
Technische Universitat Berlin

FACHBEREICH 3
MATHEMATIK

A Simple Approximation Algorithm for

Scheduling Forests with Unit Processing Times

and Zero-One Communication Delays

by

ROLF H. MOHRING AND MARKUS W. SCHAFFTER

No. 506/1995

A Simple Approximation Algorithm for Scheduling Forests with

Unit Processing Times and Zero-One Communication Delays

Rolf H. Mohring* Markus W. Schaffter*

April 1996

Abstract

In the last few years, scheduling jobs due to communication delays has received a great deal of attention.

We consider the problem of scheduling forests due to unit processing times and zero-one communication delays

and focus on the approximation algorithm of Hanen and Munier and on the algorithm of Guinand, Rapine and

Trystram. These algorithms and their analysis are quite complex. In contrast, we present a very simple list

scheduling algorithm for the problem Plprec=tree, pj = 1, cj; € {0,1}|Cmax of scheduling trees subject to unit

processing times and zero-one communication delays.

For sufficiently many machines, e.g. m > |V|, the resulting schedule is optimal. For a restricted number of

machines, the presented algorithm has the same absolute worst case performance as the algorithm of Guinand,

Rapine and Trystram: mek It’s relative worst case performance ratio turns out to be bounded by (2 - i) even

for arbitrary processing times. This simplifies an argument by Hanen and Munier for the case that an optimal

schedule on an infinite number of machines can be constructed.

1 Introduction

We consider the problem of scheduling jobs of unit processing times subject to precedence relations that are

given by an out-forest and subject to zero-one communication delays. In the extended notion of Graham et al.

[GLLRK79] this problem is denoted by P|prec=forest, p; = 1, cij € {0,1}|Cmax.

Since communication delays of length zero are allowed, we can transform every out-forest into an out-tree by

introducing a “super-root” as a predecessor of each root in the forest. Let the processing time of that additional job

be equal to | and set the communication delay between the “super-root” and all “original roots” to 0. Then each

schedule that is feasible with respect to the resulting out-tree is also feasible with respect to the given out-forest,

when the first time slot is removed. The minimum makespans of these two problems differ by exactly | time unit.

Hence, let us assume without loss of generality that the given precedence-relations are given by an out-tree.

In the literature, the following related problems have been treated.

e In 1987, Rayward-Smith [RS87] proved that the problem of scheduling unit-time jobs with unit communi-

cation delays subject to arbitrary precedence relations is NP-hard. In the same paper it is shown that the

relative worst case performance of every greedy schedule is at most (3 —2/m).

e In 1992, Picouleau developed in his thesis that the problem P»|prec=tree, cj; = ¢|Cmax is NP-hard when c

is part of the input. He presented a simple linear time, (h — 1)c approximation algorithm for this problem

[Pic92]. If the communication delays times are smaller than the processing times, the corresponding problem

can be solved in polynomial time [Chr89].

*Technische Universitat Berlin, Fachbereich Mathematik, Sekr. MA 6-1, StraBe des 17. Juni 136, 10623 Berlin, Germany, e-mail:

{moehring,schaeffter} @ math tu-berlin.de.

e In 1993, Lenstra, Veldhorst and Veltman [LV V93] showed that the problem P\prec, Cij = 1|Cmax becomes

NP-hard already for in-trees, thus in particular for the larger class of series-parallel orders. The given

transformation can even be extended to binary in-trees. For the two machine case, the authors constructed a

linear time algorithm that solves the problem optimally.

e In the same year, Lawler [Law93] developed a linear time approximation algorithm based on critical path

scheduling for the problem P|prec=tree, pj = 1, cij = 1|Cmax which constructs a schedule that misses the

minimum makespan by at most (m — 2) time-units for any number m of machines.

In 1994/95, Hanen and Munier [HM95] gave an approximation algorithm for the problem Pl|prec, c ;; small |Cmax
4+3p 2429

‘2p — (24p)m’
cation delay and the minimum processing time. For the case of unit processing times and unit time com-

with a worst case ratio of where p < | denotes the ratio between the maximum communi-

munication delays, this approach yields a bound of t — + (see also [MH94]). This bound is obtained by
3m

solving an LP-relaxation and rounding the obtained fractional values. For the corresponding problem with

an unlimited number of machines, the relative performance is z.

In October 1995, Munier and Hanen [MH95] presented a list scheduling algorithm for the case that task

duplication is allowed, whose worst case relative performance ratio is at most (2- +) for the problem

P\dup, prec, pj = 1, cij = 1|Cmax. Since for in-forests, duplication is of no use, this bound also states for the

problem P|prec=tree, pj = 1, ¢ij = 1|Cmnax-

In July 1995, Guinand, Rapine and Trystram [GRT95] presented an approximation algorithm that improves

the bound for the absolute error stated by Lawler [Law93] for the problem P\|prec=tree, Pj=l,cjp= 1|Cmax

by a factor of 2 to med This is the same bound, we state in this paper.

e In December 1995, the authors [MS95] stated a 2-approximation algorithm for the case of series-parallel

orders, P|prec=series-parallel, cj; = 1|Cmax. The given bound can be strengthened to (2 - +) by the same

arguments used in this paper.

We give a simple linear-time approximation algorithm with an absolute worst case performance of mel for the

problem P|prec=tree, pj = 1,cij € {0,1}|Cmax. It’s relative worst case performance ratio can be bounded by

(2 - +) even for arbitrary processing times.

Even when we focus on this problem, the definitions and lemmas are given as general as possible. The paper

is organized as follows. First we introduce the necessary notations in Section 2. Section 3 then presents the

approximation algorithm and proves its correctness. In Section 4, we apply the extremal case of [GRT95] to our

approximation algorithm, showing that the given bound of mot is tight.

2 Definitions and Notations

A comprehensive overview on the theory of scheduling can be found in [GLLRK79]. We only give a brief overview

on the definitions necessary here. In order to be compatible with the commonly used notation, we give the defini-

tions for arbitrary processing times and communication delays.

An instance (m,V,p,©,c) of the problem P|prec=tree, cjj|Cmax consists of the number m of available machines,

a set V of jobs, a processing time p(v) for each job v € V, a precedence order © which is an out-tree, and an

interprocessor communication delay c(v,w) for each pair of jobs, v and w, where w is a direct successor of v. In

this paper, we focus on the case of unit processing times and zero-one communication delays, i.e. p(v) = 1 and

c(u,v) € {0,1} for all jobs u,v EV.

We denote the set of direct successors of a job v by Children(v) and the set of all successors (direct or indirect)

of v, not including v, by Succ(v). The single direct predecessor of a job v is denoted by father(v), while the set of

all predecessors (direct or indirect) of v is denoted by Pred(v). A schedule S on a job set V is a function assigning

a starting time S(v) to each job v € V. The completion time of a job v is defined by C(v) = S(v) + p(v). Then the

length (or makespan) of a schedule S can be computed as Cmax(S) = max{C(v) | v € V}. For a schedule S, we call

the intervals s, = [t,t + 1] (fort =0,...,Cmax(S) — 1) the time slots of S.

We call a schedule S weakly feasible if it respects the limited number of machines and the precedence relations:

(I) No more than m jobs are scheduled simultaneously in any time slot s;, i.e.

t{v €V|S(v) <t <C(v)} <m forall t =0,... ,Cmax(S) — 1.

(II) No job is started before all its predecessors have been finished. Here, S(v) > C(father(v)) for

all jobs v € V is sufficient.

