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Abstract

The simulation of drop size distributions in stirred liquid-liquid sys-
tems is studied. The simulation is realized via the coupling of the CFD
code FEATFLOW with the population balance solver PARSIVAL. It is shown
how such a coupling may be constructed and the properties of the coupled
solver are critically analyzed.

1 Introduction

The control of drop size distributions in stirred liquid-liquid systems is of major
interest in many fields of engineering science such as chemical, pharmaceutical,
mining, petroleum, or food industries. The technical vision is to be able to
achieve a desired averaged drop size and a defined drop size distribution, using
control parameters such as the stirrer speed. In many technical applications,
like in the production of styrofoam, for example, monodisperse systems with a
certain drop size are desired. However, before being able to control the drop
size distribution in a stirred tank reactor, one needs to understand, model, and
simulate the processes occuring in such a system.

In this paper, we will discuss an approach for the numerical simulation of the
processes in a stirred liquid-liquid system via a coupling of the CED code FEAT-
Frow with the population balance solver PARSIVAL.

Since the energy dissipation rate € is needed for the calculation of the coales-
cence and breakage rates in PARSIVAL, these values have to be provided by
the flow simulation. For this reason the k-¢ turbulence model solver Pp3d-
Ke is used from the list of solvers offered by FEATFLOW. This method solves
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the Reynolds-averaged Navier-Stokes equations plus two transport equations for
the turbulent kinetic energy k and its dissipation rate €. The special features
of FEATFLOW that are needed for the simulation of the considered application
and, in particular, for the coupling approach, namely the treatment of moving
boundaries as well as the integration of a k- turbulence model, are described
in Section 2. However, the use of FEATFLOW extended by the k- model within
this coupling approach is very sophisticated, see Section 3. We will describe
some of the current and future challenges in Section 4.

2 New features of FeatFlow

2.1 Moving boundaries

A 3D finite element solver for the incompressible Navier-Stokes equations with
moving boundary parts is provided in the module Pp3d_Movbc of the open-
source CFD code FEATFLOW. This module is based on iterative filtering tech-
niques in combination with fictitious boundary conditions that are used to im-
plement the moving tread patterns. All calculations are performed on one mesh
which does not change in time. From a geometrical point of view, this approach
is successful even together with the prescribed complex tread patterns such that
MPEG movies can demonstrate the realistic movement of these patterns. More
detailed analysis and a way of realization can be found in [TDR02]. However,
the moving boundary method for the k-¢ turbulence model meets some extra
difficulties, which will be discussed in Section 3.

2.2 A realization of a k-¢ turbulence model

When dealing with three-dimensional flows at high Reynolds numbers, the nu-
merical costs of DNS (Direct Numerical Simulation) are extremely high. To
relax these costs, a k- turbulence model was recently added to FEATFLOW, in
order to allow the calculation of such flows on meshes of moderate size. The
corresponding CFD code Pp3d-Ke was developed by D. Kuzmin building on
the laminar FEATFLOW version (http://www.featflow.de). The mathematical
basis of this program can be described as follows.

We consider the following system of Navier-Stokes equations:

Jdu
B +u-Vu = —-Vp+V-((vg+vr)D(u)),
(1)
V-u = 0,
where u = [uy,uz,u3]” is the averaged velocity, p is the ayeraged pressure,

D(u) = 5 (Vu+ (Vu)?) is the strain tensor and vy = C'ng—z is the turbulent

1
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viscosity. The turbulent kinetic energy k and its dissipation rate £ are modeled
by two scalar transport equations:
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The equations contain some empirical constants for which the solver uses the
default values C), = 0.09, C1, =1.44, Co = 1.92, 05, =1.0, and 0. = 1.3.

Additionally, appropriate boundary conditions for u, k and ¢ have to be pre-
scribed on 99 = ', U o U Tyanr

As usual, Dirichlet boundary conditions for u, k& and e are prescribed on the
inflow boundary T';,:
k3/2

u=g, kzcab|u|27 EZCMT> (3)

where ¢y, is an empirical constant [KT04] and [ is a mixing length.

