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Abstract: Understanding the impacts of environmental factors on spatial–temporal and large-scale
rodent distribution is important for rodent damage prevention. Investigating rat hole density (RHD)
is one of the most effective methods to obtain the intensity of rodent damage. However, most of
the previous field surveys or UAV-based remote sensing methods can only evaluate small-scale
RHD and its influencing factors. However, these studies did not consider large-scale temporal
and spatial heterogeneity. Therefore, we collected small-scale and in situ measurement records of
RHD on the northern slope of the Tien Shan Mountains in Xinjiang (NTXJ), China, from 1982 to
2015, and then used correlation analysis and Bayesian network (BN) to analyze the environmental
impacts on large-scale RHD with satellite remote sensing data such as the GIMMS NDVI product.
The results show that the built BN can better quantify causality in the environmental mechanism
modeling of RHD. The NDVI and LAI data from satellite remote sensing are important to the spatial–
temporal RHD distribution and the mapping in the future. In regions with an elevation higher than
600 m (UPR) and lower than 600 m (LWR) of NTXJ, there are significant differences in the driving
mechanism patterns of RHD, which are dependent on the elevation variation. In LWR, vegetation
conditions have a weaker impact on RHD than UPR. It is possibly due to the Artemisia eaten by the
dominant species Lagurus luteus (LL) in UPR being more sensitive to precipitation and temperature
if compared with the Haloxylon ammodendron eaten by the Rhombomys opimus (RO) in LWR. In
LWR, grazing intensity is more strongly and positively correlated to RHD than UPR, possibly due
to both winter grazing and RO dependency on vegetation distribution; moreover, in UPR, sheep
do not feed Artemisia as the main food, and the total vegetation is sufficient for sheep and LL to
coexist. Under the different conditions of water availability of LWR and UPR, grazing may affect
the ratio of aboveground and underground biomass by photosynthate allocation, thereby affecting
the distribution of RHD. In extremely dry years, the RHD of LWR and UPR may have an indirect
interactive relation due to changes in grazing systems.
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1. Introduction

Grassland rodent communities are important model systems in the study of commu-
nity ecology and have received considerable attention. Natural and anthropogenic factors
can directly or indirectly lead to changes in the habitats of rodents and can impact the
spatial and temporal distribution of populations. Likewise, rodent communities can also
have an impact on numerous abiotic and biotic environmental conditions in the areas in
which they live. For example, on the northern slope of the Tien Shan Mountains (NTXJ) in
Xinjiang, China, rodent damage has significantly harmed the health of the arid grasslands.
It has been shown that high rat hole density (RHD) can negatively affect the health of the
soil and vegetation in the region [1].

The northern slope of the Tien Shan Mountains belongs to a typical mountain–oasis–
desert (from high land to low land) ecosystem [2,3] in the arid regions of Central Asia.
The distribution of flora and fauna is strongly dependent on elevation variation. In NTXJ,
rodent damage mainly occurs in grasslands and deserts and is primarily caused by Lagu-
rus luteus (LL), which is mainly distributed in low mountain grassland, and Rhombomys
opimus (RO), which is mainly distributed in the low desert. While the spatial and temporal
distributions of RHD for both of these species are influenced by natural factors such as
terrain [4], precipitation [5], temperature [6], soil texture [7,8], and vegetation [9], they
may also be influenced by anthropogenic factors in the area, such as sheep grazing [10,11].
However, The temporal and spatial distribution of RHD and its complex driving mech-
anism remain uncertain. Although some ground in situ investigation and UAV-based
approaches [4,12] have been used to measure the local or small-scale RHD within NTXJ
and to analyze the relationships between RHD and environmental variables, there are
numerous difficulties in extrapolating these local relationships to large-scale spatiotem-
poral mapping. The relationships between RHD and environmental variables’ data may
vary by scale, which, for example, may be caused by the difference in the vegetation infor-
mation provided at the field-scale of local studies and the pixel-scale of satellite remote
sensing data. Additionally, the information provided by local studies is not sufficient for
spatiotemporal mapping. Therefore, the lack of comprehensive analysis and modeling
of the relationships between large-scale RHD and various environmental factors (both
natural and anthropogenic) has limited the prospect of the spatiotemporal mapping of
RHD (Figure 1). Satellite remote sensing data have been widely used to develop long-term
large-scale datasets of vegetation such as the GIMMS NDVI product [13], meteorological
data [14], and other variables, which may be effective in providing large-scale environmen-
tal factors’ data in the long time series. In addition, remote sensing data at the monthly
scale may also help us understand the seasonal and monthly variation in the relationship
between RHD and environmental factors. Further research in this area is crucial for the
future prevention and control of damage caused by rodents.

