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ABSTRACT 

We investigate a purely combinatorial approach to the following mesh refinement 

problem: Given a coarse mesh of polygons in three-dimensional space, find a decom- 

position into well-shaped quadrilaterals such that the resulting mesh is conforming and 

satisfies prescribed local density constraints. 

We present a new approach based on network flow techniques. In particular, we show that 

this problem can efficiently be solved by a reduction to a minimum cost bidirected flow 

problem, if the mesh does not contain branching edges, that is, edges incident to more 

than two polygons. This approach handles optimization criteria such as density, angles 

and regularity. In our model we get rid of restrictions on the set of feasible solutions 

imposed by templates. On the other hand, we still use advantages of general templates 

with respect to mesh quality for the individual refinement of the mesh polygons. 

For meshes with branchings, the problem is feasible if and only if a certain system of 

linear equations over GF(2) has a solution. To enhance the mesh quality for meshes 
with branchings, we introduce a two-stage approach which first decomposes the whole 

mesh into components without branchings, and then uses minimum cost bidirected flows 

on the components in a second phase. We report on our computational results which 

indicate that this approach usually leads to a very high mesh quality. 

Keywords: Quadrilateral surface meshes, non-manifold surfaces, mesh decomposition, 

bidirected flows, b-matchings, mesh smoothing 

1. Introduction 

Mesh refinement has gained much attention in recent years because of its in- 

creasing role as a bottleneck in the finite element modeling and analysis process. In 

the field of computer-aided design (CAD), engineers often model their workpieces 

first in form of a coarse mesh of convex polygons in three-dimensional space which 

*A preliminary version of this paper appeared in the Proceedings of the Sixth International 

Meshing Roundtable, Park City, Utah, 1997, pp. 293-307.



  

Figure 1: A small, planar artificial mesh. Figure 2: A conformal refinement. 

approximates the object’s surface. However, in order to make a numerical analysis 

applicable, a suitable refinement of the coarse mesh is necessary. 

A large amount of research has been done in the area of mesh refinement into 

triangles, see [18], [6] and [7] for surveys. In contrast, there is much less work on 

quadrilaterals, although meshes which consist solely of quadrilaterals are more ap- 

propriate in many applications, such as torsion problems and crash simulations [32], 

[10]. This is the background of our work, and therefore, in this paper, refinement 

of a mesh means decomposing each polygon into strictly convex quadrilaterals.* 

The input: a coarse mesh. A polygon is a region in the plane or, more generally, 

of a smooth surface in the three-dimensional space, bounded by a finite, closed 

sequence of straight line (or curved) segments (the so-called edges). The endpoints 

of the line segments or curves are the vertices. A polygon is simple if its edges do 

not cross each other, and convex if the internal angle at each vertex is at most 7. 

A vertex of a convex polygon is a corner if its internal angle is strictly less than 7. 

An interval of a polygon P is a path of edges on its boundary. A segment S is an 

interval between two successive corners of P. 

A mesh is a set of openly disjoint, convex and simple polygons, the so-called 

macro elements. The macro elements are convex, but not necessarily strictly convex. 

Let M = {P,, Po,...,P,} be the set of polygons of the mesh. Two macro elements 

are neighbored if they have points of the boundary in common which are not corners. 

These neighborhood relationships induce an undirected graph G = (V, EF), which is 

embedded on the surface approximated by the mesh. More precisely, V consists of 

the vertices of the polygons. If a vertex of a polygon also belongs to the interior of 

a side of another polygon, it subdivides this side. Hence, we may identify common 

intervals of neighbored sides of polygons with each other, and E consists of these 

intervals after identification. For an edge e; € E, let E; be the set of all those 

polygons which contain e;. 

A combinatorial description of a mesh consists of the graph G and the hyper- 

graph H = (M,{Fi,...,Em}) with vertex set M and hyperedge set {F,..., Em}. 

®The work arose from a cooperation with a CAD software company, Dr. Krause Software GmbH, 

Berlin, Germany, which has developed the finite element preprocessor ISAGEN.



We will often identify a mesh with its combinatorial description. 

In a conformal refinement of a mesh, any two distinct quadrilaterals which are 

not completely disjoint either share exactly one whole edge, or they have a single 

common vertex. 

Two-phase approach. Conformal mesh refinement can be achieved in a two-phase 

approach. First determine the additional mesh vertices located on the individual 

edges of the input mesh. Then refine each macro element separately such that, for 

the boundary of each macro element, the vertices are exactly those determined in 

the first stage. 

