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1 Introduction
In this paper we present the stability analysis of homogeneous linear time-
invariant delay differential-algebraic equations (DDAEs) of the form

Eẋ(t) = Ax(t) +Dx(t− τ), (1)

where E,A,D ∈ Kn,n, K = R or K = C, and τ > 0 represents a time-delay.
We study initial value problems with an initial function φ, so that

x(t) = φ(t), for − τ ≤ t ≤ 0. (2)

While standard differential-algebraic equations (DAEs) without delay
are today standard mathematical models for dynamical systems in many
application areas, such as multibody systems, electrical circuit simulation,
control theory, fluid dynamics, chemical engineering, see, e.g., [1, 4, 19, 25,
27, 33], the delay version is typically needed to model effects that do not
arise instantaneously, see, e.g., [3, 16, 42]. Note that, (1) is a special case of
more general neutral delay DAEs

Eẋ(t) + Fẋ(t− τ) = Ax(t) +Dx(t− τ). (3)

However, by introducing a new variable, (3) can be rewritten into the form
(1) with double dimension, see [10]. For this reason here we only consider
(1).

The stability and robust stability analysis for DAEs is quite different
from that of ordinary differential equations (ODEs), see, e.g., [23], and has
recently received a lot of attention, see, e.g., [5, 6, 12, 26, 29, 32, 37, 38]
and [11] for a recent survey. In contrast to this, the stability and robust
stability analysis for ordinary differential equations with delay (DDEs) is
already well established, see, e.g., [20, 21, 22, 24, 35].

As an extension of both these theories, in this paper, we discuss de-
lay differential-algebraic equations (DDAEs). Such equations, containing
both algebraic constraints and delays arise, in particular, in the context of
feedback control of DAE systems (where the feedback does not act instanta-
neously) or as limiting case for singularly perturbed ordinary delay systems,
see e.g. [1, 2, 7, 8, 10, 31, 34, 43]. In sharp contrast to the situation for
DDEs and DAEs even the existence and uniqueness theory of DDAEs is
much less well established, see [17, 18] for a recent analysis and the discus-
sion of many of the difficulties. This unsatisfactory situation is even more
pronounced in the context of (robust) stability analysis for DDAEs. Most of
the existing results are only for linear time-invariant regular DDAEs [13, 41]
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or DDAEs of special form [1, 30, 44]. Many of the results that are known for
DDEs do not carry over to the DDAE case. Even the well-known spectral
analysis for the exponential stability or the asymptotic stability of linear
time-invariant DDAEs (1) is much more complex than that for DAEs and
DDEs, see [10, 39, 43] for some special cases.

The stability analysis is usually based on the eigenvalues of the nonlinear
function

H(s) = sE −A− e−sτD, (4)

associated with the Laplace transform of (1), i.e., the roots of the charac-
teristic function

pH(s) := detH(s). (5)

Let us define the spectral set σ(H) = {s : pH(s) = 0} and the spectral
abscissa α(H) = sup{Re s : pH(s) = 0}. For linear time-invariant DDEs,
i.e., if E = In, the exponential stability is equivalent to α(H) < 0, see [20]
and the spectral set σ(H) is bounded from the right. However, for linear
time-invariant DDAEs, the spectral set σ(H) may not be bounded on the
right as the following example shows.

Example 1.1. Consider the DDAE from [9][
0 1
0 0

]
ẋ(t) =

[
1 0
0 −1

]
x(t) +

[
0 0
1 0

]
x(t− 1),

with
H(s) =

[
−1 s
−e−s 1

]
, pH(s) = −1 + se−s,

and thus there exist infinitely many solutions of pH(s) = 0 and their real
part can be arbitrarily large, i.e., α(H) =∞.

The dynamics of this system is easily analyzed. Obtaining x2 from the
second equation and substituting the result into the first equation, we ob-
tain the delay ODE ẋ1(t − 1) = x1(t), which is of advanced type. Thus,
x1(t) = x

(m)
1 (t −m) for m − 1 ≤ t < m, m ∈ N. Therefore, the solution is

discontinuous in general and cannot be extended on [0,∞) unless the initial
function is infinitely often differentiable.

In some special cases, [31, 40], it has been shown that the exponential
stability of DDAEs is equivalent to the spectral condition that α(H) < 0. In
general, however this spectral condition is only necessary, but not sufficient,
as the following example shows.
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Example 1.2. Consider equation (1) with

E =


1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , A =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , D =


0 0 1 1
0 0 0 0
0 0 0 0
−1/2 0 0 0

 ,
and

H(s) = sE −A− e−sτD =


1 + s 0 −e−sτ −e−sτ

0 −1 s 0
0 0 −1 s

e−sτ/2 0 0 −1

 .
Therefore, pH(s) = detH(s) = −(1 + s)(1 − e−2sτ/2), the eigenvalues are
s = −1 and s = (− ln 2 + 2kπi)/2τ, k ∈ Z, and hence all eigenvalues are
in the open left half complex plane, which would suggest the exponential
stability of the system, i.e., that all nontrivial solutions would be exponen-
tially decaying. However, we will see that the asymptotic behavior (and
even the existence) of the solutions depend strongly on the smoothness and
the behavior of the initial function φ.

Setting x = [x1, x2, x3, x4]T , the system reads

ẋ1(t) = −x1(t) + x3(t− τ) + x4(t− τ),
ẋ3(t) = x2(t),
ẋ4(t) = x3(t),

0 = x4(t)− x1(t− τ)/2.

Solving for x4 in the last equation and substituting this and x3 obtained
from the third equation into the first equation, we arrive at

ẋ1(t) = −x1(t) + ẋ1(t− 2τ)/2 + x1(t− 2τ)/2.

This underlying neutral delay ODE has the characteristic function −pH(s),
so its spectral set is the same as that of the original system. The spectral
condition ensures the exponential stability of the underlying equation for
x1, see [20]. However, x2 and x3 are just the second and the first derivatives
of x4(t) = x1(t− τ)/2. Thus, if the first component of φ is not differentiable
on (−τ, 0) or it is differentiable (almost everywhere) but the derivative is
unbounded, then the solution does not exist or is unbounded. For example,
the function φ1(t) = t sin(1/t) is continuous on [−τ, 0], differentiable on
(−τ, 0), but the derivative is obviously unbounded.
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Example 1.2 shows that linear time-invariant DDAEs may not be expo-
nentially stable although all roots of the characteristic function are in the
open left half complex plane. To characterize when the roots of the charac-
teristic function allow the classification of stability, in this paper we derive
necessary and sufficient conditions that guarantee that for time-invariant
DDAEs exponential stability is equivalent to the condition that all eigenval-
ues of H have negative real part and thus extend recent results of [31].

