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Abstract 

We give the first exact algorithmic study of facility location problems that deal with finding a median 

for a continuum of demand points. In particular, we consider versions of the “continuous k-median 

(Weber) problem” where the goal is to select one or more center points that minimize the average 

distance to a set of points in a demand region. In such problems, the average is computed as an integral 

over the relevant region, versus the usual discrete sum of distances. The resulting facility location 

problems are inherently geometric, requiring analysis techniques of computational geometry. We provide 

polynomial-time algorithms for various versions of the L; 1-median (Weber) problem. We also consider 

the multiple-center version of the L; k-median problem, which we prove is NP-hard for large k. 

1 Introduction 

“There are three important factors that determine the value of real estate — location, location, 

and location.” 

There has been considerable study of facility location problems in the field of combinatorial optimization. 

In general, the input to these problems includes a weighted set D of demand locations (with weight distribu- 

tion 6 and total weight A), a set F' of feasible facility locations, and a distance function d that measures cost 

between a pair of locations. In one important class of questions, the problem is to determine one or more 

feasible median locations c € F' in order to minimize the average cost from the demand locations, p € D, to 

the corresponding central points c, that are nearest to p: 

1 
min 7 / 6(p)d(p, C) dp. 

pEeD 

If there is one median point to be placed, the problem is known as the classical Weber problem; it was first 

discussed in Weber’s 1909 book on the pure theory of location for industries [52] (see [54] for a modern 
survey). More generally, for a given number k > 1 of facilities, the problem is known as the k-median 

problem. A problem of similar type with a different objective function is the so-called k-center problem, 

where the goal is to find a set of & center locations such that the maximum distance of the demand set from 

the nearest center location is minimized. 

With many practical motivations, geometric instances of facility location problems have attracted a 

major portion of the research to date. In these instances, the sets D of demand locations and F of feasible 

placements are modeled as points in some geometric space, typically ?, with distances measured according 

to the Euclidean (£2) or Manhattan (L)) metric. In these geometric scenarios, it is natural to consider not 
only finite (discrete) sets F' of feasible locations, but also (continuous) sets having positive area. For the 
classical Weber problem, the set F is the entire plane #?, while D is some finite set of demand points. 
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Location theory distinguishes between discrete and continuous location theory (see [22]). However, for 
median problems, this distinction has mostly been applied to the set of feasible placements, distinguishing 

between discrete and continuous sets F’. It is remarkable that, so far, continuous location theory of median 

problems has almost entirely treated discrete demand sets D [22, 45]. We should note that there are several 

studies in the literature that deal with k-center problems with continuous demand, e.g, see [36, 51], where 

demand arises from the continuous point sets along the edges in a graph. See [50] for results on the placement 

of k capacitated facilities serving a continuous demand on a one-dimensional interval. Also, k-center problems 

have been studied extensively in a geometric setting, see e.g. [1, 15, 23, 25, 26, 27, 28, 29, 30, 35, 37, 48, 49]. 

However, designing discrete algorithms for k-center problems can generally be expected to be more immediate 

than for k-median problems, since the set of demand points that determine a critical center location will 

usually form just a finite set of d+ 1 points in d-dimensional space. 
Continuous demand for k-median problems is also missing from the classification in [5]. We contend that 

the practical and geometric motivations of the problem make it very natural to consider exact algorithms 

for dealing with a continuous demand distribution for k-median problems: if a demand occurs at some 

position p € D, according to some given probability density 6(p), then we may be interested in minimizing 

the expected distance Jp <p 4c, p)4(p)dp for a feasible center location ¢ € F. 

To the best of our knowledge, there are only few references that discuss k-median problems with contin- 

uous demand: See the papers [44, 58] for a discussion of continuous demand that arises probabilistically by 

considering a discrete demand in an unbounded environment with a large number of demand points, leading 

to a heuristic for optimal placement of many center points. Drezner [17] describes in Chapter 2 of his book 

that normally a continuous demand is replaced by a discrete one, for which the error is “quite pronounced for 

some problems”. (See his chapter for some discussion of the resulting error.) Wesolowsky and Love [55] (and 
also in their book [34] with Morris) and Drezner and Wesolowsky [18] consider the problem of continuous 
demand for rectilinear distances. Practical motivations include the modeling of postal districts and facility 

design. They compute the optimal solution for one specific example, but fail to give a general algorithm. 