Templates. Work on conformal refinements in the literature often relies on a few 

classes of templates (see [28,23] and Fig. 7). A template (sometimes also called 

meshing primitive [28]) is a pattern which describes how a single polygon can be 

decomposed into quadrilaterals. The most prominent template is the n xm grid. Not 

every mesh allows for a conformal refinement under template restrictions (examples 

are in [24,20]). We get rid of such template restrictions by using only the evenness 

condition from the following well-known, but important characterization of those 

polygons which can be decomposed into strictly convex quadrilaterals [31,19]: 

Lemma 1 A simple polygon P admits a conformal refinement into strictly convex 

quadrilaterals (without placing additional vertices on the boundary of P) if and only 

if the number of vertices of P is even. 

In fact, any algorithm for conformal mesh refinement has to respect this nec- 

essary evenness condition either implicitly or explicitly. Observe that all standard 

templates certainly do so, but they impose further, non-necessary restrictions on 

the refinement. 

An important feature of our approach is that we can guarantee to fulfill the 

evenness condition for all polygons simultaneously (if such a solution exists). This 

property of our approach is also valuable for other methods such as advancing 

front [31,27] or paving [8,29]. In particular, there is no need to use a few triangular 

elements as in Rees [27]. 

Branchings. Note that the graph G of a mesh need not be planar; for example, 

a mesh approximating the surface of a torus has genus one. Even more, the ap- 

proximated surface need not be a two-manifold, i. e. the corresponding mesh model 

may contain branching edges, that is, edges incident to more than two polygons 

(Figure 3). We call a mesh homogeneous if it does not contain branching edges. 

Coping with branchings is an issue of crucial importance, as they appear in many 

practical examples. Quadrilateral surface meshing can be seen as a first step in 

hexahedral volume meshing (which still is an only partially solved problem with 

respect to both theory and practice). At least, it seems to be a promising approach 

to start a decomposition into hexahedra from a high quality quadrilateral surface 

mesh [20]. Here, we want to point out that it might be advisable to decompose 

complicated solid models first into smaller, preferably convex, subdomains by in-



  

Figure 3: A small mesh with four branching edges. 

sertion of internal polygons. This can be done either explicitly or implicitly. The 

latter approach, so-called meshing by virtual decomposition, has been introduced by 

White et al. [30]. In both variants, these additional polygons induce a number of 

branchings. However, this fits perfectly into our approach which mainly abstracts 

from geometry and essentially solves a combinatorial problem. In fact, we will in- 

troduce a simple and elegant method to ensure conformity between subdomains 

resulting from a branching. 

Local mesh density control. The subdivision number of edge e € E, denoted by 

Ze, is the number of additional vertices which are placed on edge e in a refinement. 

To ensure that the refinement of a mesh is fine enough for the numerical analysis 

to achieve the required accuracy, but not too fine for reasons of efficiency, the mesh 

density has to be controlled. Depending on the application, it is often crucial to 

have a local density control on a per edge basis (derived from an error estimation 

in the numerical analysis). Hence, we usually have for each edge e € E a desired 

subdivision number d,. Moreover, we use density constraints for the purpose of 

density control: For an edge e € E, the subdivision number 2, is at least @. and 

at most Ue: le < te < Ue (lower and upper edge capacities, (€.,Ue)-capacities, for 

short). 

An edge with equal upper and lower capacities is a fired edge, otherwise it is 

free. A conformal mesh refinement is feasible if it respects the density constraints. 

Fixed edges may appear in particular if certain parts of the mesh are refined 

in advance, and other parts have to be meshed afterwards (or remeshed) in such a 

way that the predetermined parts remain unchanged. Or they appear if a hybrid 

approach for the meshing is used where different algorithms are used for meshing 

subdomains, for example an advancing front based approach or paving in combina- 

tion with a template based approach [20]. 

We also note that it is sometimes desired (for symmetry reasons, for example) 

to enforce that certain edges (which might be geometrically far away from each 

other) are subdivided by exactly the same number of subdivision points. Such an 

additional restriction can easily be represented in our combinatorial model by an 

identification of the corresponding single edges to a new branching edge.



Angle control. The quality of a refinement largely depends on the shape of its 

quadrilaterals. In Section 2 we explain how our bidirected flow model can be used 

to control the quality of interior angles already in the first stage of the refinement 

process (which determines the combinatorial structure of the refinement). We use 

mesh smoothing by local optimization for the final embedding phase (see Section 4). 

