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Abstract

In this work, boundary control problems governed by a system of semi-
linear parabolic PDEs with pointwise control constraints are considered.
This class of problems is related to applications in the chemical catalysis.
After discussing existence and uniqueness of the state equation with both
linear and nonlinear boundary conditions, the existence of an optimal so-
lution is shown. Necessary and su�cient optimality conditions are derived
to deal with numerical examples, which conclude the paper.

1 Introduction

We consider a class of optimal boundary control problems governed by a system
of semilinear parabolic PDEs with application in chemical reaction. Very similar
optimal control problems were dicussed �rst in the PhD thesis [5] by Griesse
and later extended by Griesse and Volkwein [6] to a more general setting. The
origin of our research on this topic is a problem of catalysis that was introduced
in the colloquium talk [9].

Let us brie�y explain this application to motivate our setting: In a catalyst,
two substances are contained with concentrations u and v. One of them is
a harmful substance v controlled by d, which we want to neutralize with the
other substance u controlled by c. In our examples, we consider d as given
and c as the only control function. This is a substrate with concentration c,
which in�uences the catalyst at its boundary. The di�usion process is modelled
by (E1) below. The term uv in (E1) describes the chemical reaction in a low
order approximation. For more accuracy, it is possible to replace this term by a
stronger nonlinear coupling, see [1]. The catalyst will operate more e�ciently,
if the substances are inserted separately in alternating intervals of time. This
alternative is considered in a variant of (E1) dicussed in Section 2.3. In the
reality, the constants are depending on the temperature, the pressure and u and
v. We ignore these dependencies.

The process of neutralization is modeled by our cost functional. We assume
that the ratio u/v should be equal to k in order to neutralize the substance v.
These assumptions lead to the following optimal control problem [1], [9],

(P1) min J(u, v, c, d) :=
1

2

ZZ
Q

(u(x, t)−kv(x, t))2 dxdt+
λ1

2

TZ
0

c2(t) dt+
λ2

2

TZ
0

d2(t) dt
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subject to the system of semilinear parabolic PDE's

(E1)



ut − k1uxx + α1u = −γ1uv in Q,
vt − k2vxx + α2v = −γ2uv in Q,

u(0, t)− k1ux(0, t) = c(t) in (0, T ),
k1ux(l, t) = 0 in (0, T ),

v(0, t)− k2vx(0, t) = d(t) in (0, T ),
k2vx(l, t) = 0 in (0, T )

u(x, 0) = u0(x) in Ω,
v(x, 0) = v0(x) in Ω

and the box constraints

c ∈ Cad = {c ∈ L2(0, T )|ca(t) ≤ c(t) ≤ cb(t) a.e. in [0, T ]} ⊂ L∞(0, T ),

d ∈ Dad = {d ∈ L2(0, T )|da(t) ≤ d(t) ≤ db(t) a.e. in [0, T ]} ⊂ L∞(0, T )

for a �nal time T > 0. In this setting, Ω denotes the open interval (0, l) and
Q = Ω × (0, T ) is the space-time cylinder. The functions ca,cb, da and db are
given of L∞(0, T ), such that ca ≤ cb, da ≤ db holds almost everywhere in [0, T ].
We denote by λ1, λ2, k1, k2 positive and by α1, α2, γ1 and γ2 nonnegative
constants. The control functions c and d are considered as elements of the space
L∞(0, T ) and the �xed initial values u0 and v0 are elements of the space L2(Ω).
The control functions are operating in Robin boundary conditions with point-
wise control constraints on both sides. A similar problem with almost identical
state equations but a di�erent cost functional was considered in [6] and [5]. In
these papers, necessary and su�cient optimality conditions are derived and nu-
merical techniques for this class of optimal control problem were suggested.
Our paper is organized as follows: In Section 2, following the lines of [6] and
[5], the analysis of the problem (P1) is brie�y sketched and numerical results
are presented for some cases of catalysis.
In Section 3, we consider the following more general class of systems with non-
linear boundary condition in a bounded domain Ω ⊂ RN , N ≥ 1, with Lipschitz-
continuous boundary Γ = ∂Ω:

(P2) minJ(u, v, c) =
αu

2
‖u− uQ‖2L2(Q) +

αv

2
‖v − vQ‖2L2(Q) +

αTU

2
‖u(T )− uΩ‖2L2(Ω) +

αTV

2
‖v(T )− vΩ‖2L2(Ω) +

αc

2
‖c‖2L2(Σ)

subject to

(E2)



ut − k1∆u + α1u = −γ1uv in Q,
vt − k2∆v + α2v = −γ2uv in Q,
k1∂νu + b(x, t, u) = c in Σ,

k2∂νv + αv = 0 in Σ,
u(x, 0) = u0(x) in Ω,
v(x, 0) = v0(x) in Ω

and
c ∈ Cad = {c ∈ L∞(Σ) : ca ≤ c ≤ cb a.e. in Σ},
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where α, αu, αv, αTU , αTV and αc are nonnegative constants, ca ≤ cb holds al-
most everywhere in Σ = Γ × (0, T ) with ca, cb ∈ L∞(Σ), uQ, vQ ∈ L2(Q), uΩ,
vΩ ∈ L2(Ω), u0, v0 ∈ C(Ω). For convenience, we denote by ν the outward
normal vector. We do not have a real background of application for this model.
However, in our opinion, the extension of the semilinear equation of (P1) to
nonlinear boundary conditions is mathematically interesting. This problem be-
longs to the class of optimal control problems for semilinear parabolic equations,
where quite a number of publications were devoted to. We mention, for instance,
[12], where a nonlinear boundary condition of Stefan-Boltzmann type was con-
sidered �rst, the contributions [4], [8], [7] to a nonlinear phase �eld model, and
the papers [3], [11] on the Pontryagin principle for parabolic control problems.
Further references on the control of nonlinear parabolic equations can be found
in the monography [13].
The main emphasis in this problem is laid on existence and uniqueness of a
solution to the system of the state equations for (P2), existence of a solution to
the optimal control problem and necessary and su�cient optimality conditions.
To �nd upper and lower solutions in Theorem 3.5, we make the following as-
sumption (A1) on b.

Assumption (A1): The nonlinear function b : Σ × R → R is continuous
in Q × R, locally Lipschitz in u, monotone nondecreasing with respect to u
for almost all (x, t) ∈ Σ and fulli�es b(x, t, 0) ≤ ca(x, t) for all (x, t) ∈ Σ and
lim

u→±∞
b(x, t, u) = ±∞.

2 The problem with linear boundary conditions

2.1 Existence of an optimal control

As pointed out in the introduction, the problem with linear boundary condition
is similar to one with almost identical state equations but di�erent cost func-
tional discussed by R. Griesse and S. Volkwein in [6]. Therefore, we can rely on
their results to discuss our slightly di�erent control problem. We brie�y recall
some theorems of [6] for later applications to (P2). In the sequel, we follow in
principle their approach.

