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Abstract

We investigate existence and structure of solutions to quadratic control problems with
semi-explicit differential algebraic constraints. By means of an equivalent index-1 formulation
we identify conditions for the unique existence of optimal solutions. Knowing of the existence
of an optimal input we provide a representation of the associated feedback-law via a Riccati-
like decoupling that is formulated for the original index-2 equations.
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1 Introduction

A well-posed formulation of a control system for differential-algebraic equations (DAEs) has to
relate the algebraic constraints to the controls, since it may happen that some components of the
input are not free. Consider the example system[

1 0
0 0

] [
ẋ1
ẋ2

]
−
[
1 1
0 0

] [
x1
x2

]
−
[
u1
u2

]
=

[
0
0

]
, x1(0) = 0. (1)

An arbitrarily defined input can make the model inconsistent, as in (1) the existence of solutions
is only possible if u2 is either zero or a function of the state x1 or x2. On the other hand the
definition of the input can change the characteristics of the model. With the assignment u2 := ẋ2,
System (1) can be interpreted as an ODE for x1 and x2. Assigning u2 := x1 the system can be
reformulated to give only algebraic equations for x1 and x2. A general approach to this issue bases
on the behavior formulation, cf. [25], which considers the control problem as an underdetermined
system in the augmented variable z := [x, u]. For the behavior system one can identify free
components of z that are then defined as the new controls, cf. [17]. This approach is natural,
since if the chosen controls are not free variables in the behavior formulation, then the problem
is ill-posed.

If it comes to applications, however, one cannot freely redefine the controls and variables
since they are prescribed by the physical setup. In this case one can only hope that the problem
is well-posed and if necessary consider a remodeling that ensures well-posedness in terms of the
original inputs. We will investigate optimal control problems, where the control acts only in the
differential part of the differential-algebraic equations such that the inputs will always be free
variables.

In optimal control one tackles the problem of determining an input u such that

J (x, u)→ min subject to F (t, ẋ, x, u) = 0,

where x is the state of the system, J is a cost functional and F stands for the constraints given
by the state equations. For the solution of optimal control problems there are basically two
approaches, the value function and the variational approach, cf. [27].

In order to extend these approaches that are well-understood for ODE constrained optimiza-
tion problems to DAE constraints, one has to cope with the strangeness of the DAEs. The
strangeness describes to which extent differential and algebraic equations are tied together and
is quantified by means of various index concepts [28]. Generally spoken, in strangeness-free or
index-1 DAEs, algebraic and differential equations are well separated and higher indices mean
higher interlocking.

If one uses a variational or Lagrange-multiplier approach one ends up with variants of the
so-called Euler-Lagrange equations. The structure of these equations suggests that the solution
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to optimal control problems with DAE constraints is a function of the state, i.e. a feedback
control. Unlike the ODE case, for DAE constraints the existence and uniqueness of solutions to
the involved adjoint equations and thus to the optimality system is in general not guaranteed,
cf. [4, 6, 10, 22] and in particular [15] for the linear quadratic case. To provide necessary and
sufficient conditions for the existence of optimal controls one can for example exploit the special
structure of semi-explicit equations, cf. [10–12], or consider linear DAEs with properly stated
leading term, cf. [3–5, 7, 22, 24]. The special case of Riccati-feedback solutions was investigated
in [23]. The more general way to regularize the DAEs and formulate the conditions for the
resulting strangeness-free system is taken in [18]. In [16, 17] conditions and procedures for the
construction of state feedbacks are presented such that the behavior system is strangeness-free.

The formulations of the optimality conditions in the references listed above involve index
reduction procedures, except from the contributions in [3, 4]. However, from the numerical point
of view, a formulation in the unreduced equations is preferable in two respects. First, solving
the original equations, one can control the modelled constraints, while solving an index reduced
system may lead to a drift off the constraint manifold unseen by the solver. Second, most index
reduction techniques use projectors or implicit functions which may be expensive to compute.
Thus for an efficient implementation an index reduction, if necessary, should be tailored to the
solution of the specific problem rather than to the derivation of theoretical results.

In our approach we make use of the structure of an optimality system that is stated in the
original variables without any explicit or implicit index reduction. The obtained results regarding
optimality of the solutions to the Euler-Lagrange equations are already covered by [3, 4]. The
innovations we propose base on the specific structure of the semi-explicit index-2 formulation,
as it arises in linearized Navier-Stokes equations. We use the structure to prove the existence of
an optimal solution directly. Thereto we introduce a novel differential-algebraic matrix Riccati
equation that seems suitable for numerical computations, as it is stated in the original system
matrices. Finally, we show how the necessity gap between the considered formal and the true
[19] optimality conditions can be closed in applications.

2 Semi-explicit Semi-linear DAEs of Index 2

In this section, we introduce a decoupling of the index-2 DAEs that identifies the differential and
algebraic parts to read off necessary conditions for consistency and regularity of the data.

consider a semi-explicit semi-linear DAE of the form:

M(t)v̇ −A(t, v)v − J1(t)T p−B1(t)u = fv, v(0) = v0 ∈ Rnv , (2a)

−J2(t)v −B2(t)u = fp. (2b)

We assume M(t) invertible, so that (2) can be reformulated as a semi-explicit system.
For systems of the form (2) the differentiation index, cf. [9], is defined as follows:

Definition 2.1. A semi-explicit DAE as given by (2) is of differentiation index k if it takes k−1
differentiations in t of the algebraic constraints (2b) to determine the algebraic variable p in terms
of the differential variable v.

