Approximation Algorithms for
Capacitated Location Routing*

Tobias Harks Felix G. Konig
Jannik Matuschke

Technische Universitit Berlin, Institut fiir Mathematik
StraB3e des 17. Juni 136, 10623 Berlin, Germany
{harks,fkoenig,matuschke}@math.tu-berlin.de.

Preprint 2010/10

May 5, 2010
Revised: February 7, 2012

Abstract

An approximation algorithm for an optimization problem runs in polynomial time for
all instances and is guaranteed to deliver solutions with bounded optimality gap. We derive
such algorithms for different variants of capacitated location routing, an important general-
ization of vehicle routing where the cost of opening the depots from which vehicles operate
is taken into account. Our results originate from combining algorithms and lower bounds
for different relaxations of the original problem, and besides location routing we also obtain
approximation algorithms for multi-depot capacitated vehicle routing by this framework.
Moreover, we extend our results to further generalizations of both problems, including a
prize-collecting variant, a group version, and a variant where cross-docking is allowed. We
finally present a computational study of our approximation algorithm for capacitated lo-
cation routing on benchmark instances and large-scale randomly generated instances. Our
study reveals that the quality of the computed solutions is much closer to optimality than
the provable approximation factor.

1 Introduction

The broad realm of vehicle routing addresses the omnipresent logistic challenge of minimizing
the cost of operating vehicles performing pickups and/or deliveries of goods for clients from
a given set of depots. In many logistics applications, however, the cost of opening these de-
pots constitutes a second major cost driver. Integrating this aspect of location decisions into the
model leads to an additional and distinct optimization challenge. The two families correspond-
ing to the routing and location subproblems, namely vehicle routing and facility location, have
been studied extensively from practical as well as theoretical points of view. The integrated
problem of jointly making location and routing decisions is known as location routing and has
received significant attention in the operations research community as well.

*This work was supported by the European Regional Development Fund (ERDF) and is part of a joint project
with 4flow AG, Berlin, Germany.

A basic variant of location routing is the capacitated location routing problem (CLR) de-
fined as follows. We are given an undirected connected graph G = (V,E), where the node set
V =% U.Z of the graph is partitioned into a set of clients ¢ and a set of facilities % . We will use
the term facilities interchangeably with the term depots. There are cost functions ¢ : E — R™
on the edge set, and ¢ : . — R™ associated with the depots modeling opening costs. Every
potential depot maintains an unbounded fleet of vehicles, each with a uniform capacity u > 0.
Each client v € € has a demand d, > 0. A feasible solution to CLR is given by a tuple (F,.7),
where F C .7 is a set of open depots and .7 is a set of tours {T7,...,T;} such that (1) every
tour starts at an open depot and returns to the same depot at the end, (2) the demand of every
client is served by the tours by which it is visited, and (3) the total demand served by a tour
does not exceed u. The total cost of a solution is defined by Y7c 7 c(T) + ¥,.cr ¢ (w), where
¢(T) = Y .7 co denotes the routing cost of tour 7. Note that we may assume without loss of
generality that G is complete and the edge costs ¢ satisfy the triangle inequality: If this is not the
case, we replace G by its metric closure, i.e., introducing an edge between each pair of vertices
with the cost of a shortest path between those vertices in the original graph. Furthermore, note
that this model also implicitly covers depot-dependent fixed costs per tour, i.e., each vehicle sent
out from depot v incurs a cost of @, € R*. This can be easily modeled by adding %av to the cost
of all edges incident to v, as each tour originating at v contains exactly two of these edges.

In the version of the problem described above, a client’s demand may be split up and served
by multiple facilities, which is not always desired or even possible in practice. This motivates
the following terminology. A solution to CLR fulfills the single-assignment property (cf. Nagy
and Salhi (2007); Laporte et al. (1988)), if the demand of each client is served by exactly one
facility. A solution fulfills the single-tour property, if each client’s demand is served by exactly
one tour. Clearly, this latter property can only be fulfilled if d, < u forallv € €.

The special case of CLR where location decisions have already been made (i.e., ¢ = 0) is
the multi-depot capacitated vehicle routing problem (MDCVR). Note that in the uncapacitated
case (u = o), CLR and MDCVR are equivalent: By triangle inequality, every optimal solution
to either problem can be transformed such that each depot is visited by at most one tour (without
increasing cost). Hence, facility opening cost can be modeled by adding %q&(v) to c(e) for all
edges e incident to a facility v € ..

Not surprisingly, CLR contains NP-hard combinatorial optimization problems as a special
case. When there is only one facility and infinite vehicle capacity, for instance, the problem
becomes the travelling salesman problem. Or, when demands are uniform and match the vehicle
capacity, CLR becomes the metric uncapacitated facility location (UFL) problem, as an optimal
routing corresponds to finding shortest paths from each client to an open facility.

Because of this intrinsic hardness, an exact solution method for most location routing prob-
lems including CLR is very likely to perform poorly on some problem instances. Speak-
ing more formally, its worst-case running time is likely to grow exponentially with problem
size (Haimovich et al., 1988). In fact, even for simple variants of vehicle routing problems, only
relatively small instances are solved to optimality, see the book by Toth and Vigo (2002) and ref-
erences therein. On the other hand, problem sizes encountered in real-life problems have grown
tremendously over the past years (and are expected to grow further), thus fast heuristics are
becoming increasingly important for solving location and vehicle routing problems (Cordeau
et al., 2002; Desrochers et al., 1988). While (meta-)heuristics used today deliver feasible so-
lutions to larger instances in reasonable time, there is usually no guaranteed bound regarding
solution quality. Merely for some restricted special cases, there are heuristics for which such
bounds are known, see Haimovich et al. (1988).

To address this apparent dilemma regarding worst-case running time and guaranteed so-
lution quality, we use approximation algorithms in this paper, a solution methodology in the

intersection of mathematics, computer science, and operations research. An approximation al-
gorithm for an NP-hard combinatorial optimization problem is a heuristic enjoying two desirable
properties: Its worst-case running time is bounded by a polynomial in problem size, and there
are provable a priori bounds (constant numbers in the best case) on the worst-case quality of the
solution generated:

Definition 1.1. An algorithm ALG for a minimization problem P is a p-approximation algo-
rithm if it runs in time polynomial in the input size, and for every instance / of P, we have

ALG(I) < p-OPT(I),

where ALG(/) and OPT(/) denote the objective values of the solution returned by ALG and of
an optimal solution for /, respectively.

While this worst-case guarantee gives theoretical evidence for the reasonability of the algo-
rithm, the quality of solutions may be much closer to optimality in practice than the approxima-
tion factor indicates. A standard reference containing approximation algorithms for a multitude
of hard optimization problems is the book of Hochbaum (1997). Another recent and very good
reference, containing a detailed introduction to the various techniques used in the design of
approximation algorithms, is the book by Williamson and Shmoys (2011).

Within this framework, we devise a constant factor approximation algorithm for CLR with
arbitrary demands. For MDCVR with arbitrary demands, we obtain an improved approximation
factor, which is, to the best of our knowledge, the best constant factor approximation algorithm
for this problem to date. Moreover, we consider three practically relevant extensions of the
above model. Suppose a company has the option not to serve all clients’ demands itself, but to
outsource any number of transports to clients at given customer-dependent prices. This extended
model is known as the prize-collecting capacitated location routing problem (PC-CLR). In the
second extension, we consider group capacitated location routing (G-CLR) where the set of
clients is partitioned into groups 41, .., %, with € = J*_, %,. In a feasible solution, only one
client from each group needs to be served. Applications include intermodal transport networks,
where goods can be transferred from one logistics network to the next at one of several hub
locations. In the third extension, cross-docking is allowed: We allow consolidation tours which
do not visit a facility, but contain one node where they meet with other tours. From there,
spare capacity on the latter tours is utilized jointly to forward all demand of the consolidation
tour to facilities. Being of profound practical interest (see e.g. Vahdani and Zandieh (2010);
Wen et al. (2009)), cross-docking operations may significantly improve capacity utilization and
hence reduce total cost. We extend our constant factor approximations to all three of these
variants, where for the group version, our approximation guarantee depends on the cardinality
of the largest group.

1.1 Previous Results

Location routing (as the integration of vehicle routing and facility location) has occupied a
central place in the operations research literature over the past decades. Since hundreds of
papers have been published in this broad area, we will give pointers to text books and survey
articles when referring to the main streams in location routing. However, we give a concise
overview of works regarding approximation algorithms on the subject.

Location Routing. Perhaps one of the earliest models of location routing appears in the paper
by Webb (1968). Laporte (1988) gives a comprehensive overview of the literature prior to the

late 80s. More recent survey articles summarizing heuristic algorithms and mathematical pro-
gramming formulations for many variants of location routing can be found in Mina et al. (1998)
and Nagy and Salhi (2007). Very recently, there have been several works on integer program-
ming formulations for CLR with capacitated facilities using strengthened cut inequalities, see
Belenguer et al. (2011) and Contardo et al. (2010).

There are only a few works that are concerned with approximation theory for location rout-
ing problems. For unbounded vehicle capacity, a (2 — M%l)—approximation algorithm is given
by Goemans and Williamson (1995). Glicksman and Penn (2008) generalize this result to the
case of (uncapacitated) group location routing, where one is given a system of groups of clients,
and only one client from each group needs to be served. Among other results, they derive a
(2- |Vl#_l)L-approximation algorithm, where L denotes the cardinality of the largest group. Fi-
nally, Chen and Chen (2009) provide a 24-approximation for location routing with soft facility
capacities (i.e., facilities can be installed multiple times, each copy capable to serve a limited
amount of demand, while vehicle loads are still unbounded).

Vehicle Routing. When facilities can be opened at no cost, location routing becomes the
multi-depot vehicle routing problem, for which countless exact and heuristic solution meth-
ods have been proposed. For an overview of the rich literature in this field, we refer the reader
to the books edited by Toth and Vigo (2002), Golden and Assad (1988), and the surveys of Bal-
dacci et al. (2010), Cordeau et al. (2002, 2007), Haimovich et al. (1988), Laporte (2009), and
Laporte and Semet (2001). For vehicle routing problems with additional side constraints (such
as time-windows, heterogeneous fleets, fleets of limited size) see also Briysy and Gendreau
(2005), Baldacci et al. (2010), and Desrochers et al. (1988).

There is a large body of work regarding the classical capacitated vehicle routing problem
(with a single depot) including the seminal PTAS of Haimovich and Rinnoy Kan (1985) for
geometric distances. Li and Simchi-Levi (1990) consider the multi-depot capacitated vehicle
routing problem (MDCVR) and present, among other results, a (2 + 2prsp)-approximation al-
gorithm for arbitrary, unsplittable demands, where prsp denotes the factor of an approximation
algorithm for the travelling salesman problem. This is the best previously known approximation
algorithm for this version of the problem, with prsp = 3/2 using the algorithm by Christofides
(1976). There is also a PTAS for the case of Euclidean distances and uniform demands, albeit
with running time exponential in vehicle capacity as well as the number of depots (Cardon et al.,
2008).

Charikar et al. (2001b) studied the related k-delivery TSP in which a single vehicle with
capacity k needs to transport n (unit-sized) items located at arbitrary locations to given demand
points. For this problem they derive a 5-approximation.

Facility Location. Approximation algorithms for metric uncapacitated facility location (UFL)
constitute a central topic in combinatorial optimization. As a reference, we point the reader to
the 1.52-approximation of Mahdian et al. (2006). Using ideas of Chudak and Shmoys (2003),
a recent publication by Byrka and Aardal (2010) improves this factor to 1.5, also introducing a
bifactor approximation that provides separate approximation ratios for connection and opening
costs with respect to an initially solved LP relaxation.

