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Abstract

We study branch-and-bound algorithms for resource-constrained project sche-
duling where processing times of jobs are random. The objective is to find a
so-calledscheduling policywhich minimizes the project makespan in expecta-
tion. The proposed procedures are based upon four classes of scheduling policies
which differ considerably with respect to their computational tractability as well
as with respect to the optimum costs that can be achieved within the respective
class.

The purpose of the paper is twofold. First, we establish results on the trade-
off between computational efficiency and solution quality for each of the consid-
ered classes of policies and evaluate their practical applicability for scheduling
stochastic resource-constrained projects. Second, we develop and apply various
ingredients such as dominance rules and lower bounds that turn out to be use-
ful within the computation. In order to comprehensively study these issues we
have implemented five different branch-and-bound algorithms and explore their
computational behavior on 1440 test instances.

1 Introduction

We consider the problem of scheduling jobs with uncertain processing times in order
to minimize the project makespan in expectation. Precedence constraints have to be
respected, that is, certain jobs must be completed before others can be executed. In
addition, each job requires capacity of different resources while being processed, and
the resource availability is limited. The problem generalizes the classicalresource-
constrained project scheduling problemwhich has been studies extensively in numer-
ous variations; we refer to [3, 43] for reviews on different models and algorithms.

As has already been observed by Fulkerson [12], the assumption of random job
processing times prevents the underestimation of project costs (that frequently oc-
curs in real-world projects). However, surprisingly perhaps, only few attempts have
been made to analyze resource-constrained project scheduling problems with random
processing times. Most relevant for our study is the work of Igelmund and Rader-
macher [21, 20] which is briefly summarized below. Other contributions include
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meta heuristics [41, 42, 15], commercial software evaluation [9], and qualitative as-
pects [22]. Moreover, the NASA [19] has performed research on stochastic resource-
constrained project scheduling in order to identify so-calledcritical jobs within space
shuttle ground processing (there, jobs are called critical if their delay causes a delay
of the entire project). The necessity of stochastic job processing times in resource-
constrained project scheduling is probably best motivated by the following quotation
taken from [19].

“Shuttle ground processing is subject to many uncertainties and delays. These
uncertainties arise from many sources, including unexpected shuttle maintenance
requirements, failure of ground test equipment, unavailability of resources or
technical staff, manifest constraints, and delays in paperwork.” [19, Page 4]

Due to the combination of random job processing times and resource constraints,
scheduling is usually done by so-calledpolicies. A policy may be seen as an on-line
decision process that defines which jobs are started at certain decision timest, based on
the knowledge of the given distributions and the observed past up tot. Different classes
of such policies have been considered in the literature, we refer to Möhring, Raderma-
cher, and Weiss [29, 30] for a comprehensive characterization. Independently, Fer-
nandez, Armacost, and Pet-Edwards [10] introduced scheduling policies for stochas-
tic resource-constrained project scheduling; they interpret a policy as a multi-stage
stochastic optimization problem, where each stage is identified with a decision timet.
Our work is based upon so-calledpreselective policiesthat have been introduced by
Igelmund and Radermacher [21, 20]. Roughly speaking, such policies define for each
possible resource conflict among a subsetF of jobs apreselectedjob j ∈ F which is
postponed if the corresponding resource conflict appears within the execution of the
project. Igelmund and Radermacher discuss different properties of preselective poli-
cies which are of both theoretical and computational importance and develop a branch-
and-bound algorithm in order to compute optimal preselective policies for stochastic
resource-constrained project scheduling problems. To the best of our knowledge, this
is the only reference in this direction. However, their computational experiments are
limited to few small instances. Based on their work, we develop branch-and-bound
procedures for preselective policies as well as for three previously studied subclasses
thereof, so-calledES-policies[38], linear preselective policies[34], and job-based
priority policies, e. g. [34], which are reviewed in Section 3 below. In contrast to Igel-
mund and Radermacher [20] and Radermacher [38], we enhance the procedures by
utilizing recent algorithmic developments in the field of so-calledAND/OR precedence
constraintswhich allow a very efficient evaluation of preselective policies [33, 34]. In
particular, we make use of an efficient algorithm to estimate the expected makespan
of preselective policies and use a strong dominance rule that usually allows to prune
large portions of the search trees.

The classes of policies we consider differ with respect to both their computational
tractability and the optimum expected makespan that can be achieved within a class.
We establish results on the trade-off between computational efficiency and solution
quality for each of the considered classes of policies and evaluate their practical ap-
plicability for scheduling stochastic resource-constrained projects. We utilize two dif-
ferent branching schemes as well as several additional ingredients such as dominance
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rules and lower bounds to speed up the computations. In total, we have implemented
two different branch-and-bound algorithms for linear preselective policies and one al-
gorithm for each of the other three classes of policies. We explore their computational
efficiency on 1440 instances of different size that have been generated with the widely
accepted instance generator ProGen [25].

The paper is organized as follows. After having formally described the considered
scheduling model (Section 2) we review the considered classes of scheduling policies
(Section 3). In Section 4 we describe the used branching schemes. We then state
dominance rules for each of the branch-and-bound algorithms in Section 5. Section 6
gives a more detailed account of some ingredients that helped to speed up the com-
putations. Our computational study is presented in Section 7, and we conclude with
some remarks in Section 8.

2 Model and Notation

We are given a setV = {0, 1, . . . , n} of jobs with random processing times that have
to be scheduled non-preemptively such as to minimize the expected project makespan
(that is, the time which is required to complete all jobs). However, unless explicitly
stated, the proposed methods can as well be adapted to handle many other regular ob-
jective functions. We assume that job0 is a dummy job that represents the project start.
Its processing time is fixed top0 = 0. Processing times of the other jobs are given by
a random vectorp = (p1, . . . ,pn) wherepi denotes the random processing time of
job i. A particular sample ofp is denoted byp = (p1, . . . , pn) ∈ R

n
+. Precedence

constraints are defined by pairs(i, j) of jobs with the meaning that jobj cannot be
started before jobi has been completed. The setE0 of precedence constraints defines
a partial order relation onV which is denoted byG0 := (V, E0). Resource constraints
are given by a set of different, renewable resourcesK where for eachk ∈ K the value
Rk ∈ N specifies the amount of available units of resourcek. While in process, each
job consumes an amount ofrjk ≤ Rk, rjk ∈ N, units of resourcek ∈ K. The jobs
then have to be scheduled in such a way that at no timet the total resource consumption
exceeds the resource availability. Resource constraints can alternatively be represented
by a systemF ⊆ 2V of so-calledminimal forbidden sets, i. e., inclusion-minimal sets
F of pairwise not precedence-related jobs that cannot be scheduled simultaneously be-
cause they share some common limited resource. Note that, by definition, the number
of minimal forbidden sets may grow exponentially in the number of jobs. An algo-
rithm to computeF from the usual formulation of resource constraints by resource
requirements and availability has been documented by Stork and Uetz [40].

If we assume that the distributions of job processing times are discrete, then the
problem is a generalization of deterministic resource-constrained project scheduling.
Consequently, if the encoding length of distributions polynomial inn, the problem to
minimize the expected makespan is clearly NP-hard in the strong sense.

3 Scheduling Policies

General scheduling policies. Scheduling policies (orstrategies) have been exten-
sively studied and characterized by Möhring, Radermacher, and Weiss [29, 30], (see
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also Igelmund and Radermacher [21]). According to their definition, a scheduling
policy defines for each decision timet ≥ 0 a setB ⊆ V of jobs that are started at
t. Generally, policies may perform actions at any point in time, however, through-
out the paper we assume that suchdecision pointsare t = 0 (project start) and job
completions. Clearly, the jobs that are started att must respect all precedence and
resource constraints. That is, for eachj ∈ B, all predecessors are completed byt and
no minimal forbidden set is contained in the union ofB and the set of jobs that are
already in process at timet. Moreover, for the definition ofB, a scheduling policy
only uses information, that became available up to timet. This information includes
the input data (set of jobs, precedence constraints, minimal forbidden sets, processing
time distributions) and the processing and start times of jobs that completed by time
t. In addition, information of the start times of the jobs which are in process att can
be exploited. However, the classes of policies we consider do not use the latter type of
information. For a general definition of policies as well as a discussion of fundamental
results related to stability, idleness, and the analytic behavior of policies we refer to
Möhring, Radermacher, and Weiss [29, 30].

Once every job has been completed we know the processing times of the jobs and
thus have a samplep from the random vectorp of job processing times. Consequently,
every policyΠ may alternatively be interpreted as a functionΠ : R

n
+ → R

n
+ that

maps given samples of job processing times to vectorsS(p) ∈ R
n
+ of feasible job

start times (schedules). We denote the start time of a jobj ∈ V for a given policyΠ
and a given samplep by SΠ

j (p) and its completion time byCΠ
j (p) := SΠ

j (p) + pj .

The corresponding random variables are denoted bySΠ
j andCΠ

j , respectively. If no
misinterpretation is possible we omit the policy superscriptΠ.

