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Abstract

This paper introduces arithmetic-like operations on matrix pencils. The pencil-arithme-

tic operations extend elementary formulas for sums and products of rational numbers and

include the algebra of linear transformations as a special case. These operation give an

unusual perspective on a variety of pencil related computations. We derive generalizations of

monodromy matrices and the matrix exponential. A new algorithm for computing a pencil-

arithmetic generalization of the matrix sign function does not use matrix inverses and gives

an empirically forward numerically stable algorithm for extracting deflating subspaces.

1 Introduction

Corresponding to each matrix pencil λE − A, E, A ∈ C
m×n, define the (left-handed) matrix

relation on C
n to be

(E\A) = {(x, y) ∈ C
n × C

n | Ey = Ax} . (1)

Matrix relations are vector subspaces of C
n × C

n. In category theory, a matrix relation is called
the pullback of E and A [37]. If E is a nonsingular n-by-n matrix, then (E\A) is the linear
transformation with matrix representation E−1A. If E does not have full column rank, then
(E\A) might be described as a multi-valued linear transformation.

The linear descriptor difference equation Ekxk+1 = Akxk, Ek ∈ C
m×n and Ak ∈ C

m×n is
equivalent to (xk, xk+1) ∈ (Ek\Ak). Similarly, the linear differential algebraic equation E(t)ẋ(t) =
A(t)x(t) is equivalent to (x, ẋ) ∈ (E(t)\A(t)) [11].

We are especially interested in the case in which m 6= n and/or E and/or A are rank deficient.
However, for computational purposes, there are some advantages to representing (E\A) in terms
of two matrices even when m = n and E is nonsingular. If E is ill-conditioned with respect to
inversion, then forming E−1A explicitly may introduce destructive levels of rounding error. Also,
(M\I) is an inexpensive and rounding error free representation of M−1. It is this observation that
makes variations of the AB algorithm [32] and inverse-free spectral divide and conquer algorithms
[7, 9, 38] free of inverses.

∗Some of this work was completed at the University of Kansas. Partial support received by Deutsche Forschungs-
gemeinschaft, grant BE 2174/4-1.

†This material is based upon work partially supported by the DFG Research Center “Mathematics for Key
Technologies” (FZT 86) in Berlin, the University of Kansas General Research Fund allocation 2301062-003 and by
the National Science Foundation under awards 0098150, 0112375 and 9977352.
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This paper reviews and extends the definitions and applications of sum-like and product-like
operations on matrix relations that were introduced in [10, 11, 12] in Section 2. The introduced
arithmetic-like operations allow to formally add and multiply matrix pencils. This gives a new
perspective on several applications involving matrix pencils, or, in more general terms, matrix
products and quotients. In Section 3 we consider monodromy relations for linear difference equa-
tions, characterize classical solutions of linear differential-algebraic equations with constant coeffi-
cients using exponential relations, and derive a generalization of the matrix sign function which is
obtainable without matrix inversions. The new generalized sign function can be used to iteratively
compute deflating subspaces of matrix pencils. It turns out to be a structure preserving algorithm
for calculating deflating subspaces of Hamiltonian and skew-Hamiltonian pencils. The numerical
tests in Section 4 report the performance of the new algorithm in comparison to the QZ algorithm
[2, 40] and the classical generalized sign function iteration introduced in [24]. Empirically, the
new, generalized matrix sign function gives a forward numerically stable method of extracting
deflating subspaces.

1.1 Notation and Miscellaneous Definitions

We use the following notation.

• A superscript H indicates the Hermitian or complex conjugate transpose of a matrix, i.e.,
EH = ĒT .

• The Moore-Penrose pseudo-inverse of a matrix E ∈ C
m×n is denoted by E†. In particular,

if E ∈ C
m×n has full column rank, then E† = (EHE)−1EH .

• The kernel or null space of M ∈ C
m×n is null(M). The range or column space of M is

range(M).

• The spectral norm of a matrix M ∈ C
m×n is denoted by ‖M‖2. The Frobenius or Euclidean

norm on C
m×n is ‖M‖F =

√

trace(MHM).

• An empty matrix with zero rows and n columns is denoted by [−] ∈ C
0×n. It is the matrix

representation of the trivial linear transformation from C
n to the zero dimensional vector

space {0} = C
0.

• A matrix pencil λE − A is regular if E and A are square matrices and det(λE − A) 6= 0 for
at least one λ ∈ C. A pencil which is not regular is said to be singular.

• For a matrix pencil by λE−A, a nonzero vector x ∈ C
n is an eigenvector if for some nonzero

pair (ε, α) ∈ C \ {(0, 0)} εEx = αAx. If α = 0, then x corresponds to an infinite eigenvalue.
If α 6= 0, then x corresponds to the finite eigenvalue λ = ε/α.

• The columns of X ∈ C
n×k span a a right deflating subspace of a regular matrix pencil

λE−A if dim(range(X)) = dim(range(EX)+range(AX)). Deflating subspaces are spanned
by collections of eigenvectors and principal vectors. The deflating subspace is associated
with the corresponding eigenvalues. If these eigenvalues are disjoint from the remaining
eigenvalues of λE − A, then the deflating subspace is uniquely determined by them.

• The right deflating subspace V−(λE−A) of the regular pencil λE−A corresponding to finite
eigenvalues with negative real part is often called the stable right deflating subspace. The
right deflating subspace corresponding to eigenvalues with positive real part, V+(λE−A), is
the unstable deflating subspace. If E = I, we may write V±(A) for V±(λI−A). Such deflating
subspaces are required, e.g., by numerical algorithms for computing solutions to generalized
algebraic Riccati equations and generalized Lyapunov equations [24, 34, 41] or more generally,
for solving a variety of computational problems in systems and control [22, 39, 49].
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2 Elementary Properties and Arithmetic-like Operations

This section reviews the definitions and elementary mathematical properties of the sum-like and
product-like operations on matrix relations that were introduced in [10, 11].

For x ∈ C
n, the x-section of (E\A) is the set (E\A)x ≡ {y ∈ C

n | (x, y) ∈ (E\A)}. Note that
depending on x, E and A, (E\A)x may or may not be empty. The domain of a matrix relation is
its set of ordinates, i.e.,

Dom(E\A) = {x ∈ C
n | (E\A)x 6= ∅} .

The range of a matrix relation is its set of abscissas, i.e.,

Range(E\A) =
⋃

x∈Cn

(E\A)x.

Both Dom(E\A) and Range(E\A) are vector subspaces of C
n. The matrix E has full column

rank if and only if (E\A) is a linear transformation that maps Dom(E\A) to Range(E\A). The
matrix relation (E\A) is a linear transformation that maps C

n to C
n if and only if E has full

column rank and A = EE†A. In this case the matrix of the linear transformation is E†A where
E† = (EHE)−1EH .

The representation of a matrix relation (1) in terms of matrices E and A is not unique.

Theorem 2.1 For M ∈ C
p×m, and E, A ∈ C

m×n, (E\A) = (ME\MA) if and only if null(M)∩
range([A, −E]) = {0}.

Proof. If null(M)∩range([A, −E]) 6= {0}, then there exists vectors x, y ∈ C
n such that [A, −E]

[

x
y

]

6=
0 but M [A, −E]

[

x
y

]

= 0. Hence, y ∈ (ME\MA)x but y 6∈ (E\A)x. Therefore, null(M) ∩
range([A, −E]) 6= {0} implies that (E\A) 6= (ME\MA).

If null(M)∩range([A, −E]) = {0}, then y ∈ (ME\MA)x implies that [A, −E]
[

x
y

]

∈ null(M)∩
range([A, −E]). Hence, [A, −E]

[

x
y

]

= 0, i.e. y ∈ (E\A)x and (ME\MA) ⊂ (E\A). If

y ∈ (E\A)x, i.e., Ex = Ay, then MEx = MAy, y ∈ (ME\MA)x and (E\A) ⊂ (ME\MA).
Therefore, null(M) ∩ range([A, −E]) = {0} implies (E\A) = (ME\MA).
An immediate corollary is the following.

Corollary 2.2 If E, A ∈ C
m×n and Ê, Â ∈ C

p×n satisfy (E\A) = (Ê\Â), then there is a matrix
M ∈ C

p×m such that Ê = ME, Â = MA and null(M) ∩ range([A, −E]) = {0}.

The preceding theorem and corollary in particular show that matrix relations are invariant under
left-sided linear transformations.

The universal relation C
n × C

n might be written as ([−]\[−]) where [−] ∈ C
0×n is the empty

matrix with zero rows and n columns. With this convention, each matrix relation has a represen-
tation in which [E, A] ∈ C

m×(2n) has full row rank m.

2.1 Matrix relation Products

If E1, A1 ∈ C
n×n and E2, A2 ∈ C

p×n, then the composite or product matrix relation of (E2\A2)
with (E1\A1) is

(E2\A2)(E1\A1) =

{

(x, z) ∈ R
n × R

n

∣

∣

∣

∣

There exists y ∈ C
n such that

y ∈ (E1\A1)x and z ∈ (E2\A2)y

}

(2)

=











(x, z) ∈ C
n × C

n

∣

∣

∣

∣

∣

∣

∣

There exists y ∈ R
n such that

[

A1 −E1 0
0 A2 −E2

]





x
y
z



 =

[

0
0

]











. (3)
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Note that the product relation may or may not have a matrix representation with the same
number of rows as the factors. For example, although ([1]\[0]) and ([0]\[1]) are matrix relations
on C

1 which have representations in terms of 1-by-1 matrices. The product matrix relation,
([1]\[0])([0]\[1]) = {(0, 0)}, requires a matrix representation with at least two rows.

It is easy to verify that the product (2) is associative with multiplicative identity (I\I). Only
matrix relations that are nonsingular linear transformations on C

n admit a multiplicative inverse.
The formula for the product of scalar fractions (a1/e1)(a2/e2) = (a1a2)/(e1e2) has the following

generalization to matrix relations.

Theorem 2.3 Consider relations (E1\A1) and (E2\A2) where E1, A1 ∈ C
m×n and E2, A2 ∈

C
p×n. If Ã2 ∈ R

q×m and Ẽ1 ∈ R
q×p satisfy

null[Ã2, Ẽ1] = range

[

−E1

A2

]

, (4)

then

(E2\A2)(E1\A1) = ((Ẽ1E2)\(Ã2A1)) =
{

(x, z) ∈ C
n × C

n
∣

∣

∣
Ẽ1E2z = Ã2A1x

}

(5)

Proof. See [11].
If E1 = I and E2 = I, then Ẽ1 = I and Ã2 = A2 is a possibility in (4) and the theorem reduces
to (I\A2)(I\A1) = (I\(A2A1)) which is ordinary matrix multiplication. If E2 = I and A2 = γI
for some scalar γ ∈ C, then for each pair (ǫ, α) ∈ C for which α/ǫ = γ, Ẽ1 = ǫI and Ã2 = αI
is a possibility in (4) and the theorem implies (I\(γI))(E1\A1) = (ǫE1\αA1) which is a special
case of scalar multiplication. Thus, Theorem 2.3 is consistent with conventional matrix and scalar
multiplication of linear transformations.

