

Technische Universitat Berlin

FAKULTAT II
MATHEMATIK UND
NATURWISSENSCHAFTEN

Institut fur Mathematik

EXTENDING PARTIAL SUBORDERS

AND IMPLICATION CLASSES

by

SANDOR P. FEKETE EKKEHARD KOHLER

JURGEN TEICH

No. 697/2000

Extending partial suborders

and implication classes*

Sdndor P. Fekete! Ekkehard Kohler? Jiirgen Teich’

Abstract

We consider the following problem called transitive ordering with pre-

cedence constraints (TOP): Given a partial order P=(V,<) and an (undi-
rected) graph G=(V,E) such that all relations in P are represented by
edges in G. Is there a transitive orientation D=(V,A) of G, such that P is

contained in D? This problem arises naturally in the context of scheduling,

where P describes a set of precedence constraints, and the graph G is the

(temporal) comparability graph of jobs. Korte and Méhring (1985) have
given a linear-time algorithm for deciding TOP. However, their approach

is only useful when the full set of edges in G is known. When running a

branch-and-bound algorithm for solving a scheduling problem, these edges

are only known partially, but they may already prohibit the existence of a

feasible solution. We give a pair of necessary and sufficient conditions on

graphs G in terms of forbidden substructures. Thus, our conditions can

be used quite effectively in the context of a branch-and-bound framework.

1 Introduction

Multi-dimensional packing and scheduling problems occur in many practical

contexts; see [1, 2] for overviews. Even the one-dimensional versions of these
problems are NP-hard in the strong sense; additional difficulties in multi-dimen-

sional scenarios prohibit the straightforward formulation as integer programs of

tractable size. This requires the development of additional mathematical tools.

Fekete and Schepers [4, 5, 6] have developed a branch-and-bound scheme for

solving these kinds of problems, based on a graph-theoretic characterization of

feasible solutions.

When dealing with precedence constraints of one- or multi-dimensional sche-

duling problems, we encounter the following natural order-theoretic problem,

called transitive ordering with precedence constraints (TOP):

*revised April 2001

tDepartment of Mathematical Optimization, TU Braunschweig, Pockelsstr. 14, 38106

Braunschweig, Germany, sandor.fekete@tu-bs.de

+Department of Mathematics, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany,

ekoehler@math.tu-berlin.de

$Computer Engineering Laboratory, University of Paderborn, Warburger Str. 100, 33098

Paderborn, Germany, teich@date.upb.de

Consider a partial order P = (V,~<) and a comparability graph G = (V,E),

such that all relations in P are represented by edges in G. Is there a transitive

orientation D = (V,A) of G, such that P is contained in D?

Korte and Moéhring [9] have given a linear-time algorithm for deciding TOP.
However, their approach can only be used when the full set of edges in G is

known. When running a branch-and-bound algorithm for solving a packing or

scheduling problem, these edges of G are only known partially, but they may

already prohibit the existence of a feasible solution for a given partial order P.

This makes it desirable to come up with structural characterizations that are

already useful when only parts of G are known.

In this paper, we give a pair of necessary and sufficient conditions for the

existence of a solution for the problem TOP on graphs G in terms of forbidden

substructures. Using the concept of packing classes developed in [4], this char-

acterization can be used quite effectively in the context of a branch-and-bound

framework, because it can recognize infeasible subtrees at “high” branches of

the search tree, where only some of the edges of G are known. The useful-

ness of these concepts and results has been validated by implementation and

computational experiments [2, 3].

2 Motivation: Multi-Dimensional Packing with

Precedence Constraints

When considering a feasible packing of d-dimensional boxes into a container, we

can describe it by a set of d interval graphs, which arise by projecting the packing

onto the d coordinate axes. See Figure 1 for the underlying idea. In [4] a set of
easy combinatorial necessary and sufficient conditions is given for characterizing

when a set of graphs G; corresponds to a feasible packing. They also showed

that this leads to useful results in practice by using the following enumeration

scheme:

For each coordinate, consider a comparability graph G; and construct its

edge set; the complement will be the interval graph G; describing the overlap

of projections. This means that we have three basic states for any edge:

(1) edges that have been fixed to be in Ej, i.e., “non-edges”;

(2) edges that have been fixed to be in Ej, i.e., “edges”;

(3) edges that have not yet been assigned to F; or Ej, i.e., “unassigned edges”.

