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Abstract. In the single source unsplittable min-cost flow problem, commodities must be routed simultane-
ously from a common source vertex to certain destination vertices in a given graph with edge capacities and
costs; the demand of each commodity must be routed along a single path so that the total flow through any
edge is at most its capacity. Moreover, the total cost must not exceed a given budget. This problem has been
introduced by Kleinberg [7] and generalizes several NP-complete problems from various areas in combina-
torial optimization such as packing, partitioning, scheduling, load balancing, and virtual-circuit routing.

Kolliopoulos and Stein [9] and Dinitz, Garg, and Goemans [4] developed algorithms improving the first
approximation results of Kleinberg for the problem of minimizing the violation of edge capacities and for
other variants. However, known techniques do not seem to be capable of providing solutions without also
violating the cost constraint. We give the first approximation results with hard cost constraints. Moreover, all
our results dominate the best known bicriteria approximations. Finally, we provide results on the hardness of
approximation for several variants of the problem.
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1. Introduction

Problem definition, notation, and basics.An instance of the single source unsplit-
table flow problem is defined as follows. We are given a directed graphG = (V,E)
with edge capacitiesue > 0, e ∈ E, and a set of commodities{1, . . . , k} sharing a
common source vertexs ∈ V . Moreover, together with each commodityi we are given
a destination or sinkti ∈ V \ {s} and a demand valuedi ∈ R+; we say that the de-
manddi is located at vertexti. The task is to route the demand of each commodityi
unsplittably, i. e., on a single path, from the sources to its sink ti such that the total
flow through any edgee is at most its capacityue. In the version of the problem with
costs, we are also given a cost functionc : E → R

+ on the edges and the total cost of
the unsplittable flow must not exceed a given budgetB > 0.

Throughout the paper we use the following notation. A (splittable) flow on the graph
G is a functionf : E → R

+ satisfying the flow conservation constraints in each vertex
v ∈ V \{s, t1, . . . , tk} (i. e., the outflow is equal to the inflow at those vertices) and the
source vertexs is the only vertex where the outflow may exceed the inflow. A flow is
said to satisfy all demands, if the inflow minus the outflow at each vertexv ∈ V \ {s}
is equal to the sum of all demands located atv. A flow f is calledfeasibleif it respects
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the capacity constraints, i. e., iff(e) 6 ue for all e ∈ E; the costc(f) of flow f is given
by c(f) =

∑
e∈E f(e) · c(e).

An unsplittable flowf is specified by a set of paths{P1, . . . , Pk}, wherePi starts
at the sources and ends atti, such thatf(e) =

∑
i: e∈Pi di for all edgese ∈ E. The

costc(Pi) of an s-ti-pathPi is defined asc(Pi) =
∑
e∈Pi c(e) such that the cost of

an unsplittable flowf given by pathsP1, . . . , Pk can be written asc(f) =
∑k
i=1 di ·

c(Pi). Moreover, we setdmax := max16i6k di, dmin := min16i6k di, andumin :=
mine∈E ue. Finally, fora, b ∈ R+ we writea | b and say thatb is a-integral if and only
if b ∈ a · N.

We often refer to the following well-known results on splittable flows (see, e. g.,
[2]).

Theorem 1.LetG = (V,E) be a directed graph with capacities and costs on the edges.
Moreover, there is a source vertexs ∈ V and k sinkst1, . . . , tk ∈ V with demands
d1, . . . , dk.

a) There exists a feasible (splittable) flow satisfying all demands if and only if, for any
subsetT ⊆ V \ {s}, the sum of capacities of edges in the directed cut(V \ T, T ) is
at least

∑
i: ti∈T di. We refer to the latter condition ascut condition.

b) If the cut condition is satisfied and all demands and capacities area-integral for
somea ∈ R+, then there exists a feasible (splittable) flow satisfying all demands
with minimum cost such that the flow value on any edge isa-integral. Moreover,
such a flow can be computed in polynomial time.

Complexity and optimization versions of the single source unsplittable flow problem.
It is an easy observation that already the single source unsplittable flow problem without
costs contains several well-known NP-complete problems as special cases, such as,
for example, PARTITION, BIN PACKING, or even scheduling parallel machines with
makespan objective [10]; we refer to [4,6,9] for more details and other special cases.
If we consider the problem with costs, we obtain the KNAPSACK problem as a special
case, see Figure 1. Moreover, an interesting special case of the generalized assignment
problem considered by Shmoys and Tardos [12] can also be modeled as a single source
unsplittable min-cost flow problem; we refer to [4,9] for a detailed discussion of the
connection between the two problems for the case without costs.

Kleinberg [7] introduced the following optimization versions of the single source
unsplittable flow problem:

Minimum congestion. Find the smallest valueα > 1 such that there exists an
unsplittable flow that violates the capacity of any edge at most by a factorα.

Minimum number of rounds. Partition the set of commodities into a minimum
number of subsets (rounds) and find a feasible unsplittable flow for each subset.

Maximum routable demand. Find a feasible unsplittable flow for a subset of de-
mands maximizing the sum of demands in the subset.

For the more general setting with costs, we always add the requirement that the cost
of the unsplittable flow is bounded by the given budgetB (for the ‘minimum number
of rounds’ problem, the collective cost of all rounds must not exceedB).
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Fig. 1. Formulation of the KNAPSACK problem as a single source unsplittable min-cost flow problem. For
each item, there is a corresponding commodityi whose demanddi is equal to the sizesi of theith item; the
cost of the direct edge from the source to the sink of commodityi is equal to the ratiowi/si wherewi is the
weight of theith item; all other edge costs are0; the capacity of the edge froms to v is equal to the size of
the knapsack; all other edges have infinite capacity. A feasible unsplittable flow satisfying all demands with
minimum cost induces an optimal solution to the KNAPSACK problem and vice versa (items in the knapsack
correspond to commodities routed via vertexv).

congestion number of rounds routable demand
(dmax 6 umin) (arbitrary demands) (dmax 6 umin) (dmax 6 umin)

[7] 16 — O(1) Ω(1)∗

(3, 2) 1/13∗
[9]

(O(1/ε), 1 + ε)
3 + 2

√
2 13

0.075− ε
[4] 2 5 5 0.226

this paper (3, 1) (3 + 2
√

2, 1) (8, 1) (1/8, 1)∗

Table 1. Summary of approximation bounds for variants of the single source unsplittable (min-cost) flow
problem. Pairs of numbers(ρ, β) denote bicriteria approximations for the respective objective function and
cost. All other results have been developed for the problem without costs. The results marked with a∗ have
been developed for instances which satisfy the cut condition from Theorem 1 a).

Known results. Most results for the three optimization problems stated above were
obtained under the assumption that all demands are at most as large as the minimum
edge capacity, i. e.,dmax 6 umin, such that any commodity can be routed through any
edge. Unless we emphasize in the following discussion that a result holds for the case
of arbitrary demands, it always requiresdmax 6 umin. An account of the evolution
of approximation results for the single source unsplittable (min-cost) flow problem is
given in Table 1.