Overview. In Section 2 we will show that the feasible conformal mesh refinement 

problem without branchings can efficiently be solved by a reduction to a single 

minimum cost bidirected flow problem (or, equivalently, to a weighted b-matching 

problem). This bidirected flow model captures the refinement problem without 

adding additional restrictions. In contrast to previous work [28,23], we get rid of 

restrictions imposed by standard templates. See the seminal paper of Edmonds [13] 

or the monograph by Derigs [12] for an introduction to bidirected flows and b- 

matchings. Within this model, certain optimization criteria such as mesh density, 

interior angles and mesh regularity can be handled. 

Then, in Section 3, we show that the general refinement problem is feasible if 

and only if a certain system of linear equations over G'F(2) has a solution. (GF(2) 

denotes the general field of two elements.) Such systems can be solved efficiently 

by using standard Gaussian elimination (and numerical stability is no problem over 

GF(2)). From any solution to this system of linear equations we easily derive a 

feasible conformal mesh refinement. However, there seems to be no way to incorpo- 

rate mesh quality optimization directly into this approach. This is not surprising 

as even optimizing the mesh density on the edges has been shown to be NP-hard 

for meshes with branchings [22]. 

For that reason, we use mesh decomposition into homogeneous components and 

combine both approaches: In a first phase, we determine the subdivision numbers 

for all branching edges by solving a system of linear equations over GF'(2). After- 

wards, in a second phase, we solve a minimum cost bidirected flow problem for each 

homogeneous component with fixed subdivision numbers on the branching edges. 

For real-world instances the number of branching edges is usually relatively small in 

comparison with the number of polygons. Hence, the proposed combined approach 

is likely to achieve a reasonably good overall mesh quality. 

The main contribution of this paper is to elaborate in detail on the mesh quality 

which can be achieved by this approach (see Section 4). For the detailed proofs of 

our theoretical results we refer to [22]. 

2. Conformal mesh refinement without branchings 

In this section we consider the first phase of the refinement process (where the 

number of additional vertices are determined for each edge of the input mesh) for 

the case of meshes without branchings. 

We present a model which guarantees the evenness condition for all polygons of 

a mesh simultaneously. It turns out that the feasible conformal mesh refinement 

problem can efficiently be solved by a reduction to a bidirected flow problem.



2.1. Mesh refinement as a bidirected flow problem 

Bidirected flows. Bidirected flow problems can be defined in several (equivalent) 

ways (see [13,12]). We will henceforth use the following setting. 

Let G= (V, E) be an undirected graph (loops and parallel edges allowed), and 

for € € E let uz > lz > 0 be the upper and lower capacity of edge é. » 

For each vertex 0 € V~, the set of all incident edges is partitioned into two parts, 

Ai(6) and Ao(é), where A(t) may be the empty set. We define 6(A;(0)) as the 

set of non-loop edges in A;(#), and y(A;,(0)) as the set of loops within A;(0), for 

i = 1,2. An integer weighting x € Z” of all edges in Bisa feasible bidirected flow 

if and only if 

(1) €s <ae<ue for each edge é € EB (edge capacity constraints), 

(2) S- te+2 S- 4 S- te —2 S- te = bs 

€€6(A1(@)) €€7(A1(8)) €€6(A2(8)) €€7(A2(8)) 

for each vertex # € V (flow conservation constraints). 

Vertices with 6; = 0 are called transshipment vertices. Note that a bidirected 

flow is a proper generalization of the usual flow definition for a directed graph, 

where the orientation of the edges induces the bipartition A; (0), A2(6) in a simple 

way, namely into incoming and outgoing edges for each vertex 0. 

Single polygons. For a single polygon P with p segments we now define a small 

bidirected flow problem on a graph Gp = (Vp, Ep). See Figure 4 for examples of 

polygons with three, four and five segments. Let us suppose that we are given some 

nonnegative integer N; for each segment S;, such that the segment S; has to be 

subdivided into N; + 1 edges in the refinement. 

The vertex set Vp consists of vertices 0; and w; corresponding to each segment 

S;, and of one additional vertex @, (c for central), if p is odd. 

The edge set Ep = EU E*°9 U EP” consists of 

e the set EZ’ which contains all pairs (0;,0;), for 1,7 = 1,...,p, including the 

loops, 

e the set £°°9 which contains an edge (0;, w;) for each segment S;, and 

e the set BE?” which contains an edge (0;,0-) for each segment Sj, if p is odd, 

and is empty otherwise. 

The edges in EU E®°9 are “internal” edges of the polygon, and edges in EP2r are 

used to ensure the “correct parity” of the subdivision if the polygon is initially odd. 

We assign the following capacities to the edges: 

e For an edge € € E*"U E°°9, we set ls := 0 and ug := +00. 

e For an edge € € Epar | we set fs := 0 and ug := 1. 

bThe symbol ‘~’ is used to distinguish the graph on which a flow problem is defined from the 

graph associated to a mesh.