Novel large-scale analysis and modeling may also be used to investigate the indirect
interactions between RHD and ecosystems across elevation gradients. To date, machine
learning approaches (e.g., random forest) have proven to be more effective in modeling the
relationship between plant/animal communities and environmental factors [15] than tradi-
tional multiple regression analysis [16], especially when the volume of variables or data is
large. They are also especially effective at estimating species distributions [17,18]. Bayesian
network (BN) is a machine learning approach based on probability measures [19,20] that
can quantify the complex, causal relationships between variables. This approach has advan-
tages over other machine learning approaches in integrating expert knowledge and causal
explanation. It can be used for probabilistic inference, diagnostic analysis, and decision
support. BNs have also been used in species distribution studies [21] and proven effective
in other ecological studies [22–26].
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Figure 1. Conventional field-scale investigation of RHD and analysis (a) and prospect toward the
large-scale spatiotemporal RHD mapping and the analysis of the impacts of environmental factors (b).

Our objective is to examine the relationship between RHD and ecosystems across
elevation gradients and to determine their corresponding mechanisms when RHD and local
conditions are influenced by the same environmental factors. This is particularly important
to examine within NTXJ because local climate patterns have changed significantly [3],
and precipitation in the mid-mountain region has increased due to oasis expansion and
increased irrigation [27]. Thus, furthermore, the distribution and intensity of grazing may
also be influenced by climate change and vegetation dynamics [28]. These environmental
and anthropogenic factors can indirectly affect the large-scale distribution of RHD, but the
spatial variability of these factors has rarely been considered in previous site-scale studies.
Therefore, we analyzed the impacts of environmental factors on the large-scale RHD using
satellite remote sensing data and BN. The training data are derived from in situ measured
RHD investigations in NTXJ.

2. Methodology
2.1. Study Area

The terrain of NTXJ has a decreasing elevation gradient from the south (approximately
5000 m in the mountains) to the north (approximately 200 m at the edge of the desert)
(Figure 2). The central region of NTXJ has a temperate continental arid climate, which
is characterized by arid and hot summers and cold and windy winters. The annual
average temperature ranges from <2 °C in the mountains to 8 to 10 °C in the plains. The
precipitation season varies significantly, with the maximum precipitation concentrated in
May and June, and the minimum amount in February. The annual precipitation gradually
decreases from south to north, with annual precipitation in the southern mid-mountain
region of 500 to 1000 mm, about 200 mm in the central plains, and about 100 mm in the
northern desert [29]. The vertical distribution of its natural conditions (Figure 3) is a typical
mountain-basin landform pattern. Different vertical elevation zones correspond to different
landscape types and ecosystems. The unique natural conditions of NTXJ make it a typical
representative of large-scale mountain–oasis–desert ecosystems in temperate arid regions
of Central Asia [30].
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Figure 3. Vertical distribution of the vegetation types and the numbers of the collected rat hole
density (n/ha) records on the northern slope of Tien Shan Mountains at Bogda Peak section. Different
vertical elevation zones correspond to different landscape types and ecosystems.

2.2. Data

The data used in this study include published records of RHD in NTXJ and environ-
mental factors. The RHD data were collected from published literature, which was mainly
obtained from the China National Knowledge Infrastructure (CNKI) and in Chinese. We
collected 239 RHD records with spatiotemporal information from published articles on
the investigation of RHD within NTXJ. These records spanned from 1982 to 2015. Most
of these raw data records were obtained from RHD surveys of small regions based on
quadrats and UAV remote sensing. In addition to the temporal and spatial information of
RHD, spatially averaged data of the environmental factors (Table 1) were extracted with
raster data in each shapefile averaged in ArcGIS, including precipitation, temperature, soil
texture, topography, shortwave radiation, and grazing intensity.
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Table 1. Description of data on environmental factors that affect RHD.