For more technical details, see [4, 5, 6], and [11] for a practical application

in the context of technical computer science.

Now consider a situation where we need to satisfy a partial order P = (V, <)

of precedence constraints (e.g., in the time dimension), and let Ap = {(u,w) |
u < w in P} be the set of directed arcs describing P. It follows that each arc
a = (u,w) € Ap in this partial order forces the corresponding undirected edge

G G ®@ (V.A)@ —

G, @ G (V.Ay)

(a) (b) (c) (d)

Figure 1: (a) A pair of interval graphs, characterizing overlap in the coordinate

projections. (b) The complements are the corresponding comparability graphs.

(c) A transitive orientation, describing the relative positioning in the two direc-

tions. (d) A feasible packing corresponding to the orientation.

e = {u,w} to be included in the corresponding comparability graph. Thus, we

can simply initialize our algorithm for constructing packing classes by fixing all

undirected edges corresponding to Ap to be contained in &. After running the

original algorithm, we may get additional comparability edges. As the example

in Figure 2 shows, this causes an additional problem: Even if we know that the

graph G has a transitive orientation, and all arcs a = (u,w) of the precedence

order (V, Ap) are contained in E as e = {u,wh}, it is not clear that there is a
transitive orientation that contains all arcs of Ap.

Vo

— E (‘edges of G’’)

— E (‘‘non-edges of G’’)

vy V4

Figure 2: A comparability graph G = (V, E) with a partial order P contained in

E, such that there is no transitive orientation of G that extends P.

In order to deal with precedence constraints, we also consider orientations of

the comparability edges. This means that during the course of our tree search,

we can have three different possible states for any edge e = {u, w} € E:

(2a) e has orientation (u, w);

(2b) e has orientation (w, u);

(2c) e has no assigned orientation.

The main contribution of this paper is to establish a pair of necessary and

sufficient conditions based on small critical subconfigurations of edges. This
provides the mathematical basis for a safe and relatively efficient approach for

solving constrained multi-dimensional packing and scheduling problems to op-

timality.

3 Implication Classes and Modular Decomposi-

tion

3.1 Implication Classes

Our characterization arises from considering the following two configurations—
see Figure 3:

V2

zi V3

V2

V3 v

@ (i)

vy

—_— (edges) I E

= E (non—edges)

(unassigned or
V2 V2

‘\ (D1) Dm - edge of G)

vy vz Vy V3

(1’) (Ir) (111’)

Figure 3: Implications for edges and their orientations: Above are path im-

plications (D1, left) and transitivity implications (D2, right); below the forced
orientations of edges.

The first configuration consists of two edges {v1, v2}, {v2,u3} € E, such
that the third edge {v1,v3} has been fixed to be an non-edge of G. Now any

orientation of one of the two edges of G forces the orientation of the other edge

of G, as shown in the left part of the figure. Since this configuration corresponds

to an induced path in G, we call this arrangement a path implication.

The second configuration consists of two directed edges (v1, V2), (v2, 03) € E.
In this case we know that the edge {v1, v3} must also be an edge of G, with the
orientation (v1, v3). Since this configuration arises directly from transitivity in

G, we call this arrangement a transitivity implication.

Clearly, any implication arising from one of the above configurations can
induce further implications.

In particular, when considering sequences of only path implications, we get

a partition of the edges of G into path implication classes: Two edges are in the

same implication class, iff there is a sequence of path implications, such that

orienting one edge forces the orientation of the other edge. For an example,

consider the arrangement in Figure 2. Here, all three edges {v1, v2}, {v2, v3},
and {v3,v4} are in the same path implication class. Now the orientation of

(v1, V2) implies the orientation (v3, v2), which in turn implies the orientation
(v3,v4), contradicting the orientation of {vs,v4} in the given partial order P.
It is not hard to see that the implication classes form a partition of the edges,

since we are dealing with an equivalence relation. In the following, we refer to

path implication classes when we speak of implication classes. A violation of a

path implication is called a path conflict.

As the example in Figure 4 shows, only excluding path conflicts when recur-

sively carrying out path implications does not suffice to guarantee the existence

of a feasible orientation: Working through the queue of path implications, we

end up with a directed cycle, which violates a transitivity implication.

(a) (b) (c)

Figure 4: (a) A graph G with a partial order formed by three directed edges;

(b) there are three path implication classes that each have one directed arc; (c)
carrying out path implications creates directed cycles, i.e., transitivity conflicts.

