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Abstract 

We consider the following problem called transitive ordering with pre- 

cedence constraints (TOP): Given a partial order P=(V,<) and an (undi- 
rected) graph G=(V,E) such that all relations in P are represented by 
edges in G. Is there a transitive orientation D=(V,A) of G, such that P is 

contained in D? This problem arises naturally in the context of scheduling, 

where P describes a set of precedence constraints, and the graph G is the 

(temporal) comparability graph of jobs. Korte and Méhring (1985) have 
given a linear-time algorithm for deciding TOP. However, their approach 

is only useful when the full set of edges in G is known. When running a 

branch-and-bound algorithm for solving a scheduling problem, these edges 

are only known partially, but they may already prohibit the existence of a 

feasible solution. We give a pair of necessary and sufficient conditions on 

graphs G in terms of forbidden substructures. Thus, our conditions can 

be used quite effectively in the context of a branch-and-bound framework. 

1 Introduction 

Multi-dimensional packing and scheduling problems occur in many practical 

contexts; see [1, 2] for overviews. Even the one-dimensional versions of these 
problems are NP-hard in the strong sense; additional difficulties in multi-dimen- 

sional scenarios prohibit the straightforward formulation as integer programs of 

tractable size. This requires the development of additional mathematical tools. 

Fekete and Schepers [4, 5, 6] have developed a branch-and-bound scheme for 

solving these kinds of problems, based on a graph-theoretic characterization of 

feasible solutions. 

When dealing with precedence constraints of one- or multi-dimensional sche- 

duling problems, we encounter the following natural order-theoretic problem, 

called transitive ordering with precedence constraints (TOP): 
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Consider a partial order P = (V,~<) and a comparability graph G = (V,E), 

such that all relations in P are represented by edges in G. Is there a transitive 

orientation D = (V,A) of G, such that P is contained in D? 

Korte and Moéhring [9] have given a linear-time algorithm for deciding TOP. 
However, their approach can only be used when the full set of edges in G is 

known. When running a branch-and-bound algorithm for solving a packing or 

scheduling problem, these edges of G are only known partially, but they may 

already prohibit the existence of a feasible solution for a given partial order P. 

This makes it desirable to come up with structural characterizations that are 

already useful when only parts of G are known. 

In this paper, we give a pair of necessary and sufficient conditions for the 

existence of a solution for the problem TOP on graphs G in terms of forbidden 

substructures. Using the concept of packing classes developed in [4], this char- 

acterization can be used quite effectively in the context of a branch-and-bound 

framework, because it can recognize infeasible subtrees at “high” branches of 

the search tree, where only some of the edges of G are known. The useful- 

ness of these concepts and results has been validated by implementation and 

computational experiments [2, 3]. 

2 Motivation: Multi-Dimensional Packing with 

Precedence Constraints 

When considering a feasible packing of d-dimensional boxes into a container, we 

can describe it by a set of d interval graphs, which arise by projecting the packing 

onto the d coordinate axes. See Figure 1 for the underlying idea. In [4] a set of 
easy combinatorial necessary and sufficient conditions is given for characterizing 

when a set of graphs G; corresponds to a feasible packing. They also showed 

that this leads to useful results in practice by using the following enumeration 

scheme: 

For each coordinate, consider a comparability graph G; and construct its 

edge set; the complement will be the interval graph G; describing the overlap 

of projections. This means that we have three basic states for any edge: 

(1) edges that have been fixed to be in Ej, i.e., “non-edges”; 

(2) edges that have been fixed to be in Ej, i.e., “edges”; 

(3) edges that have not yet been assigned to F; or Ej, i.e., “unassigned edges”. 

For more technical details, see [4, 5, 6], and [11] for a practical application 

in the context of technical computer science. 

Now consider a situation where we need to satisfy a partial order P = (V, <) 

of precedence constraints (e.g., in the time dimension), and let Ap = {(u,w) | 
u < w in P} be the set of directed arcs describing P. It follows that each arc 
a = (u,w) € Ap in this partial order forces the corresponding undirected edge
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Figure 1: (a) A pair of interval graphs, characterizing overlap in the coordinate 

projections. (b) The complements are the corresponding comparability graphs. 