Let (t,n) be the local orthogonal basis for a wall node, where t and n are the
tangential and normal directions, respectively. At the outlet T',,; the following
"do-nothing’ boundary conditions are prescribed:

Bu_o 8/€_0 Oe

%— 5 %— %:0, n[p]—l/TD(u)]:O (4)
In the k-e model the behavior of a fluid near a solid wall is modeled by wall func-
tions. The computational wall boundary I'ya.y is located at a distance § from
the real geometrical wall boundary. In our case we assume that the computa-
tional domain is already reduced by a layer of width §, which is a user-defined
parameter. Then we use the following boundary conditions on I'yay:

uZ u u? ul

n.u:O’ D(u)n: k= T

4 v U _ Y
vy |ul’ VG TR

where k = 0.41 is the von Karméan constant and u. is the friction velocity, given
here by the solution of the logarithmic wall law equation:

(5)

1
ul = ur(~logy™ +5.5), (6)

where y* = is the local Reynolds number.

()
1%
The discretization in space is performed by a finite element method using un-

structured grids [Tur99]. A detailed description of the numerical algorithm for
the k- model can be found in [KT04], [KLTO05].
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Figure 1: Stirred liquid-liquid system.

3 Simulation of stirred liquid-liquid systems

In this section, we consider a stirred liquid-liquid system, i.e. a stirred tank
filled with two immiscible liquids that are stirred such that one liquid disperses
into the other by building droplets, see Fig. 1. All droplets together are called
the dispersed phase, whereas the other fluid is called the continuous phase.

3.1 Modeling

To model the relevant processes appearing in such a system, one has to account
for the turbulent flow in the tank as well as for the population dynamical pro-
cesses of the dispersed phase. In the discussed application, these latter processes
are coalescence and breakage.

The flow field in the stirred tank is described by the Navier-Stokes equations
for incompressible fluids, whereas the behavior of the drops is modeled by a
population balance equation, where coalescence and breakage appear as source
and sink terms on the right-hand side. Furthermore, turbulence is modeled by
Reynolds-averaging and then solving the arising closure problem by using a k-
turbulence model.

Remark 1 Let us discuss why it is useful to employ a k- turbulence model in
this context. It is clear that some kind of turbulence modeling has to be used,
since, otherwise the grid for the numerical calculation must be extremely fine
to resolve the small eddies. For a 3D simulation of the stirregd tank reactor with
Reynolds number Re = 30, 000 this would require about Re® > 10, 000, 000, 000
nodes (see e.g. [GDN9S8]), which is not feasible with today’s computing power.

The k-¢ turbulence model is natural in this context, since the quantity e is
needed anyway in the models for the coalescence and breakage processes.
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If we assume that the drops do not have any influence on the flow field (they
are just moving with the fluid with the same velocity), then the system of equa-
tions describing the processes in a stirred tank reactor is given by the Reynold-
averaged Navier-Stokes equations (1) together with the transport equations for
k and € (2) from the k-¢ turbulence model, and an averaged population balance
equation, given by:

of(x,V,1)

g _|_v(uf(X,V,t))—v(Ctvf(xv‘/vt))

= S(J:roal(x> V; t) + S;c)al(x7 ‘/7 t) + leJrrcak(X7 ‘/7 t) + Sl;rcak(x7 V7 t)7 (7)
where f(x,V,t) is the averaged number density function, which is not only
dependent on the space coordinates x and the time ¢, but also on the drop
volume V. The coaleascence and breakup phenomena are taken into account by
means of the terms in the right-hand side of this integro-differential equation.
The terms due to coalescence s= (x, V,t) are modeled by

coal
v
Sl Vi) = [ RV V) V01 GV 0
’ Vinax—V
Som(xVit) = —f(x,V,t)/O Reoa(V, V' y(x, 1)) f(x, V', 1)dV".

Here, Reoa1(V', V", y(x,t)) denotes the coalescence rate, which describes the
probability that two drops with volumes V'’ and V" coalesce. The vector y is
the so-called continuous phase vector (see e.g. [Ram00]), which is dependent
on the properties of the continuous phase that influence the coalescence and
breakage processes. Thus, the vector y may consist of pressure, temperature,
or other values that we get from the calculation of the flow field.