Environmental Factors Explanation Raw Dataset Source Spatiotemporal Resolution

Elevation SRTM DEM dataset in China (2000)
[31] 90 m

Slope SRTM DEM dataset in China (2000)
[31] 90 m

Aspect SRTM DEM dataset in China (2000)
[31] 90 m

Sand Percentage of sand content
in topsoil Harmonized World Soil Database

Silt Percentage of silt content in
topsoil Harmonized World Soil Database

Clay Percentage of clay content in
topsoil Harmonized World Soil Database

P_yr Annual precipitation

1 km monthly precipitation dataset
for China (1901–2017) [32]. The

dataset was made through a fusion of
remote sensing products, a reanalysis
dataset, and in situ observation data

at weather stations.

1 km, yearly

P_3mon_lag_pre Precipitation in the three
months before the survey

1 km monthly precipitation dataset
for China (1901–2017) [32] 1 km, monthly

T_avg_yr Annual average
temperature

1 km monthly mean temperature
dataset for china (1901–2017) [33] 1 km, yearly

T_max_yr Monthly maximum
temperature

1 km monthly maximum temperature
dataset for China (1901–2017) [34] 1 km, monthly

T_min_yr Monthly minimum
temperature

1 km monthly minimum temperature
dataset for China (1901–2017) [35] 1 km, monthly

T_mon Monthly average
temperature

1 km monthly mean temperature
dataset for china (1901–2017) [33] 1 km, monthly

NDVI Normalized vegetation
index

NOAA Global Inventory Monitoring
and Modeling System (GIMMS),

version number 3g.v1

8 km, monthly (Maximum
Value Composites with

15-day raw data) from 1981
to 2015

LAI Leaf area index

NOAA Climate Data Record (CDR) of
Leaf Area Index (LAI) and Fraction of
Absorbed Photosynthetically Active

Radiation (FAPAR), Version 4

8 km, monthly (mean value
of daily raw data) from 1982

through the present

Grazing intensity Grazing intensity (number
of livestock per hectare)

FAO (http://www.fao.org/livestock-
systems/en/, last accessed: 10

November 2021), field data in 2015,
Xinjiang statistical yearbook [10,11]

0.08333◦, yearly

Shortwave radiation China meteorological forcing dataset
(1979–2018) [14]

0.1◦, monthly (mean value
of 3-hour raw data)

2.3. Bayesian Network

The BN [19] is a directed acyclic graph model. Its nodes represent the probability
distribution of variables, and the directed edges represent the causal correlations given
the conditional probability table. By combining prior knowledge and observational data,
we obtain the conditional probability distribution of the network nodes. The expectation–
maximization algorithm [36] is used to iteratively calculate the expectation and maximum

http://www.fao.org/livestock-systems/en/
http://www.fao.org/livestock-systems/en/


Remote Sens. 2021, 13, 4709 6 of 17

likelihood estimation of the parameters and implement the optimization process for the
missing data.

To simulate the causal relationship between RHD and environmental factors with a
BN, we processed the multi-dimensional data collected from the articles into a training
dataset with RHD as the target variables and environmental variables as the independent
features (Figure 4). Based on empirical knowledge and preliminary correlation analysis,
we chose suitable variables as nodes of BN and determined the directional causal link
between nodes and the status discretization (Table 2) of each variable node to reduce the
computational complexity of the joint probability distribution. The different numbers of
intervals and segmentation points in the discretization process may have an impact on
the performance of the model and the prior knowledge obtained from expert knowledge.
Therefore, in this paper, the discretization of data was synchronized with the setting
of prior knowledge, and expert knowledge and the actual data distribution guided the
discretization procedure. Further, the BN was parameterized by the training data with the
joint probability calculated.
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Table 2. Discretization of the status of the included variables as nodes of the BN.