  

Figure 4: Examples: the bidirected flow graphs for a triangle, a quadrilateral and 

a pentagon. A short solid line through a vertex is used to indicate a non-trivial 

bipartition of its adjacency list into two parts. 

The bipartition of the vertices is as follows: For each vertex 0;, the incident edges 

are partitioned into the sets EU EP and E%°9. For each vertex w; and for 6, (if 

the latter vertex exists), all incident edges are in A;(-), and A2(-) is empty. 

We define b;, = 1, if pis odd, and all other vertices 6; are transshipment vertices. 

Finally, let by, = N; for the given nonnegative integers N;. This completes the 

definition of a bidirected flow problem for the polygon P. 

Meshes without branchings. We now extend our definition of a bidirected flow 

instance for a single polygon to an instance for a whole mesh. Let G = (V, E) be 

the undirected graph of a mesh without branchings. 

The underlying graph G = (V, E) of the bidirected flow instance is built up using 

the graphs Gp = (Vp, Ep) as defined for single polygons as subgraphs. Roughly 

speaking, two such subgraphs are connected by a “dual edge” if the corresponding 

polygons share an edge in G. 

The vertex set V is the union of 

e the vertex sets Vp of all polygons P, 

e all vertices among V which are non-corners of some polygon, and 

e one special vertex oy. This vertex corresponds to the region “outside” the 

mesh. 

The edge set E contains the following edges: 

e We take the union of the edges sets Ep over all polygons P, and the edge 

capacities as in Gp. 

e Let e € E be an edge which belongs to two polygons, say to P and Q, and 

suppose that «; € Vp and wz E Vo are the vertices which correspond to the 

segments of P and Q to which e belongs. For each such edge e, we introduce 

a “dual” edge é = (w;,W,;), with edge capacities equal to that of e in G. 

e If an edge e € E belongs only to one polygon, say to P, and w; € Vp is the 

vertex which corresponds to the segment of P to which e belongs, then we 

introduce a “dual” edge € = (w;, Sou), with edge capacities equal to that of e 

in G.



  

Figure 5: The graph G = (V,E) of the bidirected flow problem for an artificial 
instance. (The special vertex 6o,4 is omitted in this figure. The vertex corresponds 

to the unbounded region around the mesh.) 

e For each polygon P and each vertex v € VN P which is not a corner of P, 

we introduce an edge é = (t;,v), where v lies on the segment of P to which 

Ww, € Vp corresponds. Such an edge gets identical lower and upper capacities 

(gs :=ug:= 1. 

e A loop € = (Hout, Gout) With capacities fs := 0 and ug := +00. 

The bipartition of the vertices is as follows: For each vertex w; € Vp, we put 

exactly all edges 6 € E \ Ep incident to w; into A» (w;). For each vertex v € V, all 

incident edges are in A;(v), and Aj(v) is empty. All incident edges to Gouz are in 

Ai (Gout) except (Gout; Vout) Which belongs to A2(iout)- 

All vertices w; € Vp which correspond to segments of P become transshipment 

vertices (in contrast to the case of single polygons). For each vertex @ € V;, let bj be 

equal to the number of incident edges in G. Finally, let 65,,, := 0 if © 

is even, and b := 1, otherwise. 
BEV \ Gout bi 

Vout 

Theorem 1 [22] There exists a feasible conformal refinement for the homogeneous 

mesh G if and only if the bidirected flow problem as defined above has a feasible 

bidirected flow. 

2.2. Optimizing the mesh quality 

In the preceding section we have seen the correspondence of conformal mesh 

refinements and feasible solutions of certain bidirected flow problems. We continue 

with the more ambitious task to find special solutions which fulfill certain optimiza- 

tion criteria instead of just feasible solutions. This leads to minimum cost bidirected 

flow problems. Let G= (V,E) be the graph of a bidirected flow instance where 

a cost cg is associated with every edge €. Then the minimum cost bidirected flow



| [-—> | | 
ls dg Ue ls dz Ue 

  

Figure 6: Piecewise linear convex cost functions for density control. 

problem seeks for a feasible bidirected flow with minimum cost » cm cere. We will 

consider three kinds of mesh quality criteria: 

e control over the mesh density, 

e avoidance of too small or too large angles, and 

e “regularity” of the overall mesh structure. 

Density control. Probably, the most natural way to get control over the density 

of a mesh is to use a convex cost function for each dual edge with a minimum at 

the desired density dz. As we allow only integer flows, the cost functions can be 

assumed to be piecewise linear. For practical purposes, it will often suffice to use 

piecewise linear functions with only few different slopes, as depicted in Figure 6. 