We first mention the results for the ‘minimum congestion’ problem. Kleinberg
[7] gives a16-approximation algorithm; for the corresponding problem on undirected
graphs, he achieves performance guarantee9/2 +

√
14 ≈ 8.25. For the problem with

costs on undirected graphs, he obtains a bicriteria(6 + 2
√

5, 3 + 2
√

5)-approximation
for congestion and cost. Kolliopoulos and Stein [9] (see also [8]) give a bicriteria ap-
proximation algorithm with performance guarantee3 for congestion and2 for cost;
moreover, they can improve the performance ratio for cost to a constant arbitrarily close
to 1 at the expense of an increase in the performance guarantee for congestion. For the
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case of arbitrary demands, they give a(3 + 2
√

2)-approximation algorithm. Asano [3]
generalizes the approach of [9] to the problem withk sources and gives a bicriteria
(k + 2, 2)-approximation algorithm for congestion and cost. Finally, for the problem
without costs, Dinitz, Garg, and Goemans [4] obtain an algorithm with performance
guarantee2; to be more precise, their basic result says that any splittable flow satisfy-
ing all demands can be turned into an unsplittable flow while increasing the total flow
through any edge by less than the maximum demand. For the case of arbitrary demands,
they give a5-approximation algorithm for congestion.

For the ‘minimum number of rounds’ problem, the following results were previ-
ously known. Kleinberg [7] shows that there is a constant factor approximation for this
problem. Kolliopoulos and Stein [9] give a13-approximation algorithm. Dinitz, Garg,
and Goemans [4] improved this result to performance ratio5. Under the assumption
that the cut condition is satisfied, they show how to route all commodities in5 rounds;
on the other hand, they give an example where3 rounds are necessary.

Finally, we discuss the known results for the ‘maximum routable demand’ problem.
Kleinberg [7] shows that when the cut condition is satisfied, then a constant fraction
of the total demand can be routed unsplittably. Kolliopoulos and Stein [9] improve this
result to a fraction of1/13. Moreover, they give a(0.075−ε)-approximation algorithm
for the general problem when the cut condition may be violated. For this problem,
Dinitz, Garg, and Goemans [4] obtain a0.226-approximation algorithm. They also give
an instance for which the cut condition is satisfied but only a fraction0.385 of the total
demand can be routed unsplittably.

It follows from the work of Lenstra, Shmoys, and Tardos [10] that the ‘minimum
congestion’ problem cannot be approximated with performance guarantee better than
3/2, unless P=NP. It also follows that2 is a lower bound on the approximability of
the ‘minimum number of rounds’ problem. Finally, Kolliopoulos and Stein [9] show
that for the unsplittable flow problem with two sources, it is NP-hard to obtain aρ-
approximation withρ < 2 for congestion.

Contribution of this paper. As discussed above, all previously developed algorithms
dealing with costs lead to bicriteria approximation results, i. e., they obtain a constant
performance guarantee for congestion, number of rounds, or routed demand at the ex-
pense of an increase in cost. Moreover, in Figure 2 we give an example showing that
the basic algorithm of Dinitz, Garg, and Goemans [4] (that was designed for the prob-
lem without costs) is not adapted for handling costs; the cost of the unsplittable flow
computed by the algorithm can be arbitrarily large compared to the cost of the initial
splittable flow.

We present approximation algorithms for all three versions of the problem intro-
duced above without relaxing the cost constraints; in other words, we always achieve
performance guarantee1 for cost, see Table 1. Our results, as the results of Kolliopoulos
and Stein [9] and Dinitz, Garg, and Goemans [4], hold for both directed and undirected
graphs.

Our basic approach is closely related to the one taken by Kolliopoulos and Stein [9].
It is based on rounding demand values to integer multiples of each other; then, com-
modities are routed iteratively in non-decreasing order of demands by appropriately
rounding edge capacities and making use of the integrality result in Theorem 1 b). The
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Fig. 2. An instance of the single source unsplittable min-cost flow problem withdmax 6 umin; all capacities
are1 and the cost coefficients of all but the two labeled edges are0. The cost of the unique feasible splittable
flow is 2ε. However, the cost of any unsplittable flow found by the algorithm of Dinitz, Garg, and Goemans
[4] is at least1. The algorithm first routes commodities1, 2, 3, and4 along their (apart from the choice of
the first edge) unique paths and decreases the flow value on the corresponding edges accordingly. In order to
route the remaining commodities5 and6, the algorithm augments flow on cycles having a special property.
The important observation is that, in the example, the only cycles with this property are the two4-cycles with
shapes of symmetric triangles in the figure. Moreover, the first augmentation always increases the flow on
the edge with cost1 in one of those cycles and the corresponding commodity is then routed across this edge.
Thus, the cost of the unsplittable flow returned by the algorithm is at least1. We refer to [4] for details.

critical part of this procedure is the rounding step. While Kolliopoulos and Stein loose
a factor of2 in cost, we apply a more sophisticated technique comprising the computa-
tion of most expensive paths from the source to the destination nodes or, alternatively,
solving a max-cost flow problem.

We obtain the following results for problems with a given budget that must not be
over-spent. There is a3-approximation algorithm for congestion ifdmax 6 umin. For
the case of arbitrary demands we obtain performance guarantee3+2

√
2. Moreover, we

give improvements for several special cases and variants of the problem.
If the cut condition is satisfied, we show how to route all demands in8 rounds such

that the collective cost is bounded by the cost of a splittable min-cost flow satisfying all
demands. In order to obtain this result, we use techniques similar to those developed by
Dinitz, Garg, and Goemans [4] for the problem without costs. As a direct consequence
of this result, we can route at least a fraction1/8 of the total demand unsplittably with
cost bounded as above. It also leads to an8-approximation algorithm for the general
‘minimum number of rounds’ problem (i. e., when the cut condition is not necessarily
satisfied) with bounded collective cost.

Finally, we show that, unless P=NP, congestion cannot be approximated with per-
formance guarantee better than(−1+

√
5)/2 ≈ 1.618 for the case of arbitrary demands.

In the proof of this result we use a reduction from SAT which also yields a lower bound
of 1/2 on the approximability of the ‘maximum routable demand’ problem on directed
graphs. As mentioned above, the best previously known lower bound for congestion
is 3/2 which follows from a reduction of the scheduling problem with makespan ob-
jective considered by Lenstra, Shmoys, and Tardos [10]. For this scheduling problem,
it is a long standing open problem to close the gap between the lower bound3/2 and
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the currently best known2-approximation algorithm. Also from this point of view, the
non-approximability result presented in this paper might be of some interest.

Organization of the paper. In Section 2 we present the basic algorithm computing un-
splittable flows for rounded demands. The rounding procedure for the case of arbitrary
demands is discussed in Section 3. In Sections 4 and 5 we develop the approximation
algorithms for minimizing congestion and number of rounds, respectively. Finally, in
Section 6 we present the negative results on the existence of approximation algorithms.