More recently, Carrizosa, Mufioz-Marquez, and Puerto [6, 7] use convexity properties for problems of this 

type to deal with the error resulting from nonlinear numerical methods for approximating solutions. It 

should be noted that the objective function is no longer convex when distances are computed in the presence 

of obstacles. 

In this paper, we study the k-median problem, and its specialization to the Weber problem (k = 1), in 

the case of continuous demand sets. Another way to state our continuous Weber (1-median) problem is as 
follows: In a geometric domain (e.g., cluttered with obstacles), determine the ideal “meeting point” c* that 

minimizes the average time that it takes an individual, initially located at a random point in D, to reach 

c*. Another application comes from the problem of locating a fire station in order to minimize the average 

distance to points in a neighborhood, where we consider the potential emergencies (demands) to occur at 

points in a continuum (the region defining the neighborhood D). As we noted above, this objective function 

is different from the situation in which we want to minimize the maximum distance instead, a problem that 

has been studied extensively in the context of discrete algorithms. 

Choice of Metric. Many papers on geometric location theory have dealt with continuous sets F' of feasible 

placements, including [2, 4, 11, 12, 14, 19, 31, 32, 33, 55, 56, 57]. In the majority of these papers, distances are 

measured according to the L; metric. In fact, it was shown by Bajaj [3] that if Zz distances are used, then even 

in the case of only five demand locations (|D| = 5), the problem cannot be solved using radicals; in particular, 

it cannot be solved by exact algorithmic methods that use only ruler and compass. (Chandrasekaran and 

Tamir [9] give a polynomial-time approximation scheme that uses the ellipsoid method.) In this paper, we 

too concentrate on the problem using the L; metric. While we can exactly solve some very simple special 

cases in the Lz metric, in general the integrations that are required to solve the problem are likely to be just 

as intractable as the classic Weber problem. (We are able to obtain results that approximate the Euclidean 

cases; these are discussed more in the full paper.) 

Summary of Results. In this paper, we give the first exact algorithmic results for location problems that 

are continuous on both counts, in the set D as well as the set F. In our model D and F are each given 

by polygonal domains. Our goal is to compute a set of k (k > 1) optimal centers in the feasible set F' that



minimize the average distance from a demand point of D to the nearest center point. Our results include: 

(1) A linear-time (O(n)) algorithm for computing an optimal solution to the 1-median (Weber) problem 
when D = F = P, asimple polygon having n vertices, and distance is taken to be L; geodesic distance 

inside P. 

(2) An O(n?) algorithm for computing an optimal 1-median for the case that D = F = P, a polygon with 

holes, and distance is taken to be (straight-line) L, distance. 

(3) An O(I+nlogn) algorithm (where I = O(n*) is the complexity of a certain arrangement) for computing 
an optimal 1-median for the case that D = F = P, a polygon with holes, and distance is taken to be 

Ly geodesic distance inside P. 

(4) A proof of NP-hardness for the k-median problem when the number of centers, k, is part of the input, 

and D = F = P is a polygon with holes. This adds specific meaning to the statement by Wesolowsky 

and Love [55] that computing the optimal position of several locations “is obviously very tedious when 

(the number of locations) is very large”. 

(5) Generalizations of our results to the following cases: non-uniform probability densities over the demand 

set D; fixed-orientation metrics (generalization of £1), which can be used to approximate the Euclidean 

metric; and, higher dimensions. 
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Figure 1: A simple example: The region D = F = P is shown as a polygon with a single (parallelogram) 

hole, shown shaded. There are two points (marked “c*”) that minimize the average straight-line L, distance. 

(In this particular example, the optima lie on the boundary of P.) 

Related Work. There is a vast literature on location theory; for a survey, see the book of Drezner [16], with 

its over 1200 citations that not only include papers dealing with mathematical aspects of optimization and 

algorithms, but also various applications and heuristics. A good overview of research with a mathematical 

programming perspective is given in the book of Mirchandani and Francis [38]. 

There has been considerable activity in the computational geometry community on facility location prob- 

lems that involve computing geometric “centers” and medians of various types. The problem of determining 

a l-center, point c, to minimize the maximum distance from c to a discrete set D of points is the familiar 

minimum enclosing disk problem, which has linear-time algorithms based, e.g., on the methods of Megiddo. 