For convenience, we define scalar and matrix products with matrix relations as follows. If
M ∈ C

n×n is a matrix and (E\A) is a relation on C
n, then (E\A)M = (E\A)(I\M) and

M(E\A) = (I\M)(E\A). It is easy to show that (E\A)M = (E\AM), and if M is nonsingular,
then M−1(E\A) = (EM\A). If γ ∈ C, then we define γ(E\A) = (I\γI)(E\A). It is easy to show
that (I\γI)(E\A) = (E\A)(I\γI). If α, β ∈ C and γ = α/β, then γ(E\A) = ((βE)\αA). In
particular γ(E\A) = (E\γA).

The inverse relation is (E\A)−1 = (A\E) and satisfies y ∈ (E\A)x if and only if x ∈ (E\A)−1y.
In general, it is not the case that (E\A)−1(E\A) is the identity relation (I\I). For example,
([1]\[0]) = {(x, y) ∈ C × C | y = 0} and ([0]\[1]) = {(x, y) ∈ C × C | x = 0} are inverse relations,
but their products are ([1]\[0])([0]\[1]) = {(0, 0)} and ([0]\[1])([1]\[0]) = C×C. The next theorem
summarizes the extent to which the inverse relation acts like a multiplicative inverse.

Lemma 2.4

1. The inclusion (I\I) ⊂ (E\A)−1(E\A) holds if and only if range(A) ⊂ range(E) (i.e.,
Dom(E\A) = C

n).

2. The inclusion (E\A)−1(E\A) ⊂ (I\I) holds if and only if A has full column rank n.

3. Both inclusions 1 and 2 hold and (E\A)−1(E\A) = (I\I) if and only if E†A is nonsingular,
i.e., if and only if (E\A) is a nonsingular linear transformation on C

n.

Proof. To prove inclusion 1, suppose that range(A) ⊂ range(E). For every x ∈ C
n, there exists

y ∈ C
n such that Ey = Ax (i.e., Dom(E\A) = C

n). Trivially, this implies that x ∈ (E\A)−1y.
Hence, from (2), for all x ∈ C

n, x ∈ (E\A)−1(E\A)x and (I\I) ⊂ (E\A)−1(E\A)x. Conversely, if
(I\I) ⊂ (E\A)−1(E\A), then, in particular, C

n = Dom(E\A) which implies rangeA ⊂ range E.
To prove inclusion 2, suppose that (E\A)−1(E\A) ⊂ (I\I). The only solutions x, y, z ∈ C

n

to Ey = Ax and Az = Ey have x = z. In particular, for the solution x = y = z = 0, the only
solution to Az = 0 is z = 0. This implies that A has full column rank. Conversely, if A has full
column rank, then solutions x, y, z ∈ C

n to Ey = Ax and Az = Ey satisfy Az = Ax and, hence,
z = x. It follows that (E\A)−1(E\A) ⊂ (I\I).
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The prove Statement 3 observe that the inclusion (I\I) ⊂ (E\A)−1(E\A) implies that range(A) ⊂
range(E), so Dom(E\A) = C

n. The inclusion (E\A)−1(E\A) ⊂ (I\I) implies that A has full col-
umn rank n. Thus, range(A) has dimension n. This and range(A) ⊂ range(E) ⊂ C

n implies that
range(A) = range(E) and E also has full column rank n. Hence, (E\A) is the linear transformation
with matrix representation E†A which is a rank n, n-by-n matrix.
Some familiar properties of inverses do carry over to matrix relations including

((E2\A2)(E1\A1))
−1

= (E1\A1)
−1(E2\A2)

−1

which follows directly from (2).
Products respect common eigenvectors in the following sense.

Theorem 2.5 Suppose that E1, E2, A1, A2 ∈ C
n×n and the matrix pencils λE1−A1 and λE2−A2

have a mutual eigenvector x 6= 0, i.e., suppose that there exist nonzero ordered pairs (ǫ1, α1), (ǫ2, α2) ∈
C × C \ {(0, 0)} such that

ǫ1E1x = α1A1x (6)

ǫ2E2x = α2A2x. (7)

If (E\A) = (E2\A2)(E1\A1), then (ǫ2ǫ1)Ex = (α2α1)Ax. Moreover,

1. If (ǫ2ǫ1, α2α1) 6= (0, 0), then x is an eigenvector of λE − A.

2. If ǫ1 = α2 = 0, then Ex = Ax = 0 and the pencil λE − A is singular.

3. If ǫ2 = α1 = 0, and rank
[

A1

0
−E1

A2

0
−E2

]

= 2n, then E and A are m-by-n matrices with

m > n and the pencil λE − A is singular.

Proof. Multiply (6) by α2 and (7) by ǫ1 to get

E1(α2ǫ1x) = A1(α2α1x)

E2(ǫ2ǫ1x) = A2(ǫ1α2x)

Hence, (ǫ2ǫ1x) ∈ (E2\A2)(E1\A1)(α2α1x) and (ǫ2ǫ1)Ex = (α2α1)Ax. If (ǫ2ǫ1, α2α1) 6= (0, 0),
then x is an eigenvector of λE − A.

By hypothesis (ǫ1, α1) 6= (0, 0) and (ǫ2, α2) 6= (0, 0), so the condition (ǫ1ǫ2, α1α2) = (0, 0)
implies that either ǫ1 = α2 = 0 or ǫ2 = α1 = 0. If ǫ1 = α2 = 0, then 0 ∈ (E1\A1)x. Since 0 ∈
(E2\A2)0, it follows that 0 ∈ (E2\A2)(E1\A1)x = (E\A)x, i.e., Ax = 0. Similarly, x ∈ (E2\A2)0
and 0 ∈ (E1\A1)0, so x ∈ (E2\A2)(E1\A1)0 = (E\A)0, i.e., Ex = 0. Because x 6= 0 is a mutual
null vector of E and A, the matrix pencil λE − A is singular.

If ǫ2 = α1 = 0, then E1x = 0 and A2x = 0 and [0, xH , 0]H ∈ C
3n satisfies

[

A1 −E1 0
0 A2 −E2

]





0
x
0



 =

[

0
0

]

.

By hypothesis, rank
[

A1

0
−E1

A2

0
−E2

]

= 2n. Expand [0, xH , 0]H to a basis of null
[

A1

0
−E1

A2

0
−E2

]

,

{[0, xH , 0], [uH
2 , vH

2 , wH
2 ]H , [uH

3 , vH
3 , wH

3 ]H , . . . [uH
n , vH

n , wH
n ]H . Regarding (E\A) as the null space

of [−E,A] ∈ C
n×2n, we have from (3) that {[0, 0], [uH

2 , wH
2 ]H , [uH

3 , wH
3 ]H , . . . [uH

n , wH
n ]H is a

spanning set of (E\A). Consequently, (E\A) has dimension less than n which implies that
rank[−E,A] > n. Hence, E and A must be m-by-n matrices with m > n. Such rectangular
pencils λE − A can not be regular.
The rank hypothesis in Theorem 2.5 part 3 is relatively mild. It is satisfied, for example, when-
ever A1 and E2 are nonsingular. Some such hypothesis is needed in order to conclude that
λE − A is singular. For example, ([1]\[0]) and ([0]\[0]) have a mutual eigenvector x = [1], but
([1]\[0])([0]\[0]) = ([1]\[0]) is represented by the regular pencil λ[1] − [0]. We conjecture that the
rank hypothesis in Statement 3 can be weakened to assuming that both λE1 − A1 and λE2 − A2

are regular.
Theorem 2.5 generalizes to deflating subspaces.

5



Theorem 2.6 Let (E1\A1) and (E2\A2) be matrix relations on C
n and let (E\A) be the product

(E\A) = (E2\A2)(E1\A1). Suppose that X ∈ C
n×k, and S1, T1, S2, T2 ∈ C

k×p satisfy

E1XS1 = A1XT1 (8)

E2XS2 = A2XT2. (9)

If S̃1, T̃2 satisfy

null[S1, T2] = range

[

−T̃2

S̃1

]

, (10)

then
EX(S2S̃1) = AX(T1T̃2).

Moreover, if λ(S2S̃1)− (T1T̃2) is regular, then range(X) is a (right) deflating subspace of λE −A.

Proof. If Ẽ1 and Ã2 satisfy (4), then by Theorem 2.3 we may use E = Ẽ1E2 and A = Ã2A1 to
represent the product (E\A) = (E2\A2)(E1\A1). Equations (8), (9) and (10) imply that

AXT1T̃2 = Ã2A1XT1T̃2 = Ã2E1XS1T̃2 = Ẽ1A2XT2S̃1 = Ẽ1E2XS2S̃1 = EXS2S̃1. (11)

This proves the theorem for E = Ẽ1E2 and A = Ã2A1. It remains to show the theorem for the
other pairs of matrices Ê, Â ∈ C

p×n such that (Ê\Â) = (E\A). If (Ê\Â) = (E\A), then, by
Corollary 2.2, there is a matrix M ∈ C

p×m such that Ê = ME and Â = MA It follows from (11)
that Ê and Â also satisfy ÊX(S2S̃1) = ÂX(T1T̃2).

Remark 2.7 If both S1 and S2 are nonsingular or both T1 and T2 are nonsingular, then λ(S2S̃1)−
T1T̃2 can be chosen to be regular. However, it is possible for λ(S2S̃1) − (T1T̃2) to be a singular
pencil even when both λS1 − T1 and λS2 − T2 are regular. A 1-by-1 example is S1 = [1], T1 = [0],
S2 = [0], T2 = [1] in which case S2S̃1 = [0] and T1T̃2 = [0]. Necessary and sufficient conditions for
λS − T to be regular remain an open problem.

2.2 Matrix Relation Sums

The sum of (E1\A1) with (E2\A2) is the matrix relation

(E1\A1) + (E2\A2) =

{

(x, z) ∈ C
n × C

n

∣

∣

∣

∣

∣

There exists y1, y2 ∈ C
n, such that

y1 ∈ (E1\A1)x, y2 ∈ (E2\A2)x and
z = y1 + y2

}

(12)

or, equivalently,

(E1\A1) + (E2\A2) =



















(x, z) ∈ C
n × C

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

There exists y1, y2 ∈ C
n, such that





A1 −E1 0 0
A2 0 −E2 0

0 I I −I













x
y1

y2

z









= 0.



















Here again, a representation of the sum relation may require matrices with a different number of
rows than the matrix representations of the summands.