2. The basic algorithm

In this section we consider the special case of the single source unsplittable flow prob-
lem where, for each pair of commoditiesi, j, the demands satisfydi | dj or dj | di.
We discuss a simple algorithm that turns an arbitrary (splittable) flow satisfying all de-
mands into an unsplittable flow without increasing cost; moreover, we give a bound on
the increase of the flow value on any edge. This result will turn out to be an important
building block for deriving several approximation results for various problems and set-
tings. In particular, in the next section, we will show how the algorithm can be extended
to handle instances with arbitrary demand values.

Starting from a (splittable) flowf satisfying all demands, the algorithm constructs
an unsplittable flow by considering the commoditiesi in non-decreasing order of de-
mands, always routing the total demanddi along a single pathPi from s to ti in G.
In general, even the commodities with minimum demanddmin cannot be routed un-
splittably within the flowf sincef might not bedmin-integral. The idea is to carefully
modify f such that all flow values are multiples ofdmin and the increase of flow on
any edge is bounded. Therefore, the problem is relaxed by setting the capacity of each
edge to its current flow value rounded up to the nearest multiple ofdmin. Then, by
Theorem 1 b), there exists a feasibledmin-integral flowf ′ satisfying all demands and
whose cost is bounded by the cost off . All commoditiesi with demanddi = dmin can
be routed unsplittably withinf ′: iteratively modify the flowf ′ by decreasing the flow
values along ans-ti-pathPi by dmin and remove commodityi from the instance; the
existence of suitable pathsPi follows from Theorem 1. The whole procedure is then
iterated until all commodities have been routed. Details are provided in Algorithm 1;
it can obviously be implemented to run in polynomial time. We give a more detailed
discussion of the running time at the end of this section.

Theorem 2.Consider an instance of the single source unsplittable flow problem with
demands satisfyingdi | dj or dj | di for each pair of commoditiesi, j. Given a (split-
table) flow satisfying all demands, Algorithm 1 finds an unsplittable flow increasing the
flow value on any edge by less thandmax and whose cost is bounded by the cost of the
initial flow.

Proof. The algorithm always implicitly maintains a flow satisfying all demands. At the
end of iterationj, thistotal flowis given by the flowfj plus the sum of flows of valuedi
along pathsPi of commoditiesi that have already been routed. By construction of the
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Algorithm 1:
Input : A directed graphG = (V,E) with non-negative costs on the edges, a source vertex

s ∈ V , k commoditiesi = 1, . . . , k with terminalsti ∈ V \{s} and positive demands
di such thatd1 | d2 | · · · | dk, and a (splittable) flowf0 onG satisfying all demands.

Output : An unsplittable flow given by a pathPi from s to each terminalti, 1 6 i 6 k.

i := 1; j := 0;
while i 6 k do

j := j + 1; δj := di;

for every edgee ∈ E, set its capacityuje to fj−1(e) rounded up to the nearest multiple ofδj ;
compute a feasibleδj -integral flowfj satisfying all demands withc(fj) 6 c(fj−1);
remove all edgese with fj(e) = 0 fromG;
while i 6 k anddi = δj do

determine an arbitrary pathPi from s to ti in G;
decreasefj alongPi by di;
remove all edgese with fj(e) = 0 fromG;
i := i+ 1;

return P1, . . . , Pk;

algorithm, the cost of the total flow never increases; in particular, the cost of the final
unsplittable flow is bounded by the cost of the initial flow.

The total flow on edgee at the end of thejth iteration of Algorithm 1 is given by the
current flow valuefj(e) plus the demandsdi of commoditiesi that have already been
routed across edgee. The total flow is thus bounded by

fj(e) +
∑

i:
di6δj
e∈Pi

di = fj(e) +
∑

i:
di=δj
e∈Pi

di +
∑

i:
di<δj
e∈Pi

di 6 uje +
∑

i:
di<δj
e∈Pi

di .

By construction, the capacityuje is obtained by rounding upfj−1(e) to the nearest
multiple of δj . Since forj > 1 the flowfj−1 is δj−1-integral andδj−1 | δj , we get

uje 6 fj−1(e) + δj − δj−1 .

This bound also holds forj = 1 if we setδ0 := min({dmin} ∪ {f0(e) mod dmin |
e ∈ E, f0(e) notdmin-integral}) > 0. Thus,

fj(e) +
∑

i:
di6δj
e∈Pi

di 6 fj−1(e) + δj − δj−1 +
∑

i:
di<δj
e∈Pi

di .

Applying this inequality iteratively, we get that the total flow on edgee after iterationj
is bounded byf0(e) + δj − δ0. In particular, after the last iteration the flow value is at
mostf0(e) + dmax − δ0. ut

The result in Theorem 2 is tight in the following sense. Dinitz, Garg, and Goemans
[4, remark after Theorem 3.7] give a class of instances together with a splittable flow
satisfying all demands such that, in order to get an unsplittable flow, one has to increase
the flow on one edge by an amount arbitrarily close todmax. Although those instances
do not satisfy our assumption on the demand values (di | dj or dj | di for every
pair of commoditiesi, j), they can easily be modified to fulfill this requirement by
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decomposing commodities into sub-commodities whose demand values sum up to the
demands of the original commodities.

In the following corollary we state a slightly stronger version of Theorem 2 that has
also been obtained by Dinitz, Garg, and Goemans [4, Theorem 3.7] for their algorithm.

Corollary 1. In the unsplittable flow returned by Algorithm 1, the sum of all but one
demand routed across any edgee is less than the initial flow one.

Proof. Let di = δj be the maximal demand routed across edgee. Then, the flow value
on edgee is bounded by the total flow one after thejth iteration of the algorithm. It is
stated in the proof of Theorem 2 that the latter amount is bounded byf0(e) + δj − δ0.

ut

Since all demands are multiples ofdmin, any unsplittable flow isdmin-integral.
Thus, it is reasonable to assume that the same is true for the capacities of all edges
such that there exists a feasibledmin-integral (splittable) min-cost flow satisfying all
demands. For this case we can prove a slightly stronger result.

Corollary 2. Given a feasibledmin-integral (splittable) flow satisfying all demands,
Algorithm 1 finds an unsplittable flow that violates the capacity of any edge by at most
dmax − dmin and whose cost is bounded by the cost of the initial flow.

Proof. The result follows from the proof of Theorem 2; notice thatδ0 is equal todmin

in this case. ut

For the case thatdi = dmin · 2qi , qi ∈ N0, for every commodityi, a variant of
Algorithm 1 and the results stated above have also been obtained by Kolliopoulos and
Stein [9].

Running times. The bottleneck for the running time of Algorithm 1 is the computation
of theδj-integral flowfj in each iterationj. Given the flowfj−1, this can be done in
the following way (see, e. g., [2]). We consider the subgraph of the current graphG
that is induced by all edgese whose flow valuefj−1(e) is not δj-integral. Starting
at an arbitrary vertex of this subgraph and ignoring directions of edges, we greedily
determine a cycleC; this is possible since, due to flow conservation, the degree of
every vertex is at least two. Then, we augment flow onC until the flow value on one of
the edges becomesδj-integral; the orientation of the augmentation onC is chosen such
that the cost of the flow is not increased. We delete allδj-integral edges and continue
iteratively. This process terminates after at mostm iterations and has thus running time
O(nm). Since the number of iterations of Algorithm 1 is bounded byk, its total running
time isO(knm).