The geodesic 1-center of simple polygons has an O(n log n) algorithm [46]. Exciting recent results of Sharir



et al. [48, 20, 8] have yielded nearly-linear-time algorithms for the planar two-center problem. The more 

general p-center problem has been studied recently by [49]. 
The results outlined in this abstract constitute much of the PhD thesis of Weinbrecht [53]; most of the 

details necessarily omitted here are presented in-depth in the thesis. 

2 Preliminaries 

We will let Z = (x,y) denote a candidate center point in F C R?. (We concentrate on two-dimensional 
problems until Section 8, where we discuss extensions to higher dimensions.) We defer discussion of multiple 

center points (k > 1) to Section 7; for now, k = 1 and we consider the Weber (1-median) problem. 

We let P denote a polygonal domain, possibly with holes. For purposes of our discussions, we focus on 

the case in which D = F = P: we restrict Z to P, which also equals the demand set. Our results will apply 

more generally to cases in which D 4 F’,, but we simplify our discussion here to the case D = F. 

Furthermore, we restrict our discussion in this abstract to the case in which the demand is uniformly 

distributed over the set D = P, so our goal is to compute average distance. 

Thus, the value of our objective function, denoted f(Z), is given by the integral 

IZ) = flesy) = / / scape Z (ese) dees 

where d(-,-) denotes either (straight-line) L; distance or geodesic L; distance within P. (We abuse notation 

slightly by writing f(Z) = f((x,y)) = f(x,y)-) 
In order to analyze the k-median problem with respect to geodesic distances, we will utilize several 

definitions and results from the theory of geometric shortest paths among obstacles. The shortest path map, 

SPM(s), with respect to source point s, is a decomposition of P into cells according to the “combinatorial 

structure” (sequence of obstacle vertices along the path) of shortest paths from s to points in the cells. In 

particular, the last obstacle vertex along a shortest s-t path is the root of the cell containing t. The root of 

a cell lies on its boundary and can reach each point of the cell directly. We store with each vertex, v, of P 

the geodesic distance, dg(s,v), from s to v, as well as a pointer to the predecessor of v, which is the vertex 

(possibly s) preceding v in a shortest path from s to v. The predecessor pointers provide an encoding of the 

shortest path tree, SPT(s). The boundaries of cells consist of portions of obstacle edges and bisector curves. 

The bisector curves are the locus of points p that are (geodesically) equidistant from two roots, u and v: they 

satisfy dg(s,u) + d(u,p) = dg(s,v) + d(v,p), where dg(-,-) denotes the shortest path (geodesic) distance 
function, and d(-,-) denotes our underlying distance function (£1, Lo, etc.). Figure 2 shows the types of 
bisectors that can arise in the L; metric; Figure 3 shows an example of an L; shortest path map. If t lies in 

the cell rooted at r, the geodesic distance to t is given by dg(s,t) = dg(s,r) + d(r,t). Shortest path maps 
can be computed in optimal time O(nlogn), both in the Euclidean metric and in the L; metric [24, 39, 41]. 
For more information, see the survey chapters by Mitchell [42, 43]. 

L. 
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Figure 2: L, bisectors.



  

  

Figure 3: SPM(Z) for a polygon P having two holes. Vertices are labeled with their L; geodesic distances 

from Z. 

3 Local Optimality Conditions 

For any given center location Z, the objective function value f(Z) that gives the average distance from Z to 

points of P can be evaluated by decomposing P into a set of “simple” pieces, computing the average distance 

for each piece, and then obtaining the total average distance as a weighted sum of the average distances for 

the pieces. In the case of straight-line L, distance, we simply use a trapezoidization (or triangulation) of P 

to determine the pieces; this can be done in linear time if P is simple, or in O(nlogn) time if P has holes. 

In the case of geodesic distance, the shortest path map, SPM(Z), gives a decomposition of P into cells (each 

of which can be refined to yield a decomposition into O(1)-size pieces), each having a corresponding root 

vertex on its boundary. By computing the average distance from points of a cell to the cell’s root r, and 

then adding this average to the distance dg(Z,1r) and summing over all cells, we obtain the average geodesic 

distance, f(Z). 
The average distance associated with a single simple piece is given by the following result, whose straight- 

forward proof is omitted here. 

Lemma 1 For a triangle T with vertices A, B, and C, let a be the length of AB, let c be the length of the 

altitude from C’,, and let b be the distance from A to the foot of the altitude from C. Then the average Ly; 

distance of points in r from verter A is $(a+b+c). 