The matrix relation (I\0) is an additive identity. A matrix relation has an additive inverse if
and only if it is a linear transformation on C

n.
The formula for the sum of scalar fractions a1/e1 + a2/e2 = (e2a1 + e1a2)/(e1e2) has the

following generalization to matrix relations.

Theorem 2.8 Consider matrix relations (E1\A1) and (E2\A2) with E1, A1 ∈ C
m×n and E2, A2 ∈

C
p×n. If Ẽ2 ∈ C

q×m, and Ẽ1 ∈ C
q×p satisfy

null[Ẽ2, Ẽ1] = range

[

−E1

E2

]

, (13)
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then

(E2\A2) + (E1\A1) = ((Ẽ1E2)\(Ẽ2A1 + Ẽ1A2)) (14)

=
{

(x, z) ∈ C
n × C

n
∣

∣

∣
Ẽ1E2z = (Ẽ2A1 + Ẽ1A2)x

}

.

Proof. See [11].
Observe that (13) implies that

Ẽ1E2 = Ẽ2E1, (15)

so Ẽ1, Ẽ2, E1 and E2 are symmetrical in (14). If E1 = E2 = I, then Ẽ1 = Ẽ2 = I is a possibility
in (13). This choice gives conventional matrix addition (I\A1) + (I\A2) = (I\(A1 + A2)).

Sum relations respect common eigenvectors in the following sense.

Theorem 2.9 Suppose that λE1 −A1 and λE2 −A2 are matrix pencils that have a mutual eigen-
vector x 6= 0 and

ǫ1E1x = α1A1x (16)

ǫ2E2x = α2A2x (17)

for some nonzero pairs (ǫ1, α1), (ǫ2, α2) ∈ C × C \ {(0, 0)}. Let (E\A) = ((E2\A2)) + ((E1\A1)).

1. If either α1 6= 0 or α2 6= 0, then (ǫ2α1+ǫ1α2, α1α2) 6= (0, 0) and (α1ǫ2+ǫ1α2)Ex = α1α2Ax.

2. If α1 = α2 = 0, then 1(Ex) = 0(Ax).

In any case, x is an eigenvector of λE − A.

Proof.
If α1 6= 0 or α2 6= 0, then multiply (16) by α2 and multiply (17) by α1 to get

ǫ1α2x = (E1\A1)(α1α2x)

α1ǫ2x = (E2\A2)(α1α2x).

Hence, (ǫ1α2 + α1ǫ2)x ∈ ((E1\A1) + (E2\A2)) (α1α2x). Under the assumption that (ǫ1, α1) 6=
(0, 0) and (ǫ2, α2) 6= (0, 0) it is easy to show that if either α1 6= 0 or α2 6= 0, then (ǫ2α1 +
ǫ1α2, α1α2) 6= (0, 0). So, (α1α2)Ex = (ǫ1α2 + α1ǫ2)Ax and x is an eigenvector of λE − A.

If α1 = α2 = 0, then E1x = 0 and E2x = 0. So, x ∈ (E1\A1)0 and x ∈ (E2\A2)0 which
shows that x + x ∈ ((E1\A1) + (E2\A2)) 0. It follows that Ex = 0 and 1(Ex) = 0(Ax), so x is an
eigenvector of λE − A.

Theorem 2.9 generalizes to deflating subspaces.

Theorem 2.10 Let (E1\A1) and (E2\A2) be matrix relations on C
n and let (E\A) the be sum

(E\A) = (E1\A1) + (E2\A2). Suppose that X ∈ C
n×k and S1, T1, S2, T2 ∈ C

k×p satisfy

E1XS1 = A1XT1 (18)

E2XS2 = A2XT2. (19)

If T̃1 and T̃2 satisfy

null[−T1, T2] = range

[

T̃2

T̃1

]

, (20)

then
EX(S1T̃2 + S2T̃1) = AX(T1T̃2). (21)

Moreover, if λ(T1T̃2) − (S1T̃2 + S2T̃1) is regular, then range(X) is a right deflating subspace of
λE − A.
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Proof. If Ẽ1 and Ẽ2 satisfy (13), i.e., if Ẽ2E1 = Ẽ1E2, then (18), (19) and (20) imply that

Ẽ2E1XS1T̃2 = Ẽ2A1XT1T̃2

Ẽ1E2XS2T̃1 = Ẽ1A2XT2T̃1.

Adding the two equations and using Ẽ1E2 = Ẽ2E1 and T1T̃2 = T2T̃1 gives

(Ẽ1E2)X(S1T̃2 + S2T̃1) = (Ẽ2A1 + Ẽ1A2)X(T1T̃2).

Equation (21) follows from Theorem 2.8.
In the context of Theorem 2.9, if T1 and T2 are square and nonsingular, then T̃1 and T̃2 can be
chosen to be square and nonsingular and, consequently the pencil λ(T1T̃2) − (S1T̃2 + S2T̃1) is
regular.

Remark 2.11 The classic proof of Ore’s theorem [29, p. 170], characterizing rings having left
quotient rings (or being a left order in a ring), uses expressions (5) and (14) in an abstract setting
to define the multiplication and addition in the left quotient ring.

2.3 Distribution of Addition across Multiplication

In general, the distributive law of multiplication across addition does not hold. For example, if
R3 = ([0]\[1]), R1 = ([1]\[1]) and R2 = ([1]\[−1]),then (R3R1) + (R3R2) = R3 = {0} × C but
R3(R1 + R2) = C × C. However, there is a partial distributive law.

Theorem 2.12 For any three matrix relations on C
n, R1 = (E1\A1), R2 = (E2\A2), and R3 =

(E3\A3):
(R3R1) + (R3R2) ⊂ R3(R1 + R2). (22)

Proof. If z ∈ ((R3R1) + (R3R1))x, then there exist vectors y1 ∈ (E3\A3)(E1\A1)x and y2 ∈
(E3\A3)(E2\A2)x such that z = y1 +y2. This in turn implies that there exist vectors w1, w2 ∈ C

n

such that

E1w1 = A1x

E3y1 = A3w1

E2w2 = A2x

E3y2 = A3w2

z = y1 + y2.

This implies that E3z = E3(y1+y2) = A3(w1+w2) and w1+w2 ∈ ((E1\A1) + (E2\A2)) x. Hence,

z ∈ (E3\A3) ((E1\A1) + (E2\A3)) = R3(R1 + R2).

The following theorem shows that the distributive law does hold in some special cases.

Theorem 2.13 Let R1 = (E1\A1), R2 = (E2\A2), and R3 = (E3\A3) be three matrix relations.
If range(E1\A1) ⊂ Dom(E3\A3) and range(E2\A2) ⊂ Dom(E3\A3), then

R3(R1 + R2) ⊂ (R3R1) + (R3R2) (23)

In particular, if R3 is a linear transformation on C
n, then R3(R1 + R2) = (R3R1) + (R3R2).

Proof. If z ∈ (E3\A3) ((E1\A1) + (E2\A2))x, then there exist vectors y1, y2 ∈ C
n such that

E1y1 = A1x

E2y2 = A2x

E3z = A3(y1 + y2)

8



If range(E1\A1) ⊂ Dom(E3\A3) and range(E2\A2) ⊂ Dom(E3\A3), then there exist vectors
z1, z2 ∈ C

n such that

E3z1 = A3y1

E3z2 = A3y2.

This implies that E3z = E3(z1 + z2) = A3(y1 + y2). Set w = z − (z1 + z2) and note that E3w = 0.
Since E3(z1 + w) = E3z1 = A3y1, it follows that z1 + w ∈ (E3\A3)(E1\A1)x and

z = (z1 + w + z2) ∈ ((E3\A3)(E1\A1) + (E3\A3)(E2\A2))x.

Therefore, (23) holds.
Similar inclusions hold for distribution from the right.

Theorem 2.14 For any three matrix relations on C
n, R1 = (E1\A1), R2 = (E2\A2) and R3 =

(E3\A3):
(R1 + R2)R3 ⊂ (R1R3) + (R2R3). (24)

If R3 is a linear transformation on C
n, then (R1R3) + (R2R3) = (R1 + R2)R3.

Proof. Similar to the proofs of Theorems 2.12 and 2.13.
Comparing (22) and (24), we see that the inclusion flips between distribution from the left and
distribution from the right.

2.4 Polynomials of Matrix Relations

If p(x) is the polynomial p(x) =
∑d

i=0 aix
i, then for any matrix relation (E\A), we may define

p((E\A)) as p ((E\A)) =
∑d

i=0 ai(E\A)i where (E\A)0 is defined to be (I\I) and all other sums
and products of relations are as defined above. The following lemmas enable occasional use of
canonical forms to analyze matrix relations which will be necessary in Section 3 to analyze classical
solution of linear differential-algebraic equations.

Lemma 2.15 If X, Y ∈ C
n×n are nonsingular and (E\A) is a matrix relation on C

n, then
Y −1p ((E\A)) Y = p

(

Y −1(E\A)Y
)

= p ((XEY \XAY )).

Proof. By (2), z ∈ Y −1(E\A)iY x if and only if there exist vectors x0, x1, . . . , xi satisfying
x0 = Y x, Exj = Axj−1, for j = 1, 2, . . . , i, and Y z = xi. With x̃i = Y −1xi for j = 0, 1, 2,
. . . , i, this becomes x̃0 = x, EY x̃j = AY x̃j−1 for j = 1, 2, . . . , i, and z = x̃i. which shows that
z ∈ (EY \AY )ix. A similar argument shows that z ∈ (EY \AY )ix implies that z ∈ Y −1(E\A)iY x.
Hence, Y −1(E\A)iY = (EY \AY )i. Theorem 2.1 now implies Y −1(E\A)iY = (XEY \XAY )i.

Let p(x) =
∑d

j=1 a1x
i. Regarding Y and Y −1 as linear transformations on C

n, Theorems 2.13

and 2.14 imply that the distributive law holds for Y and Y −1 and

Y −1p((E\A))Y =
d

∑

j=1

a1Y
−1(E\A)iY =

d
∑

j=1

a1(EY \AY )i =
d

∑

j=1

a1(XEY \XAY )i.

The last inequality follows from Theorem 2.1 and the fact that X is nonsingular.
Polynomials also respect block diagonal structure.

