
Technische Universität Berlin

Institut für Mathematik

Error estimates for linear-quadratic
control problems with control constraints

A. Rösch
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Abstract

An abstract linear-quadratic optimal control problem is investigated with pointwise con-
trol constraints. This paper is concerned in discretization of the control by piecewise linear
functions. Under the assumption that the optimal control and the optimal adjoint state is
Lipschitz continuous and piecewise of class C2 an approximation of order h3/2 is proved for
the solution of the control discretized problem with respect to the solution of the continuous
one. Numerical tests are presented after the theoretical part.
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1 Introduction

The paper is concerned in the discretization of the following abstract linear quadratic control
problem

(P )

 min J(u) = 1
2‖y − yd‖

2
Y + ν

2‖u‖
2
U

subject to y = Su
and u ∈ C = {u ∈ U | a ≤ u ≤ b a.e. on [0, T ]},

where U = L2(0, T ), Y is a Hilbert space and S : U → Y is a linear and continuous operator.
We assume ν > 0 and a, b are real numbers with a > b. We will see that the crucial point is the
discretization of the control. Therefore we investigate the control discretized counterpart of (P )

(Ph)

 min J(u) = 1
2‖y − yd‖

2
Y + ν

2‖u‖
2
U

subject to y = Su
and u ∈ Ch = {u ∈ Uh| a ≤ u ≤ b a.e. on [0, T ]},

where is no discretization in the state space Y .

The operator S can be interpreted as a solution operator for a partial differential equation. This
setting fits with the boundary control of an one-dimensional parabolic equation or the boundary
control of a two-dimensional elliptic equation.

In this paper we discuss a space Uh of piecewise linear functions on a uniform grid. The case
of piecewise constant functions is well investigated, we refer here to Falk [4], Geveci [5], and
Arada/Casas/Tröltzsch [1]. The authors show for different examples the convergence order h.
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The convergence order h is optimal if the optimal control is only an element ofH1. If the optimal so-
lution is more regular, then the convergence order of piecewise constant functions can not improve,
due to the fact that the best approximation of a smooth function by piecewise constant functions
has only convergence order h. Under reasonable assumptions we prove in the main result that the
error between the solutions of (P ) and (Ph) for piecewise linear functions is of order h3/2. To get
this result, we assume that the optimal control is Lipschitz continuous and piecewise of class C2.
This assumption holds for several examples in literature, we refer to Arada/Raymond/Tröltzsch
[2], Tröltzsch/Mittelmann [11] for parabolic problems, and Bergounioux/Ito/Kunisch [3] for elliptic
problems.

Linear-quadratic optimal control problems are subproblems of SQP-algorithms and other higher or-
der methods solving nonlinear optimal control problems, see for instance Heinkenschloss/Tröltzsch
[7], Kelley/Sachs [8], Kunisch/Sachs [10], Tröltzsch [12] and the references therein.

The linear-quadratic optimal control problems can be attacked by a primal-dual active set strategy,
see Hager [6] or Kunisch/Rösch [9]. By means of this strategy the undiscretized optimal control
problem can theoretically be solved with an arbitrary high accuracy. Unfortunately, we are not
able to solve the appearing system of equations analytically. Thus, it is necessary to discretize
control and state. Therefore the approximation error of the solution of the discretized problem
with respect to the analytic one plays an important role.

We describe the discretized space Uh in the usual form: Let h = T/n, ti = i · h and ei (i = 0..n)
be the functions

ei =

 (x− ti−1)/h if x ∈ [ti−1, ti)
(ti+1 − x)/h if x ∈ [ti, ti+1]
0 otherwise.

Now u ∈ Uh can be expressed as

u =
n∑
i=0

uiei.

Moreover, u ∈ Ch means
a ≤ ui ≤ b ∀i = 0..n.

Thus, (Ph) can be equivalently written as

(P ′h)



min J(u) = 1
2‖y − yd‖

2
Y + ν

2‖u‖
2
U

subject to y = Su

u =
n∑
i=0

uiei

and a ≤ ui ≤ b ∀i = 0..n

in this case.