On the other hand, the source and sink terms due to breakage stjfr cax (X, V, 1) are
modeled by:

VIUELX
e Vi) = [V y e VYY) Ropea V¥ (. 1)
f(X5 V’? t)dv/’
S};reak (X’ Vv’ t) = _Rbreak(Va Y(Xa t)) f(X7 ‘/7 t)

Here, Rireak(V', y(x,t)) denotes the breakage rate, which accounts for the prob-
ability that a drop with volume V' breaks up. Furthermore, v(V, V' y(x,t)),
the so-called distribution of daughter drops, describes the probability that the
breakage of a drop with volume V' leads to at least one daughter drop with
volume V. The quantity n(V’,y(x,t)) gives the number of daughter drops that
are formed by the breakage of a drop with volume V.

Physically, the following boundary conditions should be prescribed on I'yay =
1_‘stirrer U I—‘tank:
U = Ustirrer OIl Fstirrem
0 on I'iank,
fx,V;t) = 0 on T,

<]
I
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where T'girer describes the stirrer, and I't,nx the boundary of the tank. Note
that, for simplicity, the tank is modeled with a lid on top of it. Here, n =
[n;,ng,n3)7 denotes the outer normal vector. The prescribed velocity on the
stirrer Ugtiprer 1S given by
Ustirrer = |—7 sin(@)w, 7 cos(p)w, O]T,

where r = \/x? 4 23 is the radius, ¢ = arccos (%) is the angle, and w is the
constant angular velocity. This angular velocity is determined by the adjusted
rotational speed N* of the impeller. This parameter can be used as a control
input in order to influence the drop size distribution. The initial conditions
are chosen such that they are consistent with the boundary conditions. Fur-
ther details about the modeling of stirred liquid-liquid systems can be found in
[Sch04].

Setting of boundary conditions for the k-¢ turbulence model with moving bound-
ary parts has its own features, which we consider more precisely in 3.3.

3.2 Simulation approach

In this subsection, we will discuss how the system of equations (1-7) can be
solved numerically. For the analysis, it is instructive to start with a brief analysis
of the underlying differential-algebraic system, which we obtain after space-
discretization, which describes the dynamics of the process. This analysis gives
an indication of some of the numerical problems that may arise.

In [Sch04], it was shown that under the considered one-way coupling, the differen-
tiation-index, see [CG95, KMO06], of the differential-algebraic system that corre-
sponds to the equations (1-7), which describe the processes in the stirred tank
reactor, is two. This means that the index of the Navier-Stokes equations is not
increased by the coupling with the population balance equation. Thus, all time
integration schemes that are suitable for the solution of the semi-discretized
Navier-Stokes equations can, in principle, also be used for solving the discussed
coupled system.

Let us now discuss how the numerical simulation of the coupled system can be
realized. In principle, the best way to treat the arising system of equations is to
solve all the equations together as one coupled system (the so-called monolithic
model). However, the effort to implement such a solver is immense, and thus
this approach is currently not feasible in a short-term construction of a solver
to be used in practical applications. For this reason we discuss the coupling of
existing solvers, which is known as “co-simulation”. For this, already developed
and implemented methods are combined via a relaxation method. This means
that in each iteration step one method uses the results of a previous step of the
other method and vice versa.

In this paper, we will apply this approach to solve the coupled system using the
CFD code FEATFLOW for the flow simulation and the solver PARSIVAL [Wul]
for the calculation of the drop size distribution.
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As in the physical system, we consider a “one-way-coupling”, i.e. we only con-
sider the influence of the flow field on the drop size distribution and we only use
the results of the CFD simulation for the calculation of the drop size distribu-
tions in each time step.

Using the recently implemented k-& model also for the coupling between FEAT-
Frow and PARSIVAL, this coupling approach can be realized as follows. In a
first step, the flow field as well as the turbulence parameters are calculated by
FEATFLOW using a very fine grid with several millions of cells. Since it is too
costly to use just as many cells for the simulation of the drop size distributions,
several cells are combined to one compartment so that for each compartment
the drop size distribution can be calculated with PARSIVAL. Within these com-
partments, the drop size distribution is assumed to be space-independent, and
the compartments are chosen in such a way that this is approximately satisfied.