     
Figure 4: Notation used in computing the average L; distance of AABC from A. 

The objective function, f(Z), is a continuous function of the location of the center Z. Since the set F = P 

of feasible placements is a compact domain, it follows that there is an optimum, which must, necessarily, be 

locally optimal. The following lemma characterizes local optimality:



Proposition 2 If Z € P is a local optimum of f, then there cannot be a feasible direction h = (hz, hy), 

ie, Z+eh € P for sufficiently small ¢), such that f(Z) > f(Z+ eh). If the gradient Vf exists in some 
neighborhood of Z, then this implies that for any feasible direction h, we have (Vf,h) > 0. 

In particular, for interior points that are locally optimal, the gradient must be zero; for points in the 

interior of boundary edges, the gradient must be orthogonal to the boundary. 

For any position Z of a center, the region P is subdivided into two pieces: the set W(Z) of all points for 

which a shortest path to Z reaches Z in a (“western”) direction with nonnegative x-coordinate, while E(Z) 
is the set of all points for which a shortest path to Z reaches Z in an (“eastern”) direction with non-positive 

x-coordinate. Similarly, we define N(Z) and S(Z). (Note that this partition looks different for straight-line 
and for geodesic distances; see Figure 5 (right) for the case of geodesic distances.) 

Then we have the following: 

Lemma 3 Consider the objective function f for average straight-line or geodesic Li distance in a region 

P. Let Z = (az,yz) be a point in P, with neither x nor y coinciding with the x- or y-coordinate of a local 

minimum or maximum of the boundary of P, and let A be the area of P. Then the first partial derivatives 

of f are well-defined and given by: 

folZ) = 4 (W(Z)-B(2), ) 
fy(Z) , 

Proof. 

  

  

          
    

Figure 5: Computing the partial derivative in «direction for (left) straight-line L; distances; (right) geodesic 

Ly distances. 

We discuss the x-coordinates for straight-line L; distances, see Figure 5 (left). Consider Z’ = Z + (h,0) 
for some sufficiently small h. Then we get 

z h, Zz) zo Yz 
fos, Ys) = lim TGa The) Hts) 

(2 (AW (xz, yz) — hE(az +h, yz) + O(h?)) 

h 
  = lim 

h—0



  

f(z, Yz) — f(@z, yz) + Henn) fen) 
_ i hW (xz, yz) — hE(xz +h, yz) + O(h?) 

~ Ano h 

= 5 (W(e.,y.) ~ Eley.) = 4 (W(Z) ~ BIZ). 

For geodesic distances, we use a similar argument in the full paper (see [53]), but the situation looks as 
in Figure 5 (right). 

  

      

It is readily seen that the function f,(Z) = 4(W(Z) — E(Z)) is not continuous at points where the 
boundary of P has a local minimum or maximum of its x-coordinates; we say that a chord through such a 

point is “critical.” 

However, f,(Z) is lower semi-continuous and monotonic, so there is a well-defined vertical median chord 
Cy at x-coordinate x,, such that f,(Z,) < 0 for all Z, = (x1, y1) with 2, < am, and f,(Z2) > 0 for all 

Z2 = (€2,y2) with x2 > x». Similarly, there is a unique horizontal median chord cy at y-coordinate ym. We 

call Zim = (Lm, Ym) the Ly origin of P. 

In some situations, we make use of properties of higher-order derivatives of f. In particular, we use the 

following lemma: 

Lemma 4 Consider the objective function f for average straight-line or geodesic Li distance in a region 

P. Let Z = (az,yz) be a point in P, with neither x nor y coinciding with the x- or y-coordinate of a local 

minimum or maximum of the boundary of P, and no point of the boundary of W(Z) or E(Z) coinciding 

with a verter of P. Then there is a neighborhood of Z for which f is a cubic function in x and y. 

Proof. 

b(t) 

    
4 bt) 

Figure 6: Trapezoids and slopes for higher order derivatives 

See Figure 6 for the case of straight-line distances, and consider changing Z to Z’ = Z + (h,0). Then 

W(a+h,y) = W(2,y) + Bot Bit+...+ Be (2) 

and 

E(x«+h,y) = E(az,y) — Bo — Bi —...— Br, (3)



with trapezoids Bo,...,B; as shown in the figure. Let b;(¢) be the width of trapezoid B; at x-coordinate t, 

and mjy and mg be the slopes of the upper and lower line segments bounding B;. Then 

1 
B= hb; (x) + 5/P (man _ mig). 

Then we get 
k 

fexa(X, y) =25°( MiN — mig). 