A weakly feasible schedule does not obey the communication delays. When communication delays are intro-

duced, we have to modify the second condition leading to the following definition of feasibility. A schedule is

called feasible if all jobs u € V fulfill the following conditions.

(I) No more than m jobs are scheduled simultaneously in any time slot s;, i.e.

t{v €V|S(v) <t <C(v)} <m forall t =0,... ,Cmax(S) — 1.

(IIa) S(v) > C(w) for all v € Children(u).

(IIb) S(v) <C(u)+c(u,v) for at most one job v € Children(u).

Condition (IIb) guarantees that, for each job u, at most direct successor v such that c(u,v) > 0 has to be

scheduled on the same machine as u in order to prevent the corresponding communication delay. We call such a

job v € Children(u), satisfying Condition (IIb) (if there is any) the favored successor of u in S.

For a given instance J = (m,V,p,®,c) of the problem P|prec=forest, c;j|Cmax let Cop (/) denote the minimum

makespan among all feasible schedules. Similarly, C7), (1) denotes the minimum makespan among all schedules

that are feasible for the instance if the number of machines is not restricted. Clearly, Cj, (1) < Copr()-

For a feasible schedule S one can construct a feasible machine assignment, this is assigning every job u to a machine

M(u) € {M,,M2,...,Mm} such that the following conditions are fulfilled.

(I’) At any time t =0,... ,Cmax(S) — 1, no more than one job is assigned to each machine M, i.e.

t{v € V|S(v) <t <C(v) and M(u) = M;} < 1 for eachi € {1,2,...,m}.

(IP’a) S(v) > C(u) for all v € Children(u) with M(u) = M(v).

(II’b) S(v) > C(u) +. c(u,v) for all v € Children(u) with M(u) 4 M(v).

For a machine assignment consider a machine M, idle during a time slot [t,t + 1]. We call the corresponding

time unit from ft tot +1 an idle time on machine M. Hence, at each time t when a machine M executes a job or there

is an idle time on machine M at time ¢. Note that the number of idle times occurring in a time slot [t,t + 1] does

not depend on the machine assignment. Hence, every feasible schedule S for m machines satisfies the following

equation.

m
Cmax (S) (1)

The term }{p(v) | v € V}/m is called the load of the corresponding problem instance.

A simple way to find a feasible machine assignment for a feasible schedule S is as follows. First assign all jobs

with a starting time of zero, i.e. the jobs in time slot so, arbitrarily to the machines. Condition (I) guarantees that

every jobs in time slot sp can be assigned to a machine.

Then iterate over the time slots s;,i = 1,2,...,Cmax — 1. For each time slot s; consider first of these jobs v that

have at least one direct predecessor u such that S(v) < C(u) +-c(u,v). Condition (IIb) states that there is at most

one such direct predecessor u of each job v. Hence, we can set M(v) = M(u) for these jobs v. The remaining jobs

v’ in time slot s; then fulfill S(v’) > C(w) + c(u,v’) for each direct predecessor u of v’. Hence, these jobs v’ can be

scheduled on every one of the still empty machines. Then make an arbitrary such assignment. Again, Condition (1)

guarantees that there are enough empty machines to assign every job v’ in time slot s; to one machine.

Note that this approach takes only linear time for arbitrary partial orders.

3 The Approximation Algorithm

We first determine for a given tree a priority function on the job set V. This function can be understood as a

modified height in the tree that takes the communication delays into account. It is the same function as given in

[VRKL94] The idea is to choose for each job a successor to be scheduled on the same machine, the so-called

“favored successor’. Hence, communication delays may only occur for the remaining, “non-favored” successors.

The height function determines the choice of a favored successor for every job and computes the delay produced

by that choice.

In a second step, we apply priority list scheduling to the list of jobs ordered by non-increasing height values. To

respect the communication delays, we modify the priority list scheduling algorithm, restricting the “availability”

of a job at a certain time.

3.1 Defining the Priorities

For a job v € V, define the corresponding height-value h(v) as follows. The definition works for arbitrary processing

times and communication delays.

e Every leaf v obtains a height-value of h(v) = p(v).

e The height-value of the remaining jobs is defined by h(v) = p(v) + max{h(w 1), h(w2) +c(v,w2)} where w;

and w2 are jobs with the two largest values of h(w) + c(v,w) among all successors w of v. Without loss of

generality, assume that h(w1) +c(v,w1) > h(w2) +c(v,W2).

Obviously, the job r corresponding to the root of the tree fulfills h(r) = max{h(v) | v € V}.

Lemma | below states that the height values induce a feasible schedule on sufficiently many machines. Lemma 2

yields that this schedule is optimal (for sufficiently many machines) and that Cz, (7) = h(r). The proof of Lemma 2

is done by the fact that in any feasible schedule the distance between the starting time of a job v and the starting

time of the latest scheduled successor of v is bounded by the differences of their height values. This is stated by

Proposition |.

Lemma 1. Consider an instance I = (m,V,p,®,c) of the problem P\|prec=tree, cjj € {0,1}|Cmax. Let r denote

the job corresponding to the root of the tree. Setting S°(v) = h(r) —h(v) for all jobs v € V determines a feasible

schedule S™ for the instance I on sufficiently many machines, and Cmax(S”) = h(r).

Proof. Let us determine the length of S® first. Consider a job v that is completed last, Cmax (S”) = S*(v) + p(v).

Due to the definition of the schedule, S*(v) = h(r) —A(v). Since v is a job without successors, h(v) = p(v). Both

together yields Cmax(S”) = S°(v) +h(v) = hr).

To verify the feasibility, we show that S® fulfills the conditions (IIa) and (IIb) stated in Section 2. This is

sufficient since we do not have to respect the machine restrictions here. Consider a job u. Due to the definition of

the height function, every successor v of u satisfies h(u) > p(u) +h(v). Thus S®(v) > S”(u) + p(u), which proves

Condition (IIa). Moreover the definition of the height function guarantees that h(u) > p(u) +h(v) +c(u,v) for

each non-favored successor v of u. This proves Condition (IIb). O

Proposition 1. Consider a feasible schedule S for an instance I = (m,V,®,c) of the problem P|prec=tree, cij €

{0,1}|Cmax. Then for any job v € V there exists a job w € Succ(v) U {v} such that h(w) = p(w) and S(w) — S(v) >

h(v) —h(w).

Proof. Consider a feasible schedule S for an instance J = (m,V,©,c) of the problem P|prec=tree, cj; € {0,1}|Cmax

and a job v€ V. The proof is done by induction on the length of a longest chain of successors of job v. The

inductive basis is done for jobs v who are leaves in the tree, i.e. h(v) = p(v). For them, Proposition 1 follows

directly with w =v.

For a job v with h(v) > p(v) assume as the inductive hypothesis that S(w) —S(v) > h(v) —h(w) has been proven

for all successors of v. Due to the definition of the height function, h(v) is determined by one of the following

cases. Thereby, w; and w3 are as in the definition of the height function.

Case 1: hA(v) = p(v) +h(w1)

Since w is a successor of v, S(w,) > S(v) + p(v). This gives S(w;) — S(v) > h(v) —h(w1).

If w; is a leaf, the choice w = w; proves the proposition. Otherwise, by the inductive hypothesis there

exists a successor w of w, that satisfies h(w) = p(w) and S(w) —S(w1) > h(w1) —h(w). Together with

S(w1) —S(v) > h(v) —A(w1), this leads to S(w) — S(v) > h(v) — h(w) which proves the proposition.

