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Abstract

In this work, boundary control problems governed by a system of semi-
linear parabolic PDEs with pointwise control constraints are considered.
This class of problems is related to applications in the chemical catalysis.
After discussing existence and uniqueness of the state equation with both
linear and nonlinear boundary conditions, the existence of an optimal so-
lution is shown. Necessary and sufficient optimality conditions are derived
to deal with numerical examples, which conclude the paper.

1 Introduction

We consider a class of optimal boundary control problems governed by a system
of semilinear parabolic PDEs with application in chemical reaction. Very similar
optimal control problems were dicussed first in the PhD thesis [5] by Griesse
and later extended by Griesse and Volkwein [6] to a more general setting. The
origin of our research on this topic is a problem of catalysis that was introduced
in the colloquium talk [9].

Let us briefly explain this application to motivate our setting: In a catalyst,
two substances are contained with concentrations v and v. One of them is
a harmful substance v controlled by d, which we want to neutralize with the
other substance w controlled by c¢. In our examples, we consider d as given
and c as the only control function. This is a substrate with concentration c,
which influences the catalyst at its boundary. The diffusion process is modelled
by (E1) below. The term wv in (E1) describes the chemical reaction in a low
order approximation. For more accuracy, it is possible to replace this term by a
stronger nonlinear coupling, see [1]. The catalyst will operate more efficiently,
if the substances are inserted separately in alternating intervals of time. This
alternative is considered in a variant of (E1) dicussed in Section 2.3. In the
reality, the constants are depending on the temperature, the pressure and v and
v. We ignore these dependencies.

The process of neutralization is modeled by our cost functional. We assume
that the ratio u/v should be equal to k in order to neutralize the substance v.
These assumptions lead to the following optimal control problem [1], [9],
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subject to the system of semilinear parabolic PDE’s

Ut — K1lge + U = —y1uv in Q,

Vg — koUgy + 02V = —Yuv in Q,
w(0,t) — k1ug (0,8) = c(t) in (0,7),
kiug(l,t) = 0 in (0,7),
DY 0(0,6) = kava(0,) = d(t) in (0.7).
kove(L,t) = 0 in (0,7)

( ) ) = UO(I) in Q,

v(z,0) = wo(x) in Q

and the box constraints
c € Cuy={ce L*0,T)|ca(t) < c(t) < cp(t) ace. in [0,T]} € L=(0,T),

d € Dyg={d e L*(0,T)|d,(t) < d(t) < dp(t) a.e. in[0,T]} C L=(0,T)

for a final time T > 0. In this setting, Q denotes the open interval (0,1) and
Q = Q x (0,7) is the space-time cylinder. The functions c,,cp, d, and d; are
given of L>°(0,T), such that ¢, < ¢, d < dp holds almost everywhere in [0, 7.
We denote by A1, A2, ki, ko positive and by aj, as, 71 and 72 nonnegative
constants. The control functions ¢ and d are considered as elements of the space
L>°(0,T) and the fixed initial values ug and vg are elements of the space L?(12).
The control functions are operating in Robin boundary conditions with point-
wise control constraints on both sides. A similar problem with almost identical
state equations but a different cost functional was considered in [6] and [5]. In
these papers, necessary and sufficient optimality conditions are derived and nu-
merical techniques for this class of optimal control problem were suggested.
Our paper is organized as follows: In Section 2, following the lines of [6] and
[5], the analysis of the problem (P1) is briefly sketched and numerical results
are presented for some cases of catalysis.

In Section 3, we consider the following more general class of systems with non-
linear boundary condition in a bounded domain Q@ C RN, N > 1, with Lipschitz-
continuous boundary I' = 9€2:
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subject to
—kAu+au = —vyuv in Q,
—kAv+asv = —vyuv in Q,
k10yu+b(x,t,u) = ¢ in 3,
(E2) k28yv +oav = 0 in E,
u(z,0) = wo(x) in Q,
v(z,0) = wvo(x) in Q
and

c€Cua={ceL®X):co <c<cpaee in B},



where «, au,, oy, @y, a7y and o, are nonnegative constants, ¢, < ¢, holds al-
most everywhere in X = T x (0,7) with c,,c, € L®(2), ug, vg € L*(Q), ugq,
va € L3(), ug, vo € C(Q). For convenience, we denote by v the outward
normal vector. We do not have a real background of application for this model.
However, in our opinion, the extension of the semilinear equation of (P1) to
nonlinear boundary conditions is mathematically interesting. This problem be-
longs to the class of optimal control problems for semilinear parabolic equations,
where quite a number of publications were devoted to. We mention, for instance,
[12], where a nonlinear boundary condition of Stefan-Boltzmann type was con-
sidered first, the contributions [4], [8], [7] to a nonlinear phase field model, and
the papers [3], [11] on the Pontryagin principle for parabolic control problems.
Further references on the control of nonlinear parabolic equations can be found
in the monography [13].
The main emphasis in this problem is laid on existence and uniqueness of a
solution to the system of the state equations for (P2), existence of a solution to
the optimal control problem and necessary and sufficient optimality conditions.
To find upper and lower solutions in Theorem 3.5, we make the following as-
sumption (A1) on b.

Assumption (A1): The nonlinear function b : ¥ x R — R is continuous
in Q x R, locally Lipschitz in u, monotone nondecreasing with respect to u
for almost all (x,t) € ¥ and fullifies b(x,t,0) < cq(z,t) for all (z,t) € ¥ and

lilin b(z,t,u) = to0.

u— o0

2 The problem with linear boundary conditions

2.1 Existence of an optimal control

As pointed out in the introduction, the problem with linear boundary condition
is similar to one with almost identical state equations but different cost func-
tional discussed by R. Griesse and S. Volkwein in [6]. Therefore, we can rely on
their results to discuss our slightly different control problem. We briefly recall
some theorems of [6] for later applications to (P2). In the sequel, we follow in
principle their approach.