We call a violation of a transitivity implication a transitivity conflict.

Summarizing, we have the following necessary conditions for the existence

of a transitive orientation that extends a given partial order P:

D1: Any path implication can be carried out without a conflict.

D2: Any transitivity implication can be carried out without a conflict.

As we will see later, these necessary conditions are also sufficient. For proving

this result we need another tool: the modular decomposition of a graph.

3.2. Modular Decomposition

The concept of modular decomposition of a graph was first introduced by Gallai

[7] for studying comparability graphs. This powerful decomposition scheme has

a variety of applications in algorithmic graph theory—for further material on

this concept and its application the interested reader is referred to [8, 10].

A module of a graph G = (V, EF) is a vertex set M C V such that each vertex
v € V\M is either adjacent to all vertices or to no vertex of M in G. (Intuitively

speaking, all vertices of a module “look the same” to the other vertices of the

graph.) A module is called trivial if |M| < lor M = V. A graph G is

called prime if it contains only trivial modules. Using the concept of modules

one can define a decomposition scheme for general graphs by decomposing it

recursively into subsets, each of which is a module of G, stopping when all sets

are singletons.

For an example, refer to Figure 6. Four modules of the shown graph G

are the M, = {0,1,2,3,4,5,6,7,8,9}, Mo = {20}, Mz; = {10,11}, My, =

{12, 13,14, 15, 16, 17, 18,19}; M, is a trivial module.

Figure 5: A graph G.

Gallai [7] showed that each graph G has a decomposition (the so-called
canonical decomposition) of its vertex set into a set of modules with a variety of

nice properties. He observed that each graph G is either of parallel type, i.e., G is

not connected and its canonical decomposition is defined by its set of connected

components; or G is of series type, i.e., G is not connected. In the latter case

the canonical decomposition is given by the connected components of G. If

both G and G are connected, then G is said to be of prime type. In this case

the canonical decomposition of G is given by decomposing G into its maximal

proper submodules. Gallai also showed that this decomposition is unique.

This recursive decomposition defines a decomposition tree T(G) for a given

graph G in a very natural way: Create a root vertex for the trivial module of

G itself. Label it series, parallel, or prime, depending on the type of G as a

module. For each non-singleton module of the canonical decomposition of G

create a tree vertex, labeled as series, parallel, or prime type node, depending

on the type of the module, and make it a child of the vertex corresponding to

G; for each singleton module add a tree-vertex labeled with the corresponding

singleton. Now proceed recursively for each subgraph corresponding to a non-

trivial module in the decomposition tree until all leaves of the tree are labeled

with singletons. Consequently, the leafs of the tree correspond to the vertices

of the graph, while the internal vertices all correspond to non-trivial modules

of the canonical decomposition of the corresponding parent vertex in T(G). See

Figure 6 for the decomposition tree of our example.

—
parallel parallel prime

L_ OY (rtf
Js Ads dh

prime

QO@OO)

Figure 6: A modular decomposition tree for the graph G shown in Figure 5.

prime

The decomposition graph G# of a graph G is the quotient of G by the

canonical decomposition into the set of modules {A1,...,A,}, ie, V(G*) =

{Ai,...,Aq}, and distinct vertices A; and A; are joined by an edge in G* iff

there is an A;A,-edge in G. In the following we will look at the decomposi-

tion graphs corresponding to internal vertices of T(G) and refer to them as the

decomposition graphs of T.

In our example, the decomposition graph G¥ of G is given by

GF = ({M, M2, M3, M4}, {{M1, Mo}, {Mp, Ms}, {Ms, My}}).

An important property of the modular decomposition is its close relationship

to the concept of implication classes. Gallai observed the following properties

of implication classes with respect to the modular decomposition:

Observation 1 (Gallai)
1) If G is not connected and G),...,Gq (q > 2) are the components of G, then

the implication classes of G,...,Gq are exactly the implication classes of

G.

2) If G is not connected (so that G is connected), Gi,...,G@q (q > 2) are the
components of G, and A; = V(G;), then A; and A; are completely connected

to each other whenever 1 <i < j <q. Moreover, for all such i and j, the set

of A;Aj-edges form an implication class E;; of G. The implication classes of

G that are distinct from any Ej; are exactly the implication classes of the
graphs G; = G[Aj] (i = 1,...,¢).