Probably the best-known class of scheduling policies is the class ofpriority poli-
cies. A priority policy orders all jobs according to a priority list and, at every deci-
sion timet, start as many jobs as possible in the order of that list. In deterministic
(project) scheduling this is well-known asGraham’s List Scheduling[16] (sometimes
also called theparallel list scheduling scheme). However, priority policies have sev-
eral drawbacks such as the fact that there exist instances (even with deterministic pro-
cessing times) in which no priority policy yields an optimal schedule. Moreover, the
change of job processing times may lead to so-called Graham anomalies such as an in-
creasing project duration due to decreasing job processing times, see [16]. Thus, if we
think of a policy as a function that maps a sample of job processing times to feasible
start times, priority policies are neither monotone nor continuous.

In the sequel we briefly review the classes of ES-policies, (linear) preselective
policies, and job-based priority policies. Each such policy (in the view of a function)
is monotone and continuous and consequently, Graham anomalies do not occur within
project execution. Notice that we restrict the following synopsis to issues that are
relevant for computational purposes; a detailed theoretical discussion of other topics is
beyond the scope of the paper. For further details not mentioned here we refer to [29,
30, 28] as well as to Radermacher [38] (ES-policies), Igelmund and Radermacher [21,
20] (preselective policies), and M̈ohring and Stork [34] (linear preselective policies and
job-based priority policies). In order to illustrate the presentation we use the following
example which is taken from [21] (see also Figure 1).

Example 1. LetG0 = (V, E0) be given byV = {1, 2, 3, 4, 5} andE0 = {(1, 4), (3, 5)}
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Figure 1: The precedence constraints of Example 1 together with a minimal forbidden
set{2, 4, 5} (to keep the figure simple we did not include the minimal forbidden sets
{1, 5} and{2, 3, 4}).

and let the sets{1, 5}, {2, 3, 4} and{2, 4, 5} be minimal forbidden. Furthermore, ex-
pected job processing times areE[p] = (3, 5, 3, 5, 6). The random variablespj are
independent and uniformly distributed with variance2.

Earliest Start policies (ES). A policy Π is calledEarliest Start policy(ES-policy) if
for each minimal forbidden setF there exists a pair(i, j), i, j ∈ F , i 6= j, such that
for each samplep of job processing times,j is not started beforei has been completed.

An ES-policies can be represented as an acyclic extensionG = (V, E) of the
underlying precedence relationE0 by adding all such pairs(i, j) to E0. Then, in order
to obtain a scheduleS(p) for a given samplep of job processing times we simply
compute earliest job start times with respect toG, i. e.,S0(p) := 0 and

Sj(p) := max
(i,j)∈E

(Si(p) + pi) j ∈ V \ {0} . (1)

Consider the ES-policy for Example 1 defined byE = E0 ∪ {(1, 5), (2, 3), (4, 5)}.
For the samplep = E[p] we obtain start timesS(p) = (0, 0, 5, 3, 8). Formula (1) im-
mediately suggests that ES-policies viewed as functionsΠ : p → S(p) are monotone,
continuous, and convex.

Preselective policies (PRS). A policy Π is calledpreselectiveif for each minimal
forbidden setF there exists a jobj ∈ F , such that for each samplep of job processing
times,j is not started before some jobi ∈ F \ {j} has been completed. We callj a
waiting job for F and define aselectionto be a sequences = (s1, . . . , sf ), s` ∈ F`,
of waiting jobss`. Notice that, in contrast to ES-policies, the choice ofi is not fix; it
depends on the particular samplep.

A useful combinatorial representation of preselective policies — so-calledwaiting
conditions— has been suggested in [34]. A waiting condition is given by a pair(X, j),
X ⊂ V , j ∈ V \ X, where jobj cannot be started beforeat least onejob i ∈ X
has been completed. Each restriction induced by a minimal forbidden setF and its
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Figure 2: The digraph resulting from Example 1 and selections = (5, 3, 2). Circular
nodes correspond to jobs while square nodes represent waiting conditions. Nodesw1,
w2, andw3 are induced by forbidden sets and the respective preselected job. Prece-
dence constraints are represented byw4 andw5.

preselected jobj can be represented by the waiting condition(F \ {j}, j). Moreover,
each given precedence constraint(i, j) ∈ E0 can obviously be represented by the
waiting condition({i}, j). A setW of waiting conditions naturally induces a digraph
D which has a node for each job and for each waiting condition. There is a directed arc
from a node representing a jobi to a node representing a waiting condition(X, j) if i ∈
X. Furthermore, each node representing a waiting condition(X, j) is connected to the
node representingj. The set of waiting conditions which is induced by Example 1 with
selections = (5, 3, 2) is W = {w1 = ({1}, 5), w2 = ({2, 4}, 3), w3 = ({4, 5}, 2),
w4 = ({1}, 4), w5 = ({3}, 5)}. The associated digraphD representingW is depicted
in Figure 2. In the scheduling literature, the concept of waiting conditions is also
known asAND/OR precedence constraints, see, e. g., [13, 14, 33].

For a given selections and resulting system of waiting conditionsW we can con-
struct a schedule for each possible samplep ∈ R

n
+ by settingS0(p) := 0 and

Sj(p) := max
(X,j)∈W

(min
i∈X

(Si(p) + pi)) j ∈ V \ {0} . (2)

A component-wise minimal solution to (2) can be computed by a generalization of
Dijkstra’s shortest path algorithm as has been described (partly independent from each
other) by several authors; an early reference is Knuth [24]. We use a variation of
this algorithm which has been proposed by Möhring, Skutella, and Stork [33]. This
implementation runs in O(n + m + f log f) time wheref := |F| andm denotes
the number of arcs inD. For algorithmic details on this algorithm we refer to [33].
Notice that there does not need to exist a finite solutionS(p) < ∞ of (2). In this
case the selections is infeasibleand hence does not define a preselective policy. In
fact, if Sj(p) = ∞ for some arbitraryp ∈ R

n
+ andj ∈ V then this is the case for

all possible samples. The selections = (1, 3, 2) for Example 1 is infeasible while
the selections = (5, 3, 2) is feasible and for the samplep = E[p] Formula (2) yields
S(E[p]) = (0, 8, 8, 3, 11). For details on the feasibility of sets of waiting conditions
(and selections) we refer to [33, 34, 20].

Finally, a preselective policy as a functionΠ : p → S(p) is both monotone and
continuous and thus does not show Graham anomalies. This is immediate with (2).

Linear preselective policies (LIN ). The class oflinear preselective policiesis a sub-
class of the class of preselective policies. The underlying idea is to define the selection
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by a priority orderingL of the jobs in such a way that the preselected job of a minimal
forbidden setF is the one with lowest priority, i. e., the last element ofF in L. Note
that we assume, without stating explicitly, that orderings of jobs are conform to the
given precedence constraintsE0. Möhring and Stork [34] show that linear preselective
policies have several nice properties which make them computationally more advan-
tageous when compared to preselective policies. Most relevant is that the digraph
D of waiting conditions which is induced by a linear preselective policy is acyclic.
This allows earliest start times (defined by (2)) to be computed in O(n + m + f)
time. Consider Example 1 and the linear preselective policy defined by the sequence
L = 3 < 1 < 5 < 2 < 4. The resulting selection iss = (5, 4, 4) and for the sample
p = E[p] we obtainS(p) = (0, 0, 0, 5, 3).

Since each linear preselective policy is also a preselective policy they inherit the
analytic properties of being monotone and continuous.

Job-based priority policies (JBP). A policy Π is calledjob-based priority policyif it
is linear preselective (according to some orderingL of jobs) and fulfills the additional
restrictionSi(p) ≤ Sj(p) for each samplep andi ≺L j. In order to compute earliest
job start times for a given samplep we can start each job in the order ofL as early as
possible but not before the start time of some previously started job. A corresponding
algorithm can be implemented to run in O(n|K|+ |E0|+n log n) time and is thus not
dependent on the number of minimal forbidden sets. In fact, job-based priority policies
do not require the forbidden set representation of resource constraints at all. This
particularly allows to apply such policies to very large projects where the (possibly
exponential) number of minimal forbidden sets makes the use of forbidden set based
policies computational inefficient. If the job-based priority policyL = 3 < 1 < 5 <
2 < 4 is applied to Example 1 andp = E[p] we obtainS(p) = (0, 3, 0, 8, 3). Note
that this schedule differs from the schedule obtained for a linear preselective policy
(although the orderings of jobs which define the policies coincide). Like with the
above defined classes of policies, if a job-based priority policy is viewed as a function,
it is also monotone and continuous. In fact, ifΠ is a job-based priority policy for some
G0 andF thenΠ is linear preselective forG0 and a larger systemF ′ ⊇ F of forbidden
sets [34].

Finally, notice that job-based priority policies have previously been used within
other (mostly deterministic) scheduling models where they occur in connection with,
e. g., approximation algorithms [18, 31] and branch-and-bound procedures [39].

Optimum expected makespan. For a given samplep and associated completion
timesCΠ(p) of jobs,Cmax(CΠ(p)) denotes the makespan of the schedule resulting
from p, andE[Cmax(CΠ)] denotes the expected makespan under policyΠ. The ob-
jective is to minimizeCmax in expectationover a class of policies. We therefore
define a stochastic scheduling policyΠ∗ ∈ τ to be optimal with respect to some
classτ of policies if Π∗ minimizes the expected project makespan withinτ , i. e.,
E[Cmax(CΠ∗

)] = inf{E[Cmax(CΠ)]|Π ∈ τ}. We denote the optimum expected
makespan that can be achieved within a classτ of polices byρτ .