Ravi and Sinha (2006) study the related capacitated cable facility location problem. As in
CLR, one is given a complete undirected graph with metric costs on the edges. A set of clients
needs to be served from facilities with associated opening costs. Facilities need to be opened
and clients need to be connected to open facilities by Steiner trees, where an edge e of a tree
is associated with a number of cables bought for the corresponding connection, each at price

c(e). Each cable has uniform capacity u, and each connection needs to comprise enough cables
to provide capacity no less than the number of clients depending on it. The authors propose a
(purL + pst)-approximation algorithm, where pypr, and pst denote the approximation factors
of algorithms for UFL and Steiner tree, respectively, which are used as subroutines. Their
algorithm computes a feasible solution by merging a UFL and a Steiner tree solution. The
merging procedure first routes the entire demand along the Steiner tree and then iteratively
relieves overloaded subtrees of excessive demand by rerouting it to a closest open facility in the
UFL solution.

The approximation algorithms in this paper use a similar technique of merging two solutions
(UFL and a minimum spanning tree) by iteratively rerouting demand from overloaded subtrees
of the spanning tree to a closest open facility of the UFL solution. Since our model is tour-based,
however, we cannot argue on individual link capacities, or use corresponding flow arguments.
The merging procedure in Ravi and Sinha (2006) crucially relies on the flexibility to install
sufficient cable capacity on individual edges, and to fractionally route flow under these capacity
constraints. In contrast, we have to decide about buying complete tours from open facilities,
requiring a different rerouting procedure.

Extended Models. In the prize-collecting (PC) version of the above problems, a feasible so-
lution does not have to serve all clients. Instead, an individual penalty may be paid for each
unserved client. Thereby, PC can precisely model outsourcing decisions and is hence of pro-
found practical interest. For the PC version of UFL, Jain et al. (2003) claim to obtain a 2-
approximation, improving the 3-approximation by Charikar et al. (2001a), but omitting a com-
plete proof. We are not aware of any previous approximation results for PC vehicle routing or
PC location routing.

In the group variant, the set of clients is partitioned into disjoint subsets, or groups of clients,
and only one client from every group has to be served. Group facility location is closely related
to unweighted set cover, as we shall see in Section 4. For the group case of uncapacitated vehicle
and location routing, the only previous result we know of is the algorithm by Glicksman and
Penn (2008) mentioned above.

Finally, in capacitated location routing and multi-depot capacitated vehicle routing, cross-
docking may be allowed in certain application scenarios. Here, some clients are served by
consolidation tours which do not connect directly to a facility, but meet with other tours having
spare capacity. These latter tours jointly forward all demand required by the consolidation
tour to their respective facilities. Cross-docking plays a significant role in numerous logistics
applications, and some heuristic approaches have recently been proposed for vehicle routing
with cross-docking (Vahdani and Zandieh, 2010; Wen et al., 2009). This model also exhibits
strong similarity to a practically relevant problem called mixed truck delivery which is studied
in Liu et al. (2003). Here, delivery tours are sought as well, and clients may be served by tours
either from facilities or from hubs, which are in turn served by facilities. The authors develop
a heuristic solution approach and present computational results suggesting that routing cost can
be reduced on average by around 10% for random instances when allowing cross-docking. Our
model corresponds to the case where each client node may also function as a hub.

1.2 Our contribution and structure of the paper

In Section 2 we develop a framework for combining approximation algorithms for facility lo-
cation with spanning or Steiner tree algorithms in order to obtain approximation algorithms
for capacitated location routing and multi-depot capacitated vehicle routing problems. We ap-
ply our technique to devise a constant factor approximation algorithm for CLR with arbitrary

demands. We are not aware of any previous results regarding constant factor approximations
for CLR. For MDCVR, we obtain an improved approximation guarantee which is, to the best
of our knowledge, the best approximation factor to date. In Sections 3, 4 and 5 we study the
prize-collecting, group, and cross-docking variants. We extend our approximation algorithm to
all three variants. While we derive constant factor approximations for the prize-collecting and
cross-docking versions, the approximation guarantee for the group version depends on the car-
dinality of the largest group. In fact, we show that this version of the problem does not allow for
a constant factor approximation by providing a lower bound on the achievable approximation
factor depending on the number of groups. In Section 6 we present a computational study of
our algorithm for CLR, where we compare solution quality and running time with those of other
algorithms for CLR from the literature on benchmark instances. It turns out that in practice, the
algorithm’s performance greatly exceeds its theoretically proven approximation guarantee. On
the benchmark test set, the quality of our solutions is on average within a factor of 1.1-1.2 of
best known solutions. While the increase in cost over other algorithm is mild, our algorithm’s
running time is several magnitudes faster, taking only negligible time on benchmark instances.
To further demonstrate this computational efficiency we test our algorithm on a set of large-
scale randomly generated instances (1000-10000 customers, 100-1000 facilities per instance).
We are not aware of any previous work considering CLR instances of comparable size. We
conclude the paper in Section 7 with a brief summary and a discussion of open problems.

2 Approximation Algorithm for Capacitated Location Routing

In this section, we present our main approximation result. After deriving two lower bounds, we
present our algorithm for CLR followed by its analysis. Finally, we describe a specialization for
multi-depot capacitated vehicle routing yielding an improved approximation guarantee.

Before we start, we introduce some additional notation. As described in the introduction, a
feasible solution to CLR consists of a set of open facilities ' and a set of tours (or, in mathe-
matical terms, closed walks) .7 such that (1) each tour visits an open facility, (2) the demand
of each client is served by the tours by which it is visited, and (3) the demand transported by a
tour does not exceed the vehicle capacity u. The second and third condition can be expressed by
the existence of demand assignments, i.e., non-negative values x,y foreachve @ and T € 7
fulfilling (2) Yreawev(r)Xr =dy forallve ¢ and 3) Y, cxxyr <uforall T € 7. Note that
these demand assignments can be computed efficiently from the tuple (F,.7") and it is thus not
important whether they are part of the formal solution output. However, we will use them in
proofs throughout the paper.

Using this notation, we once again give a formal definition of the basic version of the capac-
itated location routing problem, which is the subject of this section.

Problem 2.1 (Capacitated Location Routing).

Input: a graph G = (¢ U.%,E), metric edge costs ¢ : E — R™, opening costs ¢ : # — R™,
demands d : ¢ — R™, vehicle capacity u € R*

Task: Find a set of facilities F C .# and a set of closed walks .7 with a demand assignment
x:% x .7 — RT such that

(1) V(T)NF #0forall T € 7,
(2) Yregwev(ryXr =dy forallv €€,

3) Ycoxyr <uforallT € T,

minimizing the cost Y,,cr @ (W) + Yre7 Yecr Co-

2.1 Two Lower Bounds

We provide two lower bounds on the optimal solution, which will be used to derive a constant
approximation factor for our algorithm.

Lemma 2.2. Given an instance of CLR, consider an uncapacitated facility location (UFL) in-
stance defined as follows. The sets of clients and facilities remain the same as in CLR, but we
set the costs of edges to ¢ := %c. Then, the cost of an optimal solution to UFL (w.r.t. ¢) is at most
the cost of an optimal solution to CLR (w.r.t. c).

Proof. Consider a feasible solution (F,.7) of CLR with demand assignments x,7. Construct a
solution U of the UFL instance by opening all facilities that were opened by CLR and connecting
each client v € % to a closest open facility w(v) € F. The connection cost of U is ¢(U) =
Y Cow(v)dy. We will show that ¢(U) < Y.re 7 ¢(T), which proves the lemma.

Consider a flow f constructed from the CLR solution as follows. For every client v € ¢ and
each tour 7 serving v, partition T into two paths from the facility to the client and send x,7 units
of flow along each path. Note that the amount of flow carried by edge e € E is at most u times

the number of tours containing e and, thus, e is contained in at least [%—‘ tours. Denoting the

cost of f w.r.t. ¢ by &(f) we deduce

Zcefeé Zce ’er-‘ _Z Z Ce = Z C(T)
U ek ecE e€ETe T ecT TeT
Note that the construction of the flow f induces a path decomposition. Let &2, be the set of
all paths from a facility to client v € % used in the construction of f and let fp be the flow value
assigned to that path. Note that Y pc 5 fp = Y.rc 7 2x,7 = 2d,, because every tour contributes
two paths for every client it serves. Furthermore, ¢(P) > ¢,,(,), i.e., the length of any of the
facility-client-paths is at least the distance to a closest facility. Thus, we obtain

Z Z fP> chwv Z fr= Zévw(v)Zdvzzé(U)

ve¥ Pe P, ve? pPe, ve?
showing that ¢(U) < Yrczc(T). O

Lemma 2.3. Given an instance of CLR, consider the graph G' = (VU{r},EUE'), where E' =
{{rw} : w € F} and define costs cl,, =0, c}, = ey + 50(W) for all v e €, w e Z, and
cl,, = ¢y for all other {v,w} € E. Then the cost of a minimum spanning tree in G' with respect

to the costs ¢ is a lower bound on the cost of an optimal solution of CLR (w.r.t. c).

Proof. Consider a feasible solution (F,.7) to CLR. We will construct a spanning tree in G’ that
has at most the same cost. For every open facility we F,letT,...,T; be an arbitrary ordering
of the tours based at w with 7; = (w,v},... ,Vj.,w) where /; is the number of clients in 7;. For
i=1,...,j— 1, replace the last edge {vl 7w} of 7; and the first edge {w,v{"'} of T;1 by the direct
edge {vl , ’“} Also remove the final edge {Vz ,w} of Tj. As aresult, we get a walk P, from w
to Vz along all clients that are served by w. Note that ¢ (P) =Yeen, ' (€) STl c(T)+ 50 (w)
by trlangle inequality and the fact that P, contains only one edge incident to w.

Now let S be the union of all P, for w € F and all edges in E’. As S spans all facilities and
contains a walk from any client to a facility, it contains a spanning tree of G’ with cost at most

() <Xrezc(T)+Lyer ¢(w). O

2.2 Algorithm

We construct an approximate solution to CLR from an approximate solution to the UFL in-
stance described in Lemma 2.2 and a minimum spanning tree on the graph G’ as described in
Lemma 2.3. Essentially, the idea is to decompose the spanning tree into subtrees with demands
between u/2 and u, which can then be turned into tours by doubling edges. These tours are
serviced by facilities opened by either the spanning tree or the UFL solution. The cost of the
resulting solution is bounded by the sum of twice the cost of the spanning tree, twice the connec-
tion cost of the UFL solution, and once the opening cost of the UFL solution. Using the bifactor
approximation algorithm of Byrka and Aardal (2010) for UFL, we obtain a total approximation
factor of 4.38 for CLR.

We now describe the algorithm in more detail. After solving the UFL instance approxi-
mately and computing a minimum spanning tree, we open all facilities that are opened in the
UFL solution and also all facilities w that are incident to an edge other than {w,r} in the span-
ning tree S. Any client with demand d, > u is assigned to a closest open facility and served
by (d—u‘} tours comprising only the assigned facility and the client. We proceed to describe how
to construct tours for the remaining demands by merging the given spanning tree on G’ with a
UFL solution to obtain a feasible solution to CLR (this will later be referred to as the “merge
phase”). For a better understanding, direct the spanning tree towards the root » and denote the
subtree rooted at node v by S, with D, being the sum of the demands of all clients in S,,.

If z is a facility and the total demand in S; is at most u, we turn this subtree into a tour based
at z by doubling edges and short-cutting by triangle inequality. If the total demand in S, exceeds
u, we will relieve this subtree by rerouting excessive demand to other open facilities, charging
the costs to the UFL solution, until the remaining demand is at most . This last step resembles
a technique introduced by Ravi and Sinha (2006).