With a characterization of exponential stability at hand we also study the
question of robust stability for linear time-invariant DDAEs, i.e., we discuss
the structured stability radius of maximal perturbations that are allowed to
the coefficients so that the system keeps its exponential stability. These
results extend previous results on DDEs and DAEs in [5, 6, 12, 11, 24, 35].

The paper is organized as follows. In the next section we introduce the
basic notation and present some preliminary results. Then, in Section 3, we
characterize exponential stability for general linear time-invariant DDAEs.
In Section 4, we will introduce allowable perturbations for two different
classes of systems (1) and present a formula for the structured stability
radius for DDAEs. In Section 5, some conclusions and open problems close
the paper.

2 Preliminaries
In the following, we denote by In ∈ Cn,n the identity matrix, by 0 ∈ Cn,n
the zero matrix, by AC(I,Cn) the space of absolutely continuous functions,
and by Ckpw(I,Cn) the space of k-times piecewise continuously differentiable
functions from I ⊂ [0,∞) to Cn.

Definition 2.1. A function x(·, φ) : [0,∞) → Cn is called solution of the
initial value problem (1)–(2), if x ∈ AC([0,∞),Cn) and x(·, φ) satisfies (1)
almost everywhere. An initial function φ is called consistent with (1) if the
associated initial value problem (1) has at least one solution.

System (1) is called solvable if for every consistent initial function φ, the
associated initial value problem (1)–(2) has a solution. It is called regular
if it is solvable and the solution is unique.

Note that instead of seeking solutions in AC([0,∞),Cn), alternatively
we often consider the space C1

pw([0,∞),Cn). In fact, equation (1) may not
be satisfied at (countably many) points, which usually arise at multiples of
the delay time τ .
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Definition 2.2. System (1)–(2) is called exponentially stable if there exist
constants K > 0, ω > 0 such that

‖x(t, φ)‖ ≤ Ke−ωt‖φ‖∞ (6)

for all t ≥ 0 and all consistent initial functions φ, where ‖φ‖∞ = sup−τ≥t≥0 ‖φ(t)‖.

Note that one can transform (1) in such a way that a given solution
x(t;φ) is mapped to the trivial solution by simply shifting the arguments.

Definition 2.3. A matrix pair (E,A), E,A ∈ Cn,n is called regular if there
exists s ∈ C such that det(sE − A) is different from zero. Otherwise, if
det(sE −A) = 0 for all s ∈ C, then we say that (E,A) is singular.

If (E,A) is regular, then a complex number λ is called a (generalized
finite) eigenvalue of (E,A) if det(λE − A) = 0. The set of all (finite)
eigenvalues of (E,A) is called the (finite) spectrum of the pencil (E,A) and
denoted by σ(E,A). If E is singular and the pair is regular, then we say
that (E,A) has the eigenvalue ∞.

Regular pairs (E,A) can be transformed toWeierstraß-Kronecker canon-
ical form, see [4, 14, 15], i.e., there exist nonsingular matrices W, T ∈ Cn,n
such that

E = W

[
Ir 0
0 N

]
T−1, A = W

[
J 0
0 In−r

]
T−1, (7)

where Ir, In−r are identity matrices of indicated size, J ∈ Cr,r, and N ∈
C(n−r),(n−r) are matrices in Jordan canonical form and N is nilpotent. If E
is invertible, then r = n, i.e., the second diagonal block does not occur.

Definition 2.4. Consider a regular pair (E,A) with E,A ∈ Cn,n in Weierstraß-
Kronecker form (7). If r < n and N has nilpotency index ν ∈ {1, 2, ...}, i.e.,
Nν = 0, N i 6= 0 for i = 1, 2, ..., ν − 1, then ν is called the index of the pair
(E,A) and we write ind(E,A) = ν. If r = n then the pair has index ν = 0.

For system (1) with a regular pair (E,A), the existence and uniqueness
of solutions has been studied in [7, 8, 9] and for the general case in [17]. It
follows from Corollary 4.12 in [17] that (1)–(2) has a unique solution if and
only if the initial condition φ is consistent and pH(s) = det(H(s)) 6≡ 0.

For a matrix triple (E,A,D) ∈ Cn,n×Cn,n×Cn,n, there always exists a
nonsingular matrix W ∈ Cn,n such that

W−1E =

E1
0
0

 , W−1A =

A1
A2
0

 , W−1D =

D1
D2
D3

 , (8)

6



where E1, A1, D1 ∈ Cd,n, A2, D2 ∈ Ca,n, D3 ∈ Ch,n with d + a + h = n,
rankE1 = rankE = d, and rankA2 = a. Then, system (1) can be scaled by
W−1 to obtain

E1ẋ(t) = A1x(t) +D1x(t− τ),
0 = A2x(t) +D2x(t− τ), (9)
0 = D3x(t− τ).

In practice, the scaling matrix W and the transformed coefficient matrices
can be easily constructed as follows. Let U be the left unitary factor of the
singular value decomposition (SVD) of E, i.e., U consists of the left singular
vectors of E. Assuming that rankE = d, we decompose U = [U1, U2]
accordingly. Then let Ũ =

[
Ũ2, Ũ3

]
be the left unitary factor of the SVD of

U∗2A with rankU∗2A = a. Then, we define W = U diag(Id, Ũ). It is easy to
check that multiplying by W−1 = diag(Id, Ũ∗)U∗, the form (8) is obtained
with

E1 = U∗1E, A1 = U∗1A, D1 = U∗1D, A2 = Ũ∗2U
∗
2A, D2 = Ũ∗2U

∗
2D, D3 = Ũ∗3U

∗
2D.

We immediately see that to obtain solvability of the equation, the initial
function has to be in the set

S := {φ : φ ∈ AC([−τ, 0],Cn), A2φ(0)+D2φ(−τ) = 0, D3φ(t) = 0 for all t ∈ [−τ, 0]}.

Shifting the time in the last equation of (9) by τ , we obtain

E1ẋ(t) = A1x(t) +D1x(t− τ),
A2x(t) = −D2x(t− τ), (10)

0 = D3x(t).

Differentiating the second and third equation of (10), we get

E1ẋ(t) = A1x(t) +D1x(t− τ),
A2ẋ(t) = −D2ẋ(t− τ), (11)
D3ẋ(t) = 0.

Following the concept of strangeness-index in [25] we make the following
definition, see also [17].
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Definition 2.5. Equation (1) is called strangeness-free if there exists a
nonsingular matrix W ∈ Cn,n that transforms the triple (E,A,D) to the
form (8) and

rank

E1
A2
D3

 = n.