Case 2: h(v) = p(v) +h(w2) +c(v,w2)

If the height of v is determined by w2, assume that h(w2)+c(v,w2) > h(w 1). Otherwise apply Case 1. Then

h(w2) = h(w,) and c(v,w1) = c(v,w2) = 1 due to the definition of w;, w2 and the fact that all communication

delays are 0 or 1.

Due to the communication delays, one of the jobs w1, w2 has to be scheduled after C(v) + 1 in every feasible

schedule. Since the height values and the communication delays are identical, assume without loss of gen-

erality that this is w2.

Thus S(w2) > C(v) +1 = S(v) + p(v) +c(v,w2). This, together with the assumption of this case leads to

S(w2) — S(v) > h(v) —A(w2).

If w2 is a leaf, the proof is obvious for w = w2 since h(w2) = p(w2). Otherwise there exists by the inductive

hypothesis a successor w of wy that satisfies h(w) = p(w) and S(w) —S(w2) > h(w2) — h(w). Combining

this with S(w2) — S(v) > h(v) —h(wz2) completes the proof of Proposition 1. Oo

Lemma 2. Given an instance I = (m,V,®,c) of the problem P\|prec=tree, ci; € {0,1}|Cmax, then the height of

job r corresponding to the root of the tree satisfies h(r) < Copr(D).

Proof. Consider a schedule So, that is optimal on sufficiently many machines, i.e. Cmax (S°”") = Cot (1). Clearly,

Sopt (r) = 0 where r denotes the root of the tree. For v =r, Proposition | states that there exists a job w with

h(w) = p(w) such that Sop(w) > h(r) — h(w). Thus,

Copr (L) = Cmax (Sopr) 2 Sopt(w) + P(W) = Sopr(w) + hw) 2 h(r). 4

In the following we apply priority list scheduling (see e.g. [LLRKS93]) to the list of jobs ordered by non

increasing height values. The priority list scheduling algorithm schedules jobs at certain decision times. These

decision times are the time t = 0, the completion times of jobs, and, in order to incorporate the unit-time com-

munication delays, the completion times of jobs plus one. These decision times depend on the previously taken

decisions and are processed in ascending order. At every decision time f, the algorithm repeatedly chooses among

the still unscheduled jobs a job with highest priority (the first “available” job in the given list) that can be started at

time t. This is repeated until no more job can be started at t. Then the next decision time is considered.

Compared with the list scheduling rules for the corresponding problem without communication delays, we

only need to incorporate Condition (IIb). This means that at most one direct successor of a job u can be scheduled

directly after the completion of u. A detailed definition of the availability of a job is given in the next section. Note

that the following algorithm does not determine a machine assignment, but that the resulting schedule fulfills the

Conditions (I), (Ia), and (IIb) for feasibility stated in Section 2). Hence, a machine assignment can be obtained

according to the procedure described there.

The next theorem states that priority list scheduling, applied to the list of jobs ordered by non-increasing

height values, yields a feasible schedule S$ that is at most twice as long as the minimum. We will show that the

number of idle time slots in S is at most the maximum height value A(r), which, together with Lemma 2 proves

the theorem. Theorem | can be generalized to series-parallel orders and unit communication delays, i.e. for the

problem P|prec=series-parallel, cj; = 1|Cmax. In [MS95], the authors state a bound of 2 for this problem. The

corresponding proof can be modified similar to the proof of Theorem 1, obtaining a bound of (2 = 7) .

Theorem 1. Let J = (m,V,p,9,c) denote an instance of the problem P\|prec=forest, cj; € {0,1}|Cmax and let S be

the schedule that is determined by the modified priority list scheduling approach, applied to any list of jobs ordered

by non-increasing height values. Then S fulfills Cmax(S) < (2- +) Com (Z).

Proof. As described in the introduction, we can assume without loss of generality that the precedence relations are

given by a tree. The claimed inequality is shown by considering in the schedule S for every time ¢ the maximum

remaining height h(v) among all jobs v that are busy at f or start after t. For a job v that is scheduled after time

t, its remaining height h(v) equals its height h(v), while for a job w that is being processed during time slot s;_1,

the remaining height at time t is the difference between its height and the number of time-units that w has already

been processed, i.e. h(w) = h(w) — (t —S(w)) =h(w) + S(w) —t. The same idea was also used by Jaffe [Jaf80]

for scheduling problems without communication delays. This leads to the following definition of H(t) for each

t=0,1,...,Cmax(S) — 1.

H(t) = max{h(v)|C(v) >t}

max ({h(v) + S(v) =F] S@) <1 <C(v)}U{h() | S(r) > })
Clearly, the function H(t) is monotonically non-increasing in t. We will show that H(t) decreases along time slots

with idle times. More precisely,

H(it+1)<HA(t)-1 or H(t+1)<A(t-1)-2 (2)

for each time slot s; that contains idle times. With inequality (2) we obtain that the number of time slots that

contain idle times is at most the maximum height value h(r). Since the partial order has tree structure the favored

successor of a job v can be scheduled directly after v ends. Hence, at any time, at least one job is available to be

processed. Thus, the number of idle times in the resulting schedule is at most (m — 1)h(r), which, by Lemma 2, is

at most (m—1)Cj,,(1) < (m—1)Copr(7). On the other hand, Cop, (/) is at least the load ¥{p(v) | v € V}/m of the

problem instance and hence,

—
 1 Y{p(v)|vev} + t{idle times }

Cmax (S) = m m

< Sevevy ¢ - =) Cope (I)

< (2 _ =) Com (I).

6

To prove inequality (2) consider a time slot s; in which less than m machines are busy. If s; is the last time slot, i.e.

t =Cmax(S) — 1, then H(t) = 1 and H(t +1) =0 = H(t) — 1 and inequality (2) is satisfied. Hence, assume without

loss of generalization that t <Cmax(S) — 1. Due to the zero-one communication delays and to the tree structure,

every time slot contains at least one job. Since s; contains idle times, no job v with S(v) >t + 1 could be scheduled

at time t. This means that every such job v is a successor or a sibling of a job processed in time slot s;. Let V denote

a job that determines the maximum in the definition of H(t + 1) and consider the following case analysis.

The first case treats the situation when job ¥ could not be scheduled since its direct predecessor u = father(¥)

was processed during time slot s;, i.e. S(u) <t <C(u). In the second case, job ¥ has been available at time t

but one of its sibling jobs v’ was processed instead. Since all communication delays are at most one, we have

C(u) =t = S(v’) and S(v) =t +1, where u denotes the common direct predecessor of ¥ and v’.

Case 1: S(u) <t <C(u)

Since u is processed in time slot s;, it is involved in determining H(t), i.e. H(t) > h(u) + S(u) —t. This,

together with the assumption C(u) —t > 1, leads to

H(t) > h(u) +S(u) —t > h(¥) +C(u) —t > h(V) 41 =H(t+1) 41.

Case 2: C(u) <t

As stated above, in this case C(u) =t = S(v’) and S(¥) =t + 1 and c(u,¥) = c(u,v’) = 1. Since u is processed

in time slot s;_1, it is involved in determining H(t — 1), ie. H(t —1) > h(u) +S(u) — (t—1). Note that the

priority list scheduling algorithm schedules v' instead of ¥ only if A(v’) > A(v). Now, the definition of the

height function leads to h(u) > p(u) +h(¥) + 1 since c(u,¥) = c(u,v’) = 1.

This yields the following inequality which completes the proof of Theorem 1.

