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Abstract

We propose and analyze two strategies for preconditioning linear operator equations

that arise in PDE constrained optimal control in the framework of conjugate gradient

methods. Our particular focus is on control or state constrained problems, where we

consider the question of robustness with respect to critical parameters. We construct

a preconditioner that yields favorable robustness properties with respect to critical

parameters.
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1 Introduction

In this paper we are concerned with the solution of optimization problems, subject to
partial differential equations and inequality constraints on the control and/or the state.
Such problems can be considered as optimization problems in infinite dimensional function
spaces, and in recent years, algorithms have been constructed which tackle these problems in
function space. The common feature of these algorithms is that they can be formulated and
analyzed in the infinite dimensional setting, and each step of such an algorithm requires
the solution of an infinite dimensional problem. Taking, for example, Newton methods,
this means that in each iteration a linear operator equation is solved. In general terms a
perturbed saddle point problem of the form

(
M∗M A∗

A −CC∗

)(
δy
δp

)

=

(
f
g

)

(1)

has to be solved in each Newton step (we will give a derivation and a precise functional ana-
lytic setting in the next sections). Of course, implementations have to deal with discretized
versions of these subproblems, but have the conceptual advantage that the methods inherit
much of the structure of the infinite dimensional problem.

In this paper we pursue this line of thought one step further and construct a precondi-
tioned iterative solver for the linear systems that occur in PDE constrained optimization.
In particular we consider two block preconditioners for the cg-method in function space,
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applied to this problem class. One of them is straightforward and already well known.
The second is applicable under certain circumstances and yields increased robustness with
respect to certain critical parameters, which may become small or large, if (1) comes from
constrained optimal control problems.

Finally, we want to point out that our results are valid also in discretized settings, where
the usually infinite dimensional spaces are replaced by finite dimensional (finite element)
subspaces. Our analysis includes but does not require infinite dimensional spaces.

Preconditioning and multigrid for optimality systems in PDE constrained optimization
is an active topic of research and there are several lines of research. Early attempts were
made by Battermann et al [1, 2]. Borzi [3, 4] considers collective Gauss-Seidel precondi-
tioners, while Zulehner et al [22, 27, 21] and Wathen et al [17, 7] propose and analyze
block preconditioners for such systems. While cases without inequality constraints are well
understood meanwhile, the case of control and/or state constraints is still mostly open.
First approaches were taken by Herzog and Sachs [10] which observed lack of robustness
of standard block preconditioners in particular for state constrained optimization problems
and in [23]. In a very recent preprint [16] a preconditioner with favorable stability proper-
ties for state constrained problems was proposed, but the analysis does not provide useful
estimates for the condition number. This preconditioner fits into our general framework,
which works for control constraints and for state constraints.

2 Examples of optimal control problems

To clarify our abstract setting, let us consider a couple of examples for optimal control
problems. For simplicity of presentation we consider linear quadratic problems here. Non-
linear problems can be solved iteratively via a Newton type algorithm, which requires the
solution of a linear system of operator equations in each step.

Example 2.1 (Elliptic optimal control with control constraints). Let us consider as an
example the optimal control problem

min
1

2
‖Ey − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) s.t. Ay −Bu = 0 u ≥ 0.

For elliptic optimal control on a bounded Lipschitz domain Ω ∈ R
d with boundary Γ, we

define A as follows

A : H1(Ω) → H1(Ω)∗

y 7→ Ay : (Ay)(v) := a(y, v) :=

∫

Ω

〈κ(x)∇y,∇v〉Rd + a0(x)yv dx,
(2)

where κ(x) : Ω → R
d×d defines a symmetric bounded elliptic bilinear form, and a0 : Ω → R

is positive and bounded. The operator ES is defined as the Sobolev embedding H1(Ω) →֒
L2(Ω), while B : L2(Ω) → H1(Ω)∗ is, in the case of distributed control defined via

(Bu)(v) =

∫

Ω

u · ESv, dx.

More generally one could also consider a Sobolev space V such that H1
0 (Ω) ⊂ V ⊂ H1(Ω)

to cover Dirichlet and mixed boundary conditions.
In the case of boundary control we have instead B : L2(Γ) → H1(Ω)∗ via

(Bu)(v) =

∫

Γ

u · τ(v), dx,
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where τ is the trace operator.
It can be shown that the minimizer of this problem can be characterized by the following

control reduced optimality system, where p is the so called adjoint state and the optimal
control is given pointwise by u = max{α−1B∗p, 0}:

0 = E∗(Ey − yd) +A∗p

0 = Ay −Bmax{α−1B∗p, 0}.
(3)

This problem can be solved for example by a semi-smooth Newton method [11, 25], whose
Jacobian matrix can be written as

(
E∗E A∗

A −Bα−1χI(p)B∗

)

, (4)

where χI(p) = 0 for p > 0 and χI(p) = 1 for p ≤ 0. In the case of bilateral constraints
u ≤ u ≤ u one obtains similar systems with max{α−1p, 0} replaced by Proj[u,u](α

−1p)

and χI(p) = 0 for α−1p ∈]u, u[ and χI(p) = 1 otherwise. This fits into our notational
framework, if we set M := E and C := Bα−1/2χI(p).

The reduced system formulation (3) has several advantages, compared to a classical
KKT system, containing y, p, u and additional Lagrangian multipliers for the constraint
u ≥ 0. First of all, it is a system of two PDEs, and thus, the solutions of these system
are contained in a smoother space than the corresponding right hand sides. This has
fundamental consequences for the convergence theory of Newton’s method, applied to this
system [18]. Second, elimination of u makes an additional special treatment (such as barrier
of penalty regularization) of the control constraints unnecessary, and the system can be
solved directly. Third, only the smooth variables y and p have to be discretized, leading to
optimal discretization schemes [13].

If we apply Galerkin’s method to discretize (4), then the same definitions as above can
be made on finite dimensional subspaces Yh ⊂ Y and Ph ⊂ P . Moreover, in the following
derivations, no mesh-size parameter appears, so that the following results are automatically
independent of the choice of the mesh.

Example 2.2 (Parabolic optimal control with control constraints). Consider now the
parabolic optimal control problem

min
1

2
‖y − yd‖2L2([0,T ],L2(Ω)) +

α

2
‖u‖2L2([0,T ],L2(Ω)) s.t. Ay −Bu = 0 u ≥ 0.

This case runs quite similarly to the elliptic case, with the only difference that

A :W ([0, T ]) → L2([0, T ], H
1(Ω))∗

is now a parabolic operator on

W ([0, T ]) = {y ∈ L2([0, T ], H
1(Ω)), yt ∈ L2([0, T ], H

1(Ω)∗)},

defined via

(Ay)(v) =

∫

[0,T ]

(

yt(v) +

∫

Ω

〈∇y, κ(t, x)∇v〉Rd + a0(t, x)yv dx

)

dt.

Here yt(v)(t) is the application of yt ∈ H1(Ω)∗ to v ∈ H1(Ω), which yields an integrable
function in time. For a more detailed description consider, e.g., [24].
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In both of these examples the parameter α > 0 appears as a finite (possibly small) but
fixed value. The next two examples describe situations, where during algorithmic progress
towards the solution such a parameter is adjusted, and makes the problem at hand more
and more difficult as the solution is approached.

Example 2.3 (Regularized bang-bang control). In some application so called bang-bang
control is of interest:

min
1

2
‖Ey − yd‖2L2(Ω) s.t. Ay −Bu = 0 u ≤ u ≤ u.

Usually an optimal solution of such a problem almost everywhere takes either the value u
or u. A simple idea to solve this problem is to consider its regularized versions

min
1

2
‖Ey − yd‖2L2(Ω) +

α

2
‖u‖L2(Ω) s.t. Ay −Bu = 0 u ≤ u ≤ u.

and pass to the limit α→ 0 (cf. e.g. [26]). Under certain assumptions on the adjoint state
p it can be shown that the regularized solutions uα tend to the solution of the original
problem, and that the Lebesgue measure of the set I := {x ∈ Ω : u < uα(x) < u} becomes
smaller and smaller. In most cases it is observed that meas(I) ≤ Cα.

In this setting it is desirable to obtain a preconditioner that is robust for α→ 0.

Example 2.4 (Elliptic optimal control with state constraints). In the case of state con-
straints, algorithms typically apply some kind of regularization technique [12, 19], usually
based on classical approaches such as penalty or barrier methods. As an example, consider
a classical penalty approach, also called “generalized Moreau-Yosida” regularization in this
context, for the problem

min
1

2
‖Ey − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) s.t. Ay −Bu = 0 y ≥ 0.