For a Banach space V , the space W (0, T ) is de�ned by

W (0, T ) := {y ∈ L2(0, T ;V ) : y
′ ∈ L2(0, T ;V ∗)}

with norm

‖y‖W (0,T ) =

(
T∫
0

(‖y(t)‖2V +
∥∥∥y′(t)∥∥∥2

V ∗
)dt

) 1
2

,

where V ∗ is the dual space of V , y′ denotes the distributional derivative of
y with respect to t and L2(0, T ;V ) is the space of all (equivalence classes of)
measurable abstract functions y : [0, T ] → V with

T∫
0

‖y(t)‖2V dt < ∞

and norm
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‖y‖L2(0,T ;V ) =

(
T∫
0

‖y(t)‖2V dt

) 1
2

.

First, we recall existence and uniqueness of a solution to the system of the state
equations. We start by the de�nition of a weak solution.

De�nition 2.1. A pair of functions (u, v) of W (0, T )×W (0, T ) is called weak
solution of the state equation (E1), if the initial conditions

u(x, 0) = u0 and v(x, 0) = v0, (1)

as well as

(ut(·, t), ϕ)H1(Ω)∗,H1(Ω) + u(0, t)ϕ(0) + (2)∫
Ω

(
k1ux(·, t)ϕx + α1u(·, t)ϕ + γ1u(·, t)v(·, t)ϕ

)
dx = c(t)ϕ(0)

and

(vt(·, t), ϕ)H1(Ω)∗,H1(Ω) + v(0, t)ϕ(0) + (3)∫
Ω

(
k2vx(·, t)ϕx + α2v(·, t)ϕ + γ2u(·, t)v(·, t)ϕ

)
dx = d(t)ϕ(0)

are satis�ed for all ϕ ∈ H1(Ω) and almost all t ∈ [0, T ]. Here, the duality
pairing between H1(Ω)∗ and H1(Ω) is denoted by (·, ·)H1(Ω)∗,H1(Ω) and ux is

de�ned by ux := ∂u
∂x .

The following theorem guarantees existence and uniqueness of a solution to
(E1) (see [6], Theorem 2.3).

Theorem 2.2. For each given pair of controls (c, d) ∈ L2(0, T )×L2(0, T ), there
exists a unique solution (u, v) ∈ W (0, T )×W (0, T ) to (E1).

For the standard proof of the next theorem we refer also to [6], Theorem 2.6.

Theorem 2.3. Problem (P1) admits at least one optimal solution.

2.2 Necessary and su�cient optimality conditions

To discuss optimality conditions, we introduce the control-to-state operator S
(solution operator) of (E1) by

S : L2(0, T )× L2(0, T ) → W (0, T )2, (c, d) 7→ (u, v)

with W (0, T )2 := W (0, T ) × W (0, T ). Notice that, by the nonlinear coupling
through γiuv, i = 1, 2, the system of state equations is nonlinear.

Theorem 2.4. The control-to-state operator S is twice continuously Fréchet-
di�erentiable.

For the proof, we refer to the more general Theorem 3.10 in our paper. It is
important that the space W (0, T ) is continuously imbedded in L4(Q), so that
the product of two elements of W (0, T ) is in L2(0, T ). The next theorems are
devoted to the form of the derivatives of S. For the standard technique of the
proofs, we refer to [13].
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Theorem 2.5. The �rst derivative of S at (c, d) in direction (c, d) is given by

S′(c, d)(c, d) = (u, v),

where (u, v) is the weak solution of the state equation linearized at (u, v)

ut − k1uxx + α1u = −γ1(uv + uv) in Q,
vt − k2vxx + α2v = −γ2(uv + uv) in Q,

u(0, t)− k1ux(0, t) = c(t) in (0, T ),
k1ux(l, t) = 0 in (0, T ),

v(0, t)− k2vx(0, t) = d(t) in (0, T ),
k2vx(l, t) = 0 in (0, T ),

u(x, 0) = 0 in Ω,
v(x, 0) = 0 in Ω

(4)

and (u, v) = S(c, d).

Moreover, for second-order su�cient conditions, we need the second deriva-
tive of S. Let us brie�y comment on it in a formal way to motivate the next
result on the second derivative. The system (E1) is of the form

A S(e) = B(S(e)) + D(e) + w0,

where e = (c, d), S(e) = (u(e), v(e)), B(u, v) = −(γ1uv, γ2uv), A stands for
the linear di�erential operator on the lefthand side of (E1), w0 for the initial
conditions and D is a linear continuous operator. Therefore,

A S′(e)e1 = B′(S(e))S′(e)e1 + D(e1). (5)

The result is obtained with e = (c, d), e1 = (c, d), (u, v) = S′(e)e1, S(e) = (u, v),
since

B′(u, v)(u, v) = −(γ1(uv + uv), γ2(uv + uv)).

Di�erentiating (5) with respect to e in direction e2 yields

A S′′(e)(e1, e2) = B′(S(e))S′′(e)(e1, e2) + B′′(S(e))(S′(e)e1, S
′(e)e2)

since D′′ = 0 by linearity. De�ne e1 = (ĉ, d̂), e2 = (c̃, d̃), (u, v) = S′′(e)(e1, e2),
(û, v̂) = S′(e)e1, (ũ, ṽ) = S′(e)e2, then the next result on the second derivative of
S is obtained. Notice that B′′(u, v)[(û, v̂), (ũ, ṽ)] = −(γ1(ûṽ + ũv̂), γ2(ûṽ + ũv̂)).
The existence of S′ and S′′ can be shown by a standard application of the
implicit function theorem that is explained, for instance, in [13].

Theorem 2.6. The second derivative of S at (c, d) in direction [(ĉ, d̂), (c̃, d̃)] is
given by

S′′(c, d)[(ĉ, d̂), (c̃, d̃)] = (u, v),

where (u, v) is the unique weak solution of the system

ut − k1uxx + α1u + γ1(uv + uv) = −γ1(ûṽ + ũv̂) in Q,
vt − k2vxx + α2v + γ2(uv + uv) = −γ2(ûṽ + ũv̂) in Q,

u(0, t)− k1ux(0, t) = 0 in (0, T ),
k1ux(l, t) = 0 in (0, T ),

v(0, t)− k2vx(0, t) = 0 in (0, T ),
k2vx(l, t) = 0 in (0, T ),

u(x, 0) = 0 in Ω,
v(x, 0) = 0 in Ω
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where (u, v) = S(c, d) and (û, v̂) = S′(c, d)(ĉ, d̂) is the solution of

ût − k1ûxx + α1û = −γ1(uv̂ + ûv) in Q,
v̂t − k2v̂xx + α2v̂ = −γ2(uv̂ + ûv) in Q,

û(0, t)− k1ûx(0, t) = ĉ(t) in (0, T ),
k1ûx(l, t) = 0 in (0, T ),

v̂(0, t)− k2v̂x(0, t) = d̂(t) in (0, T ),
k2v̂x(l, t) = 0 in (0, T ),

û(x, 0) = 0 in Ω,
v̂(x, 0) = 0 in Ω.

Analogously, (ũ, ṽ) = S′(c, d)(c̃, d̃) is de�ned.