In order to guarantee existence of solutions (v, p) ∈ C1(I,Rnv)×C(I,Rnp) of (2), we make the
following assumption:

Assumption 2.2. For the DAE (2) with coefficients M,A(·, v) ∈ C(I,Rnv ,nv), J1, J2 ∈ C(I,Rnv ,np),
B1 ∈ C(I,Rnu,nv), B2 ∈ C(I,Rnu,nu), right-hand sides fv ∈ C(I,Rnv), fp ∈ C1(I,Rnp), an initial
condition v0 ∈ Rnv and inputs u ∈ C(I,Rnu) we assume
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(A1) differentiation index 2, i.e. S := J2M
−1JT1 is invertible,

(A2) sufficient regularity of the data and the input, i.e. fp, B2u, M−1JT1 S
−1 and J2 are differ-

entiable and

(A3) consistency of the data and the input, i.e. J2(0)v(0) = fp(0)−B2(0)u(0).

We will not investigate existence of solutions here. The following Theorem 2.3 gives a solution
representation by means of the inherent ODE that will be used to ensure existence and uniqueness
in the linear case of System (2).

Theorem 2.3. Each solution (v, p) of (2) can be represented as (vP +Qv, p), where

Qv = −M−1JT1 S−1[B2u+ fp], (3a)

p = −Q−[M−1[A(Qv + vP)[Qv + vP ] +B1u+ fv] + Q̇v], (3b)

and vP := Pv solves the ODE

˙vP −
[
d
dtP + PM−1A(Qv + vP)

]
[Qv + vP ]− PM−1[B1u+ fv] = 0,

vP(0) = Pv0. (3c)

with P := I −Q, Q := M−1JT1 S
−1J2 and Q− := S−1J2.

Proof. Rewriting and abbreviating (2) by[
I 0
0 0

] [
v̇
ṗ

]
−
[
M−1A(v) M−1JT1

J2 0

] [
v
p

]
=

[
M−1(B1u+ fv)

B2u+ fp

]
(4)

and E ẋ−A(x)x = q, respectively, with x := (v, p), we compute the operator chain as described
e.g. in [7] but with a slightly different notation. It will turn out that the nonlinear part in A does
not interfere with the definitions of the projections and subspaces such that the linear theory of
[7] is applicable here. The operator chain is given by

E0 := E =

[
I 0
0 0

]
, A0 := A =

[
M−1A(v) M−1JT1

J2 0

]
, (5a)

Q0 =

[
0 0
0 I

]
(projector onto ker E0), P0 = I −Q0 =

[
I 0
0 0

]
, (5b)

E1 = E0 +A0Q0 =

[
I M−1JT1
0 0

]
, A1 = A0P0 =

[
M−1A(v) 0

J2 0

]
, (5c)

Q1 =

[
M−1JT1 (J2M

−1JT1 )−1J2 0
−(J2M

−1JT1 )−1J2 0

]
=:

[
Q 0
−Q− 0

]
, P1 =

[
P 0
Q− I

]
. (5d)

E2 =

[
I +M−1AQ M−1JT1

J2 0

]
. (5e)

With the projectors Q = M−1JT1 S
−1J2 which satisfies

Q2 = Q, J2Q = J2, QM−1JT1 = M−1JT1 and Q−Q = Q−,

and P = I −Q one can verify that

E−12 =

[
P [I − PM−1A]M−1JT1 S

−1

Q− −[I +Q−M−1AM−1JT1 ]S−1

]
(6)
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for any A = A(v). Scaling the state equations (4) by E−12 we get[
P 0
Q− 0

] [
v̇
ṗ

]
−
[[ PM−1AP 0
Q−M−1AP 0

]
+

[
Q 0
−Q− I

]] [v
p

]
= E−12

[
M−1[B1u+ fv]

B2u+ fp

]
. (7)

Having applied the projectors Q1, Q0P1 and P0P1, cf. (5), to (7) we obtain the three subsys-
tems

−
[
Q 0
−Q− 0

] [
v
p

]
= Q1E−12 q =

[
M−1JT1 S

−1[B2u+ fp]
−S−1[B2u+ fp]

]
, (8a)[

0 0
Q− 0

] [
v̇
ṗ

]
−
[

0 0
Q−M−1AP I

] [
v
p

]
= Q0P1E−12 q

=

[
0

Q−M−1[B1u+ fv −AM−1JT1 S−1[B2u+ fp]]

]
(8b)

and [
P 0
0 0

] [
v̇
ṗ

]
−
[
PM−1AP 0

0 0

] [
v
p

]
= P0P1E−12 q

=

[
PM−1[B1u+ fv −AM−1JT1 S−1[B2u+ fp]]

0

]
, (8c)

respectively, where q denotes the rightmost vector in (4). Since Q1 + P0P1 + Q0P1 = I,
Equations (8) contain all information of (7) and vice versa. We decompose v = vP +Qv, where
vP := Pv so that from (8a) we can deduce that

Qv = −M−1JT1 S−1[B2u+ fp] (9)

and that Qv is differentiable by assumption. With v̇ = Q̇v + ˙vP and Q− ˙vP = 0, Equation (8b)
gives

p = −Q−[M−1A(Qv + vP)[Qv + vP ] +M−1B1u+M−1fv] +Q−Q̇v, (10)

while (8c) defines the inherent ODE for vP := Pv via

˙vP −
[
d
dtP + PM−1A(Qv + vP)

]
[Qv + vP ] = P[M−1B1u+M−1fv], vP(0) = Pv0. (11)

Note the necessity of the consistency condition (A3) in Assumption 2.2, since by (9) the condition

J2v(0) = J2[Qv(0) + Pv(0)] = J2Qv(0) = −B2u(0)− fp(0),

must hold and note, that an initial condition for p would have to fulfill (10) at t = 0.