The paper is organized as follows: In section 2 we formulate the optimality conditions and state
the main result. Section 3 contains several auxiliary results. The proof of the error estimate is
presented in section 4. The paper ends with numerical tests in section 5.

2 Optimality conditions and error estimates

The introduced minimization problems (P ) and (Ph) are strictly convex. Therefore, the first-order
optimality conditions are sufficient for optimality.
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Lemma 1 The necessary and sufficient first-order optimality conditions for the unique solution ū
of P and the unique solution uh of Ph are given by

(S∗(Sū− yd) + νū, u− ū)U ≥ 0 ∀u ∈ C, (2.1)
(S∗(Suh − yd) + νuh, u− uh)U ≥ 0 ∀u ∈ Ch, (2.2)

where S∗ : Y → U denotes the adjoint operator.

This result is quite standard, hence we drop the proof.

We point out that in (Ph) only the control is discretized. For applications we have to discretize
the state equation, too. In the next lemma we will see that this discretization generates no new
difficulties. Let us introduce a discretized state equation by

yτ = Sτu

with Sτ : U → Yτ ⊂ Y . This abstract setting of the operator Sτ fits with many different ap-
proximations of the state equation. For instance this operator represents finite differences or finite
elements, but it fits also with finite Fourier approximations.

We discuss now the fully discretized problem (P τh )

(P τh )

 min J(u) = 1
2‖yτ − yd‖

2
Y + ν

2‖u‖
2
U

subject to yτ = Sτu
and u ∈ Ch = {u ∈ Uh| a ≤ u ≤ b a.e. on [0, T ]}.

For the next lemma we assume that we know the approximation properties of the discretized
operator Sτ . However, the proof of such a property is a challenge for the most state equations
corresponding to partial differential equations.

Lemma 2 Assume that
‖Sτu− Su‖Y ≤ δ‖u‖U

holds for all u ∈ Uh. Then the unique solutions uh and uτh fulfil the inequality

‖uh − uτh‖U ≤ c · δ

with a constant c > 0.

Proof: The optimality conditions for uh and uτh are given by

(S∗(Suh − yd) + νuh, u− uh)U ≥ 0 ∀u ∈ Ch,
(S∗τ (Sτuτh − yd) + νuτh, u− uτh)U ≥ 0 ∀u ∈ Ch.

These inequalities are especially fulfilled for uτh and uh

(S∗(Suh − yd) + νuh, u
τ
h − uh)U ≥ 0

(S∗τ (Sτuτh − yd) + νuτh, uh − uτh)U ≥ 0.

We add these two inequalities and obtain

(S∗τ (Sτuτh − yd)− S∗(Suh − yd) + ν(uτh − uh), uh − uτh)U ≥ 0

or
ν‖uh − uτh‖2U ≤ (S∗(Suτh − yd)− S∗(Suh − yd) + w, uh − uτh)U (2.3)
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with
w = S∗τ (Sτuτh − yd)− S∗(Suτh − yd).

It is easy to show that
‖w‖U ≤ c̃ · δ · (‖uτh‖U + ‖yd‖Y )

holds. The set of admissible controls C is bounded. Thus we get

‖w‖U ≤ c · δ

with a positive constant c. From (2.3) we obtain

ν‖uh − uτh‖2U ≤ −‖S(uτh − uh)‖2Y + (w, uh − uτh)U
≤ ‖w‖U · ‖uh − uτh‖U
≤ c · δ‖uh − uτh‖U .

From this we get easily the assertion. 2

In this way the approximation error of the state equation transfers directly to the solution of
the corresponding optimal control problem. That means that the error between the continuous
problem (P ) and the fully discretized problem (P τh ) is the sum of two errors. The first error is
the approximation error between (P ) and (Ph). The second one is generated by the discretization
of the state equation. This error and the techniques to get error estimates depend heavily on the
type of the state equation. Therefore we discuss in this paper only the connection between (P )
and (Ph). Precisely, we investigate the discretized problem (P ′h) for piecewise linear functions on
a uniform grid. Next, we state two general assumptions.

