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Abstract. We present two different approaches to minimize total delay in signal-
ized fixed-time controlled inner city traffic networks. Firstly, we develop a time
discrete model where all calculations are done pathwise and vehicles move on “time
trajectories” on their routes. Secondly, an idea by Gartner, Little, and Gabbay

(GLG) is extended to a continuous, linkwise operating model using “Link Per-
formance Functions” to determine delays. Both models are formulated as mixed-
integer linear programs and are compared and evaluated by PTV AG’s simulation
tool VISSIM 3.70.

1 Introduction

Controlling the inner city traffic by a “good” setting of relevant traffic light
parameters is an appropriate way of reducing congestions in networks and
delays in general, respectively. We consider a scenario of dense but almost
steady traffic, which appears for example in periods of morning peaks of rush
hour traffic. In such cases often fixed-time controlling is used since vehicle
actuated or adaptive controlling cannot accentuate their advantages, which
lie in the ability of adjusting to different traffic situations. Before we start
describing the two optimization models, we review some notation used in
traffic engineering.

First of all, we consider networks where there is a light-signal system at
each intersection, including various single traffic lights some of which are
combined into so-called signal groups. Each of these signal groups controls
traffic throughput of a different direction, for example inbound, outbound, or
turning traffic. For each signal group there is a signal timing plan determining
the beginning and ending of the green- and red phase, the so called red-green

split. After a predetermined amount of time, the cycle time, patterns of red
and green recur. The most important parameter is the so called offset, which
describes how light-signal systems of different intersections, or their signal
timing plans respectively, are set relative to a given zero-point (Sec. 2) or are
set relative to each other (Sec. 3). For both approaches cycle time, red-green
split, and the vehicles’ travel time on the links are fixed and the offset acts
as decision variable.
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2 A discrete path-based approach

Since in this first approach all delay analysis is done pathwise, we refer to the
model as path-based model and restrict ourselves in the following to a single
path. The model’s main characteristic is its discrete structure, see Fig. 1. The
cycle time is divided into T trajectories. For example, let T = 40; then at the
beginning of each route each trajectory carries 0.555 cars per unit of time in
case of an assumed traffic volume of 1000 vehicles per hour and a cycle time
of 80 seconds. Below, we identify the cycle time with the parameter T and
establish a partition into one trajectory per second of cycle time, which will
be T = 80 for all quoted examples.

For a further development of the model it is necessary to introduce the
following parameters: the set of all paths in the network is denoted by P
and the edge set1 of a path P ∈ P is given by E(P ) = {eP

1 , · · · , eP
αP

} where
αP is the number of edges of P . The set of intersections, i.e. the set of
different traffic-signal systems, is denoted by K, whereas R(K) is the set of
the signal groups corresponding to intersection K. Canonically, the parameter
τ(e) stands for the integral travel time needed to traverse edge e ∈ E(P ) of
path P ∈ P . We will formulate the problem as a MIP and use the following
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Fig. 1. Consecutive traffic signals of a particular path. At the beginning of each
path each of the trajectories leads the same amount of vehicles.

variables: first, we have binary offset variables h, which are defined for each
intersection and each point in time {1, . . . , T}. For a K ∈ K only one variable
h[K, t] equals 1. The t0 with h[K, t0] = 1 corresponds to the offset value
at intersection K. A second group of binary variables indicates whether a
certain point of time t ∈ {1, . . . , T} at intersection K ∈ K and signal group
R ∈ R(K) belongs to a green phase or not. These variables are denoted by

1 We refer to links as edges although we do not actually use an underlying graph
structure.
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z. So, z[K, R, t] = 1 indicates a red phase and z[K, R, t] = 0 a green phase,
respectively. The variables h and z are connected via

∑

i∈l[K,R,t]

h[K, i] = z[K, R, t] ∀K ∈ K, ∀R ∈ R(K), ∀t ∈ T, (1)

where l[K, R, t] is a preprocessed list of numbers in {1, . . . , T} such that t

belongs to a red phase at intersection K and signal group R iff the offset at
K is an element of l[K, R, t].

As mentioned above, vehicles move on trajectories on their routes. Each
trajectory leads to a certain point of time at an intersection and depending on
the traffic light cars on that trajectories can pass the intersection or have to
wait because of a red signal. For both cases (a red or a green signal) outgoing
trajectories are provided, always one of which is blocked by a constraint and
vehicles have to follow “their right” trajectory, as a result. See Fig. 1. The
variables xr and xg measure the amount of vehicles following those red edges

and green edges. Such blocking is realized by

xg [P, e, t] ≤ M · (1− z[K(P,e), R(P,e), t]) ∀P ∈ P , ∀e ∈ E(P )\{eP
1 }, ∀t ∈ T

(2)
and

xr[P, e, t] ≤ M ·z[K(P,e), R(P,e), t] ∀P ∈ P , ∀e ∈ E(P )\{eP
1 }, ∀t ∈ T, (3)

where M denotes a big constant and K(P,e), R(P,e) the obvious dependences.
Of course, the approach of traffic flow on trajectories only works, if the cars
are “forced” to stay on the trajectories and do not get lost. This is ensured
by the following flow conservation equation

xg [P, e + 1, t] + xr[P, e + 1, t] = xg [P, e, t − τ(e)] (4)

+ xr[P, e, t − τ(e) −WT(P, e)] ∀P, t, ∀e ∈ E(P )\{eP
1 , eP

αP
}.