Remark 2.4. In the setting of the Navier-Stokes equations, the projector Q realizes the discrete
Helmholtz-decomposition that splits a vector field into a divergence free part and a part that
can be expressed as the gradient of a scalar potential, cf. [13, Cor. 3.4]. If J2 is the discrete
divergence operator, then the decomposition v = Qv + Pv =: Qv + vP delivers that J2vP = 0
and Qv is in the range of M−1JT1 , which is the discrete gradient operator in many discretization
schemes. The matrix Q− is a generalized left inverse of M−1JT1 and can be seen as the operator
that maps the potential field Qv = M−1JT1 ρ onto its potential ρ. Accordingly, (3b) is the discrete
Pressure-Poisson equation, cf. [14].
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Corollary 2.5. If B2 = 0, then the solutions of (2) do not depend on the time derivative of the
input. The condition B2 = 0 is also necessary for the existence of solutions for all continuous
inputs.

The first fact of Corollary 2.5 follows from the representation of the solution as given in
Theorem 2.3. For the converse direction, one concludes that the solution component d

dt(B2u) can
only exist for all continuous u if B2 = 0.

For the results of the next sections we will always require B2 = 0 which by Corollary 2.5 is
necessary and sufficient for the admissibility of inputs that are only continuous. This is what in
[3, 4] and [26] is also assumed and referred to as causality.

3 Linear Quadratic Optimal Control

In this section, we formulate an optimality system and determine necessary and sufficient condi-
tions for optimal solutions without resorting to index-1 formulations.

We investigate a linearized version of (2), i.e. A(t, v) = A(t), and a quadratic cost functional
of type

J (v, p, u) =
1

2

[
v
p

]T [
V1 V12
V21 V2

] [
v
p

]∣∣∣∣∣
t=T

+
1

2

∫ T

0

vp
u

T W1 W12 Svu
W21 W2 Spu
Suv Sup R

vp
u

 dt, (12)

withR invertible and symmetric positive semi-definite weighting matrices

[
V1 V12
V21 V2

]
and

W1 W12 Svu
W21 W2 Spu
Suv Sup R

,

that is appropriate for driving the system into the zero state. In this setting the formal Euler-
Lagrange equations, cf. [18], are given by

Mv̇ −Av − JT1 p−B1u = fp, v(0) = v0 (13a)

−J2v −B2u = fp (13b)

− d
dt(M

Tλ1)−ATλ1 − JT2 λ2 +W1v +W12p+ Svuu = 0,

MTλ1(T ) = −V1v
∣∣∣∣
t=T

− V12p
∣∣∣∣
t=T

, (13c)

−J1λ1 +W21v +W2p+ Spuu = 0, 0 = V21v

∣∣∣∣
t=T

+ V2p

∣∣∣∣
t=T

, (13d)

−BT
1 λ1 −BT

2 λ2 + Suvv + Supp+Ru = 0. (13e)

If system (13) possesses a solution, then it provides necessary and sufficient conditions for an
optimal input u, cf. [3, 24]. Thus, we will establish conditions for existence of solutions of (13).
Note, that the optimal control problem can be solvable also if (13) is not well posed, cf. [19]

Since we consider state solutions (v, p) ∈ C1 ×C and inputs u ∈ C candidate solutions of (13)
must not contain u̇ or ṗ. Thus, by Corollary 2.5 it is necessary that

B2 = 0, W2 = 0 and Spu = STup = 0. (14)

The other possibility that solutions of DAEs fail to exist, is the inconsistency of the initial

data. The true optimality conditions, cf. [19], necessitate that span

[
V11 V12
V21 V22

]
⊂ span

[
MT 0

0 0

]
,
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i.e. V22 and V12 = V T
21 must be zero. By combining (13d) and the terminal condition for λ1, we

find
−J1λ1(T ) = −W21v(T ) = J1M

−TV1v(T ).

We will ensure this condition by requiring

J1M
−TV1 = 0, and W21 = W T

12 = 0. (15)

The latter condition means that V1 acts only on the dynamical part of v as it is given by (3c).
Note that these conditions are equivalent to the assumptions that were made in [3].

Remark 3.1. In theory, setting W2, W12 = W T
21 to zero, does not cause a loss of generality, as p

is an affine linear function of v and u, cf. Theorem 2.3. Thus, in the cost functional, all terms in
p can be replaced by terms in v and u. Furthermore, the cross terms of v and u can be formally
eliminated by an input shift, cf. Section 5. However, for applications, the exclusion of p from the
cost functional is a restriction.

The next Lemma will show that the assumptions for smooth solutions (14), that were derived
for the single equations (13a-b) and (13c-d), are necessary also for the coupled system. In
particular, we will confirm that if B2 = 0, then there is no hope for a lower index of the optimality
system that may weaken the regularity conditions.

Lemma 3.2. The Euler-Lagrange equation system (13) is of differentiation index νd = 1 if and
only if [

B2R
−1BT

2 −B2R
−1Sup

−SpuR−1BT
2 −W2 + SpuR

−1Sup

]
is invertible.

In particular, if B2 does not have full row rank, then (13) has differentiation index νd ≥ 2.
Assuming (14), then (13) is a semi-explicit DAE of differentiation index νd = 2.