We now discuss the special case when the ratios of all pairs of demands are powers
of 2, i. e., di = dmin · 2qi , qi ∈ N0, for 1 6 i 6 k. We can modify Algorithm 1 in
the following way. Instead of only traversing the demand valuesdi, the variableδj now
adopts all valuesdmin ·2i betweendmin anddmax; details can be found in Algorithm 2.
While, in doing so, the number of iterations is increased, the running time of an iteration
can be decreased since half-integral flows can easier be turned into an integral flow than
arbitrary fractional flows.
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Algorithm 2:
Input : A directed graphG = (V,E) with non-negative costs on the edges, a source vertex

s ∈ V , k commoditiesi = 1, . . . , k with terminalsti ∈ V \ {s} and positive
demandsdi = dmin · 2qi , qi ∈ N0, q1 6 q2 6 · · · 6 qk, and a (splittable) flowf0 on
G satisfying all demands.

Output : An unsplittable flow given by a pathPi from s to each terminalti, 1 6 i 6 k.

i := 1; j := 0;
while dmin · 2j 6 dmax do

j := j + 1; δj := dmin · 2j−1;

for every edgee ∈ E, set its capacityuje to fj−1(e) rounded up to the nearest multiple ofδj ;
compute a feasibleδj -integral flowfj satisfying all demands withc(fj) 6 c(fj−1);
remove all edgese with fj(e) = 0 fromG;
while i 6 k anddi = δj do

determine an arbitrary pathPi from s to ti in G;
decreasefj alongPi by di;
remove all edgese with fj(e) = 0 fromG;
i := i+ 1;

return P1, . . . , Pk;

To be more precise, the number of iterations in this variant of the algorithm is
1 + log(dmax/dmin). The running time of the first iteration isO(nm) as discussed
above. However, sincefj−1 is (dmin · 2j−2)-integral in each further iterationj > 2,
the amount of augmented flow along a cycleC in the procedure described above is
dmin · 2j−2 and all edges ofC can thus be removed after the augmentation. In partic-
ular, the computation offj from fj−1 takes onlyO(m) time. Moreover, the pathPi
can be determined inO(n) time for each commodityi and the total running time of
Algorithm 2 isO

(
kn+m log(dmax/dmin) + nm

)
.

3. The general case

In this section we discuss an algorithm that, given a splittable flowf satisfying all de-
mands, constructs an unsplittable flow for the case of arbitrary demands. The basic idea
of the algorithm is to round down the demand values such that the rounded demands
satisfy the condition from Theorem 2. Then, Algorithm 1 (or Algorithm 2) is called to
compute pathsP1, . . . , Pk. Finally, the original demand of commodityi, 1 6 i 6 k, is
routed across pathPi.

In the following description of the method, which we call Algorithm 3, we assume
that after removing all edges with flow value0, the resulting graph is acyclic; otherwise,
we iteratively reduce flow along directed cycles, which can be done inO(nm) time.
Notice that the cost of the flow is not increased since all edge costs are non-negative.

In the first step of Algorithm 3 we round all demandsdi to

d̄i := dmin · 2blog(di/dmin)c .

Then, in a second step, we modify the flowf such that it only satisfies the rounded
demandsd̄i, 1 6 i 6 k. This part of the algorithm is crucial for deriving a good
bound on the cost of the final unsplittable flow. We consider the commoditiesi one
after another and iteratively reduce the flowf along most expensives-ti-paths within
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f (ignoring or removing edges with flow value zero) until the inflow in nodeti has
been decreased bydi − d̄i. Since the underlying graph has no directed cycles, a most
expensives-ti-path can be computed in polynomial time. Notice that the resulting flow
f̄ satisfies all rounded demands. Thus, Algorithm 1 (or Algorithm 2) can be used to turn
f̄ into an unsplittable flow for the rounded instance. We construct an unsplittable flow
for the original instance by routing, for each commodityi, the total demanddi (instead
of only d̄i) along the pathPi returned by Algorithm 1 (or Algorithm 2).

Theorem 3.Algorithm 3 finds an unsplittable flow whose cost is bounded by the cost
of the initial flowf and the flow value on any edgee is less than2f(e) + dmax. More
precisely, the sum of all but one demand routed across any edgee is less than twice the
initial flow value one.

Proof. We first show that the cost of the unsplittable flow is bounded by the cost of the
initial flow. By Theorem 2, the cost of the unsplittable flow for the rounded instance is
bounded by the cost of̄f , i. e.,

k∑
i=1

d̄i · c(Pi) 6 c(f̄) . (1)

The flow f̄ was obtained fromf by decreasing flow along most expensive paths within
f from the sources to the terminalsti (those paths exist since the underlying graph
contains no directed cycles). In particular, since a positive amount of flow remained on
pathPi in flow f̄ , its costc(Pi) is a lower bound on the cost of eachs-ti-path on which
flow has been decreased during the construction off̄ . This yields

k∑
i=1

(di − d̄i) · c(Pi) 6 c(f)− c(f̄) . (2)

Since the cost of the final unsplittable flow is
∑k
i=1 di · c(Pi), the result follows by

taking the sum of inequalities (1) and (2).
In order to prove the result on the flow values, we consider a fixed edgee; let i0 be

a commodity with maximal demand that is routed across edgee. Notice thatdi < 2d̄i
for all commoditiesi. Together with Corollary 1 this yields the following bound on the
flow value for edgee in the final unsplittable flow:∑

i: e∈Pi

di 6 di0 + 2
∑
i:e∈Pii 6=i0

d̄i 6 di0 + 2f(e) .

Notice that the first inequality can only be tight ifi0 is the only commodity routed
across edgee; however, the second inequality cannot be tight in this case and the result
follows. ut

Kolliopoulos and Stein [9] give an algorithm similar to Algorithm 3. The seemingly
small but crucial difference is that in their rounding step, demands are roundedup to
powers of2; thus, in the worst case, cost is increased by a factor2 in this step and only
a bicriteria performance guarantee can be given for the resulting unsplittable flow. In
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contrast to this, Algorithm 3 takes care of the problem by carefully decreasing the given
flow on most expensive paths, thereby rounding down demands todmin times powers
of 2.

Running times. We now analyze the running time of Algorithm 3. The procedure for
obtainingf̄ from f can be implemented to run inO(m2) time; in each iteration of the
procedure, computing most expensive paths froms to all vertices in the current acyclic
network takesO(m) time, and the number of iterations can be bounded byO(m).
Thus, the running time of Algorithm 3 isO(m2) plus the running time of Algorithm 1
(or Algorithm 2). For certain cases, the first term can be improved using the following
variant of Algorithm 3.