3) If G and G are both connected and have more than one vertex, and the

canonical decomposition of G is given by {A1,..., Aq}, then we have

a) If there is one edge between A; and A; (1 <i <j <q), then A; and A;

are completely joined.

b) The set of all edges of G that join different A;’s forms a single implication

class C of G. Every vertex of G is incident with some edge of C, (i.e.,

V(C) =V(G)).
c) The implication classes of G that are distinct from C are exactly the

implication classes of the graphs G; = G[A;] (1 <i <q).

This strong relationship between implication classes and the modules in the

canonical decomposition of a given graph turns out to be a powerful tool for

studying graphs having a transitive orientation. Note that the fastest known

algorithms for recognizing comparability graphs and also permutation graphs

also make extensively use of this relationship. Gallai used the above properties

(among others) for proving the following theorem.

Theorem 2 (Gallai)
Let G be a non-empty graph, let T = T(G) be the tree decomposition of G, and

let H be a vertex set corresponding to a node of T.

1) If G is transitively oriented, and A and B are successors of H in T, then every

A, B-edge of G is oriented in the same direction (to or from A). Therefore,

H*® receives an induced transitive orientation.

2) Conversely, assuming that H* is transitively orientable for each H € T,

one can choose an arbitrary transitive orientation of each H# and induce a

transitive orientation of G by orienting all A, B-edges (for A and B successors
of H in T) in the same direction that {A, B} is oriented in H*.

From this theorem it is straightforward to draw the following helpful corol-
laries:

Corollary 3

A graph G is a comparability graph if and only if every decomposition graph in

the tree decomposition of G is a comparability graph.

Corollary 4

Let G be acomparability graph and T its tree decomposition. Assigning to each

of the decomposition graphs of T a transitive orientation independently results

in a transitive orientation of G.

Furthermore, if only a partial orientation of G is given and we are interested

in extending this orientation to a transitive orientation of G, we can formulate

the following lemma.

Lemma 5

Let G be a comparability graph and T its tree decomposition. Furthermore,

let P be a partial orientation of G, assigning orientations to some, but not all

implication classes of G. P is extendible to a transitive orientation of G if and

only if for each decomposition graph H* of T the orientation induced on H#

by P is extendible to a transitive orientation on H*.

 Proof. Follows immediately from Theorem 2 (2). Oo

As we have seen earlier, there are two necessary condition for a partial

orientation of a comparability graph to be extendible to a transitive orientation

of G:

D1: Any path implication can be carried out without a conflict.

D2: Any transitivity implication can be carried out without a conflict.

Now we are ready to prove the main theorem of this paper: these two con-

ditions are also sufficient.

Theorem 6

Let P = (V,<) be a partial order with directed arc set Ap that is contained in
the edge set E of a given comparability graph G = (V, E). Ap can be extended

to a transitive orientation of G, iff all arising path implications and transitivity

implications can be carried out without creating a path conflict or a transitivity

conflict.

Proof. Suppose there is a transitive orientation F' of G that contains P. Be-

cause F is a transitive orientation, all arcs implied by path or transitivity im-

plications are contained in F’. Furthermore, there cannot be any path or tran-

sitivity conflict in F', again because F is a transitive orientation. Thus F' shows

that all arising path and transitivity implications can be carried out without

creating a path or transitivity conflict.

Suppose now that D1 and D2 are satisfied, i-e., there is a directed graph

F consisting of all arcs of P together with all orientations of edges of G that

are implied by a sequence of path and transitivity implications of arcs of P.

In other words, F' contains all arcs, forced by path or transitivity implications

together with all their implied arcs; i.e. all arcs that are forced by arcs of F

are contained in F' as well. We show that F can be extended to a transitive

orientation of G.

First observe that, by assumption, there cannot be a path or transitivity

conflict in F. In particular, F' is an orientation of edges of G and for each

implication class C' of G that has at least one edge that is oriented in F’, all

edges of C' are oriented in F and this orientation is conflict-free. By Corollary 4,

every single conflict-free oriented implication class of G by itself is extendible

to a transitive orientation of G.