If processing times are deterministic it is not hard to see that each of the above de-
fined classes of policies achieves the optimum value, i. e.,ρPRS = ρLIN = ρES = ρJBP.
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Figure 3: The instance given in Example 2 together with Gantt charts for the selections
s = (2) ands = (3) (the selections = (1) is symmetric tos = (3)). Both Gantt charts
show the different processing times of the jobs4 and6. While E[Cmax(p)] = 31 for
s = (2) we obtainE[Cmax(p)] = 32.5 for s = (1) ands = (3). For deterministic
processing timesE[p] we obtainCmax(E[p]) = 31 for s = (2) andCmax(E[p]) = 30
for s = (1) ands = (3).

In the stochastic case, however, the behavior is quite different. By definition we im-
mediately obtainρPRS ≤ ρLIN ≤ ρJBP. Moreover, each ES-policy can easily be
transformed into a preselective policy with no larger makespan and consequently,
ρPRS ≤ ρES. On the other hand, it can verified by simple counter-examples that the
classesES andJBP are not comparable in terms of their optimum value. The same is
true for the classesES andLIN: It is easy to construct instances withρLIN < ρES; an
instance withρLIN > ρES is given in [34, Example 2]. Notice that all quoted inequal-
ities become strict for appropriately constructed instances. An analysis of Example 1
yields the orderingρPRS = ρLIN < ρES < ρJBP. In fact, as will be shown in the
computational study in Section 7.3 below, we obtain the same ordering for the entire
test set we used within our computational experiments.

4 Branch-and-Bound and Random Processing Times

In this section we recapitulate two branching schemes that have been previously ap-
plied to resource-constrained project scheduling problems and discuss their applica-
bility in the stochastic environment. Moreover, we describe how the expected project
makespan of a given policy can be (approximately) computed.

Before, let us briefly emphasize that preselective policiesΠ which are optimal with
respect to the expected job processing timesE[p], do not yield an optimum policy
for the stochastic problem with processing timesp in general. This is shown by the
following example.

Example 2. Let G0 = (V, E0) be given byV = {1, 2, 3, 4, 5, 6} andE0 = {(1, 4),
(1, 5), (2, 5), (3, 5), (3, 6)} and let the setF = {1, 2, 3} be minimal forbidden. The
following processing times are deterministic:p1 = 10, p2 = 11, p3 = 10, p5 = 10.
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The processing times of jobs4 and6 are independently distributed withPr(p4 = 5) =
Pr(p4 = 15) = 1

2 andPr(p6 = 5) = Pr(p6 = 15) = 1
2 .

The distributions of job processing times lead to4 different samples. It can easily
be evaluated that the selectionss = (1) ands = (3) lead to an optimal policy for the
deterministic problem with processing timesE[p] ands = (2) is the unique optimal
policy in the stochastic case (see Figure 3). Thus, if the objective is to find anoptimal
preselective policy, it is not sufficient to compute all policies which are optimal with
respect to the expected job processing timesE[p] and then, among these policies,
choose one with smallest expected makespan.

Branching schemes. We make use of two different branching schemes that have
previously been proposed in the literature, namely theforbidden set branching scheme
and theprecedence-tree branching scheme. In the latter scheme all linear extensions
of G0 are enumerated. In theforbidden set branching scheme, for eachF ∈ F ,
all alternatives to resolveF are enumerated. We apply the forbidden set branching
scheme to preselective policies, linear preselective policies, and ES-policies and the
precedence-tree branching scheme to linear preselective policies and job-based priority
policies. Since, for linear preselective policies, it is not a priori clear which branching
scheme is superior we have implemented both alternatives which in total leads to five
different branch-and-bound algorithms.

We first describe theforbidden set branching scheme. Each nodev in the tree
is associated with a minimal forbidden setF and branching onv systematically re-
solvesF . For ES-policies we create a child nodeuij of v for each ordered pair
(i, j), i, j ∈ F, i 6= j. For preselective and linear preselective policies we create a
child nodeuj of v for eachj ∈ F . Then, each leafv of the search tree represents
a policy which is defined by resolving each minimal forbidden set according to the
decisions made on the path fromv to the root of the tree. Notice that each nodev in
the tree with distanced(v) from the root node represents a scheduling policy for the
reduced system{F1, . . . , Fd(v)} of minimal forbidden sets (for preselective policies,
this equals a partial selections = (s1, . . . , sd(v))). Moreover, notice that within the
enumeration of linear preselective policies, a nodev is discarded if the partial selec-
tion s induced byv cannot be defined by an orderingL of the jobs which extends
E0. This can be tested in O(n + m + f) time by checking whether the digraphD of
waiting conditions which result fromG0 ands is acyclic [34]. Thus, for ES-policies
the number of children of a nodev is quadratic in the number of jobs contained in
the associated minimal forbidden set whereas the number of children is linear in the
preselective and the linear preselective case. Moreover, since the number of minimal
forbidden sets may be exponential in the number of jobs, the depth of the search tree
may be exponential inn as well. However, for ES-policies, the maximal depth can be
bounded byn(n − 1)/2 (see Section 5.1 below).

Notice that, in deterministic resource-constrained project scheduling, a variation
of the forbidden set branching scheme turned out to be very successful. There, each
node represents an infeasible schedule in which a resource conflict is systematically
resolved by so-calledminimal delaying alternatives, see, e. g., [5, 6, 11]. However, this
branching scheme is not applicable to the stochastic case because it makes excessive
use of deterministic job processing times.
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We next describe theprecedence-tree branching schemewhich is described in,
e. g., Patterson, Słowiński, Talbot, and We¸glarz [35]. Here, linear extensions of the
underlying precedence constraintsE0 are enumerated. Each node in the search tree
defines an orderingL of some ideal ofG0, that is,j ∈ L implies thati ∈ L andi ≺L j
for all (i, j) ∈ E0 (notice that we sometimes viewL as a set of jobs). We call such
orderingsinitial segmentsof G0. For a given nodev and associated initial segment
L we create child nodes for all jobsj ∈ V \ L that are precedence-feasible, i. e., all
predecessorsi of j are already contained inL. Hence, the set of leaves of the complete
tree and the set of linear extensions ofE0 coincide. Notice that the depth of the tree
is n, the number of jobs, however, the number of children that are generated for a
given node is also in the order ofn. So far, the precedence-tree branching scheme has
been applied to deterministic resource-constrained project scheduling problems only,
a recent reference is [39].

Computing the expected makespan. For a given node in the search tree, lower
bounds on the expected makespan are computed in order to discard the node from fur-
ther consideration. (A node can be discarded if the computed lower bound is greater
than or equal to the current global upper bound.) The lower bound is computed by
disregarding all resource conflicts that have not been resolved so far, i. e., we make
use of the classicalcritical path lower bound. Unfortunately, already for precedence-
constrained jobs without any resource restrictions, the computation of the expected
length of a critical path is #P-complete if each job processing time distribution has two
(discrete) values (see Hagstrom [17]). Although for complex distributions the problem
has a longer encoding which could possibly admit a polynomial algorithm, such an
efficient algorithm seems very unlikely to exist, since Hagstrom has also shown that
— unless P=NP — the problem cannot be solved in time polynomial in the number
of possible values of the makespan (assuming discrete distributions). For these rea-
sons one usually approximates the expected makespan of a given policy bysimulation
of the given distributions of job processing times. We then obtain a setP of sam-
ples forp, that can be used to approximately calculateE[Cmax(CΠ)]. This is done
by computing the average makespan of the schedules resulting from these samples,
i. e., E[Cmax(CΠ)] ≈ 1

|P |
∑

p∈P Cmax(CΠ(p)). The usage of simulation techniques
for stochastic, discrete optimization problems has been discussed by Kleywegt and
Shapiro [23] who argue (among other issues) that for|P | → ∞ the optimum value
that results from the simulated data converges to the optimum value of the original
instance.

5 Dominance Rules

This section is concerned with several so-calleddominance rules. For a given node
v in some search tree and a samplep ∈ R

n
+, denote byCmax(v, p) the makespan of

a node with smallest makespan in the subtree rooted atv. We call another nodeu
dominatedby v if Cmax(v, p) ≤ Cmax(u, p) for all samplesp ∈ R

n
+. A dominance

rule is a method that (usually heuristically) identifies dominated nodes. If this is the
case, clearly, we can disregardu from further consideration. Notice that it must be
taken care of what might be calledcross pruning, that is, nodes that dominate each
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other must not all be removed from the search. Finally, in accordance to the above
definition, we call a policyΠ dominatedif there exists another policyΠ′ 6= Π such
thatSΠ(p) ≥ SΠ′

(p) for all samplesp ∈ R
n
+.

5.1 Earliest Start Policies

In the forbidden set branching scheme all dominance rules we propose are based on
the same principle. Letv be a node of the search tree. The decisions that have been
made at the ancestors ofv may implicitly solve resource conflicts that occur due to
minimal forbidden sets that have not been considered for branching so far. We call
such forbidden setsimplicitly resolved.

For ES-policies, a dominance rule based on this principle is easily obtained [38]:
Each nodev in the search tree can be identified with a set of new precedence con-
straints which are added toE0. These constraints together with the resulting transitive
constraints must be respected in each node which is located in the subtree rooted at
v. Denote the new set of ordered pairs byE and suppose thatF is the next minimal
forbidden set, on which branching is performed. Then, if we have(i, j) ∈ E for jobs
i, j ∈ F , the child nodeu of v in whichF is resolved by postponingj until i has been
completed, dominates all other child nodesw 6= u of v. This observation is immedi-
ate with the following lemma which also shows that the dominance criterion is both
necessary and sufficient.