Penalization of the constraint y ≥ 0 yields the problem

min
1

2
‖Ey − yd‖2L2(Ω) +

γ

2
‖min{y, 0}‖2L2(Ω) +

α

2
‖u‖2L2(Ω) s.t. Ay −Bu = 0,

which is often tackled by semi-smooth Newton methods. To approach the solution of the
original problem, γ is driven towards +∞ in a path-following method. In practice, the
algorithm is terminated with values of γ in the range of 108 to 1012. The presence of large
γ affects the condition number of the problem severely, if no appropriate measures are taken.

Similarly, this problem can be tackled by barrier methods with a barrier functional
l(·;µ) :]0,∞] → R parametrized by µ > 0 such that limt→0 l(t;µ) = +∞. Path-following
algorithms drive µ towards 0 to converge towards the original solution, and similar effects
for the condition number occur.

In both cases computing a Newton step amounts in the solution of a linear system of
the form (

E∗b(x)E A∗

A −Bα−1B∗

)(
δy
δp

)

=

(
f
g

)

(5)

where b(x) is either 1 + γχy<0(x) for the penalty method, or 1 + l′′(y(x);µ) for the barrier
method.

Also this problem will fit into our theoretical framework, if we set M :=
√
bE and

C∗ := α−1/2B∗. Clearly, also combinations of control and state constraints can be treated.
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3 Conjugate gradients in function space

In this paper we concentrate for simplicity on the solution of (1) via a Schur complement
approach and a conjugate gradient method. Several alternatives have been proposed in the
literature, such as preconditioned MINRES [17] and a Bramble-Pasciak cg-method [10]. We
are certain, that our ideas apply also to these settings.

On a Hilbert space X consider a convex, quadratic functional

ψ(x) := b(x) +
1

2
〈x, x〉K ,

with b ∈ X∗ and 〈·, ·〉K a scalar product. Further, let a different scalar product 〈·, ·〉Q (a
preconditioner) be given. Denote by ∇Qψ(x) the Q-gradient of ψ, i.e. ∇Qψ(x) satisfies

〈∇Qψ(x), w〉Q = ψ′(x)(w) = b(w) + 〈x,w〉K ∀w ∈ X.

Then the method of conjugate gradients can be written as follows (cf. also [9]):

Algorithm 3.1. (preconditioned cg in function space)
x0 given, d0 := −∇Qψ(x0)

k = 0, 1, 2, . . .

xk+1 = xk − ψ′(xk)dk
〈dk, dk〉K

dk (exact linesearch along dk)

gk+1 = −∇Qψ(xk+1) (direction of steepest descent w.r.t 〈·, ·〉Q)

dk+1 = gk+1 −
〈gk+1, dk〉K
〈dk, dk〉K

dk (orthogonalization w.r.t. 〈·, ·〉K)

It is well known that speed of convergence of the cg-method depends on the condition
number κQ of 〈·, ·〉K with respect to 〈·, ·〉Q. It can be defined as follows. If the following
(sharp) estimates hold,

mQ〈v, v〉Q ≤ 〈v, v〉K ≤MQ〈v, v〉Q, (6)

then the condition number is given by κQ := MQ/mQ. Then, if x∗ denotes the minimizer
of ψ, we have the estimate

‖xk − x∗‖K ≤ 2

(√
κQ − 1

√
κQ + 1

)k

‖x0 − x∗‖K (7)

and the number of iterations to reach a certain accuracy is proportional to
√
κQ (cf. e.g.

[6, Sec. 5.3.2]). Thus, it is crucial to find a good preconditioner Q that renders κQ small.

3.1 The saddle point system as a convex minimization problem

As already mentioned in the introduction, application of Newton’s method to the reduced
Kuhn-Tucker conditions requires the solution of a system of the form:

(
M∗M A∗

A −CC∗

)(
δy
δp

)

=

(
f
g

)

. (8)

Let us fix the theoretical framework for this system. The following abstract and very basic
assumptions will be used throughout the paper.
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Assumption 3.2. (Basic Assumptions)

(i) Assume that Y and P are reflexive Banach spaces, and U and H are Hilbert spaces.

Further, as a matter of notation, we use x∗(x) for dual pairings, while 〈x1, x2〉X
denotes a Hilbert space scalar product.

(ii) Let A : Y → P ∗ be an isomorphism, which implies that A∗ : P → Y ∗ is an isomor-
phism as well.

Let further C : U → P ∗ be a continuous operator, and M : Y → H a continuous
operator with dense range.

The adjoint C∗ : P → U is defined via

〈C∗p, u〉U = (Cu)(p) ∀u ∈ U

and continuous as well. The adjoint M∗ : H → Y ∗, defined via

(M∗h)(y) = 〈My, h〉H ∀y ∈ Y

is continuous and injective.

Thus, we use the definition of adjoints in Hilbert space, whenever applicable.

Then our system of equations is just another way of writing down the following weak
form:

〈Mδy,Mv〉H + (Av)(δp) = f(v) ∀v ∈ Y

(Aδy)(w) − 〈C∗δp, C∗w〉U = g(w) ∀w ∈ P.

Density of ranM in H implies injectivity of M∗ : H → Y ∗, so that M∗ : H → ranM∗

can be considered as a bijective operator with inverse M−∗. Hence, if we define the new
space

DK := A−∗(ranM∗) = {p ∈ P : A∗p ∈ ranM∗} ⊂ P,

then M−∗A∗p is well defined for all p ∈ DK . Thus, on DK the following bilinear form is
well defined:

〈v, w〉K := 〈M−∗A∗v,M−∗A∗w〉H + 〈C∗v, C∗w〉U .
So, we can consider the following minimization problem for b ∈ D∗

K ,

min
p∈DK

1

2
〈p, p〉K + b(p). (9)

Remark 3.3. The invertibility requirement for M∗ can equivalently be replaced by a
similar condition on C. In this case the following analysis can be carried out completely
with the roles of C and M∗ switched.

Example 3.4. In Example 2.1 M is the Sobolev embedding H1(Ω) →֒ L2(Ω), such that
for an H2-regular problem we get DK = A−∗(L2(Ω)) = H2(Ω).

IfM is the trace operator H1(Ω) →֒ L2(Γ), which corresponds to boundary observation,
then DK can be computed as the set of all functions that correspond to solutions of the
following problem in strong form (cf. (25)): Aϕ = 0 on Ω with inhomogeneous Neumann
boundary conditions ∂κνϕ = g on Γ for some g ∈ L2(Γ).
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Lemma 3.5. The minimization problem (9) has a unique solution in DK for any b ∈ D∗
K .

Moreover, for any right hand sides f ∈ Y ∗ and g ∈ P ∗ the system (8) has a solution
(δy, δp) ∈ Y × P . It can be computed from the solution p̃ of

min
p∈DK

1

2
〈p, p〉K + g(p) + 〈C∗A−∗f, C∗w〉U .

via

δp = p̃+A−∗f in Y ∗

δy = A−1(g + CC∗δp) in P ∗.
(10)

Proof. Since M∗ is continuous, and A∗ is an isomorphism, the norm ‖ · ‖DK , defined by
‖v‖DK := ‖M−∗A∗v‖H is a stronger norm than ‖ · ‖P , and thus renders DK ⊂ P a Hilbert
space. Hence, by continuity of C∗ it is easy to see that our functional is continuous, strictly
convex and coercive on the Hilbert space (DK , ‖ · ‖DK ). Thus, a unique minimizer of
eqrefeq:min exists, and its first order optimality conditions read

〈M−∗A∗p̃,M−∗A∗w〉H + 〈C∗p̃, C∗w〉U + b(w) = 0 ∀w ∈ DK .

Setting b(p) := g(p) + 〈C∗A−∗f, C∗p〉U this yields

〈M−∗A∗p̃,M−∗A∗w〉H + 〈C∗p̃, C∗w〉U + g(w) + 〈C∗A−∗f, C∗w〉U = 0 ∀w ∈ DK .

By definition, δy and δp solve the second row of (8), so it remains to show that they solve
the first row. Inserting (10) we conclude via Aδy = CC∗p̃+ g + CC∗A−∗f that

〈M−∗(A∗δp− f),M−∗A∗w〉H + (Aδy)(w) = 0 ∀w ∈ DK . (11)

For arbitrary v ∈ Y define w as the solution of the equation A∗w = M∗Mv, or more
explicitly

(Aη)(w) = 〈Mη,Mv〉H ∀η ∈ Y.