Assumption (A): The optimal control ū of (P ) is Lipschitz continuous and piecewise of class C2,
that means there exists a finite number of points tk ∈ [0, T ] (k = 0..N , t0 = 0, tN = T ) such that
ū ∈ C2[tk−1, tk] for all k = 1..N .

The expression p̄ = S∗(Sū − yd) is called adjoint state. For the adjoint state we need a similar
assumption.

Assumption (B): The adjoint state p̄ = S∗(Sū− yd) is Lipschitz continuous and piecewise of class
C2, that means there exists a finite number of points tk ∈ [0, T ] (k = 0..N , t0 = 0, tN = T ) such
that p̄ ∈ C2[tk−1, tk] for all k = 1..N .

In general it is difficult to show that the optimal control and the optimal adjoint state fulfil these
assumptions. Nevertheless, they are fulfilled in several examples in literature, see [2], [11], and [3].
These assumptions reflect the best case in control of PDEs.

Theorem 1 Assume that the optimal control ū of (P ) and the associated adjoint state p̄ = S∗(Sū−
yd) fulfil assumptions (A) and (B). Furthermore, let uh be the solution of (P ′h). Then the estimate

‖ū− uh‖U ≤ c · h3/2 (2.4)

holds true.

The proof of Theorem 1 is contained in section 4.
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3 Auxiliary results

First, we introduce the interpolate v of the solution ū of (P)

v =
n∑
i=0

ū(ti)ei.

Lemma 3 Under assumption (A) we have

‖ū− v‖U ≤ c · h3/2 (3.1)

Proof: We group our intervals [ti, ti+1] in two classes. In the first class I1 of these intervals the
function ū is of class C2. In the second class I2 the function ū is only Lipschitz. Because of
assumption (A) class I2 contains at most N − 1 intervals. Using T = n · h, we estimate

‖ū− v‖2U =
N∑
i=1

∫ ti

ti−1

|ū(t)− v(t)|2 dt

=
∑
I1

∫ ti

ti−1

|ū(t)− v(t)|2 dt+
∑
I2

∫ ti

ti−1

|ū(t)− v(t)|2 dt

≤
∑
I1

c1h
4 · h+

∑
I2

c2h
2 · h

≤ c1nh
4 · h+ c2 · (N − 1) · h3

≤ c1Th
4 + c2 · (N − 1) · h3.

The number N does not depend on h. Therefore the assertion is true. 2

For the proof of the main result we need the following auxiliary result.

Lemma 4 Assume that the optimal control ū of (P ) fulfils assumption (A). Furthermore, let uh
be the solution of (P ′h). Then we have

(S∗(Sū− yd) + νuh, v − uh)U + c · h3/2‖v − uh‖ ≥ 0 (3.2)

where the interpolate of ū is again denoted by v.

Proof: The interpolate v belongs to Ch. Therefore we can apply (2.2) with u = v and obtain

(S∗(Suh − yd) + νuh, v − uh)U ≥ 0. (3.3)

Using Lemma 3, we get

(S∗S(ū− uh), v − uh)U = (S∗S(ū− v), v − uh)U + (S∗S(v − uh), v − uh)U
= (S∗S(ū− v), v − uh)U + (S(v − uh), S(v − uh))Y
≥ −c · h3/2‖v − uh‖.

Combining this inequality with (3.3), we obtain

(S∗(Sū− yd) + νuh, v − uh)U = (S∗(Suh − yd) + νuh, v − uh)U
+(S∗S(ū− uh), v − uh)U

≥ −c · h3/2‖v − uh‖
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that implies the assertion. 2

For our further investigations we need the representation of different functions in coordinates. We
start with the solution uh of (P ′h)

uh =
n∑
i=0

ζiei with ζi = uh(ti)

and the interpolate v of the solution ū of (P )

v =
n∑
i=0

ηiei with ηi = ū(ti).

Furthermore we need a representation of the adjoint state p̄ = S∗(Sū − yd). This term does not
belong to Uh. Therefore we use an interpolation

p̄ := S∗(Sū− yd) =
n∑
i=0

φiei + δp with φi = p̄(ti).

We denote by φ, ζ, η the n+ 1-dimensional vectors with the coordinates φi, ζi, ηi.