For a Banach space V, the space W (0,T) is defined by

W(0,T) :={y € L*(0,T;V) : y € L2(0,T;V*)}

with norm

1
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where V* is the dual space of V, 3/ denotes the distributional derivative of
y with respect to t and L?(0,T;V) is the space of all (equivalence classes of)
measurable abstract functions y : [0,7] — V with

f||y Hvdt <0

and norm
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First, we recall existence and uniqueness of a solution to the system of the state
equations. We start by the definition of a weak solution.

Definition 2.1. A pair of functions (u,v) of W(0,T) x W(0,T) is called weak
solution of the state equation (E1), if the initial conditions

w(,0) = uo and v(z,0) = vo, (1)
as well as
(ue (-, 8), @) )+ w1 () + u(0,)p(0) + (2)
[ (krusCothes + anute e+ a0 ) dn = c(0)p(0
and ’
(ve (5 2), @)1 (@)=, 11 () + 0(0,8)9(0) + (3)

/ <k2vm(~,t)% + azv(-, t)p + Vzu("t)ﬂ('vt)<ﬂ> da = d(t)¢(0)

are satisfied for all o € H*(Q) and almost all t € [0,T]. Here, the duality
pairing between H*(Q)* and H'(Q) is denoted by (-, VEL Q) HI(Q) ond ug s
defined by uy := %,

The following theorem guarantees existence and uniqueness of a solution to
(E1) (see [6], Theorem 2.3).

Theorem 2.2. For each given pair of controls (c,d) € L*(0,T)x L?(0,T), there
exists a unique solution (u,v) € W(0,T) x W(0,T) to (E1).

For the standard proof of the next theorem we refer also to [6], Theorem 2.6.

Theorem 2.3. Problem (P1) admits at least one optimal solution.

2.2 Necessary and sufficient optimality conditions

To discuss optimality conditions, we introduce the control-to-state operator S
(solution operator) of (E1) by

S: L*0,T) x L*(0,T) — W(0,T)?%, (c,d) — (u,v)

with W (0,7)? := W(0,T) x W(0,T). Notice that, by the nonlinear coupling
through ~;uv, i = 1,2, the system of state equations is nonlinear.

Theorem 2.4. The control-to-state operator S is twice continuously Fréchet-
differentiable.

For the proof, we refer to the more general Theorem 3.10 in our paper. It is
important that the space W (0,T) is continuously imbedded in L*(Q), so that
the product of two elements of W(0,T) is in L?(0,T). The next theorems are
devoted to the form of the derivatives of S. For the standard technique of the
proofs, we refer to [13].



Theorem 2.5. The first derivative of S at (¢,d) in direction (c,d) is given by
S'(e,d)(c,d) = (u,v),

where (u,v) is the weak solution of the stale equation linearized at (U, )

up — Kjtugy + u = —v1 (W + ud) in Q,

Ve — koVge + 20 = —va(uv + ud) in Q,
u(0,t) — k1u,(0,t) = ¢(t) in (0,7),

kjug(l,t) = 0 in (0,7), @)

v(0,t) — kov,(0,t) = d(t) in (0,7),
kovg(l,t) = 0 in (0,7),

u(z,0) = 0 in Q,

v(z,0) = 0 in Q

and (u,v) = S(c,d).

Moreover, for second-order sufficient conditions, we need the second deriva-
tive of S. Let us briefly comment on it in a formal way to motivate the next
result on the second derivative. The system (E1) is of the form

A S(e) = B(S(e)) + D(e) + wy,

where e = (¢,d), S(e) = (u(e),v(e)), B(u,v) = —(nuv,yuv), A stands for
the linear differential operator on the lefthand side of (F1), wo for the initial
conditions and D is a linear continuous operator. Therefore,

A S'(e)er = B'(S(e))S’(e)er + D(eq). (5)

The result is obtained with e = (¢,d), e; = (¢, d), (u,v) = 5" (e)e1, S(e) = (u,v),
since
B'(@,v)(u,v) = =(n (@0 + uv), 12 (W0 + u)).

Differentiating (5) with respect to e in direction ey yields
A 5"(e)(e1, e2) = B'(S(e)) 5" (€)(ex, e2) + B"(S(e)) (5 (e)er, S’ (e)ez)

since D" = 0 by linearity. Define e; = (&, d), ex = (¢, d), (u,v) = 5”(e)(ey, e2),
(4,0) = S’(e)er, (4, 0) = S’'(e)ez, then the next result on the second derivative of
S is obtained. Notice that B” (u,v)[(4,0), (T, 0)] = — (71 (40 + ad), v2 (40 + 00)).
The existence of S’ and S” can be shown by a standard application of the
implicit function theorem that is explained, for instance, in [13].

Theorem 2.6. The second derivative of S at (¢,d) in direction [(¢,d), (¢,d)] is
given by B R ~
§"(¢,d)|(¢,d), (& d)] = (u,v),

where (u,v) is the unique weak solution of the system

Up — k1Uge + 0qu + y1(wv +uv) = —y (40 +av) in Q,
v — koUge + v + Y2 (Uv + ut) = —y (40 + ad) in Q,
u(0,t) — k1ug,(0,t) =0 in (0,7),
kjug(l,t) =0 in (0,7),
v(0,t) — kovg(0,8) = in (0,7),
kovg(I,t) = in (0,7),
u(z,0) =0 in Q,
v(z,0) =0 in Q



where (@,7) = S(¢,d) and (i, 0) = S'(¢,d)(¢,d) is the solution of

—klﬂm—&—alﬁ = —y(ud + o) in Q,
— kolpy + 2l = —y2(TD + D) in Q,
A( t) — k10,(0,8) = é(t) in (0,T),

kitig(1,t) = 0 in (0,T),
8(0,t) — kot (0,8) = d(t) in (0,7),
kov,(L,t) = 0 in (0,7),

i(z,0) = 0 in Q,

o(x,0) = 0 in Q.

Analogously, (@,7) = S'(¢,d) (¢, dN) is defined.

Because of the nonconvexity of problem (P1), several different global solu-
tions might exist. Moreover, additional local minima can occur. In the next
part of this section, we derive the necessary optimality conditions for any pair
of locally optimal control functions (¢,d). We first focus on the control ¢ and
fix d, hence we redefine

S(c) := S(c,d)
and consider the Fréchet-differentiable functional
fle) = J(S(c),c,d) = J(u,v,c,d).