Proof. We use the invertibility of R to express u via

u = R−1[BT
1 λ1 +BT

2 λ2 − Suvv − Supp]

and write (13) in matrix vector form
fv
fp
0
0

 =


Mv̇
0

− d
dt(M

Tλ1)
0

−


B1R
−1BT

1 B1R
−1BT

2 A−B1R
−1Suv JT1 −B1R

−1Sup
B2R

−1BT
1 B2R

−1BT
2 J2 −B2R

−1Suv −B2R
−1Sup

AT − SvuR−1BT
1 JT2 − SvuR−1BT

2 −W1 + SvuR
−1Suv −W12 + SuvR

−1Sup
J1 − SpuR−1BT

1 −SpuR−1BT
2 −W21 + SpuR

−1Suv −W2 + SupR
−1Sup



λ1
λ2
v
p


(16)

If now the submatrix H22 :=

[
B2R

−1BT
2 −B2R

−1Sup
−SpuR−1BT

2 −W2 + SpuR
−1Sup

]
is invertible, then one can solve

algebraically for λ2 and p in (16) and end up with an boundary value problem for λ1 and v, which
is the characterization of a DAE of differentiation index νd = 1. If, however, B2 does not have
full row rank, then H22 is singular and (16) has index νd ≥ 2.
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Assuming now that (14) holds, the corresponding terms in (16) vanish:
Mv̇
0

− d
dt(M

Tλ1)
0

−


B1R
−1BT

1 0 A−B1R
−1Suv JT1

0 0 J2 0
AT − SvuR−1BT

1 JT2 −W1 + SvuR
−1Suv −W12

J1 0 −W21 0



λ1
λ2
v
p


=
[
fTv fTp 0 0

]T
. (17)

By inverting the mass matrices and permuting the rows and the columns, System (17) can be
brought into the form of (2). Then the differentiation index 2 property, cf. Definition 2.1, follows
from [

0 J2
J1 −W21

] [
0 M
−MT 0

]−1 [
0 JT1
JT2 −W12

]
=[

0 J2M
−1JT1

−J1M−TJT2 −W21M
−1JT1 − J1M−TW12

]
being invertible by Assumption 2.2 (A1).

Assuming further that W21 = 0, cf. (15), we can write the system as u = R−1BT
1 λ1,

− d
dt(M

Tλ1)
0
Mv̇
0

−

G 0 F JT1
0 0 J2 0
F T JT2 H 0
J1 0 0 0



λ1
λ2
v
p

 =


fv
fp
0
0

 , (18a)

v(0) = v0 and MTλ1(T ) = −V1v(T ), (18b)

with F := A−B1R
−1Suv, symmetric matrices G := B1R

−1BT
1 and H := −W1 + SvuR

−1Suv.

4 Existence and Representations of Optimal Solutions

In this section, we introduce a Riccati-decoupling for the optimality system. Using the projectors
from Section 2, we determine differential and algebraic parts of the obtained differential-algebraic
matrix Riccati equation and prove well-posedness. As a side-product we establish the unique
solvability of the corresponding optimality system.

One outcome of the proof of Lemma 3.2 is that under the assumption (14) the considered
Euler-Lagrange equations are in the form (2). Therefore, one may apply Theorem 2.3 to identify
the inherent ODE (11). If then the data is consistent, one may use the theory for ODEs to state
the existence of solutions to the obtained linear boundary value problem, cf. [2, Thm. 3.26].
However, the reformulation as used in Theorem 2.3 will not preserve the symmetry of (18) and
thus make it more difficult to investigate whether the boundary values admit the existence of a
solution. We will use a reformulation that preserves the structure such that the existence of a
solution can be obtained via a standard differential Riccati equation.

Lemma 4.1. Consider the semi-explicit linear DAE of index 2[
M 0
0 0

] [
v̇
ṗ

]
−
[
A JT1
J2 0

] [
v
p

]
−
[
B1

0

]
u =

[
fv
fp

]
, v(0) = v0 (19)
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and a cost functional

J (v, u) =
1

2
vT (T )V1v(T ) +

1

2

∫ T

0

[
v
u

]T [
W1 Svu
Suv R

] [
v
u

]
dt, (20)

which does not act onto the algebraic variable p and with symmetric positive semi-definite weight-
ing matrices and R symmetric positive definite. Define the matrix functions F := A−B1R

−1Suv,
G := B1R

−1BT
1 and H := −W1 + SvuR

−1Suv.

1.) Each solution (v, p, λ1, λ2) of the associated Euler-Lagrange equations as given by (18) has
a representation with (v, p) = (vP +Qv, p) and (MTλ1, λ2) = (λP +QTMTλ1, λ2) given by
the decoupled system

Qv = −M−1JT1 S−1fp, (21a)

QTMTλ1 = 0, (21b)

λ2 = −S−TJ1M−T
[
H[Qv + vP ] + F TM−TλP

]
, (21c)

p = −Q−[M−1[F [Qv + vP ] + fv]− d
dt(Qv)]−

−Q−M−1GM−T [λP +QTFM−TλP + JT2 λ2], (21d)

and [
0 I
−I 0

] [
λ̇P
v̇P

]
−
[
G0 F0

F T0 H0

] [
λP
vP

]
=

[
PM−1[fv − FM−1JT1 S−1fp]

PTHM−1JT1 S−1fp

]
,

vP(0) = Pv0 and λP(T ) = −PTV1v(T ), (21e)

where F0 := d
dtP + PM−1FP, G0 = GT0 := PM−1GM−TPT , H0 = HT

0 := PTHP and P,
Q, Q− and S as defined in Theorem 2.3.