Lemma 1. (Radermacher [37]) Let(V, E) and (V, E′) be extensions of(V, E0) that
represent ES-policesΠ andΠ′, Π 6= Π′, respectively.Π is dominated byΠ′ if and only
if E′ ⊆ E.

With respect to an implementation of a dominance rule resulting from the above
discussion, Radermacher [38] and Bartusch [2] suggest to use a data structure which
they calldestruction matrix. A destruction matrix stores for each pair(i, j), i 6= j,
a Boolean array of sizef that indicates for each minimal forbidden setF whether
{i, j} ⊆ F . However, this data structure requires O(n2f) space, which is not ac-
ceptable for a large number of minimal forbidden sets. Instead, we implemented an
algorithm which does not need the memory-expensive destruction matrix. The algo-
rithm also works for preselective policies and is described in the following Section 5.2.

Finally, notice that if the above described dominance rule is employed, we obtain
the following property of the branch-and-bound tree. On any path from the root to
some leaf, the number of nodes with more than one child node is bounded byn(n −
1)/2.

5.2 Preselective Policies

If preselective policies are enumerated by the forbidden set branching scheme, a node
v of the search tree is associated with a partial selections = (s1, . . . , sd(v)). Together
with the initial setE0 of precedence constraints,s defines a setW of waiting condi-
tions. Like with traditional precedence constraints, a sets of waiting conditions may
imply other “transitive” waiting conditions(X, j) 6∈ W. That is, for each samplep of
job processing timesW guarantees thatSj(p) ≥ mini∈X(Si(p) + pi). Consequently,
if some waiting condition(X, j) is implied byW and for some minimal forbidden set
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F , X ⊂ F andj ∈ F , thenF is implicitly resolved with respect tos. Therefore, if
we branch overF in nodev, it suffices to only consider the branchu which represents
the choice ofj as the preselected job forF ; all other child nodes are dominated by
u. The following lemma which is straightforwardly obtained from [34, Lemma 5.2],
establishes the correctness of the above argumentation.

Lemma 2. (Möhring and Stork [34]) LetW andW ′ be sets of waiting conditions that
represent preselective policesΠ andΠ′, Π 6= Π′, respectively. Then,Π is dominated
byΠ′ if and only if each(X, j) ∈ W ′ is implied byW.

Notice that Lemma 2 can be seen as a generalization of Lemma 1 by considering
waiting conditions instead of traditional precedence constraints.

Based on the above dominance rule, Möhring, Skutella, and Stork [33] have de-
vised an algorithm to verify whether a given minimal forbidden set is implicitly re-
solved. The underlying idea is best described in terms of waiting conditions, so sup-
pose that we are given a setW of waiting conditions which is associated with some
node of the search tree and letF be the minimal forbidden set for which we want to
test whether it is implicitly resolved. We then proceed by constructing a subsetL of
the jobs that can be started for all samplesp ∈ R

n
+ without the restriction that some

job fromF must have been completed previously. This is done in the following greedy
way: while there exists a jobi ∈ V \ F that is not a waiting job of any of the waiting
conditions inW, i is inserted intoL. Whenever a waiting condition(X, j) becomes
satisfied (which is the case when somei ∈ X is being added toL), (X, j) is deleted
fromW. Consider then the jobs fromF after the recurrence has terminated. Möhring,
Skutella, and Stork [33, Corollary 6] show that each jobj ∈ F that cannot be added to
L without violating any of the remaining waiting conditions is a waiting job forF . For
further theoretical details on the dominance of preselective policies and the correctness
of the above outlined algorithm we refer to [34] and [33].

We have implemented the following variation of the above dominance criterion
which is applied in each nodev of the search tree. In the initially fixed order of the
minimal forbidden sets, we check for each currently not resolved minimal forbidden
setF , whether there exists some implicit waiting jobj ∈ F . If this is the case, we
labelF to be implicitly resolved and proceed with the next minimal forbidden set. If
F is not implicitly resolved we stop the dominance test. For each minimal forbidden
setF this test takes O(n + m + f) time (in the case of ES-policies the running time
reduces to O(n+|E|)). Branching is then performed on the next minimal forbidden set
that is neither explicitly resolved by a previous branching, nor labeled to be implicitly
resolved.

5.3 Linear Preselective Policies via Forbidden Set Enumeration

The dominance rule as described in the previous section also applies to the enumer-
ation of linear preselective policies via the forbidden set branching scheme. Conse-
quently, we may use the same algorithm to prune the search tree in this case. However,
the integration of the dominance rule exposes a characteristic of linear preselective
policies which requires explanation. Suppose that some minimal forbidden setF is
implicitly resolved with respect to some partial selections, say, because the waiting
condition(F \ {j}, j) is implied. According to the dominance rule we then labelF to
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Figure 4: The figure shows the (cyclic) digraph of waiting conditions which results
from Example 4 and selections = (2, 3, 5, 3).

be implicitly resolved. Hence we do not need to perform a branching onF . However,
if j is explicitly preselected with respect toF then the resulting (partial) selections′

needs not necessarily be linear preselective. We demonstrate this observation by the
following example (see also [34]).

Example 3. Let G0 = (V, E0) be given byV = {1, 2, 3, 4, 5} and E0 = ∅ and let
the setsF1 := {1, 2}, F2 := {2, 3}, F3 := {3, 4, 5}, andF4 := {1, 3, 5} be minimal
forbidden.

Consider the (linear preselective) partial selections = (2, 3, 5); the resulting di-
graph of waiting conditions is given in Figure 4. Then the minimal forbidden setF4 is
implicitly resolved because job3 never starts before job1 has been completed. If job
3 is explicitly chosen as the preselected job forF4 we obtain a cycle in the associated
digraph of waiting conditions and consequently, the resulting selection is not linear
preselective. The only extension ofs which leads to a linear preselective policy is to
choose job5 as the preselected job forF4. But this results in a superfluous waiting
condition({1, 3}, 5).

We obtain the following consequence for the algorithm to enumerate linear prese-
lective policies by the forbidden set branching scheme: If we employ the dominance
rule as proposed in Section 5.2, the algorithm may output a policy that has a smaller
optimum value than all linear preselective policies. However, for our computational
study, we integrated the dominance rule into the algorithm. The decision is based on
the following two facts. First, any selections that is obtained from the branch-and-
bound algorithm can still be represented by an acyclic network of waiting conditions.
In particular,s always induces a linear preselective policy for an instanceI ′ which is
“tighter” than the input instanceI in the sense thatI ′ is obtained fromI by removing
jobs from minimal forbidden sets. For example, ifI is the instance given in Exam-
ple 3, thens = (2, 3, 5, 3) is not linear preselective forI but s is linear preselective
for the instanceI ′ whereF4 = {1, 3, 5} is replaced by the minimal forbidden set
{1, 3}. Second, suppose that we only disregard a minimal forbidden set if we know
that it is implicitly resolved by a waiting condition that does not induce a cycle in the
resulting graph of waiting conditions. This additional test results into a considerable
computational overhead and, if no such waiting job exists, we have to branch over a
minimal forbidden set from that we know that the associated resource conflict will not
occur. This makes no sense from a practical point of view. In fact, for all instances we
considered, the use of the dominance criterion as formulated in Section 5.2 does not
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yield an optimum expected makespan that is smaller than the value obtained without
the dominance rule.

5.4 Linear Preselective Policies via Precedence-Tree Enumeration

Each node in the precedence tree is identified with an initial segmentL of G0. Accord-
ing to the definition of linear preselective policies we construct a (partial) selections
from L by fixing s` := j ∈ F` if j is uniquely determined to be the last element of
F` in every initial segment that is obtained ifL is extended by some jobsV \ L. This
clearly is the case if at least|F`| − 1 jobs fromF` are contained inL.

The dominance criterion is based on the observation that different initial segments
L andL′ may define identical (partial) selectionss. It is then easy to see that, ifL
andL′ are extended by the same job (or by the same ordering of jobs) they still yield
the same (partial) selection̄s. Clearly,s̄ also extendss in the sense that each minimal
forbidden set that has been resolved bys is also resolved bȳs and the corresponding
preselected jobs coincide. We call an orderingL dominatedby some other ordering
L′ 6= L if the policy Π defined byL is dominated by the policyΠ′ defined byL′.
Moreover, denote byi <id j that jobi has a smaller numbering (or identifier) than job
j (we assume without loss of generality that(i, j) ∈ E0 impliesi <id j).

In the sequel we describe a simple transformation rule that constructs for a given
orderingL a lexicographically smaller orderingL′ <lex L such that both orderings
define the same selection. Then, whenever such an orderingL′ exists we removeL
from the search tree because it is dominated byL′. Notice that the effect of cross
pruning does not occur in this case since for each selections the lexicographically
smallest ordering that inducess is not removed. Consider now some jobi in the
orderingL. In order to apply the transformation rule we traverseL backwards until
a predecessorj ∈ Pred(i) or some jobj with j >id i is found. Notice thatj >id i
andj <L i implies thatj 6∈ Pred(i). In the first case we stop the dominance test.
Otherwise, we check for all minimal forbidden setsF` with s` = i whetherF`∩B = ∅.
Here,B is defined as the set of jobsi >L h ≥L j. If this is the case, it is easy to see
that the orderingL′ which is obtained fromL by moving i to the position directly
beforej is lexicographically smaller thanL and yields the same selection. Hence, we
discardL from further consideration.