We now describe our rerouting procedure in detail. Let v be a node in S, such that D,, > u but
D,, < ufor all children w of v. Let I be the set containing all subtrees S,, with w being a child of
v and the set {v} itself. We want to make sure that less than u« units of demand have to be routed
to the parent of v in the tree and the rest of the demand is connected with additional edges paid
for by the UFL solution. To this end, we greedily partition / into groups Iy, . ..,I; such that the
sum of demands of all subtrees in each group /; is at most u but at least u/2 (unless j = 0). We
keep the connection of all trees in Iy to the node v, but we extract the trees of all other groups
from the spanning tree (including the edges connecting them with v). For each j =1,...,k, the
subtrees in group /; together with the edges to v form one single tree which can be turned into a
tour by doubling edges and short-cutting. Among all clients on this tour we choose one with the
cheapest connection cost to an open facility and insert this facility into the tour, paying at most
twice the cost of the corresponding edge by triangle inequality. Observe that this edge carries at
least u/2 units of demand. We repeat this procedure until the total demand in the subtree S; is
at most u. Then we turn the remainder of S, into a tour, again by doubling edges.

2.3 Analysis

We analyze the algorithm presented in the previous section to show that it is a 4.38-approximation
for CLR. We start by estimating the cost of the solution produced in the merge phase against the
cost of the spanning tree and the facility location solution.

Algorithm 1: Algorithm for CLR.
Input: An instance of CLR.
Output: A feasible solution to CLR.
UFL phase:
Create an UFL instance with edge costs ¢ = %c as described in Lemma 2.2.
Apply the bifactor approximation algorithm of Byrka and Aardal with y = 2.38 on this
instance and let F] be the set of facilities opened in the resulting UFL solution.
Tree phase:
Construct the graph G’ with edge costs ¢’ as described in Lemma 2.3 and compute a
minimum spanning tree S.
Let F; be the set of facilities that are incident to an edge in SN E.
Large demand phase:
Open all facilities in F; U F.
forall the v € € with d, > u do
Construct (%‘] copies of a tour from v to a closest open facility.
Add the tours to .7 and remove the corresponding demand d,.
end
Merge phase:
forall the z € F, do
while D, > u do
Let v € V(S;) such that D, > u but D,, < u for all children w of v.
Let I ={V(S,) : wisachild of v} U{{v}}.
Find a partition / = IpU...Uly, such that ¥, d, < u forall j € {0,...,k} and
Yierdy> 5 forall j € {1,...,k}.
forall the j € {1,...,k} do
Find a pair (w,z’) such that w is a vertex of a tree in [;, 2/ € F; UF> and ¢, is
minimal.
Construct a tour visiting all vertices of trees in /; and z’ by doubling wz and
the edges of all trees in /; and short-cutting.
Add the tour to .7 and remove the corresponding subtrees in /; from S.
end

end
Construct a tour from S, by doubling all edges and short-cutting.
Add the tour to 7.

end

Clean-up phase:

Remove all facilities from Fj U F; that are not on any of the tours in 7.
return (FLUF,.7);

Lemma 2.4. The solution to CLR constructed by Algorithm I in the large demand and merge
phases from the spanning tree S and the UFL solution U has cost at most 2¢'(S)+2¢(U) + ¢ (U).

Proof. Every tour constructed in the large demand phase for a client v € % has cost at most
2 {%1 Cyw(v)> Where w(v) is a closest open facility in U. This is bounded by twice the connection
. . d, d, ~ d,
cost for v in the UFL solution as 2[%] ¢,(v) < 2+ 2 Cp(v) < 2Cyy(y)dy» because 5 > 1.
Consider a tour T constructed during an iteration of the inner “for” loop of the merge phase
in Algorithm 1. The cost of the tour is at most twice the cost of the edges of the corresponding

subtree plus 2¢,,». Observe that, by the choice of w and 7/, the edge {w, 7'} is at most as expensive

as any other edge used in U to connect any of the clients x on the tour to its facility y(x). As the
sum of the demands on the tour is at least 5, we obtain

- - - u
Z ny(X)dx 2 Cyz Z de > sz’i = Cyy-
xeV(T) xeV(T)

Thus, the total cost of all tours constructed in the inner loop amounts to at most twice the
connection cost of U plus twice the costs of the corresponding subtrees. The tours constructed
in the outer loop and the opening costs of all facilities in F, are bounded by twice the costs of
the remaining subtrees S, (w.r.t. ¢’), and the opening costs of all facilities in F} are ¢ (U). As all
subtrees are pairwise disjoint, summing everything up yields the desired result. O

Consequently, if S is a minimum spanning tree and U is a p-approximation to a mini-
mum cost solution to the UFL instance, the merge phase of Algorithm 1 returns an (2 +2p)-
approximation to CLR. Note, however, that in this analysis ¢(U) is counted twice while the
actual solution only pays it once. We can improve the approximation factor by using a bifactor
approximation algorithm for UFL of Byrka and Aardal (2010). Given a parameter y > 1.678,
this algorithm returns a solution whose opening cost exceeds the opening cost of an initially
computed optimal fractional LP solution Urp by at most a factor of y, and whose connection
cost exceeds the connection cost of the fractional solution by at most 1+ 2¢~ 7. In this way, we
obtain a solution U with 2¢(U) + ¢(U) <2(1+2e7)&(ULp) + Y9 (Urp), which is bounded by
Y(¢(ULp) + ¢ (Urp)) for all y > 2.38. Choosing y = 2.38, Lemma 2.4 yields our main result.

Theorem 2.5. Algorithm 1 is a 4.38-approximation algorithm for CLR (Problem 2.1). The
solution it produces fulfills the single-assignment property. If d, < u for all v € €, it furthermore
fulfills the single-tour property.

On the other hand, the approximation ratio of our algorithm improves naturally for classes of
instances that allow a better UFL approximation. One example are graphs with Euclidean edge
cost. Here, a PTAS for UFL (Arora et al., 1998) can be applied to obtain a (4 4 €)-approximation
for CLR.

2.4 Special Case: Multi-Depot Capacitated Vehicle Routing

The special case of CLR, where opening facilities does not incur cost (¢ = 0) is the multi-depot
capacitated vehicle routing problem (MDCVR) as considered in Li and Simchi-Levi (1990);
Cardon et al. (2008). By a slight modification of Algorithm 1, we obtain an improved approx-
imation ratio for this problem: Instead of solving the UFL instance approximately in the UFL
phase, we solve it exactly by opening all facilities and assigning clients to facilities along short-
est client-facility paths. We thus can replace the factors incurred by the bifactor UFL-algorithm
by 1 and obtain the following result.

Theorem 2.6. When solving the UFL instance by shortest path computation, Algorithm 1 is a
4-approximation algorithm for MDCVR. The solution it produces fulfills the single-assignment
property. If d, < u for all v € €, it furthermore fulfills the single-tour property.

Note that this improves the previously best known approximation guarantee of 5 for MD-
CVR in Li and Simchi-Levi (1990) yielding the single-assignment property.

10

3 Prize-Collecting Location Routing

We now apply our algorithmic framework for CLR and MDCVR to the prize-collecting (PC)
variant of these problems. In a prize-collecting setting, we can decide for each client whether
to serve it by our solution, or to pay a penalty for not serving it. Note that prize-collecting
can naturally be viewed as a way of incorporating outsourcing decisions into an optimization
model: In this case, a customer’s penalty corresponds to the cost of having it served by an
outside service provider. As outsourcing is an important option in many logistics applications,
the prize-collecting variants of CLR and MDCVR are highly relevant in practice. Moreover,
it is not hard to see that PC-CLR and PC-MDCVR are generalization of CLR and MDCVR,
respectively: By setting penalties high enough, we can force any optimal solution to serve all
clients.

Formally, an instance of PC-CLR comprises an instance of CLR together with a penalty
function p : ¥ — R™, and a solution is now a three-tuple (F,.7,C), where F C .Z is a set of
open facilities as before, C C % is the set of clients served, and .7 is a set of tours as before,
except that we require only the demands of clients in C to be served by .7. The cost of a solution
to PC-CLR is Y7 7 ¢(T) + Lyer 9 (W) + Lyco\c P(v). As before, PC-MDCVR is the special
case of PC-CLR where ¢ = 0.

Problem 3.1 (Prize-Collecting Capacitated Location Routing).

Input: a graph G = (¢ U.#,E), metric edge costs ¢ : E — R™, opening costs ¢ : # — R™,
demands d : ¢ — R™, vehicle capacity u € R, penalties p: € — R™

Task: Find a set of facilities F C .%, a set of clients C C ¥, and a set of closed walks .7
with a demand assignment x : C x .7 — R™ such that

(1) V(T)NF #0forall T € .7,

(2) Xrezwev(ryr =dyforallveC,
3) Yiecxyr <uforall T € T,

minimizing the cost ¥,cp ¢ (W) + Lre s Leer Ce + Zve%\cp(")-

3.1 Algorithm

The key challenge in solving the prize-collecting variant by our algorithm lies in the choice of
C: On the one hand, both our solution to UFL (Lemma 2.2) and our spanning tree (Lemma 2.3)
need to serve the same set of clients in order for our rerouting procedure to work. On the other
hand, we need to ensure that the sum of the costs of these partial solutions remains a lower
bound for the original problem. We accomplish this by utilizing an approximation algorithm
for PC-UFL, and an LP-based approximation algorithm for the prize-collecting Steiner tree to
determine two respective sets of customers served. We then compute a solution to PC-CLR
serving exactly those customers served by both the tree and the facility location solution.

A formal description of the algorithm is given in Algorithm 2. We will prove that it is a
(ppcsT + 2pPpc-urL)-approximation algorithm for PC-CLR, where ppc.st and ppc.upr denote
the approximation factors of the approximation algorithms used for prize-collecting Steiner tree
(w.r.t. the undirected cut relaxation) and PC-UFL, respectively. Currently, the best known ap-

11

proximation algorithm for PC-UFL achieves an approximation ratio of ppc.yr. = 2 (Jain et al.,

2003), while for prize-collecting Steiner tree the algorithm of Goemans and Williamson (1995)
achieves an approximation factor of 2 — ﬁ, meeting the integrality gap of the LP relaxation.

Using these algorithms results in an approximation factor of 6 for our algorithm.

Algorithm 2: Algorithm for PC-CLR.
Input: An instance of PC-CLR.
Output: A feasible solution to PC-CLR.
UFL phase:
Create a UFL instance as in the UFL phase of Algorithm 1. Add p to obtain an instance
of PC-UFL.
Run an approximation algorithm for PC-UFL. Let U be the returned UFL solution and C;
denote the set of served clients and F; be the set of opened facilities in U.
Steiner tree phase:
Construct the graph G’ as in Lemma 2.3.
Run an approximation algorithm for prize-collecting Steiner tree on the instance given by
G/, the terminal set 4’ U {r} and penalties p. Let S be the resulting tree and C, denote set
of connected customers and F> be the set of connected facilities in the Steiner tree.
Merge phase:
SetC:=C,NC,.
Run the large demand and merge phases of Algorithm 1 using U and S, serving only
clients in C. Let .7 be the resulting set of tours.
return (F{UF,, 7,C).

First note that an equivalent of Lemma 2.2 still holds in a prize-collecting setting: In its
proof, we constructed a feasible solutions to a scaled instance of UFL from any feasible solution
to CLR without increasing cost. It is easy to see that this construction adapts naturally when
transferring the set of clients served from an optimal PC-CLR solution to a feasible solutions to
PC-UFL: The penalties for customers not served are exactly the same in both solutions.