As next step, we implement a reactor consisting of [ compartments in PARSIVAL.
In every time step, the mean energy dissipation rate &; for each compartment
K, is read from a file containing the CFD results such that the changes of the
drop size distribution due to coalescence and breakage can be calculated. The
mean energy dissipation rate &;(¢) in compartment K; is computed from the
value e(x,t) that we get from the CFD calculation:

E(1) = % /V ext) dx (8)

where V; denotes the volume of compartment K;. Furthermore, the average vol-
ume flow Vw (t) between two neighboring compartments K; and K is calculated
via

Vij(t) = max { 0, / u(x, t) - n; dx }, (9)

ij

where u(x,t) is the velocity calculated by FEATFLOW, A;; denotes the area of
the face lying between the two compartments K; and K, and n;; denotes the
unit normal vector on A;; in direction from compartment K; to compartment
K;. With these volume flows the convective flow of the drop size distributions
is modeled. In time step ¢ = tp41, we get the new distribution f;(tg4+1) in
compartment K; from

fl) = s+ Y 0 gy oy Tl

[ [

j neighbor of ¢ j neighbor of 4

3.3 Realization of the coupling

The coupling between the two simulators as described in the previous subsection
is still not completely satisfactory. This is due to the fact that the implementa-
tion of the considered configuration in FEATFLOW leads to some difficulties that
have to be considered in more details. A first observation is that the fictitious
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boundary method requires a very fine mesh in the area where the propeller its
rotating. If this mesh is too coarse, then the very thin propeller blades are
prescribed very inaccurately. This gives rise to large undesired errors in the
calculation of the velocity field.

The second difficulty arises from the fact that the available time wall boundary
laws for the k- turbulence model that were derived from physical experiments
of channel flows require the boundary to be smooth and very plane.

Taking into the consideration these observations and assuming that major chan-
ges in the velocity vector field in the stirred tank reactor are due to the propeller,
we come to the conclusion that it is preferable to perform a coordinate trans-
formation using a fixed propeller around which the outside wall of the tank is
rotating. Using this transformation, the system of Reynolds-averaged Navier-
Stokes equations turns into

0
T iuvu = —Vp+V - -((vo+vr)D(u)) — 2w xu—w X (w X ),

ot
V-u = 0,

where w is an angular velocity vector of the stirred tank reactor, r is a radius
vector from the origin to the certain point, 2w x u and w x (w x r) are the
Coriolis and centrifugal forces, respectively.

Using

w X (wxr):—V@

and setting P = p — 3(w x r)? yields the system

0
M iuvu = —VP+V - ((vy+vr)D(u)) — 2w x u,

ot
V-u = 0.

When solving this system, we have to be careful that the real pressure p has to
be calculated from the transformed ’'pressure’ P. Furthermore, if the rotation
is fast, i.e., the Eckmann number Fk := ;75 < 1, where L is a characteristic
length, is large, then inertial forces dominate viscous forces and it may happen
that the simulation diverges, see [Cod99], [CodO01].

Finally, we have to consider the boundary conditions in this setting. The given
wall boundary conditions (5) in the k- turbulence model, which are prescribed
everywhere on the solid wall are not sufficient, since we are not able to deal
with u —u-n (the tangential part of the velocity vector field) on the boundary.
This problem can be overcome by realizing generalized boundary conditions
according to [KFT00] and [JD92].

Due to the described difficulties that are currently being addressed, the coupling
between FEATFLOW and PARSIVAL is currently still done without a turbulence
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model. For the simulation of the drop size distributions with PARSIVAL, the
results of the CFD simulation are used only for the volume flows between the
compartments whereas for the mean energy dissipation rates &; values from the
literature and experimental investigations are used.

Theoretically, if we were not face the difficulties discussed in Remark 1, the
coupling between FEATFLOW and PARSIVAL could also be realized without tur-
bulence model. In this case, the energy dissipation rate € has to be calculated
by its definition

v T
e = L{IVW + (V)T B,
where the values of the fluctuations

t
1 [t

=— u(r)dr
to Ji—to

can be obtained by the results of the DNS.