Lemma 3. Let s be a selection and letL∗ be the lexicographically smallest ordering
which representss. The above transformation rule deletes all orderingsL >lex L∗

from the search tree that yield selections.

Proof. Suppose thatL >lex L∗ is not deleted and letj andi be the jobs at the left-most
position inL andL∗, respectively, withj 6= i. It follows thati <id j, i >L j and that
Pred(i) ∩ B = ∅, whereB is the set of jobsi >L h ≥L j. Moreover, sinceL andL∗

define the same selections there exists no minimal forbidden setF` with s` = i and
F` ∩ B 6= ∅. Consequently, at the point of branching wherei is appended toL, the
transformation rule identifies the orderingL′ which is obtained fromL by movingi to
the position directly beforej. SinceL′ <lex L, L is deleted — a contradiction.

We employ the above result by definingi to be the last job in the currently consid-
ered initial segmentL and the perform the above transformation rule. Moreover, with
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the following additional feature we are able to remove some of the dominated order-
ings already at the branching process. Here,Fj denotes the set of minimal forbidden
setsF with j ∈ F .

Lemma 4. For a given initial segmentL let B denote the set of jobsi that can
be appended toL without violating the precedence constraints (that is,i ∈ B if
Pred(i) ⊆ L). If B contains some jobj such that(F \ {j}) ⊆ L for all F ∈ Fj then
all extensions ofL by one of the jobsi ∈ B \ {j} are dominated.

Loosely speaking, if neither the addition ofj to L nor the addition ofj to some
extension ofL yields a new preselected job in the associated selection then branching
at L is not necessary. It obviously suffices to only consider the branch wherej is
appended toL.

Notice that, if the above described dominance rules are used simultaneously, due
to cross-pruning, we may cut off all optimal solutions. We therefore only use the
following restricted version of Lemma 4. LetL, B, and j ∈ B be as defined in
Lemma 4. Instead of cutting off all extensions ofL by somei ∈ B \ {j}, we only
remove those branches where the jobi which is to be appended toL fulfills i >id j.
Consequently, we never lose the lexicographically smallest of these initial segments.

5.5 Job-Based Priority Policies

Similar to linear preselective policies, for a given orderingL of jobs, we aim at con-
structing another orderingL′ by moving a single jobi to another position such that
L′ dominatesL. Notice that we assume in this section that a given ordering is evalu-
ated according to the algorithm for job-based priority policies as outlined in Section 3.
Sprecher [39] reports on various dominance rules for the case of deterministic pro-
cessing times, however, each of the rules described there requires fixed job processing
times and is thus not applicable in the stochastic case. Instead, we make use of the
following, simple dominance criterion.

Lemma 5. LetL be an ordering of the jobs and leti andj be jobs with the properties
j <L i and Pred(i) ⊆ Pred(j). Denote byL′ the ordering obtained fromL by
movingi directly to the position beforej. Moreover, letB ⊆ {h|h <L i} be the set
of jobs that can run simultaneously toi with respect toL′. ThenL (as a job-based
priority policy) is dominated byL′ if i is contained in no minimal forbidden setF with
F ⊆ B.

Proof. Notice that, sinceL is feasible andPred(i) ⊆ Pred(j) we have thati is not
related to any jobh with i >L h ≥L j. Consequently,L′ respects the precedence
constraints. We show thatS′

h(p) ≤ Sh(p) for all samplesp ∈ R
n
+ and allh ∈ L (S

andS′ denote the schedules resulting fromL andL′, respectively). Forh <L j this
is trivial, sinceS′

h(p) = Sh(p). For i we even obtainS′
i(p) ≤ Sj(p)(≤ Si(p)). This

follows from Pred(i) ⊆ Pred(j) and the fact that there is no forbidden set amongi
and the jobs which are in process at timeSj(p) with respect toL′. By essentially the
same argumentation we have thatS′

h(p) = Sh(p) for all i >L h ≥L j. Finally,
recall that the orderingsL and L′ on the remaining jobsh >L i coincide, hence
S′

h(p) ≤ Sh(p) is also valid for these jobs.
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Recall that the reason why we consider job-based priority policies is to avoid the
handling of exponentially many minimal forbidden sets. Consequently, we lose some
structural information which we can access within the computation of optimum (lin-
ear) preselective policies and ES-polices. In particular, we cannot decide efficiently
whether a given jobi is contained in some minimal forbidden set or not, see Stork and
Uetz [40]. However, it can be answered in polynomial time whetheri is contained in
some forbidden, but not necessarily minimal forbidden set together with the jobs inB
(see Stork and Uetz [40] and M̈ohring [27]). The algorithm involves two maximum
flow computations in an auxiliary network of size O(n + |E0|). We incorporate the
result of Lemma 5 as follows. For each node in the search tree with associated initial
segmentL of some jobs we assume jobi to be the last job inL (notice thatL needs
not contain all jobs ofV ). Jobj is identified by traversingL backwards starting from
i until j fulfills Pred(i) ⊆ Pred(j) (or j ∈ Pred(i) in which case the dominance
test is aborted). To avoid cross pruning, we additionally require thatj >id i. We then
computeB as the set of jobsh <L i without successors in the set{i} ∪ {`|` <L j}.
Since a job cannot be started earlier than the previously scheduled jobs, the jobsL \B
cannot run simultaneously toi with respect toL′. Finally, we test whether there is a
resource conflict betweeni and some of the jobs inB by the algorithm as suggested in
[27]. If no conflict exists,L is discarded, otherwise we stop the dominance test.

6 Improving the Performance

As usual for branch-and-bound procedures we make use of several additional features
in order to speed up the computations. In the sequel we briefly explain how we com-
pute initial upper bounds, several lower bounds, a flexible tree traversal strategy as
well as in which order minimal forbidden sets should be considered for branching.
The computational impact of these ingredients are presented in Section 7.4 below.

6.1 Initial Upper Bound

In order to obtain an initial valid upper bound to start with, we use list scheduling
algorithms applied to ten standard priority rules, such as, e. g.,shortest/longest pro-
cessing time firstandminimum slack. They clearly require fixed processing times; we
have chosen the expected job processing timesE[p]. From the resulting schedules
we choose one scheduleS with minimum makespan and sort the jobs with respect to
non-decreasing start timesSj . From the resulting orderingL of the jobs (which clearly
respects the precedence constraints) we directly obtain a linear preselective and a job-
based priority policy. Their expected makespans are taken as initial upper bounds,
respectively. Moreover, for the preselective approach we use the linear preselective
upper bound as well. Finally, an earliest start policy is constructed by choosing for
each minimal forbidden set a pair(i, j), i, j ∈ F in such a way thati has minimum
completion time inS andj has maximum start time inS. Its expected makespan is
taken as initial bound for ES-policies.
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Figure 5: The figure shows a Gantt chart for each of the four possible samples resulting
from Example 4. The instance itself (precedence constraints, minimal forbidden set)
is depicted in Figure 1.

6.2 Critical Path Lower Bound and Jensen’s Inequality

Since the computation of the critical path lower bound is time consuming in the stochas-
tic case (see Section 4, last paragraph) we additionally employ a variation of this bound
which can be computed much faster. The bound is based on Jensen’s inequality and
is applied before the expensive computation of the critical path lower bound. Then, if
it is greater than or equal to the current global upper bound, the expected critical path
length needs not to be computed.

In the case ofES-policieswe can simply calculate the deterministic critical path
lower bound with respect toE[p] which is a lower bound for each convex cost function,
hence also forCmax. This is immediate with Jensen’s inequality and due to the fact
that the earliest start computation is a convex function of the job processing times.
However, the computation of job start times is not convex for (linear) preselective
policies and job-based priority policies (since jobs can be started at theminimumof
completion times of other jobs). In fact, for a given minimal forbidden setF , the
expected completion time of a preselected job may even be less than the minimum of
the expected start times of the other jobs inF . The following example illustrates this
effect.

Example 4. LetG0 = (V, E0) be given byV := {1, 2, 3, 4, 5} andE := {(1, 4), (3, 5)}
and let the setF = {2, 4, 5} be minimal forbidden. The following processing times
are deterministic:p2 = 0.5, p4 = 1, p5 = 1. The processing times of jobs4 and 6
are independently distributed withPr(p1 = 1) = Pr(p1 = 9) = 1

2 and Pr(p3 =
1) = Pr(p3 = 9) = 1

2 . Furthermore, let job2 be the preselected job in the minimal
forbidden setF .

For the deterministic problem with expected processing times we haveS2(E[p]) =
6 while E[S2] = 4 (see Figure 5). Note that even the expectedcompletiontime
E[C2] = 4.5 is less than the minimum of the expectedstart times of the other jobs in
the minimal forbidden set (E[S4] = E[S5] = 5).

We handle this effect as follows. Whenever a minimum (of random variables) has
to be computed, we make use of the component-wise smallest processing timespmin
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of the set of generated samplesp. As for ES-policies, each convex computation is
bounded by Jensen’s inequality. If we adapt (2) by settingS′

0(p) := 0 and

S′
j(p) := max{ max

(X,j)∈W,
|X|≥2

(min
i∈X

(S′
i(p) + pmin

i )), max
({i},j)∈W

(S′
i(p) + E[pi])}

for all j ∈ V \ {0} we obtain the following lemma.