The waiting time, which has to be constant and integral, is denoted by the
parameter WT and calculated with Webster’s classical formula [3].

2.1 The MIP formulation

Together with an equation ensuring that only one offset is adjusted and an
equation corresponding to an initial flow conservation, constraints (1)-(4) now
form our mixed-integer linear program. This MIP models our optimization
problem well, however, it has to be mentioned that the model’s size, namely
the large amount of integral variables, leads to large computation times.
For example, a computation time of more than 9 hours2 is needed for a 9-
intersection test network and a discretization of the cycle time into 80 units.

2 on a 1.7GHz Linux computer with 512MB memory
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Note that for the objective, only vehicles on red edges must be taken into
account.

minimize
∑

P∈P

αP∑

j=2

∑

t∈T

WZ[K(P,eP
j−1

), R(P,eP
j−1

)] · xr[P, eP
j , t]

∑

t∈T

h[K, t] = 1 ∀K ∈ K, (5)

∑

i∈l[K,R,t]

h[K, i] = z[K, R, t] (6)

∀K ∈ K, ∀R ∈ R(K), ∀t ∈ T,

xg [P, e, t] ≤ M · (1 − z[K(P,e), R(P,e), t]) (7)

∀P ∈ P , ∀e ∈ E(P )\{eP
1 }, ∀t ∈ T,

xr[P, e, t] ≤ M · z[K(P,e), R(P,e), t] (8)

∀P ∈ P , ∀e ∈ E(P )\{eP
1 }, ∀t ∈ T,

xg [P, eP
2 , t] + xr[P, eP

2 , t] = flowrate[P ] (9)

∀P ∈ P , ∀t ∈ T,

xg [P, eP
j+1, t] + xr[P, eP

j+1, t] =

xg [P, eP
j , t − τ(eP

j )] + xr[P, eP
j , t − τ(eP

j ) −WT(P, eP
j )] (10)

∀P ∈ P , ∀t ∈ T, j = 2 · · ·αP ,

h, z ∈ {0, 1},

xg , xr ≥ 0.

3 A continuous model

This second model is based on an approach by Gartner, Little, and Gab-

bay (GLG)[1]. In 1975 they formulated a “Network Coordination Problem”
(NCP) where cycle time and red-green split are fixed and total waiting time
is to be minimized by finding optimal offsets. Later, they included cycle time
and red-green split to the set of variables and formulated a “Network Syn-
chronization Problem” [2]. We extend their NCP model in a canonical way
and introduce some adjustments in the objective function.

Again, some parameters have to be introduced first: The cycle time is
again denoted by T (in our examples it is set to 80 seconds). The traffic
network is represented by a directed multi-graph G = (V, A), where the nodes
v ∈ V are the intersections and the edges e ∈ E stand for the traffic carrying
streets/links between intersections. Thus one can see that the graph has to
be directed, since traffic may move in both directions of a link. Moreover
there maybe more than one copy of an arc because we have to distinguish
between different vehicle flows of a link according to which signal group they
come from and go to. The set of all cycles in G will be denoted by C and for
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a single ` ∈ C the set of forward edges is F (l) and the set of reverse edges is
R(l), whereas a cycle is traversed clockwise.
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Fig. 2. The left side shows a sketch of a signal timing plan with three signal groups.
The parameter Ψ describes the adjustment of the beginning of the green phases of
the different signal groups. Of course, it holds that ΨAA = 0 and ΨAB = 1 − ΨBA.
The right side illustrates the traffic flow in a platoon at one link. Because this
structure allows linkwise definitions of e.g. the offset, all calculations and waiting
time analysis is done linkwise. Note that the platoon length p does not necessarily
equal the length of its green phase.

As already mentioned, there are two main characteristics of the model.
Firstly, it is assumed that vehicles move in platoons with a constant rate of
flow within. Secondly, this approach does not use any discretization but the
parameters and variables can take continuous values. The arrival time of the
platoon is denoted by γ and has to be within the interval [−r, g]. So, the
offset φ is defined as the distance (in time) between the platoon’s starting
and the beginning of the green phase that defines the relevant interval for
the platoon’s γ. For example, in Fig. 2, γ is negative. Because of the linear
dependency φ = τ−γ one can use the arrival time γ as well as φ for calculating
the delays.

Now, all necessary parameters and variables have been introduced. The
big advantage of this “link-based” approach is its compactness. Only one
group of constraints has to be formulated, namely the so called cycle-equations

∑

e∈F (`)

φe −
∑

e∈R(`)

φe +

k∑̀

r=1

Ψ
v`

r

P [r,e`
r−1

],P [r,e`
r]

= n`T ∀` ∈ C.