Let us write for short y = (u,v), ¥ = (@, ). Then J(u,v,c,d) = J(y,c,d).
Because the set of admissible controls Cyq is convex, we obtain the following
standard result:

Lemma 2.7. Every locally optimal control function ¢ of a locally optimal pair
(¢,d) of the problem (P1) satisfies the variational inequality

f'@(c—2) >0 Ve € Cyua.
By using the chain rule we calculate f':

f'@c-2) = D,J(Fe)5 @(c—72)+DJ(7,c)(c

-0
T

// u — kv)u — k(u — kv)v d:vdt—i—/)\l ¢(c—7) dt, (6)
0

where (u,v) = 5'(¢)(c — ¢) is the weak solution of the linearized problem

—kjuze + cu = —v1(Tv + uv) in Q,

vy — koUge + v =  —v2(Wv + ud) in Q,
uw(0,t) — k1ug, (0,8) = c(t) —e(t) in (0,7),

kiug(l,t) = 0 in (0,7), o

v(0,t) — kou,(0,¢) = 0 n (0,7),
kovg(1,t) = 0 n (0,7),

u(z,0) = 0 in ,

v(z,0) = 0 in Q.



The functions u and v in (6) can be expressed in terms of (¢ —¢) by introducing
adjoint states p und ¢. Utilizing a Lagrangian function, we obtain p und ¢ as
solutions of the system

—pt — k1P +a1p +NTp +720¢ = U— kT in Q,
p(ov t) - klpm (Oa t) =0 n (07 T),
kip.(I,t) = 0 in (0,7),
p(z, T) = 0 in Q, (8)
—qt — k2quz + a2q + MUp + g = —k(u—kv)  inQ,
Q(O? t) - kQQx (Oa t) =0 n (07 T)7
kQ‘]m(lat) =0 n (OvT)7
g(z,T) = 0 in Q.

Theorem 2.8. If (u,v) is the weak solution of (7) and (p,q) is the solution of
(8), than it holds for all c € L*(0,T)

T

//((n D) — k(T — ko)) d dt = /p(O, B(e(t) — 2(t)) dt.
Q 0

For the technique of proof we refer the reader to [13], Lemma 5.12.
It follows that (6) is equal to

T
(c—7©) / (0,1) + \e(t)) (c(t) — &(t)) dt. 9)
0

This leads to the following theorem.

Theorem 2.9. To every locally optimal control function ¢ of a locally optimal
pair (¢,d) of (P1) there exist adjoint states (p,q) € W(0,T) x W(0,T) defined
by (8) such that it holds

T
/ (p(0,4) + ME@®)(e(t) =) dt > 0 Vee Coa.
0

Tn the case A; > 0 we obtain (see [13], (2.54) on page 56)

_ 1
c(t) = P[caa),cb(m{—ylp(o’ )}

for almost all ¢ € [0,7] where Py, denotes the projection of R to [a,b]. Doing
the same for the control function d we derive:

Theorem 2.10. Every locally optimal pair of control functions (¢,d) of (P1),
satisfies, with a pair of adjoint states (p,q) defined by (8) the variational in-
equalities

(p(0,t) + A1e(t))(c(t) —e(t)) dt > 0 Ve € Cua,

(q(0,1) 4+ Xod(t))(d(t) — d(t)) dt > 0 Vd € Dyg.

St~ T



If \1 and )\o are positive, then the inequalities are equivalent to the pointwise
projection formulas

_ 1
c(t) = Pl {—/\*lp(Oy )},
— 1
d(t) = P[du(t),db(t)]{_);CI(Ov t)}

for almost all t € [0,T].

In the following, we consider also sufficient second order optimality condi-
tions for (P1). Let (¢,d) € Suq := Cuaq X Daa together with (u,v) = S(,d)
and (p,q) satisly the first-order necessary optimality conditions, presented in
Theorem 2.10. We want to introduce sufficient conditions, so that (¢,d,u,) is
a local optimum.

Because the cost functional J and the control-to-state operator S are twice
continuously Fréchet-differentiable,

fle,d) = J(S(e,d), e, d)

is also twice continuously Fréchet-differentiable. By using the chain rule, we
derive

f'(e,d)(é,d) = Dy J(S(c,d), c,d)S (¢, d)(é,d) + De.ayJ(S(c,d), c,d)(é,d).
The derivative of f(c,d)(é,d) with respect to (¢, d) in direction (¢,d) is

e d(@d),@d] = DjJ(S(e,d),e,d)S (e, d) (e d), S (¢

+
>
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=

+DyD(c.q)J(S(c,d),c, (
+D(2c,d)J(S(c7 d): ¢ )[(év d)= (57 d)}
= J//(y,C, d)[(yAaé d)7 (ﬂ,& )] + Dy‘](y7cv d)Z

with states z, § and 7, z := (w1,w2) = S”(c, d)[(é, CZ), (¢, ci)], g = S'(c,d)(é, ci)

and § := S'(¢,d)(¢,d), defined by cf. also (5). The last expression,

DyJ(y,c,d)z = //(u — kv)wy — k(u — kv)wg de dt - with y = (u,v),
Q

can be transformed analogously to Theorem 2.8 to

D,J(y,c,d)z = // Y1 (00 4+ U0)p + 2 (040 + 4v)q dxdt
Q

by using the adjoints (p, q) of (8). We derive

+ // Y1 (40 + ad)p + 2 (40 + U0)q dzdt. (10)



To formulate our sufficient optimality conditions, we introduce the Lagrange
function:

‘C(u7 v, C, dap7 q) = J(u7 v, ¢, d) + ff(ut - klu.LJ +au+ ’YIUU)p dxdt
Q

- [(0(0.8) = s (0.1) — t) + kg (L )p(0,1)
0

+§£(“(9Ca 0) — uo)p(x,0) dx

+ [ (vr — kovge + 2v + youv)q dadt

(v(0,¢t) — kov,(0,t) — d(t) + kavy(1,¢))q(0,1) dt

+ )
+ [(v(x,0) — vg)g(x,0) dx.

