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Abstract 

In the last few years, scheduling jobs due to communication delays has received a great deal of attention. 

We consider the problem of scheduling forests due to unit processing times and zero-one communication delays 

and focus on the approximation algorithm of Hanen and Munier and on the algorithm of Guinand, Rapine and 

Trystram. These algorithms and their analysis are quite complex. In contrast, we present a very simple list 

scheduling algorithm for the problem Plprec=tree, pj = 1, cj; € {0,1}|Cmax of scheduling trees subject to unit 

processing times and zero-one communication delays. 

For sufficiently many machines, e.g. m > |V|, the resulting schedule is optimal. For a restricted number of 

machines, the presented algorithm has the same absolute worst case performance as the algorithm of Guinand, 

Rapine and Trystram: mek It’s relative worst case performance ratio turns out to be bounded by (2 - i) even 

for arbitrary processing times. This simplifies an argument by Hanen and Munier for the case that an optimal 

schedule on an infinite number of machines can be constructed. 

1 Introduction 

We consider the problem of scheduling jobs of unit processing times subject to precedence relations that are 

given by an out-forest and subject to zero-one communication delays. In the extended notion of Graham et al. 

[GLLRK79] this problem is denoted by P|prec=forest, p; = 1, cij € {0,1}|Cmax. 

Since communication delays of length zero are allowed, we can transform every out-forest into an out-tree by 

introducing a “super-root” as a predecessor of each root in the forest. Let the processing time of that additional job 

be equal to | and set the communication delay between the “super-root” and all “original roots” to 0. Then each 

schedule that is feasible with respect to the resulting out-tree is also feasible with respect to the given out-forest, 

when the first time slot is removed. The minimum makespans of these two problems differ by exactly | time unit. 

Hence, let us assume without loss of generality that the given precedence-relations are given by an out-tree. 

In the literature, the following related problems have been treated. 

e In 1987, Rayward-Smith [RS87] proved that the problem of scheduling unit-time jobs with unit communi- 

cation delays subject to arbitrary precedence relations is NP-hard. In the same paper it is shown that the 

relative worst case performance of every greedy schedule is at most (3 —2/m). 

e In 1992, Picouleau developed in his thesis that the problem P»|prec=tree, cj; = ¢|Cmax is NP-hard when c 

is part of the input. He presented a simple linear time, (h — 1)c approximation algorithm for this problem 

[Pic92]. If the communication delays times are smaller than the processing times, the corresponding problem 

can be solved in polynomial time [Chr89]. 
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e In 1993, Lenstra, Veldhorst and Veltman [LV V93] showed that the problem P\prec, Cij = 1|Cmax becomes 

NP-hard already for in-trees, thus in particular for the larger class of series-parallel orders. The given 

transformation can even be extended to binary in-trees. For the two machine case, the authors constructed a 

linear time algorithm that solves the problem optimally. 

e In the same year, Lawler [Law93] developed a linear time approximation algorithm based on critical path 

scheduling for the problem P|prec=tree, pj = 1, cij = 1|Cmax which constructs a schedule that misses the 

minimum makespan by at most (m — 2) time-units for any number m of machines. 

In 1994/95, Hanen and Munier [HM95] gave an approximation algorithm for the problem Pl|prec, c ;; small |Cmax 
4+3p 2429 

‘2p — (24p)m’ 
cation delay and the minimum processing time. For the case of unit processing times and unit time com- 

with a worst case ratio of   where p < | denotes the ratio between the maximum communi- 

munication delays, this approach yields a bound of t — + (see also [MH94]). This bound is obtained by 
3m 

solving an LP-relaxation and rounding the obtained fractional values. For the corresponding problem with 

an unlimited number of machines, the relative performance is z. 

In October 1995, Munier and Hanen [MH95] presented a list scheduling algorithm for the case that task 

duplication is allowed, whose worst case relative performance ratio is at most (2- +) for the problem 

P\dup, prec, pj = 1, cij = 1|Cmax. Since for in-forests, duplication is of no use, this bound also states for the 

problem P|prec=tree, pj = 1, ¢ij = 1|Cmnax- 

In July 1995, Guinand, Rapine and Trystram [GRT95] presented an approximation algorithm that improves 

the bound for the absolute error stated by Lawler [Law93] for the problem P\|prec=tree, Pj=l,cjp= 1|Cmax 

by a factor of 2 to med This is the same bound, we state in this paper. 

e In December 1995, the authors [MS95] stated a 2-approximation algorithm for the case of series-parallel 

orders, P|prec=series-parallel, cj; = 1|Cmax. The given bound can be strengthened to (2 - +) by the same 

arguments used in this paper. 

We give a simple linear-time approximation algorithm with an absolute worst case performance of mel for the 

problem P|prec=tree, pj = 1,cij € {0,1}|Cmax. It’s relative worst case performance ratio can be bounded by 

(2 - +) even for arbitrary processing times. 

Even when we focus on this problem, the definitions and lemmas are given as general as possible. The paper 

is organized as follows. First we introduce the necessary notations in Section 2. Section 3 then presents the 

approximation algorithm and proves its correctness. In Section 4, we apply the extremal case of [GRT95] to our 

approximation algorithm, showing that the given bound of mot is tight. 

2 Definitions and Notations 

A comprehensive overview on the theory of scheduling can be found in [GLLRK79]. We only give a brief overview 

on the definitions necessary here. In order to be compatible with the commonly used notation, we give the defini- 

tions for arbitrary processing times and communication delays. 

An instance (m,V,p,©,c) of the problem P|prec=tree, cjj|Cmax consists of the number m of available machines, 

a set V of jobs, a processing time p(v) for each job v € V, a precedence order © which is an out-tree, and an 

interprocessor communication delay c(v,w) for each pair of jobs, v and w, where w is a direct successor of v. In 

this paper, we focus on the case of unit processing times and zero-one communication delays, i.e. p(v) = 1 and 

c(u,v) € {0,1} for all jobs u,v EV.



