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Abstract. In the single source unsplittable min-cost flow problem, commodities must be routed simultane-
ously from a common source vertex to certain destination vertices in a given graph with edge capacities and
costs; the demand of each commaodity must be routed along a single path so that the total flow through any
edge is at most its capacity. Moreover, the total cost must not exceed a given budget. This problem has been
introduced by Kleinberg [7] and generalizes several NP-complete problems from various areas in combina-
torial optimization such as packing, partitioning, scheduling, load balancing, and virtual-circuit routing.

Kolliopoulos and Stein [9] and Dinitz, Garg, and Goemans [4] developed algorithms improving the first
approximation results of Kleinberg for the problem of minimizing the violation of edge capacities and for
other variants. However, known techniques do not seem to be capable of providing solutions without also
violating the cost constraint. We give the first approximation results with hard cost constraints. Moreover, all
our results dominate the best known bicriteria approximations. Finally, we provide results on the hardness of
approximation for several variants of the problem.
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1. Introduction

Problem definition, notation, and basicsAn instance of the single source unsplit-
table flow problem is defined as follows. We are given a directed géaph (V, E)
with edge capacities, > 0, e € E, and a set of commoditiefl, ... , k} sharing a
common source vertexe V. Moreover, together with each commoditwe are given
a destination or sink; € V' \ {s} and a demand valu¢, € R*; we say that the de-
mandd; is located at vertex,. The task is to route the demand of each commodity
unsplittably i. e., on a single path, from the sourgéo its sinkt¢; such that the total
flow through any edge is at most its capacityt.. In the version of the problem with
costs, we are also given a cost functionZ — R™ on the edges and the total cost of
the unsplittable flow must not exceed a given budget 0.

Throughout the paper we use the following notationsgliftable flow on the graph
G is afunctionf : E — R satisfying the flow conservation constraints in each vertex
ve V\{s,ti,...,tr} (i. e, the outflow is equal to the inflow at those vertices) and the
source vertex is the only vertex where the outflow may exceed the inflow. A flow is
said to satisfy all demands, if the inflow minus the outflow at each vertex/ \ {s}
is equal to the sum of all demands located.aA flow f is calledfeasibleif it respects
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the capacity constraints, i. e.,fife) < u forall e € F; the cost(f) of flow f is given
by c(f) = Y e f(€) - (o).

An unsplittable flowf is specified by a set of pat{s”, . .. , P, }, whereP; starts
at the sources and ends at;, such thatf(e) = >°.. . p d; for all edgese € E. The
coste(P;) of an s-t;-path P; is defined as:(P;) = ) p c(e) such that the cost of

an unsplittable flowf given by pathsP;, ... , P, can be written as(f) = Zle d; -
c(P;). Moreover, we setl.x = maxigick dis dmin = Miniigk ds, ANdUpin =
minge g ue. Finally, fora, b € R* we writea | b and say thak is a-integral if and only
ifbea-N.

We often refer to the following well-known results on splittable flows (see, e.qg.,

[2]).

Theorem 1.LetG = (V, E') be a directed graph with capacities and costs on the edges.
Moreover, there is a source vertexce V and k sinkstq,... ,t; € V with demands
dy,...,ds.

a) There exists a feasible (splittable) flow satisfying all demands if and only if, for any
subsefl’ C V' \ {s}, the sum of capacities of edges in the directed(®Ut 7', T') is
atleast) ;. , . d;. We refer to the latter condition asut condition

b) If the cut condition is satisfied and all demands and capacitiesudrdegral for
somea € RT, then there exists a feasible (splittable) flow satisfying all demands
with minimum cost such that the flow value on any edgeiigegral. Moreover,
such a flow can be computed in polynomial time.

Complexity and optimization versions of the single source unsplittable flow problem.
Itis an easy observation that already the single source unsplittable flow problem without
costs contains several well-known NP-complete problems as special cases, such as,
for example, BRTITION, BIN PACKING, or even scheduling parallel machines with
makespan objective [10]; we refer to [4,6,9] for more details and other special cases.
If we consider the problem with costs, we obtain theaeSACK problem as a special
case, see Figure 1. Moreover, an interesting special case of the generalized assignment
problem considered by Shmoys and Tardos [12] can also be modeled as a single source
unsplittable min-cost flow problem; we refer to [4,9] for a detailed discussion of the
connection between the two problems for the case without costs.

Kleinberg [7] introduced the following optimization versions of the single source
unsplittable flow problem:

Minimum congestion. Find the smallest value: > 1 such that there exists an
unsplittable flow that violates the capacity of any edge at most by a factor

Minimum number of rounds. Partition the set of commodities into a minimum
number of subsets (rounds) and find a feasible unsplittable flow for each subset.

Maximum routable demand. Find a feasible unsplittable flow for a subset of de-
mands maximizing the sum of demands in the subset.

For the more general setting with costs, we always add the requirement that the cost
of the unsplittable flow is bounded by the given budgeffor the ‘minimum number
of rounds’ problem, the collective cost of all rounds must not exdged
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wi/s1 wa/s2 Wg_1/5k—1 Wk/Sk

dy = s1 do = s2 dip—1 =51 dr =sg

Fig. 1. Formulation of the KWAPSACK problem as a single source unsplittable min-cost flow problem. For
each item, there is a corresponding commodlishose demand; is equal to the size; of theit" item; the

cost of the direct edge from the source to the sink of commadgyequal to the ratiav; /s; wherew; is the

weight of thei!" item; all other edge costs afe the capacity of the edge fromito v is equal to the size of

the knapsack; all other edges have infinite capacity. A feasible unsplittable flow satisfying all demands with
minimum cost induces an optimal solution to theAPsAcK problem and vice versa (items in the knapsack
correspond to commodities routed via vertgx

congestion number of rounds| routable demand
(dmax < umin) | (arbitrary demands) (dmax < Umin) | (dmax < Umin)
[71 16 — o(1) 2(1)*
(3,2) 1/13*
B 0@/e),1+¢) 3+2v2 13 0.075 — ¢
[4] 2 5 5 0.226
this paper (3,1) (3+2v2,1) (8,1) (1/8,1)*

Table 1. Summary of approximation bounds for variants of the single source unsplittable (min-cost) flow
problem. Pairs of numbel®, 3) denote bicriteria approximations for the respective objective function and
cost. All other results have been developed for the problem without costs. The results marked Withea
been developed for instances which satisfy the cut condition from Theorem 1 a).

Known results. Most results for the three optimization problems stated above were
obtained under the assumption that all demands are at most as large as the minimum
edge capacity, i. edmax < uUmin, SUch that any commodity can be routed through any
edge. Unless we emphasize in the following discussion that a result holds for the case
of arbitrary demandsit always requiresl,.x < wumin. An account of the evolution
of approximation results for the single source unsplittable (min-cost) flow problem is
given in Table 1.