To obtain the second, tree based lower bound, we consider a prize-collecting Steiner tree
instance defined as follows. We add a root node r to the network and connect it to all facilities,
i.e., we consider the graph G’ = (VU {r},EUE’) with E' = {{r,w} : w € .Z } as constructed in
Lemma 2.3. We then extend the cost function ¢ to E’ by defining cost ¢,,, = %q)w foreachw € &
and define new penalties by setting p’ := % p. We let R =% U{r} be the set of terminals. We
will use an approximation algorithm on this prize-collecting Steiner tree instance that is based
on the following undirected cut relaxation.

min Ye(ehe)+ ¥ (X p(r)e()

ecEUE' NC¥ veN
(PC-STrp) st Y y(e) + Y z(N) >1 VSCV,SNE #0
e€by(S) NCE: SNECN
y=0

Here, 8¢/ (S) denotes the cut in G’ induced by the vertex set S, i.e., the set of all edges of G’
that have one endpoint in S and one endpoint outside of S. The intuition for the LP formulation
is the following: Given a feasible solution to prize-collecting Steiner tree, define z(N) = 1 for
the set N of clients that are not connected to the Steiner tree, and z(N) = O for all other sets
of clients. Moreover, set y(e) = 1 if edge e is in the Steiner tree, y(e) = 0 otherwise. The
inequalities follow from the fact that any cut that separates a served terminal from the root has

12

to be crossed by at least one edge of the tree.
Lemma 3.2. OPT(PC-STyp) < %OPT(PC-CLR)

Proof. Let (F,.7,C) be an optimal solution to PC-CLR. Construct a solution (Z,) to PC-STrp
by setting Z(N* := %\ C) =1 and Z(N) = 0 for all other N C ¥, and §({r,w}) = 1 forall w € F,
F({r,w}) =0forall w € .F\F, and §(e) = 3|{T € 7 : e € E(T)}|. It is easy to observe that
the constructed solution (¥,Z) has cost 3 ¥,,cr ¢ (w) + %Zvegg\c p(v)+ 3 Lrezc(T).

It remains to show that (Z,¥) is feasible for PC-STp. So let S denote an arbitrary subset of
V with SN% # 0. If S contains an open facility w, then {r,w} € 85 (S), and by definition of ¥,
the constraint for S is fulfilled. Else, if SNC = 0, then S contains only unserved clients and the
set {N C ¢ : SN€ C N} contains N*. Hence, by definition of Z, the constraint for S is satisfied
as well. Finally, if S does not contain an open facility and SN C # 0, then there is a a client
v € CN S connected to an open facility outside of S by a tour. At least two edges of this tour lie
in the cut 85 (S), hence the constraint for S is again satisfied by definition of y. O

Theorem 3.3. Using the algorithm of Goemans and Williamson (1995) in its Steiner tree phase,
Algorithm 2 is a (24 2ppc.yrL)-approximation algorithm for PC-CLR (Problem 3.1). The so-
lution it produces fulfills the single-assignment property. If d, < u for all v € €, it furthermore
fulfills the single-tour property.

Proof. Since the algorithm uses the large demand and merge phases of Algorithm 1, the claims
of the theorem regarding single-assignment and single-tour properties follow directly from The-
orem 2.5.

Moreover, by Lemma 2.4, the cost of the solution returned in the merge phase is bounded

by

2e(8)+26U)+9(U)+ Y, p(v) < 2(8)+ Y 2P(v)+28U)+oU)+ Y. p(v)
ve?'\C ve?'\Ci ve?\Ca

2-2 OPT(PC-STrp) + 2 ppc.urL - OPT(PC-UFL)

<
< (2+2ppc-urL) OPT,

where the second to last inequality stems from the fact that the algorithm by Goemans and
Williamson (1995) is a 2-approximation, and the last from Lemma 3.2. O

Similar to Section 2.4, we can replace the algorithm for PC-UFL by shortest path com-
putations for the case of PC-MDCVR, which solve this subproblem to optimality: A client is
connected to a facility if and only if the shortest path distance to its closest facility is no greater
than its penalty. This yields an improved approximation ratio for PC-MDCVR.

Theorem 3.4. For the case ¢ =0, PC-UFL can be solved exactly by shortest path computations.
Thereby, Algorithm 2 becomes a 4-approximation algorithm for PC-MDCVR. The solution it
produces fulfills the single-assignment property. If d, < u for all v € €, it furthermore fulfills
the single-tour property.

4 Group Location Routing

We now consider a group version of location routing (G-CLR) where the set of clients is parti-
tioned into groups 61, . .., 6k, with € = Uf;l %; and only one client from each group needs to be
served. The uncapacitated version of this problem was studied by Glicksman and Penn (2008),

who give a (2 — M%])L-approximation algorithm with L being the cardinality of the largest

13

group. Their idea is to solve an LP relaxation of the problem and use the resulting fractional
solution to decide which client is to be served from each group. We extend this approach to
the capacitated case which is significantly more complex: In the absence of vehicle capacities,
facility opening costs can be transferred to edges of the graph, i.e. location routing is equivalent
to multi-depot vehicle routing in this case. In contrast to Glicksman and Penn (2008), our LP
relaxation has to explicitly incorporate the facility location aspect of the problem.

The dependence of our approximation factor on the parameter L gives rise to the question
whether there is a constant factor approximation algorithm for G-CLR that is independent of
any parameters in the input. At the end of this section, we answer this question in the negative
by showing that there is no o(log(k))-approxmation algorithm for G-CLR.

Problem 4.1 (Group Capacitated Location Routing).

Input: a graph G = (¢ U.#,E), metric edge costs ¢ : E — R, opening costs ¢ : # — R™,
demands d : € — R™, vehicle capacity u € R*, a partition ¢},...,%; of ¢

Task: Find a set of facilities FF C .%, a set of clients C C ¥ and a set of closed walks .7
with a demand assignment x : C x 7 — R™ such that

(1) V(T)NF #0forall T € 7,

) ZTE?:VEV(T) x,y =d, forallv € C,
3) Yewxyr <uforallT € .7,
@) CNG #£0forallic {1,... k},

minimizing the cost Y,,cr (W) + Y rcs Yeer Co-

4.1 LP relaxation

In order to obtain an approximation for G-CLR, we describe how to transform a solution of
G-CLR into a multi-commodity flow variable assignment on the arcs and vertices of a directed
graph. We then prove a set of valid inequalities fulfilled by all assignments obtained from
feasible G-CLR solutions. The LP relaxation resulting from these inequalities can be used
to decide on a set of representatives, one for each client group. Replacing each group by its
representative, we obtain an instance of (non-group) CLR which can be approximated by an
adaption of Algorithm 1 with the spanning tree replaced by a Steiner tree. We will show that the
resulting solution to G-CLR is a 4.38L-approximation.

While the problem remains based on an undirected graph, it is more convenient to consider
its directed equivalent in our LP relaxation: We replace each undirected edge e by two oppositely
directed arcs a; and a, with costs ¢(a}) = c(a,) = c(e) and denote the set of all such arcs by
A. We start constructing a multi-commodity flow on the edges in A from a given (undirected)
solution of G-CLR by fixing an arbitrary orientation for every tour. Let y(a) be the number of
tours using arc a € A. Let T,.,,(a) and T,_,,,(a) be the index sets of all tours that serve client v €
% from facility w € .% with an occurrence of arc a € A on the path from w to v or, respectively,
from v to w. Accordingly, define variables xy., (@) = Yicr, () %vi a0d Xy(@) = Yier, , (a) Xvi
for all arcs, where the x,; are the demand assignments introduced at the beginning of Section 2.
Finally, for each facility w € .%, let z(w) = 1 if w is open and z(w) = 0 otherwise.

14

The values x,.,(a) and x,_,,,(a) can be interpreted as multi-commodity flow with two com-
modities v < w and v — w for each pair v € ¥ and w € .F, respectively. The first commodity
corresponds to goods transported from facility w to client v, the second commodity v — w
emulates the empty truck capacity on the tour returning from v to w. We define the flow
balance of node v € V with respect to commodity 7 € {v<w,v - w : vEe€,we F} as
bi(v) == Yacs+(v) Xn(@) = Lacs-(v) Xn(a).

First observe that the total amount of flow on any arc can at most be the capacity u times the
number of tours using the arc, i.e.,

Z Z (Xpew(@) +xyw(a)) <uy(a) VaceA. (1

veEEC weF

Furthermore, we obtain

Y Y Few(@+xw(@) <yla) VacAie{l,... k})

veEG weF

by observing that the left hand side of the equation is at most 1 per tour that is using the arc:
Only one client v in a group is served, only d, units are transported to this client in total, and in
any tour, each arc occurs either before or after v but never both.

By construction of x, flow conservation holds for each commodity at all nodes that nei-
ther correspond to its facility nor to its client. Furthermore, at clients v € €, the value of any
commodity v — w for some w € .% leaving the client equals the value of v <— w entering it:

by—w(p) =0="by,(p) YWwe€,we F,peV\{vyw} 3)
Dyiyy(v) = —bysy(v) = by (W) = —byiyp(w) YWwe¥,weF)

Moreover, as one client from every group needs to be served, the variables fulfill

Y) iben) =1 Vie{l,... .k} ®)

VEGC WESF

Finally, at most d, units of flow are sent from an open facility to client v and thus

Y ibew(v) <z VweZie{l,.. k}. (6)

VEG;

We conclude that the value of an optimal solution to the group location routing problem is
at least the value of an optimal solution of the following LP.

min Zc(a)y(aH— Z Owzw

acA weF
(G-CLRip) ¢y y 2 fulfill (1)—(6)
x,y,z220

Let (x*,y*,z") be an optimal solution to G-CLRyp. Fori € {1,...,k}, let r; € €; be a client
with },c# % maximum over all v € ;. We now define the set of group representatives
as R := {ry,...,rx}. The following inequality will be useful for deriving lower bounds on
OPT(G-CLRyp).

Lemmad.2. Let L:=max{|€;|:ic{l,...,k}}. Then L-Y.,c 7 b}, ,, >d,, forallic {1,... k}.

Proof. By (5), in each group C;, there has to be at least one client v € C; with Y, %:W > %
and thus this inequality holds for r; in particular. O

15

Now denote the instance of (non-group) CLR defined by the set of representatives R by
CLR(R). Consider the following LP relaxation for the uncapacitated facility location problem
arising from CLR(R) as described in Lemma 2.2. We will use it to derive a lower bound on the
value of an optimal solution to G-CLRyp.

min Y Y Euxwt Y, Oudw

VERWEF we.F
s.t. Z Xy > dy, Vv ER
(UFLLp(R)) we
d%wigzw YWweRwe.F
x,22>0

Lemma 4.3. OPT(UFL.p(R)) < L-OPT(G-CLR.p).

Proof. Consider the solution (,Z) to UFLLp(R) obtained by setting Z,, = L -z}, and %,,, = L-
bi, ., (w)forallve R,we .Z. Observe that by Lemma 4.2, we have for each representative r;

Vew
Z xer—L Z br(—w

weF weF

Together with (6), this immediately implies that (%,Z) is a feasible solution to UFLyp. The flow
of each commodity v <— w (v — w) can be decomposed into flow on v-w-paths (w-v-paths), each
of which has at length at least c,,, by triangle inequality. Combining this with (1), we obtain

Yeay(@=>Y«Y ¥ iy @+x,@)>Y Y 2enbi,(v)

acA acA veCweZF vEE weF
1 2 ~ 1 ~ =
> 7’ Z Z 2Cvwrvw = 17 Z Z CowXyw-
VERWEF VERweF

Furthermore, L- Y, c # 0.z, = ¥..e.7 ®wZw by construction, which implies OPT(UFLyp) < L-
OPT(G-CLRyp). O

A second lower bound can be obtained from the LP relaxation of a Steiner tree instance
defined similar to that in Section 3. Again, we consider the graph G’ = (VU {r},EUE’) with

={{r,w}:w € F} as constructed in Lemma 2.3. We then extend the cost function ¢ to E’
by defining cost ¢, = %(])W for each w € .#. We now consider the undirected cut relaxation of
the Steiner tree instance on G’ with terminals RU {r}.

min Z c(e)y(e)

ecEUE'

(STp(R)) st Y, ye)>=1 VSCV,SNR#0
€8,1(S)

y=>0
Lemma 4.4. OPT(ST.p(R)) < 3L-OPT(G-CLR,p)

Proof. Consider the solution § to STy p(R) obtained by setting 5({v,w}) = SL- (y* (vw) +y* (wv))
forallvyw e Vand y({r,w}) =L-Z, forallw € .Z. Let S C V with r; ESfor somei€ {1,...k}.
By flow conservation and (6) we obtain

Z r%w +Zdrzw_ Fi—sw (r;) and Z rew +Zdr,zw>bfﬁw i),

acdt(S) weS acd=(S) wes

16

where 67(S) ={weA:veSweV\Stand 6 (S)={weA:veV\S,weS} By
construction of y and inequality (2) we obtain

Y se=5 (Y v+ ¥ y*<a>)+zz:;

e€dy (9) acd*(S) acd=(S) wes

L
= 2dri (Z x;k[_m}(a) + Z xz’(_W(a) +2- Z drl-ZfV>

acd*(S) acd=(S) wes
Z Ti . b* (ri).

ri—w

The last expression is at least 1 by Lemma 4.2. Thus, ¥ is a feasible solution to ST p(R) with
Leepuprc(e)i(e) = 3L (Laea c(a)y*(a) + Lyes $w) = 3L OPT(G-CLR_p). 0

Remark 4.5. The LP relaxation presented in this section also yields an alternative proof of the
minimum spanning tree lower bound in Lemma 2.3 for the non-group case, using the bidirected
cut formulation of the spanning tree polytope. However, the direct and combinatorial proof of
Lemma 2.3 given in Section 2.1 appears to be more intuitive and elegant.