Remark 1 Under assumption (B) we get an estimate for the interpolation error δp

‖δp‖U ≤ c · h3/2 (3.4)

because of Lemma 3.

For convenience we introduce the matrix G of the scalar products

G =

 (e0, e0) ... (eN , e0)
... ... ...

(e0, eN ) ... (eN , eN )


which has here the form

G =
h

6
·


2 1 0
1 4 1

.. .. ..
1 4 1

0 1 2

 (3.5)

Remark 2 Using the matrix G, the scalar product in Uh ⊂ U can be expressed by a scalar product
in Rn+1, for instance

‖uh‖2U = (uh, uh)U = (Gζ, ζ)Rn+1 .

Remark 3 We can estimate the U -norm for an element uh ∈ Uh by the usual Rn+1-norm, that
means

c1h‖ζ‖2Rn+1
≤ ‖uh‖2U = (uh, uh)U = (Gζ, ζ)Rn+1 ≤ c2h‖ζ‖2Rn+1

and the constants c1 and c2 do not depend on h.

Lemma 5 Assume that the assumptions (A) and (B) hold. Then we have

(G(φ+ νζ), η − ζ)Rn+1 + c · h3/2‖v − uh‖ ≥ 0. (3.6)
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Proof: We can write inequality (3.3) in the form

(G(φ+ νζ), η − ζ)Rn+1 + (δp, v − uh)U + c · h3/2‖v − uh‖ ≥ 0.

Remark 1 implies the assertion. 2

Until now we proved several properties of the solution of (P ′h). The next lemma contains an
important inequality for the interpolate v.

Lemma 6 Let D ∈ Rn+1×n+1 be a diagonal matrix with positive entries di. If the assumptions
(A) and (B) are fulfilled, then the inequality

(D(φ+ νη), ζ − η)Rn+1 ≥ 0 (3.7)

holds true.

Proof: Inserting p̄ = S∗(Sū− yd) in inequality (2.1), we obtain

(p̄+ νū, u− ū)U ≥ 0 ∀u ∈ C.

This inequality holds pointwise almost everywhere. If u belongs to Uh, then all functions in the
last inequality are continuous because of the assumptions (A) and (B). Therefore this inequality
holds also pointwise.

Setting u = uh, we get in the grid points

(p̄(ti) + νū(ti)) · (uh(ti)− ū(ti)) ≥ 0 for i = 0..n.

Using ζi = uh(ti), ηi = ū(ti), and φi = p̄(ti), we can write this inequality in the form

(φi + νηi) · (ζi − ηi) ≥ 0 for i = 0..n.

We multiply these n+ 1 inequalities by positive weights di. Then we add all inequalities. We end
up with

(D(φ+ νη), ζ − η)Rn+1 ≥ 0

where D is the diagonal matrix with the entries di. 2

4 Error estimates

The proof of Theorem 1 base on the inequalities (3.6) and (3.7). We only need a suitable choice
of the diagonal matrix D. The difference of the matrices G and D plays an important role in this
proof. It is desirable that this difference is singular. Therefore we choose the following matrix

D =
h

6
·


3 0

6
..

6
0 3

 (4.1)

Consequently, we obtain for the difference G−D

G−D =
h

6
·


−1 1 0
1 −2 1

.. .. ..
1 −2 1

0 1 −1

 (4.2)
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Lemma 7 If the assumptions (A) and (B) are fulfilled, then the estimates

‖(G−D)η‖Rn+1 ≤ ch2 (4.3)
‖(G−D)φ‖Rn+1 ≤ ch2 (4.4)

hold true.

Proof: We discuss the vector z = (G−D)η in detail. There are three possibilities:

1. The components z0 and zn

We find the inequalities

|z0| =
h

6
|η1 − η0| ≤ L ·

h2

6
and

|zn| =
h

6
|ηn−1 − ηn| ≤ L ·

h2

6
where L denotes the Lipschitz constant of ū.

2. Components i such that ū is only Lipschitz in [ti−1, ti+1]

Here we obtain

|zi| =
h

6
|ηi−1 − 2ηi + ηi+1| ≤ 2L · h

2

6
.