We first mention the results for the ‘minimum congestion’ problem. Kleinberg
[7] gives al6-approximation algorithm; for the corresponding problem on undirected
graphs, he achieves performance guaraff@et /14 ~ 8.25. For the problem with
costs on undirected graphs, he obtains a bicrit@ia 2v/5, 3 + 21/5)-approximation
for congestion and cost. Kolliopoulos and Stein [9] (see also [8]) give a bicriteria ap-
proximation algorithm with performance guarantedéor congestion an@ for cost;
moreover, they can improve the performance ratio for cost to a constant arbitrarily close
to 1 at the expense of an increase in the performance guarantee for congestion. For the
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case of arbitrary demands, they givé3a+ 2+/2)-approximation algorithm. Asano [3]
generalizes the approach of [9] to the problem witsources and gives a bicriteria

(k + 2,2)-approximation algorithm for congestion and cost. Finally, for the problem
without costs, Dinitz, Garg, and Goemans [4] obtain an algorithm with performance
guarantee; to be more precise, their basic result says that any splittable flow satisfy-
ing all demands can be turned into an unsplittable flow while increasing the total flow
through any edge by less than the maximum demand. For the case of arbitrary demands,
they give as-approximation algorithm for congestion.

For the ‘minimum number of rounds’ problem, the following results were previ-
ously known. Kleinberg [7] shows that there is a constant factor approximation for this
problem. Kolliopoulos and Stein [9] give I8-approximation algorithm. Dinitz, Garg,
and Goemans [4] improved this result to performance rationder the assumption
that the cut condition is satisfied, they show how to route all commoditigsannds;
on the other hand, they give an example whreunds are necessary.

Finally, we discuss the known results for the ‘maximum routable demand’ problem.
Kleinberg [7] shows that when the cut condition is satisfied, then a constant fraction
of the total demand can be routed unsplittably. Kolliopoulos and Stein [9] improve this
result to a fraction of /13. Moreover, they give &.075 — ¢)-approximation algorithm
for the general problem when the cut condition may be violated. For this problem,
Dinitz, Garg, and Goemans [4] obtai)226-approximation algorithm. They also give
an instance for which the cut condition is satisfied but only a fradtidg5 of the total
demand can be routed unsplittably.

It follows from the work of Lenstra, Shmoys, and Tardos [10] that the ‘minimum
congestion’ problem cannot be approximated with performance guarantee better than
3/2, unless P=NP. It also follows thatis a lower bound on the approximability of
the ‘minimum number of rounds’ problem. Finally, Kolliopoulos and Stein [9] show
that for the unsplittable flow problem with two sources, it is NP-hard to obtain a
approximation withp < 2 for congestion.

Contribution of this paper. As discussed above, all previously developed algorithms
dealing with costs lead to bicriteria approximation results, i. e., they obtain a constant
performance guarantee for congestion, number of rounds, or routed demand at the ex-
pense of an increase in cost. Moreover, in Figure 2 we give an example showing that
the basic algorithm of Dinitz, Garg, and Goemans [4] (that was designed for the prob-
lem without costs) is not adapted for handling costs; the cost of the unsplittable flow
computed by the algorithm can be arbitrarily large compared to the cost of the initial
splittable flow.

We present approximation algorithms for all three versions of the problem intro-
duced above without relaxing the cost constraints; in other words, we always achieve
performance guarantédor cost, see Table 1. Our results, as the results of Kolliopoulos
and Stein [9] and Dinitz, Garg, and Goemans [4], hold for both directed and undirected
graphs.

Our basic approach is closely related to the one taken by Kolliopoulos and Stein [9].
It is based on rounding demand values to integer multiples of each other; then, com-
modities are routed iteratively in non-decreasing order of demands by appropriately
rounding edge capacities and making use of the integrality result in Theorem 1 b). The
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d3=1—¢
ds =1
cost =1
d1=€
s
dos — ¢
cost =1
dg =1
di=1—¢

Fig. 2. An instance of the single source unsplittable min-cost flow problemakith. < umin; all capacities

arel and the cost coefficients of all but the two labeled edge$ af@e cost of the unique feasible splittable

flow is 2e. However, the cost of any unsplittable flow found by the algorithm of Dinitz, Garg, and Goemans

[4] is at leastl. The algorithm first routes commoditiés 2, 3, and4 along their (apart from the choice of

the first edge) unique paths and decreases the flow value on the corresponding edges accordingly. In order to
route the remaining commoditi&sand6, the algorithm augments flow on cycles having a special property.

The important observation is that, in the example, the only cycles with this property are thechwetes with

shapes of symmetric triangles in the figure. Moreover, the first augmentation always increases the flow on
the edge with cost in one of those cycles and the corresponding commodity is then routed across this edge.
Thus, the cost of the unsplittable flow returned by the algorithm is at le&8e refer to [4] for details.

critical part of this procedure is the rounding step. While Kolliopoulos and Stein loose
a factor of2 in cost, we apply a more sophisticated technique comprising the computa-
tion of most expensive paths from the source to the destination nodes or, alternatively,
solving a max-cost flow problem.

We obtain the following results for problems with a given budget that must not be
over-spent. There is &-approximation algorithm for congestiondf,.x < - FOr
the case of arbitrary demands we obtain performance guarantge’2. Moreover, we
give improvements for several special cases and variants of the problem.

If the cut condition is satisfied, we show how to route all demandsrounds such
that the collective cost is bounded by the cost of a splittable min-cost flow satisfying all
demands. In order to obtain this result, we use techniques similar to those developed by
Dinitz, Garg, and Goemans [4] for the problem without costs. As a direct consequence
of this result, we can route at least a fractiof® of the total demand unsplittably with
cost bounded as above. It also leads t8approximation algorithm for the general
‘minimum number of rounds’ problem (i. e., when the cut condition is not necessarily
satisfied) with bounded collective cost.

Finally, we show that, unless P=NP, congestion cannot be approximated with per-
formance guarantee better thianl ++/5) /2 ~ 1.618 for the case of arbitrary demands.
In the proof of this result we use a reduction from SAT which also yields a lower bound
of 1/2 on the approximability of the ‘maximum routable demand’ problem on directed
graphs. As mentioned above, the best previously known lower bound for congestion
is 3/2 which follows from a reduction of the scheduling problem with makespan ob-
jective considered by Lenstra, Shmoys, and Tardos [10]. For this scheduling problem,
it is a long standing open problem to close the gap between the lower I3garahd



6 Martin Skutella

the currently best know-approximation algorithm. Also from this point of view, the
non-approximability result presented in this paper might be of some interest.

Organization of the paper. In Section 2 we present the basic algorithm computing un-
splittable flows for rounded demands. The rounding procedure for the case of arbitrary
demands is discussed in Section 3. In Sections 4 and 5 we develop the approximation
algorithms for minimizing congestion and number of rounds, respectively. Finally, in
Section 6 we present the negative results on the existence of approximation algorithms.

2. The basic algorithm

In this section we consider the special case of the single source unsplittable flow prob-
lem where, for each pair of commoditi¢sj, the demands satis®; | d; or d; | d;.