Now let T be the decomposition tree of G and consider the decomposition

graphs corresponding to T. By the above observation, the orientation of an

implication class C in F' implies an orientation of the edge(s) corresponding

to this implication class in the decomposition graphs of T. More precisely, by

Observation 1 (2), for every series type node H of T each edge e = {AB} of H#

corresponds exactly to one implication class Ce of G. If Ce is oriented conflict-

free in F, this orientation directly induces an orientation of e (see Theorem 2).
For a prime type node 4H the set of edges joining different A;’s forms

exactly one implication class Cz of G (see Observation 1 (3)). Again, if Cg is
oriented conflict-free in F’, this orientation immediately implies an orientation

on H*.,
All we have to show now is that for each decomposition graph H* of T, the

partial orientation implied by F' can be extended to a transitive orientation of

H*. Then, by Corollary 4, the implied orientation of G is transitive.

By Corollary 4, a parallel type node of T cannot create a contradiction to

transitivity—it does not contain any edges. Also a prime type node of T cannot

create a contradiction: All its edges are contained in only one implication class

and, since all implication classes of G contained in F' are oriented conflict-free,

the corresponding orientation induced by F' on this single implication class has

to be transitive.

This leaves the case of series type nodes. Suppose there is a series type

node H of T with decomposition graph H*, where the partial orientation im-

plied by F cannot be extended to a transitive orientation of H*. Then we claim

that this partial orientation has to be cyclic: By definition for each series type

node H of T the decomposition graph H* is a complete graph and every acyclic

partial orientation of a complete graph can be extended to a transitive orien-

tation of this complete graph by taking any topological ordering of the vertices

that agrees with the partial orientation. Hence, the partial orientation on H*

has to contain a directed cycle.

However, by the definition of T and the implied orientation of H* by F,

a directed cycle in H* immediately implies a cyclically oriented cycle in F.

Furthermore, with every consecutive pair of oriented edges (a, y), (y,z) of this

cycle also the oriented edge (a, z), which is implied by transitivity, has to be

contained in F’. Iterating this argument results in an cyclically oriented triangle

in F’, which is a transitivity conflict. This contradicts our assumption that there

are no transitivity conflicts. Oo

10

4 Application: Solving Problems with Prece-

dence Constraints

We conclude this paper by giving a brief description how Theorem 6 can be

used for solving problems to optimality. As described in Section 2, the basic

idea is to construct the comparability graphs G; by virtue of a combination of

branch-and-bound with underlying graph-theoretic charcterizations.

We start by fixing for all arcs (u,v) € A the edge {u,v} as an edge in the
comparability graph G;, and we also fix its orientation to be (u,v). In addition

to the tests for enforcing the conditions for unoriented packing classes described

in [4], we employ the implications suggested by conditions D1 and D2. For this

purpose, we check directed edges in G; for being part of a triangle that gives rise

to either implication. Any newly oriented edge in G; gets added to a queue of

unprocessed edges. Like for packing classes, we can again get cascades of fixed

edge orientations. If we get an orientation conflict or a cycle conflict, we can

abandon the search on this tree node. The correctness of the overall algorithm

follows from Theorem 6; in particular, the theorem guarantees that we can carry

out implications in an arbitrary order.

Results of this application are reported in our paper [2].

References

[1] P. Brucker, A. Drexl, R. Méhring, K. Neumann, and E. Pesch. Resource-

constrained project scheduling: Notation, classification, models, and meth-

ods. European J. Oper. Res., 112:3-41, 1999.

[2] S. P. Fekete, E. Kohler, and J. Teich. Multi-dimensional packing with or-

der constraints. Technical Report 698-2000, Technische Universitat Berlin,

2000.

[3 ~“
 5S. P. Fekete, E. K6hler, and J. Teich. Optimal FPGA placement with

temporal precedence constraints. In Proc. DATE 2001, Design, Automation

and Test in Europe, 2001.

[4] S. P. Fekete and J. Schepers. A new exact algorithm for general orthogonal

d-dimensional knapsack problems. In Algorithms — ESA ’97, volume 1284,

pages 144-156, Springer Lecture Notes in Computer Science, 1997.

[5] S. P. Fekete and J. Schepers. On more-dimensional packing I: Model-
ing. Technical Report 97-288, Universitat K6ln, Available at http://

www.zpr.uni-koeln.de/ABS/“~papers, 1998.

[6] S. P. Fekete and J. Schepers. On more-dimensional packing III: Exact
algorithms. Technical Report 97-290, Universitat Koln, 1998.

[7] T. Gallai. Transitiv orientierbare Graphen. Acta Math. Acd. Sci. Hungar.,
18:25-66, 1967.