However, in practice, this approach is usually very inaccurate, at least if post-
processing is used for the calculation of € from the simulated velocity field u,
which is then only given for a finite number of nodes. This typically leads to
large approximation errors, in particular, in the calculation of the derivatives.

3.4 Simulation results

In the following, we will present the results of the simulation of the flow field
with FEATFLOW as well as of the coupling with PARSIVAL.

3.4.1 Simulation of the flow field

The flow field in the stirred tank was simulated with FEATFLOW. The sim-
ulations were done for a stirred tank with torispherical head equipped with a
six-bladed Rushton turbine and four baffles. Fig. 2 shows the grid consisting of
about 2.8 million elements (hexahedrons) that was used for the simulation. The
figure also shows the geometry of the tank and of the impeller. The tank has a
height of Hi,nx = 0.15m and the same diameter Dy, = Hiank. The impeller
has a diameter of Diyp = %Dtank and is located at height Hj,, = %Htank. The
blades of the stirrer are 0.012m wide, 0.01m high, and 0.001m thick. The
center disk has a diameter of 0.038 m and a thickness of 0.001m. The shaft is
0.009 m in diameter, and the hub has a diameter of 0.013m. The baffles are
0.013 m wide, 0.1 m high, and 0.001 m thick and placed at a distance of 0.003 m
from the outer wall.

Fig. 3 shows the flow field in the stirred tank for Reynolds number Re = 30, 000,
which corresponds to a maximal prescribed velocity of vy = 1.885m/, at the tip
of the blades. Furthermore, Dirichlet-zero boundary conditions were prescribed
on the whole boundary of the tank as well as on the four baffies.
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Figure 2: Grid used for the flow simulation with FEATFLOW consisting of about
2.8 million elements. Left: longitudinal section, middle: cross section through
the blades, above / below the disk, right: cross section through the disk.

Figure 3: Flow field in the stirred tank for Re = 30,000. Left: cross section,
middle: longitudinal section, right: longitudinal section, scaled plot.
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In the left picture of Fig. 3, one sees a cross section of the velocity magnitude
at height Heank/3, i.e. directly through the blades and through the disk. This
picture shows that the highest velocities occur, as expected, directly at the
blades. Here, the fluid is moved with the stirrer, whereas near the wall or at
the baffles the velocity of the fluid decreases down to zero.

In the middle picture, a longitudinal section of the velocity magnitude is shown.
In this section, one observes the typical, so-called “drussy” shape of the flow
field: The fluid is first moved outwards in radial direction, then splits up, when
the boundary of the tank is reached, and flows back building two circles, one
above and one below the impeller.

On the right-hand side in Fig. 3, a scaled plot of the velocity magnitude is
depicted. By this scaling, the flow field in the regions more far away from the
impeller can be seen better.

All three pictures show the flow field after about ¢t = 3.68 s, which corresponds
to about 44 revolutions. After this time, the flow field is fully developed.

Altogether, one can say that, in the whole, the “mainstream” of the flow field is
reproduced well by the simulation. However, if we have a more detailed look at
the results, then we observe several regions, where the flow field is not calculated
correctly. First, the width of the outwards flow in radial direction seems to be
too small. In addition, it is not clear if the “wiggling” of this flow can be counted
as turbulence or if it is an artifact caused by the numerics. Second, the velocity
gradients are too high in the region below the stirrer, and also the amplitude of
the velocity magnitude in this area seems to be to small.

Finally, also the gradients of the velocity at the boundary of the tank seem to
be too high. A reason for this may be the fact that the grid is too coarse to
resolve the boundary layer.

A detailed analysis of the results as well as a comparison with data from the
literature is under investigation. However, by now, one can already say that
either a finer grid or turbulence modeling is required in order to improve the
results, see also Section 4.

3.4.2 Division of the tank into compartments

As already mentioned in Subsection 3.2, we cannot use the same fine grid for
the calculation of the drop size distributions as for the flow simulation. The
reason for this is that the population balance equation is not only dependent on
space and time, but also on at least one internal coordinate that characterizes
the elements of the dispersed phase (like the drop volume V in the considered
application).