We discuss a simple algorithm that turns an arbitrary (splittable) flow satisfying all de-
mands into an unsplittable flow without increasing cost; moreover, we give a bound on
the increase of the flow value on any edge. This result will turn out to be an important
building block for deriving several approximation results for various problems and set-
tings. In particular, in the next section, we will show how the algorithm can be extended
to handle instances with arbitrary demand values.

Starting from a (splittable) flowf satisfying all demands, the algorithm constructs
an unsplittable flow by considering the commoditiea non-decreasing order of de-
mands, always routing the total demaddalong a single pattP; from s to ¢; in G.

In general, even the commodities with minimum demagg, cannot be routed un-
splittably within the flowf since f might not bed,,;,-integral. The idea is to carefully
modify f such that all flow values are multiples @f,;,, and the increase of flow on
any edge is bounded. Therefore, the problem is relaxed by setting the capacity of each
edge to its current flow value rounded up to the nearest multipé,gf. Then, by
Theorem 1 b), there exists a feasillg;,-integral flow f’ satisfying all demands and
whose cost is bounded by the costfofAll commodities: with demandi; = d,,;, can

be routed unsplittably withirf’: iteratively modify the flowf’ by decreasing the flow
values along an-t;-path P; by d,,;, and remove commodity from the instance; the
existence of suitable pathg follows from Theorem 1. The whole procedure is then
iterated until all commodities have been routed. Details are provided in Algorithm 1;
it can obviously be implemented to run in polynomial time. We give a more detailed
discussion of the running time at the end of this section.

Theorem 2.Consider an instance of the single source unsplittable flow problem with
demands satisfying; | d; or d; | d; for each pair of commodities j. Given a (split-
table) flow satisfying all demands, Algorithm 1 finds an unsplittable flow increasing the
flow value on any edge by less th&p.., and whose cost is bounded by the cost of the
initial flow.

Proof. The algorithm always implicitly maintains a flow satisfying all demands. At the
end of iteratiory, thistotal flowis given by the flowf; plus the sum of flows of value;
along pathsP; of commoditiesi that have already been routed. By construction of the
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Algorithm 1:

Input : A directed graphG = (V, E)) with non-negative costs on the edges, a source vertex
s € V, kcommodities = 1, ... , k with terminalst; € V'\ {s} and positive demands
d; suchthad; | da | -- - | di, and a (splittable) flowfy on G satisfying all demands.

Output : An unsplittable flow given by a patR; from s to each terminat;, 1 < < k.

i:=1;75:=0;
while 7 < k do
Ji=j+1,6; :=dy;
for every edge: € E, set its capacity. to f;_1(e) rounded up to the nearest multiplef,
compute a feasiblé;-integral flow f; satisfying all demands with(f;) < c(fj-1);
remove all edges with f;(e) = 0 from G;
while s < k andd; = 6; do
determine an arbitrary path; from s tot; in G;
decreasgf; alongP; by d;;
remove all edges with f;(e) = 0 from G;
=1+ 1;

return Pp,..., Py,

algorithm, the cost of the total flow never increases; in particular, the cost of the final
unsplittable flow is bounded by the cost of the initial flow.

The total flow on edge at the end of thg™" iteration of Algorithm 1 is given by the
current flow valuef;(e) plus the demandgé; of commaodities; that have already been
routed across edge The total flow is thus bounded by

file) + Z di = fi(e) + Z d; + Z di < ul + Z d; .

7 digéj 7 di:éj 7 di<6j [N di<5j
ech; ech; ech; ech;

By construction, the capacity’ is obtained by rounding ug;_;(e) to the nearest
multiple of §;. Since forj > 1 the flow f;_; is §,_;-integral andy; _; | J,, we get

ul < fi—ile) +6; — 61

This bound also holds fof = 1 if we setdy := min({dmin} U {fo(e) mod dmin |
e € E, fo(e) notdyiy-integraly) > 0. Thus,

file)+ D di < fimale)+6 =00+ Y. di .
i di<0; IS di <9;
ech; ech;
Applying this inequality iteratively, we get that the total flow on edgster iteration;j
is bounded byfy(e) + §; — do. In particular, after the last iteration the flow value is at
mOSth (6) + dmax - 60- a

The result in Theorem 2 is tight in the following sense. Dinitz, Garg, and Goemans
[4, remark after Theorem 3.7] give a class of instances together with a splittable flow
satisfying all demands such that, in order to get an unsplittable flow, one has to increase
the flow on one edge by an amount arbitrarily closé€,iQ.. Although those instances
do not satisfy our assumption on the demand valdgs| (d; or d; | d; for every
pair of commodities, ), they can easily be modified to fulfill this requirement by
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decomposing commodities into sub-commodities whose demand values sum up to the
demands of the original commaodities.

In the following corollary we state a slightly stronger version of Theorem 2 that has
also been obtained by Dinitz, Garg, and Goemans [4, Theorem 3.7] for their algorithm.

Corollary 1. In the unsplittable flow returned by Algorithm 1, the sum of all but one
demand routed across any edges less than the initial flow on.

Proof. Letd; = ¢; be the maximal demand routed across eglgehen, the flow value

on edgee is bounded by the total flow onafter the;™ iteration of the algorithm. It is

stated in the proof of Theorem 2 that the latter amount is boundgd(ey + 6, — do.
O

Since all demands are multiples df,;,,, any unsplittable flow isl,,;,-integral.
Thus, it is reasonable to assume that the same is true for the capacities of all edges
such that there exists a feasihlg;,-integral (splittable) min-cost flow satisfying all
demands. For this case we can prove a slightly stronger result.

Corollary 2. Given a feasiblei,;,-integral (splittable) flow satisfying all demands,
Algorithm 1 finds an unsplittable flow that violates the capacity of any edge by at most
dmax — dmin @nd whose cost is bounded by the cost of the initial flow.

Proof. The result follows from the proof of Theorem 2; notice thais equal tod,,;,,
in this case. O

For the case thal; = dui, - 2%, ¢; € Ny, for every commaodity:, a variant of
Algorithm 1 and the results stated above have also been obtained by Kolliopoulos and
Stein [9].

Running times. The bottleneck for the running time of Algorithm 1 is the computation
of the §;-integral flow f; in each iteratiory. Given the flowf;_1, this can be done in
the following way (see, e.g., [2]). We consider the subgraph of the current graph
that is induced by all edges whose flow valuef;_;(e) is not §;-integral. Starting
at an arbitrary vertex of this subgraph and ignoring directions of edges, we greedily
determine a cycle€”; this is possible since, due to flow conservation, the degree of
every vertex is at least two. Then, we augment flowCountil the flow value on one of
the edges becomés-integral; the orientation of the augmentation@is chosen such
that the cost of the flow is not increased. We deletd alhtegral edges and continue
iteratively. This process terminates after at masterations and has thus running time
O(nm). Since the number of iterations of Algorithm 1 is bounded:bigs total running
time isO(knm).