By definition, A∗w ∈ ranM∗ and thus w ∈ DK . Then in particular (Aδy)(w) = 〈Mδy,Mv〉H ,
and M−∗A∗w =Mv, and we conclude from (11)

〈M−∗(A∗δp− f),Mv〉H + 〈Mδy,Mv〉H = 0 ∀v ∈ Y

which yields
(A∗δp− f)(v) + (M∗Mδy)(v) = 0 ∀v ∈ Y

and thus, in short, the first row of (8).

Hence, if we assume that our original system (8) is uniquely solvable, we can find its
solution by solving (9) for p̃ and then computing δp and δy sequentially.

In the remainder of the paper we consider application of Algorithm 3.1 to (9) and
construct and analyze bilinear forms 〈·, ·〉Q on DK . We will establish estimates of the form
(6) such that κQ is small. In particular we want to avoid that κQ depends strongly on
certain critical parameters, e.g. α in Example 2.3 or γ in Example 2.4, that arise in optimal
control problems.

4 Two strategies for operator preconditioning

In the following we shall derive and justify some operator preconditioners for solving the
minimization problem (9) with the conjugate gradient method.
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4.1 Preconditioning via the pure differential operators

Our first preconditioner, which is similar to the ones proposed in [10], is defined via the
first part of 〈·, ·〉K :

(Q0v)(w) := 〈v, w〉Q0 := 〈M−∗A∗v,M−∗A∗w〉H ∀w ∈ DK . (12)

Its inverse can be applied to a residual vector r by computing

v := Q0
−1r = A−∗M∗MA−1r.

This involves one solve of the state equation and one solve of the adjoint equation. Clearly
we have A∗v ∈ ranM∗, hence v ∈ DK .

Lemma 4.1. Assume that

γQ0 := sup
v

〈C∗v, C∗v〉U
〈v, v〉Q0

(13)

is finite. Then
〈v, v〉Q0 ≤ 〈v, v〉K ≤ (1 + γQ0)〈v, v〉Q0 , (14)

and thus the condition number κ of K, relative to Q0 is bounded by

κQ0 ≤ (1 + γQ0).

Proof. The left part of (14) follows simply from the positive semi-definiteness of 〈C∗·, C∗·〉U .
Further, since 〈C∗v, C∗v〉U ≤ γQ0〈v, v〉Q0 , we obtain the right part.

4.2 A preconditioner with increased robustness

Our next preconditioner exploits the positive definiteness of CC∗ to improve our condition
number estimate. In order to render it well defined, we have to impose the following
assumption, which restricts the class of problems to be tackled:

Assumption 4.2. (Compatibility Assumption) Assume that there is a continuous mapping

I : H → U.

For simplicity, assume that ‖I‖ ≤ 1.

For the Hilbert space adjoint I∗ : U → H , defined by

〈I∗u, h〉H = 〈u, Ih〉U

we note that in general ‖I∗‖ = ‖I‖ ≤ 1.

Example 4.3. Let ΩH and ΩU be two subsets of Rd of non-zero measure. Define H =
L2(ΩH) and U = L2(ΩU ). Then the mapping I : H → U can be defined by restriction of
h ∈ H to ΩH ∩ ΩU , followed by extension by zero onto ΩU . In turn, I∗ : U → H is the
restriction to ΩH∩ΩU and extension by zero to ΩH , namely for all h ∈ L2(ΩH), u ∈ L2(ΩU )

〈u, Ih〉L2(ΩU ) =

∫

ΩU

u(Ih) dx =

∫

ΩH∩ΩU

uh dx =

∫

ΩH

(I∗u)h dx = 〈I∗u, h〉L2(ΩH ).

The extreme cases are ΩH ∩ ΩU = ∅, then I ≡ 0 and ΩH = ΩU , then I = Id.
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By our assumptions the composition CIM is well defined, and thus also its adjoint
M∗I∗C∗ via the relations

(CIMy)(v) = 〈IMy,C∗v〉U = 〈My, I∗C∗v〉H = (M∗I∗C∗v)(y).

Definition 4.4. Define the preconditioner Q : DK → D∗
K by:

(Qv)(w) := 〈v, w〉Q := 〈M−∗(A+ CIM)∗v,M−∗(A+ CIM)∗w〉H ∀w ∈ DK . (15)

The application of the preconditioner Q−1r proceeds in three steps. For given r one has
to solve the modified PDE

(A+ CIM)x = r.

Then one has to compute
y :=M∗Mx.

Finally, one has to solve
(A+ CIM)∗v = y.

so that Q−1r := v. Since y ∈ ranM∗ and M∗I∗C∗v ∈ ranM∗ we conclude that A∗v ∈
ranM∗, hence v ∈ DK .

An equivalent preconditioner has been proposed and analyzed recently for the uncon-
strained case of distributed control by [27, 21]. For the case of regularized state constraints
an equivalent preconditioner has been proposed recently and independently in [16], but no
useful estimates for the condition number were derived.

Remark 4.5. Already at this point we can predict the main features of this type of pre-
conditioner. In contrast to Q0 it also includes the operator C in its formulation. Hence,
more information of the problem enters into the construction of the preconditioner. We will
see that this leads to a significant improvement of condition numbers, in cases where Q can
be applied.

However, we also observe the main limitations of our approach. The composition CIM
has to be non-zero, otherwise Q = Q0. Here our main focus is restricted to simple mappings
I, as defined in Example 4.3, because CIM has to be simple enough to make the equation
(A+ CIM)x = r solvable at low cost.

The following lemma plays a pivotal role in our analysis:

Lemma 4.6. Assume that the following quantity is finite:

γQ := sup
v

〈C∗v, C∗v〉U
〈v, v〉Q

. (16)

Then we have the following estimates:

1

2
〈v, v〉Q ≤ 〈v, v〉K ≤ (2 + 3γQ)〈v, v〉Q, (17)

and thus the condition number κ of K, relative to Q is bounded by

κQ ≤ 4 + 6γQ.

Proof. For the proof we recall the parallelogram law in Hilbert spaces:

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2),
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which implies that each summand on the left hand side can be estimated from above by
the right hand side.

We use this estimate to compute

〈v, v〉Q = ‖M−∗A∗v + I∗C∗v‖2H ≤ 2(‖M−∗A∗v‖2H + ‖I∗C∗v‖2H)

≤ 2(‖M−∗A∗v‖2H + ‖C∗v‖2U ) = 2〈v, v〉K .

Let us consider the opposite direction. For given x ∈ DK define

v := (M−∗A∗ + I∗C∗)x

so that 〈v, v〉H = 〈x, x〉Q. Then, using the definition of γQ, we can compute:

〈x, x〉K = ‖M−∗A∗x‖2H + ‖C∗x‖2U = ‖v − I∗C∗x‖2H + ‖C∗x‖2U
≤ 2‖v‖2H + 2‖I∗C∗x‖2H + ‖C∗x‖2U ≤ 2〈x, x〉Q + 3‖C∗x‖2U
≤ (2 + 3γQ)〈x, x〉Q.

(18)

With some additional effort one can refine this estimate slightly. However, for us, the
asymptotics κQ = O(γQ) for large γQ is the main point of interest. This relation cannot be
improved substantially, as we will briefly explain.

Consider the left bound first. Since usually A∗ is a differential operator, we may assume
that there is a sequence vk, such that ‖M−∗A∗vk‖H = 1, while ‖C∗vk‖U → 0. Then the
terms in K and Q containing C∗ can be neglected, and we obtain 〈vk, vk〉Q/〈vk, vk〉K → 1.

As for the right bound in (17), assume that (1 − ε)γQ is attained by some x in (16).
Then instead of (18) we can compute

〈x, x〉K = ‖M−∗A∗x‖2H + ‖C∗x‖2U ≥ ‖C∗x‖2U ≥ (1 − ε)γQ〈x, x〉Q.

Hence, taking both estimates together we obtain a lower bound for the condition number,
given by

κQ ≥ γQ. (19)

In order to motivate this estimate further, consider the auxiliary quantity r, defined by

(A+ CIM)∗x = r,

which means in turn that x(r) is the solution of a partial differential equation with right
hand side r. Then γQ can be written as follows:

γQ = sup
r

〈C∗x(r), C∗x(r)〉U
〈M−∗r,M−∗r〉H

.