Instead of computinḡf by iteratively reducing flow along most expensive paths,
we use an arbitrary min-cost flow algorithm. We set the capacity of each edgee ∈ E
to f(e) and the demand of each commodityi to di − d̄i. For the resulting instance we
compute a feasible max-cost floŵf satisfying all demands and setf̄ := f − f̂ . Notice
that f̄ satisfies the rounded demandsd̄i. Moreover, if we decompose the max-cost flow
f̂ into flows on paths from the source to the terminalsti, then any suchs-ti-path is at
least as expensive as a most expensives-ti-path within the remaining flow̄f . Therefore,
inequality (2) also holds for this alternative definition off̄ and the proof of Theorem 3
is still correct.

Thus, the termO(m2) in the running time of Algorithm 3 can be replaced by
the running time of an arbitrary min-cost flow algorithm. The running times of the
currently best known min-cost flow algorithms areO

(
nm log(n2/m) log(nC)

)
[5],

O
(
nm(log logU) log(nC)

)
[1], andO

(
(m log n)(m+ n log n)

)
[11], see also [2].

Extensions. If the capacities of edges are large compared to the maximum demand
value, the bound obtained in Theorem 3 can be improved through a modification of
Algorithm 3. The idea is to decrease the multiplier2 of f(e) at the cost of increasing
the additive partdmax of the bound. Since the multiplier2 is due to the lack of accuracy
of the rounding step, we improve it to

√
2 by employing a more precise rounding.

However, this necessitates a partition of the rounded problem into two subproblems
which are then solved independently, each causing some additive congestion.

In the first step of the modified algorithm, we round all demandsdi to

d̃i :=

{
dmax · 2b2 log(di/dmax)c/2 if di < dmax,

dmax/
√

2 if di = dmax.

We partition the commodities into two subsetsC0 andC1 with

C0 := {i | log(dmax/d̃i) ∈ N} and C1 := {i | 1/2 + log(dmax/d̃i) ∈ N} .

As above, the given flowf is reduced along most expensive paths; the reduced flow is
then decomposed into the sum of two flowsf0 andf1 satisfying the rounded demands
of commodities inC0 andC1, respectively. Finally, by calling Algorithm 1 (or Algo-
rithm 2) for the instance defined by the commodities inC0 with input f0 and then for
the instance defined by the commodities inC1 with inputf1, we obtain pathsPi for all
commoditiesi and route the total demanddi along pathPi.
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Theorem 4.The variant of Algorithm 3 described above computes an unsplittable flow
whose cost is bounded by the cost of the initial flowf and the flow value on any edgee
is less than

√
2f(e) + (1 + 1/

√
2)dmax.

Proof. The bound on the cost of the unsplittable flow follows from the same argument
as in the proof of Theorem 3. For a fixed edgee, choose commoditiesi0 ∈ C0 and
i1 ∈ C1 with maximal demand that are routed acrosse; if no such commodity exists,
we setdi0 = 0 and/ordi1 = 0 for the following argument. Notice thatdi 6

√
2d̃i, for

1 6 i 6 k, anddi0 < dmax/
√

2. This yields for each edgee ∈ E∑
i: e∈Pi

di 6 di0 +
√

2
∑

i∈C0: e∈Pii 6=i0

d̃i + di1 +
√

2
∑

i∈C1: e∈Pii 6=i1

d̃i

6 di0 + di1 +
√

2
(
f0(e) + f1(e)

)
< (1/

√
2 + 1)dmax +

√
2f(e) .

This completes the proof. ut

Using the same technique as described above but rounding the demands todmax

times half-integral powers of3, one obtains an unsplittable flow whose cost is bounded
by the cost of the initial flow and the flow value on any edgee is less than

√
3f(e) +

(1 + 1/
√

3)dmax.

4. Minimizing congestion with bounded cost

In this section we make use of Algorithms 1 and 3 and the results in Theorems 2 and
3 in order to obtain approximation results for the problem of minimizing congestion
with bounded cost. The underlying ideas of these implications have been introduced by
Kolliopoulos and Stein [9] and have also been used by Dinitz, Garg, and Goemans [4]
for the problem without costs.

Under the assumption thatdmax 6 umin, an unsplittable flow whose cost is bounded
by a given budgetB and whose congestion is less than a factor3 away from the optimal
congestion for that budget can be obtained in the following way. First we determine
the smallest valueα > 1 (e. g., by binary search or by solving an LP formulation of
the problem) such that there exists a (splittable) flowf of cost at mostB satisfying all
demands and the flow value on any edge is bounded byα times its capacity. Notice
thatα is a lower bound on the optimal congestion for unsplittable flows with budgetB.
Using Algorithm 3,f can be turned into an unsplittable flow whose value on any edge
is bounded by3α times its capacity without increasing cost, see Theorem 3. Sinceα is a
lower bound on the minimal congestion, this procedure is a3-approximation algorithm.
It follows from Theorem 2 that the use of Algorithm 1 (or Algorithm 2) improves the
performance guarantee to2 if the demand values satisfydi | dj or dj | di for each pair
of commoditiesi, j.

Theorem 5. If dmax 6 umin, there is a3-approximation algorithm for the problem
of minimizing congestion for a given budget that must not be over-spent. Ifdi | dj
or dj | di for each pair of commoditiesi, j, then the performance guarantee can be
improved to2.
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Without making the assumptiondmax 6 umin, we can give an approximation algo-
rithm with performance guarantee3+2

√
2 by mimicking the approach of Kolliopoulos

and Stein [9] for the problem without costs. We only give a brief description of the
algorithm and its performance guarantee; for more details we refer to [9].

In contrast to the discussion above, we now restrict to flows where commodityi
is sent only on edges with capacity at leastdi; notice that a (splittable) flow with this
property respecting the budget and with minimumα > 1 such that the flow on each
edge is bounded byα times its capacity can be obtained, for example, from a linear
programming formulation. Then, we partition the set of commodities into subsetsCq,
q = 0, 1, 2, . . . , with

Cq := {i | dmax · β−(q+1) < di 6 dmax · β−q}

whereβ = 1 + 1/
√

2. In the following, we only consider non-empty subsetsCq; their
number is bounded byk. Using flow decomposition,f can be decomposed into a sum
of flowsfq, q = 0, 1, 2, . . . , satisfying the demands of commodities inCq; moreover,fq
uses only edges of capacity at leastdmax·β−(q+1). Next, we use a variant of Algorithm 3
to turn the flowsfq into unsplittable flows. In the first step of the modified algorithm,
all demands inCq are rounded todmax · β−(q+1). The resulting unsplittable flowsf ′q
then satisfy

f ′q(e) < βfq(e) + dmax · β−q and c(f ′q) 6 c(fq) .

A short computation shows that the congestion of the sum of the unsplittable flowsf ′q,
q = 0, 1, 2, . . . , is bounded by

(
1 + 2β + 1/(β − 1)

)
· α = (3 + 2

√
2) · α.

Theorem 6.For the case of arbitrary demands, the algorithm described above com-
putes an unsplittable flow whose cost is within the budgetB and whose congestion is
bounded by3 + 2

√
2 times the minimum possible congestion for the budgetB.

For the special case of the problem treated in Theorem 2, we can improve the per-
formance guarantee to3 by grouping together commodities of equal demand.