It is easy to show that the strangeness-free property is invariant with
respect to the choice of W . If (1) is strangeness-free then, setting

Ê =

E1
A2
D3

 , Â =

A1
0
0

 , D̂ =

D1
0
0

 , F̂ =

 0
−D2

0

 ,
the implicit system is (11) is equivalent to the neutral linear time-invariant
DDE

ẋ(t) = Ê−1Âx(t) + Ê−1D̂x(t− τ) + Ê−1F̂ ẋ(t− τ), (12)

which admits a unique solution that satisfies the consistent initial condition
(2).

In the next section we present necessary and sufficient conditions such
that the exponential stability for linear time-invariant DDAEs is character-
ized by the spectral function.

3 Exponential stability of linear DDAEs
In this section we show that for strangeness-free systems the spectral con-
dition characterizes exponential stability.

Theorem 3.1. Suppose that equation (1) is strangeness-free. Then equation
(1) is exponentially stable if and only if α(H) < 0.

Proof. Necessity. Suppose that equation (1) is exponentially stable, i.e.,
inequality (6) holds with positive constants K and ω, but α(H) ≥ 0. Then
there exists an eigenvalue λ ∈ σ(H) with Reλ > −ω. Let v 6= 0 be an
eigenvector associated with λ, i.e., (λE −A− e−λτD)v = 0, then obviously
x(t) = eλtv is a solution of equation (1), but it does not satisfy (6). This is
a contradiction and thus α(H) < 0.
Sufficiency. Suppose that α(H) < 0 and consider a solution x of (1). As
seen in the previous section, x also satisfies the neutral delay ODE system
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(12), whose spectral function is

Ĥ(s) = sI − Ê−1Â− e−sτ Ê−1D̂ − se−sτ Ê−1F̂

= Ê−1(sÊ − Â− e−sτ D̂ − se−sτ F̂ ).

It is easy to see that σ(Ĥ) = σ(H) ∪ {0}. We have α(Ĥ) = 0, but because
α(H) < 0, 0 is an isolated (and semisimple) eigenvalue. It has been shown
in [20, Chapter 12] that the solutions of (12) can be represented in the form

x(t) = v̂ + x̂∗(t), (13)

where x̂∗(t) satisfies (6) and either v̂ = 0 or v̂ is an eigenvector associated
with the eigenvalue λ = 0 of Ĥ(λ). Hence, we have

A1v̂ +D1v̂ = 0. (14)

Moreover, since limt→∞ x̂
∗(t) = 0, from the second and the third equations

of (10), it follows that

A2v̂ +D2v̂ = D3v̂ = 0. (15)

From (14) and (15), it follows that H(0)v̂ = 0. But since 0 6∈ σ(H), this im-
plies that v̂ = 0 and hence x(t) = x̂∗(t). Thus, equation (1) is exponentially
stable.

Remark 3.2. In the proof of Theorem 3.1, we see that α(H) ≤ α(Ĥ)
always holds. Thus, if system (1) is strangeness-free then the spectral set
σ(H) is bounded from the right, or equivalently the spectral abscissa satisfies
α(H) <∞.

Now we consider the case when the pair (E,A) (1) is regular and it is
transformed into the Weierstraß-Kronecker canonical form (7). Setting

W−1DT =
[
D11 D12
D21 D22

]
, T−1x(t) =

[
x1(t)
x2(t)

]
, T−1φ(t) =

[
φ1(t)
φ2(t)

]
, (16)

withD11 ∈ Cr,r, D12 ∈ Cr,n−r, D21 ∈ Cn−r,r, D22 ∈ Cn−r,n−r, and x1, x2, φ1, φ2
partitioned analogously. Then equation (1) is equivalent to the system

ẋ1(t) = A11x1(t) +D11x1(t− τ) +D12x2(t− τ), (17)
Nẋ2(t) = x2(t) +D21x1(t− τ) +D22x2(t− τ),
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with initial conditions

xi(t) = φi(t), for t ∈ [−τ, 0], i = 1, 2. (18)

From the explicit solution formula for linear time-invariant DAEs, see [7, 25],
the second equation of (17) implies that

x2(t) = −D21x1(t−τ)−D22x2(t−τ)−
ν−1∑
i=1

(
N iD21x

(i)
1 (t− τ) +N iD22x

(i)
2 (t− τ)

)
,

(19)
and for t ∈ [0, τ), we get

x2(t) = −D21φ1(t)−D22φ2(t)−
ν−1∑
i=1

(
N iD21φ

(i)
1 (t) +N iD22φ

(i)
2 (t)

)
. (20)

It follows that φ needs to be differentiable at least ν times if the coefficients
D21 and D22 do not satisfy further conditions. Extending this argument to
t ∈ [τ, 2τ), [2τ, 3τ), etc., the solution cannot be extended to the full real
half-line unless the initial function φ is infinitely often differentiable or the
coefficient associated with the delay is highly structured.

Corollary 3.3. Consider the DDAE (1)-(2) with a regular pair (E,A),
ind(E,A) ≤ 1, and its associated spectral function H. Then equation (1) is
exponentially stable if and only if α(H) < 0.

Proof. If ind(E,A) ≤ 1 then the system is obviously strangeness-free in the
sense of Definition 2.5 with d + a = n and h = 0. Thus, by Theorem 3.1,
the system is exponentially stable if and only if α(H) < 0.

We note that the result of Corollary 3.3 is obtained in [31] by a direct
proof.

Let us now consider exponential stability for the case that ind(E,A) > 1
or for the case that (E,A) is singular.

In order to avoid an infinite number differentiations of φ induced by
(20), it is reasonable to assume that for a system in WeierstraßKronecker
form (7) with transformed matrices as in (16) the allowable delay condition
ND2i = 0, i = 1, 2 holds. Note that this condition is trivially true for the
index-1 case, since then we have N = 0. In terms of the original coefficients
for (1) for a regular pair (E,A) with arbitrary index this allowable delay
condition can be described as follows.

Choose any fixed ŝ ∈ C such that det(ŝE −A) 6= 0 and set

Ê = (ŝE −A)−1E, D̂ = (ŝE −A)−1D. (21)
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Proposition 3.4. Consider a DDAE of the form (1) with a regular pair
(E,A) of arbitrary index, let ŝ ∈ C be such that det(sE −A) 6= 0, and con-
sider the system (7) after transformation to Weierstraß -Kronecker canonical
form. Then the allowable delay conditions ND21 = 0 and ND22 = 0 are
simultaneously satisfied if and only if

(I − ÊDÊ)ÊD̂ = 0, (22)

where ÊD denotes the Drazin inverse of Ê.