(11)

We obtain

in view of (10). This result was to be expected, since the second derivative f”
of the reduced objective functional can be expressed in general by L£” defined
with the associated adjoint states, cf. [13]. The derivative J” is given by

J" (w,v, ¢, d)[(4,9,¢,d), (@, 0, d)]

T
://aa—kaﬁ—ka@Jrk%@dxdt+A1/éadt+A2/dddt.
Q 0 0

By the variational inequality, see Theorem 2.10, for the optimal solution (¢, d)
of (P1), we obtain

_ Ca, i p(0,t) + AE(t) >0
olt) = { cp, if 5(0,75) + ME(t) <0 (12)

and

A= dy i 9(0.£) + Aed(t) < 0. (13)

By the first-order conditions, the control function ¢ is defined in the set {t €
(0,7) : [p(0,t) + A€l > 0} and d in {t € (0,T) : |q(0,t) + A2d| > 0}. Therefor,
second-order sufficient conditions should be required on the remaining sets.

= { da, if q(0,1) + \od(t) > 0

Definition 2.11. For a given 7 and controls ¢, d, we define by

A@) = {t € (0,T) : |p(0,t) + \e(t)| > 7,
A-(d) = {t € (0,T) : |q(0,8) + \d(t)| > 7}

the sets of strongly active restrictions for € respectivly d.




Definition 2.12. The r-critical cone C;(¢) is the set of all c € L>°(0,T) with

= 0, teA (o
c(t) > 0, ¢t)=coundté¢ A (0
< 0, T{)=cundté¢ A (7).

Analogously, we define C,(d).

Theorem 2.13. Suppose that the control functions (¢,d) satisfy the first-order
necessary optimality conditions of Theorem 2.10. If there exist psitive constants
0 and T such that

‘CH(E76767 Evpa q)(uvvv Gy d)2 2 §(||CH%2(O,T) + Hd”%Z(OT))

holds for all (¢,d) € C(¢) x Cr(d) and all (u,v) € W(0,T) x W(0,T) satisfying
(4), then we find positive constants € and o such that

J(U7U7C, d) > J(ﬂ,ﬁ,ﬁ,g) + U(HC — E||L2(Q) + Hd — gHL?(Q))

holds for all (c,d) € Saq with ||c — €| L) + [|[d — d||L=~(q) < e. Hence, the
control functions ¢ and d are locally optimal.

2.3 Numerical examples

Here, we consider examples related to the catalysis problem explained in the
introduction. We consider d as a periodic piecewise constant function that is
given fixed. This means that the harmful substance is feeded into the catalyst
periodically by a certain quantity dy where d has the form

_J doon [T/4,T/2[U[3T/4,T|
d(t) = { 0 on [0, T/4[U[T/2, 3T /4].

We assume that we are able to insert the harmless substance only when the
harmful substance is not be inserted. Hence, we choose the bounds ¢, und ¢,
as functions presented in Figure 1 where

") _{ 0 on [T/4,T/2[U[3T/4,T]|
= & on [0,T/4[U[T/2,3T /4]

with ¢ = a,b with ¢, < ¢p. They are periodic and piecewise constant functions
with the only possible values 0 and ¢;, i = a, b.

Example 1:
Setting ] = 1, T =10, k = k1 = ke =1, 71 = 79 = 05 a1 = ay = 0.3,
A1 = Ay = 0.001, dy = 7, ug = vg = 0 and for the control constraints ¢

[ 0on [T/4,T/2[UT/4, T
ca(t) = { 1 on [0, T/4[U[T/2,3T /4]

and [ Oon [T/4,T/2[U[3T/4,T[

10



Figure 1: Periodic, piecewise constant function with a period of length %

N

| L

Figure 2: Optimal control ¢ and Projection P[cwcb]{—%lp((), t)} for Examplel

we obtain the results, presented in the figures 2,4 and 3. Figure 2 shows the
compatibility of the control function ¢ and the Projection P[cmcb]{f)\l—lp(O,t)}
with respect to the necessary optimality conditions.

Next, we consider the same data as in example 1, but we choose dy = 12 in
Figure 5, while we set A\ = Ay = 1 in Figure 6. Figure 7 is based on the choice

_ [ Oon [T/4,T/2[U[3T/4,T[
a(t) = { 1.7 on [0,T/4[U[T/2,3T /4|

and /\1 :)\2 =1.

Example 2: Next, we choose the control function ¢ as a periodic and piecewise

11
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Figure 3: State u for Examplel

Figure 4: State v for Examplel

we reformulate our control problem. We consider the

constant. In view of this,

control function as a function described in Figure 1 and optimize only the height

This leads to:

Co-

min J(co, u,v)

where e has the form

S
S
~
~
2.9
2~
LD
~ =
45/
I &
SN=)
a g
o ©
S -
——
I
=
[\S)
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Figure 5: control function ¢

Figure 6: Control function ¢

We obtain
T

F(co) = / (p(0, Delt) + Arcoe(t)) dt

and the results, presented in Figure 8 for the same data as in Example 1 with
do = 2.4.

It turned out that the optimal value (4.69) of the objective functional for this
restricted class of controls was (up to a relative error of 0.04) equal to the first
one. However, the computation needed only half the time (6 seconds instead of
12 seconds), since the degrees of freedom of the control is much smaller in this
case. This shows that, in our concrete application, it is justified to work with
controls that are constant in each period of time.

13



Figure 7: Control function ¢

Figure 8: Optimal control function ¢ for the original problem with the data of
example 2 and for example 2

3 The problem with nonlinear boundary condi-
tions

3.1 Well-posedness of the state equation

In this section, we consider the problem (P2) with nonlinear boundary con-
ditions. Systems of this type might be interesting for the applications. For
instance, the equations might model the diffusion of a substance with concentra-
tions v and temperature u, where a Stefan-Boltzmann type boundary condition
for u is given. However, we do not aim at discussing specific applications. We
think that the system is interesting from a mathematical point of view. To show
an existence and uniqueness theorem for the new nonlinear system, we invoke
the method of sub- and super-solutions. Moreover, we need higher regularity of
u and v to make the nonlinearities well defined and to ensure the diffentiability
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of the control-to-state mapping.
We assume that ug € L>®°(2) and vy € L>°(Q) are given.