Variables Status Levels Unit

RHD 0 to 300, 300 to 800, 800 to 4000 n/ha

Elevation 200 to 600, 600 to 1000, 1000 to 1600, 1600 to 2500 m

P_yr 0 to 150, 150 to 250, 250 to 600 mm

T_avg_yr −3 to 8, 8 to 10, 10 to 12 ◦C

P_3mon_lag_pre 0 to 10, 10 to 30, 30 to 60 mm

NDVI 0 to 0.1, 0.1 to 0.2, 0.2 to 0.6

LAI 0 to 0.15, 0.15 to 0.3, 0.3 to 1

Slope 0 to 2, 2 to 10 ◦

Sand 0 to 40, 40 to 55, 55 to 100

A BN is composed of random variables (X1,., Xn) with their joint probability distribu-
tion [20] calculated as

P(X) = P(X1, X2, . . . , Xn) =
n

∏
i=1

P(Xi |pa (Xi)) (1)

where pa(Xi) is the value of the parent node of the child node Xi. With expert knowledge
integrated, we can obtain the prior conditional probability table (CPT) of the BN. An
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expectation–maximization (EM) algorithm [36] was used to incorporate the observational
data to calculate the posterior CPTs.

To evaluate the impacts of various environmental factors on RHD, we applied a
sensitivity analysis based on mutual information (MI) [37,38]. This represents the entropy
reduction in the child node given the status of the parent node. The higher the MI value is,
the higher is the sensitivity of the child node to the parent node for the stronger causality.
MI is calculated as follows:

MI = H(Q)−H(Q |F ) = ∑
q

∑
f

P(q, f) log2

(
P(q, f)

P(q)P(f)

)
(2)

where H represents the entropy, Q represents the target node, F represents the set of other
nodes, and q and f represent the status of Q and F.

To understand the environmental driving mechanism of high RHD based on the built
BN, we performed a diagnosis analysis [19] and obtained the posterior probability change
in the environmental nodes given the specific status of the RHD node.

3. Results
3.1. Correlation Analysis of Environmental Factors Affecting RHD

The correlation analysis (Figure 5) shows that RHD throughout NTXJ as a whole is
significantly positively correlated with elevation, slope, NDVI, LAI, annual precipitation,
and precipitation in the three months before the survey, and is significantly negatively
correlated with temperature variables. However, based on the difference of the landscape
divided by the elevation, the correlations show significant differences between regions
with an elevation higher than 600 m (UPR) and regions with an elevation lower than 600 m
(LWR) (Figure 6), while the correlations are mostly not significant with an elevation higher
than 1000 m. In LWR, RHD is significantly correlated with most environmental variables.
The seven main differences of the relationships between RHD and environmental variables
in LWR and UPR include the following: (1) In LWR, RHD is significantly negatively
correlated with slope, while in UPR, it is significantly positively correlated. This feature is
just the opposite for aspect; (2) in LWR, RHD is significantly positively correlated with the
sand content in the soil. This shows that RO may prefer to live in sandy areas. In UPR, the
correlation is weak, possibly because the sand content is lower at higher altitudes; (3) in
LWR, RHD has a significantly positive correlation with longitude, while in UPR, it has a
significantly negative correlation; (4) in LWR, the negative correlation between RHD and
temperature variables is stronger than in UPR; (5) in LWR, the positive correlation between
RHD and precipitation is weaker than in UPR; (6) in LWR, RHD is significantly positively
correlated with grazing intensity and shortwave radiation, while in UPR, the correlation
is weak.