3. Components i such that ū is of class C2 in [ti−1, ti+1]

In this case we have

|zi| =
h

6
|ηi−1 − 2ηi + ηi+1| ≤ c ·

h3

6
.

Again we group the components in two classes. Class J1 is associated to the cases 1 and 2 and
contains the Lipschitz part. Case 3 with the C2-part is represented in J2. We obtain

‖(G−D)η‖2Rn+1 =
n∑
i=0

|zi|2

=
∑
J1

|zi|2 +
∑
J2

|zi|2

≤ (2N + 2) · L2 · h
4

9
+ n · c2 · h

6

36
≤ ch4.

Analogously, we can prove the other inequality. 2

We are now able to prove the main result.

Proof of Theorem 1: First, we recall the inequalities (3.6) and(3.7)

(G(φ+ νζ), η − ζ)Rn+1 + c · h3/2‖v − uh‖ ≥ 0
(D(φ+ νη), ζ − η)Rn+1 ≥ 0.

Next, we add these two inequalities

((G−D)φ, η − ζ)Rn+1 − ν(Dη, η − ζ))Rn+1 + ν(Gζ, η − ζ))Rn+1 + c · h3/2‖v − uh‖ ≥ 0
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and write this inequality in the form

((G−D)φ, η − ζ)Rn+1 + ν((G−D)η, η − ζ))Rn+1

+ν(G(ζ − η), η − ζ))Rn+1 + c · h3/2‖v − uh‖ ≥ 0 (4.5)

According to Remark 2 we have

ν(G(ζ − η), η − ζ))Rn+1 = −ν‖uh − v‖2U .

We insert this inequality in (4.5) and obtain

ν‖uh − v‖2U ≤ ((G−D)φ, η − ζ)Rn+1 + ν((G−D)η, η − ζ))Rn+1 + c · h3/2‖v − uh‖.

In Lemma 7 we proved the estimates

((G−D)φ, η − ζ)Rn+1 ≤ ch2‖η − ζ‖Rn+1 ,

((G−D)η, η − ζ)Rn+1 ≤ ch2‖η − ζ‖Rn+1 .

Due to Remark 3, we obtain

((G−D)φ, η − ζ)Rn+1 ≤ ch3/2‖v − uh‖U ,
((G−D)η, η − ζ)Rn+1 ≤ ch3/2‖v − uh‖U .

Therefore we get
‖uh − v‖U ≤ c · h3/2.

From this inequality and (3.1) we imply

‖uh − ū‖U ≤ ‖uh − v‖U + ‖v − ū‖U ≤ c · h3/2

which is exactly the assertion. 2

Remark 4 The result of Theorem 1 can be slightly generalized. Instead of a ≤ u ≤ b, we require
now

a(t) ≤ u(t) ≤ b(t),

where a is a convex continuous function and b is a concave continuous function with a(t) < b(t)
on [0, T ]. Then the result of Theorem 1 is also valid.

5 Numerical tests

Because of our main result we get a better approximation order for piecewise linear function than
for piecewise constant functions, if the optimal control is sufficiently smooth. In practice this
approximation error is overlapped by the discretization error of the state equation (see Lemma 2).
Therefore this result helps to tune the discretizations of control and state.

If we only want to see the effects of the control discretization, then we have to choose examples
for which we can solve the state equation exactly for each element u ∈ Uh. This is impossible
for partial differential equations, for which the theory is developed. Thus, we will discuss here a
simple example for the control of an ordinary differential equation. Clearly, such problems can be
solved by more efficient methods. Nevertheless, our examples give an impression, how piecewise
linear function can improve the convergence order.
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In our optimal control problem we want to minimize

minF (y, u) =
1
2
‖y − yd‖2Y +

ν

2
‖u‖2U

subject to

ẏ(t) = ay(t) + u(t) t ∈ (0, T )
y(0) = 0.

and
|u(t)| ≤ 1 a.e. on (0, T ).

In this setting we choose U = Y = L2(0, T ). The adjoint equation is given by

−ṗ(t) = ap(t) + y(t)− yd(t), t ∈ (0, T )
p(T ) = 0.