We denote the set of direct successors of a job v by Children(v) and the set of all successors (direct or indirect) 

of v, not including v, by Succ(v). The single direct predecessor of a job v is denoted by father(v), while the set of 

all predecessors (direct or indirect) of v is denoted by Pred(v). A schedule S on a job set V is a function assigning 

a starting time S(v) to each job v € V. The completion time of a job v is defined by C(v) = S(v) + p(v). Then the 

length (or makespan) of a schedule S can be computed as Cmax(S) = max{C(v) | v € V}. For a schedule S, we call 

the intervals s, = [t,t + 1] (fort =0,...,Cmax(S) — 1) the time slots of S. 

We call a schedule S weakly feasible if it respects the limited number of machines and the precedence relations: 

(I) No more than m jobs are scheduled simultaneously in any time slot s;, i.e. 

t{v €V|S(v) <t <C(v)} <m forall t =0,... ,Cmax(S) — 1. 

(II) No job is started before all its predecessors have been finished. Here, S(v) > C(father(v)) for 

all jobs v € V is sufficient. 

A weakly feasible schedule does not obey the communication delays. When communication delays are intro- 

duced, we have to modify the second condition leading to the following definition of feasibility. A schedule is 

called feasible if all jobs u € V fulfill the following conditions. 

(I) No more than m jobs are scheduled simultaneously in any time slot s;, i.e. 

t{v €V|S(v) <t <C(v)} <m forall t =0,... ,Cmax(S) — 1. 

(IIa) S(v) > C(w) for all v € Children(u). 

(IIb) S(v) <C(u)+c(u,v) for at most one job v € Children(u). 

Condition (IIb) guarantees that, for each job u, at most direct successor v such that c(u,v) > 0 has to be 

scheduled on the same machine as u in order to prevent the corresponding communication delay. We call such a 

job v € Children(u), satisfying Condition (IIb) (if there is any) the favored successor of u in S. 

For a given instance J = (m,V,p,®,c) of the problem P|prec=forest, c;j|Cmax let Cop (/) denote the minimum 

makespan among all feasible schedules. Similarly, C7), (1) denotes the minimum makespan among all schedules 

that are feasible for the instance if the number of machines is not restricted. Clearly, Cj, (1) < Copr()- 

For a feasible schedule S one can construct a feasible machine assignment, this is assigning every job u to a machine 

M(u) € {M,,M2,...,Mm} such that the following conditions are fulfilled. 

(I’) At any time t =0,... ,Cmax(S) — 1, no more than one job is assigned to each machine M, i.e. 

t{v € V|S(v) <t <C(v) and M(u) = M;} < 1 for eachi € {1,2,...,m}. 

(IP’a) S(v) > C(u) for all v € Children(u) with M(u) = M(v). 

(II’b) S(v) > C(u) +. c(u,v) for all v € Children(u) with M(u) 4 M(v). 

For a machine assignment consider a machine M, idle during a time slot [t,t + 1]. We call the corresponding 

time unit from ft tot +1 an idle time on machine M. Hence, at each time t when a machine M executes a job or there 

is an idle time on machine M at time ¢. Note that the number of idle times occurring in a time slot [t,t + 1] does 

not depend on the machine assignment. Hence, every feasible schedule S for m machines satisfies the following 

equation. 

m 
Cmax (S) (1) 

The term }{p(v) | v € V}/m is called the load of the corresponding problem instance. 

A simple way to find a feasible machine assignment for a feasible schedule S is as follows. First assign all jobs 

with a starting time of zero, i.e. the jobs in time slot so, arbitrarily to the machines. Condition (I) guarantees that 

every jobs in time slot sp can be assigned to a machine.



Then iterate over the time slots s;,i = 1,2,...,Cmax — 1. For each time slot s; consider first of these jobs v that 

have at least one direct predecessor u such that S(v) < C(u) +-c(u,v). Condition (IIb) states that there is at most 

one such direct predecessor u of each job v. Hence, we can set M(v) = M(u) for these jobs v. The remaining jobs 

v’ in time slot s; then fulfill S(v’) > C(w) + c(u,v’) for each direct predecessor u of v’. Hence, these jobs v’ can be 

scheduled on every one of the still empty machines. Then make an arbitrary such assignment. Again, Condition (1) 

guarantees that there are enough empty machines to assign every job v’ in time slot s; to one machine. 

Note that this approach takes only linear time for arbitrary partial orders. 

3 The Approximation Algorithm 

We first determine for a given tree a priority function on the job set V. This function can be understood as a 

modified height in the tree that takes the communication delays into account. It is the same function as given in 

[VRKL94] The idea is to choose for each job a successor to be scheduled on the same machine, the so-called 

“favored successor’. Hence, communication delays may only occur for the remaining, “non-favored” successors. 

The height function determines the choice of a favored successor for every job and computes the delay produced 

by that choice. 

In a second step, we apply priority list scheduling to the list of jobs ordered by non-increasing height values. To 

respect the communication delays, we modify the priority list scheduling algorithm, restricting the “availability” 

of a job at a certain time. 

3.1 Defining the Priorities 

For a job v € V, define the corresponding height-value h(v) as follows. The definition works for arbitrary processing 

times and communication delays. 

e Every leaf v obtains a height-value of h(v) = p(v). 

e The height-value of the remaining jobs is defined by h(v) = p(v) + max{h(w 1), h(w2) +c(v,w2)} where w; 

and w2 are jobs with the two largest values of h(w) + c(v,w) among all successors w of v. Without loss of 

generality, assume that h(w1) +c(v,w1) > h(w2) +c(v,W2). 

Obviously, the job r corresponding to the root of the tree fulfills h(r) = max{h(v) | v € V}. 

Lemma | below states that the height values induce a feasible schedule on sufficiently many machines. Lemma 2 

yields that this schedule is optimal (for sufficiently many machines) and that Cz, (7) = h(r). The proof of Lemma 2 

is done by the fact that in any feasible schedule the distance between the starting time of a job v and the starting 

time of the latest scheduled successor of v is bounded by the differences of their height values. This is stated by 

Proposition |. 