Proof. From (7) it follows that

Ê = T

[
(ŝIr − J)−1 0

0 (ŝN − In−r)−1N

]
T−1,

and
D̂ = T

[
(ŝIr − J)−1D11 (ŝIr − J)−1D12

(ŝN − In−r)−1D21 (ŝN − In−r)−1D22

]
T−1.

Therefore,

ÊD = T

[
(ŝIr − J)−1 0

0 0

]
T−1,

and by elementary calculations we get

(I − ÊDÊ)ÊD̂ = T

[
0 0

(ŝN − In−r)−2ND21 (ŝN − In−r)−2ND22

]
T−1.

Thus we have that (I − ÊDÊ)ÊD̂ = 0 if and only if ND21 = 0 and ND22 =
0.

Using proposition 3.4, we have the following characterization of expo-
nential stability for DDAEs with regular pair (E,A).

Theorem 3.5. Consider the DDAE (1)-(2) with a regular pair (E,A) satis-
fying (22). Then equation (1) is exponentially stable if and only if α(H) < 0.

Proof. Necessity. The proof is analogous to that of Theorem 3.1 and we
conclude that if equation (1) is exponentially stable then α(H) < 0.
Sufficiency. Suppose that α(H) < 0. Since the pair (E,A) is regular, it
follows that (1)–(2) is equivalent to system in canonical form (17). Under
the assumption (22), we have ND2i = 0, i = 1, 2, and thus (19) is reduced
to

0 = x2(t) +D21x1(t− τ) +D22x2(t− τ). (23)

11



This implies that
[
xT1 xT2

]T
is also a solution to the index-1 DDAE

[
Ir 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=
[
A11 0
0 In−r

] [
x1(t)
x2(t)

]
+
[
D11 D12
D21 D22

] [
x1(t− τ)
x2(t− τ)

]
, (24)

with the characteristic function

H̃(s) = s

[
Ir 0
0 0

]
−
[
sIr −A11 0

0 In−r

]
− e−sτ

[
D11 D12
D21 D22

]
.

Using the Weierstraß-Kronecker canonical form (7), we have that

W−1H(s)T =
[
sIr −A11 0

0 sN − In−r

]
− e−sτ

[
D11 D12
D21 D22

]
.

Since ND2i = 0, i = 1, 2, and −(sN − In−r)−1 =
ν−1∑
i=0

(sN)i, it follows that

[
Ir 0
0 −(sN − In−r)−1

]
W−1H(s)T

=
[
sIr −A11 0

0 −In−r

]
− e−sτ

[
D11 D12

−(sN − In−r)−1D21 −(sN − In−r)−1D22

]

=
[
sIr −A11 0

0 −In−r

]
− e−sτ

 D11 D12
ν−1∑
i=0

(sN)iD21
ν−1∑
i=0

(sN)iD22


=

[
sIr −A11 0

0 −Im−r

]
− e−sτ

[
D11 D12
D21 D22

]
= H̃(s).

This implies that det H̃(s) = 0 if and only if detH(s) = 0, and hence
α(H̃) = α(H) < 0. Thus, by Corollary 3.3, system (24)–(18) is exponentially
stable and hence system (1)–(2) is exponentially stable.

For the system in Example 1.2 which has a regular pair (E,A) that is
already in Weierstraß-Kronecker form, we have ND21 6= 0 but ND22 = 0
and the system has α(H) < 0 but the system is not exponentially stable.
The following example presents the same observation for the case ND21 = 0
but ND22 6= 0.
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Example 3.6. Consider equation (1) with

E =


1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , A =


−1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 , D =


0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 .
We then have

H(s) = sE −A− e−sτD =


1 + s 0 0 −e−sτ

0 −2− e−sτ s 0
0 0 −2− e−sτ s
0 0 0 −2− e−sτ

 .
Therefore, detH(s) = −(1 + s)(2 + e−sτ )3, the eigenvalues are λ = −1 and
s = (− ln 2 + (2k + 1)π)/τ, k ∈ Z, and hence all eigenvalues are in the open
left half complex plane.

However, the system can be written as

ẋ1(t) = −x1(t) + x4(t− τ),
ẋ3(t) = 2x2(t) + x2(t− τ),
ẋ4(t) = 2x3(t) + x3(t− τ),

0 = 2x4(t) + x4(t− τ).

It is clear that if φ4 is not sufficiently smooth or its derivatives are un-
bounded, then the second and the third component solutions cannot be
extended or they are unbounded. If the solution is defined for all t ≥ 0,
it depends on the derivatives of the initial function in general. Thus, the
system is not exponentially stable.

We have seen that the spectral condition α(H) < 0 is necessary for the
exponential stability of (1), but in general it is not sufficient. Introduc-
ing further restrictions on the delays, we get that exponential stability is
equivalent to the spectral condition.

4 Robust exponential stability
We have seen in the previous section that under some extra conditions the
exponential stability of a linear time-invariant DDAE can be characterized
by the spectral properties of the matrix function H(s). Typically, however,
the coefficient functions are not exactly known, since they arise, e.g., from
a modeling, or system identification process, or as coefficient matrices from
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a discretization process. Thus, a more realistic scenario for the stability
analysis is to analyze the robustness of the exponential stability under small
perturbations. To perform this analysis, in this section we study the be-
havior of the spectrum of the triple of coefficient matrices (E,A,D) under
structured perturbations in the matrices E,A,D.

Suppose that system (1) is exponentially stable and consider a perturbed
system

(E +B1∆1C)ẋ(t) = (A+B2∆2C)x(t) + (D +B3∆3C)x(t− τ), (25)

where ∆i ∈ Cpi,q, i = 1, 2, 3 are perturbations and Bi ∈ Cn,pi , i = 1, 2, 3,
C ∈ Cq,n, are matrices that restrict the structure of the perturbations. We
could also consider different matrices Ci in each of the coefficients but for
simplicity we assume that the column structure in the perturbations is the
same for all coefficients. Set

∆ =

∆1
∆2
∆3

 , B =
[
B1 B2 B3

]
, (26)

and p = p1 + p2 + p3 and consider the set of destabilizing perturbations

VC(E,A,D;B,C) = {∆ ∈ Cp×q : (25) is not exponentially stable}.

Then we define the structured complex stability radius of (1) subject to
structured perturbations as in (25) as

rC(E,A,D;B,C) = inf{‖∆‖ : ∆ ∈ VC(E,A,D;B,C)}, (27)

where ‖ · ‖ is a matrix norm induced by a vector norm. If only real per-
turbations ∆ are considered, then we use the term structured real stability
radius but here we focus on the complex stability radius.