2.) If in addition
J2v

0 = fp(0) and J1M
−TV1 = 0, (22)

then the Euler-Lagrange equations (18) possess a unique solution.

3.) If in addition fv and fp are zero, then (18) can be decoupled via[
λ1
λ2

]
=

[
X1 XT

2

X2 0

] [
M 0
0 0

] [
v
p

]
, (23)

where X1 = XT
1 and X2 fulfill the differential-algebraic matrix Riccati equation

d
dtM

TX1M +MTX1F + F TX1M +MTX1GX1M +H+

+MTXT
2 J2 + JT2 X2M = 0,

MTX1(T )M = −V1, (24a)

MTJ1X1 = 0 and J1X1M = 0. (24b)

Equations (24) uniquely define a symmetric negative semi-definite X1.
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Proof. ad 1.) We write the Euler-Lagrange system, cf. (18), as
0 0 I 0
0 0 0 0
−I 0 0 0
0 0 0 0

 d

dt


MTλ1
λ2
v
p

−

M−1GM−T 0 M−1F M−1JT1

0 0 J2 0
F TM−T JT2 H 0
J1M

−T 0 0 0



MTλ1
λ2
v
p


=
[
fTv M

−T fTp 0 0
]T
,

v(0) = v0 and MTλ1(T ) = −V1v(T ).

In order to preserve the self-adjoint structure, cf. [20], only congruence transformations should
be applied, i.e. a scaling of the equations must be accompanied by the transpose inverse scaling
of the variables. In accordance to (7) we congruently transform the system by

S2 :=

E−12

I
I

 =


P [I − PM−1F ]M−1JT1 S

−1 0 0
Q− −[I +Q−M−1FM−1JT1 ]S−1 0 0
0 0 I 0
0 0 0 I

 ,
where E2 =

[
I +M−1FQ M−1JT1

J2 0

]
as defined in (5) with the inverse given in (6). The summand

that comes from the time-dependency in the variable transformation ST2 is given by

S2


0 0 I 0
0 0 0 0
−I 0 0 0
0 0 0 0

 ṠT2 =


0 0 0 0
0 0 0 0

− d
dtP

T −Q̇T− 0 0
0 0 0 0

 .
With this we get the scaled and transformed system

f̃ =


0 0 P 0
0 0 Q− 0
−PT −QT− 0 0

0 0 0 0




˙̃
λ1
˙̃
λ2
v̇
ṗ

+


0 0 0 0
0 0 0 0

− d
dtP

T −Q̇T− 0 0
0 0 0 0



λ̃1
λ̃2
v
p

−

PM−1GM−TPT M−1GM−TQT− PM−1FP +Q 0
Q−M−1GM−T 0 Q−M−1FP −Q− I

PTF TM−TPT +QT PTF TM−TQT− −QT− H 0
0 I 0 0



λ̃1
λ̃2
v
p

 (26)

with the transformed state and scaled right hand side
λ̃1
λ̃2
v
p

 := S−T2


MTλ1
λ2
v
p

 =


[I +QTF TM−T ]MTλ1 + JT2 λ2

J1λ1
v
p


and f̃ := S2

[
fTv M

−T fTp 0 0
]T

, respectively. From the last line in (26) we find that λ̃2 = 0

so that we can rewrite the equations for (λ̃1, v, p) as[
P 0
Q− 0

] [
v̇
ṗ

]
−
[
PM−1GM−TPT 0
Q−M−1GM−T 0

] [
λ̃1
λ̃2

]
−
[
PM−1FP +Q 0
Q−M−1FP −Q− I

] [
v
p

]
=

E−12

[
M−1fv
fp

]
(27a)
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and

− d
dt(P

T λ̃1)− [PTF TM−TPT +QT ]λ̃1 −Hv = 0. (27b)

Analogously to (8) we apply the projectors

Q1 =

[
Q 0
−Q− 0

]
, Q0P1 =

[
0 0
Q− I

]
and P0P1 =

[
P 0
0 0

]
to (27a) to obtain the three subsystems

−
[
Q 0
−Q− 0

] [
v
p

]
=

[
M−1JT1 S

−1fp
−S−1fp

]
, (28a)[

0 0
Q− 0

] [
v̇
ṗ

]
−
[

0 0
Q−M−1GM−T 0

] [
λ̃1
λ̃2

]
−
[

0 0
Q−M−1FP I

] [
v
p

]
=[

0
Q−M−1[fv − FM−1JT1 S−1fp]

]
(28b)

and [
P 0
0 0

] [
v̇
ṗ

]
−
[
PM−1GM−TPT 0

0 0

] [
λ̃1
λ̃2

]
−
[
PM−1FP 0

0 0

] [
v
p

]
=[

PM−1[fv − FM−1JT1 S−1fp]
0

]
, (28c)

respectively. Using the projector property PT = PTPT to obtain the relation

d
dt(P

T λ̃1) = ṖTPT λ̃1 + PT d
dt(P

T λ̃1) = d
dt(P

T λ̃1)−QT d
dt(P

T λ̃1) + ṖTPT λ̃1

we split (27b) into the two subsystems

QT d
dt(P

T λ̃1) −QT λ̃1 −QTHv = 0 (29a)

and

− d
dt(P

T λ̃1)− d
dt(P

T )PT λ̃1 − PTF TM−TPT λ̃1 − PTHv = 0. (29b)