Lemma 1. Consider an instance I = (m,V,p,®,c) of the problem P\|prec=tree, cjj € {0,1}|Cmax. Let r denote 

the job corresponding to the root of the tree. Setting S°(v) = h(r) —h(v) for all jobs v € V determines a feasible 

schedule S™ for the instance I on sufficiently many machines, and Cmax(S”) = h(r). 

Proof. Let us determine the length of S® first. Consider a job v that is completed last, Cmax (S”) = S*(v) + p(v). 

Due to the definition of the schedule, S*(v) = h(r) —A(v). Since v is a job without successors, h(v) = p(v). Both 

together yields Cmax(S”) = S°(v) +h(v) = hr). 

To verify the feasibility, we show that S® fulfills the conditions (IIa) and (IIb) stated in Section 2. This is 

sufficient since we do not have to respect the machine restrictions here. Consider a job u. Due to the definition of 

the height function, every successor v of u satisfies h(u) > p(u) +h(v). Thus S®(v) > S”(u) + p(u), which proves



Condition (IIa). Moreover the definition of the height function guarantees that h(u) > p(u) +h(v) +c(u,v) for 

each non-favored successor v of u. This proves Condition (IIb). O 

Proposition 1. Consider a feasible schedule S for an instance I = (m,V,®,c) of the problem P|prec=tree, cij € 

{0,1}|Cmax. Then for any job v € V there exists a job w € Succ(v) U {v} such that h(w) = p(w) and S(w) — S(v) > 

h(v) —h(w). 

Proof. Consider a feasible schedule S for an instance J = (m,V,©,c) of the problem P|prec=tree, cj; € {0,1}|Cmax 

and a job v€ V. The proof is done by induction on the length of a longest chain of successors of job v. The 

inductive basis is done for jobs v who are leaves in the tree, i.e. h(v) = p(v). For them, Proposition 1 follows 

directly with w =v. 

For a job v with h(v) > p(v) assume as the inductive hypothesis that S(w) —S(v) > h(v) —h(w) has been proven 

for all successors of v. Due to the definition of the height function, h(v) is determined by one of the following 

cases. Thereby, w; and w3 are as in the definition of the height function. 

Case 1: hA(v) = p(v) +h(w1) 

Since w is a successor of v, S(w,) > S(v) + p(v). This gives S(w;) — S(v) > h(v) —h(w1). 

If w; is a leaf, the choice w = w; proves the proposition. Otherwise, by the inductive hypothesis there 

exists a successor w of w, that satisfies h(w) = p(w) and S(w) —S(w1) > h(w1) —h(w). Together with 

S(w1) —S(v) > h(v) —A(w1), this leads to S(w) — S(v) > h(v) — h(w) which proves the proposition. 

Case 2: h(v) = p(v) +h(w2) +c(v,w2) 

If the height of v is determined by w2, assume that h(w2)+c(v,w2) > h(w 1). Otherwise apply Case 1. Then 

h(w2) = h(w,) and c(v,w1) = c(v,w2) = 1 due to the definition of w;, w2 and the fact that all communication 

delays are 0 or 1. 

Due to the communication delays, one of the jobs w1, w2 has to be scheduled after C(v) + 1 in every feasible 

schedule. Since the height values and the communication delays are identical, assume without loss of gen- 

erality that this is w2. 

Thus S(w2) > C(v) +1 = S(v) + p(v) +c(v,w2). This, together with the assumption of this case leads to 

S(w2) — S(v) > h(v) —A(w2). 

If w2 is a leaf, the proof is obvious for w = w2 since h(w2) = p(w2). Otherwise there exists by the inductive 

hypothesis a successor w of wy that satisfies h(w) = p(w) and S(w) —S(w2) > h(w2) — h(w). Combining 

this with S(w2) — S(v) > h(v) —h(wz2) completes the proof of Proposition 1. Oo 

Lemma 2. Given an instance I = (m,V,®,c) of the problem P\|prec=tree, ci; € {0,1}|Cmax, then the height of 

job r corresponding to the root of the tree satisfies h(r) < Copr(D). 

Proof. Consider a schedule So, that is optimal on sufficiently many machines, i.e. Cmax (S°”") = Cot (1). Clearly, 

Sopt (r) = 0 where r denotes the root of the tree. For v =r, Proposition | states that there exists a job w with 

h(w) = p(w) such that Sop(w) > h(r) — h(w). Thus, 

Copr (L) = Cmax (Sopr) 2 Sopt(w) + P(W) = Sopr(w) + hw) 2 h(r). 4 

In the following we apply priority list scheduling (see e.g. [LLRKS93]) to the list of jobs ordered by non 

increasing height values. The priority list scheduling algorithm schedules jobs at certain decision times. These 

decision times are the time t = 0, the completion times of jobs, and, in order to incorporate the unit-time com- 

munication delays, the completion times of jobs plus one. These decision times depend on the previously taken



decisions and are processed in ascending order. At every decision time f, the algorithm repeatedly chooses among 

the still unscheduled jobs a job with highest priority (the first “available” job in the given list) that can be started at 

time t. This is repeated until no more job can be started at t. Then the next decision time is considered. 

Compared with the list scheduling rules for the corresponding problem without communication delays, we 

only need to incorporate Condition (IIb). This means that at most one direct successor of a job u can be scheduled 

directly after the completion of u. A detailed definition of the availability of a job is given in the next section. Note 

that the following algorithm does not determine a machine assignment, but that the resulting schedule fulfills the 

Conditions (I), (Ia), and (IIb) for feasibility stated in Section 2). Hence, a machine assignment can be obtained 

according to the procedure described there. 

The next theorem states that priority list scheduling, applied to the list of jobs ordered by non-increasing 

height values, yields a feasible schedule S$ that is at most twice as long as the minimum. We will show that the 

number of idle time slots in S is at most the maximum height value A(r), which, together with Lemma 2 proves 

the theorem. Theorem | can be generalized to series-parallel orders and unit communication delays, i.e. for the 

problem P|prec=series-parallel, cj; = 1|Cmax. In [MS95], the authors state a bound of 2 for this problem. The 

corresponding proof can be modified similar to the proof of Theorem 1, obtaining a bound of (2 = 7) . 