With H as in (4), we introduce the transfer functions

G1(λ) = −λCH(λ)−1B1, G2(λ) = CH(λ)−1B2, G3(λ) = e−λτCH(λ)−1B3,

and with
G(λ) =

[
G1(λ) G2(λ G3(λ)

]
, (28)

we obtain an explicit formula for the structured stability radius.
Theorem 4.1. Suppose that system (1) is exponentially stable. Then the
structured stability radius of (1) subject to structured perturbations as in
(25) satisfies the inequality

rC(E,A,D;B,C) ≤
(

sup
Reλ≥0

‖G(λ)‖
)−1

. (29)
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Proof. Let ε be an arbitrary positive number and let λ0 ∈ C̄+, where C̄+ =
{λ ∈ C,Reλ ≥ 0} is the closed right-half plane, be such that

‖G(λ0)‖−1 ≤
(

sup
Reλ≥0

‖G(λ)‖
)−1

+ ε,

and let u ∈ Cn be such that ‖u‖ = 1 and

‖G(λ0)u‖ = ‖G(λ0)‖

Furthermore, let y ∈ Cq be such that ‖y‖ = 1 and

yH(G(λ0)u) = ‖G(λ0)u‖ = ‖G(λ0)‖,

and set

∆ = ‖G(λ0)‖−1uyH , x = H(λ0)−1
[
−λ0B1 B2 e−λ0τB3

]
u. (30)

Then
‖∆‖ ≤ ‖G(λ0)‖−1‖u‖‖y‖ = ‖G(λ0)‖−1,

and
∆G(λ0)u = u

‖G(λ0)‖‖G(λ0)‖ = u. (31)

Since u 6= 0, it follows that ‖∆‖ ≥ ‖G(λ0)‖−1 and thus ‖∆‖ = ‖G(λ0)‖−1.
Since

G(λ0)u = CH(λ0)−1
[
−λ0B1 B2 e−λ0τB3

]
u 6= 0,

it follows that
[
−λ0B1 B2 e−λ0τB3

]
u 6= 0, and hence x 6= 0.

On the other hand, by (30) and (31) we have

H(λ0)x =
[
−λ0B1 B2 e−λ0τB3

]
u =

[
−λ0B1 B2 e−λ0τB3

]
∆G(λ0)u

=
[
−λ0B1 B2 e−λ0τB3

]
∆CH(λ0)−1

[
−λ0B1 B2 e−λ0τB3

]
u

=
[
−λ0B1 B2 e−λ0τB3

]
∆Cx

= (−λ0B1∆1C1 +B2∆2C2 + e−λτB3∆3C3)x,

and thus,(
λ0(E +B1∆1C1)− (A+B2∆2C2)− e−λ0τ (D +B3∆3C3)

)
x = 0.

15



This relation implies that λ0 is a root of the characterestic function asso-
ciated with (25). Since Reλ0 ≥ 0, it follows that (25) is not exponentially
stable. Thus, ∆ ∈ VC(E,A,D;B,C), which implies that

rC(E,A,D;B,C) ≤ ‖∆‖ = ‖G(λ0)‖−1 ≤
(

sup
Reλ≥0

‖G(λ)‖
)−1

+ ε.

Since ε is arbitrary, if follows that

rC(E,A,D;B,C) ≤
(

sup
Reλ≥0

‖G(λ)‖
)−1

,

and the proof is complete.

For every perturbation ∆ as in (26) we define

H∆(λ) = λ(E +B1∆1C)− (A+B2∆2C)− e−λτ (D +B3∆3C) (32)

and have the following proposition.

Proposition 4.2. Consider system (1) and the perturbed system (25). If
the associated spectral abscissa satisfy α(H) < 0 and α(H∆) ≥ 0, then we
have

‖∆‖ ≥
(

sup
Reλ≥0

‖G(λ)‖
)−1

. (33)

Proof. If sup
Reλ≥0

‖G(λ)‖ = ∞ then (33) holds trivially. Therefore, we may

assume that
sup

Reλ≥0
‖G(λ)‖ <∞.

Since α(H∆) ≥ 0, we have two cases.
Case 1: There exists λ0 ∈ σ(H∆) such that Reλ0 ≥ 0. Then, there

exists a nonzero x ∈ Cn such that H∆(λ0)x = 0, and we have

0 = H∆(λ0)x = H(λ0)x−
[
−λ0B1 B2 e−λ0τB3

]
∆Cx.

Since H(λ0) is invertible, we have that H(λ0)x 6= 0 and thus

x = H(λ0)−1
[
−λ0B1 B2 e−λ0τB3

]
∆Cx, (34)

and also Cx 6= 0. By multiplying C from the left on both sides of (34), we
obtain

Cx = CH(λ0)−1
[
−λ0B1 B2 e−λ0τB3

]
∆Cx = G(λ0)∆Cx,
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and hence,
‖Cx‖ ≤ ‖G(λ0)‖ ‖∆‖ ‖Cx‖.

It follows that

‖∆‖ ≥ ‖G(λ0)‖−1 ≥
(

sup
λ∈C̄+

‖G(λ)‖
)−1

.

Case 2: There exists a sequence {λj}∞j=1 such that λj ∈ σ(H∆) and
Reλj < 0 for all j but lim

n→∞
Reλj = 0. Then, for all sufficiently large j, we

have that Reλj > α(H), which implies λj 6∈ σ(H). Similar to the proof of
Case 1, it follows that

‖∆‖ ≥ ‖G(λj)‖−1,

and thus,

‖∆‖ ≥
(

sup
Reλ≥Reλj

‖G(λ)‖
)−1

.

Since ‖G(λ)‖ is continuous and sup
Reλ≥0

‖G(λ)‖ < ∞, letting j → ∞, we

obtain

‖∆‖ ≥
(

lim
j→∞

sup
Reλ≥Reλj

‖G(λ)‖
)−1

=
(

sup
Reλ≥0

‖G(λ)‖
)−1

,

and the proof is complete.

It is already known for the case of perturbed non-delay DAEs [6], see
also [11], that it is necessary to restrict the perturbations in order to get a
meaningful concept of the structured stability radius, since a DAE system
may lose its regularity and/or stability under infinitesimal perturbations.
We therefore introduce the following set of admissible perturbations.