(c) A transitive orientation, describing the relative positioning in the two direc- 

tions. (d) A feasible packing corresponding to the orientation. 

e = {u,w} to be included in the corresponding comparability graph. Thus, we 

can simply initialize our algorithm for constructing packing classes by fixing all 

undirected edges corresponding to Ap to be contained in &. After running the 

original algorithm, we may get additional comparability edges. As the example 

in Figure 2 shows, this causes an additional problem: Even if we know that the 

graph G has a transitive orientation, and all arcs a = (u,w) of the precedence 

order (V, Ap) are contained in E as e = {u,wh}, it is not clear that there is a 
transitive orientation that contains all arcs of Ap. 
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Figure 2: A comparability graph G = (V, E) with a partial order P contained in 

E, such that there is no transitive orientation of G that extends P. 

In order to deal with precedence constraints, we also consider orientations of 

the comparability edges. This means that during the course of our tree search, 

we can have three different possible states for any edge e = {u, w} € E: 

(2a) e has orientation (u, w); 

(2b) e has orientation (w, u); 

(2c) e has no assigned orientation.



The main contribution of this paper is to establish a pair of necessary and 

sufficient conditions based on small critical subconfigurations of edges. This 
provides the mathematical basis for a safe and relatively efficient approach for 

solving constrained multi-dimensional packing and scheduling problems to op- 

timality. 

3 Implication Classes and Modular Decomposi- 

tion 

3.1 Implication Classes 

Our characterization arises from considering the following two configurations— 
see Figure 3: 
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Figure 3: Implications for edges and their orientations: Above are path im- 

plications (D1, left) and transitivity implications (D2, right); below the forced 
orientations of edges. 

The first configuration consists of two edges {v1, v2}, {v2,u3} € E, such 
that the third edge {v1,v3} has been fixed to be an non-edge of G. Now any 

orientation of one of the two edges of G forces the orientation of the other edge 

of G, as shown in the left part of the figure. Since this configuration corresponds 

to an induced path in G, we call this arrangement a path implication. 

The second configuration consists of two directed edges (v1, V2), (v2, 03) € E. 
In this case we know that the edge {v1, v3} must also be an edge of G, with the 
orientation (v1, v3). Since this configuration arises directly from transitivity in 

G, we call this arrangement a transitivity implication. 

Clearly, any implication arising from one of the above configurations can 
induce further implications. 

In particular, when considering sequences of only path implications, we get 

a partition of the edges of G into path implication classes: Two edges are in the 

same implication class, iff there is a sequence of path implications, such that 

orienting one edge forces the orientation of the other edge. For an example,



consider the arrangement in Figure 2. Here, all three edges {v1, v2}, {v2, v3}, 
and {v3,v4} are in the same path implication class. Now the orientation of 

(v1, V2) implies the orientation (v3, v2), which in turn implies the orientation 
(v3,v4), contradicting the orientation of {vs,v4} in the given partial order P. 
It is not hard to see that the implication classes form a partition of the edges, 

since we are dealing with an equivalence relation. In the following, we refer to 

path implication classes when we speak of implication classes. A violation of a 

path implication is called a path conflict. 

As the example in Figure 4 shows, only excluding path conflicts when recur- 

sively carrying out path implications does not suffice to guarantee the existence 

of a feasible orientation: Working through the queue of path implications, we 

end up with a directed cycle, which violates a transitivity implication. 
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Figure 4: (a) A graph G with a partial order formed by three directed edges; 

(b) there are three path implication classes that each have one directed arc; (c) 
carrying out path implications creates directed cycles, i.e., transitivity conflicts. 

We call a violation of a transitivity implication a transitivity conflict. 

Summarizing, we have the following necessary conditions for the existence 

of a transitive orientation that extends a given partial order P: 

D1: Any path implication can be carried out without a conflict. 