The parameter P [·, ·] indicates the particular signal groups. These equations
are essential, since all calculations shall be done modulo the cycle time, be-
cause all cycles shall be regarded as equal3. Therefore a particular point of
time during one circulation of the cycle has to correspond to the same point
of time in all cycles. For this reason, the sum of all offsets around a cycle4 in
the graph must be an integral multiple of T .

3 Therefore traffic load values are fixed over all cycles.
4 A cycle may also consist of only a pair of edges!
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Fig. 3. A sketch of the arising waiting queues of a platoon arriving at approx.
γ = −r/2. Note the break in the curve due to different service rates, first s− q and
after the platoon’s tail s. The curve on the right represents the Link Performance
Function of platoon’s arrival time γ.

Now, the only open question is how to calculate delays. This is done
using the arrival time γ. This is, however, quadratically related to the waiting
time. To obtain a linear model each link’s delay function is evaluated at some
intermediate points and then approximated by a piecewise linear function,
see Fig. 3. The choice of such intermediate points determines the shape of the
link’s delay function. At this point, we significantly simplified the Gartner,

Little, and Gabbay method by ensuring the convexity of the curve. This
is important for the following reason. Suppose the curve is not convex, the
inequalities z ≥ g1,2,...(γ) where g denotes the approximation lines, do not
force waiting time z to be equal to an actual waiting time. But instead the
variable z probably takes too high values.

3.1 The MIP formulation

Also this model is represented as a mixed-integer linear program.

minimize
∑

(i,j)∈A

fijzij

∑

e∈F (`)

φe −
∑

e∈R(`)

φe +

k∑̀

r=1

Ψ
v`

r

P [r,e`
r−1

],P [r,e`
r]

= n`T ∀` ∈ C,

zij ≥ ge
r(τij − φij) ∀e = (i, j) ∈ A,

r = 1 . . . ke,

n` ≤ n` ≤ n` ∀` ∈ C,

n` ∈



∀` ∈ C,

φij ∈ [τij − gij , τij + rij ],

∀(i, j) ∈ A.
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One can see immediately the compact formulation compared to the first
model. This also leads to faster computation times. E.g. a test network of
25 intersections could be optimally solved in about 5 seconds.

In addition to improvements within the links’ delay functions we also
extended the GLG approach such that we distinguish traffic flow on one
edge not only according to its direction but also according to its origin’s and
destination’s signal group. To this end, we simply allocate multiple link copies
and analyze them separately. This only needs a few more cycle equalities and
therefore some more integral variables, but it admits to consider a more
complex traffic flow. Note that adding good lower and upper bounds on the
integral variable n may lead to better computation times.

4 Simulation using VISSIM 3.70

Both optimization models have been tested and validated with PTV’s simu-
lation tool VISSIM 3.70. It provides microscopic traffic flow simulation and
various analysis tools. One of them, the so called lost time corresponds best
to our criteria waiting time.

In addition to test runs on simple instances, such as arterials or 2 × 2
grid networks, we constructed a 3 × 3 as well as a 4 × 4 grid network and
defined 14 respectively 19 routes on which motorized individual traffic moves.
In detail we have 12(16) routes of traffic following the grid on straight paths
without any turns, divided into 6(8) “horizontal paths” and 6(8) vertical
traffic streams. In addition, we added 2 non-conventional paths to the 3 × 3
grid that include right-turn traffic and 3 paths to the 4 × 4 grid containing
left-turn traffic.

Results of simulation runs for both of these instances are listed in the
tables below. They are compared to the results of a heuristic that sets a
progressive signal system to some of the paths. In this way, lost time is
minimized for 43% of all cars in the 3× 3 grid and for 46% of the vehicles in
the larger grid, respectively.

Table 1. Comparison between lost time measurements for the 3 × 3 grid’s traffic
with VISSIM 3.70, using the offsets of both approaches and a heuristic. The discrete
model is denoted by A, whereas B stands for the continuous approach.

Model Solution Lost time Rate of improvement

in sec/veh in %

A non opt. 21.2 29.3%

B opt. 23.4 22%

heuristic 30.0 -

random 32.5 -8.3%
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As it can be seen in the tables only suboptimal offsets could be used for
evaluating the path-based model, since its size did not permit to calculate an
optimal solution within a reasonable amount of time, which was a few hours.

Table 2. Same measurements as listed in Table 1 but for the 4 × 4 grid instance.

Model Solution Lost time Rate of improvement

in sec/veh in %

A non opt. 42.6 1.8%

B opt. 39.7 8.5%

B∗ a opt. 38.8 10.6%

heuristic 43.4 -

random 55.9 -28.8%

a Model with small changes at the LPFs, namely different interpolation points.

Table 2 also contains average simulation results for 11 randomly chosen
offset sets. Although a more realistic comparison to results of, say, actual
offsets of an actual traffic network are missing, it can be seen that both
models calculate better offsets than the heuristic. We consider this to be a
promising start and we will extend and advance both models as well as design
further non-grid real world instances and compare results of our models with
results of the actual adjusted offset set.
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