We now discuss the special case when the ratios of all pairs of demands are powers
of 2,i.e.,d; = duin - 2%, q; € Ny, for1 < i < k. We can modify Algorithm 1 in
the following way. Instead of only traversing the demand vatijgthe variabley; now
adopts all valued,,i, - 2¢ betweent,,;, andd,,...; details can be found in Algorithm 2.
While, in doing so, the number of iterations is increased, the running time of an iteration
can be decreased since half-integral flows can easier be turned into an integral flow than
arbitrary fractional flows.
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Algorithm 2:

Input : A directed graphG = (V, E)) with non-negative costs on the edges, a source vertex
s € V, k commoditiesi = 1,...,k with terminalst; € V \ {s} and positive
demandsl; = dmin - 27, ¢; € No, 1 < g2 < -+ < gi, and a (splittable) flowf on
@ satisfying all demands.

Output : An unsplittable flow given by a patR; from s to each terminat;, 1 <1 < k.

1:=1;5:=0;
while diin - 29 < dmax do
j = ] +1; 5] = dmin . 2j71;
for every edge: € E, set its capacity.? to f;_1 (e) rounded up to the nearest multipledf,
compute a feasiblé;-integral flow f; satisfying all demands with(f;) < c(fj-1);
remove all edges with f;(e) = 0 from G;
while i < k andd; = ¢; do
determine an arbitrary path; from s to¢; in G;
decreasgf; alongP; by d;;
remove all edges with f;(e) = 0 from G;
=1+ 1;

return Py,..., Py;

To be more precise, the number of iterations in this variant of the algorithm is
1 + log(dmax/dmin). The running time of the first iteration ©(nm) as discussed
above. However, sincg;_; is (dmin - 2772)-integral in each further iteration > 2,
the amount of augmented flow along a cyc€lein the procedure described above is
dmin - 2772 and all edges of’ can thus be removed after the augmentation. In partic-
ular, the computation of; from f;_; takes onlyO(m) time. Moreover, the patt®;
can be determined i®(n) time for each commodity and the total running time of
Algorithm 2 isO (kn + mlog(dmax/dmin) + nm).

3. The general case

In this section we discuss an algorithm that, given a splittable fl@atisfying all de-
mands, constructs an unsplittable flow for the case of arbitrary demands. The basic idea
of the algorithm is to round down the demand values such that the rounded demands
satisfy the condition from Theorem 2. Then, Algorithm 1 (or Algorithm 2) is called to
compute path$, ... , Py. Finally, the original demand of commodityl < i < k, is
routed across path;.
In the following description of the method, which we call Algorithm 3, we assume
that after removing all edges with flow valQgthe resulting graph is acyclic; otherwise,
we iteratively reduce flow along directed cycles, which can be dor@(inmn) time.
Notice that the cost of the flow is not increased since all edge costs are non-negative.
In the first step of Algorithm 3 we round all demandiso

di = dpiy - 21008/ dmin)]

Then, in a second step, we modify the flgisuch that it only satisfies the rounded
demandsd;, 1 < i < k. This part of the algorithm is crucial for deriving a good
bound on the cost of the final unsplittable flow. We consider the commodites
after another and iteratively reduce the flgwalong most expensivet;-paths within
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f (ignoring or removing edges with flow value zero) until the inflow in negéas
been decreased bl — d;. Since the underlying graph has no directed cycles, a most
expensives-t;-path can be computed in polynomial time. Notice that the resulting flow
f satisfies all rounded demands. Thus, Algorithm 1 (or Algorithm 2) can be used to turn
f into an unsplittable flow for the rounded instance. We construct an unsplittable flow
for the original instance by routing, for each commoditthe total demand; (instead

of only d;) along the pathP; returned by Algorithm 1 (or Algorithm 2).

Theorem 3. Algorithm 3 finds an unsplittable flow whose cost is bounded by the cost
of the initial flow f and the flow value on any edges less thar2f(e) + dyax. More
precisely, the sum of all but one demand routed across any eidgess than twice the
initial flow value one.

Proof. We first show that the cost of the unsplittable flow is bounded by the cost of the
initial flow. By Theorem 2, the cost of the unsplittable flow for the rounded instance is
bounded by the cost of, i. e.,

k
D di-e(P) < elf) - 1)
i=1

The flow f was obtained fronf by decreasing flow along most expensive paths within

f from the sources to the terminalg; (those paths exist since the underlying graph
contains no directed cycles). In particular, since a positive amount of flow remained on
pathP; in flow f, its coste(P;) is a lower bound on the cost of eagh;-path on which

flow has been decreased during the constructiof dhis yields

c(f) —ef) - (2)

¢
&
=
8
5
N

Since the cost of the final unsplittable rowEf:1 d; - ¢(FP;), the result follows by
taking the sum of inequalities (1) and (2).

In order to prove the result on the flow values, we consider a fixed edgeiy be
a commodity with maximal demand that is routed across ed@otice thatd; < 2d;
for all commodities.. Together with Corollary 1 this yields the following bound on the
flow value for edges in the final unsplittable flow:

Z di < diy +2 Z di < diy +2f(e) .
i:e€P; i_eEPi
“iFido
Notice that the first inequality can only be tightiif is the only commodity routed
across edge; however, the second inequality cannot be tight in this case and the result
follows. U

Kolliopoulos and Stein [9] give an algorithm similar to Algorithm 3. The seemingly
small but crucial difference is that in their rounding step, demands are rowpted
powers of2; thus, in the worst case, cost is increased by a fartoithis step and only
a bicriteria performance guarantee can be given for the resulting unsplittable flow. In
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contrast to this, Algorithm 3 takes care of the problem by carefully decreasing the given
flow on most expensive paths, thereby rounding down demandg;fotimes powers
of 2.

Running times. We now analyze the running time of Algorithm 3. The procedure for
obtainingf from f can be implemented to run id(m?) time; in each iteration of the
procedure, computing most expensive paths fecimall vertices in the current acyclic
network takesO(m) time, and the number of iterations can be bounded jyn).
Thus, the running time of Algorithm 3 i©(m?) plus the running time of Algorithm 1

(or Algorithm 2). For certain cases, the first term can be improved using the following
variant of Algorithm 3.

Instead of computing by iteratively reducing flow along most expensive paths,
we use an arbitrary min-cost flow algorithm. We set the capacity of eacheedg®&
to f(e) and the demand of each commoditio d; — d;. For the resulting instance we
compute a feasible max-cost flofvsatisfying all demands and sgt= f — f. Notice
that f satisfies the rounded demantjsMoreover, if we decompose the max-cost flow
f into flows on paths from the source to the termingJgshen any such-¢;-path is at
least as expensive as a most expensitepath within the remaining flovwf. Therefore,
inequality (2) also holds for this alternative definition oind the proof of Theorem 3
is still correct.

Thus, the termO(m?) in the running time of Algorithm 3 can be replaced by
the running time of an arbitrary min-cost flow algorithm. The running times of the
currently best known min-cost flow algorithms a@gnm log(n?/m)log(nC)) [5],
O(nm(log logU) log(nC)) [1], andO((m logn)(m + nlog n)) [11], see also [2].

