However,

this difficulty can be overcome by using Radau IIA method for the resulting system obtained by

applying Procedure 4.9 to (1.1).

Example 5.1. Consider the DDAE[
1 t

0 0

] [
ẋ1(t)

ẋ2(t)

]
=

[
0 1

1 t− 1

] [
x1(t− 1)

x2(t− 1)

]
+

[
et + 1

−et−1 − (t− 1)2

]
, (5.1)

on the time interval t ∈ I = [0,∞). Note that the associated DAE (4.1) of system (5.1) is

underdetermined, and it is not suitable for numerical integration.

Procedure 4.9 applied to (5.1) will terminate after one iteration, due to the equality

M̃0 = M0 = {x : [−1,∞)→ C2 | x1(t− 1) + (t− 1)x2(t− 1)− et−1 − (t− 1)2 = 0}.

The reformulated system is[
0

0

]
=

[
0 1

0 0

] [
x1(t)

x2(t)

]
+

[
0 1

1 t− 1

] [
x1(t− 1)

x2(t− 1)

]
+

[
1− 2t

−et−1 − (t− 1)2

]
, t ∈ I. (5.2)

Now let us consider the numerical solution of system (5.1) with a given initial function φ(t) =

[
et

t

]
.

To do that we shift the second equation of (5.2) to obtain[
0

0

]
=

[
0 1

1 t

] [
x1(t)

x2(t)

]
+

[
0 1

0 0

] [
x1(t− 1)

x2(t− 1)

]
+

[
1− 2t

−et − t2

]
, t ∈ I. (5.3)

System (5.3) is not only regular, but its associated DAE (4.1) has differentiation index 1. Here

we follow the index concept of [5]. The Radau IIA method fails to solve system (5.1), however, it

successfully treated system (5.3), as shown in Figure 5.1. There xe is the exact solution, and the

time step is h = 0.01.

Example 5.2. Consider the DDAE0 0 1

0 0 0

0 1 0

ẋ1(t)

ẋ2(t)

ẋ3(t)

 =

0 1 0

0 0 1

0 0 0

x1(t)

x2(t)

x3(t)

+

0 0 0

1 0 0

0 0 0

x1(t− 1)

x2(t− 1)

x3(t− 1)

+

 −t
−1− et−1

1

 , (5.4)
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on the time interval I = [0,∞). Again, we note that the associated DAE (4.1) of system (5.4) is

under-determined, and it is not suitable for integration.

Applying Procedure 4.9, the resulting system from the first step is

0 0 0

0 0 0

0 0 0

ẋ1(t)

ẋ2(t)

ẋ3(t)

 =

0 1 0

0 0 1

0 0 0

x1(t)

x2(t)

x3(t)

+

0 0 0

1 0 0

0 0 0

x1(t− 1)

x2(t− 1)

x3(t− 1)


+

1 0 0

0 0 0

0 0 0

ẋ1(t− 1)

ẋ2(t− 1)

ẋ3(t− 1)

+

0 0 0

0 0 0

1 0 0

ẍ1(t− 1)

ẍ2(t− 1)

ẍ3(t− 1)

+

−t− et−1

−1− et−1

−et−1

 . (5.5)

The corresponding sets are

M0 = {x : [−1,∞)→ C3},
M̃0 = {x : [−1,∞)→ C3 | ẍ1(t− 1)− et−1 = 0}.

Since M̃0 ( M0, we introduce a new variable

X1(t) :=
[
x1(t) ẋ1(t) ẍ1(t) x2(t) x3(t)

]T
,

and rewrite system (5.5) as a first order DDAE


1 0

0 1

0

0

0


︸ ︷︷ ︸

E1


ẋ1(t)

ẍ1(t)
...
x 1(t)

ẋ2(t)

ẋ3(t)

 =


0 1

0 0 1

0 1

0 1

0


︸ ︷︷ ︸

A1


x1(t)

ẋ1(t)

ẍ1(t)

x2(t)

x3(t)


︸ ︷︷ ︸
X1(t)

+


0 0

0 0

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0


︸ ︷︷ ︸

B1


x1(t− 1)

ẋ1(t− 1)

ẍ1(t− 1)

x2(t− 1)

x3(t− 1)

+


0

0

−t− et−1

−1− et−1

−et−1


︸ ︷︷ ︸

F1

. (5.6)

The second iteration of Procedure 4.9 is applied to the system E1Ẋ1(t) = A1X1(t) + B1X1(t −
1) + F1(t), and the resulting system is exactly system (5.6). The corresponding sets are

M1 = M̃1 = {x : [−1,∞)→ C3 | ẍ1(t− 1)− et−1 = 0},

and thus Procedure 4.9 terminates after two steps.

To solve system (5.1) numerically with a given initial function φ(t) =
[
et t 1

]T
, one first shifts
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Fig. 5.2. Solution of system (5.4) obtained by solving (5.7) with 3-stage-Radau IIA method together with the

relative error ||x(t)− xe(t)||∞/||xe(t)||∞

forward the constraint of x(t− 1) in system (5.6), which is its last equation, to obtain
1 0

0 1

0

0

0




ẋ1(t)

ẍ1(t)
...
x 1(t)

ẋ2(t)

ẋ3(t)

 =


0 1

0 0 1

0 1

0 1

1 0




x1(t)

ẋ1(t)

ẍ1(t)

x2(t)

x3(t)



+


0 0

0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0




x1(t− 1)

ẋ1(t− 1)

ẍ1(t− 1)

x2(t− 1)

x3(t− 1)

+


0

0

−t− et−1

−1− et−1

−et

 . (5.7)

The system (5.7) is not only regular, but its associated DAE (4.1) has differentiation index 1.

Again, the Radau IIA method fails to solve system (5.4), but successfully solves system (5.7). The

results are presented in Figure 5.2, and there xe is the exact solution, the time step is h = 0.01.

6. Summary. The existence and uniqueness of solutions to general linear

systems of delay differential-algebraic equations with variable coefficients has been studied. A

reformulation procedure has been introduced to transform a given DDAE into one, where all the

constraints, consistency conditions, smoothness requirements for the initial functions, and others

solvability properties can be read off. It has been demonstrated that for some systems, without

this reformulation step, numerical methods may fail or provide wrong results.
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