Theorem 1. Let J = (m,V,p,9,c) denote an instance of the problem P\|prec=forest, cj; € {0,1}|Cmax and let S be 

the schedule that is determined by the modified priority list scheduling approach, applied to any list of jobs ordered 

by non-increasing height values. Then S fulfills Cmax(S) < (2- +) Com (Z). 

Proof. As described in the introduction, we can assume without loss of generality that the precedence relations are 

given by a tree. The claimed inequality is shown by considering in the schedule S for every time ¢ the maximum 

remaining height h(v) among all jobs v that are busy at f or start after t. For a job v that is scheduled after time 

t, its remaining height h(v) equals its height h(v), while for a job w that is being processed during time slot s;_1, 

the remaining height at time t is the difference between its height and the number of time-units that w has already 

been processed, i.e. h(w) = h(w) — (t —S(w)) =h(w) + S(w) —t. The same idea was also used by Jaffe [Jaf80] 

for scheduling problems without communication delays. This leads to the following definition of H(t) for each 

t=0,1,...,Cmax(S) — 1. 

H(t) = max{h(v)|C(v) >t} 

max ({h(v) + S(v) =F] S@) <1 <C(v)}U{h() | S(r) > }) 
Clearly, the function H(t) is monotonically non-increasing in t. We will show that H(t) decreases along time slots 

with idle times. More precisely, 

H(it+1)<HA(t)-1 or H(t+1)<A(t-1)-2 (2) 

for each time slot s; that contains idle times. With inequality (2) we obtain that the number of time slots that 

contain idle times is at most the maximum height value h(r). Since the partial order has tree structure the favored 

successor of a job v can be scheduled directly after v ends. Hence, at any time, at least one job is available to be 

processed. Thus, the number of idle times in the resulting schedule is at most (m — 1)h(r), which, by Lemma 2, is 

at most (m—1)Cj,,(1) < (m—1)Copr(7). On the other hand, Cop, (/) is at least the load ¥{p(v) | v € V}/m of the 

problem instance and hence, 

—
 1 Y{p(v)|vev} + t{idle times } 

Cmax (S) = m m 

< Sevevy ¢ - =) Cope (I) 

< (2 _ =) Com (I). 
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To prove inequality (2) consider a time slot s; in which less than m machines are busy. If s; is the last time slot, i.e. 

t =Cmax(S) — 1, then H(t) = 1 and H(t +1) =0 = H(t) — 1 and inequality (2) is satisfied. Hence, assume without 

loss of generalization that t <Cmax(S) — 1. Due to the zero-one communication delays and to the tree structure, 

every time slot contains at least one job. Since s; contains idle times, no job v with S(v) >t + 1 could be scheduled 

at time t. This means that every such job v is a successor or a sibling of a job processed in time slot s;. Let V denote 

a job that determines the maximum in the definition of H(t + 1) and consider the following case analysis. 

The first case treats the situation when job ¥ could not be scheduled since its direct predecessor u = father(¥) 

was processed during time slot s;, i.e. S(u) <t <C(u). In the second case, job ¥ has been available at time t 

but one of its sibling jobs v’ was processed instead. Since all communication delays are at most one, we have 

C(u) =t = S(v’) and S(v) =t +1, where u denotes the common direct predecessor of ¥ and v’. 

Case 1: S(u) <t <C(u) 

Since u is processed in time slot s;, it is involved in determining H(t), i.e. H(t) > h(u) + S(u) —t. This, 

together with the assumption C(u) —t > 1, leads to 

H(t) > h(u) +S(u) —t > h(¥) +C(u) —t > h(V) 41 =H(t+1) 41. 

Case 2: C(u) <t 

As stated above, in this case C(u) =t = S(v’) and S(¥) =t + 1 and c(u,¥) = c(u,v’) = 1. Since u is processed 

in time slot s;_1, it is involved in determining H(t — 1), ie. H(t —1) > h(u) +S(u) — (t—1). Note that the 

priority list scheduling algorithm schedules v' instead of ¥ only if A(v’) > A(v). Now, the definition of the 

height function leads to h(u) > p(u) +h(¥) + 1 since c(u,¥) = c(u,v’) = 1. 

This yields the following inequality which completes the proof of Theorem 1. 

H(t—1)>h(u)+S(u)-t+1 = h(u)+C(u)—ptu)—-t+1 

h(u) — plu) +1 
h(v) +2 

A(t+1)+2. 

IV
 

3.2 Formulation of the Algorithm and Correctness Proof 

From now on, we consider unit processing times, i.e. p(v) = 1 for all v € V. The idea behind the algorithm is 

that all jobs fitting into a time slot compete with each other in order to be scheduled. In principle, the algorithm 

performs priority list scheduling with an implicit machine assignment. This means the algorithm determines a 

starting time for each job satisfying the conditions (I) and (ID for feasibility. Hence, a machine assignment can 

easily be constructed as stated in Section 2. 

Compared with the list scheduling rules for the corresponding problem without communication delays, we 

only need to incorporate the fact that at most one direct successor of a job v can be scheduled directly after the 

completion of v. The algorithm works as follows: For the current time f, the set avail contains all jobs that are 

unscheduled and can be scheduled at time ¢ without violating the precedence constraints and the communication 

delays. We call these jobs available to be scheduled at time t. In selecting the jobs to be scheduled at time rt, we 

also determine the set avail’ of jobs that will become available at the next decision time t +1. 

Definition 1. A job v is called available at time t if 

(i) CH(u) <1 for all predecessors u of v, 

(ii) t > C#(u) +. c(u,v) if v in not the favored successor of u.



At time f, ¢ = 0,1,2,..., take the first job v in the list that has not been scheduled before and that is available at 

time f. Set its starting time to S4(v) =r. If S4(v) = CH (u) for u = father(v) and if c(u,v) = 1, v is the favored 

successor of uw in S# and hence, no further successor v’ of u with c(u,v’) = 1 can be scheduled at time t. To capture 

this in the algorithm, we remove all such jobs v’ from the set avail of currently available jobs. On the other hand, 

all these jobs become available on every machine at time t + 1, and hence we store them in the set avail’. 