Definition 3.1. A pair of functions (u,v) € (W(0,T)NL>(Q))? is called weak
solution of the system System (E2), if the equations

u(+,0) = ug, v(-,0) = vy,

T
/ (we, @) H1 () H1 () At + // b(x,t,u)p dx dt
0 b

+//(k:1Vu~V<p—|—a1ucp+'yluv<p) dxdt://cgodmdt

Q o)

and

T
/Ut, P)H(Q)*, H( )dt—l—//avgpdxdt
0

+ / (koVv - Vo + agvp + youvp) de dt =0

are satisfied for all ¢ € L*(0,T; H*(RY)), where V denotes the gradient with
respect to x.

To prove the existence and uniqueness of a weak solution for (E2), we apply
the method of upper and lower solutions and follow the arguments of Pao [10],
pp- 459-470. We first show the existence of classical solutions for given smooth
data.

) in C(Q)
,0)(x,t) >

Definition 3.2. Two pairs of functions (4, ) and (4,
called ordered upper and lower solutions of (E2), if (
Q and the following inequalities are satisfied:

NCY2(Q) are
(@, 0)(x,t) in

w(z,0) > wo(z) > da(z,0) in Q

o(x,0) > wo(x) > o(x,0) in Q
3u—c—|—b(x,t,u) > 0 > Oy —c+b(x,t,0) in X
o,0+ab > 0 > 0,0+ ab in X
—klA’LNL-I-Ctlﬂ-l-’)/l'LNL’ZA} 2 0 Z u —klAﬁ—kalﬁ—&-vlﬁﬁ mn Q
— kgAf) + v + ’Yzﬁf] > 0 > — szf) + ag? + ’7217’{) mn Q

To prove the solvability of the system (E2), we invoke a Theorem 3.2 of [10],
cf. Theorem 3.4 below. For his theorem, we have to define a quasimonotone
nonincreasing function.

Definition 3.3. A function f : R™ — R" is called quasimonotone nonincreas-
ing, if for fixed z;, f;, i € {1,...,n} of f is monotone nonincreasing in xj, for
all k with k # 1.

In contrast to our paper, this theorem considers the coupling of the two
states through the boundary and concerns the following system of parabolic
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equations:

(u1)e = Lyur = fi(z,t,up) in Q,
(u2)¢ — Loug = fa(z,t,u2) in Q,
ki0,ui + Biwn = gi(x,t,u1,uz) in X, (14)

k2avu2 +/62U2 = Q(Iata ulau2) in 27

ui(z,0) = wupo(x) in Q,

ug(2,0) = wugo(x) in Q,

where L;, defined by
n n
Liu = Z ai;j(z,t)0%u/0x;07; + Z b;(x,t)0u/0x;,

ij=1 =1

is a uniformly elliptic operator in the sense that the matrix (a;;) is positive
definite. The coeflicients of L; are assumed to be Hdolder continuous in Q,
ki, B; >0, k; + B; > 0, f; is Holder continuous, g; is continuous , ¢ = 1,2, and
the following property is satisfied

5‘qu1 Z 0 and aul f2 Z 0, (15)
8u2f1 S 0 and 8u1 fQ S 0, (16)
Ou, f1 <0 and 9y, f2 > 0. (17)

Furthermore, the functions f; and g;, i = 1,2, are supposed to be locally Lip-
schitz, that means for all M > 0 there exists a Lipschitz constant L(M) > 0
such that

|fi(z,t,ur) — fi(z,t,u2)| < Ly, (M)|ur — va| (18)

and
9i (2, t,u1,v1) — gi(w, t,uz, v2)| < Ly, (M)(Jur — v1| + [ug — v2]) (19)

for all (z,t) € Q and all |u;| < M, |v;| < M, i=1,2, and fo, gi, i = 1,2, satisfy
this assumption analogously.

Theorem 3.4 ([10]). Let (41, G2) und (41, Uz) be ordered upper and lower solu-
tions of (14), (g1, 92) be quasimonotone nonincreasing in [(U1,us), (U1, ds)] :=
{(u,0) e C(Q)x C(Q) :u<u <0 and v < v < 0}, and satisfy (18). Then the
system (14) has a unique solution (u1,uz) in [(u1,ud2), (U1, us)]. Moreover, the
sequences (Ur”, uz®), (w1 *, ") obtained from 20, with (ur°,uz®) = (iy,is) and
(u1°,13°) = (ti1,2) converge monotonically to (uy,us) and satisfy the relation

(u},u}) < (ﬂk,%k) < (U17u2> < (ulk,uz ) < (’lfl,dg) Vk = 1,2,...07] Q

() — Lot + Ly
(uz)t — Lpuf + Ly u
k10, u1 + Brul + Ly, u”
ko0, ub + Boul + nguk
ul k(x,0)

ub(x,0)

fi(z,t, u1 ) + Ly uk=! in Q,
fa(w,t u2 ) + szuk_l in Q,
gi(x, t,ut ™ w4 Ly, w1t in X,
92(1‘ tuy” 1 us )+ Lyubt i X
uy,0(z) in €,
= ugo(x) in Q,

(20)
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Theorem 3.5. For every function c € C(X) with c(x,t) > cu(z,t) for all
(z,t) € ¥ and ug,vy € C(Q), there exists an unique solution (u,v) € (C(Q) N

01’2(Q))2 for the system (E2).

Proof. Following [10], we first have to find pairs of ordered upper and lower
solution. As a lower solution we take

(a,0) = (0,0),
and for the upper solution we choose
(a,v) = (4,9)
where § := max(d,, §,,) and d,, J, are positive constants satisfying
0u > ug(x), 0, > vo(x) Ve, (21)

and
b(z,t,0y) > c(z,t) Y(x,t) € X (22)

We derive the existence of these constants, because of Assumption A1 and the
assumptions on ¢ in this theorem. The conditions (21) and (22) can be satisfied
since ug,vp € C(Q) and the assumptions A1 on b hold.