Since each additional coordinate increases the dimension of the problem, in
many applications one uses the assumption of an ideally mixed tank. This means
that the drop size distribution is assumed to be space-independent. However,
due to the locally strong varying energy consumption throughout the tank, it is
sensible to subdivide the domain at least into a few subdomains, the so-called
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Figure 4: Left: division of the tank into four compartments Ki,..., K4 due

to the velocity field. Right: Four-zone model with mean volume flows V,J and
mean energy dissipation rates &; drawn schematically.

compartments (which can be interpreted as a very coarse space discretization).
This division is done according to the flow field that we get from the CFD
simulation.

For the simulation with PARSIVAL, the tank is divided into four compartments
as shown in Fig. 4, where only one half of the tank is shown. Compartment K,
which lies directly around the stirrer, has the highest energy consumption, fol-
lowed by compartment K3, which is located in the same height, but in the outer
part of the tank. Below and above these two compartments, respectively, there
are the other two compartments K; and K, where the energy consumption is
much smaller.

3.4.3 Calculation of the mean volume flows V”

The next step is the calculation of the mean volume flows between neighboring
compartments from the velocities derived by the flow simulation. Theoretically,
these volume flows V” can be calculated by Eq. (9). However, in practice, we
have to approximate the integral by a sum over given velocities:

N

/ u(x,t)n;; dx ~ Z u,(t)n;; Aq,
A

ij a=1

where NV is the total number of nodes on face A;;. Here, u,, denotes the velocity
in node o and A, denotes the area of the part of the face A;; that belongs to node
a. If we assume the grid to be equidistant, then we can use the approximation

/A (X t)n” dx ~ Z ua 1’1” ZJ Z ua nw (10)

ij
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Figure 5: Volume flows between the four compartments. Values from CFD
calculation (diamonds) and optimized values (solid lines).

The resulting volume flows calculated by Eq. (10) are shown in Fig. 5 (the dia-
monds). From Fig. 4 it can be seen that, due to the required mass conservation,
the volume flows have to fulfill the conditions

T
Vig—=Vaz+ Ve = 0,
Vag = Va1 = Vay = 0,

Vag =V = 0.

However, for the computed values in Fig. 5 these conditions are typically not
satisfied.

There are several reasons for this. First of all, the grid used for the CFD simu-
lation is not equidistant and, therefore, the assumption used in Eq. (10) is not
fulfilled. However, this does not explain this significant deviation. Second, even
if the grid was equidistant, the volume flows would not be calculated correctly,
since FEATFLOW does not control the conservation of mass for every cutplane,
but only over the total domain.

To improve the calculation of these volumes one could use a more accurate inter-
polation formula, which takes the distance between two neighboring grid points
into account so that the assumption of an equidistant grid could be avoided.
However, the calculation of these distances is computationally too expensive
for an unsorted list of about 2.8 million nodes. Another approach would be
to choose the compartments for the calculation of the drop size distributions in
such a way that they are composed of several cells of the coarse grid used for the
CFD simulation. In this case, one would have the same number of nodes in each
element of the coarse grid (due to the regular refinement of the grid). Thus, one
could easily calculate the distance between two neighboring grid points (or at
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least an average of it) within each element of the coarse grid. However, in the
considered application, this approach cannot be used, since it is not possible
to combine the elements of the coarse CFD grid in such a way that this leads
to sensible compartments. An alternative would be to combine several cells of
one of the finer grids used in the CFD simulation to obtain appropriate com-
partments. However, this would lead to very complicated boundaries between
the different compartments, and, therefore, the calculations of the normal com-
pounds of the velocities would be very complex.

This analysis shows that the best way would have been to create the coarse grid
for the CFD simulation in such a way that an appropriate compartment model
could be easily created by the combination of several coarse grid elements. How-
ever, the creation of such a “clever” grid consisting of quadrilateral elements is
very sophisticated.