Definition 4.3. Consider a strangeness-free system (1) and letW ∈ Cn,n be
such that (8) holds. A structured perturbation as in (25) is called admissible
if (25) is still strangeness-free with the same triple (d, a, h), i.e., there exists
a nonsingular W̃ ∈ Cn,n such that

W̃−1(E +B1∆1C) =

Ẽ1
0
0

 , W̃−1(A+B2∆2C) =

Ã1
Ã2
0

 ,
W̃−1(D +B3∆3C) =

D̃1
D̃2
D̃3

 , (35)
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where Ẽ1, Ã1, D̃1 ∈ Cd,n, Ã2, D̃2 ∈ Ca,n, D̃3 ∈ Ch,n, such that Ẽ1
Ã2
D̃3


is invertible.

Assume that the matrices Bi, i = 1, 2, 3, that are restricting the structure
have the form

W−1B1 =

B11
B12
B13

 , W−1B2 =

B21
B22
B23

 , W−1B3 =

B31
B32
B33

 , (36)

where Bj1 ∈ Cd,pj , B2j ∈ Ca,pj , and B3,j ∈ Ch,pj , j = 1, 2, 3. According to [6,
Lemma 3.3], if the structured perturbation is admissible then B12∆1C = 0,
B13∆1C = 0, and B23∆2C = 0. Thus, for the sake of simplicity, we assume
that

B12 = 0, B13 = 0, and B23 = 0. (37)

It is easy to see that with all structured perturbations with Bi, i = 1, 2, 3,
satisfying (37), if the perturbation∆ is sufficiently small, then the strangeness-
free property is preserved with the same sizes of the blocks.

We denote the infimum of the norm of all perturbations ∆ such that
(25) is no longer strangeness-free or the sizes of the blocks d, a, h change, by
dsC(E,A,D;B,C), and immediately have the following proposition.

Proposition 4.4. Suppose that equation (1) is strangeness-free and sub-
jected to structured perturbations with Bi, i = 1, 2, 3 satisfying (37). Then

dsC(E,A,D;B,C) =
∥∥∥∥C

E1
A2
D3


−1 B11 0 0

0 B22 0
0 0 B33

∥∥∥∥−1
.

Proof. With restriction matrices Bi, i = 1, 2, 3 satisfying (37), the per-
turbed system (25) is still strangeness-free with Ẽ1, Ã1, D̃1 ∈ Cd,n, Ã2, D̃2 ∈
Ca,n, D̃3 ∈ Ch,n (as in (35)) if and only ifE1 +B11∆1C

A2 +B22∆2C
D3 +B33∆3C

 =

E1
A2
D3

+

B11 0 0
0 B22 0
0 0 B33

∆C
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is nonsingular. Thus the distance problem is that of the distance of a non-
singular matrix to the nearest singular matrix. For this problem it has been
shown, see, e.g., [36], that the matrix Ẽ1

Ã2
D̃3

 =

E1 +B11∆1C1
A2 +B22∆2C2
D3 +B33∆3C3


is nonsingular if

‖∆‖ <
∥∥∥∥C

E1
A2
D3


−1 B11 0 0

0 B22 0
0 0 B33

∥∥∥∥−1
,

and the distance to singularity is given by

dsC(E,A,D;B,C) =
∥∥∥∥C

E1
A2
D3


−1 B11 0 0

0 B22 0
0 0 B33

∥∥∥∥−1
.

Proposition 4.5. Consider system (1) with α(H) < 0. If the system is
strangeness-free and subjected to structured perturbations as in (25) with
structure matrices B1, B2, B3 satisfying (37) and if the perturbation ∆ sat-
isfies

‖∆‖ <
(

sup
Reλ≥0

‖G(λ)‖
)−1

,

then the structured perturbation is admissable, i.e., the perturbed equation
(25) is strangeness-free with the same block-sizes d, a, and h.

Proof. To prove the assertion, we will show that(
sup

Reλ≥0
‖G(λ)‖

)−1

≤
∥∥∥∥C

E1
A2
D3


−1 B11 0 0

0 B22 0
0 0 B33

∥∥∥∥−1
. (38)

We can rewrite G as

G(λ) = CH(λ)−1
[
−λB1 B2 e−λτB3

]

= C

λE1 −A1 − e−λτD1
−A2 − e−λτD2
−e−λτD3


−1 −λB11 B21 e−λτB31

0 B22 e−λτB32
0 0 e−λτB33


=: CF (λ),
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and thus it follows thatλE1 −A1 − e−λτD1
−A2 − e−λτD2
−e−λτD3

F (λ) =

−λB11 B21 e−λτB31
0 B22 e−λτB32
0 0 e−λτB33

 .
If λ 6= 0, then this is equivalent to−E1 +A1/λ+ e−λτD1/λ

−A2 − e−λτD2
−D3

F (λ) =

B11 −B21/λ −e−λτB31/λ
0 B22 e−λτB32
0 0 B33


and, since

lim
Reλ→+∞

−E1 +A1/λ+ e−λτD1/λ
−A2 − e−λτD2

−D3

 = −

E1
A2
D3


and

lim
Reλ→+∞

B11 −B21/λ −e−λτB31/λ
0 B22 e−λτB32
0 0 B33

 =

B11 0 0
0 B22 0
0 0 B33

 ,
it follows that lim

Reλ→+∞
F (λ) exists and

lim
Reλ→+∞

F (λ) = −

E1
A2
D3


−1 B11 0 0

0 B22 0
0 0 B33

 .
Thus, it follows that

lim
Reλ→+∞

G(λ) = C lim
Reλ→+∞

F (λ) = −C

E1
A2
D3


−1 B11 0 0

0 B22 0
0 0 B33

 ,
and hence (38) holds. It is obvious that(

sup
Reλ≥0

‖G(λ)‖
)−1

≤
(

lim
Reλ→+∞

‖G(λ)‖
)−1

.

By Proposition (4.4), it follows that if

‖∆‖ <
(

sup
Reλ≥0

‖G(λ)‖
)−1

then the perturbed equation (25) is strangeness-free with the same blocksizes
d, a, and h as for (1).
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We combine these results to characterize the stability radius for strangeness-
free DDAEs under suitable structured perturbations.

Theorem 4.6. Suppose that equation (1) is exponentially stable and strange-
ness-free and subjected to structured perturbations as in (25) with structure
matrices B1, B2, B3 satisfying (37). Then

rC(E,A,D;B,C) =
(

sup
Reλ≥0

‖G(λ)‖
)−1

. (39)

Furthermore, if ‖∆‖ < rC(E,A,D;B,C) then (25) is strangeness-free with
the same blocksizes d, a, and h as for (1).

Proof. By Proposition 4.1, we have

rC(E,A,D;B,C) ≤
(

sup
Reλ≥0

‖G(λ)‖
)−1

.