4.2 Algorithm

Lemma 4.3 and Lemma 4.4 immediately lead to a 4.38L-approximation algorithm for G-CLR:
Compute an optimal solution to G-CLRyp, obtain a set of representatives R from this solution
and compute an approximation to the resulting instance CLR(R) with Algorithm 1, using an LP-
based Steiner tree 2-approximation algorithm instead of a minimum spanning tree computation.

Algorithm 3: Algorithm for GCLR.
Input: An instance of G-CLR.
Output: A feasible solution to G-CLR.
Compute an optimal solution (x*,y*,z*) to G-CLR_p.
forall thei € {1,...,k} do
Letr; € 6; be aclient with Y, & % maximum over all v € €.
R=RU{r} ‘
end
Construct the graph G’ with extended edge costs ¢, = %‘Pw forw e #.
Apply the algorithm of Goemans and Williamson to obtain a Steiner tree S with terminal
set RU{r}in G'.
Apply Algorithm 1 on the instance CLR(R) with the minimum spanning tree computed in
the tree phase replaced by the Steiner tree S. Return the computed solution.

Theorem 4.6. Algorithm 3 is a 4.38L-approximation for G-CLR (Problem 4.1). There is a
4L-approximation for G-MDCVR.

Proof. The cost of the Steiner tree computed by the algorithm of Goemans and Williamson
(1995) is a at most 2 - OPT(STrp(R)). The UFL solution U computed in Algorithm 1 approx-
imates the opening cost of an optimal solution to UFLyp(R) by 7, and its connection cost by
(142e77), because the LP relaxation is equivalent to the one used in the algorithm of Byrka and
Aardal (2010). Thus, Lemmas 4.3 and 4.4 yield 2¢(S) +2¢(U) + ¢(U) < 2-OPT(STLp(R)) +
7-OPT(UFL_p(R)) < 4.38L-OPT(GCLR). O

17

4.3 Lower bound on the approximability

Observing that the approximation guarantee of Algorithm 3 depends on the cardinality of the
largest group, it is natural to ask whether the group version of CLR is indeed considerably harder
than the standard version or whether there is a constant factor approximation whose performance
is independent of any instance parameters. We answer this question negatively by showing that
there is no approximation algorithm for G-CLR with a factor better than &'(log(k)).

In fact, the inapproximability result already holds for the special case of G-CLR with unit
demands and unit capacity, which corresponds to the group version of metric uncapacitated
facility location (G-UFL), as well as for the uncapacitated case considered in Glicksman and
Penn (2008). It is derived by a straightforward reduction from unweighted set cover.

Proposition 4.7. There exists a constant o0 > 0 such that there is no olog(k)-approximation for
G-UFL, unless P = NP.

Proof. We reduce the unweighted set cover problem, for which the same log(n)-approximability-
threshold has been proven by Feige (1998), to G-UFL. An instance of unweighted set cover
consists of a ground set H and a set system . C 27 together with costs cg for every S € ..
The task is to choose a subset .’ of . such that every element of the ground set is covered,
i.e., Uge.o# S = H, while minimizing the total cost) ¢c o cs.

We create a G-UFL instance by introducing a facility wg for each S € .% and setting ¢ (wg) :=
cs. For every h € H and every S € . with h € § we introduce a client v;5. We also introduce a
client group %, for each element i € H of the ground set and let it contain all clients v;g. Finally,
we set ¢y, = 0, whenever S = 5, and to o otherwise.

Note that any feasible solution to this G-UFL instance with finite costs corresponds to a
feasible solution to set cover with the same costs, by selecting the sets corresponding to open
facilities. As for every client group there is an open facility with connection cost O to one of its
members, every set is covered. Likewise, every feasible solution to set cover induces a solution
to G-UFL by opening the facilities corresponding to the chosen sets. Since every element of the
ground set is covered, for every client group there is a member that has connection cost 0 to an
open facility. Thus, any y-approximation for G-UFL (or the group version of UFL) immediately
implies a y-approximation for set cover. Choosing the same ¢« as used in Feige (1998) for set
cover, we conclude that there is no alog(k)-approximation for G-UFL (unless P = NP), since
this would imply a ot log(|H |)-approximation for set cover (note that |H| is the number of groups
in the constructed G—UFL instance).]

Corollary 4.8. There exists a constant o > 0 such that there is no alog(k)-approximation for
G-CLR (even if u = o), unless P = NP.

Proof. As G-UFL is a special case of G-CLR, the inapproximability also holds for the latter.
The reduction also works if u = oo, as connection costs are either 0 or e and so serving all clients
at a facility on one tour instead of serving them separately does not change the costs. O

S Location Routing with Cross-Docking

A major trade-off in classic vehicle routing applications is good capacity utilization versus low
cost of each tour conducted. Especially in applications where clients with small demands are
located far away from facilities, significant cost savings can be realized by allowing consolida-
tion tours. In such a tour, a vehicle is positioned at a client node to collect goods from other
vehicles passing through. Then, it starts on its own tour to distribute the goods collected. Essen-
tially, the demand of a tour of clients is consolidated at one node and forwarded to facilities via

18

other tours from there. The necessitated process of loading goods from one vehicle to another
at a client node is commonly referred to as cross-docking. The example in Figure 1 shows that
cross-docking may indeed lead to cost savings.

Instance network Solution 1, without Solution 2, with
cross-docking cross-docking

Figure 1: A CLR instance with # = 5. The numbers on the edges indicate the edge costs. The
demand at the central client is 1, the demand at the other clients is 3. The optimal routing
scheme in Solution 1 without cross-docking has total cost 12. The routing scheme in Solution 2
uses cross-docking to consolidate the tours at the central vertex. Its total cost is 10.

Formally, a solution with cross-docking to CLR is again a tuple (F,.7), where F C .% is
a set of open facilities and 7 is a set of tours, but .7 = J&U .9y is now partitioned into a
set of facility tours Jr and a set of consolidation tours 933. We now require that (1a) every
facility tour visits an open facility, (1b) in every consolidation tour 7' € .7, exactly one client
h € V(T) is designated as the hub consolidating the hub-demand d;ﬂ =) ,exXyr of all clients
served by the tour, (2) the demand of every client (including the additional demand occurring
if the client is the hub of one or more consolidation tours) is served by the tours by which it
is visited, and (3) the demand served by a tour does not exceed u. More precisely, there are
non-negative values x,7 such that Yrc z.ey(r) 0t = dv + Xre Fyv—hy dl for all v € €, and
Yoewxyr <uforall T € 7. We say that a solution fulfills the single-vehicle-to-client property
if each client’s demand arrives on a single vehicle, which can be important in practice. Note
that, in contrast to the single-tour property, single-vehicle-to-client deliveries still can be split
up on earlier segments of the transportation route or even originate from distinct facilities.

Problem 5.1 (Capacitated Location Routing with Cross-Docking).

Input: a graph G = (¢ U.%,E), metric edge costs ¢ : E — R™, opening costs ¢ : % — R™,
demands d : € — R™, vehicle capacity u € R*

Task: Find a set of facilities F C .% and a set of closed walks .7 partitioned into facility
tours & and consolidation tours .7y, with a demand assignment x : ¢ x 7 — R
such that

(la) V(T)NF #0forall T € F,

(1b) each consolidation tour 7' € Z has a dedicated hub hy € V(T),
(2) ZTE,%:VEV(T) Xy = dy + ZTGﬂH:v:hT Zve%’va forallv €%,
B) Yoexwxyr <uforall T € 7,

minimizing the cost ¥,,cr @ (W) + Y77 Yeer Ce-

19

5.1 Algorithm

We now describe how to adapt Algorithm 1 in order to allow for cross-docking. As before,
we start by computing a solution to a UFL instance as defined in Lemma 2.2 and a minimum
spanning tree for the modified graph G’ as defined in Lemma 2.3. Then, we modify our rerouting
procedure as stated formally in Algorithm 4.

Algorithm 4: Algorithm for CLR with cross-docking.
Input: An instance of CLR.
Output: A feasible solution to CLR with cross-docking.
UFL phase:
Create an UFL instance with edge costs ¢ = %c as described in Lemma 2.2.
Apply the 1.5-approximation algorithm of Byrka and Aardal on this instance and let F}
be the set of facilities opened in the resulting UFL solution.
Run tree and large demand phase of Algorithm 1.
Merge phase:
forall the z € F, do
while D, > u do
Let v € V(S;) such that D, > u but D,, < u for all children w of v.
LetI ={V(Sy) : wisachild of v} U{{v}}.
For every R € I find a pair (vg,zg) such that vg € V(R) and zg € F1 UF, and c¢,,;,
is minimal.
Order the sets in / non-decreasingly by c,,,, and include the first L
Let [y :=1\1.
forall the R € I, do
Construct a tour visiting zg, v and all vertices in R by adding vrzg to the tree
and then doubling edges and short-cutting.
Add the tour to 7% and remove the subtrees corresponding to the elements of

R from S.
end

forall the R € I; do
Construct a tour visiting v and all vertices in R by doubling edges and

short-cutting.
Add the tour to .Z5; with hub v and remove the subtrees corresponding to the
elements of R from S.

D,

7J sets in I;.

end

end
Construct a tour from S; by doubling all edges and short-cutting.
Add the tour to .

end
Run clean-up phase of Algorithm 1.

As in Section 2.2, we consider a node v with D,, > u but D,, < u for all children w of v and let
I be the set containing all subtrees S,,, with w being a child of v, and {v} itself. For each of these
sets R € I, we determine a node vg with cheapest connection cost ¢, to an open facility zz. We
order the sets R € I non-decreasingly by c,,,, and define the set of sink trees I; as the first L%J
elements of /. The remaining elements 7 \ /; comprise the set of source trees I;. Each sink tree
R € I is turned into a facility tour by doubling edges and inserting the open facility closest to
VR, paying at most twice the tree edges plus the connection cost of vg to its facility. Each source
tree is turned into a consolidation tour with hub v by doubling the edges and short-cutting.

20

Note that by this construction, each facility tour visits v. Hence, any spare capacity on a
facility tour can be filled by hub demands ensuing at v from consolidation tours. Furthermore,
the sum of all demands that cannot be served by the facility tours constructed is strictly less than
u.

5.2 Analysis

We first point out that our lower bounds from Section 2.1 remain valid when allowing cross-
docking. These results can easily be obtained by slight modification of the corresponding proofs
of Lemma 2.2 and Lemma 2.3, respectively.

Lemma 5.2. Consider a UFL instance as defined in Lemma 2.2. The cost of its optimal solution
(w.r.t. ¢) is at most the cost of an optimal solution to CLR with cross-docking (w.r.t. c).