H(t—1)>h(u)+S(u)-t+1 = h(u)+C(u)—ptu)—-t+1

h(u) — plu) +1
h(v) +2

A(t+1)+2.

IV

3.2 Formulation of the Algorithm and Correctness Proof

From now on, we consider unit processing times, i.e. p(v) = 1 for all v € V. The idea behind the algorithm is

that all jobs fitting into a time slot compete with each other in order to be scheduled. In principle, the algorithm

performs priority list scheduling with an implicit machine assignment. This means the algorithm determines a

starting time for each job satisfying the conditions (I) and (ID for feasibility. Hence, a machine assignment can

easily be constructed as stated in Section 2.

Compared with the list scheduling rules for the corresponding problem without communication delays, we

only need to incorporate the fact that at most one direct successor of a job v can be scheduled directly after the

completion of v. The algorithm works as follows: For the current time f, the set avail contains all jobs that are

unscheduled and can be scheduled at time ¢ without violating the precedence constraints and the communication

delays. We call these jobs available to be scheduled at time t. In selecting the jobs to be scheduled at time rt, we

also determine the set avail’ of jobs that will become available at the next decision time t +1.

Definition 1. A job v is called available at time t if

(i) CH(u) <1 for all predecessors u of v,

(ii) t > C#(u) +. c(u,v) if v in not the favored successor of u.

At time f, ¢ = 0,1,2,..., take the first job v in the list that has not been scheduled before and that is available at

time f. Set its starting time to S4(v) =r. If S4(v) = CH (u) for u = father(v) and if c(u,v) = 1, v is the favored

successor of uw in S# and hence, no further successor v’ of u with c(u,v’) = 1 can be scheduled at time t. To capture

this in the algorithm, we remove all such jobs v’ from the set avail of currently available jobs. On the other hand,

all these jobs become available on every machine at time t + 1, and hence we store them in the set avail’.

Repeat this step until no further job is available to be scheduled at time ¢ or the number of jobs scheduled at

time ¢ equals the number m of machines. Proceed with the next time slot until all jobs are scheduled. A detailed

description of the algorithm is given in Figure 1.

Algorithm DETERMINE-SCHEDULE

Input: An instance J = (m,V,@,c) of the problem P|prec=forest, pj = 1, ci; € {0,1}|Cmax.

Output: A feasible schedule S# such that ~Cmax(S#) < Com (1) + 5(m —1).

Preprocessing

1. Compute the height-value h(v) for every jobv EV.

2. Set max = max{h(v) |v EV}.

3. Set avail = {w | wis root in @} and S4(v) = ~ for each jobv EV.

Main Loop

Begin with r = 0 and repeat while there exist jobs v with SH(v) =o.

1. Set machines = 0 and avail’ = 9.

2. While (avail 4 @ and machines < m) do

(a) Select a job v of largest height-value in avail.

(b) Set S#(v) =r and C#(v) =t+1. Increase machines by 1, and remove v from

avail.

(c) Set u = father(v). If C#(w) =t and c(u,v) = 1 then move all unscheduled

successors v’ € Children(u) with c(u,v’) = 1 from avail to avail’.

(d) Put all successors of v into avail’.

3. Sett =t+1 and avail = avail Uavail'.
Figure 1: Detailed description of the algorithm DETERMINE-SCHEDULE

Lemma 3. Algorithm DETERMINE-SCHEDULE produces a feasible schedule S# for every instance I = (m,V,®,c)

of the problem P|prec=forest, pj = 1, cij € {0,1}|Cmax.

Proof. We only need to verify that the resulting schedule S" satisfies Conditions (I) and (II) for feasibility.

Since the loop in Step (2) in Figure | stops when at most m jobs are scheduled in the current time slot s;,

Condition (1) holds. Condition (IIa) is fulfilled since jobs are only included into the set avail only after all their

predecessors have been completed. Step (2c) guarantees that for a job v, no more that one successor w with

c(v,w) > 0 is scheduled at time C#(v). Hence, Condition (IIb) is fulfilled. O

In the following we consider a subset V’ C V of jobs that are “critical” in the following sense. For a time slot

[t,t + 1], we call m minus the number of jobs in V’ processed during [t,t + 1] the number of essential idle times in

[t,¢-+1]. An optimal schedule is then distinguished by the fact that it minimizes the number of essential idle times.

In Proposition 3 we show that in the schedule S" that is determined by the algorithm DETERMINE-SCHEDULE,

the jobs of V’ are scheduled as early as possible subject to the considered choice of favored successors. This allows

us to bound the number of essential idle times in S in the proof of Theorem2. We then compare the number of

essential idle times in S4 and in any optimal schedule S, pt Which yields that the makespan of S and of any optimal

schedule Syp, differ by at most 5(m — 1) time units.

Proposition 2. For an instance I = (m,V,®,c) of the problem P|prec=forest, p ; =1, cij € {0,1}|Cmax, let S denote

an arbitrary feasible schedule. Then, for every job v, there exists a job x € Succ(v) U{v} such that S(x) — S(v) >

h(v) -1.

Proof. The proof is done by induction on the height value of the jobs. Obviously, Proposition 2 is satisfied by

any leaf of the tree, i.e. for jobs v such that h(v) = 1. Hence assume as inductive hypothesis that the proposition

holds for every successor of a job v. Due to the definition of the height function, h(v) is either determined by a

direct successor w with h(w) = h(v) — 1 or by two direct successors w),w2 such that c(v,w1) = c(v,w2) = 1 and

h(w1) =h(w2) = h(v) -2.

In the first case, the inductive hypothesis states the existence of a job x € Succ(w) C Succ(v) such that S(x) —

S(w) > h(w) — 1 and hence, S(x) — S(v) > S(x) —S(w) +1 > h(w) =h(v) - 1.

In the second case, at least one of the jobs, say w2 satisfies S(w2) > S(v)+ p(v) +c(v, 2). For we, the inductive

hypothesis states the existence of a job x € Succ(w2) C Succ(v) such that S(x) — S(w2) > h(w2) — 1. Hence,

S(x) —S(v) > S(x) —S(w2) +2 > h(w)+1=h(v)-1.

This completes the proof of Proposition 2. O

Proposition 2 states that the height value of a job v is a lower bound of the length of the chain from v to a latest

scheduled successor x of v. We use this insight to define a subtree ©’ of © induced by a set V’ of jobs that have very

long chains of predecessors. As we will see, this subtree is “critical” in the sense that the number of idle times in

the sub—schedule S’ of S# induced by V’ is not too far away from the number of idle times in an optimal schedule

for the job set V’. Proposition 3 shows that S’ has a special structure (see also Figure 2). Based on this structure,

Proposition 4 bounds the number of idle times in S’.

If algorithm DETERMINE-SCHEDULE constructs a schedule that never schedules m jobs in parallel, Lemma 1

and Lemma 2 yield the optimality of this schedule. Hence assume for the following analysis that there exists a

time when m jobs are processed.

Proposition 3. For an instance I = (m,V,®,c) of the problem P\prec=forest, p; = 1, ci; € {0,1}|Cmax, let S#

denote the schedule determined by algorithm DETERMINE-SCHEDULE. Assume that there exists a time t' <

Cmax (S#) — 2, such that the number of jobs started at time t' is strictly less than m. Set

V' = {vEV | du Pred(v) USucc(v) U {v} : (SE (u) = 1 — 1, A(u) > 3) or (SE(u) =t', h(u) >2)}. GB)

Then each job v € V' such that S4(v) <t' satisfies

(A) h(v) >t’ —S#(v) +2,

(B1) every direct successor w € V' of v such that S4(w) <t' +1 satisfies S#(w) < C#(v) +c(v,w),

(B2) at least one direct successor w € V' of v satisfies S"(w) = CH(v).