In the application of Theorem 3.4, we take Ly = —A, Ly = —A, fi(x,t,u,v) =
—ayu—y1uv, folz,t,u,v) = —agv—youv, g1(z,t,u) = c—b(xz, t,u), ga(x, t,v) =
0, /1 = 0 and B2 = . In [10], the nonlinear coupling occurs in the boundary
conditions, while it is n the right-hand side of the equation in our case. There-
fore, to apply the theory of [10], we only have to interchange the roles of f;
and g;, 1 = 1,2. It is easy to see that these functions satify the assumptions
(16) and (18), because of Assmption Al. For instance, f; and f; are mono-
tone nonincreasing. Thanks to Theorem 3.4, there exists a unique solution

(u,v) € (C(Q) N C2(Q))? to (E2). O
Our next goal is to generalize this result to ¢ € L>(X) instead of ¢ € C(X).

Theorem 3.6. For every given ¢ € Cyq, there exists a unique weak solution
(1,v) € Y2 := (W(0,T)NC@))* of (E2).

Proof. (i) Existence: Let ¢ € Coq C L®(X) given and ¢, a sequence with
cn € C(X), cp(x,t) > co(x,t) for all (z,t) € ¥ and ¢, — cin L*(X), s > N + 1.
Such a sequence exists because of the density of C(X) in L*(X). This sequence
is uniformly bounded. By Theorem 3.5, for every ¢, € C,q4 there exists a unique
solution (u,,v,) € C1(0,T;C?(2))? of (E2). For every c, we choose the same
upper and lower solution like in Theorem 3.5 as initial values for the monotone
sequences. From [10], page 465, it follows

(4, 0) < (up,vn) < (G,0) VYn=1,2,..1n Q.

We can take the same upper and lower solutions & = o = 4, & = 0 = 0, since all
¢y, are uniformly bounded. So an M > 0 exists with

||u“||C(§) + H’UnHC(a) S M
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for all states (un,v,), belonging to the control functions ¢,,. We define
hn =Cp — b(, un) and gn = g(un7 Un) = —Y1UnpUn.

Because of |lun||c @) + llvnllcg) < M it follows that A, and g, are bounded in
L>(Q), hence also in L*(X) and L*(Q), respectively, with s > N + 1. Summa-
rized we obtain

(un)t — B1Aup + 0qun = gn
o uy, = h,y, (23)
Un(2,0) = ug(x).

This linear boundary value problem (23) possess for all (g, hy,) € L"(Q) x L*(X)
a unique solution u, in Y. For a proof, we refer the reader to [13] on page 203,
Theorem 5.6. The Nemyzki operator h(u) is on X locally Lipschitz-continuous.
From Casas [3] or Raymond and Zidani [11], we infer that the control-to-state
mapping S; : L*(Q) N L*(X) — Y, (gn, hn) — uy, is continuous. Every linear
continuous mapping is also weakly continuous, so the weak convergence tranfers
from h, and g, to u,, i.e. u, — win Y. We know that, for a homogeneous
initial value ug = 0, the mapping S; is continuous from L"(Q) x L*(X) to the

space of Holder-continuous functions C*(Q), x € (0,1) (see [2] Theorem 4). Let

u € C(Q) denote the fixed part of the solution w, with inhomogeneous initial
value ug, homogeneous right-hand side and homogeneous boundary condition.

The sequence (u, —u) converges weakly in C*(Q) and strongly in C(Q), because

C"(Q) is compactly imbedded in C(Q). Because of ©w € C(Q), it follows

u, — uforn — oo with we C(Q).

Analogously, we find that v, — v in C(Q). This implies also b(z,t,u,) —
b(z,t,u) and u,v, — wv uniformly in Q). Passing to the limit, we confirm that
(u,v) satisfies the system (E2).

(ii) Uniqueness: Let (u,v), (4,9) € Y2 be two pairs of weak solutions to (E2).
Then, a:=u—u €Y and ¥ :=v — 0 € Y satisfy

@(0) =0, #(0) =0, (24)

(@e(t), ) 51 ()=, HL(Q) T /(b(x,t, u) — bz, t,4))p do + /k‘;[Vﬂ(t) -V dx
r Q

—|—/o¢11](t)<p dx + /71 (a(t)v(t) + a(t)o(t))e dx = 0, (25)
o) o)

(’Dt(t), QO)Hl(Q)*’Hl(Q) + Oé/f]gD dx + /kgi}(t) . VQO dx
% Q

+/a217(a:,t)g0da: + /Wg(ﬂ(t)v(t) +a(t)o(t))p de =0 (26)
Q Q
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for all ¢ € H'(Q) and almost all ¢ € [0,7]. Choosing ¢ = @ in (25), ¢ = ¥ in
(26) and adding both equations we obtain

/(b(x,t, u) — bz, t,a))(u(z, t) — a(x,t)) de >0

r
/aﬁﬂ(x,t) + agt?(x,t) dx > 0
Q
for almost all ¢ € [0,T]. This yields the following inequality
& (lae )HL2(Q) F 15O 720 + F1 18051 @) + *2 150 171 @

1
< k1 ” ( )HLQ(Q + ko ”U( )HiQ(Q) +
fvl | )| + |a(t)d(t)a(t)| da+

f72 )o(t)] + |a(t)v*(¢)] de
which is equivalent to [6], (A.2). Now, we continue as in the proof [6], A.1.1, to
show @ =0 and ¥ = 0. O

Remark 3.7. A study of the proof reveals that uw > 0 and v > 0, because we
have choosen (0,0) as lower solution.

Theorem 3.8. Problem (P2) admits at least one optimal control €.

Let us briefly sketch the proof. The technique is along the lines of [13],
Theorem 5.8. We obtain the uniform boundedness of the states through the
proof of Theorem 3.6, because u,, and v,, converge in W (0,7) N C(Q) to u and
v and are uniform bounded. Hence the cost functional is bounded from below
and we find a weakly convergent minimizing sequence for the control function.
One shows in a standard way that this limit is optimal and the associated pair
of states fulfills the system (E2).