Repeat this step until no further job is available to be scheduled at time ¢ or the number of jobs scheduled at 

time ¢ equals the number m of machines. Proceed with the next time slot until all jobs are scheduled. A detailed 

description of the algorithm is given in Figure 1. 

Algorithm DETERMINE-SCHEDULE 

Input: An instance J = (m,V,@,c) of the problem P|prec=forest, pj = 1, ci; € {0,1}|Cmax. 

Output: A feasible schedule S# such that ~Cmax(S#) < Com (1) + 5(m —1). 

Preprocessing 

1. Compute the height-value h(v) for every jobv EV. 

2. Set max = max{h(v) |v EV}. 

3. Set avail = {w | wis root in @} and S4(v) = ~ for each jobv EV. 

Main Loop 

Begin with r = 0 and repeat while there exist jobs v with SH(v) =o. 

1. Set machines = 0 and avail’ = 9. 

2. While (avail 4 @ and machines < m) do 

(a) Select a job v of largest height-value in avail. 

(b) Set S#(v) =r and C#(v) =t+1. Increase machines by 1, and remove v from 

avail. 

(c) Set u = father(v). If C#(w) =t and c(u,v) = 1 then move all unscheduled 

successors v’ € Children(u) with c(u,v’) = 1 from avail to avail’. 

(d) Put all successors of v into avail’. 

3. Sett =t+1 and avail = avail Uavail'.   
Figure 1: Detailed description of the algorithm DETERMINE-SCHEDULE 

Lemma 3. Algorithm DETERMINE-SCHEDULE produces a feasible schedule S# for every instance I = (m,V,®,c) 

of the problem P|prec=forest, pj = 1, cij € {0,1}|Cmax. 

Proof. We only need to verify that the resulting schedule S" satisfies Conditions (I) and (II) for feasibility. 

Since the loop in Step (2) in Figure | stops when at most m jobs are scheduled in the current time slot s;, 

Condition (1) holds. Condition (IIa) is fulfilled since jobs are only included into the set avail only after all their 

predecessors have been completed. Step (2c) guarantees that for a job v, no more that one successor w with 

c(v,w) > 0 is scheduled at time C#(v). Hence, Condition (IIb) is fulfilled. O 

In the following we consider a subset V’ C V of jobs that are “critical” in the following sense. For a time slot 

[t,t + 1], we call m minus the number of jobs in V’ processed during [t,t + 1] the number of essential idle times in



[t,¢-+1]. An optimal schedule is then distinguished by the fact that it minimizes the number of essential idle times. 

In Proposition 3 we show that in the schedule S" that is determined by the algorithm DETERMINE-SCHEDULE, 

the jobs of V’ are scheduled as early as possible subject to the considered choice of favored successors. This allows 

us to bound the number of essential idle times in S in the proof of Theorem2. We then compare the number of 

essential idle times in S4 and in any optimal schedule S, pt Which yields that the makespan of S and of any optimal 

schedule Syp, differ by at most 5(m — 1) time units. 

Proposition 2. For an instance I = (m,V,®,c) of the problem P|prec=forest, p ; =1, cij € {0,1}|Cmax, let S denote 

an arbitrary feasible schedule. Then, for every job v, there exists a job x € Succ(v) U{v} such that S(x) — S(v) > 

h(v) -1. 

Proof. The proof is done by induction on the height value of the jobs. Obviously, Proposition 2 is satisfied by 

any leaf of the tree, i.e. for jobs v such that h(v) = 1. Hence assume as inductive hypothesis that the proposition 

holds for every successor of a job v. Due to the definition of the height function, h(v) is either determined by a 

direct successor w with h(w) = h(v) — 1 or by two direct successors w),w2 such that c(v,w1) = c(v,w2) = 1 and 

h(w1) =h(w2) = h(v) -2. 

In the first case, the inductive hypothesis states the existence of a job x € Succ(w) C Succ(v) such that S(x) — 

S(w) > h(w) — 1 and hence, S(x) — S(v) > S(x) —S(w) +1 > h(w) =h(v) - 1. 

In the second case, at least one of the jobs, say w2 satisfies S(w2) > S(v)+ p(v) +c(v, 2). For we, the inductive 

hypothesis states the existence of a job x € Succ(w2) C Succ(v) such that S(x) — S(w2) > h(w2) — 1. Hence, 

S(x) —S(v) > S(x) —S(w2) +2 > h(w)+1=h(v)-1. 

This completes the proof of Proposition 2. O 

Proposition 2 states that the height value of a job v is a lower bound of the length of the chain from v to a latest 

scheduled successor x of v. We use this insight to define a subtree ©’ of © induced by a set V’ of jobs that have very 

long chains of predecessors. As we will see, this subtree is “critical” in the sense that the number of idle times in 

the sub—schedule S’ of S# induced by V’ is not too far away from the number of idle times in an optimal schedule 

for the job set V’. Proposition 3 shows that S’ has a special structure (see also Figure 2). Based on this structure, 

Proposition 4 bounds the number of idle times in S’. 

If algorithm DETERMINE-SCHEDULE constructs a schedule that never schedules m jobs in parallel, Lemma 1 

and Lemma 2 yield the optimality of this schedule. Hence assume for the following analysis that there exists a 

time when m jobs are processed. 

Proposition 3. For an instance I = (m,V,®,c) of the problem P\prec=forest, p; = 1, ci; € {0,1}|Cmax, let S# 

denote the schedule determined by algorithm DETERMINE-SCHEDULE. Assume that there exists a time t' < 

Cmax (S#) — 2, such that the number of jobs started at time t' is strictly less than m. Set 

V' = {vEV | du Pred(v) USucc(v) U {v} : (SE (u) = 1 — 1, A(u) > 3) or (SE(u) =t', h(u) >2)}. GB) 

Then each job v € V' such that S4(v) <t' satisfies 

(A) h(v) >t’ —S#(v) +2, 

(B1) every direct successor w € V' of v such that S4(w) <t' +1 satisfies S#(w) < C#(v) +c(v,w), 

(B2) at least one direct successor w € V' of v satisfies S"(w) = CH(v).