Hence, our task will be to establish estimates of the form

‖C∗x‖U ≤ c(A,CIM)‖M−∗r‖H

on the solution v of the above PDE in terms of r. This reduces the estimation of the
condition number of our saddle-point system to an estimate for a PDE solution. We will
use this technique in Sections 6 and 7 below, where particular structure of the PDE at hand
is used. In the following and in Section 5, we keep arguing purely in terms of functional
analytic estimates.
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4.3 Application to PDE optimization problems

In this section we provide estimates for γQ in the setting of elliptic and parabolic problems.
Of course other settings are conceivable, as well.

Elliptic problems. Consider the preconditioner Q from (15) for the elliptic case, where
A : H1(Ω) → H1(Ω)∗ may, for example be defined via an elliptic bilinear form a(·, ·) as in
(2) from Example 2.1.

Lemma 4.7. For the elliptic equation (2) we have the estimate

γQ ≤ c sup
v

〈C∗v, C∗v〉U 〈Mv,Mv〉H
(a(v, v) + 〈C∗v, IMv〉U )2

Proof. Let v ∈ Y = P = H1(Ω), so that (A∗ + M∗I∗C∗)v ∈ Y ∗. We start with the
Cauchy-Schwarz inequality:

((A∗ +M∗I∗C∗)v)(v) = 〈M−∗(A∗ +M∗I∗C∗)v,Mv〉H
≤ ‖M−∗(A∗ +M∗I∗C∗)v‖H‖Mv‖H
=

√

〈v, v〉Q〈Mv,Mv〉H .

Hence, we may estimate (using (A∗v)(v) = a(v, v))

γQ = sup
v

〈C∗v, C∗v〉U 〈Mv,Mv〉H
〈v, v〉Q〈Mv,Mv〉H

≤ sup
v

〈C∗v, C∗v〉U 〈Mv,Mv〉H
(((A∗ +M∗I∗C∗)v)(v))2

= sup
v

〈C∗v, C∗v〉U 〈Mv,Mv〉H
(a(v, v) + 〈C∗v, IMv〉U )2

.

Parabolic problems. To establish an estimate for γQ in the parabolic case, as in Exam-
ple 2.2, we have to modify our proof slightly in order to cope with the non-symmetry of its
differential operator, which reads

(Ay)(v) =

∫

[0,T ]

(

〈yt, v〉+
∫

Ω

〈∇y, κ(t, x)∇v〉Rd + a0(t, x)yv dx

)

dt, (20)

together with initial conditions y(0) = 0. We have to employ a special scalar and duality
product. For ω > 0 we set

〈v, w〉e−ωt :=

∫

[0,T ]

e−ωt〈v(t), w(t)〉L2(Ω) dt,

which induces an equivalent norm e−ωT ‖·‖L2([0,T ]×Ω) ≤ ‖·‖e−ωt ≤ ‖·‖L2([0,T ]×Ω). Similarly,
for a Banach space V we write the duality product on L2([0, T ], V

∗)× L2([0, T ], V )

〈v∗, v〉e−ωt :=

∫

[0,T ]

e−ωt(v∗(t)(v(t))) dt,

Our motivation is that A∗ is positive definite with respect to this scalar product, as long
as ω is chosen sufficiently large.
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Lemma 4.8. Let A be defined as in (20). Assume that 〈M∗v, w〉e−ωt = 〈v,Mw〉e−ωt . Then
A∗ is positive definite w.r.t. 〈·, ·〉e−ωt , and we obtain the following condition number:

γQ ≤ c(T ) sup
v

〈C∗v, C∗v〉U 〈Mv,Mv〉e−ωt

(〈A∗v, v〉e−ωt + 〈I∗C∗v,Mv〉e−ωt)2

Proof. First, we show that A∗ is positive definite w.r.t. the scalar product 〈·, ·〉e−ωt . Insert-
ing w = e−ωtv into the formula of partial integration (cf. e.g. [8, Satz 1.17])

〈v(T ), w(T )〉 − 〈v(0), w(0)〉 =
∫

[0,T ]

〈vt(t), w(t)〉 + 〈wt(t), v(t)〉 dt

and taking into account our restriction v(0) = w(0) = 0 we infer after a short computation

〈vt, v〉e−ωt =
1

2

(
e−ωT ‖v(T )‖2 + ω〈v, v〉e−ωt

)
.

As for the remaining part of A∗ we have
∫

[0,T ]

∫

Ω

〈∇v, κ(t, x)∇v〉Rd + a(t, x)v2 dxe−ωt dt ≥ 0,

and hence
〈A∗v, v〉e−ωt ≥ ω

2
〈v, v〉e−ωt

From this point our proof runs in parallel to the elliptic case. Similar as before, let
v ∈ Y =W ([0, T ]). Then also v ∈ P = L2([0, T ], H

1(Ω)), such that (A∗+M∗I∗C∗)v ∈ Y ∗.
Thus, we can use the Cauchy-Schwarz inequality:

〈(A∗ +M∗I∗C∗)v, v〉2e−ωt

≤ 〈M−∗(A∗ +M∗I∗C∗)v,M−∗(A∗ +M∗I∗C∗)v〉e−ωt〈Mv,Mv〉e−ωt

≤ 〈v, v〉Q〈Mv,Mv〉e−ωt .

Hence, we may estimate, also as before:

γQ = sup
v

〈C∗v, C∗v〉U 〈Mv,Mv〉e−ωt

〈v, v〉Q〈Mv,Mv〉e−ωt

≤ sup
v

〈C∗v, C∗v〉U 〈Mv,Mv〉e−ωt

〈(A∗ +M∗I∗C∗)v, v〉2e−ωt

= sup
v

〈C∗v, C∗v〉U 〈Mv,Mv〉e−ωt

(〈A∗v, v〉e−ωt + 〈I∗C∗v,Mv〉e−ωt)2
.

Our assumption 〈M∗v, w〉e−ωt = 〈v,Mw〉e−ωt can easily be verified, if for example M
can be written as (Mv)(t) =M(t)v(t), where M(t) depends on the “slice” v(t) only.

The dependence of γQ on the interval length T can be worked out to be proportional to
T by choosing ω optimally.

We conclude this section with the observation that both elliptic and parabolic problems
admit the common estimate

γQ ≤ c
〈C∗v, C∗v〉U 〈Mv,Mv〉
(〈v, v〉+ 〈C∗v, IMv〉)2 , (21)

where the notation 〈·, ·〉 stands for one of the scalar products 〈·, ·〉H and 〈·, ·〉e−ωt for the
elliptic and parabolic case, respectively. The estimate holds, because A∗ is positive definite
in the corresponding scalar product, i.e.,

(A∗v)(v) ≥ cA〈v, v〉.
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5 Applications to concrete problems

In this section we will discuss a couple of examples for which our preconditioning strategy
can (or cannot) be applied effectively. This should clarify the advantages, but also the lim-
itations of the preconditioner Q from (15). Included are problems with control constraints,
and also with state constraints.

The following bounds hold in a quite general setting. Under stronger assumptions they
can be refined, as shown in Section 6 and Section 7.

5.1 Distributed control problems with control bounds

Let us consider as an example the optimal control problem

min
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) s.t. Ay −Bu = 0 u ≥ 0

As explained in Example 2.1 this problem can be solved by a semi-smooth Newton method,
which leads to systems of the form (4). Then, Y = P = H1(Ω) and U = H = L2(Ω).
Further, M : H1(Ω) → L2(Ω) is the Sobolev embedding ES , B = E∗

S : L2(Ω) → H1(Ω)∗,
and C∗ : H1(Ω) → L2(Ω) is defined as C∗ = α−1/2χI(p)E. Finally, the mapping I : H → U
is just the identity in L2(Ω).

As a parabolic example we consider

min
1

2
‖y − yd‖2L2([0,T ],L2(Ω)) +

α

2
‖u‖2L2([0,T ],L2(Ω)) s.t. Ay −Bu = 0 u ≥ 0.

Here, Y =W ([0, T ]), P = L2([0, T ], H
1) and U = H = L2([0, T ], L2(Ω)). Similar to before,

M : Y → H is the Sobolev embedding W ([0, T ]) →֒ L2([0, T ], L2(Ω)). Using the Sobolev
embedding ES : L2([0, T ], H

1(Ω)) → L2([0, T ], L2(Ω)) we can define B = E∗
S : U → P ∗,

and C∗ : P → U as C∗ = α−1/2χI(p)ES . Also here, the mapping I : H → U is just the
identity on L2([0, T ], L2(Ω)).