The slopes should be chosen such that the relative change from the desired density 

is taken into account, for example by choosing them inversely proportional to the 

desired subdivision number. Then the objective is to minimize the weighted sum 

of deviations over all edges. 

This defines a minimum convex cost bidirected flow problem. The standard way 

to transform such a problem to an ordinary linear minimum cost bidirected flow 

problem is to replace each edge é by as many copies as there are slopes (cf. [1], 

pages 551ff.). So if there are p slopes with cost coefficients ck and breakpoints at 

dé, the k-th copy é* gets edge capacities [0, d! — d?~"] and a cost coefficient of cf. 

(Here, we assume d? = @s and d3 = uz.) 

Very recently, Mitchell [20,21] proposed to minimize the maximum weighted de- 

viation from the desired subdivision numbers. Note that such a bottleneck-type 

objective can be solved via a combination of our bidirected flow method with bi- 

nary search on the value of the maximum deviation. Hence, Mitchell’s objective is 

somewhat more expensive than ours but can still be solved with a combinatorial 

approach for meshes without branchings. 

For ease of exposition, we will discuss the next two optimization criteria only 

for polygons with four corners.



Angle control and mesh structure. It is easy to see that, for a polygon with four 

segments, we may assume that we have a feasible flow with at most four edges with a 

non-zero flow within the set EB’. Furthermore, there is a conformal refinement such 

that exactly x(,,4;) disjoint paths go from the interior of segment S; to the interior 

of segment S;. Hence, conformal subdivisions of polygons with four segments can 

be assumed to be of the form as shown in Figure 7. The first three possibilities 

are the standard templates used in [23,28], whereas the last template is new and 

generalizes all standard templates. 

Apart from the mesh density, mesh quality criteria depend upon the shape of the 

quadrilaterals. For numerical reasons in the finite element analysis, interior angles 

of quadrilaterals should neither be too small nor too large. There is no generally 

accepted, precise threshold, but one usually aims at generating quadrilaterals with 

no angles smaller than some given a and no angles larger than some (3. (In practice, 

one often uses as a rule of thumb values of a = 30° and @ = 150° [31].) 
The shape of the quadrilaterals in the refinement is closely related to the choice 

of the template which determines the refinement of the macro element. As a rule 

of thumb, the more the polygon looks like a trapezoid, the better template (2) will 

be, the more it looks like a kite, the better template (3) will be. In all other cases, 

template (1) is likely to be the best. 

Moreover, template (1) tends to produce a fairly regular mesh. “Regularity of 

the mesh structure” is a mesh quality criterion which seemingly cannot be fully 

formalized. But the heuristical rule to prefer template (1) often achieves practical 

results which reflects such a goal quite satisfactorily [23]. 

Hence, we would like to refine as many polygons by template (1) as possible 

(among those polygons which have no very small or large angle), or more generally, 

we would like to maximize the number of macro elements which are refined to some 

preferred template, for a given preference order for each individual polygon of our 

instance. Unfortunately, such a goal is intractable. 

Theorem 2 [22] Given a feasible homogeneous mesh instance, it is strongly NP- 

hard to find a solution where the number of macro elements with four corners which 

are refined according to the (m x n)-grid template (i.e. template (1) in Figure 7) is 

maximized. 

So what can we hope for? As the mesh refinement problem only allows to insert 

new vertices and edges, no sharp input angle can be erased. Hence, we can only 

try to avoid the creation of new angles smaller than a. On the other hand, we can 

try to enforce the splitting of an angle larger than @. Observe that, for the given 

templates in Figure 7, a non-zero flow on edge (61,62) induces the splitting of the 

angle 74, and a non-zero flow on the loop (#1, 61) induces the splitting of both yy 

and 3- 

There are two possibilities to modify our bidirected flow instance for these pur- 

poses: First, we can change the edge capacities of “internal edges” E® ofa polygon: 

In the pure feasibility problem all these edges have a lower capacity of zero and a 

large upper bound (“plus infinity”). Hence, we can enforce to use an edge, if we 

set the lower capacity to one, or we can forbid an edge completely, if we set the 

10



  

                
  

  

Figure 7: Illustration of the four templates for polygons with four corners. Solid 

lines are mandatory for each template (up to rotation and symmetry), whereas the 

number of dashed lines may vary. The rightmost figure shows the corresponding 

subgraph of the bidirected flow instance with only those edges displayed which may 

have a non-zero flow value. 

upper capacity to zero. The disadvantage of this approach is, that such a modifi- 

cation may cause the infeasibility of the bidirected flow problem. A second (and 

not so restrictive) way is to assign costs to these edges in order to make them more 

attractive or unattractive. 