Because of the nonconvexity of problem (P1), several di�erent global solu-
tions might exist. Moreover, additional local minima can occur. In the next
part of this section, we derive the necessary optimality conditions for any pair
of locally optimal control functions (c, d). We �rst focus on the control c and
�x d, hence we rede�ne

S(c) := S(c, d)

and consider the Fréchet-di�erentiable functional

f(c) = J(S(c), c, d) = J(u, v, c, d).

Let us write for short y = (u, v), y = (u, v). Then J(u, v, c, d) = J(y, c, d).
Because the set of admissible controls Cad is convex, we obtain the following

standard result:

Lemma 2.7. Every locally optimal control function c of a locally optimal pair
(c, d) of the problem (P1) satis�es the variational inequality

f ′(c)(c− c) ≥ 0 ∀c ∈ Cad.

By using the chain rule we calculate f ′:

f ′(c)(c− c) = DyJ(y, c)S′(c)(c− c) + DcJ(y, c)(c− c)

=
∫∫
Q

((u− kv)u− k(u− kv)v) dx dt +

T∫
0

λ1c(c− c) dt, (6)

where (u, v) = S′(c)(c− c) is the weak solution of the linearized problem

ut − k1uxx + α1u = −γ1(uv + uv) in Q,
vt − k2vxx + α2v = −γ2(uv + uv) in Q,

u(0, t)− k1ux(0, t) = c(t)− c(t) in (0, T ),
k1ux(l, t) = 0 in (0, T ),

v(0, t)− k2vx(0, t) = 0 in (0, T ),
k2vx(l, t) = 0 in (0, T ),

u(x, 0) = 0 in Ω,
v(x, 0) = 0 in Ω.

(7)
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The functions u and v in (6) can be expressed in terms of (c− c) by introducing
adjoint states p und q. Utilizing a Lagrangian function, we obtain p und q as
solutions of the system

−pt − k1pxx + α1p + γ1vp + γ2vq = u− kv in Q,
p(0, t)− k1px(0, t) = 0 in (0, T ),

k1px(l, t) = 0 in (0, T ),
p(x, T ) = 0 in Ω,

−qt − k2qxx + α2q + γ1up + γ2uq = −k(u− kv) in Q,
q(0, t)− k2qx(0, t) = 0 in (0, T ),

k2qx(l, t) = 0 in (0, T ),
q(x, T ) = 0 in Ω.

(8)

Theorem 2.8. If (u, v) is the weak solution of (7) and (p, q) is the solution of
(8), than it holds for all c ∈ L2(0, T )∫∫

Q

((u− kv)u− k(u− kv)v) dx dt =

T∫
0

p(0, t)(c(t)− c(t)) dt.

For the technique of proof we refer the reader to [13], Lemma 5.12.
It follows that (6) is equal to

f ′(c)(c− c) =

T∫
0

(p(0, t) + λ1c(t))(c(t)− c(t)) dt. (9)

This leads to the following theorem.

Theorem 2.9. To every locally optimal control function c of a locally optimal
pair (c, d) of (P1) there exist adjoint states (p, q) ∈ W (0, T )×W (0, T ) de�ned
by (8) such that it holds

T∫
0

(p(0, t) + λ1c(t))(c(t)− c(t)) dt ≥ 0 ∀c ∈ Cad.

In the case λ1 > 0 we obtain (see [13], (2.54) on page 56)

c(t) = P[ca(t),cb(t)]{−
1
λ1

p(0, t)}

for almost all t ∈ [0, T ] where P[a,b] denotes the projection of R to [a, b]. Doing
the same for the control function d we derive:

Theorem 2.10. Every locally optimal pair of control functions (c, d) of (P1),
satis�es, with a pair of adjoint states (p, q) de�ned by (8) the variational in-
equalities

T∫
0

(p(0, t) + λ1c(t))(c(t)− c(t)) dt ≥ 0 ∀c ∈ Cad,

T∫
0

(q(0, t) + λ2d(t))(d(t)− d(t)) dt ≥ 0 ∀d ∈ Dad.
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If λ1 and λ2 are positive, then the inequalities are equivalent to the pointwise
projection formulas

c(t) = P[ca(t),cb(t)]{−
1
λ1

p(0, t)},

d(t) = P[da(t),db(t)]{−
1
λ2

q(0, t)}

for almost all t ∈ [0, T ].

In the following, we consider also su�cient second order optimality condi-
tions for (P1). Let (c, d) ∈ Sad := Cad × Dad together with (u, v) = S(c, d)
and (p, q) satisfy the �rst-order necessary optimality conditions, presented in
Theorem 2.10. We want to introduce su�cient conditions, so that (c, d, u, v) is
a local optimum.
Because the cost functional J and the control-to-state operator S are twice
continuously Fréchet-di�erentiable,

f(c, d) = J(S(c, d), c, d)

is also twice continuously Fréchet-di�erentiable. By using the chain rule, we
derive

f ′(c, d)(ĉ, d̂) = DyJ(S(c, d), c, d)S′(c, d)(ĉ, d̂) + D(c,d)J(S(c, d), c, d)(ĉ, d̂).

The derivative of f ′(c, d)(ĉ, d̂) with respect to (c, d) in direction (c̃, d̃) is

f ′′(c, d)[(ĉ, d̂), (c̃, d̃)] = D2
yJ(S(c, d), c, d)[S′(c, d)(ĉ, d̂), S′(c, d)(c̃, d̃)]

+D(c,d)DyJ(S(c, d), c, d)[S′(c, d)(ĉ, d̂), (c̃, d̃)]
+DyJ(S(c, d), c, d)S′′(c, d)[(ĉ, d̂), (c̃, d̃)]
+DyD(c,d)J(S(c, d), c, d)[(ĉ, d̂), S′(c, d)(c̃, d̃)]
+D2

(c,d)J(S(c, d), c, d)[(ĉ, d̂), (c̃, d̃)]
= J ′′(y, c, d)[(ŷ, ĉ, d̂), (ỹ, c̃, d̃)] + DyJ(y, c, d)z.

with states z, ŷ and ỹ, z := (ω1, ω2) = S′′(c, d)[(ĉ, d̂), (c̃, d̃)], ŷ := S′(c, d)(ĉ, d̂)
and ỹ := S′(c, d)(c̃, d̃), de�ned by cf. also (5). The last expression,

DyJ(y, c, d)z =
∫∫
Q

(u− kv)ω1 − k(u− kv)ω2 dx dt with y = (u, v),

can be transformed analogously to Theorem 2.8 to

DyJ(y, c, d)z =
∫∫
Q

γ1(ûṽ + ũv̂)p + γ2(ûṽ + ũv̂)q dxdt

by using the adjoints (p, q) of (8). We derive

f ′′(c, d)[(ĉ, d̂), (c̃, d̃)] =J ′′(y, c, d)[(ŷ, ĉ, d̂), (ỹ, c̃, d̃)]

+
∫∫
Q

γ1(ûṽ + ũv̂)p + γ2(ûṽ + ũv̂)q dxdt. (10)
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To formulate our su�cient optimality conditions, we introduce the Lagrange
function:

L(u, v, c, d, p, q) = J(u, v, c, d) +
∫∫
Q

(ut − k1uxx + α1u + γ1uv)p dxdt

+
T∫
0

(u(0, t)− k1ux(0, t)− c(t) + k1ux(l, t))p(0, t) dt

+
∫
Ω

(u(x, 0)− u0)p(x, 0) dx

+
∫∫
Q

(vt − k2vxx + α2v + γ2uv)q dxdt

+
T∫
0

(v(0, t)− k2vx(0, t)− d(t) + k2vx(l, t))q(0, t) dt

+
∫
Ω

(v(x, 0)− v0)q(x, 0) dx.