1=0 

This is a constant expression, so f is cubic in 2. 

For geodesic distances, the claim follows in a similar manner. Instead of being trapezoids bounded by two 

vertical chords, however, the areas B; are bounded by two bisectors of the SPM. It follows from elementary 

properties of L, bisectors that these bisectors move in a parallel fashion, provided that during the move from 

Z to Z', no polygon vertex is hit by the bisector. Thus, the B;’s are pseudo-trapezoids, and the area of each 

B;, is still a quadratic function of h. (Details are contained in the full version of the paper.) 
  

      

4 Simple Polygons 

In this section, we show how to compute in optimal (O(n)) time a point that minimizes the average geodesic 

L, distance for a simple polygon. 

It follows from our observations from the previous section that a point has locally optimal xz-coordinate 

if and only if its vertical chord passes through the L; origin of the region. Let Zn, = (@m, Ym) be this origin. 

In the following, we use the structure of simple polygons to show that Z,, has to lie within the feasible 

region P. 

Theorem 5 The point Z,, is feasible and thus a unique global optimum. 

Proof. Assume to the contrary that Z, is infeasible. Then the chord c, subdivides P into two or more 

pieces: let EF denote the part to the right (“east”) of c,, and W the part to the left (“west”) of c,. Similarly, 

the chord c, subdivides P into two or more pieces, with N (“north”) denoting the part above cy, and S$ 

(“south”) denoting the part below c,. 
We distinguish the following cases, illustrated in Figure 7: 

Case 0: Neither c, nor c, are critical. If Z,, ¢ P, then, without loss of generality, the situation is 

as shown in Figure 7 (top). 
Then the two chords subdivide P into three pieces, E, WN N, and S. By assumption, we have A(E) > 0, 

A(S) > 0, AWN) > 0, and A(E) + ACS) + AWN) = A(P). Furthermore, the local optimality 
assumption on 2m implies A(E) = $A(P), and the local optimality assumption on ym implies A(S) = 5 A(P). 
This implies A(W M N) = 0, a contradiction. 

Case 1: Precisely one of c, and c, is critical. If Z,, ¢ P then, without loss of generality, the 

situation is as shown in Figure 7 (center), with c, being critical. 
As in Case 0, the vertical chord c, partitions P into two pieces, “eastern” EF and “western” W, and, by 

local optimality, A(E) = A(W) = 5A(P). On the other hand, cy partitions P into an “upper” piece N, a 

“lower” piece S,, and a second “lower” piece $2, all with positive area. (Note that the interior of S: may 

consist of several connected components, if the chord cy, meets several local maxima of the boundary of P.) 

By local optimality, we know that A(N) < $A(P), AUN) + A(S2) > $A(P). Since NU $2 € E, we have a 
contradiction. 

Case 2: Both c, and c, are critical. If Z,,, ¢ P then, without loss of generality, the situation is as 

shown in Figure 7 (bottom). 
As in Case 1, the horizontal chord c, subdivides P into a “northern” piece N, a “southern” piece 5}, 

and a second “southern” piece $2, all with positive area. Similarly, the vertical chord c, subdivides P into 

a “western” piece W, an “eastern” piece £,, and a second “eastern” piece E2, all with positive area. By
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Figure 7: Intersection of median chords. 

local optimality, we know that A(N) < $A(P), A(NV) + A(S2) > $A(P), and similarly, A(W) < 
A(W) + A(E2) > 4A(P). Since N U S2 € E, we have a contradiction. 

A(P), 
  

      

Theorem 6 The point Z, can be computed in linear time. 

Proof. We describe how to compute the z-coordinate x, of Zm; the y-coordinate is found in a similar 

Manner. 

In linear time (using Chazelle’s algorithm [10]), we build the vertical trapezoidization of P, which is 
defined by drawing vertical chords through every vertex of P. Each piece (cell), 7;, of the map is either a 
vertical-walled trapezoid or a triangle (a degenerate trapezoid). Consider the adjacency graph G of these 

pieces 7; (i.e., the planar dual of the trapezoidization); since P is a simple polygon, G is a tree. 