Proof. The proof is done by induction on the completion times of the jobs. For the inductive basis consider jobs 

v €V’ with C4(v) =7’. Due to the definition of V’, each jobs v € V’ satisfies h(v) > 3 since either u = v satisfies the 

definition of V’ or v has a successor of height at least 2 which implies that h(v) > 3. Hence, h(v) > 3 =t'/—S#(v) +2 

since ¢’ — S#(v) = 1. This proves inequality (A). 

Statements (B1) and (B2) follow from the fact that time slot [¢’ w+ 1] contains idle times and hence, every 

direct successor w of v with c(v,w) = 0 and at least one direct successor w’ of v with c(v,w’) = 1 (if existent) are 

scheduled by the algorithm at time t’ = C4(v). Note that the remaining successors w” of v such that c(v,w”) = 1 

are not necessarily scheduled at time ¢’ + 1 though they are available at that time but inequality (B1) only considers 

successors scheduled before time t’. 

For the inductive step consider a time t <tr’ and a job v € V’ with C4(v) =r. Assume as inductive hypothesis that 

every job v’ € V’ with C#(v’) > r and S#(v’) <1’ satisfies inequality (A) and statements (B1) and (B2). Due to the 

definition of V’, at least one direct successor w of v is contained in V’ and S#(w) <1’. Obviously, S#(w) > CH(v). 

If S4(w) = CH(v) then v and w satisfy statements (B1) and (B2) directly and inequality (A) follows since 

hyp. 

h(v) >h(w) +1 > t’—S#(w) +3 =r —S4(v) 42. 

Hence assume without loss of generality that S#(w) > C#(v) for each direct successor w of v. Note that at 

least one direct successor w was available to be scheduled at time S#(w) — 1 but was not selected by the algorithm. 

Thus, there exist m jobs x that were scheduled instead of w and since the algorithm always selects jobs of highest 

priority, h(x) > h(w). 

We now show that each of the m jobs x has a successor z scheduled at time rt’. Due to the tree structure, this 

implies that m different jobs are scheduled at time ¢’ which contradicts the assumption that [t’,r’ + 1] contains idle 

times. 

Since w € V’, S#(w) > CH(v) =¢ and SH(w) <1’, w satisfies inequality (A) by the inductive hypothesis and 

hence, h(w) >t’ —S#(w) +2. Since h(x) > h(w) and S#(x) = S#(w) — 1, this yields h(x) >t’ — S#(x) +1. Now, 

Proposition 2 states the existence of a job z € Succ(x) such that S#(z) > S#(x) +h(x) — 1 > 1’. Hence, each job x has 

a successor z scheduled after time t’. Since at every time, at least one job of the chain between x and z is available 

to be scheduled and since [t’, t’ + 1] contains idle times, each of the m jobs x has a successor that is scheduled 

at time t’. Due to the tree structure of O, these jobs are pairwise distinct which contradicts the assumption that 

[2’ wt + 1] contains idle times. Hence, at least one direct successor w of v satisfies statement (B2). 

The proof of statement (B1) is analogous. Consider a direct successor w’ of v with a minimal starting time 

S#(w) among all direct successors w of v. Assuming that S#(w’) > CH(v) + c(v,w’) leads to the existence of m 

jobs x with h(x) > h(w’) and S#(x) = S4(w’) — 1. The same arguments as used above then gives a contradiction 

to the assumption that [t’, + 1] contains idle times. Hence, statement (B 1) holds. 

To complete the proof, we now show that statements (B1) and (B2) induce inequality (A). Following the 

definition of the height function, h(v) is determined by one or two direct successors of largest height value. Either 

h(v) = h(w) +1 or h(v) = h(w1) +2 = h(w2) +2 with c(v,w1) = c(v,w2) = 1. In the first case, A(w) is maximum 

among all successors of v and, since the algorithm always selects available jobs of highest priority, statement (B2) 

yields that S4(w) = CH(v) = SH(v) + 1. By the inductive hypothesis, w satisfies inequality (A) and hence, h(w) > 

t' —S4(w) + 2. Both, together with h(v) = h(w) +1 yields h(v) > t’ — S4(v) +2. 

In the second case, statement (B1) guarantees that one of the jobs, say w2, is scheduled at time SH (w2) = 

C#(v) + c(v,w2) = SH(v) +2. By the inductive hypothesis, w2 satisfies inequality (A) and hence, h(w2) >t’ — 

S4(w2) +2. Both, together with h(v) = h(w2) +2 yields h(v) >t! —S#(v) +2. 

This completes the proof of Proposition 3. O 

Let ¢’ and V’ be as defined in Proposition 3. Proposition 3 yields that the jobs of V’ that are scheduled before 

time ¢’ have a special structure: when a job v is completed, all direct successors w with c(v,w) = 0 and exactly on 
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direct successor w’ with c(v,w’) = 1 is scheduled directly at time C4 (v), while all the remaining direct successors 

are scheduled one time unit later. Hence, define U = {v € V’ | S#(v) <r’ +1} and let S’ denote the sub-schedule 

of SH induced by U, i.e. S’(u) = S"(u) for each u € U. Note that all jobs processed at time t’ + 1 are contained in 

U. 

With the following definitions, every feasible schedules for U decomposes into several sub—schedules. For a job 

u € U, denote its earliest starting time without respecting the communication delays and the machine restrictions 

by est(u). For a tree, est(u) is the sum of the processing times over all predecessors of u, and, in the case of unit 

processing times, est(u) = #Pred(u). 

Let us now consider the following subsets of U. 