Extensions. If the capacities of edges are large compared to the maximum demand
value, the bound obtained in Theorem 3 can be improved through a modification of
Algorithm 3. The idea is to decrease the multipleof f(e) at the cost of increasing

the additive partl,,., of the bound. Since the multipli€ris due to the lack of accuracy

of the rounding step, we improve it t¢g2 by employing a more precise rounding.
However, this necessitates a partition of the rounded problem into two subproblems
which are then solved independently, each causing some additive congestion.

In the first step of the modified algorithm, we round all dema#ds

7 dmax : 2L2 10g(d; /dmax)] /2 if di < dmaxa
max/ V2 if di = dinax-

We partition the commaodities into two subsétgandC; with
Co = {i | log(dmax/d;) €N} and Oy := {i | 1/2 + log(dmax/d;) € N} .

As above, the given flow is reduced along most expensive paths; the reduced flow is
then decomposed into the sum of two flofgsand f; satisfying the rounded demands
of commodities inCy andC1, respectively. Finally, by calling Algorithm 1 (or Algo-
rithm 2) for the instance defined by the commoditie€inwith input f, and then for

the instance defined by the commoditie€inwith input f;, we obtain path$>; for all
commoditiesi and route the total demanil along pathp;.
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Theorem 4. The variant of Algorithm 3 described above computes an unsplittable flow
whose cost is bounded by the cost of the initial ffoand the flow value on any edge
is less than/2f(e) + (1 + 1/v/2)dmax-

Proof. The bound on the cost of the unsplittable flow follows from the same argument
as in the proof of Theorem 3. For a fixed edgechoose commaodities € Cy and

i1 € C7 with maximal demand that are routed acresg no such commodity exists,

we setd;, = 0 and/ord;, = 0 for the following argument. Notice thaf < V/2d;, for

1 <i <k, andd;, < dmax/V/2. This yields for each edgec E

Zdigdio-‘r\/i Z di+dil+ﬂ Z CL‘

irech; i€Co: zeif? i€Cy: fif?
< dig +diy +V2(fole) + fi(e))
< (1/V2 4 1) dmax + V2f(e) .
This completes the proof. O

Using the same technique as described above but rounding the demahgs to
times half-integral powers &, one obtains an unsplittable flow whose cost is bounded
by the cost of the initial flow and the flow value on any edge less than/3f(e) +
(1 + 1/\/§)dmax-

4. Minimizing congestion with bounded cost

In this section we make use of Algorithms 1 and 3 and the results in Theorems 2 and
3 in order to obtain approximation results for the problem of minimizing congestion
with bounded cost. The underlying ideas of these implications have been introduced by
Kolliopoulos and Stein [9] and have also been used by Dinitz, Garg, and Goemans [4]
for the problem without costs.

Under the assumption thét,.x < umin, an unsplittable flow whose cost is bounded
by a given budge3 and whose congestion is less than a fadtaway from the optimal
congestion for that budget can be obtained in the following way. First we determine
the smallest value: > 1 (e.g., by binary search or by solving an LP formulation of
the problem) such that there exists a (splittable) ffowf cost at mos3 satisfying all
demands and the flow value on any edge is bounded bynes its capacity. Notice
thata is a lower bound on the optimal congestion for unsplittable flows with buBget
Using Algorithm 3,f can be turned into an unsplittable flow whose value on any edge
is bounded by« times its capacity without increasing cost, see Theorem 3. Sica
lower bound on the minimal congestion, this procedurelisspproximation algorithm.
It follows from Theorem 2 that the use of Algorithm 1 (or Algorithm 2) improves the
performance guarantee 2df the demand values satis#y | d, or d; | d; for each pair
of commoditieg, j.

Theorem 5.1f dyax < umin, there is a3-approximation algorithm for the problem
of minimizing congestion for a given budget that must not be over-spefit.|lfd;

or d; | d; for each pair of commodities j, then the performance guarantee can be
improved to2.
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Without making the assumptiofy,.x < umin, We can give an approximation algo-
rithm with performance guarantée- 2v/2 by mimicking the approach of Kolliopoulos
and Stein [9] for the problem without costs. We only give a brief description of the
algorithm and its performance guarantee; for more details we refer to [9].

In contrast to the discussion above, we now restrict to flows where commiodity
is sent only on edges with capacity at ledstnotice that a (splittable) flow with this
property respecting the budget and with minimam> 1 such that the flow on each
edge is bounded by times its capacity can be obtained, for example, from a linear
programming formulation. Then, we partition the set of commodities into subsets
qg=0,1,2,..., with

Cq = {Z | dmax . ﬁ_(q+1) < di < dmax . B_q}

wheres = 1 + 1/+/2. In the following, we only consider non-empty subséts their
number is bounded by. Using flow decompositionf can be decomposed into a sum
offlows f,,¢ =0,1,2,..., satisfying the demands of commoditie<ig; moreover f,
uses only edges of capacity at ledgt.-5~ (9T . Next, we use a variant of Algorithm 3
to turn the flowsf, into unsplittable flows. In the first step of the modified algorithm,
all demands irCy, are rounded t@, .y B~(a+1) The resulting unsplittable ﬂowﬁq
then satisfy

fa(e) < Bfa(e) +dmax- 77 and  c(fy) < c(fy) -

A short computation shows that the congestion of the sum of the unsplittable flows
q=0,1,2,...,isbounded by{1 + 23+ 1/(8—1)) -a = (3+2V2) - a.

Theorem 6. For the case of arbitrary demands, the algorithm described above com-
putes an unsplittable flow whose cost is within the budgjeind whose congestion is
bounded by + 21/2 times the minimum possible congestion for the budet

For the special case of the problem treated in Theorem 2, we can improve the per-
formance guarantee by grouping together commaodities of equal demand.

Corollary 3. For the case of arbitrary demands satisfyidg| d; or d; | d; for each
pair of commodities, j, there exists an approximation algorithm with performance
guarantee3 for the problem of minimizing congestion with bounded cost.

By using an appropriate rounding scheme, we can generalize this result as follows.

Corollary 4. Letr > § > 1;if there is ad < dy;, such thatd; /d € U;":O[rp,é - 7P
forall 1 < ¢ < k, then there exists an approximation algorithm with performance
guarantee§(2 +1/(r — 1)) for the problem of minimizing congestion with bounded
cost.

Proof. Round each demand down to the nearést-”?, p € Ng, and use a similar
procedure as described above. O

In this context, we can also prove results of the following flavor.
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Corollary 5. Under the same assumptions as in Corollary 4, if there exists a feasible
(splittable) flow of cosB3 satisfying all demands such that each commoditges only
edges of capacity at leadt, then we can compute a flow of cost at mBghat routes

a fraction1/4 of the demand of each commodity unsplittably such that the capacity of
any edge is violated by a factor of at mast 1/(r — 1).

5. Minimizing the number of rounds and maximum routable demand

We consider the problem of routing all commaodities unsplittably without violating edge
capacities in a minimum number of rounds such that the collective cost over all rounds
must not exceed a given budget We restrict to the casé, .« < umin in this section.