Lemma 6. S′
j ≤ E[Sj ] for all jobs j ∈ V .

The lemma follows directly from Jensen’s inequality and the monotonicity of pre-
selective policies. As a consequence, ifC ′

j := S′
j +E[pj ], Cmax(C ′) is a lower bound

for E[Cmax(C)] for both preselective and linear preselective policies. By essentially
the same technique we can also derive a lower bound for job-based priority policies.

Finally, notice that different, more sophisticated procedures have been devised in
the literature in order to compute lower and/or upper bounds on the expected makespan
when jobs are only precedence-constrained (PERT-networks). We made experiments
with an adaption of the approach as proposed by Devroye [7] (see also Arnold [1]),
however, the results are of the same order of magnitude as the lower bound based on
Lemma 6. We therefore did not include such bounds into our experiments.

6.3 Single Machine Scheduling Relaxations

Besides the above mentioned critical path based lower bound we employ a well known
lower bound which is based on a single machine relaxation of the original problem.
Variations of this bound are frequently used in deterministic project scheduling, see,
e. g., [26, 39]. Lethj be the random variable of theheadof job j ∈ W , that is, a lower
bound on the expected start timeSj (e. g., the length of a longest chain in the partially
ordered set that is induced by the predecessors ofj in G0). Moreover, lettj denote
the random variable of thetail of job j ∈ W , i. e., the length of a longest chain in the
partially ordered set that is induced by the successors ofj in G0.

Lemma 7. Let W ⊆ V be a subset of jobs that can pairwise not be scheduled in
parallel. Thenminj∈W (E[hj ]) +

∑
j∈W E[pj ] + minj∈W (E[tj ]) is a lower bound

on the expected makespan for all preselective policies.

Proof. Each preselective policy plans the jobs ofW in a fixed order, independently
of the job processing times. Leti and j be the first and the last job in that order,
respectively. Then,E[hi] +

∑
h∈W E[ph] + E[tj ] is a lower bound on the expected

makespan. Sincei andj are unknown we choose the smallest possible values for the
expected start ofi and the tail forj.

Since the bound is valid for preselective policies it also holds for linear preselec-
tive, job-based, and ES-policies. Notice that the bound is not valid for arbitrary poli-
cies. If the order in which the jobs ofW are scheduled is dependent on the processing
times of their predecessors, it is easy to construct a counter example: Consider the jobs
V = {1, 2, 3, 4} with E0 = {(1, 3), (2, 4)}, p3 = p4 = 3, andp1 = p2 ∈ {1, 5} (each
with probability 1

2 ). Suppose the jobsW = {3, 4} form a minimal forbidden set, i. e.,
they must be scheduled sequentially. Then the formula of Lemma 7 yields a “lower
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bound” of9 while the expected makespan of any priority policy is8.5 (for a definition
of priority policies see Section 3).

We have included the following implementation into our experiments. As a prepro-
cessing step we compute different setsW of jobs and their deterministic tail. The sets
are obtained by simple priority-rule heuristics: we start withW = ∅, and consider the
jobs in the order defined by the priorities and add jobj to W if j cannot be processed
simultaneously with any job that has been previously added toW . This takes O(n2)
time per computed set. Then, for each node which is explored in the search tree we
compute a lower bound on the expected start time of the jobs according to Lemma 6.
The resulting single machine instance with heads and tails is fed into an algorithm as
proposed by Carlier [4, Proposition 1]. Carlier’s algorithm uses the fact that for given
setW of jobs, depending on the heads and tails of jobs, a subsetW ′ ⊂ W may result
in a better bound. The algorithm computes the best bound that can be achieved from
any subset ofW by a preemptive relaxation in O(|W | log |W |) time.

6.4 Sorting the Forbidden Sets

In general, an important ingredient of branch-and-bound algorithms is to find an ap-
propriate ordering of the decisions that have to be made. It is of great advantage to
perform those branchings early that lead to a large increase of the overall lower bound,
i. e., the gap between lower and upper bound is reduced as early and as much as possi-
ble. Furthermore, it usually pays off to first perform such branchings where only few
alternatives have to be explored.

The forbidden set branching scheme easily allows to exploit these general ideas:
before starting the full branch-and-bound algorithm we explore for each minimal for-
bidden setF the scenario whereF is selected for the first branching. For each such
scenario we compute the number of branchesb that cannot be discarded because their
lower bound is less than the initial global upper bound. In the full branch-and-bound
algorithm we then resolve the minimal forbidden sets in the order of increasingb. As
a tie-breaker we choose the average increase of the global lower bound taken over all
branches that result from a single scenario. Notice that, if none of the branches can
be pruned by lower bound computation, the minimal forbidden sets are ordered by
increasing cardinality.

6.5 Flexible Search Strategy

As another standard trick for branch-and-bound, we implemented a flexible tree travers-
ing strategy that simultaneously processes a parameter driven number ofDFS-like
paths at a time. In contrast to simple backtracking procedures, such search strategies
usually do not waste too much time in useless parts of the enumeration tree. Moreover,
in order to decide which node is chosen next for branching, we assign a priority to each
of the nodes in the tree. The priority is computed as a combination of the bound on the
expected makespan and the depth of that node in the search tree.
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7 Computational Study

7.1 Computational Setup

Our experiments were conducted on a Sun Ultra 1 with 143 MHz clock pulse operating
under Solaris 2.7. The code has been written in C++ and is compiled with the GNU
g++ compiler version 2.91.66 using the -O3 optimization option. We allowed the
algorithms to maximally use 50 MB of main memory and a time-limit of 1000 seconds.

In total we report on five algorithms, that are, the computation of optimum pre-
selective policies and ES-policies (both forbidden set branching scheme), job-based
priority policies (precedence tree branching scheme), and two variations of linear pres-
elective policies (forbidden set and precedence tree branching scheme). We abbreviate
the five algorithms byPRS-FS, ES-FS, JBP-PT, LIN -FS, andLIN -PT, respectively.

In order to establish a reference setting for the various parameters we have per-
formed different initial experiments. Based on the results of these experiments we
decided to set the parameter defaults as follows. The computation of an initial upper
bound (Section 6.1) as well as the lower bounds described in Sections 6.2 and 6.3 are
switched on. Furthermore we employ the search strategy as described in Section 6.5
by considering threeDFS-like paths at a time. In each of the branch-and-bound al-
gorithms we have enabled the respected dominance rules as described in Section 5.
For the algorithms that are based on the forbidden set branching scheme, we also per-
formed the sorting of forbidden sets as introduced in Section 6.4. The default type of
the distribution of job processing times is a Gamma distribution with a variance of3.
Finally, we generate 200 samples out of the distributions, which turned out to provide
a reasonable tradeoff between the precision of the expected makespan on the one hand
and on the computational effort on the other hand.

Unless we mention explicitly that some parameter is modified we always report on
experiments that are based on the above defined parameter setting. The impact of most
of the parameter settings is documented in detail in Section 7.4 below.

7.2 The Test Sets

We have applied our algorithms to a test set which is created by the widely accepted
instance generator ProGen [25]. The test set contains 480 instances each of which
consists of 20 jobs. Each job requires at most 4 different resources and comes with
an integral deterministic processing time which has been chosen randomly between 1
and 10. The average number of minimal forbidden sets in this test set is roughly 70
(maximum 774).

Equivalently to other, previously created ProGen test sets, the instances have been
generated by modifying three parameters of the instance generator, thenetwork com-
plexity (NC) which reflects the average number of direct successors of a job, the
resource factor(RF ) which describes the average number of resources required in
order to process a job divided by the number of resource types, and theresource
strength(RS), which is a measure of the scarcity of the resources. The parameters
have been chosen out of the setsNC ∈ {1.5, 1.8, 2.1}, RF ∈ {0.25, 0.5, 0.75, 1.0},
andRS ∈ {0.2, 0.5, 0.7, 1.0}, respectively. This leads to 48 combinations and for
each combination we have created 10 instances. For further details on the instance
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Figure 6: The number of optimally solved instances (out of 480 instances with 20 jobs
each) depending on given time-limits. The ordering for the time limit of 1000 seconds
is as follows (from top to bottom):LIN -FS, LIN -PT, ES-FS, PRS-FS, JBP-PT.

generator we refer to [25]. In Section 7.5 we also report on instances with 30 and 60
jobs, respectively. Details on the instances we consider are given in Section 7.5.

We next explain how we generate the probability distributions of the job process-
ing times (which are not created by the ProGen instance generator). We take the given
deterministic processing time of each job as expectation. Then, together with differ-
ent, parameter driven values for the variance we construct uniform and triangle, as
well as approximate normal, Gamma, and exponential distributions. By appropriate
rounding we make sure thatProb(pj < 0) = 0. Finally, the samplesp from p are
generated by standard simulation techniques, where job processing times are assumed
to be independent.