3.2. Sensitivity Analysis of Environmental Factors Affecting RHD Based on the BN

In addition to the linear correlation analysis above, the causal and individual impacts
of these variables on RHD are not clear, due to the collinearity between environmental
variables (e.g., in NTXJ, temperature and precipitation are highly correlated with elevation).
The sensitivity analysis (Table 3) is based on the built BN (Figure 7) and shows that RHD
throughout NTXJ as a whole is most sensitive to LAI, followed by NDVI, slope, and
sand. The sensitivity of RHD to these variables shows significant differences in regions of
various elevation ranges. The sensitivity of RHD to LAI is much higher in UPR than in
LWR, which indicates that vegetation types at various elevation range significantly affect
RHD. Furthermore, the sensitivity of RHD to NDVI above and below 600 m is not highly
differentiated. It may be caused by the fact that the remote sensing NDVI data are not very
effective in monitoring the growth and underground biomass of Haloxylon ammodendron,
since RO takes the tender roots and twigs of Haloxylon ammodendron as the main food in
the lower plain desert area of LWR. Moreover, in each elevation interval, the sensitivity of
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RHD to LAI is higher than that of NDVI. When compared with NDVI, LAI may be a better
indicator of vegetation for measuring RHD in NTXJ.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 5. Correlation coefficient matrix of factors affecting rat hole density throughout NTXJ. (***), 
(**), and (*) represent the significance level of p-value < 0.01, 0.05, and 0.1, respectively. 

Figure 5. Correlation coefficient matrix of factors affecting rat hole density throughout NTXJ. (***), (**), and (*) represent the
significance level of p-value < 0.01, 0.05, and 0.1, respectively.

Table 3. Sensitivity of RHD to environmental variables for the whole NTXJ and the subregions divided by elevation.

Environmental
Variables NTXJ Plain Desert

(200 to 600 m)

Desert & low
Mountain (600 to

1000 m)

Grassland & Low
Mountain (1000 to

1600 m)

Grassland/Coniferous
Forest & Mid

Mountain(1600 to
2500 m)

Elevation 0.01215 no value no value no value no value

LAI 0.06445 0.03561 0.08259 0.07575 0.08313

NDVI 0.03974 0.02737 0.05708 0.01535 0.00865

Sand 0.02447 0.03586 0.02840 0.00477 0.00398

Slope 0.02698 0.02163 0.05088 0.00481 0.00454

P_yr 0.01492 0.00236 0.02017 0.02246 0.00046

P_3mon_lag_pre 0.01062 0.01160 0.01405 0.00807 0.01112

T_avg_yr 0.00739 0.00912 0.00142 0 0
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Figure 7. The Bayesian network of causality among natural environmental factors influencing rat
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before and after the “±” indicate the mean and standard deviation of the distribution, respectively.

In areas below an elevation of 1000 m, RHD is more sensitive to soil sand content.
Without temporal variations, the soil sand content is primarily used to only explain the
spatial variation of RHD. The sensitivity of RHD to soil sand content is even comparable
to LAI; this is especially the case in LWR. This indicates that the distribution of RHD may
be higher in areas with high sand content that are below the elevation of 1000 m. The
sensitivity of RHD to the slope is highest in the range of 600 to 1000 m, followed by LWR,
and lowest in areas above 1000 m. These findings indicate that the impacts of slope on
RHD are limited to the low mountain regions and LWR.

However, an important consideration for these results is that the coarse-scale of
the RHD data may not have captured the influence of small topographic characteristics
throughout the study region. These findings may be impacted by the variation in the slope
in conjunction with the variation of land cover types (from low mountain desert to oasis,
to low plain desert), and as a result, RHD is more distributed in low mountain desert
and plain desert. The sensitivity of RHD to annual precipitation is more sensitive in the
elevation ranges of 600 m to 1000 m and 1000 m to 1600 m. This may be due to the high
temporal and spatial heterogeneity of precipitation in these two altitude zones and the
higher consequent impacts on vegetation growth. There is little difference across elevation
ranges in the sensitivity of RHD to precipitation in the three months before each survey.
RHD is more sensitive to the average annual temperature in LWR than in UPR, which
may be because the vegetation condition of UPR is not as sensitive to temperature as that
of LWR.

3.3. Causal Diagnosis of High RHD and Evaluation of the Potential Ecological Amplitude of Rats
in LWR and UPR Based on the BN

Using the diagnostic analysis function of the BN, we analyzed the driving factors
of severe and extremely severe rodent damage, which are determined by the high RHD
(800 to 4000 n/ha) indirectly in LWR and UPR. As the high-value status of the RHD node
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is determined (Figure 8), the posterior probability distributions of other environmental
variables consequently change (Table 4). In LWR, severe and extremely severe rodent
damage is most likely caused in areas of medium soil sand content (+13.4%), high slope
(+9.6%), and high LAI (+6.1%) when compared with the average level of rodent damage.
In UPR, severe and extremely severe rodent damage is most likely to occur in areas of high
NDVI (+16.2%), high LAI (+12.5%), high slope (+12.5%), and medium annual precipitation
(+11.2%) when compared with the average level of rodent damage. Therefore, areas with
the above environmental conditions may be the focus of future rodent damage control
in NTXJ.
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Table 4. Potential changes in the probability of the status of environmental variables corresponding to the occurrence of
high RHD (800 to 4000 n/ha) in LWR and UPR.