Our main result is a®-approximation algorithm for this problem that is based on
the algorithms for minimizing congestion presented above. In order to obtain this result,
we first develop results on how to route demands within a certain range in few rounds.
This approach and some of the basic ideas used in the following lemmas have been
developed by Dinitz, Garg, and Goemans [4] for the problem without costs.

To give a compact formulation of the following lemma, we use the convention that
1/0 = co and1/co = 0.

Lemma 1. Let f be a feasible (splittable) flow of cost at méssatisfying all demands.
Moreover, lety > 3 andk € Ny U {oc}. Then if

1 2 -1
dmax g (1 : ) min
HEC I TSy

and

1 1
dmin > . 'dmax )
g—2 k+1

then the total demand can be routed unsplittably rmunds with collective cost at most
B.

Proof. Construct a new instance of the unsplittable flow problem as follows: make
copies of the graplix = (V, E) and let the cost coefficient of each of theopies of
edgee € E be the original cost coefficienie). Introduce a super sourceand one
edge of cosb from S to each copy of. Moreover, for each commodity 1 < i < k,
add a super sink; and an edge of costfrom each copy of; to T;. In the new instance,
the original demand; of commaodityi; must be routed fron$ to 7;.

A (splittable) flow f’ for the new instance satisfying all demands and with cost
bounded byB can be constructed by assigning the flfy; to each of they copies of
G and defining the flow on the additional edges leaving the super sSuocarriving
at a super sinl’; accordingly.

We use Algorithm 3 to turrf’ into an unsplittable flow whose cost is at maétlf
k < oo, we setd,,;, to the lower bound

1 1
dmin =/ := dmax

q—2k+1
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in the algorithm such that after the first step of the algorithm the rounded derdands
are multiples off. Notice that this variant of Algorithm 3 works properly and the re-
sult on the quality of the computed solution in Theorem 3 remains true. The resulting
unsplittable flow consists of one path frashto 7; for each commodity. It is an easy
observation that each pafh) lies entirely in one of the copies @f such that the un-
splittable flow inG’ can be interpreted asunsplittable flows inG or, equivalently, as
an unsplittable routing of all demands grrounds; moreover, the collective cost is at
mostB.

It remains to be shown that the flow in each round (i. e., in each cop¥) ofspects
the capacity constraints. if = oo, the first inequality in the lemma yields
- 2umin < q;2ue )

q q

for each edge. In this case, by Theorem 3, the total flow on any copy @fe., in any
round) in the final unsplittable flow is bounded by

N

dmax

2/(€) + de. < §f<e>+ q-2

Thus, in the following we can assume tftais finite and

q
72 dmax .

Ue < Ue -

Ue <

Remember that Algorithm 3 calls Algorithm 1 to compute an unsplittable flow for a
rounded instance where all demantisare multiples of. It follows from Corollary 1
that the sum of all but one demand routed across any copy ofeitghe unsplittable
flow returned by Algorithm 1 for the rounded instance is at most
Ue 1

q q—2
By ¢-integrality of this flow, the considered value is thus boundedbBinced; < 2d;,
the flow value in the final unsplittable flow is therefore at most

1 2k
qg—2k—+1
This completes the proof. O

dox = (k+1)C .

2k€+dmax = ( +1)dmax < Umin < Ue -

In contrast to the last lemma, the following lemma also contains results on demands
that can be routed it rounds. However, fog > 3 rounds, the results in Lemma 1 turn
out to be stronger.

Lemma 2. Let f be a feasible (splittable) flow of cost at mé@ssatisfying all demands.
Moreover, lety > 2 andk € N If

1 1k+2

dmax < 7 1 Ymin and dmin > T 1

K+l gk +1

then the total demand can be routed unsplittably rounds with collective cost at most
B.

dmax ’
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Proof. The proof is similar to the proof of Lemma 1. In particular we use the same
construction of the new instance on the gr&ghand call Algorithm 3 to turnf’ into

an unsplittable flow o1&z’ whose cost is bounded by. However, this time we modify
Algorithm 3 in the following way: In the first step, all demands 1 < i < k, are
rounded down to

_ 1k+2 k+1-
: — SNy suchthat & < ¢b——d; .
ak+1 T2

If dmax < ue/(k + 2), then the final unsplittable flow on any of theopies of edge
is bounded by

k+1 k+1 1
- = - - — u, < .
L) k+2f(e)+ e S e

Otherwise, ifue < (k + 2)dmax, it follows from Corollary 1 that the sum of all but
one demand routed across any copy of edgethe unsplittable flow returned by Al-
gorithm 1 for the rounded instance is at most

fl(e) + dmax =

. k42
Yo o B e = (k+1)C .
q q

By ¢-integrality of this flow, the considered value is thus bounded:bySinced; <
q(k + 1)d;/(k + 2), the flow value in the final unsplittable flow is therefore at most

k+1
—kl dmzx = (k 1 dmax < Umin § Ue
92 + dims (k+1) u u

and the proof is complete. O

f'e) <

Finally, we give a result on arbitrarily small demand values that can be routed un-
splittably in2 rounds making use of Theorem 4.

Lemma 3. Let f be a feasible (splittable) flow of cost at méssatisfying all demands.
If dinax < (3 = 2v/2)umin, then the total demand can be routed unsplittablg inunds
with collective cost at mods.

Proof. As in the proofs of the two lemmas above, we construct a new instance on the
graphG’ (with ¢ = 2). By Theorem 4, the flowf” on G’ can be turned into an unsplit-
table flow such that the flow on both copies of an edgeF is bounded by

1
ﬁue+(1+1/\/§)(3—2\/§)umm < e

This completes the proof. O

V2f'(€) + (1 +1/v2)dmax <

An overview of the results from Lemmas 1 to 3 is given in Table 2. Combining two
of them, we can prove the following result.

Theorem 7.1f d ..« < unin and there exists a feasible flofwvith costB satisfying all
demands, then the total demand can be routed unsplittat8yr@unds with collective
cost at mos3.
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a;bH q=2 ‘ q=3 I qg=4 | q=>5 | q==6 | q="T7
k=0 1;1* 1,2/3* 1;,1/2 1;1/3 1;,1/4 1;1/5
E=1 1/2;3/4* 1/2;1/2 | 2/3;1/4 | 3/4;1/6 4/5;1/8 5/6;1/10
k=2 1/3;2/3* 3/7,1/3 | 3/5;1/6 | 9/13;1/9 | 3/4;1/12 | 15/19;1/15
k=3 1/4;5/8* 2/5;1/4 | 4/7,1/8 | 2/3;1/12 | 8/11;1/16 | 10/13;1/20
k=oo || 3—2v2;0** 1/3;0 1/2;0 3/5;0 2/3;0 5/7;0
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Table 2. Results on the number of rounds from Lemmas 1 to 3. Each pair of numizeb} i6 column

q means that all demands can be routed unsplittably ieaunds without violating the budget constraint if
dmax < @+ Umin aNddnin > b - dmax. The results marked with & follow from Lemma 2; the result
marked with** follows from Lemma 3; all other results follow from Lemma 1. The two results in bold face
yield Theorem 7.