D2: Any transitivity implication can be carried out without a conflict. 

As we will see later, these necessary conditions are also sufficient. For proving 

this result we need another tool: the modular decomposition of a graph. 

3.2. Modular Decomposition 

The concept of modular decomposition of a graph was first introduced by Gallai 

[7] for studying comparability graphs. This powerful decomposition scheme has 

a variety of applications in algorithmic graph theory—for further material on 

this concept and its application the interested reader is referred to [8, 10]. 

A module of a graph G = (V, EF) is a vertex set M C V such that each vertex 
v € V\M is either adjacent to all vertices or to no vertex of M in G. (Intuitively



speaking, all vertices of a module “look the same” to the other vertices of the 

graph.) A module is called trivial if |M| < lor M = V. A graph G is 

called prime if it contains only trivial modules. Using the concept of modules 

one can define a decomposition scheme for general graphs by decomposing it 

recursively into subsets, each of which is a module of G, stopping when all sets 

are singletons. 

For an example, refer to Figure 6. Four modules of the shown graph G 

are the M, = {0,1,2,3,4,5,6,7,8,9}, Mo = {20}, Mz; = {10,11}, My, = 

{12, 13,14, 15, 16, 17, 18,19}; M, is a trivial module. 

  

  

Figure 5: A graph G. 

Gallai [7] showed that each graph G has a decomposition (the so-called 
canonical decomposition) of its vertex set into a set of modules with a variety of 

nice properties. He observed that each graph G is either of parallel type, i.e., G is 

not connected and its canonical decomposition is defined by its set of connected 

components; or G is of series type, i.e., G is not connected. In the latter case 

the canonical decomposition is given by the connected components of G. If 

both G and G are connected, then G is said to be of prime type. In this case 

the canonical decomposition of G is given by decomposing G into its maximal 

proper submodules. Gallai also showed that this decomposition is unique. 

This recursive decomposition defines a decomposition tree T(G) for a given 

graph G in a very natural way: Create a root vertex for the trivial module of



G itself. Label it series, parallel, or prime, depending on the type of G as a 

module. For each non-singleton module of the canonical decomposition of G 

create a tree vertex, labeled as series, parallel, or prime type node, depending 

on the type of the module, and make it a child of the vertex corresponding to 

G; for each singleton module add a tree-vertex labeled with the corresponding 

singleton. Now proceed recursively for each subgraph corresponding to a non- 

trivial module in the decomposition tree until all leaves of the tree are labeled 

with singletons. Consequently, the leafs of the tree correspond to the vertices 

of the graph, while the internal vertices all correspond to non-trivial modules 

of the canonical decomposition of the corresponding parent vertex in T(G). See 

Figure 6 for the decomposition tree of our example. 
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Figure 6: A modular decomposition tree for the graph G shown in Figure 5. 
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The decomposition graph G# of a graph G is the quotient of G by the 

canonical decomposition into the set of modules {A1,...,A,}, ie, V(G*) = 

{Ai,...,Aq}, and distinct vertices A; and A; are joined by an edge in G* iff 

there is an A;A,-edge in G. In the following we will look at the decomposi- 

tion graphs corresponding to internal vertices of T(G) and refer to them as the 

decomposition graphs of T. 

In our example, the decomposition graph G¥ of G is given by 

GF = ({M, M2, M3, M4}, {{M1, Mo}, {Mp, Ms}, {Ms, My}}). 

An important property of the modular decomposition is its close relationship 

to the concept of implication classes. Gallai observed the following properties 

of implication classes with respect to the modular decomposition:



Observation 1 (Gallai) 
1) If G is not connected and G),...,Gq (q > 2) are the components of G, then 

the implication classes of G,...,Gq are exactly the implication classes of 

G. 