Environmental
Variables

Probabilistic Changes in the Status of
Environmental Variables Due to the Determination

of the High RHD Status in LWR (%)

Probabilistic Changes in the Status of
Environmental Variables Due to the Determination

of the High RHD Status in UPR (%)

Low Medium High Low Medium High

LAI +2.6 −8.7 +6.1 −0.5 −12.0 +12.5

NDVI +5.6 −11.6 +6.0 +1.8 −18.0 +16.2

Sand −17.9 +13.4 +4.5 −6.5 +3.2 +3.3

Slope −9.6 no value +9.6 −12.5 no value +12.5

P_yr −2.8 +2.8 0 −12.8 +11.2 +1.6

P_3mon_lag_pre −5.5 +3.4 +2.1 −5.5 +2.8 +2.7

T_avg_yr +1.1 −0.5 −0.6 +3.7 −3.7 0

Note: “low”, “medium”, and “high” represent the low-, medium-, and high-value status of the nodes, respectively.

4. Discussion
4.1. The Effectiveness of a BN in the Attribution Analysis of RHD Distribution in NTXJ

Since BNs have been used extensively in ecological studies [23–26], especially for
the expression of expert knowledge and cause and effect, it was an appropriate method
for the attribution analysis of RHD in this study. The environmental variables used in
this study inherently have a high linear correlation, so it was important to reduce the
interference of collinearity between the variables. This enabled us to obtain a more accurate
understanding of the effect of each environmental factor and to determine whether these
factors directly or indirectly affect RHD. When compared with conventional correlation
analysis or some non-causal machine learning methods such as random forest, a BN may
have advantages in deepening the understanding of causal mechanisms because expert
knowledge can be integrated. As ecosystem types in NTXJ are primarily determined, we
focused on the vertical differentiation within various elevation ranges to be considered
in the BN. Additionally, the dynamic diagnostic analysis function of the BN and the
visualization of the ecological amplitude in this study enabled us to focus our analysis
on the differential driving mechanisms of RHD under various environmental condition
combinations. These results can enrich our knowledge and enable decision makers to make
informed decisions regarding rodent damage control. Results derived from the BN can
also be used for the probabilistic inference of RHD if environmental variables are given.
These findings demonstrate the potential advantages of BN in decision support for rodent
damage control.

However, a BN may also have limitations in studies such as this. One potential disad-
vantage is the lack of consideration of interaction relationships within the network. Since
the relationship between BN nodes needs to be directional, some interaction relationships
and feedbacks may be ignored [39]. For example, vegetation conditions affect the food
sources of rats and thus affect RHD, but at the same time, high RHD will affect vegetation
condition and soil physical–chemical properties [40,41]. Thus, the relationship between
RHD and vegetation conditions may be reversed. If these relationships are not considered,
our understanding of the interactive effects of vegetation and RHD may be limited. Fur-
thermore, if the influence of predator populations, such as foxes [42], on RHD is included in
this BN, the interaction relations will be more complicated and should thus not be ignored.
Therefore, future studies should consider how to better incorporate the impacts of such
interactions when such machine learning methods are used.
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4.2. Uncertainties and Limitations Concerning the Driving Environmental Mechanisms of RHD
in NTXJ

Previous studies have mostly analyzed small-scale and local RHD within NTXJ, but
the study of large-scale RHD remains limited. The new findings of this study provide
information in the quantitative relationship between large-scale RHD and environmental
variables, and analyses on the different patterns of RHD across elevation ranges. Addition-
ally, this study focused on the impacts of environmental factors on the temporal and spatial
distribution of RHD, rather than the feedback of RHD on environmental factors (e.g., the
impacts on vegetation degradation and soil texture) [43]. Our findings are constrained
primarily by the directional limitation [39] between the BN nodes, but also because the
environmental factor data obtained from the survey of surface soil texture may not be
applicable to the feedback effect of RHD on local soil texture.