Proof. The flow f can be decomposed into the sum of two flofyst+ f2 such thatf;
satisfies all demands in the ran@e uin /2] and f; satisfies all demands in the range
(Umin/2, umin]. By Lemma 1 (see also Table 2), the demands in the first range can be
routed unsplittably i rounds with collective cost at mogtf;) and the demands in the
second range can be routed unsplittably imunds with collective cost at mostfs).
Sincec(f1) + ¢(f2) = ¢(f) < B, the result follows.

An alternative proof partitions the demands according to the raftges,;,/3] (3
rounds) andumin /3, umin] (5 rounds), see Table 2. |

Using the technique from the proof of Lemma 1, one can also prove various results
of the following flavor.

Corollary 6. If d.x < umin and there exists a feasible flofvwith costB satisfying
all demands, then half of the demand of each commaodity can be routed unsplittably in
2 rounds with collective cost at moBt/2.

In a similar way as in Section 4 for the problem of minimizing congestion, Theo-
rem 7 can be turned into an approximation result by first determining the smallest value
« > 1 such that there exists a flow of cost at mBs$atisfying all demands and the flow
value on each edge is bounded dyimes its capacity. Notice that the number] is
a lower bound on the minimum number of rounds; on the other hand, using essentially
the same techniques as described above, we can route all demands unspligably in
rounds. We refer to [4] for a more detailed discussion (for the problem without costs).

Theorem 8.1f d .« < umin, there is ar8-approximation algorithm for the problem of
routing all demands unsplittably in a minimum number of rounds such that the collective
cost over all rounds is bounded by a given budget.

If the cut condition is satisfied, Theorem 7 also implies the following result on the
maximum routable demand.

Corollary 7. If dnax < umin and there exists a feasible (splittable) flow of cost at most
B satisfying all demands, then a fraction of at ledgg of the total demand can be
routed unsplittably with cost at most.
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true chain ofry true chain ofro
S t
1 T2
false chain ofr; false chain ofco

Fig. 3. The subgraph induced by all edges of capatity the reduction of SAT to the single source unsplit-
table flow problem. There is one forking for each variabjeof the SAT instance. The reduction works for
both directed and undirected graphs. For the latter case, ignore directions of edges in the figure.

6. Results on the hardness of approximation

The aim of this section is to prove negative results on the existence of approximation
algorithms for several variants of the single source unsplittable flow problem. All results
presented in this section already hold for the problem without costs on the edges.

Theorem 9. For instances of the single source unsplittable flow problem on directed or
undirected graphs, it is NP-hard to approximate congestion with performance guaran-
tee strictly better tharl + v/5)/2 ~ 1.618.

We prove this theorem by giving a reduction from the NP-complete SAT problem.
Given an instance of SAT, we construct an instance of the single source unsplittable flow
problem satisfying the following conditions. If the given SAT formula is satisfiable, then
there is an unsplittable flow with congestibrHowever, if the formula is not satisfiable,
then every unsplittable flow has congestion at I¢ast v/5) /2.

Proof. Given an instance of SAT with variables, ... ,z, and clause¢’,... ,C,,,
we construct an instance of the single source unsplittable flow problem by introducing
m + 1 commodities), ... , m with demandsly = 1 andd; = § := (-1 + /5)/2, for
1 < j < m. The edges of the (undirected) gra@thave capacities or 6. The subgraph
of G induced by all edges of capacityis depicted in Figure 3 (for the present, ignore
directions of edges) with the sourg®n the left hand side and the common sink of all
commoditieg on the right hand side of the figure. There is one forking for each variable
z;, 1 <1 < n. Thus, each unsplittable routing of commodityith congestion strictly
less thanl /6 = (1 + +/5)/2 uniquely determines a truth assignment to the variables
x1,...,T, and vice versaz; is set true (false) if commodity is not routed across the
true (false) chain corresponding to this variable. In other words, i set true (false),
commodity0 uses the whole capacity of’s false (true) chain and no other commodity
can use an edge of this chain without raising congestion to atleaét= (1 +/5)/2.
The true (false) chain af; contains two consecutive edges for each claisi which
x; occurs unnegated (negated). Thus, in the example given in Figure 3, the variable
21 OCcurs in one clause unnegated and in two clauses negated. We label every second
edge of the chain from left to right with the indicgf the corresponding clauses in
decreasing order, see Figure 4 (again, for the present, ignore directions of edges).

We now describe the remaining part (edges of capagityf the graph. The basic
idea of the construction is that commodijtyl < j < m, can be routed without raising
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U,
3 5 3

3 9 true chain ofro

false chain ofr

Fig. 4. The labeling of the edges in the chains from Figure 3: In our example, the variglolecurs negated
in clause<”> andC'3, while 22 occurs unnegated in claus€s andC's. ClauseC's is given by(—z1 V z2).

congestion to at leadt+ 6 = (1 + +/5)/2 if and only if the routing of commodity
corresponds to a truth assignment satisfying clatise~or each claus€’;, the graph
contains one additional vertex which is directly connected to the sourceéVloreover,

there is an edge between and the left endpoint of any edge with lalgeih a true or

false chain of some variable and another edge between the right endpoint of any such
edge and the sink see Figure 4.

Since there are exactty, edges of capacity incident tos, we can assume without
loss of generality that commodity, 1 < j < m, takes the edge frora to u;. By
construction, if the routing of commoditycorresponds to a truth assignment satisfying
clauseC’;, there is an edge labelgdvhich is not used by commodityand commodity
j can be routed fromy; to the left endpoint of this edge, across the edge, and then
directly to the sink. On the other handf; is not satisfied by the truth assignment, alll
edges that can be reached framncarry commodity0 and there is no path from; to
the sinkt with positive remaining capacity.

Summarizing, we have shown that all commaodities can be routed unsplittably with
congestionl if and only if there exists a satisfying truth assignment for the underlying
instance of SAT. Otherwise, the congestion of any unsplittable flow is at (east
v/5)/2. Thus, ap-approximation algorithm witly < (1 4 +/5)/2 would solve the NP-
complete SAT problem. O

If the graphG is directed, we can show that Theorem 9 already holds for the case
of only two commaodities. Again, we give a reduction from SAT similar to the reduction
presented above. Commoditigs. .. ,m are replaced by a single commoditywith
demand and sinkt. The definition of commodity) and the subgraph of all edges of
capacityl remain unchanged; however, edges are now directed from left to right as
shown in Figure 3. As discussed above, each unsplittable routing of comnioalitiy
congestion strictly less thairyd = (1 + 1/5)/2 uniquely determines a truth assignment
to the variables, ... , =, and vice versa.