Corollary 3. For the case of arbitrary demands satisfyingdi | dj or dj | di for each
pair of commoditiesi, j, there exists an approximation algorithm with performance
guarantee3 for the problem of minimizing congestion with bounded cost.

By using an appropriate rounding scheme, we can generalize this result as follows.

Corollary 4. Let r > δ > 1; if there is ad 6 dmin such thatdi/d ∈
⋃∞
p=0[rp, δ · rp]

for all 1 6 i 6 k, then there exists an approximation algorithm with performance
guaranteeδ

(
2 + 1/(r − 1)

)
for the problem of minimizing congestion with bounded

cost.

Proof. Round each demand down to the nearestd · rp, p ∈ N0, and use a similar
procedure as described above. ut

In this context, we can also prove results of the following flavor.
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Corollary 5. Under the same assumptions as in Corollary 4, if there exists a feasible
(splittable) flow of costB satisfying all demands such that each commodityi uses only
edges of capacity at leastdi, then we can compute a flow of cost at mostB that routes
a fraction1/δ of the demand of each commodity unsplittably such that the capacity of
any edge is violated by a factor of at most2 + 1/(r − 1).

5. Minimizing the number of rounds and maximum routable demand

We consider the problem of routing all commodities unsplittably without violating edge
capacities in a minimum number of rounds such that the collective cost over all rounds
must not exceed a given budgetB. We restrict to the casedmax 6 umin in this section.

Our main result is an8-approximation algorithm for this problem that is based on
the algorithms for minimizing congestion presented above. In order to obtain this result,
we first develop results on how to route demands within a certain range in few rounds.
This approach and some of the basic ideas used in the following lemmas have been
developed by Dinitz, Garg, and Goemans [4] for the problem without costs.

To give a compact formulation of the following lemma, we use the convention that
1/0 =∞ and1/∞ = 0.

Lemma 1. Letf be a feasible (splittable) flow of cost at mostB satisfying all demands.
Moreover, letq > 3 andk ∈ N0 ∪ {∞}. Then if

dmax 6
(

1 +
1

q − 2
· 2

1 + 1/k

)−1

umin

and

dmin >
1

q − 2
· 1
k + 1

· dmax ,

then the total demand can be routed unsplittably inq rounds with collective cost at most
B.

Proof. Construct a new instance of the unsplittable flow problem as follows: makeq
copies of the graphG = (V,E) and let the cost coefficient of each of theq copies of
edgee ∈ E be the original cost coefficientc(e). Introduce a super sourceS and one
edge of cost0 from S to each copy ofs. Moreover, for each commodityi, 1 6 i 6 k,
add a super sinkTi and an edge of cost0 from each copy ofti toTi. In the new instance,
the original demanddi of commodityi must be routed fromS to Ti.

A (splittable) flow f ′ for the new instance satisfying all demands and with cost
bounded byB can be constructed by assigning the flowf/q to each of theq copies of
G and defining the flow on the additional edges leaving the super sourceS or arriving
at a super sinkTi accordingly.

We use Algorithm 3 to turnf ′ into an unsplittable flow whose cost is at mostB. If
k <∞, we setdmin to the lower bound

dmin = ` :=
1

q − 2
1

k + 1
dmax
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in the algorithm such that after the first step of the algorithm the rounded demandsd̄i
are multiples of̀ . Notice that this variant of Algorithm 3 works properly and the re-
sult on the quality of the computed solution in Theorem 3 remains true. The resulting
unsplittable flow consists of one path fromS to Ti for each commodityi. It is an easy
observation that each pathPi lies entirely in one of the copies ofG such that the un-
splittable flow inG′ can be interpreted asq unsplittable flows inG or, equivalently, as
an unsplittable routing of all demands inq rounds; moreover, the collective cost is at
mostB.

It remains to be shown that the flow in each round (i. e., in each copy ofG) respects
the capacity constraints. Ifk =∞, the first inequality in the lemma yields

dmax 6
q − 2
q

umin 6
q − 2
q

ue ,

for each edgee. In this case, by Theorem 3, the total flow on any copy ofe (i. e., in any
round) in the final unsplittable flow is bounded by

2f ′(e) + dmax 6
2
q
f(e) +

q − 2
q

ue 6 ue .

Thus, in the following we can assume thatk is finite and

ue <
q

q − 2
dmax .

Remember that Algorithm 3 calls Algorithm 1 to compute an unsplittable flow for a
rounded instance where all demandsd̄i are multiples of̀ . It follows from Corollary 1
that the sum of all but one demand routed across any copy of edgee in the unsplittable
flow returned by Algorithm 1 for the rounded instance is at most

f ′(e) 6
ue
q

<
1

q − 2
dmax = (k + 1)` .

By `-integrality of this flow, the considered value is thus bounded byk`. Sincedi < 2d̄i,
the flow value in the final unsplittable flow is therefore at most

2k`+ dmax =
( 1
q − 2

2k
k + 1

+ 1
)
dmax 6 umin 6 ue .

This completes the proof. ut

In contrast to the last lemma, the following lemma also contains results on demands
that can be routed in2 rounds. However, forq > 3 rounds, the results in Lemma 1 turn
out to be stronger.

Lemma 2. Letf be a feasible (splittable) flow of cost at mostB satisfying all demands.
Moreover, letq > 2 andk ∈ N0. If

dmax 6
1

k + 1
umin and dmin >

1
q

k + 2
k + 1

dmax ,

then the total demand can be routed unsplittably inq rounds with collective cost at most
B.
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Proof. The proof is similar to the proof of Lemma 1. In particular we use the same
construction of the new instance on the graphG′ and call Algorithm 3 to turnf ′ into
an unsplittable flow onG′ whose cost is bounded byB. However, this time we modify
Algorithm 3 in the following way: In the first step, all demandsdi, 1 6 i 6 k, are
rounded down to

d̄i = ` :=
1
q

k + 2
k + 1

dmax such that di 6 q
k + 1
k + 2

d̄i .

If dmax 6 ue/(k + 2), then the final unsplittable flow on any of theq copies of edgee
is bounded by

q
k + 1
k + 2

f ′(e) + dmax =
k + 1
k + 2

f(e) +
1

k + 2
ue 6 ue .

Otherwise, ifue < (k + 2)dmax, it follows from Corollary 1 that the sum of all but
one demand routed across any copy of edgee in the unsplittable flow returned by Al-
gorithm 1 for the rounded instance is at most

f ′(e) 6
ue
q

<
k + 2
q

dmax = (k + 1)` .

By `-integrality of this flow, the considered value is thus bounded byk`. Sincedi <
q(k + 1)d̄i/(k + 2), the flow value in the final unsplittable flow is therefore at most

q
k + 1
k + 2

k`+ dmax = (k + 1)dmax 6 umin 6 ue

and the proof is complete. ut

Finally, we give a result on arbitrarily small demand values that can be routed un-
splittably in2 rounds making use of Theorem 4.

Lemma 3. Letf be a feasible (splittable) flow of cost at mostB satisfying all demands.
If dmax 6 (3−2

√
2)umin, then the total demand can be routed unsplittably in2 rounds

with collective cost at mostB.