To prove the reverse inequality, let ∆ be an arbitrary perturbation that
destroys the exponential stability of equation (1). Assume that

‖∆‖ <
(

sup
Reλ≥0

‖G(λ)‖
)−1

.

Since equation (1) is strangeness-free and exponentially stable, we have
α(H) < 0 and by Proposition 4.2, we have also that α(H∆) < 0. Then by
Proposition 4.5 the perturbed equation (25) is strangeness-free, and hence,
by Theorem 3.1 we obtain that the perturbed equation (25) is exponentially
stable, which is a contradiction. Thus,

‖∆‖ ≥
(

sup
Reλ≥0

‖G(λ)‖
)−1

,

and hence,

rC(E,A,D;B,C) ≥
(

sup
Reλ≥0

‖G(λ)‖
)−1

,

which implies (39). Finally, by Proposition 4.5 we have that (25) is strangeness-
free if ‖∆‖ < rC(E,A,D;B,C).
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Remark 4.7. By the maximum principle [28], the supremum of G(λ) over
the right-half plane is attained at a finite point on the imaginary axis or
at infinity. For strangeness-free DDAEs, it can be shown that it suffices to
take the supremum of ‖G(λ)‖ over the imaginary axis instead of the whole
right-half plane, i.e., we have

rC(E,A,D;B,C) =
(

sup
Reλ=0

‖G(λ)‖
)−1

,

see Lemma 5.1 in the Appendix.

As a corollary we obtain the corresponding result for a special case
of strangeness-free systems where already the pair (E,A) is regular with
ind(E,A) ≤ 1.

Corollary 4.8. Consider system (1) with a regular pair (E,A) satisfying
ind(E,A) ≤ 1 and suppose that the system is exponentially stable and has
Weierstraß-Kronecker canonical form (7). If the system is subjected to struc-
tured perturbations as in (25), where the structure matrix B1 satisfies

W−1B1 =
[
B11
0

]
,

with B11 ∈ Cd×p1, then the structured stability radius is given by

rC(E,A,D;B,C) =
(

sup
Reλ=0

‖G(λ)‖
)−1

.

For non-delayed DAEs it has been shown [11] that if the perturbation
is such that the nilpotent structure in the Weierstraß-Kronecker canonical
form is preserved, then one can also characterize the structured stability
radius in the case that the pair (E,A) is regular and ind(E,A) > 1.

We have seen in Section 3 that exponential stability is characterized
by the spectrum of H if we assume that ND21 = 0 and ND22 = 0. In
the following we assume that this property is preserved and that in the
perturbed equation (25), the structure matrices B1, B2, B3 satisfy

W−1B1 =
[
B11
0

]
, W−1B2 =

[
B21
0

]
, W−1B3 =

[
B31
B32

]
, NB32 = 0, (40)

where Bj,1 ∈ Cd,pj , j = 1, 2, 3, B32 ∈ Cn−d,p3 , and W ∈ Cn,n, N ∈ Cn−d,n−d
are as in (7). In the following we consider structured perturbations that do
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not alter the nilpotent structure of the Kronecker form (7) of (E,A), i.e., the
nilpotent matrix N and the corresponding left invariant subspace associated
with eigenvalue ∞ is preserved, see [6] for the case that ind(E,A) = 1 and
D = 0.

Similar to the approach in [6], we now introduce the distance to the
nearest pair with a different nilpotent structure

dnC(E,A,D;B,C) = inf{‖∆‖ : (25) does not preserve the nilpotent structure}.

Under assumption (40), we obtain the following result, see [11] for the case
of non-delay DAEs.

Proposition 4.9. Consider equation (1) with regular (E,A) and ind(E,A) >
1, subjected to transformed perturbations satisfying (40). Then the distance
to the nearest system with a different nilpotent structure is given by

dnC(E,A,D;B,C) = ‖C11B11‖−1,

where C =
[
C11 C12

]
with C11 ∈ Cq,r, C12 ∈ Cq,n−r.

Proof. With regard to (40), the nilpotent structure of the perturbed equa-
tion (25) is preserved if and only if the perturbed matrix Ir + B11∆1C11
is nonsingular. Thus using again the distance of a nonsingular matrix to
singularity, see again [36], we obtain

dnC(E,A,D;B,C) = ‖C11B11‖−1.

Theorem 4.10. Consider an exponentially stable equation (1) with regular
pair (E,A) and ind(E,A) > 1 and assume that equation (1) is subjected to
transformed perturbations satisfying (40). Then the stability radius is given
by the formula

rC(E,A,D;B,C) =
(

sup
Reλ=0

‖G(λ)‖
)−1

.

Moreover, if ‖∆‖ < rC(E,A,D;B,C) has a regular pair (E + C∆1B1, A +
C∆2B2) with the same nilpotent structure in the Kronecker canonical form
and the perturbed system is exponentially stable.
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Proof. Under the assumption (40), elementary calculations yield

lim
Reλ→+∞

‖G1(λ)‖ = ‖C11B11‖, lim
Reλ→+∞

‖G2(λ)‖ = lim
Reλ→+∞

‖G3(λ)‖ = 0.

Therefore,
lim

Reλ→+∞
‖G(λ)‖ = ‖C11B11‖.

Using the fact that

sup
Reλ≥0

‖G(λ)‖ ≥ lim
Reλ→+∞

‖G(λ)‖

and Proposition 4.9, the remainder of the proof is analogous to that of
Theorem 4.6. Again by using the maximum principle, it suffices to take the
supremum of ‖G(λ)‖ on the imaginary axis instead of the whole right-half
plane.

To illustrate the results of this section consider the following example.

Example 4.11. Consider the strangeness-free linear DDAE1 0 0
0 0 0
0 0 0

 ẋ(t) =

−1 4 0
0 2 0
0 0 0

x(t) +

0 2 0
0 1 1
0 0 1

x(t− 1), (41)

with singular pair (E,A) subjected to the structured perturbations

E =

1 0 0
0 0 0
0 0 0

 Ẽ =

1 + δ11 δ12 δ13
0 0 0
0 0 0

 ,
A =

−1 4 0
0 2 0
0 0 0

 Ã =

−1 + 3δ21 3δ22 3δ23
δ21 2 + δ22 δ23
0 0 0

 ,
D =

0 2 0
0 1 1
0 −1 1

 D̃ =

2δ31 2 + 2δ32 2δ33
2δ31 1 + 2δ32 1 + 2δ33
δ31 δ32 1 + δ33

 ,
which can be represented in the form (25) with

B1 =

1
0
0

 , B2 =

3
1
0

 , B3 =

2
2
1

 , C = I3, ∆ =

δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

 .
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We have H(λ) = λE−A− e−λD =

1 + λ −2(2 + e−λ) 0
0 −2− e−λ −e−λ
0 0 −e−λ

, and it is

easy to check that α(H) < 0 and therefore (41) is exponentially stable.
By simple computations, we get

G(λ) =


−λ

1 + λ

1
1 + λ

0

0 −1
2 + e−λ

−e−λ

2 + e−λ
0 0 −1


and with ‖ · ‖ being the maximum norm of C3, it follows that

sup
λ∈iR
‖G(λ)‖∞ = ‖G(iπ)‖∞ = 2.