Proof. Consider an optimal solution (F,.7") of CLR with cross-docking and demand assign-
ments x,7. As in the proof of Lemma 2.2, we can construct a flow f from the CLR solution as
follows. For every client v € ¢ and each tour T € .7 serving v, partition 7 into two paths from
the facility or hub of the tour to the client and send x, 7 units of flow along either path. Since flow
is sent along two paths for every client/tour pair and all hub demand is forwarded along further
tours to facilities, the net flow transported to any client v € 4 equals 2d,. We can thus apply
flow decomposition on f to obtain a set of client-facility paths &p and cycles Z¢, respectively,
with corresponding flow values fp for every P € &#p U Zc. On this flow decomposition, we can
apply the same arguments as in the proof of Lemma 2.2. O

Lemma 5.3. The cost of a minimum spanning tree in the graph G' w.r.t. costs ¢’ as defined in
Lemma 2.3 is a lower bound on the cost of an optimal solution to CLR with cross-docking (w.r.t.

c).

Proof. Let (F,) be a feasible solution to CLR with cross-docking. Note that S = Jyc 5 TUE’
spans all vertices of the graph G’ since for every client there is a path from a facility to this client
along edges used in the tours. We can modify S such that it spans the graph G’ but every facility
opened in the CLR solution is incident to at most one edge in E by applying the technique from
the proof of Lemma 2.3 on the set of facility tours. This set contains a spanning tree of cost at
most the cost of the CLR solution. O

It turns out that guaranteeing demand u on each of the tours constructed in the rerouting
procedure yields an improved approximation guarantee for the merge phase of our algorithm.

Lemma 5.4. The merge phase of Algorithm 4 constructs a solution to CLR with cross-docking
with cost at most 2¢'(S) +&(U) + ¢ (U) from the spanning tree S and the UFL solution U.

Proof. Observe that each facility tour constructed in the inner loop serves a total demand of
u. Thus, the central inequality in the proof Lemma 2.4 changes t0 Y. cy () Cry(x)dx = 2¢yy-
Accordingly, the connection cost of the UFL solution is paid only once. O

Intuitively, the improved bound in Lemma 5.4 arises from the tight capacity utilization of
vehicles that are paid for by the UFL solution. We immediately obtain a better approximation
guarantee for Algorithm 4 when using the 1.5-approximation of Byrka and Aardal (2010) for
constructing the UFL solution U.

Theorem 5.5. Algorithm 4 is a 3.5-approximation algorithm for CLR with cross-docking (Prob-
lem 5.1). If d, < u for all v € €, the obtained solution satisfies the single-vehicle-to-client

property.

21

Again, in the case of MDCVR with ¢ = 0, we can apply shortest path computations to solve
the UFL instance exactly.

Theorem 5.6. When solving the UFL instance by shortest path computation, Algorithm 4 is a
3-approximation algorithm for MDCVR with cross-docking. If d, < u for all v € €, the obtained
solution satisfies the single-vehicle-to-client property.

We remark that, while Algorithm 1 produces a solution without cross-docking, its approxi-
mation factor still holds for the case where cross-docking is allowed as all lower bounds used in
Theorem 2.5 remain valid. Thus, we obtain the following bounds on the improvements realiz-
able by cross-docking in CLR and MDCVR.

Corollary 5.7.

1. Algorithm 1 is a 4.38-approximation for CLR with cross-docking and a 4-approximation
for MDCVR with cross-docking. The produced solution fulfills the single-assignment
property. If d, < u for all v € €, it fulfills the single-tour property.

2. The value of an optimal solution for CLR without cross-docking is at most 4.38 times
the value of a solution with cross-docking. The value of an optimal solution for MDCVR
without cross-docking is at most 4 times the value of a solution with cross-docking.

We close this section by observing that the validity of the lower bounds extend to the cases
of prize-collecting as well as group location routing with cross-docking. We can thus combine
the merge phase of Algorithm 4 with the modifications introduced in Algorithm 2 for PC-CLR
and Algorithm 3 for G-CLR, respectively.

Theorem 5.8. There is a (2+ ppc.urL)-approximation algorithm for PC-CLR with cross-docking.
There is a 3-approximation algorithm for PC-MDCVR with cross-docking.

Theorem 5.9. There is a 3.5 L-approximation algorithm for G-CLR with cross-docking. There
is a 3 L-approximation algorithm for G-MDCVR with cross-docking.

6 Computational Study

In Section 2, we have proven that our polynomial time algorithm for CLR is guaranteed to
compute solutions which are at most 4.38 times as expensive as the optimum. In this section,
we shall see that the algorithm’s performance in practice exceeds this theoretical worst-case
estimate by far. We would like to emphasize that we do not expect our algorithm to compete
with (meta-)heuristic approaches without an approximation guarantee. Rather, the question
addressed in this computational study is how much solution quality on typical instances needs to
be sacrificed in exchange for polynomial running time and a worst case performance guarantee
across all instances.

For our experiments, we implemented Algorithm 1 with the following minor modifications:
First, instead of using the bifactor approximation algorithm of Byrka and Aardal in the UFL
phase, we implemented the greedy approximation algorithm of Jain et al. (2003). While the
latter has a slightly worse approximation guarantee of 1.861, it is purely combinatorial, avoiding
randomization and linear programming, and far easier to implement. In this context, note that
although the instances in our study are equipped with Euclidian distances, we do not apply the
PTAS of Arora et al. (1998) as it is not tailored for practical use in regards of running time.
Moreover, before applying Prim’s algorithm (see e.g. Cormen et al. (2001)) in the tree phase,

22

we set the opening costs of all facilities opened in the UFL phase to zero; doing so turns out
to yield slightly improved results, while it does not interfere with our theoretical analysis of the
algorithm. Finally, once the algorithm has computed all tours, we added an option to improve
each single tour by solving the corresponding travelling salesman problem (TSP) using LKH,
an implementation of the Lin-Kernighan heuristic described in Helsgaun (2000).

Fact 6.1. Our implementation of Algorithm 1 has an approximation guarantee of 5.722.

Fact 6.2. The running time of our implementation of Algorithm 1 is O (n*m), where n and m
denote the number of clients and facilities, respectively.

Fact 6.1 results directly from Lemma 2.4 and the approximation factor of the greedy algo-
rithm used in the UFL phase. The running time of the implementation is dominated by that
of the UFL phase, cf. Jain et al. (2003). Moreover, experiments in Helsgaun (2000) indicate
that the practical running time of LKH is quite low (close to quadratic). Our study supports
this observation, as the additional running time when employing the option for a-posteriori tour
optimization by LKH turns out to be small, immeasurable on moderately sized instances.

We report results for two different sets of instances: The first, referred to as the bench-
mark set, comprises 45 instances appearing frequently in the location routing literature, see
the references appearing below. Here, we compare our results with those obtained by recent
(meta-)heuristic algorithms as well as best known solutions (bks) from the literature. While the
benchmark instances are moderate in size (20-200 clients, 5-20 facilities), our second test set
consists of 27 randomly generated instances which are considerably larger (up to 10000 clients
and 1000 facilities). Our implementation was done in C++ using GCC 4.5 under SUSE Linux
11.3, and all computations were conducted on an Intel Core2 Duo E8400 processor at 3GHz
with 4GB RAM.

6.1 Benchmark instances

Key properties of the benchmark instances used are listed in Table 1. The first 36 instances were
introduced in Tuzun and Burke (1999), the last nine in Barreto et al. (2007); we will refer to
them as sets 7B and B, respectively. While set TB is adopted as-is, our set B contains only those
instances introduced in Barreto et al. (2007) which do not have a capacity limit on facilities, as
only those mirror the location routing problem addressed here.

The best known solution values reported for TB were obtained in Prins et al. (2007). For
B, some proven optima were already reported in Barreto et al. (2007), while the remaining
instances were solved to proven optimality in Baldacci et al. (2009), as reported in Contardo
et al. (2010).

Table 2 contains gaps to bks and cpu times for our implementation of Algorithm 1, with
and without a-posteriori optimization of tours using LKH, compared to those of four other al-
gorithms for CLR: a greedy randomized adaptive search procedure (GRASP) proposed in Prins
et al. (2006); a Lagrangean relaxation granular tabu search (LRGTS) developed in Prins et al.
(2007); a two-phase tabu search (TS) studied in Tuzun and Burke (1999); and finally an exact
branch-and-cut-and-price approach (BCP) proposed in Baldacci et al. (2009). Results for al-
gorithms GRASP and LRGTS are stated in Prins et al. (2007) for all 45 benchmark instances,
while results for TS and BPS are only available in the corresponding works for the instances in
TB and B, respectively.

Please note that our algorithms, GRASP and LRGTS, TS, and BCP were tested on differ-
ent machines, so the cpu times stated should not be compared directly. Since all tests were
performed on modern desktop computers, however, we do believe that a comparison of the
magnitudes of running times remains feasible.

23

name #facilities #clients @ demand vehicle capacity bks value

111112 10 100 15.17 150 1468.40
111122 20 100 15.00 150 1449.20
111212 10 100 14.39 150 1396.46
111222 20 100 15.19 150 1432.29
112112 10 100 15.28 150 1167.53
112122 20 100 14.32 150 1102.70
112212 10 100 15.06 150 793.97

112222 20 100 14.73 150 728.30

113112 10 100 14.81 150 1238.49
113122 20 100 15.10 150 1246.34
113212 10 100 14.73 150 902.38

113222 20 100 14.78 150 1021.31
121112 10 200 14.95 150 2281.78
121122 20 200 15.15 150 2185.55
121212 10 200 14.81 150 2234.78
121222 20 200 14.94 150 2259.52
122112 10 200 15.24 150 2101.90
122122 20 200 14.47 150 1709.56
122212 10 200 14.69 150 1467.54
122222 20 200 15.21 150 1084.78
123112 10 200 15.13 150 1973.28
123122 20 200 14.66 150 1957.23
123212 10 200 15.09 150 1771.06
123222 20 200 15.29 150 1393.62
131112 10 150 14.79 150 1866.75
131122 20 150 14.93 150 1841.86
131212 10 150 15.02 150 1981.37
131222 20 150 14.71 150 1809.25
132112 10 150 14.95 150 1448.27
132122 20 150 14.75 150 1444.25
132212 10 150 14.91 150 1206.73
132222 20 150 15.15 150 931.94

133112 10 150 14.95 150 1699.92
133122 20 150 14.93 150 1401.82
133212 10 150 15.18 150 1199.51
133222 20 150 14.91 150 1152.86
Chr69-100x10 10 100 14.58 200 842.90*
Chr69-50x5 5 50 15.54 160 565.60*
Chr69-75x10 10 75 18.19 160 861.60*
Gas67-22x5 5 22 463.14 4500 585.11*
Gas67-29x5 5 29 439.66 4500 512.10*
Gas67-32x5 5 32 917.81 8000 562.20*
Gas67-32x5-2 5 32 917.81 11000 504.30*
Gas67-36x5 5 36 25.00 250 460.40*
Min92-27x5 5 27 311.48 2500 3062.00*

Table 1: Properties of benchmark instances and cost of a best known solution (bks, * denotes
proven optimality). The bks values for the first 36 instances are from Prins et al. (2007), those
for the last nine from a series of papers by Baldacci et al. (2009), Barreto et al. (2007), and
Tuzun and Burke (1999).