With our analysis from the previous section we obtain the following results for our
preconditioners:

Proposition 5.1. Consider the preconditioner Q0 from (12) applied to the block operator
(4). Then we obtain the following condition number:

κQ0 ≤ 1 + cα−1.

Proof. In view of the lemmas in the previous section, we have to provide estimates for γQ0 .
For the numerator we can compute

〈C∗v, C∗v〉 ≤ ‖max{α−1, 0}‖∞‖v‖2L2

and the denominator yields 〈A∗v,A∗v〉 ≥ c‖v‖2L2
by continuity of (A∗)−1 : L2(Ω) → L2(Ω).

So γQ0 ≤ cα−1, which yields the desired result for κQ0 via Lemma 4.1.

Now we consider our preconditioner Q for the elliptic and parabolic case.

Proposition 5.2. Consider the preconditioner Q from (15) applied to the block operator
(4). Consider the elliptic or the parabolic operator from the last section. Then

κQ ≤ c(1 + α−1/2)
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Proof. Let 〈·, ·〉 be one of 〈·, ·〉L2(Ω) (for the elliptic case) or 〈·, ·〉e−ωt (for the parabolic case).
Then, from (21) we estimate (taking into account Mv = v).

γQ ≤ c sup
v

〈C∗v, C∗v〉U 〈v, v〉
(〈v, v〉 + 〈C∗v, v〉)2 ≤ c sup

v

〈C∗v, C∗v〉〈v, v〉
2〈v, v〉〈C∗v, v〉 .

The last inequality follows from the general relation a2+b2 ≥ 2ab. Moreover, in both cases,
〈C∗v, C∗v〉U ≤ c〈C∗v, C∗v〉. By definition of C we obtain

〈C∗v, C∗v〉U ≤ cα−1/2〈C∗v, v〉.

Hence,
γQ ≤ cα−1/2,

and thus by Lemma 4.6 κQ ≤ c(1 + α−1/2).

Thus, we have obtained κQ ∼ √
κQ0 which already yields a considerable gain of efficiency

for a cg method via (7).

Corollary 5.3. In the unconstrained case, we obtain the α independent bound

κQ ≤ c

Proof. Just as before, we compute

γQ = sup
v

〈C∗v, C∗v〉〈v, v〉
(c〈v, v〉+ 〈C∗v, v〉)2 ≤ c sup

v

α−1〈v, v〉2
〈C∗v, v〉2 = c sup

v

α−1〈v, v〉2
(α−1/2〈v, v〉)2 .

Hence γQ ≤ c.

5.2 Disjoint control and observation regions

Consider the problem (for simplicity, let A be the elliptic operator from (2))

min
1

2
‖y − yd‖2L2(ΩH ) +

α

2
‖u‖2L2(ΩU ) s.t. Ay −Bu = 0,

where B : L2(ΩU ) → P ∗ is a continuous mapping, and ΩH and ΩU are subsets of Ω, such
that their intersection is a set of measure zero in both H := L2(ΩH) and U := L2(ΩU ).
An important special case is boundary control and observation in the domain, i.e., ΩH = Ω
and ΩU = Γ = ∂Ω. With the obvious choice I : L2(Ω) → L2(Γ) via I ≡ 0 this problem fits
into our theoretical framework, and we obtain CIM ≡ 0. In this case Q ≡ Q0 and we have
not gained anything in terms of condition numbers.

Nevertheless, our block elimination can be applied, even if, at first sight, M∗ is not
invertible. Since the cg iterates remain in DK , which is here {v : A∗v ∈ L2(ΩH)}, M−∗

remains well defined in the context of the cg iteration.

5.3 Distributed control with state constraints

In the case of state constrained optimal control problems, algorithms often employ a path-
following scheme, which leads to a block M that is very ill conditioned towards the end of
the algorithm. Both our preconditioners can be applied in this case. Moreover, it can be
shown that usually the preconditioner Q is significantly more robust than Q0 with respect
to the path-following parameters.
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As elaborated in Example 2.4 in state constrained problems with distributed control
linear systems of the form

(
E∗b(x)E A∗

A −Bα−1B∗

)(
δy
δp

)

=

(
f
g

)

(22)

have to be solved, whereE = B∗ is the Sobolev embedding, in the case of distributed control,
where b(x) > 0, and typically ‖b‖∞ is very large, tending to infinity towards the end of the
algorithm. Here we can define H = U = L2(Ω) and M =

√

b(x)E and C∗ = α−1/2B and
again I = Id.

Proposition 5.4. Assume that p ∈ L∞. Consider the preconditioner Q0 from (12) applied
to the operator (22). Then we obtain the following condition number:

κQ0 ≤ 1 + c‖b‖∞α−1

Proof. In view of the lemmas in the previous section, we have to provide estimates for γQ0 .
For the numerator we can compute

〈C∗v, C∗v〉 ≤ ‖max{α−1, 0}‖∞‖v‖2L2

and the denominator yields 〈M−∗A∗v,M−∗A∗v〉 ≥ c‖b‖−1
∞ ‖v‖2L2(Ω) by continuity of (A

∗)−1 :

L2(Ω) → L2(Ω).

The following result crucially depends on the assumption that C and M are defined
as multiplication operators with functions that have the same support. This is true in
particular for purely state constrained problems with distributed control.

Proposition 5.5. Consider the preconditioner Q from (15) applied to the block operator
(22). Then the condition number is bounded by

κQ ≤ c(1 + ‖b‖1/2∞ α−1/2)

Proof. Lemma 4.7 yields

γQ ≤ c sup
v

〈C∗v, C∗v〉L2〈Mv,Mv〉L2

(〈v, v〉L2 + 〈C∗v, IMv〉L2)
2
≤ c sup

v

〈C∗v, C∗v〉L2〈Mv,Mv〉L2

2〈v, v〉L2〈C∗v, IMv〉L2

. (23)

By definition of C and M we obtain

〈C∗v, C∗v〉L2 = α−1〈v, v〉L2

〈Mv,Mv〉L2 ≤ α1/2‖b‖1/2∞ 〈C∗v, IMv〉L2 .

Here we used thatM∗I∗C∗v = α−1/2(b(x))1/2v is just a pointwise multiplication by positive
functions. Hence, we finally compute

γQ ≤ cα−1/2‖b‖1/2∞ .

A similar situation holds for boundary control problems if the state constraints are only
imposed on the boundary. For parabolic problems, a similar result is obtained analogously,
replacing Lemma 4.7 by Lemma 4.8.
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The improved preconditioner Q is not effective for boundary control and state con-
straints, if these are imposed on the whole domain. In that case, we have again CIM = 0,
and thus Q0 = Q just as described in Section 5.2. As a remedy, it is conceivable to introduce
an artificial “virtual” control [15] on the domain equipped with a regularization parameter
that is driven to ∞.

A similar situation occurs for additional control constraints, in case that the control is
active, i.e. χI(p)(x) = 0 where b(x) is large. It is, however, still feasible in this case to use
Q as a preconditioner. If active control and state set are disjoint, then we conjecture that Q
is still more efficient than Q0. Otherwise, its efficiency may degrade to a level comparable
to Q0 if this assumption is not valid.

6 A splitting argument for refined estimates

In some situations our estimates for Q can still be refined, if we are willing to impose
additional assumptions on CIM . In broad terms, we will assume that CIM is defined
as multiplication operators via piecewise constant functions with smoothly bounded level
sets. The applications below comprise Newton systems for control constrained problems
and for penalty methods for state constrained problems as described in Example 2.1 and
Example 2.4. For simplicity we concentrate on the elliptic case.

In the following, let a : H1
0 (Ω) × H1

0 (Ω) → R be an elliptic bilinear form, as defined,
e.g., in (2):

a(y, v) =

∫

Ω

〈κ(x)∇y,∇v〉Rd + a0(x)yv dx (24)

Further, let us define the corresponding operator in strong form:

Ay := − div(κ(x)∇y) + a0(x)y, (25)

which results from a(·, ·) via integration by parts, assuming that κ is sufficiently smooth.

Assumption 6.1. Assume that CIM is a multiplication operator, defined by a piecewise
constant function φ, i.e., (CIMv)(x) = φ(x)v(x), which assumes two non-negative values
φ1 and φ0, such that φ1 > 0 and φ1 ≥ φ0 ≥ 0, namely:

φ(x) =

{
φ0 : x ∈ J0
φ1 : x ∈ J1 := Ω \ J0. (26)

Let us denote by ∂J0 the boundary of J0 relative to Ω, i.e., ∂J0 ⊂ Ω, so that ∂J0 = ∂J1.