(11)
We obtain

L′′(u, v, c, d, p, q)[(û, v̂, ĉ, d̂), (ũ, ṽ, c̃, d̃)]

= J ′′(u, v, c, d)[(û, v̂, ĉ, d̂), (ũ, ṽ, c̃, d̃)] +
∫∫
Q

γ1(ûṽ + ũv̂)p + γ2(ûṽ + ũv̂)q dxdt

= f ′′(c, d)[(û, v̂, ĉ, d̂), (ũ, ṽ, c̃, d̃)]

in view of (10). This result was to be expected, since the second derivative f ′′

of the reduced objective functional can be expressed in general by L′′ de�ned
with the associated adjoint states, cf. [13]. The derivative J ′′ is given by

J ′′(u, v, c, d)[(û, v̂, ĉ, d̂), (ũ, ṽ, c̃, d̃)]

=
∫∫
Q

ûũ− kûṽ − kũv̂ + k2v̂ṽ dx dt + λ1

T∫
0

ĉc̃ dt + λ2

T∫
0

d̂d̃ dt.

By the variational inequality, see Theorem 2.10, for the optimal solution (c, d)
of (P1), we obtain

c(t) =
{

ca, if p(0, t) + λ1c(t) > 0
cb, if p(0, t) + λ1c(t) < 0 (12)

and

d(t) =
{

da, if q(0, t) + λ2d(t) > 0
db, if q(0, t) + λ2d(t) < 0.

(13)

By the �rst-order conditions, the control function c is de�ned in the set {t ∈
(0, T ) : |p(0, t) + λ1c| > 0} and d in {t ∈ (0, T ) : |q(0, t) + λ2d| > 0}. Therefor,
second-order su�cient conditions should be required on the remaining sets.

De�nition 2.11. For a given τ and controls c, d, we de�ne by

Aτ (c) := {t ∈ (0, T ) : |p(0, t) + λ1c(t)| > τ},
Aτ (d) := {t ∈ (0, T ) : |q(0, t) + λ1d(t)| > τ}

the sets of strongly active restrictions for c respectivly d.
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De�nition 2.12. The τ -critical cone Cτ (c) is the set of all c ∈ L∞(0, T ) with

c(t)

 = 0 , t ∈ Aτ (c)
≥ 0 , c(t) = ca und t /∈ Aτ (c)
≤ 0 , c(t) = cb und t /∈ Aτ (c).

Analogously, we de�ne Cτ (d).

Theorem 2.13. Suppose that the control functions (c, d) satisfy the �rst-order
necessary optimality conditions of Theorem 2.10. If there exist psitive constants
δ and τ such that

L′′(u, v, c, d, p, q)(u, v, c, d)2 ≥ δ(‖c‖2L2(0,T ) + ‖d‖2L2(0,T ))

holds for all (c, d) ∈ Cτ (c)×Cτ (d) and all (u, v) ∈ W (0, T )×W (0, T ) satisfying
(4), then we �nd positive constants ε and σ such that

J(u, v, c, d) ≥ J(u, v, c, d) + σ(‖c− c‖L2(Q) + ‖d− d‖L2(Q))

holds for all (c, d) ∈ Sad with ‖c − c‖L∞(Q) + ‖d − d‖L∞(Q) ≤ ε. Hence, the

control functions c and d are locally optimal.

2.3 Numerical examples

Here, we consider examples related to the catalysis problem explained in the
introduction. We consider d as a periodic piecewise constant function that is
given �xed. This means that the harmful substance is feeded into the catalyst
periodically by a certain quantity d0 where d has the form

d(t) =
{

d0 on [T/4, T/2[∪[3T/4, T [
0 on [0, T/4[∪[T/2, 3T/4[.

We assume that we are able to insert the harmless substance only when the
harmful substance is not be inserted. Hence, we choose the bounds ca und cb

as functions presented in Figure 1 where

ci(t) =
{

0 on [T/4, T/2[∪[3T/4, T [
c̃i on [0, T/4[∪[T/2, 3T/4[

with i = a, b with ca ≤ cb. They are periodic and piecewise constant functions
with the only possible values 0 and c̃i, i = a, b.

Example 1:
Setting l = 1, T = 10, k = k1 = k2 = 1, γ1 = γ2 = 0.5 α1 = α2 = 0.3,
λ1 = λ2 = 0.001, d0 = 7, u0 = v0 ≡ 0 and for the control constraints c

ca(t) =
{

0 on [T/4, T/2[∪[3T/4, T [
1 on [0, T/4[∪[T/2, 3T/4[

and

cb(t) =
{

0 on [T/4, T/2[∪[3T/4, T [
10 on [0, T/4[∪[T/2, 3T/4[.
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Figure 1: Periodic, piecewise constant function with a period of length T
2 .

Figure 2: Optimal control c and Projection P[ca,cb]{− 1
λ1

p(0, t)} for Example1

we obtain the results, presented in the �gures 2,4 and 3. Figure 2 shows the
compatibility of the control function c and the Projection P[ca,cb]{− 1

λ1
p(0, t)}

with respect to the necessary optimality conditions.

Next, we consider the same data as in example 1, but we choose d0 = 12 in
Figure 5, while we set λ1 = λ2 = 1 in Figure 6. Figure 7 is based on the choice

cb(t) =
{

0 on [T/4, T/2[∪[3T/4, T [
1.7 on [0, T/4[∪[T/2, 3T/4[

and λ1 = λ2 = 1.

Example 2: Next, we choose the control function c as a periodic and piecewise

11



Figure 3: State u for Example1

Figure 4: State v for Example1

constant. In view of this, we reformulate our control problem. We consider the
control function as a function described in Figure 1 and optimize only the height
c0. This leads to:

min J(c0, u, v) =
1
2

∫∫
Q

(u− kv)2 dx dt + c2
0

λ1

2

T∫
0

e dt,

where e has the form

e(t) =
{

0 on [T/4, T/2[∪[3T/4, T [
1 on [0, T/4[∪[T/2, 3T/4[.

12



Figure 5: control function c

Figure 6: Control function c

We obtain

f ′(c0) =

T∫
0

(p(0, t)e(t) + λ1c0e(t)) dt

and the results, presented in Figure 8 for the same data as in Example 1 with
d0 = 2.4.
It turned out that the optimal value (4.69) of the objective functional for this
restricted class of controls was (up to a relative error of 0.04) equal to the �rst
one. However, the computation needed only half the time (6 seconds instead of
12 seconds), since the degrees of freedom of the control is much smaller in this
case. This shows that, in our concrete application, it is justi�ed to work with
controls that are constant in each period of time.