U; = {veU|S#(v)-est(v)=j} and 

U; = {veU|S#()-est(v) > j} 
for every j = 0,...,€, where @ is a value that depends on S# but fulfills € < m as we will see later. Each job set 

U; induces a subtree of ©. Let W; denote the width (the maximum size of an anti-chain) of that subtree. Then, 

w; denotes the maximum number of jobs of U ; that can be scheduled in parallel by any feasible schedule for the 

job-set U;. Proposition 3 now states that Sho Ww; = ™m since the first time when m jobs of V’ are scheduled in 

parallel is r' +1. With W; > 1 for eachi=0,...,é, this yields €<m-—1. 

Let Si denote the sub-schedule of S¥ induced by U; and translated to a minimal starting time of 0, i.e. 

Si(v) =S"(v)-1; for each v € Uj (4) 

with t; = min{S’(v) | v € U;}. Obviously, the maximum number of jobs of U; that can be scheduled in parallel by 

any feasible schedule is mj; = ye; mj. 

Proposition 3 states that in S’ every job v is scheduled directly after its direct predecessor u = father(v) with the 

exception of all but one non—-favored jobs v with c(u,v) = 1. Notice that for these non—favored jobs v, Proposition 3 

yields S4#(w) = C#(v) +1. This and est(v) = est(w) + p(u) for u = father(v) leads to 

S4(v) —est(v) = S4(u) + p(u) + c(u,v) — (est(w) + p(u)) = S#(u) — est(u) +1 

Thus, for each job v € Uj; that is minimal in U;,1, the direct predecessor u is contained in U;. Let X; denote the 

set of all direct predecessors of minimal jobs v € Uj+1, for j= 1,... ,£. 

Resuming, all non—minimal jobs in U; are scheduled directly after their direct predecessors while every mini- 

mal job v € U ; is a direct successor of a job u € X;_; with c(u,v) = 1 (for j = 2,...,¢). Clearly, the minimal jobs 

v of U; satisfy S4(v) =1; for every j= 1,... ,2. 

Figure 2 depicts the structure of schedule S’. This leads to Proposition 4 which is the core of the proof of 

Theorem 2. 

Proposition 4. Consider the schedule S" determined by algorithm DETERMINE-SCHEDULE for an instance I of 

the problem P\prec=forest, pj = 1, cij € {0,1} |Cmax. Let S'; denote the sub-schedules of S# defined by (4) and let 

sip ” denote an optimal schedule for the job-set Uj; on w; machines. Then, 

L 

{idle times in S’,} — t{idle times in ser" < dl — j)wj-l+j. (5) 
ej 

Proof. The proof is done by induction on the job set U; for j = @,... ,0. The inductive basis is done for Uy. Notice 

that U, only consists of wg jobs scheduled at time t’ +1 since t’ + 1 is the first time that m jobs of U are scheduled 

in parallel by schedule S’. Since the number of machines for schedule S} is defined as mg, S/, contains no idles and 

so does every optimal schedule so? ” for Up. This proves inequality 5. 
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Figure 2: The shape of schedule S’ 

For the inductive step, assume as the inductive hypothesis that inequality (5) is satisfied by Uj,;. We now 

verify inequality (5) for U;. Since at most w; < m jobs can be scheduled in parallel by any feasible schedule for 

U;, every such schedule partitions into the sub-schedules induced by U; and Uj+1. 
opt 

J 
c(x,y) = 1, $4" contains an idle time at time S“”"(x) + 1 for every x € Xj. 

On the other hand, S’(y) —C(x) = 1 and S“”"(y) —C#?"(x) > 0. Since all jobs of Uj; are scheduled as early as 

possible in si and the remaining jobs of U;,, are scheduled after jobs of X;, 

Consider an optimal schedule S’"" for U;. Since every job x € X; has two or more direct successors y with 

t{idle times in S'} — t{idle times in sory <  t{idle times in S',, ,} — t{idle times in sn} + wy — 1X; 

hyp. = é 
< ¥ (-(i+ IW -64+4+)4+ ¥ W-1 

i=j+1 i=j+1 

£ 
= Y- DWi- E+ i. 

1=j oO 

Theorem 2. Algorithm DETERMINE-SCHEDULE produces a feasible schedule S# for all instances I = (m,V,®,c) 

of the problem P|prec=forest, pj = 1, cij € {0,1}|Cmax such that 

Cmax (Ss?) < Copt (1) + sm _ 1). (6) 

Proof. For an instance I, consider the schedule S4 produced by algorithm DETERMINE-SCHEDULE. Lemma 3 

states that S4 is feasible. The remainder follows from Proposition 4. Note that if t’ does not exists since S4 does 

not schedule m jobs in parallel before time Cmax (S#) — 1, Lemma | and Lemma 2 yield that SH is optimal. Hence 

assume in the following that ¢’ and V’ are well-defined. 

Note that S4(v) =S"(v) for all v € V’ such that S4(v) < ¢! +1 and that all jobs contained in V \V’ are completed 

before time t’ + 1. Hence, the number of idle times in S# is exactly the number of idle times in Sf minus {(V \V’) 
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plus the number of idle times in the last time slot of S#, which is at most (m—1). Thus, 

t{idle times in S"} < t{idle times in Sh} —2(V\V') +(m—1). 

Similar, the number of idle times in any optimal schedule S,,; for the instance J is at least the number of idle times 

of any optimal schedule $4” for Up minus 4(V \ V’). This, together with inequality (5) yields 

t{idle times in shy — tf{idle times in Sop} < f{idle times in Sy} + (m—1) — f{idle times in sor} . (7) 

Now, apply Proposition 4. Inequality (x) follows since Sho (i-W;)-—£ becomes maximum if W; = 1 for 

eachi=0,...,fand £=m-—1. Note that 2<m-—1andw; >1,i=0,...,£. 

—
 1 idle times in S®\ — {idle times in S 

Coax (SH) —Copp(t) 2 Hidle times in SI} — {idle times in Som} 
m 

(7) {idle times in Si} — t{idle times in So?"} +(m—1) 

~ m 

©) Yholi-m) —£+ (m=1) 
~ m 

Siti _ mol 
— m 2 

This completes the proof of Theorem 2. O 

3.3. Implementation and Running Time 

In this subsection, we give some suggestions on the data structures to use in an implementation of the above 

algorithm. More details on the used techniques like depth-first search and bucket sort can be found in the book of 

Cormen, Leiserson, and Rivest [CLR90], for example. 