The desired state is chosen as

yd =
{

1
a (eat − 1) + aν on [0, α)
1
a (eat − 2ea(t−α) + 1 + 1

2e
a(T+t−2α) − 1

2e
a(T−t)) + aν on [α, T ]

where α ∈ (0, T ). The quantities a, T , α fulfil the condition

a(T − α) = ln 2 (5.1)

in our example. The optimal control is given by

ū =
{

1 on [0, α)
ea(T−t) − 1 on [α, T ].

For the state we find

ȳ =
{

1
a (eat − 1) on [0, α)
1
a (eat − 2ea(t−α) + 1 + 1

2e
a(T+t−2α) − 1

2e
a(T−t)) on [α, T ].

Therefore we obtain for the difference

ȳ − yd ≡ −aν.

Consequently we get
p̄ = −ν(ea(T−t) − 1)

for the adjoint state. It is easy to see that ū is optimal. It holds

− p̄
ν
> 1 on [0, α).

On this interval we have u ≡ 1. Moreover, on [α, T ]∣∣∣− p̄
ν

∣∣∣ ≤ 1

is valid and the condition
p̄+ νū = 0

is fulfilled. Therefore fulfil (ȳ, ū, p̄) the necessary first-order optimality conditions. These conditions
are sufficient because of the strict convexity of our optimal control problem.
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Test 1: We choose the following values of the parameters

ν = 0.1, a = 1, α = 1, T = 1 + ln 2.

In this test we use piecewise constant functions. The numerical result is presented in the next
table. The number of intervals is denoted by n.

n ||u− uh||U n · ||u− uh||U
8 0.070828 0.566622

16 0.037153 0.594447
32 0.018584 0.594677
64 0.009298 0.595079

128 0.004665 0.597115
256 0.002339 0.598755

Because of n · h = T , the last column shows the linear convergence order with respect to h.

Test 2: We take the same values as in Test 1. Now we use piecewise linear functions. The number
of intervals is again denoted by n. The relation between α and T is an irrational number. Therefore
α is not a grid point. We obtained the following result:

n ||u− uh||U n · ||u− uh||U n3/2 · ||u− uh||U
8 0.021242 0.169930 0.480658

16 0.008508 0.136059 0.544236
32 0.001474 0.047176 0.266865
64 0.001050 0.067229 0.537836

128 0.000369 0.047201 0.534014
256 0.000088 0.022643 0.362294

The numbers in the last column vary between 0.26 and 0.55. This result is in accordance with the
theoretical convergence order h3/2. A comparison between the two results shows more interesting
facts. For the finest discretization (n = 256) we got an approximation error of 0.002339 for
piecewise constant functions. The approximation error was nearly the half of this value (0.001474)
for the small discretization with 32 intervals by use of piecewise linear functions.

Test 3: We change the values of the parameters

ν = 0.1, a = 1, α = ln 2, T = 2 ln 2.

Now the relation between α and T is 1/2, i.e. α is a grid point. Again, we use piecewise linear
functions. The numerical result (for this unrealistic case) is presented in the next table:

n ||u− uh||U n · ||u− uh||U n3/2 · ||u− uh||U n2 · ||u− uh||U
8 0.001785 0.014282 0.040396 0.114256

16 0.000397 0.006349 0.025398 0.101592
32 0.000093 0.002963 0.016764 0.094831
64 0.000022 0.001427 0.011415 0.091323

128 0.000005 0.000699 0.007914 0.089533
256 0.000001 0.000346 0.005539 0.088629

We obtained a quadratic approximation order. Again, the results have a high accuracy for a small
number of intervals. The theoretical and numerical results suggest the use of piecewise linear
functions instead of piecewise constant functions for such a class of optimal control problems. If
the optimal controls have one part where the constraints are active and another part where the
constraint are inactive, then these controls are not better than Lipschitz continuous. Therefore
higher splines can not improve the approximation order, if the switching points are unknown.
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[12] F. Tröltzsch. An SQP method for the optimal control of a nonlinear heat equation. Control
and Cybernetics, 23(1/2):267–288, 1994.

12