Lemma 2.16 Suppose E1, A1 ∈ C
m1×n1 , E2, A2 ∈ C

m2×n2 and p(x) is a polynomial. If (Ê1\Â1) =
p(E1\A1) and (Ê2\Â2) = p(E2\A2), then

p(diag(E1, E2)\diag(A1, A2)) = (diag(Ê1, Ê2)\diag(Â1, Â2)).
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3 Applications

3.1 Implicit Products

Building on [26, 38] the inverse free, spectral divide and conquer (IFSDC) algorithm [7] calculates
an invariant subspace of a matrix A as range

(

limk→∞(I + Ak)−1
)

or a right deflating subspace

of a pencil λE − A as range
(

limk→∞(I + (E−1A)k)−1
)

. The calculation is carefully organized to

avoid numerical instabilities. In particular, it represents the power A2k

or (E−1A)2
k

in terms of a

pair of matrices Ek, Ak as (E−1
k Ak) = A2k

or E−1
k Ak = (E−1A)2k. The matrices Ek+1 and Ak+1

are calculated from Ek and Ak using what is essentially Theorem 2.3 and (38). In the language
of this paper, the IFSDC algorithm calculates (Ek\Ak) = (I\A)2k or (Ek\Ak) = (E\A)2k by
successive matrix relation squaring (Ek+1\Ak+1) = (Ek\Ak)2.

Consider the linear, discrete-time descriptor system

Ekxk+1 = Akxk k = 1, 2, 3, . . . (25)

where Ek, Ak ∈ C
m×n, and xk ∈ C

n. If for all k, range(Ak) ⊂ range(Ek) and Ek has full column
rank n, then a sequence xk satisfies (25) if and only if for all k1 > k0

xk1+1 =

(

k1
∏

k=k0

E†
kAk

)

xk0
. (26)

Moreover, for k1 > k0, a pair of vectors (xk0
, xk1+1) are the k0 and k1 + 1st term in a sequence

xk of solutions of (25) if and only if (26) holds. The product
∏k1

k=k0
E†

kAk is sometimes called the
(k1, k0) monodromy matrix.

A generalization of (26) to the case in which some or all of the Ek’s fail to have full column
rank is mentioned in [11, 12]. A sequence xk satisfies (25) if and only if for all k1 > k0

xk1+1 ∈
(

k1
∏

k=k0

(Ek\Ak)

)

xk0
. (27)

Moreover, for any pair of integers k1 > k0, a pair of vectors (xk0
, xk1+1) are the k0 and k1 + 1st

term in a sequence xk of solutions of (25) if and only if (27) holds.

The matrix relation (Ek1:k0
\Ak1:k0

) =
∏k1

k=k0
(Ek\Ak) might be called the (k1, k0) monodromy

matrix relation. Theorem 2.3 suggests a way to explicitly compute Ek1,k0
and Ak1,k0

by computing
a sequence of bases of null spaces and matrix products. For this purpose, algorithms proposed
in [12] can be adapted. It is noted in [12] that if E†

k0
Ak0

is nonsingular (i.e., if (Ek0
\Ak0

) is a
nonsingular linear transformation), then

(Ek1:(k0+1)\Ak1:(k0+1)) = (Ek1:k0
\Ak1:k0

)(Ak0
\Ek0

)

(E(k1+1):(k0+1)\A(k1+1):(k0+1)) = (Ek1+1\Ak1+1)(Ek1:k0
\Ak1:k0

)(Ak0
\Ek0

).

In this case, some monodromy relations can be obtained from others at the cost of relatively
few matrix relation products. Particularly, this approach allows to obtain deflating subspaces,
eigenvalues and -vectors, as well as singular values and singular vectors of formal matrix products
Πℓ

k=1A
sk where sk = ±1. In that way, the methods from [12, 21] generalize to formal matrix

products involving rectangular factors.

3.2 Continuous-Time Descriptor Systems

The following generalization of the matrix exponential suitable for use with descriptor systems is
mentioned in [11]. Consider the linear, time invariant, differential algebraic equation

Eẋ = Ax (28)
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where E, A ∈ C
m×n and x = x(t) : R → C

n is a classical, smooth solution. (The notation ẋ
indicates the time derivative dx/dt.) This differential algebraic equation is well studied from both
the theoretical and computational viewpoints. See, for example, [17, 33].

If range(A) ⊂ range(E) and E has full column rank n, then classical solutions of (28) are
characterized by the property that for all t0, t1 ∈ R

n,

x(t1) = exp(E†A(t1 − t0))x(t0). (29)

Moreover, x1 = exp(E†A(t1 − t0))x0 if and only if there is a classical solution x(t) to (28) which
interpolates x1 and x0 at t1 and t0.

If range(A) 6⊂ range(E) or E does not have full column rank, then the situation becomes
more complicated. However, when expressed in terms of matrix relations, it is only a little more
complicated. Define the exponential relation by

exp(E\(A(t1 − t0))) =

∞
∑

k=0

(t1 − t0)
k

k!
((E\A))k (30)

where the terms in the sum are interpreted as in Subsection 2.4. As defined above, the infinite sum
is a limit of matrix relations, i.e., a limit of subspaces of C

n × C
n in the usual largest-canonical-

angle/gap metric topology [28], [44, Ch.II§4].

Theorem 3.1 For all E, A ∈ C
m×n, the exponential relation (30) is well defined and converges.

Proof. See Appendix A for a more detailed statement of the theorem and a proof.
In many ways, the matrix relation exponential characterizes solutions to (28).

Theorem 3.2 If λE − A is a regular pencil on C
n×n, then x(t) is a classical solution of (28) if

and only if for all t0, t1 ∈ R,

x(t1) ∈ exp(E\(A(t1 − t0)))x(t0).

Proof. By hypothesis, λE − A is regular, so it has Weierstraß canonical form

X(λE − A)Y = λ

[

I 0
0 N

]

−
[

J 0
0 I

]

(31)

where X, Y ∈ C
n×n are nonsingular, J ∈ C

k×k is in Jordan Form, and N ∈ C
(n−k)×(n−k) is a

nilpotent matrix also in Jordan form [23, Vol.II,§2].

Partition z(t) = Y −1x(t) conformally with (31) as z(t) =

[

z1(t)
z2(t)

]

with z1(t) ∈ C
k and

z2(t) ∈ C
n−k. Then x(t) is a classical solution of (28) if and only if for any t0, t1 ∈ R, z1(t1) =

eJ(t1−t0)z1(t0) and z2(t) ≡ 0.
It is easy to verify (see Appendix A) that

x(t1) ∈ exp (E\(A(t1 − t0))) x(t0)

if and only if

z(t1) ∈ exp

([

I 0
0 N

]

\
[

J 0
0 I

]

(t1 − t0)

)

z(t0)

=

([

I 0
0 0

]

\
[

eJ(t1−t0) 0
0 I

])

z(t0).

The last equality is a tedious but straight forward application of (30), see Appendix A. So,

[

I 0
0 0

] [

z1(t1)
z2(t1)

]

=

[

eJ(t1−t0) 0
0 I

] [

z1(t0)
z2(t0)

]

.
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Hence, for all t0, t1 ∈ R, z1(t1) = eJ(t1−t0)z1(t0) and z2(t0) = 0. (Note that z2 ≡ 0 because t0
varies throughout R.)
As emphasized at the end of the proof, Theorem 3.2 characterizes solutions to (28) as both t0 and
t1 vary through R. In contrast, (29) still characterizes solutions if t0 is fixed a priori and only t1
varies.

A corollary to the proof of Theorem 3.2 is useful for numerical computation.

Corollary 3.3 Suppose that λE − A is a regular pencil on C
n×n and x0, x1 ∈ C

n. There exists
a classical solution x(t) of (28) such that x(t0) = x0 and x(t1) = x1 if and only if

x(t1) ∈ exp(E\(A(t1 − t0)))x(t0)

x(t0) ∈ exp(E\(A(t0 − t1)))x(t1).

Theorem 3.2 has an extension to singular pencils. Let λE −A have Kronecker canonical form
(Theorem A.1 in Appendix A) [23],

X(λE − A)Y = diag(λE0 − A0, L1, L2, . . . , Lp, LT
p+1, LT

p+2, . . . , LT
p+q) (32)

where X and Y are nonsingular, λE0 − A0 is regular and the Lj ’s are ǫj-by-(ǫj + 1) matrices of
the form

Lj = λ[Iǫj
, 0ǫj ,1] − [0ǫj

, Iǫj ,1].

Here Iǫj
is the ǫj-by-ǫj identity matrix and 0ǫj ,1 is the ǫj-by-1 zero matrix. Let x(t) be a clas-

sical solution of (28) and let z(t) = Y −1x(t). Partition z(t) conformally with (32) as zT =
[zT

0 , zT
1 , . . . , zT

p+q]
T . It is easy to show that x(t) is a classical solution of (28) if and only if

E0ż0(t) = A0z0(t), zj(t) ≡ 0 for j = p + 1, p + 2, . . . p + q, and for j = 1, 2, 3, . . . p, zj(t) satisfies
the under determined differential equation

[Iǫj
, 0ǫj ,1]żj(t) = [0ǫj ,1, Iǫj

]z(t). (33)

Using the explicit expression for the matrix relation exponential in Appendix A, an elemen-
tary but tedious calculation shows that x(t1) = exp (E\A(t1 − t0)) x(t0) if and only if z0(t1) =
exp (E0\A0(t1 − t0)) z0(t0), and zj = 0 for j = p + 1, p + 2, . . . p + q. The exponential matrix
relation x(t1) = exp (E\A(t1 − t0))x(t0) does not capture (33).

Nevertheless, although the exponential matrix relation puts no restriction on zj(t) in (33),
the conclusion of Corollary 3.3 still holds. If t0 6= t1, then for any choice of y0, y1 ∈ C

ǫj+1,
there is a solution of (33) that interpolates y0 and y1 at t0 and t1. The solutions of (33) take
the form z2(t) = ż1(t), z3(t) = ż2(t) = z̈1(t), . . . , zǫj+1(t) = żǫj

(t) = z(ǫj)(t). A solution of
(33) that interpolates y0 and y1 at t0 and t1 is obtained by choosing z1(t) to be the polynomial
of degree 2ǫj + 1 satisfying the osculatory interpolation conditions z1(t0) = y10, ż1(t0) = y20,

. . . z
(ǫj)
1 (t0) = yǫj+1,0 and z1(t1) = y11, ż1(t1) = y21, . . . z

(ǫj)
1 (t1) = yǫj+1,1.

It follows that every choice of t0, t1 ∈ R and boundary conditions x0, x1 ∈ C
n there is a solution

x(t) of (28) such that x(t0) = x0 and x(t1) = x1 if and only if x1 ∈ exp (E\A(t1 − t0)) x0 and
x0 ∈ exp (E\A(t0 − t1)) x1. This can be extended to an arbitrary number of boundary conditions
at distinct values of t.