Using these ideas we can express our preferences for the choice of the chosen 

template for each polygon. So if we prefer a realization of template (1) for some 

polygon, we assign high cost coefficients to all internal edges but (61,63) and (#2, 04), 

which get zero cost. Or, for example, if the angle 7, should be split by an application 

of template (3), we either raise the lower bound for edge (#1, #2) to one or make the 

corresponding cost coefficient negative. 

Hence, in summary, we can use local information about the geometry of the 

unrefined polygon and so can model our preferences of the choice of an appropri- 

ate template and enforce or forbid the splitting of macro element angles by these 

modifications. 

3. Conformal mesh refinement with branchings 

A simple approach for meshes with branchings. As we know from Lemma 1, 

it suffices to determine the subdivision numbers such that all polygons become even. 

Then we can always complete the quadrangulation of all polygons. 

For each edge e € E, let & be some fixed integer in the interval [€.,u.]. Then 

define for each polygon P € M the “parity number” bp := }0.¢p(@ +1) mod 2. 

For each edge e € EF, let ye be a 0/1-integer variable, but fix y. = 0, ifue—&. = 0. 

Now, if we take for each polygon P an equation of the form }?.-p Ye = bp, this 

defines a system of linear equations over GF'(2) which one can easily solve. Clearly, 

any solution % to this system immediately makes all polygons even, if we set 

Jeti. iff <ue 
ves { —Je +e otherwise . 

Note that the solvability of this system of equations over GF'(2) does not depend 

on the choice of @. 

This shows that finding subdivision numbers such that all polygons become even 

is not harder than solving a system of linear equations over GF(2). 

11



4P4E) 
Figure 8: An input mesh with branching edges (left), the placement of additional 
vertices on branching edges after solving the linear equations over GF(2) (middle), 
the decomposition into five homogeneous components (right). 

Note that the subsequent embedding phase can be done in linear time (linear in 

the number of subdivision points) using the decomposition algorithm in [25]. The 

obvious advantage of this approach is its simplicity. The disadvantage, however, 

is that we cannot incorporate optimization criteria as we can in the homogeneous 

case. Angle control and a preference of mesh regularity seem to be impossible by 

this simple approach. 

Density control can still be achieved to a certain extent, if we initially choose 

as the desired subdivision number. But we will be forced to change the subdivision 

number by one (but not by more than one) for all those edges which have a non-zero 

entry in the solution of our system of equations. We also note that we cannot hope 

to find a solution of such a system with a minimum number of non-zero entries, as 

this problem is W’P-hard. 

Theorem 3 [22] For a mesh with branchings and desired subdivision numbers it 

is strongly NP-hard to find a feasible refinement such that the weighted sum of 

deviations from the desired subdivision numbers over all edges is minimized. 

A decomposition approach for meshes with branchings. For these reasons, 

we introduce a mesh decomposition into homogeneous components. This allows us 

to combine the different approaches for branchings and homogeneous components 

into a two-phase approach: In a first phase, we determine the subdivision numbers 

for all branching edges by solving a modified system of linear equations over GF'(2) 

which we explain below. Afterwards, in a second phase, we solve a minimum cost 

bidirected flow problem for each homogeneous component where the flow values for 

all branching edges are predetermined from the first phase. 

Recall from the Introduction that a combinatorial description of a mesh consists 

of a graph G = (V,F) and a hypergraph H = (M,{E\,...,E£m}). Depending on 

the number of polygons they belong to, the edges of G can be partitioned into 

sets E!,E?, and E2°. The set E!' contains the boundary edges, i.e. edges which 

belong to exactly one polygon, the set E2° contains all branching edges, and E? 

all remaining edges. A non-branching path in H is a path between two polygons 

P,,P, € M which contains only hyperedges of cardinality two, i.e. hyperedges 

corresponding to edges in E*. Being connected by a non-branching path whose 

edges are all free is an equivalence relation on the set of polygons. Its equivalence 

classes are exactly the homogeneous components of the mesh decomposition. 

12



Such a decomposition into homogeneous components of a mesh with branchings 

can be obtained by the following procedure which “splits” all branching edges and 

fixed edges: A branching edge which is incident to p polygons is replaced by p 

copies, once for each polygon. The copied edges are treated as boundary edges, and 

they get the same capacities as the original ones. All fixed edges in E? are replaced 

in the same way by two copies, once for each incident polygon. Let G1,...,Gp 

be the resulting homogeneous components, and M,,...,M, the sets of polygons 

contained in these components. 