11

[8] D. Kelly. Comparability graphs. In I. Rival, editor, Graphs and Order,

pages 3-40. D. Reidel Publishing Company, Dordrecht, 1985.

[9] N. Korte and R. Moéhring. Transitive orientation of graphs with side con-
straints. In H. Noltemeier, editor, Proceedings of WG’85, pages 143-160.

Trauner Verlag, 1985.

[10] R. H. Méhring. Algorithmic aspects of the substitution decomposition in

optimization over relations, set systems, and Boolean functions. Annals of

Oper. Res., 4:195-225, 1985.

[11] J. Teich, S. Fekete, and J. Schepers. Optimization of dynamic hardware

reconfigurations. J. of Supercomputing, to appear, 2001.

12

Reports from the group

“Combinatorial Optimization and Graph
Algorithms”

of the Department of Mathematics, TU Berlin

705/2000 Ekkehard Kohler: Recognizing Graphs without Asteroidal Triples

704/2000 Ekkehard Kohler: AT-free, coAT-free Graphs and AT-free Posets

702/2000 Frederik Stork: Branch-and-Bound Algorithms for Stochastic Resource-
Constrained Project Scheduling

700/2000 Rolf H. Méhring: Scheduling under uncertainty: Bounding the makespan

distribution

698/2000 Sdndor P. Fekete, Ekkehard Kohler, and Jtirgen Teich: More-dimensional

packing with order constraints

697/2000 Séndor P. Fekete, Ekkehard Kéhler, and Jtirgen Teich: Extending partial

suborders and implication classes

696/2000 Séndor P. Fekete, Ekkehard Kohler, and Jiirgen Teich: Optimal FPGA

module placement with temporal precedence constraints

695/2000 Séndor P. Fekete, Henk Meijer, André Rohe, and Walter Tietze: Solv-

ing a “hard” problem to approximate an “easy” one: heuristics for maximum

matchings and maximum Traveling Salesman Problems

694/2000 Esther M. Arkin, Séndor P. Fekete, Ferran Hurtado, Joseph S. B.

Mitchell, Mare Noy, Vera Sacristénm and Saurabh Sethia: On the reflexivity of

point sets

693/2000 Frederik Stork and Marc Uetz: On the representation of resource con-
straints in project scheduling

691/2000 Martin Skutella and Marc Uetz: Scheduling precedence constrained jobs
with stochastic processing times on parallel machines

689/2000 Rolf H. Méhring, Martin Skutella, and Frederik Stork: Scheduling with

AND/OR precedence constraints

685/2000 Martin Skutella: Approximating the single source unsplittable min-cost
flow problem

684/2000 Han Hoogeveen, Martin Skutella, and Gerhard J. Woeginger: Preemptive

scheduling with rejection

683/2000 Martin Skutella: Convex quadratic and semidefinite programming relax-

ations in Scheduling

682/2000 Rolf H. Méhring and Marc Uetz: Scheduling scarce resources in chemical

engineering

681/2000 Rolf H. Méhring: Scheduling under uncertainty: optimizing against a ran-
domizing adversary

680/2000 Rolf H. Méhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz: Solv-

ing project scheduling problems by minimum cut computations (Journal version
for the previous Reports 620 and 661)

674/2000 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sdndor P. Fekete,

Joseph S. B. Mitchell, and Saurabh Sethia: Optimal covering tours with turn

costs

669/2000 Michael Naatz: A note on a question of C. D. Savage

667/2000 Sdndor P. Fekete and Henk Metjer: On geometric maximum weight cliques

666/2000 Sdndor P. Fekete, Joseph S. B. Mitchell, and Karin Weinbrecht: On the

continuous Weber and k-median problems

664/2000 Rolf H. Mohring, Andreas S. Schulz, Frederik Stork, and Marc Uetz: On

project scheduling with irregular starting time costs

661/2000 Frederik Stork and Marc Uetz: Resource-constrained project scheduling:

from a Lagrangian relaxation to competitive solutions

Reports may be requested from: Hannelore Vogt-Méller

Fachbereich Mathematik, MA 6-1

TU Berlin

StraBe des 17. Juni 136
D-10623 Berlin — Germany

e-mail: moellerQmath.TU-Berlin.DE

Reports are also available in various formats from

http: //www.math.tu-berlin.de/coga/publications/techreports/

and via anonymous ftp as

ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-number-year .ps