2) If G is not connected (so that G is connected), Gi,...,G@q (q > 2) are the 
components of G, and A; = V(G;), then A; and A; are completely connected 

to each other whenever 1 <i < j <q. Moreover, for all such i and j, the set 

of A;Aj-edges form an implication class E;; of G. The implication classes of 

G that are distinct from any Ej; are exactly the implication classes of the 
graphs G; = G[Aj] (i = 1,...,¢). 

3) If G and G are both connected and have more than one vertex, and the 

canonical decomposition of G is given by {A1,..., Aq}, then we have 

a) If there is one edge between A; and A; (1 <i <j <q), then A; and A; 

are completely joined. 

b) The set of all edges of G that join different A;’s forms a single implication 

class C of G. Every vertex of G is incident with some edge of C, (i.e., 

V(C) =V(G)). 
c) The implication classes of G that are distinct from C are exactly the 

implication classes of the graphs G; = G[A;] (1 <i <q). 

This strong relationship between implication classes and the modules in the 

canonical decomposition of a given graph turns out to be a powerful tool for 

studying graphs having a transitive orientation. Note that the fastest known 

algorithms for recognizing comparability graphs and also permutation graphs 

also make extensively use of this relationship. Gallai used the above properties 

(among others) for proving the following theorem. 

Theorem 2 (Gallai) 
Let G be a non-empty graph, let T = T(G) be the tree decomposition of G, and 

let H be a vertex set corresponding to a node of T. 

1) If G is transitively oriented, and A and B are successors of H in T, then every 

A, B-edge of G is oriented in the same direction (to or from A). Therefore, 

H*® receives an induced transitive orientation. 

2) Conversely, assuming that H* is transitively orientable for each H € T, 

one can choose an arbitrary transitive orientation of each H# and induce a 

transitive orientation of G by orienting all A, B-edges (for A and B successors 
of H in T) in the same direction that {A, B} is oriented in H*. 

From this theorem it is straightforward to draw the following helpful corol- 
laries: 

Corollary 3 

A graph G is a comparability graph if and only if every decomposition graph in 

the tree decomposition of G is a comparability graph.



Corollary 4 

Let G be acomparability graph and T its tree decomposition. Assigning to each 

of the decomposition graphs of T a transitive orientation independently results 

in a transitive orientation of G. 

Furthermore, if only a partial orientation of G is given and we are interested 

in extending this orientation to a transitive orientation of G, we can formulate 

the following lemma. 

Lemma 5 

Let G be a comparability graph and T its tree decomposition. Furthermore, 

let P be a partial orientation of G, assigning orientations to some, but not all 

implication classes of G. P is extendible to a transitive orientation of G if and 

only if for each decomposition graph H* of T the orientation induced on H# 

by P is extendible to a transitive orientation on H*. 

  Proof. Follows immediately from Theorem 2 (2). Oo 

As we have seen earlier, there are two necessary condition for a partial 

orientation of a comparability graph to be extendible to a transitive orientation 

of G: 

D1: Any path implication can be carried out without a conflict. 

D2: Any transitivity implication can be carried out without a conflict. 

Now we are ready to prove the main theorem of this paper: these two con- 

ditions are also sufficient. 

Theorem 6 

Let P = (V,<) be a partial order with directed arc set Ap that is contained in 
the edge set E of a given comparability graph G = (V, E). Ap can be extended 

to a transitive orientation of G, iff all arising path implications and transitivity 

implications can be carried out without creating a path conflict or a transitivity 

conflict. 

Proof. Suppose there is a transitive orientation F' of G that contains P. Be- 

cause F is a transitive orientation, all arcs implied by path or transitivity im- 

plications are contained in F’. Furthermore, there cannot be any path or tran- 

sitivity conflict in F', again because F is a transitive orientation. Thus F' shows 

that all arising path and transitivity implications can be carried out without 

creating a path or transitivity conflict. 

Suppose now that D1 and D2 are satisfied, i-e., there is a directed graph 

F consisting of all arcs of P together with all orientations of edges of G that 

are implied by a sequence of path and transitivity implications of arcs of P. 