Let H' = (M',{E}\,...,E},,}) be the hypergraph which we obtain from H = 

(M,{Fy,..., Fm }) if we 

(1) delete all hyperedges £; where e; is fixed, then afterwards 

(2) contract all those hyperedges of degree two which correspond to free edges in 

E?, and finally, 

(3) identify all parallel hyperedges, i.e. we keep only one hyperedge for all edges 

e € E which are incident to exactly the same set of polygons. 

Observe that there is a one-to-one correspondence between the vertices of H’ and 

the homogeneous components Gj,...,G,z of G. 

We will now define a smaller system of equations over GF(2) based on H'. We 

start similar as in the first approach above. Again, let %, be some fixed integer in the 

interval [€.,u.], for each edge e € E, and define for each polygon P € M the parity 

number bp := )°,¢p(#- +1) mod 2. These parity numbers are aggregated to parity 

numbers for each homogeneous component, by setting be; := dope m, Op mod 2, for 

i=1,...,k. 

For each hyperedge FE’, € H’, let yu be a0 /1-integer variable. For each homo- 

geneous component G; which is not incident to a free boundary edge in G, we take 

an equation of the form 

> ve, = ba, 
B!:|B;Gi| odd 

that is, we sum over those hyperedges which are derived from a branching edge with 

an odd number of incidences with the homogeneous component G;. Let us call a 

homogeneous component active if it is not incident to a free boundary edge in G, and 

inactive otherwise. Notice, that it might happen that some set {Ej : |Ej;G;| odd} 

is empty (because of the deletion of fixed edges, for example). In that case, we 

define the sum over the empty set to be zero. This defines our system of linear 

equations over GF'(2). 

Suppose that this system has a solution gy. For each hyperedge E} with ye, = 1, 

take one corresponding branching edge e = e; (there may be a choice if E} resulted 

from parallel hyperedges of a branching), and set x, := £ +1 (such that the 

edge capacities remain fulfilled). For all other branching edges, set x. := %-. This 

completes the first phase. In the second phase, we fix the subdivision values x, for all 

branching edges and then solve the bidirected flow problems for each homogeneous 

component separately. We claim that each bidirected flow problem is feasible if we 
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have a feasible solution % in the first phase. This is summarized in the following 

theorem: 

Theorem 4 [22] There exists a feasible conformal refinement for a mesh G with 

branchings if and only if the two-phase approach as described above yields a feasible 

solution. 

4. Computational Experiences 

In this section we report on our experiences with an implementation of the algo- 

rithms presented in this paper. We have implemented our algorithm on a Sun Sparc 

station under SunOS 5.1, the programming language is C++, and our front end is 

ISAGEN. ° ISAGEN accepts input from a number of standard CAD formats (IGES, 

VDAFS, DXF, and some others), and provides routines for an automatic conversion 

of each of these formats into a macro element model consisting of quadrilaterals and 

triangles. We got the latter as input for our algorithms. 

The goal of this section is to investigate two main questions which immediately 

arise from the proposed algorithms: 

1. How well does the decomposition approach work for meshes with branchings? 

2. What mesh quality can be achieved? 

Having refined each macro element as a planar graph, we are faced with the 

important and difficult task of finding a “nice” embedding of the refinement onto 

the surface defined by the macro element. ISAGEN provides subroutines to find 

an embedding only for the standard templates. In the following two subsections, 

we first report on the mesh decomposition approach and then elaborate on mesh 

quality. 

4.1. Mesh Decomposition and Bidirected Flows 

The decomposition into homogeneous components can be easily implemented 

by a straightforward depth or breadth first search. Solving the system of linear 

equations over G'F(2) is also simply done by Gaussian elimination (note that over 

GF (2) no care has to be taken for numerical stability). The running time for this 

phase is negligible. 

Our implementation has been applied to a variety of problem instances from 

practice, listed in Table 1. For these instances, some global mesh density has been 

given. The goal was to find refinements with uniform edge lengths. The results 

obtained by our decomposition approach are very appealing. Most remarkably, the 

decomposition approach always yields a feasible solution if one exists. “Emergency” 

templates (using triangles) are not necessary nor do we leave unrefined “holes.” 

Table 1 shows the distribution of realized templates for quadrangles. However, more 

expressive quantities for the mesh quality will be given in the following subsection. 