Preprocessing 

The priority of all jobs can be computed in O(n) time by scanning every tree in the forest bottom-up by 

methods like depth-first search. 

Main Loop 

Using a data-structure that allows to find all 5(v) — 1 successors of a job v in Q(8(v)) time makes it easy to 

realize Step (2b) up to Step (3) of the algorithm in an overall linear time. Note that every job is rejected at 

most once by Step (2c) since we consider zero-one communication delays. 

The height-value increases by 2 if and only if a job wu has at least two direct successors v and v’ with h(v) = 

h(v') = h(u) — 2. Hence, the overall maximum height-value can be bounded by Amax <n where n denotes 

the number of jobs, n = |V]. 

Thus, use as the mentioned data structure an array of n “buckets”, one for each possible height-value occur- 

ring during the execution of algorithm DETERMINE-SCHEDULE. The k-th bucket contains a list of all jobs 

in avail having the height value k. Using this data structure, a job of maximum height value can be extracted 

in O(1) time in Step (2a) after looking for the first non-empty bucket in the array. The insertion of a newly 

available job in Step (3) can also be done in (1) time. Since jobs are only inserted into the part of the array 

that has not been visited before, no component of the array will be visited more than once. 

This leads to an overall running time of algorithm DETERMINE-SCHEDULE of ((n) time using O(n) space. 
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4 An Example 

As an example we consider the extreme case presented by Guinand, Rapine and Trystram [GRT95, §6]. This 

example is also an extreme case for our algorithm. 

The idea is to recursively construct a tree A,,. Begin with A; consisting of a root r; and 2 successors. To 

define Aj»,,m > 2 introduce a new node r,, as the root of A,,. As the successors of 7, take the root r,,_; of the 

subtree A,,_; and the first node of a chain of size A(r,_;). Creating A», another m — 1 successors are added to rj 

summing up to a total of 2-+m(m— 1)/2. To obtain the corresponding problem instance, set all processing times 

and communication delays to |. To obtain the extreme case, set the number of machines to be m. 

Figure 3 depicts the tree A3 for the cases of 3 and 4 machines. Thereby, the numbers inside the circles denote 

the height value h(v) of the job v corresponding to the node in the tree. Clearly, h(rm) =h(rm_1) +2 = 2m+ 1 due 

to the definition of the height function in Section 3.1. 

Now apply algorithm DETERMINE-SCHEDULE to the instance A3 . Since all successors of a job v have the same 

height value, Step (2a) of the algorithm may choose any successor when a job ends. 

Figure 4 depicts different schedules determined by different choices of favored successors. 

e For the 4-machine case, S? is the resulting schedule when the jobs denoted by non-filled circles in Figure 3 

are chosen as favored successors. Similarly, S{ denotes the schedule determined when the jobs represented 

by filled circles are selected. Note that for m = 4, every choice of favored successors yields an optimal 

schedule. 

For the case m = 3, the notation s similar. Here, S$} is an optimal schedule while S$ is a schedule of 

maximum length, algorithm DETERMINE-SCHEDULE can produce for the instance A3. Hence, every fea- 

sible schedule S for A3 fulfills the stated bound Cmax(S) < Cop (A3) + met For S$, this bound is tight: 

Cmax (S$) = Copr(A3) + "5+ = 8. 
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Figure 3: Example instance A3 Figure 4: Possible schedules for instance A3 

5 Concluding Remarks 

The bound of m=1 is tight if no further condition is made on the choice of the favored successor of a job that has 

more than one successor of of maximum height. Consider the example given in [GRT95, $6] as an extremal case. 

For m = 3, the corresponding instance is discussed in Section 4. 

Theorem | and Theorem 2 also hold when release dates are introduced, i.e. when a job u may not be started before 

a given time r(u). To incorporate release dates into the algorithm, include the following condition into Definition 1: 

(iii) t >r(u). 
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Theorem | can be extended to series-parallel orders and unit communication delays. In [MS95] we show in detail 

how to define the height function and formulate the modified priority list scheduling algorithm. The obtained 

scheduling algorithm has an overall computation time of O(|V|+|E|) if the processing times are bounded by a 

constant or O(|E|+|V|log|V|) for unbounded processing times. Here, V denotes the set of jobs while E denotes 

the set of precedence relations in the series-parallel order. 

In [MH95], Munier and Hanen bounded the number of idle times in a schedule produced by a modified list schedul- 

ing algorithm by (m— 1)C;,,,(7) which leads to an upper bound of (2- 7) for the problem when job—duplication 

is allowed, i.e. P|dup, prec, pj = 1, cij = 1|Cmax. Let pmax = max{p(v) | v € V}. Following the proof of Munier 

and Hanen, the stated bound of (2 - +) can be generalized to the problem P|dup, prec, cj; € {0,1}|Cmax, obtaining 

+3 1 -1 
Cmax (S) < (ae ~— =) Coy (1) + — . 

Due to the symmetry of the communication delays, it does not matter whether to schedule in-forests or out-forests 

when job—duplication is not allowed.So,; for the job set V. Since job—duplication is of no use for in-forests, the 

mentioned bounds also hold for the problem P|prec=forest, cj; € {0,1}|Cmax. 

While the problem P|dup, prec=in-forest, pj = 1, cij € {0,1}}|Cmax is NP-complete [Vel93], the corresponding 

problem for out-trees can be solved optimally in linear time. One way to see this, is to look for the first time ¢ with 

t{v €V | h(v) =t} > m. Select arbitrarily m of these jobs and for for each of them, introduce one duplicate of 

each of their predecessors (direct and indirect). Applying algorithm DETERMINE-SCHEDULE to the resulting job 

set V’ determines an optimal schedule since the duplication of the predecessors allows each of the selected jobs v 

to be scheduled at time h(r) — h(v), i.e. as early as possible, while from time t on, all machines are kept busy (the 

proof for this is similar to the proof of Proposition 3). 
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