Given the results of the correlation analysis and the BN-based analysis, we found
that vegetation condition is an important factor that affects the large-scale temporal and
spatial distribution of RHD in NTXJ. Of all the other natural factors that were considered,
this factor was significantly more important. This relationship can be attributed to the fact
that vegetation is the most important food source for rats in NTXJ, and the temporal and
spatial distribution of food sources heavily influences the distribution of rat populations.
The differences in the relationships between RHD and LAI or NDVI may be influenced
by the different types of vegetation that are consumed by RO in LWR and LL in UPR.
Haloxylon ammodendron is the main food source for RO, whereas and LL primarily
consumes Artemisia spp. Other factors (e.g., precipitation, temperature, grazing intensity)
may also indirectly affect RHD through their effects on vegetation. However, the use
of the coarser spatial resolution of NDVI and LAI data may bring uncertainty to such
analyses, especially in desert areas with low vegetation coverage. This may lead to an
underestimation of the impact of spatial vegetation variability on RHD. Due to the use of a
monthly temporal resolution, the effects of temporal (i.e., interannual, seasonal) variability
of the vegetation condition on RHD may have been considered to be a greater influence
than the spatial variability. Furthermore, the 90 m resolution of terrain variables may
not be a fine enough scale to capture the impacts of small-scale terrain factors (e.g., sand
dunes with a scale below 20 m) on RHD [4]. In this case, the small-scale terrain factors
obtained by UAV remote sensing [4] can be value-added because the extracted values from
shady slopes and sunny slopes can be more accurate. Therefore, the guiding significance
of the terrain-related variable analysis in this study for rodent damage control may only
be effective at the regional scale, rather than the scale smaller than 90 m. In LWR, the
major anthropogenic factor of grazing intensity is significantly positively correlated with
RHD. One possible explanation for this relationship is that although grazing may threaten
the food supply of RO, grazing in LWR occurs mostly in winter. This grazing period is
staggered within the breeding season of RO (spring and summer), and the distribution
of both RO and grazers depends on the synchronous distribution of vegetation. Thus,
there may be positive correlation between grazing intensity and RDH. In UPR, the weak
correlation between grazing intensity and RHD may be because grazing sheep do not feed
on Artemisia spp. as their main food source, and the total vegetation in the area is sufficient
for sheep and LL to coexist.

To predict the large-scale spatial and temporal distribution of rat population density,
further considerations to the uncertainties and limitations should be made concerning the
characteristics of the population. In this study, the seasonal changes in the rat population
were mainly considered through the inclusion of monthly temporal variables (e.g., NDVI,
temperature, and precipitation). However, for occasional occurrences of extremely high
reproduction rates within the population, the predictive capability of these environmental
variables may be limited significantly. Additionally, the sex ratio [6], age structure, and
predator density for the rat population may also be important in predicting their density
distribution. This should be a primary focus in future studies. These considerations may
resolve the many limitations in generating accurate spatial and temporal maps of the
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rat density distribution. Likewise, more accurate environmental variable data, such as
the distribution of Haloxylon ammodendron and other desert plants [44,45] is critical to
predicting RHD distributions in the future.

4.3. Other Potential Impacts of Grazing on RHD

Although we found that grazing in LWR and UPR have had significantly different
impacts on RHD, the nature of this conspecific relationship remains uncertain. This is
because grazing intensity data that are purely based on statistical data cannot accurately
represent the temporal and spatial dynamics of the past and present grazing systems and
grassland management practices. The significant differences in water availability and
vegetation conditions between LWR and UPR may dominate the impacts of grazing on
RHD. One possible reason for the variable conditions between elevation zones is due to
the joint effect of low water availability and photosynthate allocation in local vegetation.
Under grazing conditions, the root–shoot ratio increases, and under conditions of low
water availability, more photosynthate can be allocated to roots [46–48]. In LWR vegetation,
more photosynthate may be allocated to roots to decrease transpiration under low water
availability conditions. Likewise, the underground biomass of plants may also increase to
adapt to the disturbance of grazing [49]. Therefore, more food resources can be provided
for RO and may lead to a positive impact of grazing on RHD in LWR.