Since all the existent alternatives are either very complex and time-consuming
or should have been applied in advance, it was decided to use the computed
volume flows for the coupling and to fit them by applying the least-squares
method. To do this, for the given volume flows Vl’; between two compartments
K; and K; at time ), we determine the optimal volume flows zfj by solving the
following minimization problem:

|2* — V|| = min! st. Az* =0, (11)

k [,k ok Lk Lk kT Nk _ [\k Uk vk 7k UEIT :
where 2" = [2]y, 235, 251, 254, 240] ", V© = [V5, Vo5, Vai, Vi, Vig]" for all time
steps tx, and A is given by

1 -1 0 0 1
0 1 -1 -1 0
A= -1 0 1 0 0
0 0 0 1 -1

Since the volume flows Vl’; do not change much in time (due to the constant
stirrer speed), see also Fig. b, it is more reasonable to solve the following mini-
mization problem instead of (11),

|z — Vkﬂg =min! for all time steps t; s.t. Az =0, (12)

where z = [219, 293, 231, 234, 242]7 . Here, z denotes the volume flows that are
optimal with respect to the simulation results for all time points t;. The latter
formulation has the advantage that there are more data available for the calcu-
lation of the volume flows and as much information as possible is used for the
calculation of the optimal values.

Fig. 5 shows the optimized volume flows (the solid lines) depending on the given
volume flows VZ’; (the diamonds), obtained by a FEATFLOW simulation. Note
that the axis of abscissae gives the number of time steps starting at some time
point, when the flow field is already fully developed. The length of one time
step is given by At = 7.96 - 1073 s.
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Figure 6: Volume flows between the different compartments. Left: prescribed
volume flows 215 and 234, right: resulting volume flows calculated by PARSIVAL.

3.4.4 Simulation of the drop size distributions

For the simulation of the drop size distributions with PARSIVAL, we have imple-
mented a four-zone model, where the volume flows between the compartments
are read from a file containing the calculated values z;;, see Eq. (12). However,
in PARSIVAL, only two of the five volume flows have to be prescribed, the other
three are calculated by the program in such a way that mass is conserved, see
Fig. 6.

For the description of the coalescence and breakage processes the model by
Coulaloglou and Tavlarides [CTT77] was used. The mean energy dissipation
rates &; in the different compartments are chosen as follows:

51 =0.3295, & =125, & =25 & =036,

where € denotes the overall mean value of the energy dissipation rate ¢ through-
out the tank. By this choice, the turbulence distribution is as expected (and,
at least roughly, as in the literature, see [AKK99]). Furthermore, the condition

4
E Ei‘/i = é‘/tank
1=1

is fulfilled. To determine & we use
F— Ne (N*)3(Dstirrer)5
Vtank ’

where Ne denotes the power number, Dgiirrer is the diameter of the stirrer, and
Viank is the volume of the tank, see [Kra03]. For the considered application this
formula gives & = 1.18, where we have used the value Ne = 5.5 for the power
number.
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Start distributions in the different compartments. Final distributions in the different compartments after t=60s.
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Figure 7: Drop size distributions in the different compartments. Top left: start
distributions, top right: final distributions after ¢t = 60 s for a simulation without
volume flows between the compartments, bottom left: final distributions after
t = 60s for a simulation with volume flows, bottom right: final distributions
after ¢ = 60 s for a simulation with scaled volume flows.
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Fig. 7 shows the resulting drop size distributions for the case that the same
Gaussian normal distribution is used as initial condition in all four compart-
ments. In the left top picture of Fig. 7, this arbitrarily chosen start distribution
is depicted.

In the top right picture, one can see the final distributions after ¢ = 60 s within
the different compartments for the case that the simulation is done without vol-
ume flows between the compartments. Here one observes that the distributions
in the first and in the fourth compartment are moved towards larger drop sizes.
Thus, there are less, but larger drops after the simulation. The reason for this is
that we have chosen relatively small values for the mean energy dissipation rates
in these compartments. Thus, coalescence and breakage take place simultane-
ously, but coalescence dominates, which means that the number of coalescing
drops is higher than the number of breaking drops. On the other hand, in the
second compartment, where the mean energy dissipation rate has been chosen
much higher than the average value, only breakage occurs. (The reason for this
is that the drops are not able to stay in contact as long as coalescence needs
to take place.) This effect results in a significant change of the distribution
to smaller drop sizes. Therefore, in the second compartment, there are more
and hence smaller drops. Also in compartment K3, there are more and smaller
drops after the simulation than before. Here, breakage dominates, since the
mean energy dissipation rate in this compartment is twice as high as the overall
mean value £.