Proof. The proof is done by induction on the completion times of the jobs. For the inductive basis consider jobs

v €V’ with C4(v) =7’. Due to the definition of V’, each jobs v € V’ satisfies h(v) > 3 since either u = v satisfies the

definition of V’ or v has a successor of height at least 2 which implies that h(v) > 3. Hence, h(v) > 3 =t'/—S#(v) +2

since ¢’ — S#(v) = 1. This proves inequality (A).

Statements (B1) and (B2) follow from the fact that time slot [¢’ w+ 1] contains idle times and hence, every

direct successor w of v with c(v,w) = 0 and at least one direct successor w’ of v with c(v,w’) = 1 (if existent) are

scheduled by the algorithm at time t’ = C4(v). Note that the remaining successors w” of v such that c(v,w”) = 1

are not necessarily scheduled at time ¢’ + 1 though they are available at that time but inequality (B1) only considers

successors scheduled before time t’.

For the inductive step consider a time t <tr’ and a job v € V’ with C4(v) =r. Assume as inductive hypothesis that

every job v’ € V’ with C#(v’) > r and S#(v’) <1’ satisfies inequality (A) and statements (B1) and (B2). Due to the

definition of V’, at least one direct successor w of v is contained in V’ and S#(w) <1’. Obviously, S#(w) > CH(v).

If S4(w) = CH(v) then v and w satisfy statements (B1) and (B2) directly and inequality (A) follows since

hyp.

h(v) >h(w) +1 > t’—S#(w) +3 =r —S4(v) 42.

Hence assume without loss of generality that S#(w) > C#(v) for each direct successor w of v. Note that at

least one direct successor w was available to be scheduled at time S#(w) — 1 but was not selected by the algorithm.

Thus, there exist m jobs x that were scheduled instead of w and since the algorithm always selects jobs of highest

priority, h(x) > h(w).

We now show that each of the m jobs x has a successor z scheduled at time rt’. Due to the tree structure, this

implies that m different jobs are scheduled at time ¢’ which contradicts the assumption that [t’,r’ + 1] contains idle

times.

Since w € V’, S#(w) > CH(v) =¢ and SH(w) <1’, w satisfies inequality (A) by the inductive hypothesis and

hence, h(w) >t’ —S#(w) +2. Since h(x) > h(w) and S#(x) = S#(w) — 1, this yields h(x) >t’ — S#(x) +1. Now,

Proposition 2 states the existence of a job z € Succ(x) such that S#(z) > S#(x) +h(x) — 1 > 1’. Hence, each job x has

a successor z scheduled after time t’. Since at every time, at least one job of the chain between x and z is available

to be scheduled and since [t’, t’ + 1] contains idle times, each of the m jobs x has a successor that is scheduled

at time t’. Due to the tree structure of O, these jobs are pairwise distinct which contradicts the assumption that

[2’ wt + 1] contains idle times. Hence, at least one direct successor w of v satisfies statement (B2).

The proof of statement (B1) is analogous. Consider a direct successor w’ of v with a minimal starting time

S#(w) among all direct successors w of v. Assuming that S#(w’) > CH(v) + c(v,w’) leads to the existence of m

jobs x with h(x) > h(w’) and S#(x) = S4(w’) — 1. The same arguments as used above then gives a contradiction

to the assumption that [t’, + 1] contains idle times. Hence, statement (B 1) holds.

To complete the proof, we now show that statements (B1) and (B2) induce inequality (A). Following the

definition of the height function, h(v) is determined by one or two direct successors of largest height value. Either

h(v) = h(w) +1 or h(v) = h(w1) +2 = h(w2) +2 with c(v,w1) = c(v,w2) = 1. In the first case, A(w) is maximum

among all successors of v and, since the algorithm always selects available jobs of highest priority, statement (B2)

yields that S4(w) = CH(v) = SH(v) + 1. By the inductive hypothesis, w satisfies inequality (A) and hence, h(w) >

t' —S4(w) + 2. Both, together with h(v) = h(w) +1 yields h(v) > t’ — S4(v) +2.

In the second case, statement (B1) guarantees that one of the jobs, say w2, is scheduled at time SH (w2) =

C#(v) + c(v,w2) = SH(v) +2. By the inductive hypothesis, w2 satisfies inequality (A) and hence, h(w2) >t’ —

S4(w2) +2. Both, together with h(v) = h(w2) +2 yields h(v) >t! —S#(v) +2.

This completes the proof of Proposition 3. O

Let ¢’ and V’ be as defined in Proposition 3. Proposition 3 yields that the jobs of V’ that are scheduled before

time ¢’ have a special structure: when a job v is completed, all direct successors w with c(v,w) = 0 and exactly on

10

direct successor w’ with c(v,w’) = 1 is scheduled directly at time C4 (v), while all the remaining direct successors

are scheduled one time unit later. Hence, define U = {v € V’ | S#(v) <r’ +1} and let S’ denote the sub-schedule

of SH induced by U, i.e. S’(u) = S"(u) for each u € U. Note that all jobs processed at time t’ + 1 are contained in

U.

With the following definitions, every feasible schedules for U decomposes into several sub—schedules. For a job

u € U, denote its earliest starting time without respecting the communication delays and the machine restrictions

by est(u). For a tree, est(u) is the sum of the processing times over all predecessors of u, and, in the case of unit

processing times, est(u) = #Pred(u).

Let us now consider the following subsets of U.

U; = {veU|S#(v)-est(v)=j} and

U; = {veU|S#()-est(v) > j}
for every j = 0,...,€, where @ is a value that depends on S# but fulfills € < m as we will see later. Each job set

U; induces a subtree of ©. Let W; denote the width (the maximum size of an anti-chain) of that subtree. Then,

w; denotes the maximum number of jobs of U ; that can be scheduled in parallel by any feasible schedule for the

job-set U;. Proposition 3 now states that Sho Ww; = ™m since the first time when m jobs of V’ are scheduled in

parallel is r' +1. With W; > 1 for eachi=0,...,é, this yields €<m-—1.

Let Si denote the sub-schedule of S¥ induced by U; and translated to a minimal starting time of 0, i.e.

Si(v) =S"(v)-1; for each v € Uj (4)

with t; = min{S’(v) | v € U;}. Obviously, the maximum number of jobs of U; that can be scheduled in parallel by

any feasible schedule is mj; = ye; mj.

Proposition 3 states that in S’ every job v is scheduled directly after its direct predecessor u = father(v) with the

exception of all but one non—-favored jobs v with c(u,v) = 1. Notice that for these non—favored jobs v, Proposition 3

yields S4#(w) = C#(v) +1. This and est(v) = est(w) + p(u) for u = father(v) leads to

S4(v) —est(v) = S4(u) + p(u) + c(u,v) — (est(w) + p(u)) = S#(u) — est(u) +1

Thus, for each job v € Uj; that is minimal in U;,1, the direct predecessor u is contained in U;. Let X; denote the

set of all direct predecessors of minimal jobs v € Uj+1, for j= 1,... ,£.

Resuming, all non—minimal jobs in U; are scheduled directly after their direct predecessors while every mini-

mal job v € U ; is a direct successor of a job u € X;_; with c(u,v) = 1 (for j = 2,...,¢). Clearly, the minimal jobs

v of U; satisfy S4(v) =1; for every j= 1,... ,2.