If we then define vP := Pv and λ̃P := PT λ̃1 and decompose λ̃1 = λ̃P +QT λ̃1 and v = vP +Qv
we find that (28a-b) and (29a) define algebraic relations for

Qv = −M−1JT1 S−1fp, (30a)

QT λ̃1 = −QT [HQv +HvP ] +QT ˙̃
λP (30b)

and, with Q− ˙vP

p = −Q−[M−1F [Qv + vP ] +M−1fv +M−1GM−T λ̃1 − d
dt(Qv)], (30c)

while λ̃P and vP are defined by the coupled ODEs given by (29b) and (28c):

− ˙̃
λP −

[
d
dtP

T + PTF TM−TPT
]
λ̃P − PTHPvP = PTHM−1JT1 S−1fp (31a)
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and

v̇P − PM−1GM−TPT λ̃P −
[
d
dtP + PM−1FP

]
vP =

PM−1[fv−FM−1JT1 S−1fp]. (31b)

Note that we have used the projector property P = P2 to keep the symmetry in (31) obvious.
In view of expressing the obtained relations in terms of the original variables (λ1, λ2) we

observe that

λ̃P = PT λ̃1 = PT [MTλ1 +QTF Tλ1 + JT2 λ2] = PTMTλ1 =: λP .

From λ̃2 = J1λ1 = 0 we confer

QTMTλ1 = JT2 S
−TJ1λ1 = 0.

For λ2 we use QT λ̃1 = QT [I + QTFM−T ]MTλ1 + QTJT2 λ2 = QTFM−TλP + JT2 λ2, relation
(30b), and the invertibility of ST = J1M

−1JT2 to get

λ2 = −S−TJ1M−T [H[Qv + vP ] + FM−TλP ].

Note that JT1 M
−TPT = 0, so that λ̇P ∈ spanPT does not appear.

Similarly, one can express the equation for p in terms of (λ1, λ2) which completes the derivation
of Equations (21).

ad 2.)
First, we show that for any v0 and PTV1 symmetric positive semi-definite the decoupled

system (21) has a unique solution (vP ,Qv, p, λP ,QTMTλ1, λ2). Second, we confer that under
the consistency conditions (22) the solution of (21) provides a solution of the Euler-Lagrange
equations (18). Finally, by 1.) every solution of (18) has a representation in (21), such that in
summary the Euler-Lagrange equations must possess a unique solution.

We first consider in (21e-f) the case with a zero right hand side. With the Riccati ansatz
λP = X0(t)vP(t) these equations can be rewritten as the differential matrix Riccati equation

Ẋ0 = −X0G0X0 −X0F0 − F T0 X0 −H0, X0(T ) = −PTV1, (32)

which has a unique solution, cf. [1, Thm. 4.1.6], since PTV1, G0, and −H0 are symmetric positive
semi-definite. With this X0 we get vP and λP as the solution of v̇P − [G0X0 +F0]vP = 0, vP(0) =
Pv0 and λP = X0vP , respectively.

One can show that if there exists a solution to (21e-f) with a zero right hand side, then it is
unique. This is equivalent to the fact that the linear part of the affine boundary conditions are
stated such, that (21e-f) with PTV1 symmetric positive semi-definite, has a unique solution, cf.
[2, Thm. 3.26], for any continuous right hand side.

By construction a solution of (18) uniquely defines a solution to (21). The converse is true if
and only if the algebraic variables fulfill the initial and terminal conditions, i.e.,

Qv(0) = QvP = M−1JT1 S
−1J2vP and (33a)

QTMTλ1(T ) = −QTV1v(T ) = −JT2 S−TJ1M−TV1v(T ). (33b)

By (21a) we have that Qv(0) = M−1JT1 S
−1fp(0) such that J2v(0) = fp(0) is necessary and

sufficient for (33a). By (21b) we have that QTMTλ1 = 0 such that J1M
−TV1 = 0 is sufficient

but not necessarily necessary for (33b). Note, however, that in this case we can infer that

JT1 M
−TV1 = 0 ⇒ V1M

−1J1 = 0 ⇒ V1Q = 0 ⇒ V1v = V1Pv
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such that in (21f) PTV1 can be replaced by PTV1P. Thus, condition (22) implies the symmetry
in the terminal condition that was sufficient for the existence of X0 in (32).

ad 3.)
With the ansatz [

λ1
λ2

]
=

[
X1 XT

2

X2 0

] [
M 0
0 0

] [
v
p

]
(34)

we obtain that

d
dt(

[
MT 0

0 0

] [
λ1
λ2

]
) =

[
d
dtM

TX1M 0
0 0

] [
v
p

]
+

[
MTX1 MTXT

2

0 0

] [
M 0
0 0

] [
v̇
ṗ

]
. (35)

In (35) we replace d
dt(

[
MT 0

0 0

] [
λ1
λ2

]
) and

[
M 0
0 0

] [
v̇
ṗ

]
via the relations given in (18) and every

occurrence of

[
λ1
λ2

]
by the ansatz (34) to obtain X

[
v
p

]
= 0, where

X :=


d
dt(M

TX1M) + F TX1M +MTX1F+
MTX1GX1M +H + JT2 X2M +MTXT

2 J2 MTX1J
T
1

J1X1M 0

 . (36)

Since X

[
v
p

]
= 0 must hold for every state trajectory, one requires X = 0 which gives the

equations for X1 and X2:

d
dtM

TX1M +MTX1F + F TX1M +MTX1GX1M +H+

+MTXT
2 J2 + JT2 X2M = 0,

MTX1(T )M = −V1, (37a)

MTJ1X1 = 0 and J1X1M = 0. (37b)

The terminal condition in (37a) is defined via (18b) and (23):

MTλ1(T ) = MTX1(T )Mv(T ) = −V1v(T ) ⇒ MTX1(T )M = −V1.