Assume that J0 and J1 are Lipschitz domains and that the solution vJ of the problem

vJ ∈ H1
0 (J0) : a(vJ , w) =

∫

J0

fw dx ∀w ∈ H1
0 (J0)

gives rise to the following trace estimate:

‖∂κνvJ‖L2(∂J0) ≤ ctr,1‖f‖L2(J0). (27)

Here ∂κν stands for the derivative in direction of the outer normal ν at a point x ∈ ∂J0
with respect to the scalar product induced by κ(x). This normal has to be defined almost
everywhere on ∂J0.
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The validity of (27) certainly depends on the smoothness of ∂J0 and on the coefficients of
a(·, ·), and is known to hold e.g., for H3/2+ε-regular problems. In general one only has (27)
for ‖∂κνvJ‖H−1/2(∂J0). In the context of optimal control the smoothness of ∂J0 can usually
only be observed a-posteriori, for example, after the active set of the optimal control has
been computed. From an intuitive point of view, smoothness of ∂J0 results in a relatively
weak coupling of J0 and J1. So it should have a certain influence on the condition number.

Lemma 6.2. Let J be an open domain with Lipschitz boundary. Then for v ∈ H1(J) the
following estimate holds for the trace operator τ : H1(J) → L2(∂J):

‖τ(v)‖L2(∂J) ≤ ctr,2

√

‖v‖H1(J)‖v‖L2(J).

Proof. Since v ∈ H1(J), τ(v) exists by the classical trace theorem. After localization and
transformation of a part of the boundary to the first coordinate axis, we end up in showing
(dividing the coordinates into x = (x′, t)):

‖v(·, 0)‖2L2
≤ c‖v‖H1(J)‖v‖L2(J).

This can be obtained by the formula of integration by parts, well known from parabolic
problems:

2

∫ T

0

〈 d
dt
v(t), v(t)〉 dt = ‖v(T, ·)‖2L2

− ‖v(0, ·)‖2L2

Choosing T large enough, such that v(T ) ≡ 0, we obtain

‖v(0, ·)‖2L2
≤ 2

∫ T

0

‖ d
dt
v(t)‖L2‖v(t)‖L2 dt ≤ 2‖v‖H1‖v‖L2.

This estimate can not be acquired directly via interpolation theory of Sobolev spaces,
because there exists no continuous trace operator H1/2(J) → L2(∂J).

In the following lemma we will consider the problem

v ∈ H1
0 (Ω) : a(v, w) +

∫

Ω

φ(x)v(x)w(x) dx =

∫

Ω

fw dx ∀w ∈ H1
0 (Ω). (28)

This can also be written in operator notation, if we define (ES is the Sobolev embedding):

Φ : H1
0 (Ω) → H1

0 (Ω)
∗

(Φv)(x) := E∗
Sφ(x)(ESv)(x)

(29)

Then (28) reads
(A+Φ)v = f.

Lemma 6.3. Consider problem (28) such that φ has the properties, defined in Assump-
tion 6.1, and assume that f ∈ L2(Ω). Then

‖Φv‖L2(Ω) ≤ c(‖f‖L2(Ω) + φ
1/4
1 ‖f‖L2(J0)). (30)

If additionally φ0 > 0, then

‖v‖L2(Ω) ≤ c(1 + φ
1/4
1 )‖Φ−1f‖L2(Ω). (31)

In all these estimates c depends on the regularity of J0 and J1, and on the ellipticity of
a(·, ·) in (28).
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Proof. The idea of the proof is to split v into two parts v = v0 + ṽ. To define v0, we first
consider vJ , the solution of the problem:

vJ ∈ H1
0 (J0) : a(vJ , w) + φ0

∫

J0

vJw dx =

∫

J0

fw dx ∀w ∈ H1
0 (J0), (32)

and extend this function by 0 to a function v0 ∈ H1
0 (Ω), such that v0|J0 = vJ , and v0 = 0

on J1. Testing (32) with φ0vJ and dividing by ‖φ0vJ‖L2(J0) we obtain

φ0‖vJ‖L2(J0) ≤ ‖f‖L2(J0).

Thus, vJ satisfies

a(vJ , w) =

∫

J0

(f − φ0vJ )
︸ ︷︷ ︸

f̃

w dx ∀w ∈ H1
0 (J0),

with ‖f̃‖L2 ≤ 2‖f‖L2. By our trace assumption we conclude

‖∂κνvJ‖L2(∂J0) ≤ ctr,12‖f‖L2(J0). (33)

Integration by parts on J0 yields

Av0 + φ0v0 = f on J0

v0 = 0 on ∂J0 ∪ ∂Ω ∪ J1.

Testing this equation with w ∈ H1
0 (Ω) and separate integration by parts on J0 and J1

reveals that v0 satisfies the weak form

v0 ∈ H1
0 (Ω) : a(v0, w) + φ0

∫

J0

v0w dx+

∫

∂J0

∂κνvJw ds =

∫

J0

fw dx ∀w ∈ H1
0 (Ω).

Hence, ṽ = v − v0 satisfies the equation

ṽ ∈ H1
0 (Ω) : a(ṽ, w) +

∫

Ω

φ(x)ṽw dx =

∫

∂J0

∂κνvJw ds+

∫

J1

fw dx ∀w ∈ H1
0 (Ω).

This follows from subtraction of the weak forms for v and v0, taking into account that
v0 = 0 on J1. Testing with ṽ we get

a(ṽ, ṽ) +

∫

Ω

φ(x)ṽ2 dx ≤ ‖∂κνvJ‖L2(∂J0)‖ṽ‖L2(∂J0) + ‖f‖L2(J1)‖ṽ‖L2(J1) (34)

By Lemma 6.2, we obtain:

‖ṽ‖L2(∂J0) ≤ ctr,2

√

‖ṽ‖L2(J1)‖ṽ‖H1(J1).

Division of (34) by the square-root of its left-hand-side and taking into account φ1 > 0 we
obtain due to (33)

‖φ1/2ṽ‖L2(Ω) ≤
√

a(ṽ, ṽ) +

∫

Ω

φ(x)ṽ2 dx

≤ ‖∂κνvJ‖L2(∂J0)ctr,2
√
‖ṽ‖L2(J1)‖ṽ‖H1(J1) + ‖f‖L2(J1)‖ṽ‖L2(J1)

√

ca‖ṽ‖2H1(Ω) + φ1‖ṽ‖2L2(J1)

≤ c‖∂κνvJ‖L2(∂J0)φ
−1/4
1 + ‖f‖L2(J1)φ

−1/2
1 ≤ c‖f‖L2(J0)φ

−1/4
1 + ‖f‖L2(J1)φ

−1/2
1 .
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Since φ1 ≥ φ0 we can use the triangle inequality to obtain our first result:

‖φv‖L2(Ω) = ‖φ0v0 + φṽ‖L2(Ω) ≤ φ0‖vJ‖L2(J0) + φ
1/2
1 ‖φ1/2ṽ‖L2(Ω)

≤ ‖f‖L2(J0) + cφ
1/4
1 ‖f‖L2(J0) + ‖f‖L2(J1) ≤

√
2‖f‖L2(Ω) + cφ

1/4
1 ‖f‖L2(J0).

Tracing back the constant c, we notice that it depends solely on ctr,1, ctr,2, and ca.
For the second result we apply a duality technique. For given w ∈ H1

0 (Ω) define zw :=
(A+Φ)−1w. Then we can compute

‖v‖L2(Ω) = sup
‖w‖L2(Ω)=1

〈v, w〉L2(Ω) = sup
‖w‖L2(Ω)=1

〈(A∗ +Φ)−1f, w〉

= sup
‖w‖L2(Ω)=1

〈f, zw〉 = sup
‖w‖L2(Ω)=1

〈Φ−1f,Φzw〉

≤ sup
‖w‖L2(Ω)=1

‖Φ−1f‖L2(Ω)‖Φzw‖L2(Ω)

≤ sup
‖w‖L2(Ω)=1

‖Φ−1f‖L2(Ω)(
√
2 + cφ

1/4
1 )‖w‖L2(Ω),

which implies our assertion, since ‖w‖L2(Ω) = 1.