Figure 2 depicts the structure of schedule S’. This leads to Proposition 4 which is the core of the proof of

Theorem 2.

Proposition 4. Consider the schedule S" determined by algorithm DETERMINE-SCHEDULE for an instance I of

the problem P\prec=forest, pj = 1, cij € {0,1} |Cmax. Let S'; denote the sub-schedules of S# defined by (4) and let

sip ” denote an optimal schedule for the job-set Uj; on w; machines. Then,

L

{idle times in S’,} — t{idle times in ser" < dl — j)wj-l+j. (5)
ej

Proof. The proof is done by induction on the job set U; for j = @,... ,0. The inductive basis is done for Uy. Notice

that U, only consists of wg jobs scheduled at time t’ +1 since t’ + 1 is the first time that m jobs of U are scheduled

in parallel by schedule S’. Since the number of machines for schedule S} is defined as mg, S/, contains no idles and

so does every optimal schedule so? ” for Up. This proves inequality 5.

11

-_H—_-DH—_-”H—_DH—-@”D—_-@®—_-@®—_-@A—-@m_-@A—-@D
u ee

|
©—_-©&—_@—_@&_@_-@_-@_-@_-@_@_-@_-@—_@—_'@

h OO 9 OS 9 SS OO OO OO
r ~ my __a_O_@a_@O_@O_@®_@_@O_®_-@®_@®_@_®)

POI I IIIS TSN
|

a LA_A_”A__@®_'®__@®A—_@®O—_A—_A_@A_'@®
a] SS

| |

x, V@—_e@—_@—_@—@—_@—_@—_@—_@—@—@
OW OO NS OO OO UO NI

l .
m JU, liA7\-A_@_ _ __@ __@_@_6_@

PONDS TS NSS

Ll _@_-_@_-@_-@_-@_-@_-@—_-@—-@
DDD OOO UO UN TN

m3 U; |
e |

e I

° | (~ _-@)__
LJ YJ YJ

(\-Q—_- G
J LY

my_ Te

Figure 2: The shape of schedule S’

For the inductive step, assume as the inductive hypothesis that inequality (5) is satisfied by Uj,;. We now

verify inequality (5) for U;. Since at most w; < m jobs can be scheduled in parallel by any feasible schedule for

U;, every such schedule partitions into the sub-schedules induced by U; and Uj+1.
opt

J
c(x,y) = 1, $4" contains an idle time at time S“”"(x) + 1 for every x € Xj.

On the other hand, S’(y) —C(x) = 1 and S“”"(y) —C#?"(x) > 0. Since all jobs of Uj; are scheduled as early as

possible in si and the remaining jobs of U;,, are scheduled after jobs of X;,

Consider an optimal schedule S’"" for U;. Since every job x € X; has two or more direct successors y with

t{idle times in S'} — t{idle times in sory < t{idle times in S',, ,} — t{idle times in sn} + wy — 1X;

hyp. = é
< ¥ (-(i+ IW -64+4+)4+ ¥ W-1

i=j+1 i=j+1

£
= Y- DWi- E+ i.

1=j oO

Theorem 2. Algorithm DETERMINE-SCHEDULE produces a feasible schedule S# for all instances I = (m,V,®,c)

of the problem P|prec=forest, pj = 1, cij € {0,1}|Cmax such that

Cmax (Ss?) < Copt (1) + sm _ 1). (6)

Proof. For an instance I, consider the schedule S4 produced by algorithm DETERMINE-SCHEDULE. Lemma 3

states that S4 is feasible. The remainder follows from Proposition 4. Note that if t’ does not exists since S4 does

not schedule m jobs in parallel before time Cmax (S#) — 1, Lemma | and Lemma 2 yield that SH is optimal. Hence

assume in the following that ¢’ and V’ are well-defined.

Note that S4(v) =S"(v) for all v € V’ such that S4(v) < ¢! +1 and that all jobs contained in V \V’ are completed

before time t’ + 1. Hence, the number of idle times in S# is exactly the number of idle times in Sf minus {(V \V’)

12

plus the number of idle times in the last time slot of S#, which is at most (m—1). Thus,

t{idle times in S"} < t{idle times in Sh} —2(V\V') +(m—1).

Similar, the number of idle times in any optimal schedule S,,; for the instance J is at least the number of idle times

of any optimal schedule $4” for Up minus 4(V \ V’). This, together with inequality (5) yields

t{idle times in shy — tf{idle times in Sop} < f{idle times in Sy} + (m—1) — f{idle times in sor} . (7)

Now, apply Proposition 4. Inequality (x) follows since Sho (i-W;)-—£ becomes maximum if W; = 1 for

eachi=0,...,fand £=m-—1. Note that 2<m-—1andw; >1,i=0,...,£.

—
 1 idle times in S®\ — {idle times in S

Coax (SH) —Copp(t) 2 Hidle times in SI} — {idle times in Som}
m

(7) {idle times in Si} — t{idle times in So?"} +(m—1)

~ m

©) Yholi-m) —£+ (m=1)
~ m

Siti _ mol
— m 2

This completes the proof of Theorem 2. O

3.3. Implementation and Running Time

In this subsection, we give some suggestions on the data structures to use in an implementation of the above

algorithm. More details on the used techniques like depth-first search and bucket sort can be found in the book of

Cormen, Leiserson, and Rivest [CLR90], for example.

Preprocessing

The priority of all jobs can be computed in O(n) time by scanning every tree in the forest bottom-up by

methods like depth-first search.

Main Loop

Using a data-structure that allows to find all 5(v) — 1 successors of a job v in Q(8(v)) time makes it easy to

realize Step (2b) up to Step (3) of the algorithm in an overall linear time. Note that every job is rejected at

most once by Step (2c) since we consider zero-one communication delays.

The height-value increases by 2 if and only if a job wu has at least two direct successors v and v’ with h(v) =

h(v') = h(u) — 2. Hence, the overall maximum height-value can be bounded by Amax <n where n denotes

the number of jobs, n = |V].

Thus, use as the mentioned data structure an array of n “buckets”, one for each possible height-value occur-

ring during the execution of algorithm DETERMINE-SCHEDULE. The k-th bucket contains a list of all jobs

in avail having the height value k. Using this data structure, a job of maximum height value can be extracted

in O(1) time in Step (2a) after looking for the first non-empty bucket in the array. The insertion of a newly

available job in Step (3) can also be done in (1) time. Since jobs are only inserted into the part of the array

that has not been visited before, no component of the array will be visited more than once.

This leads to an overall running time of algorithm DETERMINE-SCHEDULE of ((n) time using O(n) space.

13

4 An Example

As an example we consider the extreme case presented by Guinand, Rapine and Trystram [GRT95, §6]. This

example is also an extreme case for our algorithm.

The idea is to recursively construct a tree A,,. Begin with A; consisting of a root r; and 2 successors. To

define Aj»,,m > 2 introduce a new node r,, as the root of A,,. As the successors of 7, take the root r,,_; of the

subtree A,,_; and the first node of a chain of size A(r,_;). Creating A», another m — 1 successors are added to rj

summing up to a total of 2-+m(m— 1)/2. To obtain the corresponding problem instance, set all processing times

and communication delays to |. To obtain the extreme case, set the number of machines to be m.

Figure 3 depicts the tree A3 for the cases of 3 and 4 machines. Thereby, the numbers inside the circles denote

the height value h(v) of the job v corresponding to the node in the tree. Clearly, h(rm) =h(rm_1) +2 = 2m+ 1 due

to the definition of the height function in Section 3.1.