13



Figure 7: Control function c

Figure 8: Optimal control function c for the original problem with the data of
example 2 and for example 2

3 The problem with nonlinear boundary condi-

tions

3.1 Well-posedness of the state equation

In this section, we consider the problem (P2) with nonlinear boundary con-
ditions. Systems of this type might be interesting for the applications. For
instance, the equations might model the di�usion of a substance with concentra-
tions v and temperature u, where a Stefan-Boltzmann type boundary condition
for u is given. However, we do not aim at discussing speci�c applications. We
think that the system is interesting from a mathematical point of view. To show
an existence and uniqueness theorem for the new nonlinear system, we invoke
the method of sub- and super-solutions. Moreover, we need higher regularity of
u and v to make the nonlinearities well de�ned and to ensure the di�entiability
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of the control-to-state mapping.
We assume that u0 ∈ L∞(Ω) and v0 ∈ L∞(Ω) are given.

De�nition 3.1. A pair of functions (u, v) ∈ (W (0, T )∩L∞(Q))2 is called weak
solution of the system System (E2), if the equations

u(·, 0) = u0, v(·, 0) = v0,

T∫
0

(ut, ϕ)H1(Ω)∗,H1(Ω) dt +
∫∫
Σ

b(x, t, u)ϕ dx dt

+
∫∫
Q

(k1∇u · ∇ϕ + α1uϕ + γ1uvϕ) dx dt =
∫∫
Σ

c ϕ dx dt

and

T∫
0

(vt, ϕ)H1(Ω)∗,H1(Ω) dt +
∫∫
Σ

α v ϕ dx dt

+
∫∫
Q

(k2∇v · ∇ϕ + α2vϕ + γ2uvϕ) dx dt = 0

are satis�ed for all ϕ ∈ L2(0, T ;H1(Ω)), where ∇ denotes the gradient with
respect to x.

To prove the existence and uniqueness of a weak solution for (E2), we apply
the method of upper and lower solutions and follow the arguments of Pao [10],
pp. 459-470. We �rst show the existence of classical solutions for given smooth
data.

De�nition 3.2. Two pairs of functions (ũ, ṽ) and (û, v̂) in C(Q)∩C1,2(Q) are
called ordered upper and lower solutions of (E2), if (ũ, ṽ)(x, t) ≥ (û, v̂)(x, t) in
Q and the following inequalities are satis�ed:

ũ(x, 0) ≥ u0(x) ≥ û(x, 0) in Ω
ṽ(x, 0) ≥ v0(x) ≥ v̂(x, 0) in Ω

∂ν ũ− c + b(x, t, ũ) ≥ 0 ≥ ∂ν û− c + b(x, t, û) in Σ
∂ν ṽ + αṽ ≥ 0 ≥ ∂ν v̂ + αv̂ in Σ

ũt − k1∆ũ + α1ũ + γ1ũv̂ ≥ 0 ≥ ût − k1∆û + α1û + γ1ûṽ in Q
ṽt − k2∆ṽ + α2ṽ + γ2ûṽ ≥ 0 ≥ v̂t − k2∆v̂ + α2v̂ + γ2ṽv̂ in Q.

To prove the solvability of the system (E2), we invoke a Theorem 3.2 of [10],
cf. Theorem 3.4 below. For his theorem, we have to de�ne a quasimonotone
nonincreasing function.

De�nition 3.3. A function f : Rn → Rn is called quasimonotone nonincreas-
ing, if for �xed xi, fi, i ∈ {1, . . . , n} of f is monotone nonincreasing in xk for
all k with k 6= i.

In contrast to our paper, this theorem considers the coupling of the two
states through the boundary and concerns the following system of parabolic
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equations: 

(u1)t − L1u1 = f1(x, t, u1) in Q,
(u2)t − L2u2 = f2(x, t, u2) in Q,

k1∂νu1 + β1u1 = g1(x, t, u1, u2) in Σ,
k2∂νu2 + β2u2 = g2(x, t, u1, u2) in Σ,

u1(x, 0) = u1,0(x) in Ω,
u2(x, 0) = u2,0(x) in Ω,

(14)

where Li, de�ned by

Liu =
n∑

i,j=1

aij(x, t)∂2u/∂xi∂xj +
n∑

j=1

bj(x, t)∂u/∂xj ,

is a uniformly elliptic operator in the sense that the matrix (aij) is positive
de�nite. The coe�cients of Li are assumed to be Hölder continuous in Q,
ki, βi ≥ 0, ki + βi > 0, fi is Hölder continuous, gi is continuous , i = 1, 2, and
the following property is satis�ed

∂u2f1 ≥ 0 and ∂u1f2 ≥ 0, (15)

∂u2f1 ≤ 0 and ∂u1f2 ≤ 0, (16)

∂u2f1 ≤ 0 and ∂u1f2 ≥ 0. (17)

Furthermore, the functions fi and gi, i = 1, 2, are supposed to be locally Lip-
schitz, that means for all M > 0 there exists a Lipschitz constant L(M) > 0
such that

|fi(x, t, u1)− fi(x, t, u2)| ≤ Lfi
(M)|u1 − v2| (18)

and

|gi(x, t, u1, v1)− gi(x, t, u2, v2)| ≤ Lgi
(M)(|u1 − v1|+ |u2 − v2|) (19)

for all (x, t) ∈ Q and all |ui| ≤ M , |vi| ≤ M , i = 1, 2, and f2, gi, i = 1, 2, satisfy
this assumption analogously.

Theorem 3.4 ([10]). Let (ũ1, ũ2) und (û1, û2) be ordered upper and lower solu-
tions of (14), (g1, g2) be quasimonotone nonincreasing in [(ũ1, ũ2), (û1, û2)] :=
{(u, v) ∈ C(Q)× C(Q) : ũ ≤ u ≤ û and ṽ ≤ v ≤ v̂}, and satisfy (18). Then the
system (14) has a unique solution (u1, u2) in [(ũ1, ũ2), (û1, û2)]. Moreover, the
sequences (u1

k, u2
k), (u1

k, u2
k) obtained from 20, with (u1

0, u2
0) = (ũ1, û2) and

(u1
0, u2

0) = (û1, ũ2) converge monotonically to (u1, u2) and satisfy the relation

(û1, û2) ≤ (u1
k, u2

k) ≤ (u1, u2) ≤ (u1
k, u2

k) ≤ (ũ1, ũ2) ∀k = 1, 2, ...on Q.

(uk
1)t − L1u

k
1 + Lf1u

k = f1(x, t, uk−1
1 ) + Lf1u

k−1 in Q,

(uk
2)t − L2u

k
2 + Lf2u

k = f2(x, t, uk−1
2 ) + Lf2u

k−1 in Q,

k1∂νuk
1 + β1u

k
1 + Lg1u

k = g1(x, t, uk−1
1 , uk−1

2 ) + Lg1u
k−1 in Σ,

k2∂νuk
2 + β2u

k
2 + Lg2u

k = g2(x, t, uk−1
1 , uk−1

2 ) + Lg2u
k−1 in Σ,

uk
1(x, 0) = u1,0(x) in Ω,

uk
2(x, 0) = u2,0(x) in Ω,

(20)
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Theorem 3.5. For every function c ∈ C(Σ) with c(x, t) ≥ ca(x, t) for all
(x, t) ∈ Σ and u0, v0 ∈ C(Ω), there exists an unique solution (u, v) ∈

(
C(Q) ∩

C1,2(Q)
)2

for the system (E2).