The x-coordinate x, of the optimal point Z,, has to intersect some piece 7T,,. Consider the partition of G 

induced by removing T,,; let Cmax be the heaviest connected component in this subdivision, and let Tmax be 

the unique node of Cynax adjacent to T,. The weight of Cra, cannot exceed A(P)/2, or the local optimality 

of Z,, would be violated: moving Z,,, from 7,, by an infinitesimal € into Tmax would reduce the distance to 

Zm by € for a set of points of a total area more than A(P)/2, while increasing it by at most ¢ for a set of 
points of total area less than A(P)/2. Thus, 7, is a median in the weighted tree G.



A median in a weighted tree can be computed in linear time (e.g., see Goldman [21]). This allows us to 

compute in linear time a piece 7,, that contains the critical coordinate x. 

Once 7, has been identified, it is easy to compute v7: assuming that x», is not given by one of the two 

vertical chords, we only have to identify the (unique) «-coordinate that splits P into two pieces of equal 

area. Since the slope of the boundary segments of 7,, does not change, this computation can be carried out 

by solving one quadratic equation. 
  

      

5 Straight-Line L, Distance 

For straight-line distances, a finite average is guaranteed even for disconnected regions P, as long as they are 

compact. As in the case of geodesic distances, we can consider local optimality for finding a global optimum 

of f. The example in Figure 8 shows that even for the special case of a simple polygon P, the L, origin of 

P may not be a feasible point. 

  

    

    

      

Figure 8: For straight-line distances, the L; origin of a simple polygon P may be infeasible 

This makes it more involved to compute all local optima. In the following, we describe how to evaluate 

them in O(n?) time. 

Theorem 7 For straight-line L, distances, a point Z* = (a*,y*) in a polygonal region P that minimizes 

the average distance f to all points in P can be found in time O(n”). 

Proof. We apply the local optimality conditions. We start by computing in time O(nlogn) the Ly origin 

Zm of P; if Zm is feasible (i.e., Zm € P), we are done. If no interior point of P is a local optimum, then we 

have to consider the boundary of P. This yields a set Eq of O(n) line segments and a set Vy of O(n) vertices 

that we examine for local optimality. 

We overlay the set of vertical and horizontal lines through all vertices of P with Eg, subdividing each 

segment in Ey into O(n) pieces, bounded by a total of O(n?) “overlay” vertices V,. Let E, be the resulting 

set of O(n?) subsegments. See Figure 9. 
Now we can examine the interior points p; = (t, y(t)) of each edge e; € E, for local optimality. Let s; be 

a vector parallel to e;. By construction of E,, the vertical and horizontal lines through p,; cannot encounter 

a vertex of P as p; slides along one subsegment of E,. Thus, it follows from Lemma 4 that f,(pz) is a 

quadratic function in t, then so is f,(p,). Therefore, considering the local optimality condition 

(Vf, 5;) =0 

for all O(n?) subsegments e; € Ey yields a set of O(n?) quadratic equations in t. These can be solved in 
amortized time O(n?), since we can obtain the coefficients of each quadratic equation in amortized constant 

time by advancing from cell to cell in the overlay arrangement. This gives, for each subsegment e;, at most 

two local optima, q;,1 and q;,2. Let Ve be the union of E, and all q;,1 and q;,2. By construction, Ve contains 

10



  

    
  

Figure 9: Subdivision of the polygon into cells. 

O(n?) elements, and all local optima of f occur at points of Vp. Thus, our goal is to evaluate the objective 

function at each of these points and to select the best one. This is simply done in amortized time O(1) per 

candidate, by walking over the overlay arrangement and incrementally updating the value of the objective 

function. 
  

      

In many cases, the following property of straight-line medians can be applied for a reduction of the set 

of boundary segment that we need to consider. (See Figure 10 for an illustration.) If Zm = (am, Ym) is the 
Ly, origin of P and p; = (21, y1) and pz = (x2, y2) are points in P, we say that p; dominates po, if p; lies in 

the rectangle spanned by Z,, and po. 

  

we
 

  

  

    
  

    
  

  Figure 10: p2 is dominated by p; and cannot be a local optimum 

Lemma 8 Let p, = (21, y1) and pa = (£2, y2) be points in P. If py, dominates po, then f(pi) < f(pe). 

Proof. Suppose that x2 > 21 > @m and y2 > y1 > Ym. Then W(p2) > W(p1) > 4 and S(p2) > S(p1) > 4, 

so moving a center from pz to p,; cannot increase the objective value. 
  