7.3 Comparison of the Procedures

Performance of the different procedures. We start the study by reporting on the
computational expenses that are required by the different algorithms. Figure 6 shows
for each of the five algorithms how many of the 480 instances can be solved opti-
mally for different time limits. The plot shows that, if linear preselective policies are
enumerated by the forbidden set branching scheme, considerably more instances were
solved when compared to the other algorithms. The plot also demonstrates that the
precedence tree enumeration works quite satisfactory for linear preselective policies;
it solved more instances to optimality than preselective policies, ES-policies, and job-
based priority policies for time limits greater than300. It turns out that, for most of the
considered instances,LIN -FS works much faster thanLIN -PT, however, roughly 10%
of the instances can be solved faster by the precedence tree enumeration that by the
forbidden set enumeration. On the shady side we observe that the enumeration of job-
based priority policies is extremely time intensive. Only 161 out of 480 instances were
solved optimally within a time limit of 1000 seconds. The dominance rule as proposed
in Section 5.5 is probably too weak and prunes not enough parts of the search tree. In
fact, the number of nodes that is evaluated fromJBP-PT within the search exceeds the
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Figure 7: Average and maximum percental deviation of the expected makespan from
the deterministic optimum. The figures are based upon 107 instances that were solved
optimally by all algorithms.

number of nodes ofLIN -PT by a factor of3 on average (among 155 instances solved
by both procedures). However, we also observe that there are 12 instances that were
optimally solved withJBP-PT but not withLIN -FS.

Finally, it should be noted that, except forES-FS, the limited memory was not
a critical resource (no experiment had to be aborted). For ES-policies, the allocated
memory has exceeded the limit of 50 MB for 87 instances. The reason probably is that
the number of children created at each branching is O(n2) compared to O(n) for the
other procedures (see Section 4).

Comparison of optimum costs. We next discuss how the different values of the
optimal expected makespan of the considered classes of policies are related to each
other (recall that these values may differ considerably). Figure 7 shows the average
and the maximum of the optimum expected makespan taken over 107 instances that
were solved by all procedures. The values have been scaled such that they represent the
percental deviation from the deterministic optimum makespan (with respect toE[p]).
By definition, preselective policies yield the smallest expected makespan among all
considered classes of policies. However, surprisingly perhaps, the other classes of
policies yield values that are at most 0.5% worse on average (maximal 2.1%). In
particular, preselective policies and linear preselective policies yield exactly the same
optimum costs for all but 4 instances (among the 295 instances that can be solved by
bothPRS-FS andLIN -FS). Furthermore, for our test set, the average optimum value of
job-based priority policies is roughly 0.4% worse on average (maximum 1.8%) when
compared to ES-policies (recall that these classes are incomparable with respect to the
optimum expected makespan).

Notice that Figure 7 also exposes the underestimation error [12] within determin-
istic planning. We see that, on average, the expected makespan is more than 4% larger
than the deterministic makespan (with respect to processing timesE[p]). Even more,
the maximal percental deviation is occasionally greater than 10%.
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dominance on dominance off
Algorithm #inst. opt. ∅ CPU #inst. opt. ∅ CPU
PRS-FS 295 21 235 89
LIN -FS 390 29 348 74
ES-FS 309 9 188 69
LIN -PT 320 2.8 100 162
JBP-PT 161 70 57 394

Table 1: The impact of the dominance rule as described in Section 5. The average
running times are only comparable row by row. Within each row, they are based on the
instances that can be optimized by both variations (dominance on or dominance off).

7.4 Impact of additional ingredients

In this section we test how the dominance rules as well as the various ingredients as
proposed in Section 6 help to reduce the computation times.

Impact of dominance rules. We next consider the impact of the dominance rules on
the performance of the algorithms. Table 1 shows the results for each of the procedures.
In the first column we show the used algorithm, the second and the third column refer
to the results for the standard parameter setting, i. e., the dominance rules are switched
on. The forth and the fifth column document the experiment where no dominance rule
is employed. We see that the dominance rules significantly improve the performance
of the branch-and-bound procedures. In particular, within the precedence tree enumer-
ation (JBP-PT and LIN -PT), the instances that can be solved to optimality when the
dominance rules are switched off is reduced to roughly one third. Hence, although the
dominance rules used inJBP-PT and LIN -PT are not strong enough to compete with
LIN -FS, they cut off quite large portions of the search tree.

Impact of lower bounds. All relevant data concerning the impact of the lower bounds
as described in Section 6 is displayed in Table 2. In the first column we state the used
algorithm, the second and the third column documents the results for the standard pa-
rameter setting, i. e., the single machine bound and the critical path based bound are
enabled. The forth and the fifth column refer to the experiments where the single ma-
chine based bound is disabled. Finally, Columns 6 and 7 document the case where
both the machine-based bound and the critical path based bound is switched off (recall
that the single machine relaxation requires the output of the critical path based bound).
For each variation of the parameters we show the number of solved instances as well
as the average running times in seconds.

The figures indicate that both lower bounds result into improvements with respect
to the number of optimally solved instances as well as the associated computation
times. Notice that, for the single machine relaxation, one cannot expect exceptional
good results on average. The relaxation only considers minimal forbidden sets of
cardinality2, which makes it rather weak for instances with only few such minimal
forbidden sets. However, for instances with many such forbidden sets the bound leads
to a considerable improvement of computation time, sometimes to more than 50%
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std. param. setting machine LB off mach./Jensen LB off
Algorithm #inst. opt. ∅ CPU #inst. opt. ∅ CPU #inst. opt. ∅ CPU
PRS-FS 295 57 291 62 290 73
LIN -FS 390 67 388 69 383 84
ES-FS 309 56 308 59 294 98
LIN -PT 320 90 302 96 297 109
JBP-PT 161 239 161 241 151 268

Table 2: The impact of the lower bounds as described in Section 6. The average
running times are only comparable row by row. Within each row, they are based on the
instances that can be optimized by all variations (all lower bounds on, single machine
lower bound off, both single machine lower bound and the bound based on the Jensen
inequality off).

flexible search depth-first search
Algorithm #inst. opt. ∅ CPU #inst. opt. ∅ CPU
PRS-FS 295 57 277 83
LIN -FS 390 60 372 83
ES-FS 309 69 287 92
LIN -PT 320 83 304 115
JBP-PT 161 151 111 358

Table 3: The impact of the search strategy as described in Section 6. The average
running times are only comparable row by row. Within each row, they are based on
the instances that can be optimized by both variations (flexible search or simple depth
first search).

(21 instances forLIN -PT). The bound that is based on Jensen’s inequality leads to
remarkable improvement for the case ofES-FS. Here, we do not have to make use
of the minimal processing time of jobspmin. Since the lower bound for all other
procedure relies onpmin (recall Section 6.2) its effect on the computation is weaker.
However, computation times are reduced considerably.

Impact of the search strategy. We document the impact of the used strategy to
traverse the search tree in comparison to a classical depth-first search (DFS) procedure.
The results are displayed in Table 3. In the first column we show the used algorithm,
the second and the third column refer to the results for the standard parameter setting,
i. e., the flexible search strategy is employed. The forth and the fifth column document
the case where depth-first search is used. Again, for each variation we state the number
of solved instances as well as the average running times in seconds. In all cases the
number of instances that can be solved optimally is considerably larger if the search
strategy as described in Section 6.5 is employed. Even more, the average computation
time is drastically smaller when compared to the depth-first search traversal.

Impact of stochastic parameters. We next analyze the impact of the stochastic pa-
rameters, that is, the type and the variance of the processing time distributions. Note
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Figure 8: Dependency of the running time (in seconds) on the chosen variance of the
distributions. The figures are based upon 366 instances that were solved optimally for
each variance ({1, 3, 5, 7, 9, 11, 13}) for processing times. The used type of distribu-
tion was the Gamma distribution.

that we only document the results obtained forLIN -FS, since the behavior of each of
the other algorithms is equivalent (with respect to the conclusions we draw). For the
different types of distributions we observe that the performance of the procedures is
not significantly affected. Except for exponential distributions, AlgorithmLIN -FS op-
timizes for all considered types of distributions roughly 390 out of the 480 instances at
an average computation time of 70 seconds per instance. For exponential distributions
the number of instances solved optimally is only 379 and the required computation
time is larger. For the 379 instances the algorithm required 77 seconds on average
while for other distributions only 55 seconds are required (for these instances). This is
probably due to the fact that for strongly varying processing times (which is the case
for exponential distribution, since we used a larger support when compared to the other
types of distributions) the running time increases. Figure 8 displays the dependency
of the running time on the chosen variance of the distribution which shows a consider-
able increase of the computational cost when the variance is increased. However, the
number of instances that can be solved optimally within the time limit of 1000 seconds
only slightly decreases to 376 with a variance of 13.

Impact of the number of samples. The number of samples that are to be consid-
ered is crucial for the performance of the branch-and-bound algorithms, because for a
given node in the search tree we must compute earliest job start times for each sam-
ple. In Figure 9 we show for different numbers of samples the average and maxi-
mum percental deviation of the expected makespan from the deterministic problem
with p = E[p]. For 200 samples – which we have chosen as default – the expected
makespan varies only little when compared to larger sampling sizes. On the other
hand, the running time drastically increases with the number of samples. The average
running times depending on the number of samples is displayed in Figure 10.