Proof. As in the proofs of the two lemmas above, we construct a new instance on the
graphG′ (with q = 2). By Theorem 4, the flowf ′ onG′ can be turned into an unsplit-
table flow such that the flow on both copies of an edgee ∈ E is bounded by

√
2f ′(e) + (1 + 1/

√
2)dmax 6

1√
2
ue + (1 + 1/

√
2)(3− 2

√
2)umin 6 ue .

This completes the proof. ut

An overview of the results from Lemmas 1 to 3 is given in Table 2. Combining two
of them, we can prove the following result.

Theorem 7. If dmax 6 umin and there exists a feasible flowf with costB satisfying all
demands, then the total demand can be routed unsplittably in8 rounds with collective
cost at mostB.
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a; b q = 2 q = 3 q = 4 q = 5 q = 6 q = 7

k = 0 1; 1 ∗ 1; 2/3 ∗ 1; 1/2 1; 1/3 1; 1/4 1; 1/5

k = 1 1/2; 3/4 ∗ 1/2; 1/2 2/3; 1/4 3/4; 1/6 4/5; 1/8 5/6; 1/10

k = 2 1/3; 2/3 ∗ 3/7; 1/3 3/5; 1/6 9/13; 1/9 3/4; 1/12 15/19; 1/15

k = 3 1/4; 5/8 ∗ 2/5; 1/4 4/7; 1/8 2/3; 1/12 8/11; 1/16 10/13; 1/20

k =∞ 3− 2
√

2; 0 ∗∗ 1/3; 0 1/2; 0 3/5; 0 2/3; 0 5/7; 0

Table 2. Results on the number of rounds from Lemmas 1 to 3. Each pair of numbers (a; b) in column
q means that all demands can be routed unsplittably inq rounds without violating the budget constraint if
dmax 6 a · umin anddmin > b · dmax. The results marked with a∗ follow from Lemma 2; the result
marked with∗∗ follows from Lemma 3; all other results follow from Lemma 1. The two results in bold face
yield Theorem 7.

Proof. The flowf can be decomposed into the sum of two flowsf1 + f2 such thatf1

satisfies all demands in the range(0, umin/2] andf2 satisfies all demands in the range
(umin/2, umin]. By Lemma 1 (see also Table 2), the demands in the first range can be
routed unsplittably in4 rounds with collective cost at mostc(f1) and the demands in the
second range can be routed unsplittably in4 rounds with collective cost at mostc(f2).
Sincec(f1) + c(f2) = c(f) 6 B, the result follows.

An alternative proof partitions the demands according to the ranges(0, umin/3] (3
rounds) and(umin/3, umin] (5 rounds), see Table 2. ut

Using the technique from the proof of Lemma 1, one can also prove various results
of the following flavor.

Corollary 6. If dmax 6 umin and there exists a feasible flowf with costB satisfying
all demands, then half of the demand of each commodity can be routed unsplittably in
2 rounds with collective cost at mostB/2.

In a similar way as in Section 4 for the problem of minimizing congestion, Theo-
rem 7 can be turned into an approximation result by first determining the smallest value
α > 1 such that there exists a flow of cost at mostB satisfying all demands and the flow
value on each edge is bounded byα times its capacity. Notice that the numberdαe is
a lower bound on the minimum number of rounds; on the other hand, using essentially
the same techniques as described above, we can route all demands unsplittably in8dαe
rounds. We refer to [4] for a more detailed discussion (for the problem without costs).

Theorem 8. If dmax 6 umin, there is an8-approximation algorithm for the problem of
routing all demands unsplittably in a minimum number of rounds such that the collective
cost over all rounds is bounded by a given budget.

If the cut condition is satisfied, Theorem 7 also implies the following result on the
maximum routable demand.

Corollary 7. If dmax 6 umin and there exists a feasible (splittable) flow of cost at most
B satisfying all demands, then a fraction of at least1/8 of the total demand can be
routed unsplittably with cost at mostB.



18 Martin Skutella

x1

true chain ofx1

false chain ofx1 false chain ofx2
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true chain ofx2

s t

Fig. 3. The subgraph induced by all edges of capacity1 in the reduction of SAT to the single source unsplit-
table flow problem. There is one forking for each variablexi of the SAT instance. The reduction works for
both directed and undirected graphs. For the latter case, ignore directions of edges in the figure.

6. Results on the hardness of approximation

The aim of this section is to prove negative results on the existence of approximation
algorithms for several variants of the single source unsplittable flow problem. All results
presented in this section already hold for the problem without costs on the edges.

Theorem 9.For instances of the single source unsplittable flow problem on directed or
undirected graphs, it is NP-hard to approximate congestion with performance guaran-
tee strictly better than(1 +

√
5)/2 ≈ 1.618.

We prove this theorem by giving a reduction from the NP-complete SAT problem.
Given an instance of SAT, we construct an instance of the single source unsplittable flow
problem satisfying the following conditions. If the given SAT formula is satisfiable, then
there is an unsplittable flow with congestion1. However, if the formula is not satisfiable,
then every unsplittable flow has congestion at least(1 +

√
5)/2.

Proof. Given an instance of SAT with variablesx1, . . . , xn and clausesC1, . . . , Cm,
we construct an instance of the single source unsplittable flow problem by introducing
m+ 1 commodities0, . . . ,m with demandsd0 = 1 anddj = δ := (−1 +

√
5)/2, for

1 6 j 6 m. The edges of the (undirected) graphG have capacities1 or δ. The subgraph
of G induced by all edges of capacity1 is depicted in Figure 3 (for the present, ignore
directions of edges) with the sources on the left hand side and the common sink of all
commoditiest on the right hand side of the figure. There is one forking for each variable
xi, 1 6 i 6 n. Thus, each unsplittable routing of commodity0 with congestion strictly
less than1/δ = (1 +

√
5)/2 uniquely determines a truth assignment to the variables

x1, . . . , xn and vice versa:xi is set true (false) if commodity0 is not routed across the
true (false) chain corresponding to this variable. In other words, ifxi is set true (false),
commodity0 uses the whole capacity ofxi’s false (true) chain and no other commodity
can use an edge of this chain without raising congestion to at least1 + δ = (1 +

√
5)/2.

The true (false) chain ofxi contains two consecutive edges for each clauseCj in which
xi occurs unnegated (negated). Thus, in the example given in Figure 3, the variable
x1 occurs in one clause unnegated and in two clauses negated. We label every second
edge of the chain from left to right with the indicesj of the corresponding clauses in
decreasing order, see Figure 4 (again, for the present, ignore directions of edges).