To show that (37) has a solution we consider Equation (37a) in the transformed variables X :=
−MTX1M and Y := X2M :

−Ẋ − F TM−TX −XM−1F +XM−1G−TM−TX +H + JT2 Y + Y TJ2 = 0,

X(T ) = V1. (38)

By means of the projector Q := M−1JT1 [J2M
−1JT1 ]−1J2 we write X = [QT + PT ]X[P + Q].

From (37b) we obtain that QTX = XQ = 0 and thus X is completely defined via X0 := PTXP.
Applying PT and P to (38) from the left and the right, respectively, we get a standard differential
Riccati equation

−Ẋ0 − F T0 X0 −X0F0 +X0M
−1GM−TX0 + PTHP = 0,

X0(T ) = PTV1P, (39)

which has a unique and symmetric positive semi-definite solution, cf. [1, Thm. 4.1.6], since V1, G
and −H are symmetric positive semi-definite. Again, the consistency condition (22) ensures that
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X0(T ) also satisfies the initial condition and the algebraic constraints in (37). Since QTX = 0
and XQ = 0, we have X1 = −M−TXM−1 is unique and symmetric negative semi-definite.

Application of PT from the left and Q from the right to (38) gives

−X0Q̇ −X0M
−1FQ+ PTHQ = −PTY TJ2Q = −PTY TJ2,

which is uniquely solvable for PTY T . The projected equation obtained via QT and P is the
transpose of the above equation and bears no additional information.

Finally, one can determine QTY T from the projection of (38) onto the range of QT and Q
which reads

QTHQ+QTY TJ2Q+QTJT2 YQ = 0. (40)

With J2Q = J2, we find that (40) is of the form [YQ]TJ2 + JT2 [YQ] = −QTHQ that was
investigated in [8]. With Q− := M−1JT1 [J2M

−1JT1 ]−1 being a generalized inverse to J2, we
obtain the projectors P1 := Q−J2 = Q and P2 := J2Q− = I and the existence of solutions to
(40) follows by [8, Thm. 1], since QTHQ is symmetric and [I − P1]

TQTHQ[I − P1] = 0.
The general solution to (40) is given by

YQ =
1

2
[J1M

−TJT2 ]−1J1M
−THQ+ ZJ2,

where Z is arbitrary with ZT = −Z. Thus existence of MTX1M and MTXT
2 = Y T = PTY T +

QTY T and therefore X1 and X2 is proved.
By construction, with X1 and X2 as determined above, the solution of[

M 0
0 0

] [
v̇
ṗ

]
−
([
G 0
0 0

] [
X1 XT

2

X2 0

] [
M 0
0 0

]
+

[
F JT1
J2 0

])[
v
p

]
=

[
0
0

]
,

v(0) = v0,

and [
λ1
λ2

]
=

[
X1 XT

2

X2 0

] [
M 0
0 0

] [
v
p

]
gives the solution of (18) with a zero right-hand side.

Remark 4.2. The solution of (24) is unique up to an additive term ZJ2M
−1 in X2, with an arbi-

trary matrix Z, that fulfills ZT = −Z. However, this does not contradict the unique solvability of
the Euler-Lagrange equations, since λ1 and λ2 as defined via (23) are independent of any choice
of Z.

In view of optimal control, the above results can be summarized as follows. To obtain an
optimal input u for (19) with respect to a cost functional of type (20) it is sufficient to have
a solution of the associated Euler-Lagrange equations (18), cf. [24]. By Lemma 4.1 it follows
that for the considered state equations and cost functionals this solution exists, that it is unique,
that it can be obtained via the separation ansatz (23), and that an optimal u is obtained via
expression (18c). For the nonhomogenous and for the trajectory tracking case one can use an
affine linear Riccati-ansatz, cf. [21]. Thus, we can state the following theorem:
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Theorem 4.3. Let T > 0, I = (0, T ] a time interval, nu, nv, np ∈ N, nv > np, M ∈ C(I,Rnv ,nv)
pointwise invertible, A ∈ C(I,Rnv ,nv), and let J1, J2 ∈ C(I,Rnp,nv) such that J2M

−1JT1 is invert-
ible and that M−1JT1 S

−1J2 is differentiable. Let W1, V1 ∈ Rnv ,nv symmetric positive semi-definite,
Suv = STvu ∈ Rnu,nv an arbitrary matrix and let R ∈ Rnu,nu symmetric positive definite.

For a given v∗ ∈ C1(I,Rnv) consider the linear-quadratic optimal control problem of finding
u ∈ C(I,Rnu) such that

1

2

[
v − v∗

]T
V1
[
v − v∗

]∣∣∣∣∣
t=T

+
1

2

∫ T

0

[
v − v∗
u

]T [
W1 Svu
Suv R

] [
v − v∗
u

]
dt,

is minimal, where v on I satisfies the state equations[
M 0
0 0

] [
v̇
ṗ

]
−
[
A JT1
J2 0

] [
v
p

]
−
[
B1

0

]
u =

[
fv
fp

]
, v(0) = v0.