3.3 An Inverse-Free Sign Function Iteration

The matrix sign function [22, 31, 41] gives rise to an unusual family of algorithms for finding
deflating subspaces, solving (generalized) algebraic Riccati equations and (generalized) Lyapunov
equations. Because they are rich in matrix-matrix operations, matrix sign function algorithms
are well suited to computers with advanced architectures [4, 6, 15, 24, 25]. Matrix sign function
algorithms have attracted much attention through the last three decades; the survey [31] lists over
100 references. The rounding error analysis and perturbation theory are becoming understood
[5, 18, 19, 20, 46]. Its presence in the SLICOT library [14, SB02OD], the PLiC library [15,
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PMD05RD] and as a prototype in the ScaLAPACK library [16] is an indication of its maturity
and acceptance.

For z ∈ C, define sign(z) by

sign(z) =

{

1 if the real part of z is positive
−1 if the real part of z is negative.

If z has zero real part, then we leave sign(z) undefined. If A ∈ C
n×n has no eigenvalue with zero

real part and has Jordan canonical form A = M(Λ + N)M−1 where Λ = diag(λ1, λ2, . . . , λn), N
is nilpotent and NΛ = ΛN , then (see [41])

sign(A) = M diag(sign(λ1), sign(λ2), sign(λ3), . . . , sign(λn))M−1.

Note that sign(A)2 = I, i.e., sign(A) is a square root of I, and null(sign(A) ± I) is V∓(A) the
invariant subspaces of A corresponding to eigenvalues in the open left- and right-half plane, re-
spectively.

Gardiner and Laub [24] proposed a generalization of the matrix sign to matrix pencils λE −A
in which both A and E are nonsingular. They defined the sign of A with respect to E as the matrix
sign(A,E) = E sign(E−1A) = sign(AE−1)E. The pencil sign function is the pencil sign(λE−A) =
λE − sign(A,E). If both A and E are nonsingular, then λE − A has Weierstraß canonical form
XEY = I, XAY = J where X, Y and J are nonsingular and J is in Jordan canonical form. The
pencil sign function λE − sign(A,E) has Weierstraß canonical form XÊY = I, XÂY = sign(J).
Note that null(sign(A,E) ± E) is V∓(λE − A) the right deflating subspaces corresponding to
eigenvalues in the open left- and right-half plane respectively. Such deflating subspaces are the
key computation in some numerical algorithms in computational control [22, 24, 34, 39, 41, 49].

A right-handed sign pencil is any pencil in the form

λẼ − Ã = λ(X̃E) − (X̃ sign(A,E))

for some nonsingular matrix X̃. If λẼ − Ã is a right-handed sign pencil, then

null(A ± E) = V∓(λE − A).

A left-handed sign pencil is any pencil in the form

λẼ − Ã = λ(EỸ ) − (sign(A,E)Ỹ )

for some nonsingular matrix Ỹ . The pencil sign function λE − sign(A,E) is ambidextrous.
One of the first numerical iterations proposed to compute the matrix sign function is

A0 = A, Aj+1 = (Aj + A−1
j )/2, j = 0, 1, 2, . . . (34)

If A has no eigenvalue with zero real part, then limj→∞ Aj = sign(A) [41]. This is Newton’s
method applied to the nonlinear equation X2 − I = 0. Thus, (34) has local quadratic convergence
rate.

Iteration (34) extends to matrix pencils λE − A [24] as follows.

Â0 = A, Âj =
1

2

(

Âj−1 + EÂ−1
j−1E

)

, j = 0, 1, 2, . . . (35)

If both E and A are nonsingular, then Âj converges to sign(A,E).
The Gardiner-Laub algorithm [24] to calculate sign(A,E) is essentially an explicit implemen-

tation of (35). It avoids explicitly forming the product E−1Âj . However, it does explicitly form

EÂ−1
j E. The condition number of Âj for inversion is not closely linked to the conditioning of the

deflating subspaces of λE−A. However, inverting ill-conditioned Âj in (35) may introduce signif-
icant rounding errors that change the deflating subspaces. The following example demonstrates
this.
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Backward Errors
p (35) QZ Alg. 1
1 10−16 10−16 10−16

2 10−15 10−15 10−15

3 10−12 10−15 10−15

4 10−10 10−15 10−13

5 10−9 10−16 10−13

6 10−7 10−16 10−12

7 10−6* 10−16 10−12

8 10−5* 10−16 10−11

9 10−4* 10−16 10−10

10 10−3* 10−16 10−11

Forward Errors
p (35) QZ Alg. 1 ε/dif
1 10−15 10−16 10−16 10−16

2 10−15 10−15 10−15 10−15

3 10−12 10−15 10−14 10−14

4 10−9 10−13 10−13 10−13

5 10−8 10−13 10−12 10−12

6 10−6 10−14 10−12 10−11

7 10−5* 10−12 10−11 10−10

8 10−4* 10−11 10−10 10−10

9 10−3* 10−12 10−11 10−10

10 10−3* 10−11 10−10 10−9

Table 1: Rounding error induced forward and backward errors in the computed eigenvector of
with eigenvalue −1/p of the pencil (36). The tables compare (35), the QZ algorithm [2, 40] and
Algorithm 1. Asterisks indicate examples in which (35) failed to satisfy its convergence tolerance
‖Âj+1 − Âj‖F ≤ 10−10‖Âj+1‖F in 50 iterations. For p = 10, (35) encounters many highly ill-
conditioned matrix inverses. In the right-most-column, ε/dif is is an estimate largest forward error
that can be caused by a backward error of roughly the unit round. See [5, 45] for details.

Example 3.4 Let p be a nonzero scalar, E be the 10-by-10 matrix all of whose entries are one,
U be the 10-by-10 elementary reflector U = I − 0.2 · E, Hp be the 10-by-10 Jordan block with
eigenvalue 1/p, Kp be the 10-by-10 diagonal matrix with (1, 1) entry equal to −1 and all remaining
diagonal entries equal to 1. Now let

λEp − Ap = λ(UHpU) − (UKpU). (36)

The pencils λEp − Ap have one eigenvalue equal to −1/p and a multiplicity 9 eigenvalue equal
to 1/p. The eigenvalue 1/p corresponds to a single 9-by-9 Jordan block. The eigenvalue −1/p
is simple, and the conditioning of the corresponding one dimensional right deflating grows only
moderately as p increases from 1 to 10.

We calculated a normalized basis of the one dimensional stable right deflating subspace cor-
responding to the eigenvalue −1/p as an eigenvector obtained from the QZ algorithm [2, 40]
and also as the null space of E + sign(A,E) using (35) to calculate sign(A,E). (The compu-
tations were run under MATLAB version 6 on a Dell Precision workstation with unit roundoff
approximately 2.22 × 10−16.) This produced rounding error corrupted, normalized, approximate
eigenvectors vp,qz from the QZ algorithm, vp,gl from (35) (and vp,ps from Algorithm 1 presented

in Section 3.3 below). Comparing these to the first column of Up, up, gives the forward or absolute
errors ‖vp,qz − up‖2 and ‖vp,gl − up‖2. The backward errors are the smallest singular values of

[Epvp,qz, Apvp,qz] and [Epvp,gl, Apvp,gl]. Table 1 displays the rounding error induced forward

and backward errors for p = 1, 2, 3, . . . , 10. It also lists an estimate of the largest forward error
that could be caused by perturbing the entries of Ep and Ap by quantities as large as the unit
roundoff. In the table, the estimate is denoted by ε/dif. See [5, 45] for details. It demonstrates
how ill-conditioned E and/or Âj in (35) can adversely affect both forward and backward errors.
In contrast, the backward numerically stable QZ algorithm is unaffected.

As p varies from p = 1 to p = 10, the condition number of Ep, ‖E−1
p ‖ ‖Ep‖, varies from 6 to

1010. For p > 7 the iterates Âk in (35) are so ill-conditioned that our program failed to meet its
stopping criterion ‖Âj+1−Âj‖F ≤ 10−10‖Âj+1‖F where ε is the machine precision 2.22×10−16. In
that case, we terminated the program after 50 iterations. For p = 10, many iterates had condition
numbers larger than 1014.
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3.3.1 An Inverse Free Pencil Sign Function Iteration

This subsection describes in detail a modification and extension of (35) that was briefly introduced
in [10, 13]. Using matrix relations, the modified iteration avoids explicit matrix inversions.

Multiplying (35) from the left by E−1
j yields (34) applied to E−1A. Iteration (35) defines the

sequence of pencils λE − Âj . Regarded as a sequence of matrix relations (E\Âj), (35) becomes

(Ej+1\Aj+1) = (βjI\αjI)
[

(Ej\Aj) + ((Ej\Aj))
−1

]

. (37)

where αj , βj ∈ C satisfy αj/βj = 1/2. If Ej is nonsingular, then one choice of [Ẽ2, Ẽ1] in

Theorem 2.8 is [Ẽ2, Ẽ1] = [I, EjA
−1
j ]. With this choice and αj ≡ 1, βj ≡ 2 (37) reduces to (35).

Many other choices of [Ẽ2, Ẽ1] are possible. For example, if

[

−Ej

Aj

]

=

[

Qj, 11 Qj, 12

Qj, 21 Qj, 22

] [

Rj

0

]

(38)

is a QR factorization, then [Ẽ2, Ẽ1] = [QH
j, 12, QH

j, 22] is a possibility. With this choice, (37) becomes

Aj+1 = αj

(

QH
j, 12Aj + QH

j, 22Ej

)

Ej+1 = βjQ
H
j, 12Ej

(39)

where E0 = E, A0 = A and αj , βj ∈ C are numbers for which αj/βj = 1/2. Equivalently, using
QH

j, 12Ej = Qj, 22Aj from (15), (39) can also be expressed as

[

Ej+1

Aj+1

]

=
β

2

[

Qj, 12 Qj, 22

Qj, 22 Qj, 12

]H [

Ej

Aj

]

.

For simplicity, throughout this paper we will choose αj and βj to be real and independent of j.
Consequently, we drop the subscript j. We show below that α = 1/

√
2 and β =

√
2 is necessary

for convergence of the sequences Ej and Aj . An explicit implementation of (38), (39) is an inverse
free pencil sign iteration. (See Algorithm 1 below.) The resulting algorithm is matrix-matrix
multiplication rich and well suited to computers with advanced architectures. Note that although
(35) and (39) generate different sequences of matrices, they define the same sequence of matrix
relations, i.e., (Ej\Aj) = (E\Âj), for all j ∈ N0.

Theorem 3.5 If both A and E are nonsingular, (i.e., if λE−A has neither an infinite eigenvalue
nor an eigenvalue with zero real part), then the sequences of matrices Ej ∈ C

n×n and Aj ∈ C
n×n

generated by (38) and (39) have the following properties for all j = 0, 1, 2, . . ..

1. Both Aj and Ej are nonsingular, i.e., the pencil λEj −Aj has neither an infinite eigenvalue
nor an eigenvalue with zero real part eigenvalues.