    

  Using a plane-sweep algorithm, it is possible to identify the non-dominated pieces of the boundary in 

time O(nlog n). If this set has complexity o(n), then we get a reduction of the overall complexity. 

An easy instance of the problem solved in this section is shown in Figure 11 (based on the simple example 

of Figure 1); this example shows the necessity of solving quadratic equations in computing the solution. We 

get the non-dominated points p1,p2,p3 and the edge e2.3 = Pops. 
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Figure 11: The example from Figure 1 is analyzed: point py = (2/7 _ 3, 11 — 4/7) and its mirror image, 

ps5, are the two optima. 

6 Geodesic Distances in Polygons with Holes 

Now we discuss an even more complicated case, which arises when considering geodesic L, distances in 

polygonal regions P that may have holes. Again, we analyze the set of locally optimal points: as long as a 

potential center can be moved in some axis-parallel fashion that lowers the average L1 geodesic distance to 

all the points, it cannot be optimal. 

The local optimality of a point Z is closely connected to the shortest path subdivision that it induces: 

for local optimality in the x-direction, the subdivision into W(Z) and E(Z) needs to be balanced; for local 
optimality in the y-direction, the subdivision into N(Z) and S(Z) needs to be balanced. The boundary 
between W(Z) and E(Z) is formed by bisectors for position Z. It follows from basic properties of shortest 
path maps that the total complexity of this boundary is O(n). (See, e.g., [40].) 

As we showed in Lemma 4, there is a neighborhood for each point Z € P where the objective function f 

is cubic, provided that no bisector for Z meets a boundary vertex. This motivates the following lemma: 

Lemma 9 There is a subdivision of P of worst-case complexity I = O(n*), such that f is a cubic function 

within each piece of the subdivision. 

Proof. Lemma 4 implies that we are done if we can compute a subdivision of the claimed complexity such 

that we can move continuously between any two points in the interior of a connected cell of the subdivision, 

without any bisector encountering a vertex of the polygon during this motion. Provided that there is a 

position Z for which a bisector encounters a vertex v of the polygon, this vertex v is contained in W(Z) 

as well as in E(Z). Thus, there are two topologically different paths from Z to v, one fully contained in 

W(Z), the other contained in F(Z). This implies that there are two topologically different paths from v 
to Z, i.e., Z must lie on a bisector of v. Therefore, the required subdivision is obtained by considering the 

O(n) bisectors of the O(n) polygon vertices. Each bisector has a complexity of O(n), so the subdivision is 

defined by the overlay of O(n?) line segments, yielding an arrangement of worst-case complexity I = O(n*). 

Examples exist (see the full paper) to show that this bound on J is tight in the worst case. (Chiang and 
Mitchell [13] have studied similar arrangements that arise in overlaying shortest path maps in the Euclidean 

shortest path metric.) 
  

      

Considering the local optima on each cell of the arrangement allows us to obtain the following: 
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Theorem 10 For geodesic L, distances, a feasible point Z* = (a*,y*) in a polygonal region P with holes 

that minimizes the average distance f to all points in P can be found in worst-case time O(I + nlogn). 

Proof. (sketch) The idea is to reduce the problem to a set of O(I) candidates, with O(1) such candidates 
in the interior or on the boundary of each cell. The function parameters for f within each cell can be 

determined in total time O(J + nlogn) by traversing the arrangement and doing updates when changing 

from one cell to its neighbor. After determining the O(I) candidate locations, we can determine a best 

among them by computing their objective values, again in total time O(J + nlogn) by being careful how to 

update the objective function values. 

Thus, consider an arbitrary cell of the decomposition. If there is a local minimum interior to the cell, the 

gradient Vf must vanish. Since f is cubic within the cell, this means that we get a system of two quadratic 

equations (both components of the gradient must be zero) with two variables (a and y). Such a system can 
be solved in constant time using radicals. 

Similarly, we can determine the local optima with respect to variation along a boundary segment of a 

cell. For each segment, the gradient needs to be orthogonal to the segment. As in the straight-line case, this 

yields a quadratic equation that can be solved in constant time. 

Finally, there are O(Z) vertices in the arrangement, each of which we consider as candidates. 
  

      

7 Many Centers 

We now consider the k-median problem of placing & centers into a polygonal region P, such that the overall 

average distance of all points p € P to their respective closest centers is minimized. We show that this 

problem is NP-hard for polygons with holes. 