3.2 Necessary and sufficient optimality conditions
Let us define the control-to-state operator
S:L>®(E) =Y, ¢c— (u,v)

with Si(c) := w and S2(c) := v. In view of [13], Lemma 4.10, we obtain the
next theorem.

Theorem 3.9. The cost functional J is continuously Fréchet-differentiable from
Y2 x L>®(X) to R.

Let us show instead:

Theorem 3.10. The control-to-state operator S is twice continuwously Fréchet-
differentiable from L*°(X) to Y2.
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Proof. First, we derive an operator equation for (u,v) = S(c¢). To this aim,
shifting the nonlinearities to the right-hand sides, we transform the statesystem
of (E2) to

Uy — k1Au+ oau = —vyuv in Q,

v — ko Av4+asv = —yuv in Q,
kio,u = c—b(z,t,u) ?n 3, (27)

koO,v+av = 0 in X,

u(z,0) = wup(x) in Q,

v(z,0) = wo(x) in Q.

For the left linear part we establish linear and continuous solution operators

Sg,Go: L>®(Q) =Y, Ss : L®(X) = Y and Sy, Go: C(Q) = Y. Sg:d— uis
associated with the linear problem

u —kiAu+aiu = d in Q,
kidu = 0 in %,
u(x’o) = O in Q,
Sy, : ¢ — u with
u — kiAu+ou = 0 in Q,
kio,u = ¢ in X,
u(z,0) = 0 in Q

and Sy : e — u with

uy — kiAu+ou = 0 in Q,
kio,bu = 0 in X,
u(z,0) = e(x) in Q.

Analogously, G : d — v belongs to the linear equation

vy — ko Av+aov = d in Q,
koO,v+av = 0 in X,
v(z,0) = 0 in Q
and Gg : e— v to
vy —koAv+asv = 0 in Q,
koO,v+av = 0 in X,
v(z,0) = e(x) in Q.

We consider these operators with image in C(Q) and reformulate the nonlinear
equation (27) as

u\ _ [ =Semuv+ Ss(c—0b(:,-,u))+ Souo (28)
v —Gov2uv + Govg ’
which is equivalent to

0\ [ u+Sgmiuww—Ss(c—0b(,-,u))—Souo \ .
( 0 ) o ( v+ Goyauv — Govg ) F(u,v,0).
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Because Sq,Gq, Sy, So and Gy are linear and continuous and —yiuv, —y2uv,
b(-,-,u) are twice continuously Fréchet-differentiable from C(Q) to L>(Q) re-
spectively L>°(X), F is a twice continuously Fréchet-differentiable mapping from
C(Q) x C(Q) x L=(%) to C(Q) x C(Q), since F is the composition of linear
and twice continuosly Fréchet-differentiable mappings.

To use the implicit function theorem, we have to show the invertibility of the

partial Fréchet-derivative F, ,)(u,v,c). This applies, because
Flyv(u,v,c)w =z
is equivalent to

wy + Sov1 (vwr + uwsz) + Ssby(z, t,w)wr \ [ =1
wo + GQ"}/Q (’le + ’U/wg) - zZ92

and, after the substitution of » = z — w, equivalent to

(r1)e — B1Ar + aqry + y1(vr +ure) = y1(vz + uz) in Q,
(ro)e — kaArg + agrg + ya(vry + ure) = ya(vzy + uz2) in Q,
k10yr1 + by(z, t,u)ry = e+ by(z,t,u)z; in X%,

k28yr2+ar2 =0 in Z,

u(z,0) = 0 in €,

v(z,0) = 0 in Q.

For every (21, 22) € C(Q)?, this boundary problem has a unique solution (r1,73) €
Y2. So we can invoke the implicit function theorem and obtain that the control-
to-state operator S is twice continuously Fréchet-differentiable. O

Theorem 3.11. The derivative of the control-to-state operator S at ¢ in direc-
tion c is given by
§'@)ec = (u,v),

where (u,v) is the weak solution of the in (u,v) linearized problem (E2)

up — k1Au+ aju = —v1(Tv + uv) in Q,

vy — ko Av + v = —yo(Tv + uv) in Q,
k10yu+ by(z,t, W)y =c in X, (29)

koO,v+av =0 in X,

u(z,0) =0 in Q,

v(z,0) =0 in Q

and (u,v) = S(C).

Proof. The proof is along the lines of [13], Theorem 5.17, p. 218. To derive the
form of S’(¢), we use (28):

w\ [ —=SgmSi(e)Sa(c) + Sx(c—b(-, -, S1(c)) + Sou
( v ) _S(C) B ( e —§Q7251(552(0)+G0;0 o )

Differentiating both sides, we obtain

S (@)e = —5em(51(€)e52(2) + 51(6)55(€)¢) + Sn(c — bu(, - 51(€))51(€)c)
—G72(51(2c)92(2) + 51(2)55(2)c) '
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In view of S1(¢)c = u and S5(¢)c = v, we get

r— . —Somi(uv+Tv)+ Ss(c—by(--, ) u)
§(e)e = ( ¢ —Goy2(u @Z—i-ﬂv) )

which implies the statement. O

Analogously to Section 2, we obtain the following theorem, see also [13],
Theorem 5.17.

Theorem 3.12. The second derivative of S at ¢ in direction (¢,¢) is given by
§"(e)(¢,¢) = (u,v),

where (u,v) is the weak solution of the system

us — k1 Au+ ayu + vy (av + uv) = —y1 (40 + a0) in Q,
vy — ko Av + aov + (T + ul) = — (40 + ud) in Q,
k10 u + by(z, t,0)u = —byyu(z, t,0)[a+a] on X,
koO,v+av =0 on X%,

u(z,0) = in Q,

v(z,0) =0 in Q

where (u,v) = S(¢) and (4,0) = S'(¢)(¢) is the solution of

Uy — k1lge + 1t = —y1(Ud + 40) in Q,
’I)At — kQ@xm + OéQ’lA) = —’}/Q(ﬂ’{) + ’LAL@) mn Q,
k10,0 + by(x,t,u)a = & on X,
koO,0+at = 0 on %,

w(x,0) = 0 in Q,

0(xz,0) = 0 in .