2. If λEj − Aj has an eigenvalue λ ∈ C with corresponding right eigenvector x ∈ C
n, then

λEj+1 − Aj+1 has an eigenvalue (λ + λ−1)/2 with the same eigenvector x.

3. If V is a right deflating subspace of λE −A then V is a right deflating subspace of λEj −Aj.

4. The sequence of relations (Ej\Aj) generated by (38) and (39) converges quadratically (as a
sequence of subspaces of C

n × C
n in the usual largest-canonical-angle/gap-metric topology

[28] [44, Ch.II§4]) to a limiting relation (E∞\A∞) and λE∞ − A∞ is a right-handed sign
pencil.

5. limj→∞ E−1
j Aj = sign(E−1A).

Proof. Recall that (35) and (39) generate the same sequence of matrix relations, i.e., in the
notation of (35) and (39), for all j, (Ej\Aj) = (E\Âj). The stated properties follow from the

corresponding properties of Âj in (35) [24].
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Theorem 3.5 shows that right eigenvectors and right deflating subspaces are invariant through-
out (39). In particular, (39) preserves special structure that the right deflating subspaces may
have. Linear quadratic and H∞ optimal control problems [24, 34, 39, 35] along with quadratic
eigenvalue linear damping models [27] lead to invariant subspace problems whose right deflating
subspaces have symplectic structure. The symplectic structure is preserved by (39).

Recall that for any nonsingular matrix Mj , ((MjEj)\(MjAj)) = (Ej\Aj). Consequently,
convergence of (Ej\Aj) does not imply convergence of the individual sequences of matrices Ej

and Aj . For example, if E = A = I, α = 1 and β = 2 in (39), then a direct calculation shows that
one may choose Qj, 12 = Qj, 22 = I/

√
2 in (38). With these choices, Ej = (

√
2)jI and Aj = (

√
2)jI

and limj→∞ Ej = limj→∞ Aj = ∞. If α = 1/2 and β = 1, then limj→∞ Ej = limj→∞ Aj = 0.
Converging to zero is at least as problematic as not converging. Note that in this example,
sign(A,E) = I = A and for all j, (E\A) = (Ej\Aj) = (I\I). The sequence of matrix relations
is stationary. Using α = 1/

√
2, β =

√
2 in (39) yields a stationary sequence of matrices Ej = I,

Aj = I. The following theorem shows that this choice of α = 1/
√

2 and β =
√

2 is necessary for
convergence of the individual matrices.

Theorem 3.6 If Ej and Aj obey (38) and (39) with nonnegative diagonal entries in R, and if both
E∞ = limj→∞ Ej and A∞ = limj→∞ Aj exist and are nonsingular, then α = ±1/

√
2, β = ±

√
2

and there are unitary matrices W, Y ∈ C
n×n with W = WH for which Q∞ has CS decomposition

Q∞ = lim
j→∞

Qj =
±1√

2

[

Y I
−WY W

]

=

[

I 0
0 W

] (±1√
2

[

I I
−I I

]) [

Y 0
0 I

]

. (40)

Proof. Taking limits in (39) and noting that both E∞ and A∞ are nonsingular shows that Q∞, 12 =
limj→∞ Qj, 12, Q∞, 22 = limj→∞ Qj, 22 exist and

Q∞, 12 = β−1I
A∞ = α

β A∞ + αQH
∞, 22E∞.

(41)

Solving for Q∞, 22 and using α/β = 1/2 gives (2α)−1A∞E−1
∞ = QH

22 or, equivalently,

(2α)−1E∞

(

E−1
∞ A∞

)

E−1
∞ = QH

22. (42)

Recall that E−1
∞ A∞ = sign(E−1A) which is a square root of I. Squaring both sides of (42) gives

(2α)−2I =
(

QH
∞, 22

)2
or, equivalently,

I = (2α)2Q2
∞, 22. (43)

The columns of
[

Q∞, 12

Q∞, 22

]

=
[

β−1I
Q∞, 22

]

are orthonormal, because they are the limit of the correspond-

ing columns of the orthonormal matrices
[

Qj, 12

Qj, 22

]

. Hence,

[

β−1I

Q∞, 22

]H [

β−1I

Q∞, 22

]

= β−2I + QH
∞, 22Q∞, 22 = I (44)

which implies that Q∞, 22 = ±
√

1 − β−2W for some unitary matrix W ∈ R
n×n. It follows from

(43) and the scalar-times-unitary structure of Q∞, 22 that (2α)−2 = 1 − β−2. This and the
constraint α/β = 1/2 establish α = ±1/

√
2, β = ±

√
2. The (1, 2) block of (40) now follows

from (41). The (2, 2) block of (40) follows from (44). Equation (43) now simplifies to W 2 = I.
Multiplying this by WH gives W = WH .

Continuity of the QR factorization of full column rank matrices together with the nonnegative
diagonal entries of R implies that limj→∞ Qj, 11 = Q∞, 11 and limj→∞ Qj, 21 = Q∞, 21 exist.
The fact that Q∞ is unitary and the previously established form of Q∞, 12 = (±1/

√
2)I and

Q∞, 22 = (±1/
√

2)W implies that

0 = QH
∞, 11Q∞, 12 + QH

∞, 21Q∞, 22 =
±1√

2

(

QH
∞, 11 + QH

∞, 12W
)

.
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So, Q∞, 11 = −WHQ∞, 12 = −WQ∞, 12. This gives

I = QH
∞, 11Q∞, 11 + QH

∞, 12Q∞, 12 = QH
∞, 11Q∞, 11 + QH

∞, 11Q∞, 11

which establishes the (1, 1) and (2, 1) block of (40).
Submatrices Qj, 12 and Qj, 22 are determined by (38) only up to left multiplication by an

arbitrary unitary factor. Even with α = 1/
√

2 and β =
√

2, the sequences Ej and Aj in (38) and
(39) may or may not converge depending on how this nonuniqueness is resolved. The following
particular choice of Q in (38) generates empirically convergent sequences Ej and Aj in (39) and
admits a particularly efficient implementation.

Assume that both Aj and Ej are nonsingular. Let Ej = UE, jTE, j and Aj = UA, jTA, j be QR
factorizations of Ej and Aj , respectively where UE, j , UA, j ∈ R

n×n are unitary and TE, j , TA, j ∈
R

n×n are upper triangular with non-negative diagonal entries. Let
[

−TE, j

TA, j

]

=

[

Vj, 11 Vj, 12

Vj, 21 Vj, 22

] [

Rj

0

]

(45)

[

@@

@@

]

=

[

@@ @@

@@ @@

]

[

@@
0

]

be the QR factorization with orthogonal factor V in which, as indicated schematically, Vj, 11 and
Vj, 21 are upper triangular and Vj, 12 and Vj, 22 are lower triangular. To promote convergence, select
the diagonal entries of Vj, 12 to be non-negative. (We give an explicit algorithm to compute this
factorization below.) One particular choice of the orthogonal factor Qj in (38) is

Qj =

[

UE, j 0
0 UA, j

] [

Vj, 11 Vj, 12

Vj, 21 Vj, 22

]

=

[

0

0

][

@@ @@

@@ @@

]

. (46)

If both Ej and Aj are nonsingular, then the matrix Qj is uniquely determined by the nonsingular
matrices Ej and Aj and the choice of nonnegative diagonal entries in the triangular factors TE, j ,
TA, j , Rj and Vj, 12.

In the notation of (45) and (46) with α = 1/
√

2, β =
√

2, the iteration (39) becomes

Aj+1 =
1√
2

(

V H
j, 12U

H
E, jAj + V H

j, 22U
H
A, jEj

)

(47)

Ej+1 =
√

2V H
j, 12U

H
E, jEj =

√
2V H

j, 22U
H
A, jAj .

Note that Ej+1 is upper triangular with non-negative diagonal entries, because it is the product
of the upper triangular matrices V H

j, 12 and UH
E, jEj = TE, j both of which were chosen to have

nonnegative diagonal entries. Consequently, UE, j+1 = I.

Scaling

If the pencil λE − A = λE0 − A0 has eigenvalues far away from their limiting value of ±1, then
initially convergence may be slow. Initially slow convergence can sometimes be avoided by scaling,
i.e., at the beginning of each iteration, select a positive scalar γj > 0 and replace Aj (say) by
γjAj before calculating the factorization (38) [19, 4, 31]. It is easy to show that if γ > 0, then
sign(λE − A) = sign(λE − γA), so scaling does not change the pencil sign function. With this
modification, (38) becomes

[

−Ej

γjAj

]

=

[

Qj, 11 Qj, 12

Qj, 21 Qj, 22

] [

Rj

0

]

The variation of determinantal scaling suggested in [24] applies here:

γj =
|det(Ej)|−1/n

|det(Aj)|−1/n
.
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This choice makes the eigenvalues of the scaled pencil, λEj − γjAj , have geometric mean equal to
one. In the context of Algorithm 1, Ej is triangular and the magnitude of the determinant of Aj

can be obtained from the triangular QR factor TA which must be computed anyway. Hence, the
scale factor γj may be computed with negligible extra work relative to the rest of Algorithm 1.

3.3.2 An Inverse Free Pencil Sign Function Algorithm

In this section we describe a procedure for computing a right-handed pencil sign function using
(45), (46), and (47). The QR factorizations Ej = UE, jTE, j and Aj = UA, jTA, j may be obtained
from a well known procedure like Householder’s algorithm [28]. The orthogonal matrix V with
triangular blocks in (45) may be obtained as a product of rotations. The process is well illustrated

by an n = 3 example. Initially
[

−TE, j

TA, j

]

has the zero structure

[

−TE, j

TA, j

]

=

















x x x

x x

x

x x x

x x

x

















where x’s represent entries that may be nonzero and blanks represent entries that must be zero.
Select plane rotations Rj, 14, Rj, 25 and Rj, 36 in the (1, 4), (2, 5) and (3, 6) planes, respectively, to

zero the (4, 1), (5, 2) and (6, 3) elements of

[

−T
(1)
E, j

T
(1)
A, j

]

:= Rj, 14Rj, 25Rj, 36

[

−TE, j

TA, j

]

. Schematically,

this becomes

(Rj, 14Rj, 25Rj, 36)

[

−TE, j

TA, j

]

=





















x 0 0 x 0 0
0 x 0 0 x 0
0 0 x 0 0 x

x 0 0 x 0 0
0 x 0 0 x 0
0 0 x 0 0 x









































x x x

x x

x

x x x

x x

x





















=





















x x x

x x

x

x x

x





















.

Select plane rotations Rj, 24 and Rj, 35 in the (2, 4) and (3, 5) planes, respectively, to zero the (4, 2)
and (5, 3) elements

(Rj, 24Rj, 35)

[

−T
(1)
E, j

T
(1)
A, j

]

=





















x 0 0 x 0 0
x x 0 x x 0
0 x x 0 x x

x x 0 x x 0
0 x x 0 x x

0 0 x 0 0 x









































x x x

x x

x

x x x

x x

x





















=





















x x x

x x

x

x





















.