In other words, F' contains all arcs, forced by path or transitivity implications 

together with all their implied arcs; i.e. all arcs that are forced by arcs of F 

are contained in F' as well. We show that F can be extended to a transitive 

orientation of G.



First observe that, by assumption, there cannot be a path or transitivity 

conflict in F. In particular, F' is an orientation of edges of G and for each 

implication class C' of G that has at least one edge that is oriented in F’, all 

edges of C' are oriented in F and this orientation is conflict-free. By Corollary 4, 

every single conflict-free oriented implication class of G by itself is extendible 

to a transitive orientation of G. 

Now let T be the decomposition tree of G and consider the decomposition 

graphs corresponding to T. By the above observation, the orientation of an 

implication class C in F' implies an orientation of the edge(s) corresponding 

to this implication class in the decomposition graphs of T. More precisely, by 

Observation 1 (2), for every series type node H of T each edge e = {AB} of H# 

corresponds exactly to one implication class Ce of G. If Ce is oriented conflict- 

free in F, this orientation directly induces an orientation of e (see Theorem 2). 
For a prime type node 4H the set of edges joining different A;’s forms 

exactly one implication class Cz of G (see Observation 1 (3)). Again, if Cg is 
oriented conflict-free in F’, this orientation immediately implies an orientation 

on H*., 
All we have to show now is that for each decomposition graph H* of T, the 

partial orientation implied by F' can be extended to a transitive orientation of 

H*. Then, by Corollary 4, the implied orientation of G is transitive. 

By Corollary 4, a parallel type node of T cannot create a contradiction to 

transitivity—it does not contain any edges. Also a prime type node of T cannot 

create a contradiction: All its edges are contained in only one implication class 

and, since all implication classes of G contained in F' are oriented conflict-free, 

the corresponding orientation induced by F' on this single implication class has 

to be transitive. 

This leaves the case of series type nodes. Suppose there is a series type 

node H of T with decomposition graph H*, where the partial orientation im- 

plied by F cannot be extended to a transitive orientation of H*. Then we claim 

that this partial orientation has to be cyclic: By definition for each series type 

node H of T the decomposition graph H* is a complete graph and every acyclic 

partial orientation of a complete graph can be extended to a transitive orien- 

tation of this complete graph by taking any topological ordering of the vertices 

that agrees with the partial orientation. Hence, the partial orientation on H* 

has to contain a directed cycle. 

However, by the definition of T and the implied orientation of H* by F, 

a directed cycle in H* immediately implies a cyclically oriented cycle in F. 

Furthermore, with every consecutive pair of oriented edges (a, y), (y,z) of this 

cycle also the oriented edge (a, z), which is implied by transitivity, has to be 

contained in F’. Iterating this argument results in an cyclically oriented triangle 

in F’, which is a transitivity conflict. This contradicts our assumption that there 

are no transitivity conflicts. Oo   
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4 Application: Solving Problems with Prece- 

dence Constraints 

We conclude this paper by giving a brief description how Theorem 6 can be 

used for solving problems to optimality. As described in Section 2, the basic 

idea is to construct the comparability graphs G; by virtue of a combination of 

branch-and-bound with underlying graph-theoretic charcterizations. 

We start by fixing for all arcs (u,v) € A the edge {u,v} as an edge in the 
comparability graph G;, and we also fix its orientation to be (u,v). In addition 

to the tests for enforcing the conditions for unoriented packing classes described 

in [4], we employ the implications suggested by conditions D1 and D2. For this 

purpose, we check directed edges in G; for being part of a triangle that gives rise 

to either implication. Any newly oriented edge in G; gets added to a queue of 

unprocessed edges. Like for packing classes, we can again get cascades of fixed 

edge orientations. If we get an orientation conflict or a cycle conflict, we can 

abandon the search on this tree node. The correctness of the overall algorithm 

follows from Theorem 6; in particular, the theorem guarantees that we can carry 

out implications in an arbitrary order. 

Results of this application are reported in our paper [2]. 
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