24

approx approx+tsp GRASP LRGTS TS/BCP
gap cpu gap cpu gap cpu gap cpu gap cpu

instance

111112 0.207 0.00 0.079 0.00 0.039 3240 0.015 330 0.060 6.01
111122 0235 0.00 0.117 0.00 0.054 40.70 0.016 6.50 0.057 5.71
111212 0.133 0.00 0.043 0.00 0.019 27.60 0.011 420 0.034 3.36
111222 0.342 0.00 0.246 0.00 0.035 3620 0.008 7.40 0.055 5.52
112112 0.164 0.00 0.076 0.00 0.028 27.70 0.017 6.90 0.054 5.45
112122 0.133 0.00 0.095 0.01 0.019 3430 0.012 6.80 0.027 2.66
112212 0.086 0.00 0.041 0.00 0.025 2250 0.024 520 0.039 3.92
112222 0.119 0.00 0.070 0.00 0.027 3730 0.020 590 0.017 1.68
113112 0.183 0.00 0.090 0.00 0.028 21.50 0.024 430 0.063 6.34
113122 0201 0.00 0.131 0.00 0.021 36.00 0.008 630 0.023 2.26
113212 0.140 0.00 0.082 0.00 0.011 2030 0.012 4.00 0.020 2.04
113222 0.166 0.00 0.126 0.00 0.004 3840 0.007 490 0.023 2.05
131112 0253 0.01 0.142 0.01 0.075 113.00 0.042 12.50 0.072 7.19
131122 0.230 0.01 0.110 0.01 0.026 161.40 0.018 18.50 0.028 277
131212 0.153 0.00 0.067 0.01 0.027 100.00 0.015 11.10 0.021 2.06
131222 0.206 0.01 0.102 0.01 0.026 132.40 0.006 15.80 0.025 2.53
132112 0.163 0.01 0.081 0.01 0.041 117.70 0.000 22.00 0.074 743
132122 0.301 0.01 0.230 0.02 0.009 166.10 0.034 28.00 0.024 2.39
132212 0.101 0.01 0.050 0.00 0.028 106.70 0.004 14.60 0.020 2.04
132222 0.170 0.00 0.123 0.01 0.010 14240 0.005 13.70 0.018 1.75
133112 0.155 0.01 0.098 0.00 0.022 92.80 0.017 17.90 0.037 3.68
133122 0.127 0.01 0.075 0.01 0.017 12840 0.016 18.50 0.062 6.17
133212 0.128 0.00 0.068 0.01 0.020 88.50 0.014 14.50 0.054 543
133222 0.081 0.00 0.029 0.01 0.068 13490 0.008 14.30 0.026 2.55
121112 0.217 0.01 0.145 0.01 0.055 308.00 0.016 32.60 0.053 4.28
121122 0.139 0.01 0.050 0.02 0.047 410.00 0.010 39.60 0.012 1.20
121212 0.191 0.01 0.105 0.02 0.017 311.40 0.012 32.80 0.024 2.39
121222 0225 0.02 0.122 0.02 0.042 41890 0.004 40.20 0.047 4.26
122112 0.145 0.02 0.088 0.02 0.017 338.00 0.009 47.20 0.027 2.70
122122 0.179 0.02 0.125 0.02 0.057 370.00 0.017 59.30 0.045 4.53
122212 0.107 0.01 0.050 0.01 0.020 242.70 0.014 36.70 0.056 5.60
122222 0.119 0.01 0.049 0.00 0.010 308.50 0.005 38.70 0.026 2.60
123112 0.170 0.01 0.081 0.01 0.036 282.80 0.005 41.60 0.042 420
123122 0.126 0.01 0.050 0.02 0.068 399.20 0.015 51.80 0.023 2.31
123212 0.183 0.02 0.146 0.02 0.010 199.00 0.009 34.00 0.060 6.00
123222 0.182 0.01 0.134 0.01 0.011 29630 0.005 43.20 0.015 1.52

Chr69-100x10* 0.283 0.00 0.108 0.00 0.022 2550 0.000 2820 0.000 13074.7
Chr69-50x5* 0.220 0.00 0.079 0.00 0.059 230 0.037 240 0.000 1129
Chr69-75x10* 0.177 0.00 0.104 0.00 0.000 9.80 0.002 10.10 0.000 3413.5
Gas67-22x5* 0244 0.00 0.021 0.00 0.000 0.20 0.004 0.20 0.000 6.0
Gas67-29x5* 0279 0.00 0.165 0.00 0.006 040 0.000 040 0.000 178.2
Gas67-32x5* 0245 0.00 0.179 0.00 0.017 0.60 0.040 0.60 0.000 63.4
Gas67-32x5-2* 0.205 0.00 0.123 0.00 0.000 050 0.001 050 0.000 1179
Gas67-36x5* 0448 0.00 0.094 0.00 0.000 0.80 0.035 0.70 0.000 29
Min92-27x5* 0.181 0.00 0.115 0.00 0.000 0.40 0.001 0.30 0.000 47.0

0.038 3.74
0.000 1890.69

1%} 0.188 0.01 0.100 0.01 0.026 128.54 0.013 17.96

Table 2: Gaps to best known solution (bks) and cpu times for various algorithms on benchmark
instances (* signifies proven optimality of bks). Results for algorithm TS are only available for
the first 36 instances, those for BCP only for the last nine, hence they share a column. The
last row contains average values, with those for TS (first 36 instances) and BCP (last nine) one
above the other.

25

On average, our approximation algorithm delivers solutions with cost about 19% above the
bks value. This figure improves to 10% when LKH is used to optimize tours a-posteriori. More-
over, the running time of our algorithm is negligible on these instances, regardless of whether
LKH is used or not. In comparison, the (meta-)heuristic algorithms GRASP, LRGTS, and TS
compute solutions with objective 1-4% above that of bks on average, while their running times
vary strongly from 1-7 seconds (TS) to up to 7 minutes (GRASP). The exact approach (BCP) is
able to find optimal solutions for all instances in B, while its running time is naturally very high
(up to several hours).

Since gaps to bks for GRASP and LRGTS are no greater for the instances in 7B than for
those in B, where optimality has been proven, it seems reasonable to assume that the gap between
bks and an optimum solution is generally small. In this case, our algorithm vastly outperforms
its theoretical approximation guarantee of 5.722. When employing a simple post-optimization
step using LKH, it yields solutions within a factor of 1.25 of bks on all instances, within 1.1
on average. Moreover, its polynomial running time is reflected in very small cpu times on
these benchmark instances. When compared to (meta-)heuristic algorithms, solution quality
suffers only by a single-digit percentage on average, while cpu times are improved by several
magnitudes. Moreover, recall that this improvement in running time comes in addition to the
advantage of having a guarantee on solution quality across all possible instances, including
malicious examples where (meta-)heuristics might perform very poorly. In light of its extremely
fast running time, our algorithm can also be used to compute feasible start solutions for other
search heuristics.

6.2 Larger, randomly generated instances

The extremely fast running time of our algorithm on benchmark instances, which are all of
moderate size, suggests that our algorithm is suitable for larger instances as well. To the best of
our knowledge, no instances of CLR which are significantly larger than those in the benchmark
set have been solved in the literature; hence, we generated a random test set from three input
parameters: size, facility opening cost, and vehicle capacity.

Instances were generated on three base networks of different sizes: M (1000 clients, 100
facilities), L (5000, 500), and XL (10000, 1000). Facility opening costs were drawn uniformly
at random from three different ranges: [0;100], [100;200], and [200;500]. Vehicle capacities
were set to either 9, 100, or 1000, while client demands were drawn uniformly at random from
[0;10] in all cases. Finally, x- and y-coordinates for clients and facilities were drawn uniformly
at random from [0;100], and Euclidean distances d(i, j) := /(x; —x;)2+ (y; —y:)? are used
in all instances. Our approach of generating the random instances is similar to the approach
of Tuzun and Burke (1999), except that we did not use clustering. The experimental design,
using the same base network with different parameters, allows us to compare the effects of
these parameters on solution structure, performance of the algorithm, and quality of the lower
bounds derived from MST and UFL subproblems, respectively.

All possible combinations of the three input parameters yield 27 different instances, which
we name by their size, indexed with their choice of facility opening cost and vehicle capacity.
E.g., My is an instance with 1000 clients, 100 facilities, facility opening costs in [100;200],
and vehicle capacity 100.

Key properties of the solutions computed by our algorithm, again with and without LKH,
together with cpu times are depicted in Table 3. The column ‘lower bound’ denotes the better
of the two lower bounds arising from the UFL and MST instances as described in Lemmas 2.2
and 2.3. While the minimum spanning tree computed within the algorithm is optimal and can
thus be directly used as lower bound, deriving a reasonable UFL lower bound requires more

26

name lower bound #open fac. fac. cost #tours approx ApProX-+isp

cost gap cpu cost gap cpu
Mi 8800.8° 33 779.4 757 13563.4 0.541 0.47 134789 0.532 0.55
M, 41249.59 13 82 58 4111.6 0.961 0.95 3499.05 0.669 1.00
M3 2096.3T 8 31.8 10 33436 0.595 1.59 24789 0.183 1.65
M, 12166.6° 18 2157.9 756 18086.2 0.487 0.53 17997 0479 0.62
M> 2288.89 5 528.2 55 50989 1.228 092 4468.74 0952 0.98
M 3 2151.6T 1 205.2 6 35202 0.636 1.62 2620.84 0.218 1.67
M;3 15432.20 10 2370.3 756 23008.8 0.491 0.68 22926.8 0486 0.76
M3, 2938.7° 3 869.1 55 6012 1.046 1.27 5345.92 0.819 1.32
M; 3 2203.4T 1 414.3 6 3656.8 0.66 0.83 2779.25 0.261 0.88
Lia 17502P 128 2426.4 3695 32473 0.855 2339 323259 0.847 3590
Li» 46077 47 337.3 272 9433.5 1.048 50.84 8106.1 0.76 59.29
Lis 46077 16 42.1 31 734477 0594 120.12 5463.71 0.186 121.95
Lo 29519.6" 50 6000.5 3694 50380.6 0.707 28.89 50229.7 0.702 41.35
Los 5946.5P 10 1163.8 271 134355 1.259 6579 12059.5 1.028 73.81
L3 4659.4T 2 306 29 8477 0.819 16299 6624.78 0.422 165.08
L3 38728.3P 31 7293.4 3694 640589 0.654 38.3 63905.1 0.65 50.94
L2 7515.9P 6 1473 271 156949 1.088 89.8 143724 0912 97.81
Lss 4709.47 1 409.3 29 88353 0.876 210.71 6966.54 0.479 213.44
XLy 25449.7° 229 3394.8 7480 48879.5 0921 136.48 48677.1 0913 214.23
XL 2 6494.67 78 405.1 554 137523 1.117 314.81 11872 0.828 369.47
XLi3 6494.67 33 52.7 69 10400 0.601 741.08 7754.66 0.194 74991
XL,; 46601.8P 82 9264.9 7473 777963 0.669 16557 77580.6 0.665 243.40
XLoo 9253.7P 17 1752.7 547 20133.7 1.176 383.13 18159.1 0.962 434.58
XLy 3 6550.3T 4 507.8 57 12018.2 0.835 879.48 9296.1 0.419 886.83
XLs; 60461.3P 48 10593.1 7473 101676 0.682 228.14 101454 0.678 307.12
XLs, 11838.1° 11 2255.2 547 233045 0969 518.15 213415 0.803 570.46
XL33 6600.5T 2 610.2 57 13091.1 0983 1314.86 10389.9 0.574 1322.69
1%} 14328.43 32.85 2063.94 1433.41 22651.35 0.833 203.01 21562 0.616 221.03

Table 3: Best known lower bounds (T: MST, O: optimal UFL solution, D: dual UFL solution),
solution properties, costs, gaps and cpu times of the approximation algorithm with and without
tsp post-optimization for random instances.

27

care, as the UFL solutions used in the algorithm are only approximations: For smaller instances
(size M), we computed the optimal solution value of the corresponding UFL instances using the
mixed integer programming solver CPLEX 12.1 (IBM Corp., 2009). For the instances of size L
and XL, where using a MIP solver was not possible, we derived a lower bound by constructing
a dual solution from the client bids occuring in the UFL greedy algorithm by Jain et al. (2003).

Cpu time for the largest instances is at most about twenty minutes. On average, using LKH
to optimize tours a-posteriori reduces total cost by about 5%, while increasing cpu time by
roughly 10%. Naturally, the effect of using LKH on both solution quality and cpu time is more
significant when vehicle capacity is large (i.e., tours are long). Regarding the lower bounds, we
observe that the MST yields stronger bounds for larger vehicle capacities, while the UFL bound
is stronger when vehicle capacities are small. On average, our algorithm shows a gap of 61.6%
to the corresponding lower bounds when LKH post-optimization is enabled.