Call the result

[

−T
(2)
E, j

T
(2)
A, j

]

. Finally select a plane rotation Rj, 34 in the (3, 4) plane to zero the (4, 3)

element

Rj, 34

[

−T
(2)
E, j

T
(2)
A, j

]

=





















x 0 0 x 0 0
x x 0 x x 0
x x x x x x

x x x x x x

0 x x 0 x x

0 0 x 0 0 x









































x x x

x x

x

x x x

x x

x





















=





















x x x

x x

x





















=: Rj
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INPUT: A pencil λE−A with neither an infinite eigenvalue nor an eigenvalue with zero real part.
A convergence tolerance τ > 0.

OUTPUT: λE − A is overwritten by a (an approximate) right-handed pencil sign function.

1: E → UETE {QR factorization}
2: E ← TE ; A ← UH

E A
3: R− ← 2τI; R ← 0
4: while ‖R− − R‖F > τ‖R‖F do

5: A → UATA {QR factorization}
6: γ → det(E)−1/n/det(TA)−1/n

7: {Use γ → 1 for unscaled algorithm. Note that E and TA are upper triangular.}
8: R− ← R; R ←

[

−E
γTA

]

; V ← I2n

9: for k = 1, 2, 3, . . .n do

10: for i = 1, 2, 3, . . .n − k + 1 do

11: j ← i + k − 1

12: Calculate a rotation
[

c
s

−s
c

]

such that
[

c
s

−s
c

]

[

rjj

rij

]

=
[√

r2
jj+r2

ij

0

]

.

13: R[j,n+i],: ←
[

c
s

−s
c

]

R[j,n+i],:

14: V:,[j,n+i] ← V:,[j,n+i]

[

c
s

−s
c

]H

15: end for

16: end for

17: V:,(n+1):(2n) ← V:,(n+1):(2n) diag(sign(v1,n+1), sign(v2,n+2), . . . , sign(vn,2n))

18: A ←
(√

2V H
1:n,(n+1):(2n)(γA) + V H

(n+1):(2n),(n+1):(2n)U
H
A E

)

/
√

2

19: E ←
√

2V H
(1:n),(n+1:2n)E

20: end while

Algorithm 1: Inverse Free Matrix Sign Function

In this notation, Vj is the product

Vj = (Rj, 34Rj, 24Rj, 35Rj, 14Rj, 25Rj, 36)
H

=





















x x x x

x x x x

x x x x

x x x x

x x x x

x x x x





















. (48)

Algorithm 1 computes a right-handed pencil sign function employing the efficient implementa-
tion of (38) described above and making use of the resulting triangular matrix structures. It uses
28n3/3 floating point operations to compute the QR factorization using Householder’s method
[28] and accumulate the two n-by-n blocks Q12 and Q22. Taking advantage of the triangular
structure in E, V(1:n),(n+1:2n) and V1:n,(n+1):(2n) the three matrix-matrix multiplies use roughly
5n3/3 floating point operations. So, each iteration uses a total of roughly 11n3 floating point
operations. We observe empirically that 6–10 iterations is typical for well scaled pencils.

Singularities

The unscaled inverse free iteration (38) and (39) remains defined even in the case that A or E or
both are singular. (This corresponds to the unscaled, γ = 1, version of Algorithm 1.) It is natural
to ask what becomes of the sequence of iterates Ej , Aj in this case. Sun and Quintana–Ort́ı [48]
studied (35) in the case that E is singular but A is nonsingular. Since, (35) and (39) are related
by (E\Âj) = (Ej\Aj), the results in [48] readily generalize to (39).
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Theorem 3.7

Suppose that λE − A is a regular pencil with Weierstraß canonical form

X(λE − A)Y = λ





I 0 0
0 I 0
0 0 N



 −





J 0 0
0 M 0
0 0 I



 (49)

where J is nonsingular and in Jordan canonical form, M is nilpotent and N is nilpotent. (Any
of J, M or N may be void, “0-by-0” matrices.) If (Ej\Aj) is the sequence of matrix relations

generated by (38) and (39), then there is a sequence of nonsingular matrices X̃j for which for
j = 1, 2, 3, . . .

X̃jEjY =





I 0 0
0 M 0
0 0 N



 , X̃jAjY =





Kj 0 0
0 Hj 0
0 0 Gj





where K0 = J , G0 = I, H0 = I, . . .Kj = (Kj−1 + K−1
j−1)/2 and for j = 1, 2, 3, . . .

Gj = Gj−1 + NG−1
j−1N = 2−jI +

(

4j − 1

3(2j−1)

)

N2 + higher powers of N2

Hj = Hj−1 + MH−1
j−1M = 2−jI +

(

4j − 1

3(2j−1)

)

M2 + higher powers of M2 .

Proof. It suffices to analyze each diagonal block of (49) separately. In terms of relations, each
iteration of (39) transforms (I\Kj−1) to (I\(Kj−1 + K−1

j−1)/2). The two nilpotent blocks (I\M)
and (N\I) initially transform to

((I\M) + (M\I)) /2 = (M\I + M2)

((N\I) + (I\N)) /2 = (N\I + N2).

respectively. The form of Gj and Hj follows by induction.

Remark 3.8 Although Theorem 3.7 does not show it, when N2 6= 0, then infinite eigenvalue
structure grows relative to the finite eigenvalue structure and may be lost.

Remark 3.9 In the context of Theorem 3.7, if N = 0, then the matrix relation corresponding to
the infinite eigenvalue structure of λEj − Aj , (0\2−jI) = (0\I), is invariant throughout (39).

4 Numerical Examples

This section presents a few numerical examples demonstrating the effectiveness and empirical
numerical stability of Algorithm 1.

Remark 4.1 A rounding error analysis of a single matrix relation product appears in [12]. There
it is shown that if the factors are appropriately scaled and Ã2 and Ẽ1 in (4) are selected to have
small componentwise condition number [8, 42], then the computation of a single matrix relation
product is numerically backward stable. A rounding error analysis of a matrix relation sum and
combinations of matrix relation sums and matrix relation products remains an open problem.

In addition to the examples below, we applied Algorithm 1 to several generalized algebraic
Riccati equations derived from control systems in generalized state-space form [1]. The results are
given in [13]. They show that Algorithm 1 yields accuracy comparable to and sometimes better
than the generalized Schur vector method [3, 36].
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Example 4.2 Consider again the pencil λEp−Ap from (36) in Example 3.4. Using Algorithm 1 to
obtain a right-handed sign pencil λĚp − Ǎp, we calculated the one dimensional deflating subspace
corresponding to the eigenvalue −1/p by calculating a basis of null(Ěp + Ǎp). Forward and
backward errors were computed as described in Example 3.4 and reported in Table 1.

In this example, backward and forward errors in the deflating subspace calculated from Algo-
rithm 1 are five or more orders of magnitude smaller than in the deflating subspace calculated from
(35). Algorithm 1’s forward errors are comparable to and nearly as small as the forward errors of
the backward stable QZ algorithm and comparable to the theoretically worst case forward errors
of a backward stable algorithm. So, at least in this example, Algorithm 1 exhibits forward stability
in the sense of [30, page 10], but (35) does not. (The backward stable QZ algorithm is a fortiori
forward stable.)

Table 1 also shows gradual growth in the backward error. Our implementation of Algorithm 1
is not quite as numerically stable as the QZ algorithm.

Algorithm 1 takes between six and ten iterations to meet its stopping criterion τ = 10−10.

Example 4.3 This is Example 4.2 from [48] and Example 2 from [47]. Let

Â = QT

[

A11 A12

0 AT
11

]

Q

where A12 is a 10-by-10 matrix whose entries are random numbers drawn uniformly from [0, 1]
and

A11 =















1 − α 0 0 · · · α
α 1 − α 0 · · · 0
0 α 1 − α · · · 0

0 0
. . .

. . .

0 0 · · · α 1 − α















.

Find the QR (orthogonal-triangular) factorization Â = QR, and set A = R and E = QT . In this
example, we find the stable right deflating subspace, i.e., the right deflating subspace of λE − A
corresponding to eigenvalues with negative real part.

In the α = (1−10−7)/2 example, (35) failed to satisfy its convergence tolerance ‖Âj+1−Âj‖F ≤
10−10‖Âj+1‖F .

Table 2 reports the backward errors in the rounding error perturbed stable invariant subspace
as calculated by (35), the QZ algorithm, and Algorithm 1. A rounding-error-free expression of
the stable invariant subspace is unavailable, so the forward errors are calculated relative to the
stable invariant subspace computed from the QZ algorithm. The right most column of Table 2
lists ε/dif, an estimate of the largest forward error that could be caused by perturbing the entries
of E and A by quantities as large as the unit roundoff of the finite precision arithmetic.

In this example, the backward errors from Algorithm 1 are comparable to the backwards errors
from the QZ algorithm. As α approaches 0.5, the backward errors from (35) grow several orders of
magnitude larger. Algorithm 1’s forward errors are consistent with forward stability, but forward
stability of (35) is doubtful.

Algorithm 1 and (35) take between seven and sixteen iterations to meet their stopping cri-
teria, except for α = (1 − 10−7)/2, (35) failed to meet its stopping criterion ‖Âj+1 − Âj‖F ≤
10−10‖Âj+1‖F and was arbitrarily halted after 50 iterations.

Example 4.4 This is Example 4.3 from [48]. (Example 3 from [47] is slightly different.) Let Q
be a random orthogonal matrix generated as described in [43]. Using random numbers uniformly
distributed over [0, 1], let

Â = QT

[

A11 A12

0 AT
22

]

Q

where A12 is a 5-by-5 random matrix A11 is an upper triangular random matrix with positive
diagonal entries scaled by a real number β < 0, and A22 is an upper triangular random matrix
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Backward Errors
α (35) QZ Alg. 1

(1 − 10−1)/2 10−15 10−15 10−15

(1 − 10−3)/2 10−12 10−15 10−15

(1 − 10−5)/2 10−9 10−15 10−14

(1 − 10−7)/2 10−5* 10−15 10−14

Forward Errors
Relative to QZ

α (35) Alg. 1 ε/dif
(1 − 10−1)/2 10−15 10−15 10−15

(1 − 10−3)/2 10−12 10−14 10−13

(1 − 10−5)/2 10−9 10−12 10−11

(1 − 10−7)/2 10−4* 10−10 10−9

Table 2: Example 4.3: Backward errors corresponding to the rounding error perturbed stable in-
variant subspace computed by (35), the QZ Algorithm [2, 40], and Algorithm 1. Asterisks indicate
examples in which (35) failed to satisfy its convergence tolerance ‖Âj+1 − Âj‖F ≤ 10−10‖Âj+1‖F .
The forward errors are relative to the invariant subspace obtained from the backward stable QZ
algorithm. The right-hand column is an estimate of the largest forward error that could be caused
by perturbing the entries of E and A by quantities as large as the unit roundoff of the finite
precision arithmetic.