Analogously, (4,0) = S'(¢)(¢) is defined.

To formulate necessary optimality conditions, let ¢ be an optimal control of
(P2) with states (u,v).
We have (u,v) = S(c) with the control-to-state operator S : L>®(X) — Y2,
hence we obtain the reduced functional f,

f(e) := J(u,v,c) = J(S(c),c).

The functional f is Fréchet-differentiable, because S is differentiable by Theorem
3.10 and J is differentiable by Theorem 3.9. Analogously to the last section, we
obtain the following standard result:

Lemma 3.13. Every locally optimal control function ¢ of (P2) satisfies the
variational inequality

f'@(c—-2c) >0 Ve € Cuqg.
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We determine f’ by the chain rule and obtain

ff@e-2 = J,@2 5@ (c—70)+ J(y,e)(c—70)
//(auuuQ U+ a, (T — vg)v )d:cdt

+ / <OtTU (ﬂ(T) — UQT)U(T) + ary (@(T) — UQT)’U(T)) dx
Q

+ a. ¢(c—7¢) dt, (30)
/

where, by Theorem 3.11, y = (u,v) = 5'(¢)(c — ¢) is the weak solution of the
linearized problem

ug(t, ) — k1Au+ aiu v (v + uv) in Q,

ve(t, ) — ko Av + v Yo (Tv + uv) in Q,
k10,u+ by (z,t,u)u =c—=¢C in X, (31)

koO,v+av =0 in X,

u(z,0) =0 in Q,

v(z,0) =0 in Q.

By Lemma 3.13 f/(¢)(c — ) is nonnegative. We can eliminate the states u and
v in (30) by the adjoint states p und ¢, the solutions of the adjoint system

—pt —kiAp+a1p+vp+1evg = au(u—ug) inQ,

—qt — kaAq+ aoqg + up + puqg = a,(v—vg) inQ,

k10up + by(z,t,u)p = 0 in X,

(A2) koOyq+aq = 0 in X,
p(z,T) = ary(u(x, T) —uq(z,T)) in ,

q(z,T) = ary(v(z,T) —va(z,T)) in Q.

Theorem 3.14. If (u,v) is the weak solution of the linearized system (29) and
(p,q) is the solution of the adjoint system (A2), then it holds for all c € L*(X)

that
// <Ozu(’u — UQ)U + Oév(@ — UQ)U) dx dt
Q

+/ (ozTU(u(T) —ugr)uw(T) + ary (B(T) — UQT)U(T)) dz
Q

= /p(c —7¢) dzx dt.

=

The proof is analogous to the one of Theorem 2.8 at page 7. In this way, (30)
leads to

f'@c= /(p + a.8)c dx dt. (32)

)
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Theorem 3.15. Every locally optimal solution € of (P2) satisfies, together with
the adjoint states (p,q) of (A2), the variational inequality

/(p—i—acé)(c—é) da > 0 Ve € Coug.
5

The following theorem furnishs an equivalent pointwise expression of the
variational inequality.

Theorem 3.16. IfC is locally optimal for (P2) and (p, q) are the adjoint states,
then

min (p(z,t) + acc(z,t))c = (p(z, 1) + act(z, t))e(z, 1)
cq(z,t)<c<cp(z,t)

will be attained almost everywhere in ¥ by ¢ = ¢(x,t).
The proof is well known.

For a. > 0, this leads to the projection formula

_ 1
C(xv t) = P[ca(m,t),cb(;c,t)}{7;p($a t)}

for almost all (z,t) € ¥. Because of similarity to the second section, we state
the sufficient second-order optimality conditions for the problem (P2) without
proof. We define the Lagrangian function analogously to (11) with the second
derivative

L' (u,v,¢,p,q)[(a,0,¢), (u,v,¢)] = J"(u,v,c)[(q, v, ¢), (i, 0, )]

+ // v (40 + ad)p + Y2 (40 + G0)q dxdt — // by (z, t,w)|d, alp dzdt.
Q )

For given 7 > 0, we define
A (@) :={(z,t) € : |p+ a.el > 7}

as the set of strong active restrictions for ¢. The 7-citical cone C.(¢) is made
up of all ¢ € L*°(X) with

=0 for (z,t) € A;(¢)
c(z, ) >0 for¢(z,t) =c, and (x,t) ¢ A, (C)
<0 for¢(z,t) = cp and (z,t) ¢ A ().

Theorem 3.17. Suppose that the control function € satisfies the first-order
necessary optimality conditions of Theorem 3.15. If there exist positive constants
0 and T such that

‘C”(ﬂa v, ¢, p, Q) (’U’v v, C)2 2 5||C||%2(0,T)

holds for all ¢ € C(¢) and all (u,v) € Y XY satisfying (29), then we find
positive constants € and o such that

J(u,v,¢) > J(w,v,¢) + oflc — E|\2Lz(Q)

holds for all ¢ € Cyuq with ||c —€||L~(q) < €. Therefore, the control functions ¢
is locally optimal.
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3.3 Numerical examples

Example 3: We investigate the problem (P2) with the following data: [ =

LT=2k=k=c=a,=a,=1,11=7=a1 =a =ary = ary =0,
ac = a = 0.01, ug(z) = cos(5x), vo = 0, ug(x,t) = cos(5x), vg = 0. For the
constraints of the control function ¢ we choose ¢, = —10 and ¢, = 10 and as

the initial value ¢ = 1. By using the gradient-projection-method, we obtain the
control functions and states, presented in Figures 9-12. We use an equidistant
mesh with 15 supporting points in the z-direction and 150 node points in the
t-direction.

0 02 04 06 08 1 12 14 18 18 2 0 50 100 150
t

Figure 9: Optimal control (0, ) and projection Py, ., {fa%p(o, t)} for Example
3 :

o 02 04 08 08 1 12 14 16 18 2 ) 50 100 150
t

Figure 10: Optimal control ¢(l,t) and projection P[Cmcb]{—aicp(l,t)} for Exam-
ple 3
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