Here, we give only an outline of the full proof. Our construction uses a reduction from PLANAR 3SAT. 

First, the planar graph corresponding to an instance I of PLANAR 3SAT is represented in the plane 

as a planar rectilinear layout, with each vertex corresponding to a horizontal line segment, and each edge 

corresponding to a vertical line segment that intersects precisely the line segments corresponding to the two 

incident vertices. There are well-known algorithms (e.g., [47]) that can achieve such a layout in linear time 
and linear space. See Figure 12. 

Next, the layout is modified such that the line segments corresponding to a vertex and all edges incident 

to it are replaced by a loop — see Figure 13 (top). At each vertex corresponding to a clause, three of these 

loops (corresponding to the respective literals) meet. Finally, the edges of all loops are replaced by a sequence 

of small squares that are interconnected by narrow corridors; also, each vertex for a clause is replaced by 

a single small square and linked to the adjacent variable loops by three narrow corridors. See Figure 13 

(bottom) for the overall picture. 
Let 3k be the total number of squares in all variable loops. It can be checked that there is a placement of 

k variables with a low overall average distance of points to their closest centers (i.e., a low objective function 

value), if and only if there is a placement such that each square has a center or is next to a square with a 

center. This means that each clause square must be next to a square with a center. We prove that this is 

possible if and only if there is a satisfying truth assignment for the PLANAR 3SAT instance J. Details are 

contained in the full version of the paper. 

8 Conclusions 

In this paper, we have given the first exact algorithmic results for the Weber problem for a continuous set of 

demand locations. We have shown that for L, distances in the plane, we can determine an optimum center 

in polynomial time, with the complexity ranging from O(n) for the case of geodesic distances in simple 

polygons, to O(n”) for straight-line distances in general polygonal regions, and O(n*) for geodesic distances 

in polygons with holes. 
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Figure 12: The graph G, for the Planar 3SAT instance I = (x1 V x2 V 73) A (#1 V %3 V X4) A (Zo V &3 V £4), 

and its geometric representation. 

Our results rely on a careful understanding of the local optimality criteria. Our local optimality conditions 

generalize to the case of more general (non-uniform) nonnegative demand densities 6(p) by using the following 

observation. Regardless of the demand density function, any center location Z € P induces a subdivision of 

P into E(Z) and W(Z), and N(Z) and S(Z) by shortest-path bisectors. Then the local optimality condition 
on Z requires that E(Z) and W(Z), and S(Z) and N(Z) are balanced in the following sense: instead of 
requiring that E(Z) and W(Z), and N(Z) and S(Z) have the same area, we consider the points Z where 
the integrals Jew (z) 6(p)dp and Jpen(z) 6(p)dp, and pen (Zz) 6(p)dp and Jpes(z) 6(p)dp are the same. Points 

with these properties are called 6-medians. Similar ideas can be used for describing boundary points. If, for 

a particular 6, there is a limited number of 6-medians, they can be computed in polynomial time, and it 

is possible to compare objective values in polynomial time, then we can determine a 6-center for the given 

region. This includes the case in which the demand function is given by point weights in combination with 

a uniform demand distribution over P, which is a problem formulated by Wesolowsky and Love [55]. It is 

also easy to see that the above methods can be applied for the case in which F 4 D. 

Approximation algorithms for the Euclidean case can be devised based on generalizing the L; metric 

results to fixed orientation metrics. The local optimality conditions become more complex; however, the 

inherent algebraic complexity remains the same, for any metric whose disks are convex polygons. 

Our methods can also be applied in higher dimensions, by generalizing the local optimality conditions 

and carrying through the analysis in a very similar manner to the two-dimensional case. Figure 14 shows 

that a generalization of Lemma 6, however, does not hold in three-dimensional space (the main reason being 

that any axis-parallel plane cuts the region into not more than two pieces), so we cannot use the same idea 

to exploit simplicity for achieving a better complexity than in the case with holes. However, we can still use 

a subdivision into cells and study the objective function within each cell. As in the two-dimensional case, 

the objective function is cubic for each coordinate, if P is a polyhedral region.



  

  

Xi Xo J 

CG, He o C;   

  

    
  

  

Figure 13: Replacing variables by loops (left); final polygon (right) 

  

Figure 14: In three-dimensional space, there may not be a feasible point that is a median of P in all 

coordinates. 
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