Proof. Following [10], we �rst have to �nd pairs of ordered upper and lower
solution. As a lower solution we take

(û, v̂) = (0, 0),

and for the upper solution we choose

(ũ, ṽ) = (δ, δ)

where δ := max(δv, δu) and δu, δv are positive constants satisfying

δu ≥ u0(x), δv ≥ v0(x) ∀x ∈ Ω, (21)

and
b(x, t, δu) ≥ c(x, t) ∀(x, t) ∈ Σ. (22)

We derive the existence of these constants, because of Assumption A1 and the
assumptions on c in this theorem. The conditions (21) and (22) can be satis�ed
since u0, v0 ∈ C(Ω) and the assumptions A1 on b hold.
In the application of Theorem 3.4, we take L1 = −∆, L2 = −∆, f1(x, t, u, v) =
−α1u−γ1uv, f2(x, t, u, v) = −α2v−γ2uv, g1(x, t, u) = c−b(x, t, u), g2(x, t, v) =
0, β1 = 0 and β2 = α. In [10], the nonlinear coupling occurs in the boundary
conditions, while it is n the right-hand side of the equation in our case. There-
fore, to apply the theory of [10], we only have to interchange the roles of fi

and gi, i = 1, 2. It is easy to see that these functions satify the assumptions
(16) and (18), because of Assmption A1. For instance, f1 and f2 are mono-
tone nonincreasing. Thanks to Theorem 3.4, there exists a unique solution

(u, v) ∈
(
C(Q) ∩ C1,2(Q)

)2
to (E2).

Our next goal is to generalize this result to c ∈ L∞(Σ) instead of c ∈ C(Σ).

Theorem 3.6. For every given c ∈ Cad, there exists a unique weak solution

(u, v) ∈ Y 2 :=
(
W (0, T ) ∩ C(Q)

)2
of (E2).

Proof. (i) Existence: Let c ∈ Cad ⊂ L∞(Σ) given and cn a sequence with
cn ∈ C(Σ), cn(x, t) ≥ ca(x, t) for all (x, t) ∈ Σ and cn → c in Ls(Σ), s > N + 1.
Such a sequence exists because of the density of C(Σ) in Ls(Σ). This sequence
is uniformly bounded. By Theorem 3.5, for every cn ∈ Cad there exists a unique
solution (un, vn) ∈ C1(0, T ;C2(Ω))2 of (E2). For every cn we choose the same
upper and lower solution like in Theorem 3.5 as initial values for the monotone
sequences. From [10], page 465, it follows

(û, v̂) ≤ (un, vn) ≤ (ũ, ṽ) ∀n = 1, 2, ... in Q.

We can take the same upper and lower solutions ũ = ṽ = δ, û = v̂ = 0, since all
cn are uniformly bounded. So an M > 0 exists with

‖un‖C(Q) + ‖vn‖C(Q) ≤ M
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for all states (un, vn), belonging to the control functions cn. We de�ne

hn = cn − b(·, un) and gn = g(un, vn) = −γ1unvn.

Because of ‖un‖C(Q) + ‖vn‖C(Q) ≤ M it follows that hn and gn are bounded in

L∞(Q), hence also in Ls(Σ) and Ls(Q), respectively, with s > N + 1. Summa-
rized we obtain

(un)t − k1∆un + α1un = gn

∂νun = hn (23)

un(x, 0) = u0(x).

This linear boundary value problem (23) possess for all (gn, hn) ∈ Lr(Q)×Ls(Σ)
a unique solution un in Y . For a proof, we refer the reader to [13] on page 203,
Theorem 5.6. The Nemyzki operator h(u) is on Σ locally Lipschitz-continuous.
From Casas [3] or Raymond and Zidani [11], we infer that the control-to-state
mapping S1 : Ls(Q) ∩ Ls(Σ) → Y , (gn, hn) 7→ un is continuous. Every linear
continuous mapping is also weakly continuous, so the weak convergence tranfers
from hn and gn to un, i.e. un ⇀ u in Y . We know that, for a homogeneous
initial value u0 = 0, the mapping S1 is continuous from Lr(Q) × Ls(Σ) to the
space of Hölder-continuous functions Cκ(Q), κ ∈ (0, 1) (see [2] Theorem 4). Let
u ∈ C(Q) denote the �xed part of the solution un with inhomogeneous initial
value u0, homogeneous right-hand side and homogeneous boundary condition.
The sequence (un−u) converges weakly in Cκ(Q) and strongly in C(Q), because
Cκ(Q) is compactly imbedded in C(Q). Because of u ∈ C(Q), it follows

un → u for n →∞ with u ∈ C(Q).

Analogously, we �nd that vn → v in C(Q). This implies also b(x, t, un) →
b(x, t, u) and unvn → uv uniformly in Q. Passing to the limit, we con�rm that
(u, v) satis�es the system (E2).

(ii) Uniqueness: Let (u, v), (û, v̂) ∈ Y 2 be two pairs of weak solutions to (E2).
Then, ũ := u− û ∈ Y and ṽ := v − v̂ ∈ Y satisfy

ũ(0) = 0, ṽ(0) = 0, (24)

(ũt(t), ϕ)H1(Ω)∗,H1(Ω) +
∫
Γ

(b(x, t, u)− b(x, t, û))ϕ dx +
∫
Ω

k1∇ũ(t) · ∇ϕ dx

+
∫
Ω

α1ũ(t)ϕ dx +
∫
Ω

γ1(ũ(t)v(t) + û(t)ṽ(t))ϕ dx = 0, (25)

(ṽt(t), ϕ)H1(Ω)∗,H1(Ω) + α

∫
Σ

ṽϕ dx +
∫
Ω

k2∇ṽ(t) · ∇ϕ dx

+
∫
Ω

α2ṽ(x, t)ϕdx +
∫
Ω

γ2(ũ(t)v(t) + û(t)ṽ(t))ϕ dx = 0 (26)
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for all ϕ ∈ H1(Ω) and almost all t ∈ [0, T ]. Choosing ϕ = ũ in (25), ϕ = ṽ in
(26) and adding both equations we obtain∫

Γ

(b(x, t, u)− b(x, t, û))(u(x, t)− û(x, t)) dx ≥ 0

∫
Ω

α1ũ
2(x, t) + α2ṽ

2(x, t) dx ≥ 0

for almost all t ∈ [0, T ]. This yields the following inequality

1
2

d
dt (‖ũ(t)‖2L2(Ω) + ‖ṽ(t)‖2L2(Ω)) + k1 ‖ũ(t)‖2H1(Ω) + k2 ‖ṽ(t)‖2H1(Ω)

≤ k1 ‖ũ(t)‖2L2(Ω) + k2 ‖ṽ(t)‖2L2(Ω) +∫
Ω

γ1(|ũ2(t)v(t)|+ |û(t)ṽ(t)ũ(t)| dx+∫
Ω

γ2(|ũ(t)v(t)ṽ(t)|+ |û(t)ṽ2(t)| dx

which is equivalent to [6], (A.2). Now, we continue as in the proof [6], A.1.1, to
show ũ = 0 and ṽ = 0.