Remark 6.4. If the smoothness of ∂J0 does not admit an L2-estimate of the form (27)
but only in a weaker norm (e.g. in ‖∂κνvJ‖H−s(∂J0) for s ∈ [0, 1/2]), one can show a similar

result, where φ
1/4
1 is replaced by φ

1/4+s/2
1 .

Sharpness of Lemma 6.3. In the following we will briefly argue that the estimate (30)
is sharp. Let Ω =]0, 2[⊂ R, and choose φ = φ0 = 0 on ]1, 2[ and φ = φ1 = const on ]0, 1[.
Moreover, set f = 0 on ]0, 1[ and f = 2 on [1, 2[. Consider the problem

−v′′ + φv = f on ]0, 2[, v′(0) = 0, v(2) = 0,

which is by symmetry one half of a Dirichlet problem on ] − 2, 2[. We can now proceed
along the lines of our proof and split v = ṽ+v0, where v0 solves the φ-independent problem

−v′′0 = 2 on ]1, 2[, v0(1) = 0, v0(2) = 0,

which has the solution v0(x) = −(x− 1.5)2 + 0.25 with derivative v′0(1) = 1 at x = 1. The
second part ṽ satisfies the following differential equation

−ṽ′′ + φ1ṽ = 0 on [0, 1], ṽ′(0) = 0

−ṽ′′ = 0 on ]1, 2], ṽ(2) = 0

ṽ′−(1) = ṽ′+(1) + v′0(1) = ṽ′+(1) + 1,

where ṽ′−(1) and ṽ
′
+(1) denote the left and right limit of ṽ′ at x = 1, respectively. Obviously,

ṽ is a linear polynomial on ]1, 2], so that by our boundary conditions we have ṽ′+(1) = −ṽ(1),
and it remains to solve the following problem on [0, 1]:

−ṽ′′ + φ1ṽ = 0 on [0, 1], ṽ′(0) = 0, ṽ′(1) = 1− ṽ(1).

By a classical ansatz, this equation has a solution of the form

ṽ(x) = a cosh(
√

φ1x)

ṽ′(x) =
√

φ1a sinh(
√

φ1x)
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which already has ṽ′(0) = 0 built in, so that we only have to determine a from the condition
ṽ′(1) = 1− ṽ(1). A short computation yields:

a =
1√

φ1 sinh(
√
φ1) + cosh(

√
φ1)

,

so that we can compute (recall φ0 = 0)

‖φv‖2L2([0,2])
= ‖φ1ṽ‖2L2([0,1])

= φ21a
2

∫ 1

0

cosh2(
√

φ1x) dx

=
φ21

(
√
φ1 sinh(

√
φ1) + cosh(

√
φ1))2

√
φ1 + cosh(

√
φ1) sinh(

√
φ1)

2
√
φ1

.

Taking into consideration that

lim
t→∞

cosh(t)

et
= lim

t→∞
sinh(t)

et
=

1

2
,

we obtain for large φ1:

lim
φ1→∞

‖φ1ṽ‖L2([0,1])φ
−1/4
1 = lim

φ1→∞

√

φ
3/2
1

e
√
φ1

2φ1e
√
φ1
φ
−1/4
1 =

1√
2
.

Since ‖f‖L2([0,2]) is fixed, we obtain the asymptotics

‖Φv‖L2([0,2]) ∼ φ
1/4
1 ‖f‖L2([0,2]).

We finally remark that this problem can be lifted by parallel translation to a Poisson
problem on ]0, 2[d for d > 1, if the newly created boundaries are equipped with homogeneous
Neumann boundary conditions. In this case ∂κνv0(x) = 1 is constant along the set {x ∈
]0, 2[d: x1 = 1}, so that our estimate cannot be improved, even if ∂κνv0 is assumed to be in
a more regular space than L2(∂J0).

Thus, taking also into account our lower bound on the condition number (19) we can
be quite sure that the estimates in the following section will be sharp.

6.1 Application to distributed control with control bounds

Let us come back to the problem, defined by the operator (4). In this setting we have C∗v =
α−1/2χI(p)ESv, and M = ES : H1(Ω) →֒ L2(Ω) and I = Id. Thus, we may set φ(x) =
α−1χI(p), and thus φ1 = α−1/2 and φ0 = 0. Then (CIMv)(x) = E∗

Sφ(x)(ESv)(x) = Φ in
the notation of (29).

Application of Lemma 6.3 yields the following result:

Proposition 6.5. Consider the preconditioner 〈·, ·〉Q applied to the block operator (4).
Assume that the boundary between active and inactive set satisfies the Assumption 6.1.
Then we obtain the following condition number:

κQ ≤ c(1 + α−1/4).

Proof. In order to apply Lemma 4.6 we set

f =M−∗(A+ CIM)∗v = (A+Φ)∗v,
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so that v is the solution of the following problem

a(v, w) +

∫

Ω

φ(x)vw dx =

∫

Ω

fw dx ∀w ∈ H1
0 (Ω).

Hence, Lemma 6.3 yields

‖C∗v‖L2(Ω) ≤ (1 + cα−1/8)‖f‖L2(Ω).

Inserting this estimate into (16) we obtain the desired result.

6.2 Application to distributed control with state constraints

For state constraints, we assume that b(x) is piecewise constant taking two values ‖b‖∞ =
b1 > b0 > 0. In penalty methods, as in Example 2.4 we have b(x) = 1+γχy<0(x). As usual

in distributed control U = H = L2(Ω) and C = α−1/2E∗
S , I = Id, M =

√

b(x)ES , so that

(CIMv)(x) = E∗
Sα

−1/2
√

b(x)(ESv)(x).

So we can define φ(x) := α−1/2
√

b(x) such that CIM = Φ in the notation of (29). By
our assumption, φ is also piecewise constant, and we set φ1 = b1α

−1/2 and φ0 = b0α
−1/2.

Application of Lemma 6.3 then yields:

Proposition 6.6. Assume that p ∈ L∞. Consider the preconditioner 〈·, ·〉Q applied to the
operator (22). Then we obtain the following condition number:

κQ ≤ c(1 + ‖b‖1/4∞ α−1/4).

Proof. We proceed similar as in the control constrained case, defining

f = (A+ CIM)∗v = (A+Φ)∗v.

Then 〈v, v〉Q = ‖M−∗f‖2L2(Ω). By Lemma 6.3 we conclude

‖C∗v‖L2(Ω) = α−1/2‖v‖L2(Ω) ≤ α−1/2(1 + cφ
1/4
1 )‖Φ−1f‖L2(Ω)

= α−1/2(1 + c‖b‖1/8∞ α−1/8)‖√αM−∗f‖L2(Ω)

= (1 + c‖b‖1/8∞ α−1/8)‖M−∗f‖L2(Ω)

Inserting this into (16) we obtain the desired result.

In penalty methods for state constrained problems one considers a homotopy, which
results in γ → ∞ and thus ‖b‖∞ → ∞. In practical applications this leads to values of γ
in the order of 108 to 1012. Concerning parameters of such high magnitude, our improved
condition number estimate is of particular value, since the number of required cg iterations
then only grows with the 8th square-root of ‖b‖∞. Compared to the preconditioner Q0,
which may require hundreds or thousands of cg iterations (proportional to

√

‖b‖∞), Q
merely takes a very limited number of iterations.
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7 Small (in)active sets

In some situations it is likely that those sets where M and C are large have small Lebesgue
measure. Applications comprise regularized bang-bang control, where the inactive set be-
comes small for small regularization parameters, and regularized state constrained control,
if the active set tends to a Lebesgue null set.

We approach our problem via an L∞-estimate due to Stampacchia:

Lemma 7.1. Let Ω ⊂ R
d for d ≤ 3 be a bounded Lipschitz domain and consider the

following elliptic equation in weak form:

v ∈ H1
0 (Ω) : a(v, w) +

∫

Ω

φ(x)vw dx =

∫

Ω

fw dx,

where φ(x) is a positive function in L∞(Ω) and f ∈ L2(Ω).
Then we have the estimates

‖v‖L∞
≤ c‖f‖L2

‖v‖L2 ≤ c‖f‖L1,

where c is independent of φ.

Proof. Our first estimate is due to Stampacchia [14], and our second estimate follows via a
duality technique, similar to the one, used in the proof of Lemma 6.3.

Proposition 7.2. Consider the preconditioners Q0 from (12) and Q from (15) applied to
the block operator (4). We have the condition number estimates

κQ0 ≤ c(1 + α−1‖χI(p)‖L1)

κQ ≤ c(1 + α−1‖χI(p)‖L1).