Now apply algorithm DETERMINE-SCHEDULE to the instance A3 . Since all successors of a job v have the same

height value, Step (2a) of the algorithm may choose any successor when a job ends.

Figure 4 depicts different schedules determined by different choices of favored successors.

e For the 4-machine case, S? is the resulting schedule when the jobs denoted by non-filled circles in Figure 3

are chosen as favored successors. Similarly, S{ denotes the schedule determined when the jobs represented

by filled circles are selected. Note that for m = 4, every choice of favored successors yields an optimal

schedule.

For the case m = 3, the notation s similar. Here, S$} is an optimal schedule while S$ is a schedule of

maximum length, algorithm DETERMINE-SCHEDULE can produce for the instance A3. Hence, every fea-

sible schedule S for A3 fulfills the stated bound Cmax(S) < Cop (A3) + met For S$, this bound is tight:

Cmax (S$) = Copr(A3) + "5+ = 8.

able e|f th a |l_|m \n |\o |P je

lL minio|P b li |i \k If
iljtsk c |d |8

g h

So Cmax=7 S3 Cmax=7

alble d\e|f\& a |l_ m\n\o|Ple |h

I |m|ni|o|P b |i |J {k

i |J{klh c jd j8
S$ Cmax=7 S$ Cmax=8

Figure 3: Example instance A3 Figure 4: Possible schedules for instance A3

5 Concluding Remarks

The bound of m=1 is tight if no further condition is made on the choice of the favored successor of a job that has

more than one successor of of maximum height. Consider the example given in [GRT95, $6] as an extremal case.

For m = 3, the corresponding instance is discussed in Section 4.

Theorem | and Theorem 2 also hold when release dates are introduced, i.e. when a job u may not be started before

a given time r(u). To incorporate release dates into the algorithm, include the following condition into Definition 1:

(iii) t >r(u).

14

Theorem | can be extended to series-parallel orders and unit communication delays. In [MS95] we show in detail

how to define the height function and formulate the modified priority list scheduling algorithm. The obtained

scheduling algorithm has an overall computation time of O(|V|+|E|) if the processing times are bounded by a

constant or O(|E|+|V|log|V|) for unbounded processing times. Here, V denotes the set of jobs while E denotes

the set of precedence relations in the series-parallel order.

In [MH95], Munier and Hanen bounded the number of idle times in a schedule produced by a modified list schedul-

ing algorithm by (m— 1)C;,,,(7) which leads to an upper bound of (2- 7) for the problem when job—duplication

is allowed, i.e. P|dup, prec, pj = 1, cij = 1|Cmax. Let pmax = max{p(v) | v € V}. Following the proof of Munier

and Hanen, the stated bound of (2 - +) can be generalized to the problem P|dup, prec, cj; € {0,1}|Cmax, obtaining

+3 1 -1
Cmax (S) < (ae ~— =) Coy (1) + — .

Due to the symmetry of the communication delays, it does not matter whether to schedule in-forests or out-forests

when job—duplication is not allowed.So,; for the job set V. Since job—duplication is of no use for in-forests, the

mentioned bounds also hold for the problem P|prec=forest, cj; € {0,1}|Cmax.

While the problem P|dup, prec=in-forest, pj = 1, cij € {0,1}}|Cmax is NP-complete [Vel93], the corresponding

problem for out-trees can be solved optimally in linear time. One way to see this, is to look for the first time ¢ with

t{v €V | h(v) =t} > m. Select arbitrarily m of these jobs and for for each of them, introduce one duplicate of

each of their predecessors (direct and indirect). Applying algorithm DETERMINE-SCHEDULE to the resulting job

set V’ determines an optimal schedule since the duplication of the predecessors allows each of the selected jobs v

to be scheduled at time h(r) — h(v), i.e. as early as possible, while from time t on, all machines are kept busy (the

proof for this is similar to the proof of Proposition 3).

References

[Chr89] Philippe Chrétienne, A polynomial algorithm to optimally schedule tasks on virtual distributed sys-

tems under tree-like precedence constraints, Europ. Journal Oper. Res. 43 (1989), 225-236.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to algorithms, MIT

Press, 1990.

[GLLRK79] Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander H.G. Rinnooy Kan, Optimiza-

tion and approximation in deterministic sequencing and scheduling: a survey, Annals of Discrete

Math. 5 (1979), 287-326.

[GRT95] Frédéric Guinand, Christophe Rapine, and Denis Trystram, Worst case analysis of Lawler’s algo-

rithm for scheduling trees with communication delays, Tech. report, LMC-IMAG, 46 avenue Félix

Viallet, 38031 Grenoble, France, {Guinand,Rapine,Trystram}@imag fr, 1995.

[HM95] Claire Hanen and Alix Munier, An approximation algorithm for scheduling dependent tasks on m

processors with small communication delays, Tech. report, Laboratoire Informatique Théorique et

Programmation, Institut Blaise Pascal, Université Pierre et Marie Curie, 4, place jussieu, 75252 Paris

cedex 05, 1995.

[Jaf80] Jeffrey M. Jaffe, Efficient scheduling of tasks without full use of processor resources, Theoretical

Computer Science 12 (1980), 1-17.

15

[Law93]

[LLRKS93]

[LVV93]

[MH94]

[MH95]

[MS95]

[Pic92]

[RS87]

[Vel93]

[VRKL94]

Eugene L. Lawler, Scheduling trees on multiprocessors with unit communication delays, Presented at

the First Workshop on Models and Algorithms for Planning and Scheduling Problems, unpublished

script, June 1993.

Eugene L. Lawler, Jan K. Lenstra, Alexander H.G. Rinnooy Kan, and David B. Shmoys, Sequencing

and scheduling: Algorithms and complexity, Logistics of Production and Inventory (S.C. Graves,

A.HG. Rinnooy Kan, and P.H. Zipkin, eds.), Handbooks in Operations Research and Management

Science, vol. 4, North Holland, 1993, pp. 445-522.

Jan K. Lenstra, Marinus Veldhorst, and Bart Veltman, The complexity of scheduling trees with

communication delays, Proceedings of the First Annual European Symposium on Algorithms (Th.

Lengauer, ed.), Springer-Verlag, Sept. 1993.

Alix Munier and Claire Hanen, An approximation algorithm for scheduling unitary tasks on m pro-

cessors with communication delays, Tech. report, Laboratoire Informatique Théorique et Program-

mation, Institut Blaise Pascal, Université Pierre et Marie Curie, 4, place jussieu, 75252 Paris cedex

05, 1994.

Alix Munier and Claire Hanen, Using duplication for scheduling unitary tasks on m processors with

communication delays, Tech. report, Laboratoire Informatique Théorique et Programmation, Institut

Blaise Pascal, Université Pierre et Marie Curie, 4, place jussieu, 75252 Paris cedex 05, 1995, LITP

95/47.

Rolf H. Mohring and Markus W. Schaffter, Approximation algorithms for scheduling series-

parallel orders subject to unit time communication delays, Tech. Report No. 483/1995, Univer-

sity of Technology, Berlin, StraBe des 17. Juni 136, 10623 Berlin, Germany, 1995, ftp://ftp.math.tu-

berlin.de/pub/Preprints/combi/Report-483-1995.ps.Z.

Christophe Picouleau, Etude de problémes d’ optimisation dans les systémes distribués, Ph.D. thesis,

Université Pierre et Marie Curie, Paris, France, 1992.