In the bottom left picture, the final distributions in the different compartments
after a simulation with volume flows are shown. Here, we have prescribed the
optimized volume flows that we get from Eq. (12). One oberserves that in all
compartments, the distributions are almost the same. The reason for this is
that the volume flows are so high that they lead to a total exchange of the drop
size distributions in the compartments. However, if we compare these drop size
distributions with the prescribed start distribution, we see that there are fewer
but bigger drops after ¢ = 60s. An explanation for this is that the compartments
K, and Ky, where we have prescribed relatively low values for the mean energy
dissipation rates, are much bigger than the other two compartments.

In the bottom right picture the resulting drop size distributions for a simulation
with smaller volume flows are depicted. Here, we have used volume flows that
have been scaled by a factor of 0.01. In this case, the exchange between the
compartments is not as high as before, and, thus, the influence of the volume
flows on the drop size distributions in the different compartments can be seen
better. The first thing that should be noted is that this time we find the most
and smallest drops in compartment K3 and not in compartment Ks, where we
have prescribed the highest value for ;. The reason for this is that the drops
in compartment Ko are directly transported to compartment Kj3. Thus, the
input into compartment K3 consists only of “small” drops, whereas only larger
drops are transported into compartment K5. Another, at first sight surprising
observation is that there are more and smaller drops in compartment K7 than
in compartment K, although we have prescribed almost the same values for &;
and &4. The reason for this is that compartment K, is much bigger than com-



4 DISCUSSION 18

Masses in the different compartements. Masses in the different compartements.
Simulation with volume flows. Simulation with scaled volume flows.
15 15
1 1
. ——compartment 1 . ——compartment 1
2 ——compartment 2| 2 —— compartment 2
E ——compartment 3| E —— compartment 3
—— compartment 4| —— compartment 4
05 b 0.5r
0 : : : : [0 : : : :
0 10 20 40 50 60 0 10 20 40 50 60

30 30
tls] tls]
Figure 8: Conservation of mass during the simulation with PARSIVAL. Left: sim-
ulation with volume flows (corresponding to the left bottom picture in Fig. 7),
right: simulation with scaled volume flows (corresponding to the right bottom
picture in Fig. 7).

partment K and, thus, the transported smaller drops from the compartments
K5 and K3 do not carry so much weight there.

Fig. 8 shows that mass is conserved during the simulation with PARSIVAL. In
the left picture, the masses in the different compartments are depicted for a
simulation with volume flows in order of magnitude corresponding to the results
of the CFD simulation, whereas in the right picture the masses for the scaled
simulation are shown.

4 Discussion

The current simulation results show many challenges.

Obviously, the results of the flow simulation still need to be improved. However,
if DNS is used, a much finer grid is required, which can clearly not be handled
due to the high time and memory requirements for the simulation, even if a
parallel CFD solver is used. So, at the moment, it is sensible to use some kind
of turbulence modeling, which is currently being completed, see Section 2.
Further difficulties arise when the coupling with PARSIVAL is considered. It is
quite complicated to find a sensible “connection” between the solvers as FEAT-
Frow is an open-source FORTRAN code whereas PARSIVAL is a commercial
Windows program controlled by a graphical user interface.

At the moment a sensible adaption of the k-¢ turbulence model solver Pp3d-Ke
to the application of stirred liquid-liquid systems described in Section 3 is in-
vestigated, including the coordinate transformation described in the beginning
of Subsection 3.3.

Despite all the difficulties in the implementation of the k-£ turbulence model in
FeEATFLOW, which arise in particular in the moving boundary parts, neverthe-
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less the k- model seems to be particularly suitable for the presented coupling
approach, since the energy dissipation rate e, which is needed for the calculation
of the coalescence and breakage rates, is directly provided by the CFD code.
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