Thus, by Theorem 4.6, we obtain

rC(E,A,D;B,C) = 1
supλ∈iR ‖G(λ)‖∞

= 1
2 .

We note that by using (30), a destabilizing perturbation is easily constructed
as

∆ =

0 0 0
0 −1/2 0
0 1/2 0

 ,
with norm 1/2. Further, one can easily check that with this ∆ the perturbed
system remains strangeness-free, but α(H∆) = 0, which means that the
perturbed system is not asymptotically stable.

5 Conclusion
Characterizations for exponential stability and robust exponential stability
of DDAEs have been derived under the assumption that the coefficient ma-
trices are subjected to structured perturbations. The spectral condition for
exponential stability has been investigated in the class of strangeness-free
DDAEs as well as higher index DDAEs. Formulas for the complex stabil-
ity radius and the class of allowable perturbations for DDAEs have been
derived in both cases. However, the validity of a spectral condition for the
exponential stability of DDAEs in the general case and formulas for the real
stability radius of DDAEs are still open problems.
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Appendix
In this appendix we give a proof for the statement in Remark 4.7 which is
stated as the following lemma.

Lemma 5.1. Under the conditions of Theorem 4.6 or Corollary 4.8, we
have

sup
Reλ≥0

‖G(λ)‖ = sup
Reλ=0

‖G(λ)‖, (42)

where G is defined in (28).

Proof. Since G(λ) is analytic in the right half of the complex plane, by the
maximum principle, the supremum of ‖G(λ)‖ is attained on the boundary,
that is either on the imaginary axis or somewhere at infinity. It remains to
show that the supremum is indeed attained on the imaginary axis (either at
a finite point or at infinity).

i) Let us first consider the case that ind(E,A) ≤ 1 and that the system
is in Weierstraß-Kronecker canonical form (7). We then have

H(λ)−1 = T

[
λI − J −D11e

−λτ −D12e
−λτ

−D21e
−λτ −I −D22e

−λτ

]−1

W−1.
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Since for sufficiently large |λ|, λI − J −D11e
−λτ is invertible, we can apply

the inversion formula for block matrices M of the form

M =
[
M11 M12
M21 M22

]
,

with M11 = λI − J − D11e
−λτ , M12 = −D12e

−λτ , M21 = −D21e
−λτ , and

M22 = −I −D22e
−λτ , and the inverse is given by

M−1 =
[
I −M−1

11 M12
0 I

] [
M−1

11 0
0 (M22 −M21M

−1
11 M12)−1

] [
I 0

−M21M
−1
11 I

]
.

(43)
Moreover, lim|λ|→∞(λI − J − D11e

−λτ )−1 = 0 and lim|λ|→∞ λ(λI − J −
D11e

−λτ )−1 = I. Therefore, for all ε > 0, there exists L > 0 such that for λ
satisfying |λ| ≥ L and Reλ ≥ 0, we have

‖G(λ)− G̃(λ)‖ ≤ ε, (44)

where
G̃(λ) =

[
G̃1(λ) G̃2(λ G̃3(λ)

]
,

with

G̃1(λ) = CT

[
I 0
0 0

] [
B11
0

]
, G̃2(λ) = CT

[
0 0
0 −(I +D22e

−λτ )−1

] [
B21
B22

]
,

and
G̃3(λ) = e−λτCT

[
0 0
0 −(I +D22e

−λτ )−1

] [
B31
B32

]
.

By introducing a new variable z = e−λτ , since Reλ ≥ 0, we have |z| ≤ 1.
By the maximum principle, the supremum of G̃ as a function of z over the
disk |z| ≤ 1 is attained on the boundary |z| = 1, or equivalently

sup
Reλ≥0,|λ|≥L

‖G̃(λ)‖ = sup
Reλ=0,|λ|≥L

‖G̃(λ)‖.

Because of (44), we have

sup
Reλ≥0,|λ|≥L

‖G(λ)‖ ≤ sup
Reλ≥0,|λ|≥L

‖G̃(λ)‖+ ε (45)

= sup
Reλ=0,|λ|≥L

‖G̃(λ)‖+ ε (46)

≤ sup
Reλ=0,|λ|≥L

‖G(λ)‖+ 2ε. (47)
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Analogously, we have

sup
Reλ≥0,|λ|≥L

‖G(λ)‖ ≥ sup
Reλ=0,|λ|≥L

‖G(λ)‖ − 2ε.

On the other hand

sup
Reλ≥0,|λ|≤L

‖G(λ)‖ = max
{

sup
Reλ=0,|λ|≤L

‖G(λ)‖, sup
Reλ≥0,|λ|=L

‖G(λ)‖
}
.

Hence,

sup
Reλ=0

‖G(λ)‖ − 2ε ≤ sup
Reλ≥0

‖G(λ)‖ ≤ sup
Reλ=0

‖G(λ)‖+ 2ε.

Since ε is arbitrary, the identity (42) holds.
ii) For the general case of a strangeness-free system of the form (1) that

it is transformed into the form (8) and that satisfies (37) we have

H(λ)−1 =

λE1 −A1 − e−λτD1
−A2 − e−λτD2
−e−λτD3


−1

W−1

=

λE1 −A1 − e−λτD1
−A2 − e−λτD2

−D3


−1 I 0 0

0 I 0
0 0 eλτ

W−1.

Taking into account (37), we obtain

G1(λ) = λ

λE1 −A1 − e−λτD1
−A2 − e−λτD2

−D3


−1 B11

0
0

 ,

G2(λ) =

λE1 −A1 − e−λτD1
−A2 − e−λτD2

−D3


−1 B21

B22
0

 ,
and

G3(λ) =

λE1 −A1 − e−λτD1
−A2 − e−λτD2

−D3


−1 e−λτB31

e−λτB32
B33

 .
The assumption that the system is strangeness-free implies that the matrix
pair E1

0
0

 ,
A1
A2
D3


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is of index-1 and thus the claim follows by analogous arguments as in Part
i).
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