Remark 3.7. A study of the proof reveals that u ≥ 0 and v ≥ 0, because we
have choosen (0, 0) as lower solution.

Theorem 3.8. Problem (P2) admits at least one optimal control c.

Let us brie�y sketch the proof. The technique is along the lines of [13],
Theorem 5.8. We obtain the uniform boundedness of the states through the
proof of Theorem 3.6, because un and vn converge in W (0, T ) ∩C(Q) to u and
v and are uniform bounded. Hence the cost functional is bounded from below
and we �nd a weakly convergent minimizing sequence for the control function.
One shows in a standard way that this limit is optimal and the associated pair
of states ful�lls the system (E2).

3.2 Necessary and su�cient optimality conditions

Let us de�ne the control-to-state operator

S : L∞(Σ) → Y, c 7→ (u, v)

with S1(c) := u and S2(c) := v. In view of [13], Lemma 4.10, we obtain the
next theorem.

Theorem 3.9. The cost functional J is continuously Fréchet-di�erentiable from
Y 2 × L∞(Σ) to R.

Let us show instead:

Theorem 3.10. The control-to-state operator S is twice continuously Fréchet-
di�erentiable from L∞(Σ) to Y 2.
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Proof. First, we derive an operator equation for (u, v) = S(c). To this aim,
shifting the nonlinearities to the right-hand sides, we transform the statesystem
of (E2) to

ut − k1∆u + α1u = −γ1uv in Q,
vt − k2∆v + α2v = −γ2uv in Q,

k1∂νu = c− b(x, t, u) in Σ,
k2∂νv + αv = 0 in Σ,

u(x, 0) = u0(x) in Ω,
v(x, 0) = v0(x) in Ω.

(27)

For the left linear part we establish linear and continuous solution operators
SQ, GQ : L∞(Q) → Y , SΣ : L∞(Σ) → Y and S0, G0 : C(Ω) → Y . SQ : d 7→ u is
associated with the linear problem

ut − k1∆u + α1u = d in Q,
k1∂νu = 0 in Σ,
u(x, 0) = 0 in Ω,

SΣ : c 7→ u with

ut − k1∆u + α1u = 0 in Q,
k1∂νu = c in Σ,
u(x, 0) = 0 in Ω

and S0 : e 7→ u with

ut − k1∆u + α1u = 0 in Q,
k1∂νu = 0 in Σ,
u(x, 0) = e(x) in Ω.

Analogously, GQ : d 7→ v belongs to the linear equation

vt − k2∆v + α2v = d in Q,
k2∂νv + αv = 0 in Σ,

v(x, 0) = 0 in Ω

and G0 : e 7→ v to

vt − k2∆v + α2v = 0 in Q,
k2∂νv + αv = 0 in Σ,

v(x, 0) = e(x) in Ω.

We consider these operators with image in C(Q) and reformulate the nonlinear
equation (27) as(

u
v

)
=
(
−SQγ1uv + SΣ(c− b(·, ·, u)) + S0u0

−GQγ2uv + G0v0

)
, (28)

which is equivalent to(
0
0

)
=
(

u + SQγ1uv − SΣ(c− b(·, ·, u))− S0u0

v + GQγ2uv −G0v0

)
=: F (u, v, c).
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Because SQ, GQ, SΣ, S0 and G0 are linear and continuous and −γ1uv,−γ2uv,
b(·, ·, u) are twice continuously Fréchet-di�erentiable from C(Q) to L∞(Q) re-
spectively L∞(Σ), F is a twice continuously Fréchet-di�erentiable mapping from
C(Q) × C(Q) × L∞(Σ) to C(Q) × C(Q), since F is the composition of linear
and twice continuosly Fréchet-di�erentiable mappings.
To use the implicit function theorem, we have to show the invertibility of the
partial Fréchet-derivative F(u,v)(u, v, c). This applies, because

F(u,v)(u, v, c)w = z

is equivalent to(
w1 + SQγ1(vw1 + uw2) + SΣbu(x, t, u)w1

w2 + GQγ2(vw1 + uw2)

)
=
(

z1

z2

)
and, after the substitution of r = z − w, equivalent to

(r1)t − k1∆r1 + α1r1 + γ1(vr1 + ur2) = γ1(vz1 + uz2) in Q,
(r2)t − k2∆r2 + α2r2 + γ2(vr1 + ur2) = γ2(vz1 + uz2) in Q,

k1∂νr1 + bu(x, t, u)r1 = c + bu(x, t, u)z1 in Σ,
k2∂νr2 + αr2 = 0 in Σ,

u(x, 0) = 0 in Ω,
v(x, 0) = 0 in Ω.

For every (z1, z2) ∈ C(Q)2, this boundary problem has a unique solution (r1, r2) ∈
Y 2. So we can invoke the implicit function theorem and obtain that the control-
to-state operator S is twice continuously Fréchet-di�erentiable.

Theorem 3.11. The derivative of the control-to-state operator S at c in direc-
tion c is given by

S′(c)c = (u, v),

where (u, v) is the weak solution of the in (u, v) linearized problem (E2)

ut − k1∆u + α1u = −γ1(uv + uv) in Q,
vt − k2∆v + α2v = −γ2(uv + uv) in Q,

k1∂νu + bu(x, t, u)u = c in Σ,
k2∂νv + αv = 0 in Σ,

u(x, 0) = 0 in Ω,
v(x, 0) = 0 in Ω

(29)

and (u, v) = S(c).

Proof. The proof is along the lines of [13], Theorem 5.17, p. 218. To derive the
form of S′(c), we use (28):(

u
v

)
= S(c) =

(
−SQγ1S1(c)S2(c) + SΣ(c− b(·, ·, S1(c)) + S0u0

−GQγ2S1(c)S2(c) + G0v0

)
.

Di�erentiating both sides, we obtain

S′(c)c =
(
−SQγ1(S′1(c)cS2(c) + S1(c)S′2(c)c) + SΣ(c− bu(·, ·, S1(c))S′1(c)c)

−GQγ2(S′1(cc)S2(c) + S1(c)S′2(c)c)

)
.
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In view of S′1(c)c = u and S′2(c)c = v, we get

S′(c)c =
(
−SQγ1(u v + u v) + SΣ(c− bu(·, ·, u) u)

−GQγ2(u v + u v)

)
which implies the statement.

Analogously to Section 2, we obtain the following theorem, see also [13],
Theorem 5.17.