We now describe the remaining part (edges of capacityδ) of the graph. The basic
idea of the construction is that commodityj, 1 6 j 6 m, can be routed without raising
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false chain ofx1

3 2

u3

true chain ofx2

5 3s t

Fig. 4.The labeling of the edges in the chains from Figure 3: In our example, the variablex1 occurs negated
in clausesC2 andC3, whilex2 occurs unnegated in clausesC3 andC5. ClauseC3 is given by(¬x1 ∨ x2).

congestion to at least1 + δ = (1 +
√

5)/2 if and only if the routing of commodity0
corresponds to a truth assignment satisfying clauseCj . For each clauseCj , the graph
contains one additional vertexuj which is directly connected to the sources. Moreover,
there is an edge betweenuj and the left endpoint of any edge with labelj in a true or
false chain of some variable and another edge between the right endpoint of any such
edge and the sinkt, see Figure 4.

Since there are exactlym edges of capacityδ incident tos, we can assume without
loss of generality that commodityj, 1 6 j 6 m, takes the edge froms to uj . By
construction, if the routing of commodity0 corresponds to a truth assignment satisfying
clauseCj , there is an edge labeledj which is not used by commodity0 and commodity
j can be routed fromuj to the left endpoint of this edge, across the edge, and then
directly to the sink. On the other hand, ifCj is not satisfied by the truth assignment, all
edges that can be reached fromuj carry commodity0 and there is no path fromuj to
the sinkt with positive remaining capacity.

Summarizing, we have shown that all commodities can be routed unsplittably with
congestion1 if and only if there exists a satisfying truth assignment for the underlying
instance of SAT. Otherwise, the congestion of any unsplittable flow is at least(1 +√

5)/2. Thus, aρ-approximation algorithm withρ < (1 +
√

5)/2 would solve the NP-
complete SAT problem. ut

If the graphG is directed, we can show that Theorem 9 already holds for the case
of only two commodities. Again, we give a reduction from SAT similar to the reduction
presented above. Commodities1, . . . ,m are replaced by a single commodity1 with
demandδ and sinkt. The definition of commodity0 and the subgraph of all edges of
capacity1 remain unchanged; however, edges are now directed from left to right as
shown in Figure 3. As discussed above, each unsplittable routing of commodity0 with
congestion strictly less than1/δ = (1 +

√
5)/2 uniquely determines a truth assignment

to the variablesx1, . . . , xn and vice versa.
The remaining part of the directed graph is constructed such that commodity1 can

be routed unsplittably (without raising congestion to at least1 + δ = (1 +
√

5)/2) if
and only if the routing of commodity0 corresponds to a satisfying truth assignment.
For each clauseCj , the graph contains two additional verticesuj andvj . We introduce
a directed edge fromvj to uj+1 for j = 0, . . . ,m, wherev0 := s andum+1 := t.
Moreover, for each variablexi occuring unnegated (negated) inCj , there is a directed
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edge fromuj to the start vertex of the corresponding edgej in the true (false) chain of
xi (see Figure 4) and a directed edge from its end vertex tovj .

Lemma 4. The demands of the two commodities can be routed unsplittably without
violating edge capacities if and only if there exists a satisfying truth assignment for the
underlying instance of SAT. Otherwise, every unsplittable flow has congestion at least
(1 +

√
5)/2.

Proof. We first show how a satisfying truth assignment leads to an unsplittable flow
with congestion1. Route commodity0 according to the given truth assignment as de-
scribed above. Commodity1 is routed across the edge connectings to u1 and then, for
j = 1, . . . ,m, from uj to uj+1 as follows. Since clauseCj is satisfied by the given
truth assignment, there exists a variablei that either occurs unnegated and is set to
true or occurs negated and is set to false. Commodity1 is routed fromuj across the
corresponding edge in the respective chain of variablexi to vj and then touj+1.

Conversely, we show that the routing of commodity0 in an arbitrary unsplittable
flow with congestion strictly less than(1 +

√
5)/2 corresponds to a satisfying truth

assignment. Obviously, the routing of commodity0 determines some truth assignment
since otherwise congestion would be at least1/δ = (1 +

√
5)/2. Let P be thes-t-

path of commodity1. If vertexuj is contained inP , then clauseCj is satisfied for the
following reason. After visitinguj , commodity1 must either use an edge in the true
chain of a variable occuring unnegated in clauseCj or an edge in the false chain of a
variable occuring negated inCj . Since commodity0 cannot be routed across the same
edge, clauseCj is thus satisfied.

It remains to be shown thatP containsuj for all j = 1, . . . ,m. We claim that these
vertices occur inP in order of increasingj. First notice that, due to the capacity of
the only edge enteringuj (from vj−1), eachuj occurs at most once inP . Obviously,
u1 is the first node afters in P . Assume that, for some fixedj, P visits the nodes
u1, . . . , uj in this order. The next vertex afteruj in P is on the true or false chain of
some variablexi occuring inCj . Moreover,P must leave this chain again arriving at
some vertexvh (otherwise, commodity1 would get stuck at the vertex succeeding the
true and the false chain ofxi in the subgraph depicted in Figure 3, since commodity0
uses the only outgoing edge there). Since the edges in each chain are labeled from left
to right in decreasing order, we geth 6 j. The only edge leavingvh ends atuh+1; since
u1, . . . , uj have already been visited byP , we geth = j. The claim thus follows by
induction which completes the proof. ut

Corollary 8. For the single source unsplittable flow problem on directed graphs, Theo-
rem 9 already holds for instances with only two commodities.

Using a variant of the reduction discussed before Lemma 4, we can prove the fol-
lowing result on the hardness of approximation for the maximum routable demand prob-
lem.

Theorem 10.Unless P=NP, there is no approximation algorithm with performance
guaranteeρ > 1/2 for the problem of routing the maximum possible demand in di-
rected graphs.
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Proof. We employ the reduction from SAT with two commodities described above.
However, we now chooseδ = 1 − ε for an arbitrary0 < ε < 1. It follows from the
proof of Lemma 4 that the two commodities can be routed unsplittably without violating
edge capacities if and only if there exists a satisfying truth assignment for the underlying
instance of SAT. Otherwise, at most a fraction of1/(2− ε) of the total demand can be
routed unsplittably. Sinceε > 0 can be arbitrarily small, aρ-approximation algorithm
with ρ > 1/2 would decide the NP-complete SAT problem. ut

As a direct consequence of the NP-completeness of the single source unsplittable
flow problem, the ‘minimum number of rounds’ problem is NP-hard to approximate
within a factor ofρ < 2. However, this statement is of little relevance since we can
only show it to be tight for instances with optimal value1. Thus, like for the edge-
coloring problem, it could be the case that the minimum number of rounds problem can
be approximated within an additive constant of1.

7. Further remarks

The results presented in this paper are the best currently known for the single source un-
splittable flow problem with costs. However, Dinitz, Garg, and Goemans [4] were able
to give better bounds and performance guarantees for the problem without costs. The
reason is that their basic algorithm turns a splittable flow into an unsplittable flow while
increasing the flow value on any edge by less thandmax. We achieve this result only
for the case of rounded demands (Theorem 2) but have to endure an additional factor of
2 in the general case (Theorem 3). It is an interesting open problem to decide whether
the unsplittable flow problem with costs allows the same strong results obtained for
the problem without costs. Goemans (personal communication, January 2000) conjec-
tures that the basic result of Dinitz, Garg, and Goemans [4] discussed above can be
generalized to the problem with costs.
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