Backward Errors
β (35) QZ Alg. 1
1.0 10−15 10−15 10−15

0.5 10−11 10−15 10−15

0.3 10−9* 10−15 10−14

0.2 10−7* 10−16 10−12

0.1 10−2* 10−15 10−10

Forward Errors
β (35) QZ Alg. 1 ε/dif
1.0 10−15 10−15 10−15 10−13

0.5 10−9 10−12 10−12 10−12

0.3 10−7* 10−10 10−11 10−12

0.2 10−6* 10−10 10−9 10−10

0.1 10−4* 10−8 10−8 10−8

Table 3: Example 4.4: Backward errors corresponding to the rounding error perturbed stable in-
variant subspace computed by (35), the QZ Algorithm [2, 40], and Algorithm 1. Asterisks indicate
examples in which (35) failed to satisfy its convergence tolerance ‖Âj+1 − Âj‖F ≤ 10−10‖Âj+1‖F .
In the β = 0.1 example, (35) inverted many highly ill-conditioned matrices. The right-hand
column is as in Table 2.

with positive diagonal entries scaled by the positive real number −β. Find the QR (orthogonal-
triangular) factorization Â = QR, and set A = R and E = QT . In this example, we find the stable
right deflating subspace, i.e., the right deflating subspace of λE −A corresponding to eigenvalues
with negative real part.

Table 3 reports the backward errors in the rounding error perturbed stable invariant subspace
as calculated by (35), the QZ algorithm, and Algorithm 1. For β ≤ 0.3, (35) failed to satisfy its
convergence criterion ‖Âj+1−Âj‖F ≤ 10−10‖Âj+1‖F and was arbitrarily halted after 50 iterations.
In the β = 0.1 example, (35) inverted many highly ill-conditioned matrices.

Algorithm 1 exhibits forward stability in this example. The β = 0.5 example is not consistent
with forward stability of (35).

As in Example 3.4, Table 3 lists ε/dif, an estimate of the largest forward error that could be
caused by perturbing the entries of E and A by quantities as large as the unit roundoff of the
finite precision arithmetic.

These numerical experiments show that neither (35) nor Algorithm 1 are numerically backward
stable. They also show that (35) is not, in general, forward stable. However, Algorithm 1 appears
to be numerically forward stable. A proof or counter example to forward stability remains an open
question.
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5 Conclusions

This paper introduces arithmetic-like operations on matrix pencils. The pencil-arithmetic op-
erations extend elementary formulas for sums and products of rational numbers and include the
algebra of linear transformations as a special case. The set of m-by-n matrix relations has an iden-
tity element for multiplication, (I\I), and an identity element for addition (I\0) Multiplication
is associative and addition is commutative. Some matrix relations lack an additive or multiplica-
tive inverse. The matrix relation ([0]\[1]) lacks both. There is only a partial distributive law for
multiplication across addition.

Matrix relations lead to generalizations of the monodromy matrix, the matrix exponential and
the matrix sign function that give a simplified and more unified understanding of these functions
in the case of pencils with zero and infinite eigenvalues and pencils which are singular.

The rounding error analysis of matrix relation algorithms is encouraging but incomplete. The
inverse free matrix sign function algorithm, Algorithm 1, is not backward stable, but the empirical
evidence suggests that it is forward stable in the sense of [30, page 10].
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A Proof of Theorem 3.1

Recall the Kronecker canonical form.

Theorem A.1 [23] For each pair A, E ∈ C
m×n, there exist nonsingular matrices X ∈ C

m×m

and Y ∈ C
n×n such that

X(λE − A)Y = diag(0γδ, Lǫ1 , Lǫ2 . . . , LT
η1

, LT
η2

, . . . , λÊ − Â) (50)

where λÊ − Â is regular and Lǫ is the ǫ× (ǫ + 1) matrix Lǫ = λ[Iǫ, 0ǫ,1]− [0ǫ,1, Iǫ]. Here Iǫ is the

ǫ-by-ǫ identity matrix and 0γδ is the γ-by-δ zero matrix. The regular part of the pencil Â − λÊ
simultaneously takes Weierstraß canonical form [23, Vol.II,§2].

λÊ − Â = λ

[

Iθ 0
0 N

]

−
[

J 0
0 Iψ

]

(51)

where J ∈ C
θ×θ is in Jordan canonical form and N ∈ R

ψ×ψ is nilpotent.

We will prove the following slightly stronger version of Theorem 3.1.

Theorem A.2 If E, A ∈ C
m×n have Kronecker canonical form (50)–(51) and t 6= 0, then the

matrix relation exponential converges in the usual largest-canonical-angle metric,

exp(E\(At)) =

∞
∑

k=0

tk

k!
((E\A))k = (XEY \XAY ),

E = diag([−δ], [−ǫ1+1], [−ǫ2+1], . . . ,

[

Iη1

0η1,η1

]

,

[

Iη2

0η2,η2

]

, . . . Iθ, 0ψ,ψ),

and

A = diag([−δ], [−ǫ1+1], [−ǫ2+1], . . . ,

[

0η1,η1

Iη1

]

,

[

0η2η2

Iη2

]

, . . . exp(tJ), Iψ).

Here, [−p] is the 0-by-p empty matrix.

Proof. Let E, A ∈ C
m×n have Kronecker canonical form (50)–(51). Consider the partial sum

K
∑

k=0

tk

k!
((E\A))k (52)
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for some real numbers t0 6= t1. (By convention, (E\At)0 = (I\I).) By Lemmas 2.15 and 2.16 (52)
is block diagonal with diagonal blocks

K
∑

k=0

tk

k!
(0γδ\0γδ)

k

K
∑

k=0

tk

k!
([Iǫj

, 0ǫj ,1]\[0ǫj ,1, Iǫj
])k

K
∑

k=0

tk

k!
(

[

Iηj

01,ηj

]

\
[

01,ηj

Iηj

]

)k

K
∑

k=0

tk

k!
(Iθ\J)k

K
∑

k=0

tk

k!
(N\Iψ)k.

It suffices to consider each diagonal block separately. A direct application of the definitions (2)
and (12) show that for K > 0,

K
∑

k=0

tk

k!
(0γδ\0γδ)

k = (I\I) + C
δ × C

δ + C
δ × C

δ · · · = C
δ × C

δ = ([−δ]\[−δ]).

is independent of K. Hence, the matrix relation sum converges trivially and

∞
∑

k=0

tk

k!
(0γδ\0γδ)

k = (0γδ\0γδ) = ([−δ]\[−δ])

From (2), Dom([Iǫj
, 0ǫj ,1]\[0ǫj ,1, Iǫj

])ℓ = C
ǫj+1, and z ∈ ([Iǫj

, 0ǫj ,1]\[0ǫj ,1, Iǫj
])kx if and only if

there exist vectors wℓ ∈ C
ǫj+1 for ℓ = 0, 1, . . . k, satisfying w0 = x, [Iǫj

, 0ǫj ,1]wℓ = [0ǫj ,1, Iǫj
]wℓ−1,

and z = wk. Note that for p = 1, 2, . . . ǫj , wpℓ = wp+1,ℓ−1 and wǫj+1,ℓ may be chosen arbi-
trarily. So, for k > ǫj , every entry of z = wk may be chosen arbitrarily. Hence, for k > ǫj ,
([Iǫj

, 0ǫj ,1]\[0ǫj ,1, Iǫj
])k = C

ǫj+1 × C
ǫj+1 = (01,ǫj+1\01,ǫj+1). = ([−ǫj+1]\[−ǫj+1]). It follows from

(12) that for K > ǫj ,
∑K

k=0
tk

k! ([Iǫj
, 0ǫj ,1]\[0ǫj ,1, Iǫj

])k = C
ǫj+1 × C

ǫj+1 = ([−ǫj+1]\[−ǫj+1]) is
constant. Hence, the matrix relation sum converges trivially and

∞
∑

k=0

tk

k!
([Iǫj

, 0ǫj ,1]\[0ǫj ,1, Iǫj
])k = C

ǫj+1 × C
ǫj+1 = ([−ǫj+1]\[−ǫj+1]).

Using (2) again, z ∈ (

[

Iηj

01,ηj

]

\
[

01,ηj

Iηj

]

)kx if and only if there exist vectors wℓ, for ℓ = 0, 2, 3,

. . . , k satisfying w0 = x,

[

Iηj

01,ηj

]

wℓ =

[

01,ηj

Iηj

]

wℓ−1, and z = wk. Note that for each ℓ, 1 ≤ ℓ ≤ k,

w1ℓ = 0, 0 = wηj ,ℓ−1 and for p = 2, 3, . . . , ηj , wpℓ = wp−1,ℓ−1. For k ≥ ηj , the only solution

is 0 = x = w0 = w1 = · · · = wk = z, i.e., (

[

Iηj

01,ηj

]

\
[

01,ηj

Iηj

]

)k = {0, 0} = (

[

Iηj

0ηj,ηj

]

\
[

0ηjηj

Iηj

]

).

It follows that
∑K

k=0
tk

k! (

[

Iηj

01,ηj

]

\
[

01,ηj

Iηj

]

)k = {0, 0} independent of K ≥ ηj . Hence, the matrix

relation sum converges trivially and

∞
∑

k=0

tk

k!
(

[

Iηj

01,ηj

]

\
[

01,ηj

Iηj

]

)k = {0, 0} = (

[

Iηj

0ηjηj

]

\
[

0ηjηj

Iηj

]

).
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Because (Iθ\J) is a linear transformation on C
n, it follows that

K
∑

k=0

tk

k!
(Iθ\J)k = (Iθ\

K
∑

k=0

tk

k!
Jk) = null

[

−Iθ,

K
∑

k=0

tk

k!
Jk

]

The right-hand equality follows from (1). Taking limits as K tends to infinity, we have

∞
∑

k=0

tk

k!
(Iθ\J)k = null [−Iθ, exp (Jt)] = (Iθ\ exp(Jt)).

An application of (2) or Theorem 2.3 shows that (N\Iψ)k = (Nk\Iψ). Because N is nilpotent,
for k ≥ ψ, (N\Iψ)k = (0ψ,ψ\Iψ) = C

ψ × {0}. Now, (12) implies that for K large enough,
∑K

k=0
tk

k! (N\Iψ)k = (0ψ\Iψ) . So, the matrix relation sum converges trivially and

∞
∑

k=0

tk

k!
(N\Iψ)k = C

ψ × {0} = (0ψ\Iψ).
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