If fv ∈ C(I,Rnv), fp ∈ C1(I,Rnp) and if

J2v
0 = fp(0) and J1M

−TV1 = 0,

then the optimal control problem is solvable and an optimal input u is given via the feedback-law

u = R−1[BT
1 [X1Mv + w1]− Suv(v − v∗)],

where X1 = XT
1 , negative semi-definite, and w1 are the unique solutions of

d
dtM

TX1M + F TX1M +MTX1F +MTX1GX1M +H+

+JT2 X2M +MTXT
2 J2 = 0,

MTX1(T )M = −V1,
J1X1M = 0,

and

d
dt(M

Tw1)− [MTX1G+ F T ]w1 − JT2 w2 = fλ1 +MTX1f̃v +MTX2fp,

MTw1(T ) = V1v
∗(T ),

J1w1 = 0,

respectively, where F := A− B1R
−1Suv, G := B1R

−1BT
1 and H := −W1 + SvuR

−1Suv and with
f̃v := fv +B1R

−1Suvv
∗ and fλ1 := [W1 − SvuR−1Suv]v∗.

Theorem 4.3 gives – in particular – sufficient optimality conditions without resorting to any
index reduction. The conditions are not necessarily necessary, as an inconsistent V1 renders
them ill-posed, although for well-posed state equations a solution of the optimal control problem
always exists, cf. the true optimality system defined in [21]. However, the true optimality system
is formulated by means index-reduction.

For practical applications the following modification that closes the gap between sufficiency
and necessity of the optimality conditions in Theorem 4.3 may be considered.

Remark 4.4. By Theorem 2.3 one has that if v solves (19), then it writes v = Pv − c, with
c := M−1JT1 S

−1fp independent of u and v and that the end point penalization in the cost
functional (20) can be replaced like

1

2
vT (T )V1v(t) ← 1

2
[Pv(t)− c(t)]TV1[Pv(T )− c(T )].
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With this equivalent formulation, the end condition on MTλ1 in (18b) coming from the variation
of the cost functional with respect to v reads MTλ1(T ) = −PTV1[Pv(T )− c(T )]. Then the end
condition for the gain matrix X1 is given via PTV1P and for the affine part w1 via MTw1(T ) =
PTV1[v∗(T ) + M−1JT1 S

−1fp(T ). Both conditions are consistent as J1M
−TPT = 0. With this

modification, in Theorem 4.3, the restriction J1M
−TV1 = 0 is obsolete and the given optimality

conditions are equivalent to the true optimality conditions.

5 Pressure Terms and Crossterms in the Cost Functional

As mentioned in Remark 3.1, in the linear case, one can theoretically reformulate any costfunc-
tional of type (12) as an equivalent cost weighting without the algebraic variable p and without
cross terms in the integral part.

To illustrate this, we assume that the right hand sides of the state equations fv and fp are
zero. Then by Theorem 2.3 we have

p = −Q−M−1Av −Q−M−1B1u

and the trajectory weighting

vp
u

T W1 W12 Svu
W21 W2 Spu
Suv Sup R

vp
u

 is equivalent to

[
v
u

]T [
W̃1 S̃vu
S̃uv R̃

] [
v
u

]
with

[
W̃1 S̃vu
S̃uv R̃

]
:=

 I 0
−Q−M−1A −Q−M−1B1

0 I

T W1 W12 Svu
W21 W2 Spu
Suv Sup R

 I 0
−Q−M−1A −Q−M−1B1

0 I

 .
Also, because of the linearity of the problem, one can formally eliminate the crossterms given

by S̃uv in the costfunctional by shifting the input and considering ũ = u+ R̃−1S̃Tuvv. This gives
an equivalent formulation of the optimal control problem:

J (v, p, ũ) = · · ·+ 1

2

∫ T

0
vT [W̃ − S̃uvR̃−1S̃Tuv]v + ũT R̃ũ dt→ min (42a)

subject to [
M 0
0 0

] [
v̇
ṗ

]
−
[
A−B1R̃

−1S̃Tuv JT1
J2 0

] [
v
p

]
−
[
B1

0

]
ũ =

[
0
0

]
, (42b)

v(0) = v0.

Finally, if fv and fg are not zero, the same approach leads to a linear in v and u term in the
cost functional, which then appears in the right hand side of the adjoint equation as does W1v

∗

in the affine linear formulation in Theorem 4.3.

6 Discussion and Outlook

The results of Section 3 for the linear case can serve as a basis for the numerical treatment of
semi-linear equations that sooner or later will carry out linearizations. Another crucial point is
the incorporation of constraints for the control as well as lower regularity.
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The latter has been investigated in [26] for a large class of optimal control problems subject
to semi-explicit DAEs that also contains cases that are considered here. The formulation of a
maximum principle in [26] bases on an equivalent index 1 representation of the state equations
that can be formally obtained for the semi-explicit case. Because of the index-reduction the
results of [26] are not the natural extension of our results to input constrained problems.

In view of solving the optimal control problem numerically it may be worth investigating,
whether the Riccati decoupling can be exploited for efficient numerical routines.

The type of system considered here was chosen to fit spatially discretized PDEs as the Navier-
Stokes Equations. For a system-theoretical insight, one may consider similar manipulations on
the original infinite-dimensional system.
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[26] T. Roubiček and M. Valášek. Optimal control of causal differential-algebraic systems. J.
Math. Anal. Appl., 269(2):616–641, 2002.

[27] E. D. Sontag. Mathematical control theory. Deterministic finite dimensional systems. 2nd
ed. Springer, New York, 1998.

[28] C. Tischendorf. Coupled systems of differential algebraic and partial differential equations in
circuit and device simulation. modeling and numerical analysis. Habilitationsschrift, Institut
für Mathematik, Humboldt-Universität zu Berlin, 2004.

17