The remaining part of the directed graph is constructed such that commazhty
be routed unsplittably (without raising congestion to at ldasts = (1 + v/5)/2) if
and only if the routing of commodity corresponds to a satisfying truth assignment.
For each claus€’;, the graph contains two additional vertiaesandv;. We introduce
a directed edge from; to u;4, for j = 0,... ,m, wherevy := s andu,,+1 = t.
Moreover, for each variable; occuring unnegated (negated)ah, there is a directed
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edge fromu; to the start vertex of the corresponding edgde the true (false) chain of
x; (see Figure 4) and a directed edge from its end vertex.to

Lemma 4. The demands of the two commodities can be routed unsplittably without
violating edge capacities if and only if there exists a satisfying truth assignment for the
underlying instance of SAT. Otherwise, every unsplittable flow has congestion at least

(1++/5)/2.

Proof. We first show how a satisfying truth assignment leads to an unsplittable flow
with congestionl. Route commodity) according to the given truth assignment as de-
scribed above. Commodityis routed across the edge connectirng «; and then, for
j=1,...,m, fromu; to u;;, as follows. Since claus€; is satisfied by the given
truth assignment, there exists a variablthat either occurs unnegated and is set to
true or occurs negated and is set to false. Commaddit/routed fromu,; across the
corresponding edge in the respective chain of variaple v; and then tas; ;.

Conversely, we show that the routing of commoditin an arbitrary unsplittable
flow with congestion strictly less thafi + v/5)/2 corresponds to a satisfying truth
assignment. Obviously, the routing of commoditdetermines some truth assignment
since otherwise congestion would be at legst = (1 + v/5)/2. Let P be thes-t-
path of commodityl. If vertexw; is contained inP, then clause’; is satisfied for the
following reason. After visiting:;, commodityl must either use an edge in the true
chain of a variable occuring unnegated in claGgeor an edge in the false chain of a
variable occuring negated {@;. Since commodity) cannot be routed across the same
edge, clausé€’; is thus satisfied.

It remains to be shown tha& containsy; forall j = 1,... ,m. We claim that these
vertices occur inP in order of increasing. First notice that, due to the capacity of
the only edge entering; (from v;_,), eachu; occurs at most once i?. Obviously,
uy IS the first node afteg in P. Assume that, for some fixedl P visits the nodes
u1,... ,u; in this order. The next vertex after; in P is on the true or false chain of
some variabler; occuring inC;. Moreover,P must leave this chain again arriving at
some vertex;, (otherwise, commodity would get stuck at the vertex succeeding the
true and the false chain af, in the subgraph depicted in Figure 3, since commodlity
uses the only outgoing edge there). Since the edges in each chain are labeled from left
to right in decreasing order, we get< j. The only edge leaving, ends at. . 1; since
u1,... ,u; have already been visited Wy, we geth = j. The claim thus follows by
induction which completes the proof. ad

Corollary 8. For the single source unsplittable flow problem on directed graphs, Theo-
rem 9 already holds for instances with only two commodities.

Using a variant of the reduction discussed before Lemma 4, we can prove the fol-
lowing result on the hardness of approximation for the maximum routable demand prob-
lem.

Theorem 10.Unless P=NP, there is no approximation algorithm with performance
guaranteep > 1/2 for the problem of routing the maximum possible demand in di-
rected graphs.
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Proof. We employ the reduction from SAT with two commodities described above.
However, we now choosé = 1 — ¢ for an arbitrary) < ¢ < 1. It follows from the

proof of Lemma 4 that the two commaodities can be routed unsplittably without violating
edge capacities if and only if there exists a satisfying truth assignment for the underlying
instance of SAT. Otherwise, at most a fractionl@f2 — ¢) of the total demand can be
routed unsplittably. Since > 0 can be arbitrarily small, a-approximation algorithm

with p > 1/2 would decide the NP-complete SAT problem. O

As a direct consequence of the NP-completeness of the single source unsplittable
flow problem, the ‘minimum number of rounds’ problem is NP-hard to approximate
within a factor ofp < 2. However, this statement is of little relevance since we can
only show it to be tight for instances with optimal value Thus, like for the edge-
coloring problem, it could be the case that the minimum number of rounds problem can
be approximated within an additive constantiof

7. Further remarks

The results presented in this paper are the best currently known for the single source un-
splittable flow problem with costs. However, Dinitz, Garg, and Goemans [4] were able
to give better bounds and performance guarantees for the problem without costs. The
reason is that their basic algorithm turns a splittable flow into an unsplittable flow while
increasing the flow value on any edge by less tlign.. We achieve this result only

for the case of rounded demands (Theorem 2) but have to endure an additional factor of
2 in the general case (Theorem 3). It is an interesting open problem to decide whether
the unsplittable flow problem with costs allows the same strong results obtained for
the problem without costs. Goemans (personal communication, January 2000) conjec-
tures that the basic result of Dinitz, Garg, and Goemans [4] discussed above can be
generalized to the problem with costs.

AcknowledgementsWe wish to thank Michel Goemans for motivating this research by pointing out the
conjecture mentioned in the concluding remarks. Thanks to Cliff Stein for sending us a copy of a preliminary
version of [9]. We are grateful to two anonymous referees for many helpful comments.

References

1. Ahuja, R.K., Goldberg, A.V., Orlin, J.B., Tarjan, R.E. (1992): Finding minimum-cost flows by double
scaling. Mathematical ProgrammiBg, 243—-266

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B. (1993): Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, Englewood Cliffs, New Jersey

3. Asano, Y. (2000): Experimental evaluation of approximation algorithms for the minimum cost multiple-
source unsplittable flow problem. Proceedings of the Workshop on Approximation and Randomized
Algorithms in Communication Networks, Carleton Scientific Press, 111-122

4. Dinitz, Y., Garg, N., Goemans, M.X. (1999): On the single source unsplittable flow problem. Combina-
torical9, 1-25

5. Goldberg, A.V., Tarjan, R.E. (1990): Solving minimum cost flow problems by successive approximation.
Mathematics of Operations Reseafdh) 430-466

6. Kleinberg, J.M. (1996): Approximation algorithms for disjoint paths problems. Ph.D. thesis, M.L.T.

7. Kleinberg, J.M. (1996): Single-source unsplittable flow. Proceedings of the 37th Annual IEEE Sympo-
sium on Foundations of Computer Science, 68-77



22 Martin Skutella: Approximating the single source unsplittable min-cost flow problem

8. Kolliopoulos, S.G. (1998): Exact and approximation algorithms for network flow and disjoint-path prob-
lems. Ph.D. thesis, Dartmouth College.
9. Kolliopoulos, S.G., Stein, C. (2001): Approximation algorithms for single-source unsplittable flow.
SIAM Journal on Computing, to appear.
10. Lenstra, J.K., Shmoys, D.B., Tardos, E. (1990): Approximation algorithms for scheduling unrelated par-
allel machines. Mathematical Programmifg) 259-271
11. Orlin, J.B. (1993): A faster strongly polynomial minimum cost flow algorithm. Operations Resthrch
338-350
12. Shmoys, D.B., Tardos, E. (1993): An approximation algorithm for the generalized assignment problem.
Mathematical Programmingg, 461-474