Victor J. Rayward-Smith, UET scheduling with unit interprocessor communication delays, Discrete

Applied Math. 18 (1987), 55-71.

Bart Veltman, Multiprocessor scheduling with communication delays, Ph.D. thesis, University of

Technology Eindhoven, Department of Mathematics and Computer Science, Eindhoven, Nether-

lands, 1993.

Theodora A. Varvarigou, Vwani P. Roychowdhury, Thomas Kailath, and Eugene L. Lawler, Schedul-

ing in and out forests in the presence of communication delays, IEEE Trans. Parallel Distributed

Systems (1994), (to appear).

16

Reports from the group

‘Algorithmic Discrete Mathematics”

of the Department of Mathematics, TU Berlin

506/1996 Rolf H. Mohring and Markus W. Schéffter: A Simple Approximation Algorithm for Scheduling Forests with Unit Processing Times
and Zero-One Communication Delays

504/1996 Uta Wille: The Role of Synthetic Geometry in Representational Measurement Theory

502/1996 Nina Amenta and Giinter M.Ziegler: Deformed Products and Maximal Shadows of Polytopes

498/1996 Ewa Malesinska, Alessandro Panconesi: On the Hardness of Allocating Frequencies for Hybrid Networks

496/1996 Jorg Rambau: Triangulations of Cyclic Polytopes and higher Bruhat Orders

489/1995 Eva Maria Feichtner and Dmitry N. Kozlov: On Subspace Arrangements of Type D

483/1995 Rolf H. Méhring and Markus W. Schdffter: Approximation Algorithms for Scheduling Series-Parallel Orders Subject to Unit Time
Communication Delays

478/1995 Sven G. Bartels: The complexity of Yamnitsky and Levin’s simplices algorithm

477/1995 Jens Gustedt, Michel Morvan and Laurent Viennot: A compact data structure and parallel algorithms for permutation graphs, to
appear in: Nagl et al., editors, Graph-Theoretic Concepts in Computer Science, Proccedings of the 20th International Workshop WG
°95.

476/1995 Jens Gustedt: Efficient Union-Find for Planar Graphs and other Sparse Graph Classes

475/1995 Ross McConnell and Jeremy Spinrad: Modular decomposition and transitive orientation

474/1995 Andreas S. Schulz: Scheduling to Minimize Total Weighted Completion Time: Performance Guarantees of LP—Based Heuristics
and Lower Bounds

473/1995 Giinter M. Ziegler: Shelling Polyhedral 3-Balls and 4-Polytopes

472/1995 Martin Henk, Jiirgen Richter-Gebert and Giinter M. Ziegler: Basic Properties of Convex Polytopes

471/1995 Jiirgen Richter-Gebert and Giinter M. Ziegler: Oriented Matroids

465/1995 Ulrich Betke and Martin Henk: Finite Packings of Spheres

463/1995 Ulrich Hund: Every simplicial polytope with at most d + 4 vertices is a quotient of a neighborly polytope, to appear in Discrete &
Computational Geometry

462/1995 Markus W. Schdffter: Scheduling with Forbidden Sets

461/1995 Markus W. Schdffter: Drawing Graphs on Rectangular Grids with at most 2 Bends per Edge

458/1995 Ewa Malesitska: List Coloring and Optimization Criteria for a Channel Assignment Problem

447/1995 Martin Henk: Minkowski’s second theorem on successive minima

441/1995 Andreas S. Schulz, Robert Weismantel, Giinter M. Ziegler: 0/1—Integer Programming: Optimization and Augmentation are Equiv-
alent, appeared in Paul Spirakis (ed.): Algorithms — ESA ’95, Lecture Notes in Computer Science 979, Springer: Berlin, 1995,
pp. 473-483

440/1995 Maurice Queyranne, Andreas S. Schulz: Scheduling Unit Jobs with Compatible Release Dates on Parallel Machines with Nonsta-
tionary Speeds, appeared in Egon Balas and Jens Clausen (eds.): Integer Programming and Combinatorial Optimization, Lecture Notes
in Computer Science 920, Springer: Berlin, 1995, pp. 307-320

439/1995 Rolf H. Mohring, Matthias Miiller-Hannemann: Cardinality Matching: Heuristic Search for Augmenting Paths

436/1995 Andreas Parra, Petra Scheffler: Treewidth Equals Bandwidth for AT-Free Claw-Free Graphs

432/1995 Volkmar Welker, Giinter M. Ziegler, Rade T. Zivaljevié: Comparison Lemmas and Applications for Diagrams of Spaces

431/1995 Jiirgen Richter-Gebert, Giinter M. Ziegler: Realization Spaces of 4-Polytopes are Universal, to appear in Bulletin of the American
Mathematical Society, October 1995.

430/1995 Martin Henk: Note on Shortest and Nearest Lattice Vectors

429/1995 Jorg Rambau, Giinter M. Ziegler: Projections of Polytopes and the Generalized Baues Conjecture

428/1995 David B. Massey, Rodica Simion, Richard P. Stanley, Dirk Vertigan, Dominic J. A. Welsh, Giinter M. Ziegler: Lé Numbers of
Arrangements and Matroid Identities

408/1994 Maurice Queyranne, Andreas S. Schulz: Polyhedral Approaches to Machine Scheduling

407/1994 Andreas Parra, Petra Scheffler: How to Use the Minimal Separators of a Graph for Its Chordal Triangulation

401/1994 Rudolf Miiller, Andreas S. Schulz: The Interval Order Polytope of a Digraph, appeared in Egon Balas and Jens Clausen (eds.):
Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 920, Springer: Berlin, 1995, pp. 50-64

396/1994 Petra Scheffler: A Practical Linear Time Algorithm for Disjoint Paths in Graphs with Bounded Tree-width

394/1994 Jens Gustedt: The General Two-Path Problem in time O(mlog n), extended abstract

393/1994 Maurice Queyranne: A Combinatorial Algorithm for Minimizing Symmetric Submodular Functions

392/1994 Andreas Parra: Triangulating Multitolerance Graphs

390/1994 Karsten Weihe: Maximum (s,t)—Flows in Planar Networks in O(|V|log |V|) Time

386/1994 Annelie von Arnim, Andreas S. Schulz: Facets of the Generalized Permutahedron of a Poset, to appear in Discrete Applied Mathe-
matics

383/1994 Karsten Weihe: Kurzeinfiihrung in C++

377/1994 Rolf H. Méhring, Matthias Miiller-Hannemann, Karsten Weihe: Using Network Flows for Surface Modeling

376/1994 Valeska Naumann: Measuring the Distance to Series-Parallelity by Path Expressions

375/1994 Christophe Fiorio, Jens Gustedt: Two Linear Time Union-Find Strategies for Image Processing

374/1994 Karsten Weihe: Edge—Disjoint (s,t)—Paths in Undirected Planar graphs in Linear Time

373/1994 Andreas S. Schulz: A Note on the Permutahedron of Series—Parallel Posets, appeared in Discrete Applied Mathematics 57 (1995),
pp. 85-90

371/1994 Heike Ripphausen-Lipa, Dorothea Wagner, Karsten Weihe: Efficient Algorithms for Disjoint Paths in Planar Graphs

Reports may be requested from: S. Marcus
Fachbereich Mathematik, MA 6-1

TU Berlin
StraBe des 17. Juni 136
D-10623 Berlin —- Germany

e-mail: Marcus@math.TU-Berlin.DE

Reports are available via anonymous ftp from: ftp.math.tu-berlin.de
cd_pub/Preprints/combi
file Report-<number>—<year>.ps.Z