In UPR, grazing may reduce ET and increase soil moisture, which, in turn, promotes
grass growth at certain grazing intensities [50]. Thus, the impact of grazing on RHD can
be insignificant due to weak food competition between livestock and LL when there are
sufficient food resources. However, under extreme drought conditions, water availability
and food resources in UPR may also decrease significantly. Intensive grazing in the summer
and autumn may greatly decrease the aboveground biomass throughout grassland areas
and may further perpetuate the negative effects on RHD. Under these drought conditions,
the plant biomass in LWR is also lower. This may result in decreased grazing intensity in
winter and spring due to insufficient food resources provided, thus further influencing
RHD in LWR. These considerations indicate that across areas of different water availability
conditions, grazing systems may indirectly influence RHD in UPR and LWR across different
elevation ranges. As RHD data collected in this study are limited to areas below alpine
grassland at 2700 m, the impact of grazing on RHD in higher elevation areas is limited.
However, these considerations may be not significant in NTXJ because the grazing duration
on alpine grassland is short, lasting only one to two months, and is often concentrated
in summer [50]. However, compared with NTXJ, throughout other alpine meadows, or
grassland areas in the world [51–53], longer grazing durations may indeed have a more
significant impact on the population density of rodents. In addition, in alpine meadows,
small rodents such as pika may spend the winter by eating yak feces [54], so the population
density and grazing intensity may also show a positive correlation.

4.4. The Prospect of Combining Satellite Remote Sensing Data and RHD Modeling

Compared with studies to identify local rat hole numbers, which may require very
fine resolution such as UAV images, the main innovation of this research is to establish a
relation between satellite remote sensing (e.g., NDVI data of GIMMS, DEM data of SRTM,
and meteorological dataset made through a fusion of remote sensing products, reanalysis
dataset and in situ observation data at weather stations) and the RHD in local-scale studies.
This has rarely been reported in previous studies. This study proved the effectiveness of
using large-scale satellite remote sensing data to analyze the temporal and spatial changes
of the population density of rodents. In addition, the data used in this paper, such as
soil texture, precipitation, temperature, etc., have other corresponding alternative datasets
produced by satellite remote sensing. Therefore, in future studies, we can use various
remote sensing datasets to establish a correlation with RHD. This is more suitable for
large-scale rodent population monitoring. It may contribute to the application prospects of
satellite remote sensing in animal ecology studies.



Remote Sens. 2021, 13, 4709 15 of 17

5. Conclusions

This study compiled small-scale and in situ RHD data in NTXJ that were collected
between 1982 to 2015. Correlation analysis and BN were used to study the relationship
between RHD and corresponding environmental variables. The conclusions are as follows:

1. The BN can effectively quantify causality in the environment-driven mechanism
modeling of RHD in NTXJ and support decision making.

2. The NDVI and LAI data from satellite remote sensing are important to the spatial–
temporal RHD distribution and the mapping in the future.

3. In LWR and UPR within NTXJ, there are significant, patterned differences in the
driving mechanism of RHD, which are dependent on the elevation.

4. In LWR, vegetation conditions have weaker impacts on RHD than in UPR, possibly
because of the Artemisia spp. eaten by LL in UPR is more sensitive to the spatial–temporal
variations in precipitation and temperature than the Haloxylon ammodendron eaten by
the RO in LWR.

5. In LWR, grazing intensity has a stronger positive correlation to RHD than in UPR,
possibly because winter grazers and RO both depend on vegetation distribution. In UPR,
sheep do not feed Artemisia spp. as the main food, and the total vegetation is sufficient for
sheep and LL to coexist.

6. Under differing conditions of water availability in LWR and UPR, grazing may affect
the ratio of aboveground and underground biomass through photosynthate allocation,
thereby affecting the distribution of RHD. In extremely dry years, the RHD of LWR and
UPR may have an indirect interactive relationship due to changes in grazing systems.
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