Theorem 3.12. The second derivative of S at c in direction (ĉ, c̃) is given by

S′′(c)(ĉ, c̃) = (u, v),

where (u, v) is the weak solution of the system

ut − k1∆u + α1u + γ1(uv + uv) = −γ1(ûṽ + ũv̂) in Q,
vt − k2∆v + α2v + γ2(uv + uv) = −γ2(ûṽ + ũv̂) in Q,

k1∂νu + bu(x, t, u)u = −buu(x, t, u)[û + ũ] on Σ,
k2∂νv + αv = 0 on Σ,

u(x, 0) = 0 in Ω,
v(x, 0) = 0 in Ω

where (u, v) = S(c) and (û, v̂) = S′(c)(ĉ) is the solution of

ût − k1ûxx + α1û = −γ1(uv̂ + ûv) in Q,
v̂t − k2v̂xx + α2v̂ = −γ2(uv̂ + ûv) in Q,

k1∂ν û + bu(x, t, u)û = ĉ on Σ,
k2∂ν v̂ + αv̂ = 0 on Σ,

û(x, 0) = 0 in Ω,
v̂(x, 0) = 0 in Ω.

Analogously, (ũ, ṽ) = S′(c)(c̃) is de�ned.

To formulate necessary optimality conditions, let c be an optimal control of
(P2) with states (u, v).
We have (u, v) = S(c) with the control-to-state operator S : L∞(Σ) → Y 2,
hence we obtain the reduced functional f ,

f(c) := J(u, v, c) = J(S(c), c).

The functional f is Fréchet-di�erentiable, because S is di�erentiable by Theorem
3.10 and J is di�erentiable by Theorem 3.9. Analogously to the last section, we
obtain the following standard result:

Lemma 3.13. Every locally optimal control function c of (P2) satis�es the
variational inequality

f ′(c)(c− c) ≥ 0 ∀c ∈ Cad.
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We determine f ′ by the chain rule and obtain

f ′(c)(c− c) = Jy(y, c) S′(c)(c− c) + Jc(y, c)(c− c)

=
∫∫
Q

(
αu(u− uQ)u + αv(v − vQ)v

)
dx dt

+
∫
Ω

(
αTU (u(T )− uQT )u(T ) + αTV (v(T )− vQT )v(T )

)
dx

+

T∫
0

αc c(c− c) dt, (30)

where, by Theorem 3.11, y = (u, v) = S′(c)(c − c) is the weak solution of the
linearized problem

ut(t, x)− k1∆u + α1u = −γ1(uv + uv) in Q,
vt(t, x)− k2∆v + α2v = −γ2(uv + uv) in Q,

k1∂νu + bu(x, t, u)u = c− c in Σ,
k2∂νv + αv = 0 in Σ,

u(x, 0) = 0 in Ω,
v(x, 0) = 0 in Ω.

(31)

By Lemma 3.13 f ′(c)(c− c) is nonnegative. We can eliminate the states u and
v in (30) by the adjoint states p und q, the solutions of the adjoint system

(A2)



−pt − k1∆p + α1p + γ1vp + γ2vq = αu(u− uQ) in Q,
−qt − k2∆q + α2q + γ1up + γ2uq = αv(v − vQ) in Q,

k1∂νp + bu(x, t, u)p = 0 in Σ,
k2∂νq + αq = 0 in Σ,

p(x, T ) = αTU (u(x, T )− uΩ(x, T )) in Ω,
q(x, T ) = αTV (v(x, T )− vΩ(x, T )) in Ω.

Theorem 3.14. If (u, v) is the weak solution of the linearized system (29) and
(p, q) is the solution of the adjoint system (A2), then it holds for all c ∈ Ls(Σ)
that ∫∫

Q

(
αu(u− uQ)u + αv(v − vQ)v

)
dx dt

+
∫
Ω

(
αTU (u(T )− uQT )u(T ) + αTV (v(T )− vQT )v(T )

)
dx

=
∫
Σ

p(c− c) dx dt.

The proof is analogous to the one of Theorem 2.8 at page 7. In this way, (30)
leads to

f ′(c)c =
∫
Σ

(p + αcc)c dx dt. (32)
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Theorem 3.15. Every locally optimal solution c of (P2) satis�es, together with
the adjoint states (p, q) of (A2), the variational inequality∫

Σ

(p + αcc)(c− c) dt ≥ 0 ∀c ∈ Cad.

The following theorem furnishs an equivalent pointwise expression of the
variational inequality.

Theorem 3.16. If c is locally optimal for (P2) and (p, q) are the adjoint states,
then

min
ca(x,t)≤c≤cb(x,t)

(p(x, t) + αcc(x, t))c = (p(x, t) + αcc(x, t))c(x, t)

will be attained almost everywhere in Σ by c = c(x, t).

The proof is well known.
For αc > 0, this leads to the projection formula

c(x, t) = P[ca(x,t),cb(x,t)]{−
1
αc

p(x, t)}

for almost all (x, t) ∈ Σ. Because of similarity to the second section, we state
the su�cient second-order optimality conditions for the problem (P2) without
proof. We de�ne the Lagrangian function analogously to (11) with the second
derivative

L′′(u, v, c, p, q)[(û, v̂, ĉ), (ũ, ṽ, c̃)] = J ′′(u, v, c)[(û, v̂, ĉ), (ũ, ṽ, c̃)]

+
∫∫
Q

γ1(ûṽ + ũv̂)p + γ2(ûṽ + ũv̂)q dxdt−
∫∫
Σ

buu(x, t, u)[û, ũ]p dxdt.

For given τ > 0, we de�ne

Aτ (c) := {(x, t) ∈ Σ : |p + αcc| > τ}

as the set of strong active restrictions for c. The τ -citical cone Cτ (c) is made
up of all c ∈ L∞(Σ) with

c(x, t)

 = 0 for (x, t) ∈ Aτ (c)
≥ 0 for c(x, t) = ca and (x, t) /∈ Aτ (c)
≤ 0 for c(x, t) = cb and (x, t) /∈ Aτ (c).

Theorem 3.17. Suppose that the control function c satis�es the �rst-order
necessary optimality conditions of Theorem 3.15. If there exist positive constants
δ and τ such that

L′′(u, v, c, p, q)(u, v, c)2 ≥ δ‖c‖2L2(0,T )

holds for all c ∈ Cτ (c) and all (u, v) ∈ Y × Y satisfying (29), then we �nd
positive constants ε and σ such that

J(u, v, c) ≥ J(u, v, c) + σ‖c− c‖2L2(Q)

holds for all c ∈ Cad with ‖c− c‖L∞(Q) ≤ ε. Therefore, the control functions c
is locally optimal.
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3.3 Numerical examples

Example 3: We investigate the problem (P2) with the following data: l =
1, T = 2, k1 = k2 = ε = αu = αv = 1, γ1 = γ2 = α1 = α2 = αTU = αTV = 0,
αc = α = 0.01, u0(x) = cos(π

2 x), v0 ≡ 0, uQ(x, t) = cos(π
2 x), vQ ≡ 0. For the

constraints of the control function c we choose ca ≡ −10 and cb ≡ 10 and as
the initial value c ≡ 1. By using the gradient-projection-method, we obtain the
control functions and states, presented in Figures 9-12. We use an equidistant
mesh with 15 supporting points in the x-direction and 150 node points in the
t-direction.

Figure 9: Optimal control c(0, t) and projection P[ca,cb]{− 1
αc

p(0, t)} for Example
3

Figure 10: Optimal control c(l, t) and projection P[ca,cb]{− 1
αc

p(l, t)} for Exam-
ple 3
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