While we do not expect the lower bounds to be very close to the optimum solution values, we
do not have any other primal solutions to compare with our results on instances of similar size.
However, we encourage the authors of other algorithms for CLR to perform experiments on our
random test set, which are available for download athttp://www.coga.tu-berlin.de/clrlib,
and compare their results to ours.

7 Summary & Outlook

Approximation algorithms combine efficient running times with provable a priori guarantees
on solution quality. We applied this concept to several versions of capacitated location routing
problems, which extend classical vehicle routing problems by depot location decisions. Variants
of our algorithms also yield improved approximation guarantees for multi-depot capacitated
vehicle routing.

We constructed a 4.38-approximation algorithm for capacitated location routing with arbi-
trary client demands, the first constant-factor approximation known for this problem. For the
case of multi-depot capacitated vehicle routing, our algorithm improves the best known approxi-
mation ratio from 5 to 4. We then extended our algorithms to practically relevant generalizations
of these problems, namely a prize-collecting version with penalties for non-served clients, and
a group version, where one client from each group needs to be chosen. In all three cases, a
variant where cross-docking is allowed leads to better approximation factors. All algorithms
in our framework are based on computing an uncapacitated solution via a minimum spanning
tree or Steiner tree, and rerouting excess demand according to the solution of a scaled facility
location problem (or along shortest paths for multi-depot capacitated vehicle routing).

Finally, we demonstrated in a computational study that our algorithm for CLR is also of
practical relevance. Our computational experiments revealed that the actual solution quality
achieved by our algorithm is much closer to optimality than suggested by the theoretical bounds.
On a benchmark set of instances from the literature, our algorithm for CLR computes solutions
with cost within a factor of 1.1-1.2 of best known solutions on average. Moreover, we demon-
strated that our algorithm is extremely fast, running in negligible time on benchmark instances.
Thus, it might be a valuable tool for solving large-scale problems.

A further investigation of the algorithms in this paper would be of practical as well as theo-
retical interest: Given its fast running time, using its solution as a starting point in local search
frameworks might lead to improved results of those heuristics without a significant increase in
running time. Further experiments could be conducted on extended location routing models,
e.g., with capacities on facilities, or heterogeneous vehicle fleets. Although the theoretical ap-
proximation guarantee might be lost in these cases, the algorithm could be adapted to still be an

28

efficient heuristic for those problems.

On the theoretical side, it might be possible to sharpen our analysis and prove stronger
theoretical approximation guarantees. Moreover, our paper does not address the issue of lower
bounds on the possible approximation factor for basic capacitated location routing. It is easy to
see that it cannot be approximated better than by a factor of 1.5 (unless P = NP), which is the
best known lower bound for approximating a single-depot vehicle routing problem with uniform
vehicle capacities (Golden and Wong, 1981). However, an analysis that takes into account both
the location and routing aspects of the problem might lead to stronger inapproximability results.

Moreover, our algorithms strongly rely on the technique of tree-to-tour-conversion, thereby
incurring an additional factor of 2 in their approximation ratios. It would be interesting to find
out if a more tour-specific approach, e.g., the tour partitioning techniques widely used for vehicle
routing problems (Li and Simchi-Levi, 1990), could lead to better approximation factors.

The cross-docking model considered in this work assumes that the cost of actual cross-
docking operations is negligible, and the operations can be performed at arbitrary client nodes.
Deriving approximation algorithms for the case where cross-docking operations incur cost and
are restricted to certain cross-docking facilities is an open problem. In Section 5, we point out
that the possible improvement due to cross-docking is bounded by a factor of at most 4.38.
We suspect the actual bound to be much smaller and leave its determination as a further open
question for future research.

Acknowledgements: We would like to thank two anonymous referees, the guest editor, and
the editor in chief for motivating us to conduct the computational study in Section 6.

References

Arora, S., P. Raghavan, S. Rao. 1998. Approximation schemes for Euclidean k-medians and
related problems. STOC ’98. Association for Computing Machinery, New York, NY, 106—
113.

Baldacci, R., A. Mingozzi, R. Wolfer-Calvo. 2009. The capacitated location routing problem.
Presented at ROUTE 2009, Rolighed, Denmark.

Baldacci, R., P. Toth, D. Vigo. 2010. Exact algorithms for routing problems under vehicle
capacity constraints. Annals of Operations Research 175(1) 213-245.

Barreto, S., C. Ferreira, J. Paixao, B. S. Santos. 2007. Using clustering analysis in a capacitated
location-routing problem. European Journal of Operational Research 179(3) 968 — 977.

Belenguer, J.-M., E. Benavent, C. Prins, C. Prodhon, R. W. Calvo. 2011. A branch-and-cut
method for the capacitated location-routing problem. Computers & OR 38(6) 931-941.

Brdysy, O., M. Gendreau. 2005. Vehicle routing problem with time windows, part I: Route
construction and local search algorithms. Transportation Science 39(1) 104—118.

Byrka, J., K. Aardal. 2010. An optimal bifactor approximation algorithm for the metric unca-
pacitated facility location problem. SIAM Journal on Computing 39(6) 2212-2231.

Cardon, S., E. Dommers, C. Eksin, R. Sitters, L. Stougie. 2008. A PTAS for the multiple
depot vehicle routing problem. SPOR Report 2008-03, Technische Universiteit Eindhoven,
Eindhoven.

29

Charikar, M., S. Khuller, D. M. Mount, G. Narasimhan. 2001a. Algorithms for facility location
problems with outliers. SODA ’01. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 642-651.

Charikar, M., S. Khuller, B. Raghavachari. 2001b. Algorithms for capacitated vehicle routing.
SIAM Journal on Computing 31(3) 665-682.

Chen, X., B. Chen. 2009. Cost-effective designs of fault-tolerant access networks in communi-
cation systems. Networks 53(4) 382-391.

Christofides, N. 1976. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Report 388, Graduate School of Industrial Administration, Carnegie Mellon University,
Pittsburgh, PA.

Chudak, F. A., D. B. Shmoys. 2003. Improved approximation algorithms for the uncapacitated
facility location problem. SIAM Journal on Computing 33(1) 1-25.

Contardo, C., J.-F. Cordeau, B. Gendron. 2010. A branch-and-cut algorithm for the capactiated
location problem. Unpublished manuscript.

Cordeau, J. F., M. Gendreau, G. Laporte, J. Y. Potvin, F. Semet. 2002. A guide to vehicle routing
heuristics. Journal of the Operational Research Society 53 512-522.

Cordeau, J. F,, G. Laporte, M. W. P. Savelsbergh, D. Vigo. 2007. Vehicle routing. C. Barn-
hart, G. Laporte, eds., Transportation, vol. 14 of Handbooks in Operations Research and
Management Science, Elsevier, Amsterdam. 367—428.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, C. Stein. 2001. Introduction to Algorithms. The
MIT Press, New York.

Desrochers, M., J. K. Lenstra, M. W. P. Savelsbergh, F. Soumis. 1988. Vehicle routing with
time windows: Optimization and approximation. B. L. Golden, A. A. Assad, eds., Vehicle
Routing: Methods and Studies, North-Holland, Amsterdam. 65—-84.

Feige, U. 1998. A threshold of In n for approximating set cover. Journal of the ACM (JACM)
45(4) 634-652.

Glicksman, H., M. Penn. 2008. Approximation algorithms for group prize-collecting and
location-routing problems. Discrete Applied Mathematics 156(17) 3238-3247.

Goemans, M. X., D. P. Williamson. 1995. A general approximation technique for constrained
forest problems. SIAM Journal on Computing 24(2) 296-317.

Golden, B., R. Wong. 1981. Capacitated arc routing problems. Networks 11(3) 305-315.

Golden, B. L., A. A. Assad, eds. 1988. Vehicle Routing: Methods and Studies. North-Holland,
Amsterdam.

Haimovich, M., A. H. G. Rinnoy Kan. 1985. Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research 10(4) 527-542.

Haimovich, M., A. H. G. Rinnoy Kan, L. Stougie. 1988. Analysis of heuristics for vehicle
routing problems. B. L. Golden, A. A. Assad, eds., Vehicle Routing: Methods and Studies,
North-Holland, Amsterdam. 47-61.

30

Helsgaun, K. 2000. An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operations Research 126(1) 106—130.

Hochbaum, D. S. 1997. Approximation algorithms for NP-hard problems. PWS Publishing,
Boston, MA.

IBM Corp. 2009. IBM ILOG CPLEX Optimizer 12.1.0. http://www.ibm.com/software/
integration/optimization/cplex-optimizer/.

Jain, K., M. Mahdian, E. Markakis, A. Saberi, V. V. Vazirani. 2003. Greedy facility location
algorithms analyzed using dual fitting with factor-revealing LP. Journal of the ACM 50(6)
795-824.

Laporte, G. 1988. Location-routing problems. B. L. Golden, A. A. Assad, eds., Vehicle Routing:
Methods and Studies, North-Holland, Amsterdam. 163—198.

Laporte, G. 2009. Fifty years of vehicle routing. Transportation Science 43(4) 408-416.

Laporte, G., Y. Nobert, S. Taillefer. 1988. Solving a family of multi-depot vehicle routing and
location-routing problems. Transportation Science 22(3) 161-172.

Laporte, G., F. Semet. 2001. Classical heuristics for the capacitated VRP. P. Toth, D. Vigo, eds.,
The vehicle routing problem, Society for Industrial and Applied Mathematics, Philadelphia,
PA. 109-128.

Li, C., D. Simchi-Levi. 1990. Worst-case analysis of heuristics for multidepot capacitated vehi-
cle routing problems. ORSA Journal on Computing 2(1) 64-73.

Liu, J., C.-L. Li, C.-Y. Chan. 2003. Mixed truck delivery systems with both hub-and-spoke and
direct shipment. Transportation Research Part E: Logistics and Transportation Review 39(4)
325-339.

Mahdian, M., Y. Ye, J. Zhang. 2006. Approximation algorithms for metric facility location
problems. SIAM Journal on Computing 36(2) 411-432.

Mina, H., V. Jayaraman, R. Srivastava. 1998. Combined location-routing problems: A synthesis
and future research directions. European Journal of Operational Research 108(1) 1-15.

Nagy, G., S. Salhi. 2007. Location-routing: Issues, models and methods. European Journal of
Operational Research 177(2) 649-672.

Prins, C., C. Prodhon, R. W. Calvo. 2006. Solving the capacitated location-routing problem by
a grasp complemented by a learning process and a path relinking. 4OR 4(3) 221-238.

Prins, C., C. Prodhon, A. B. Ruiz, P. Soriano, R. W. Calvo. 2007. Solving the capacitated
location-routing problem by a cooperative lagrangean relaxation-granular tabu search heuris-
tic. Transportation Science 41(4) 470—483.

Ravi, R., A. Sinha. 2006. Approximation algorithms for problems combining facility location
and network design. Operations Research 54(1) 73-81.

Toth, P., D. Vigo. 2002. The Vehicle Routing Problem. Monographs on Discrete Mathematics
and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA.

31

Tuzun, D., L. I. Burke. 1999. A two-phase tabu search approach to the location routing problem.
European Journal of Operational Research 116(1) 87-99.

Vahdani, B., M. Zandieh. 2010. Scheduling trucks in cross-docking systems: Robust meta-
heuristics. Computers & Industrial Engineering 58(1) 12-24.

Webb, M. H. J. 1968. Cost functions in the location of depots for multiple-delivery journeys.
Operations Research Quarterly 19 311-320.

Wen, M., J. Larsen, J. Clausen, J.-F. Cordeau, G. Laporte. 2009. Vehicle routing with cross-
docking. Journal of the Operational Research Society 60(11) 1708—1718.

Williamson, D., D. Shmoys. 2011. The Design of Approximation Algorithms. Cambridge Uni-
versity Press.

32