Proof. In both cases we have

〈C∗v, C∗v〉 =
∫

Ω

α−1χI(p)v
2 dx ≤ ‖α−1χI(p)‖L1‖v‖2L∞

.

By Lemma 7.1 we obtain ‖v‖2L∞

≤ c〈v, v〉Q0 and also ‖v‖2L∞

≤ c〈v, v〉Q. Inserting these
estimates into (13) and (16), respectively, we obtain the desired result.

In bang-bang control, one frequently encounters an assumption of the form (cf. e.g. [5]):

|{x ∈ Ω : |p(x)| < ε}| ≤ cε.

If such a problem is regularized by a homotopy α → 0, and one assumes that the cor-
responding adjoint states pα uniformly satisfy such an assumption, too, then one obtains
|χI(pα)| ≤ cα. In this context, the condition number of the preconditioners is bounded.

Proposition 7.3. Consider the preconditioners 〈·, ·〉Q0 and 〈·, ·〉Q applied to the block op-
erator (22). We have the condition number estimates

κQ0 ≤ c(1 + α−1‖b‖L1)

κQ ≤ c(1 + α−1‖b‖L1).
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Proof. In both cases we have

〈C∗v, C∗v〉 ≤ α−1‖v‖2L2
,

and it remains to derive a bound of the form

‖v‖L2 ≤ c‖M−∗ (A+ CIM)∗v
︸ ︷︷ ︸

f

‖L2 = c‖M−∗f‖L2,

for Q and the corresponding one for Q0, where the term CIM is missing. In our case we
have (M∗w)(x) =

√

b(x)w(x). Since (A+CIM)∗v = f , we conclude with Lemma 7.1 that

‖v‖L2 ≤ ‖f‖L1 = ‖
√
bM−∗f‖L1 ≤ ‖

√
b‖L2‖M−∗f‖L2 ≤

√

‖b‖L1‖M−∗f‖L2.

Inserting this estimate (and the corresponding one for Q0) into (13) and (16), respectively,
we obtain the desired result.

8 Numerical examples

In this section we perform a study numerical study of the pcg method with our precondi-
tioners. We consider two examples. The first is related to a control constrained problem,
the second is related to a regularized state constrained problem.

The pcg iteration is terminated, after the estimated error in energy norm has dropped
below 10−8, where an estimator in the spirit of [6, Sec. 5.3.3(c)] is used.

Our simple implementation is based on matlab, and the discretization of our optimality
system was done with 5-point star finite differences. For the solution of the single PDE
blocks, the built-in sparse direct Cholesky factorization has been used.

In both cases the computational domain is the unit-square, and the current active set
A is a disc with center (0.5, 0.5) and radius 0.4. As right hand side we choose the function
r ≡ 1.

h \ α 10−2 10−4 10−6 10−8 10−10 10−12

2−6 8 13 18 22 24 23
2−7 7 13 18 22 29 32
2−8 7 13 17 22 31 41
2−9 7 12 17 22 31 52
2−10 7 12 17 22 33 54

h \ α 10−2 10−4 10−6 10−8 10−10 10−12

2−6 5 9 33 234 798 953
2−7 5 9 33 236 1749 3222
2−8 5 9 31 233 2095 > 10000
2−9 4 9 31 231 2122 > 10000

Figure 1: Number of pcg iterations for preconditioner Q (top) and Q0 (bottom) for control
constraints with varying grid size h and Tychonov parameter α.

In our first problem, we thus solve a problem of the form
(
E∗E A∗

A −E∗α−1χΩ\AE

)(
δy
δp

)

=

(
0
1

)

, (35)



24

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
0

10
1

10
2

1/α

N
pc

g

Figure 2: Number Npcg of computed pcg iterations for problem (35) and theoretical pre-
diction Npcg ∼ α−1/8 plotted against α−1 on a 512× 512 grid.

with varying Tychonov parameter α. Here A corresponds to the weak form of −∆ on
H1

0 (]0, 1[×]0, 1[), and E is the Sobolev embedding. Of particular interest is the case, where
α is very small. In the second example we solve a problem of the form

(
E∗(1 + γχA)E A∗

A −E∗E

)(
δy
δp

)

=

(
0
1

)

(36)

with varying penalty parameter γ. Here γ can become very large during the course of a
path-following method. It can be observed in both examples that the preconditioner Q is
vastly superior to Q0 for large α−1 or γ. Moreover, for very large parameters discretization
effects tend to yield smaller numbers of pcg iterations for coarse grids than for fine grids.

h \ γ 102 104 106 108 1010 1012

2−6 8 12 17 23 28 29
2−7 8 12 17 23 34 38
2−8 8 12 16 23 36 49
2−9 8 12 16 23 37 58
2−10 7 12 16 23 36 61

h \ γ 102 104 106 108 1010 1012

2−6 5 11 41 300 1204 1638
2−7 5 11 39 297 2464 5323
2−8 5 11 39 293 2727 > 10000
2−9 5 11 40 293 2722 > 10000

Figure 3: Number of pcg iterations for preconditioner Q (top) and Q0 (bottom) for regu-
larized state constraints with varying grid size h and penalty parameter γ.

If we compare the observed number of pcg iterations with the predicted number of
iterations (cf. Figure 8) we observe two things. First, the average increase of iterations
seems to be slightly slower than predicted. However, there are regions (i.e. α−1 ∈ [102, 104]
and α−1 ∈ [1010, 1012]) where the slopes seem to fit. For very large α−1 > 1012 we observe a
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α \ NNewton N total
pcg Navg

pcg

10−2 3 8 2.667
10−4 6 28 4.667
10−6 10 59 5.9
10−8 9 79 8.778
10−10 9 119 13.22
10−12 8 142 17.75

Figure 4: Convergence history of semi-smooth Newton method for varying α

saturation of the number if iterations. This effect is most probably due to the discretization
of the problem, and can also be observed in the last columns of the top table in Figure 1.
Such behavior is usually a clear indication that the discretization of the problem is too
coarse.

Of course, this iterative solver can also be used as an inner loop inside a semi-smooth
Newton method. Let us give an example in the context of control constraints u ≥ 0. Here
we use again a control problem with distributed control and corresponds to the weak form of
A = −∆ on H1

0 (]0, 1[×]0, 1[). As desired state, we choose yd = A−1 sin(πx1x2). State y and
adjoint state p are both discretized by standard finite differences with mesh size h = 2−8.
To compute the solution for this problem with varying, up to very small α we reuse the
computed solution for the last (larger) α as an initial guess for the next (smaller) α. This
acts as a simplistic path-following method for α → 0 and compensates for the inefficient
global convergence behavior of semi-smooth Newton in case of small α.

9 Conclusion and Outlook

We have proposed and analyzed block preconditioners for systems that arise in certain
optimal control problems with PDEs. It can be used effectively for control constraints,
if the domain of observation contains the domain of control. For state constraints the
approximate active constraint set should be contained in the control domain.

In these cases the condition numbers of the resulting systems are in general only the
square root of the condition numbers, that are obtained via a simple preconditioner Q0,
asymptotically with respect to critical parameters. Under additional structural assump-
tions, it can be shown that the condition number grows even slower, like the fourth root of
the condition number of Q0. In the unconstrained case one obtains a condition numbers
independent of the critical parameter.

Our results are of particular interest in state constrained optimal control problems,
where up to now the robustness of available preconditioners with respect to regularization
parameters was poor. The class of state constrained problems seems to be divided into two
subclasses. The first, where the control can act on the active set of the constraints, and the
class of remaining problems, where the control acts more indirectly. The first class seems
to be tractable more easily than the second, and new ideas are needed for the second class.

Finally, our results are valid for exact solutions of the modified PDEs. This is already
a significant progress, since direct solvers for elliptic problems are much more efficient than
for coupled systems. In the parabolic case the advantage is even larger. It is straightfor-
ward to replace direct solvers by multigrid preconditioners. However, showing optimality
and robustness of these preconditioners seems an open non-trivial theoretical issue that
needs to be addressed in the future. The usual H1 techniques cannot be used because the
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natural space for the preconditioners is DK . Finally, from an algorithmic point of view
it is desirable to apply our preconditioners in an adaptive multilevel method in the spirit
of [20], where inexactness of Newton steps caused by the iterative solver and the adaptive
grid refinement is appropriately handled within an adaptive inexact Newton path-following
method in function space.
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