Sensitivity of the objective function and truncation. We have performed several
experiments where the branch-and-bound procedures are truncated. That is, for given
α ∈ [0, 1] we remove nodes from the search if the lower bound computed for that node
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Figure 9: Average and maximum percental deviation of the expected makespan from
the deterministic optimum (obtained withLIN -FS). The figures are based upon 344
instances that were solved optimally by all variations of the number of samples (|P | ∈
{20, 50, 100, 200, 500, 1000}).
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Figure 10: Average running times (in seconds) depending on the number of
samples (obtained withLIN -FS). The figures are based upon 344 instances
that were solved optimally by all variations of the number of samples (|P | ∈
{1, 20, 50, 100, 200, 500, 1000}).
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Figure 11: The running time (in seconds) for different values of truncations, av-
eraged over 390 instances that can be “optimized” by all variations of truncation
(α ∈ {1.00, 0.99, 0.98, 0.97, 0.96, 0.95}).
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is larger than or equal toα · ub, whereub denotes the current global upper bound. We
display the results for such truncated variations of the branch-and-bound algorithms in
Figure 11. The data refers to the enumeration of linear preselective policies (LIN -FS).
For different values ofα (1.00, 0.99, 0.98, 0.97, 0.96, 0.95) we display the running
time averaged over the instances that can be “optimized” by all variations ofα. If
we accept an optimality gap of 5% computation times can be reduced to one forth.
Interestingly, there is a notedly large reduction of computation time betweenα = 1
andα = 0.99; it is almost halved when compared to the exact procedure. The reason
is related to the fact that the objective functionexpected makespanis sensitive to minor
(local) modifications of the considered scheduling policy. There are less policies with
the same objective and thus it is likely that more nodes in the search tree have to
be evaluated. The impact of the sensitivity in terms of the number of nodes in the
search tree is demonstrated by the following example. In the example we compare the
objective functionexpected makespanto the deterministic counterpart.

Example 5. Consider Example 1 and assume that all job processing times are inde-
pendently distributed as follows:Pr(pj = 7) = Pr(pj = 13) = 1

2 .

The processing time distributions of the jobs lead to 32 possible samples. Suppose
that the selections = (5, 4, 4) is determined by some constructive heuristic and serves
as an initial upper bound which is20 for the deterministic problem with expected
processing times and22.8125 in the stochastic case. On the other hand, the critical path
lower bound is20 and22.25, respectively. Consequently, branching is not required
in the deterministic case; only the root node of the search tree is explored. In the
stochastic case, however, eight nodes must be evaluated in order to prove optimality of
s.

Sorting the forbidden sets. We finally report on the impact of ordering minimal
forbidden sets within preprocessing (as described in Section 6.4). This preprocessing
step turns out to be an important feature of the forbidden set branching scheme: For
each of the forbidden set based branch-and-bound algorithms we can solve by far
more instances to optimality within shorter running times. ForLIN -FS without this
preprocessing step we solved 295 (out of 480) instances to optimality. This equals a
loss of roughly 25% of optimized instances when compared to the experiment where
sorting of forbidden sets was enabled (there, 390 instances were solved optimally).
Moreover, the average running time required to solve these instances increases by a
factor of roughly 4. The differences for the other algorithms (PRS-FS andES-FS) are
of the same order of magnitude.

7.5 Application to Larger Instances

The experiments performed so far were restricted to instances of small size, i. e., the
number of jobs in each instance was small. In this section we report on results that
were obtained by applying each of the branch-and-bound algorithms to test sets of
instances with 30 and 60 jobs, respectively. The test sets have been taken from the
PSPLIB [36] and were created by ProGen [25] (like the test set with 20 jobs that we
used in the previous sections). The parameter setting for generating the instances is
exactly as prescribed in Section 7.2, hence, in total, there are480 instances with30
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Algorithm #jobs pre-process memory limit time limit optimized
PRS-FS 30 0 0 338 142
LIN -FS 30 0 0 301 179
ES-FS 30 0 50 307 123
LIN -PT 30 0 0 379 101
JBP-PT 30 0 0 478 2
PRS-FS 60 71 127 280 2
LIN -FS 60 71 82 316 11
ES-FS 60 71 230 177 2
LIN -PT 60 77 2 394 7
JBP-PT 60 0 0 480 0

Table 4: Results of the algorithms applied to 480 instances with 30 and 60 jobs, re-
spectively. The figures show the number of instances that had to be aborted due to
the memory limit within preprocessing (Column 2), memory and time limit within the
branch-and-bound (Columns 3 and 4), and the number of optimally solved instances
(Column 5). We restricted the running time to 100 seconds and the memory limit to
50 MB per instance.

jobs and480 instances with60 jobs. In addition to the instances of the PSPLIB, we
applied the branch-and-bound algorithms to an instance taken from [15]. For deter-
ministic processing times the instances with 30 jobs can be solved to optimality by
tailored branch-and-bound procedures [6, 39, 8], however, for instances with 60 jobs,
even these procedures often fail to compute optimal solutions within acceptable com-
putation time.

For each of the experiments presented next we restricted the computation time to a
maximum of 100 seconds per instance. The results for the test sets of the PSPLIB [36]
are displayed in Table 4. The second column gives the number of instances where the
size of the initial data (the instance, the minimal forbidden sets and some additional
data that is created within preprocessing) exceeded the limit of 50MB. The figures in
Columns 3 and 4 display the number of instances where the branch-and-bound was
aborted due to the memory and time limit, respectively. The fifth column finally gives
the number of instances that were solved to optimality. For instances with 30 jobs,
although the number of minimal forbidden sets is considerably larger when compared
to the instances with 20 jobs (326 on average, 4411 maximum), for each of the 480
instances a feasible solution was found.LIN -FS solved 179 out of 480 instances to
optimality, which are considerably more instances when compared to the other branch-
and-bound algorithms. Moreover, on average over all 480 instances,LIN -FS produced
the best feasible solutions, which are even slightly better than the solutions obtained
from the preselective algorithm (recall that, contrarily, for the optimum values we have
ρPRS ≤ ρLIN ). For the test set with 60 jobs per instance, we see that almost none of
the instances was solved to optimality. EvenLIN -FS can verify optimality for only
11 instances. The reason is that due to the very many minimal forbidden sets (often
more than 20,000) all algorithms except forJBP-PT can evaluate only few nodes of the
search tree. In particular, for110 instances with more than 20,000 minimal forbidden
sets each, the average number of nodes that are evaluated within a second is16 for
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LIN -FS. For instances with less than20, 000 minimal forbidden sets (299), 38 nodes
are evaluated per second (note that these figures are based on 200 samples).JBP-
PT evaluates roughly28 nodes per second, independently of the number of minimal
forbidden sets. Consequently, for instances with many minimal forbidden sets the
improvement of the expected makespan is negligible when compared to the initial
upper bound. Contrarily,JBP-PT improves the initial upper bound by roughly2.5% on
average (13% maximum).

Finally, in addition to the above instances, we considered a project with36 jobs
taken from [15]. In contrast to the instances of the PSPLIB, this instance already in-
cludes information of random job processing times, that is, for each jobj, a minimum
and maximum processing timepmin

j andpmax
j is given. We then assume that each

processing time is uniformly distributed. The uniform distribution was also consid-
ered in [15]. The instance contains 3730 minimal forbidden sets. Moreover, assuming
fixed job processing timespj = (pmin

j + pmax
j )/2, a deterministic upper bound of 419

was computed by the algorithmJBP-PT. Golenko and Gonik [15] compute a feasible
solution for that instance with expected makespan 448 (we rounded all reported val-
ues appropriately). At each job completion timet, their algorithm first computes for
each jobj that is not yet scheduled the probabilityqj thatj is on a critical path when
all resource conflicts after timet are neglected. Theqj are approximated by simula-
tion. Next, among all jobsB that are precedence-feasible att, a subsetB′ ⊆ B of
jobs is started att with the property that

∑
j∈B′ rjk ≤ Rk for all k and

∑
j∈B′ qj is

maximized. Notice that, for|K| = 1, this is a{0, 1}-Knapsack problem, hence, to
obtain the above solution, Golenko and Gonik solved an NP-hard problem at each job
completion. They also suggest to heuristically compute the setB′ which resulted in a
solution of (rounded) 461. They do not report on running times of the heuristics. In
fact, already the starting solutions of our algorithms (see Section 6.1) are of compara-
ble quality; in particular, the initial job-based priority policy has an expected makespan
of (rounded) 445 (computation time is negligible). Moreover,JBP-PT constructs a so-
lution with an expected makespan of (rounded) 434 in less than 40 seconds. However,
the other algorithms were not able to improve their initial solution within a time limit
of 100 seconds.

To conclude this section, althoughJBP-PT behaved poorly for verifying optimality,
for the considered instances, the algorithm works quite reasonable to compute feasible
solutions of good quality.

8 Concluding Remarks

We have presented a computational evaluation of different branch-and-bound proce-
dures for computing optimal scheduling polices for stochastic resource-constrained
project scheduling problems. The experiments clearly demonstrate that linear prese-
lective polices are much better computationally tractable than preselective policies and
ES-polices. For projects that involve a moderate number of minimal forbidden sets it is
possible to compute (near) optimal linear preselective policies with truncated versions
of the branch-and-bound algorithm based on the forbidden set branching scheme. If
a large number of minimal forbidden sets prevents the use of this approach the only
remaining alternative (among the classes of policies considered in the paper) is to
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perform the project according to a job-based priority policy. We have demonstrated
that the optimum makespan among this class of policies is only slightly larger when
compared to optimum makespan within the class of preselective policies. Hence, job-
based priority policies are a good choice for local search heuristics which will be part
of future research.

Acknowledgment. The author is grateful to Karin Hecht who has implemented parts
of the code.
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