The number of homogeneous components after the decomposition is given in column 

SISAGEN is a trademark of Dr. Krause Software GmbH, Berlin. 
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{ macro | # bra. | des. { realized templates sec. CPU 
instance elem. | edges | len. Cc T 1 2 3 4 | CPLEX | BLO 

1) axle 34 0 | 30 T(o) | 6] 247 2] 2] 0 0.21 0.6 
2) bowl 24 0 20 1 (0) 2 21 0 1 0 0.1 0.2 

3) wing 131 0 20 1 (0) | 16 | 106 5 4 0 2.6 9.6 
4) casing 237 2 10 1(0) | 26 | 167 | 25 | 14 5 225.3 20.5 

5) wh-cap 377 0 10 1 (0) | 66 | 247 | 30 | 30 4 244.4 15.4 
6) rack 68 0 30 1 (0) 2 64 0 2 0 0.4 0.4 
7) chassis 158 38 20 5 (1) 9 | 127 6 | 16 0 45.8 10.2 
8) coolsys 530 115 5 13 (6) | 31 | 375 | 40 | 74 | 1o 19.0 7.1 
9) pump 161 7 10 12 (4) 7 | 141 5 7 1 3.5 2.9 

10) bend 608 21 10 | 11 (10) 6 | 559 5 | 38 0 244.2 | 34.9 

11) vw-p4 188 116 20 | 90 (28) | 55 93 9 | 30 1 2.5 1.8 
12) tub 150 68 30 | 26 (26) 8 | 126 | 16 0 0 1.3 0.9 
13) frp 171 62 4 | 19 (19) 0} 128 | 20 | 17 6 241.1 5.6 

Table 1: Results of the decomposition approach for real-world instances. The third 

column shows the number of branching edges, the fourth column contains the de- 

sired edge length, the fifth column gives the number of triangles (T) among the 

macro elements. (C) refers to the number of homogeneous components in the mesh 

decomposition, the number of active components is given in brackets. Templates 

(1), (2), and (3) are the standard templates, whereas template (4) is the general 
template for quadrangles. The last two columns give the CPU times (in seconds) 
to solve the minimum cost bidirected flow instances with CPLEX and our imple- 

mentation of the blossom algorithm (BLO), respectively. 

(C), the number of active components is given in brackets. The first six instances 

consist of just one single component, which implies that the corresponding linear 

systems of equations over GF(2) are empty. The distinction between active and 

inactive homogeneous components is useful for instances (7)—(11), whereas instances 

(12) and (13) stem from solid models without boundary. The latter rules out the 

possibility of inactive homogeneous components. 

Minimum cost bidirected flow problems are equivalent to minimum cost perfect 

b-matchings and can, therefore, be solved in strongly polynomial time, as shown 

by Anstee [3] and Edmonds (cf. Gerards’ survey on matching [17]). The asymp- 

totic running time of strongly polynomial algorithms for these problems are domi- 

nated by strongly polynomial algorithms for ordinary minimum cost flow problems. 

Thus, the best strongly polynomial time bound for minimum cost bidirected flow 

is O((mlog n)(m + nlogn)), where m denotes the number of edges and n the num- 

ber of vertices of the underlying graph [1]. The number of edges and vertices in 

the auxiliary graph of the bidirected flow model is linear in the number of original 

polygons and mesh edges. 

We explored two implementations for the solution of the bidirected flow prob- 

lems, an approach using a general purpose integer programming solver and a purely 

combinatorial implementation of the primal-dual blossom algorithm for weighted 

b-matching as described by Pulleyblank [26]. As the problem remains unchanged, 

the optimal solutions, i. e. the mesh quality, is certainly not affected by a change in 

the algorithmic approach. 
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Using integer linear programming. Our first implementation uses the callable 

library of the linear and integer programming solver CPLEX 4.0 ¢ with its Mixed 

Integer Solver option (MIP). (Note that the minimum cost bidirected flow prob- 

lem has the form of a pure integer programming problem.) CPLEX [11] provides a 

number of algorithmic parameters which can be used to improve the performance of 

the MIP solver. In our experiments we obtained the overall best solution times for 

our particular class of problem instances by changing the default parameters for the 

branch and bound process in two ways. First, we used the “best estimate node selec- 

tion strategy,” and second, variables are selected with so-called “strong branching.” 

See the CPLEX manual [11] for an informal description of these heuristics. 

We set a time limit of 300 seconds to solve a minimum cost bidirected flow 

instance, however, in all cases the actual solution time for a near-optimal feasible 

solution was less than 25 seconds. The time to compute the optimal solution for 

these problems is given in Table 1. The running time ranges from less than a second 

to 244 seconds of CPU time for the instances given there. 

Using weighted b—matching. Implementing matching algorithms is tedious. 

Nevertheless, we decided to implement a combinatorial alternative to the general 

purpose integer programming solver CPLEX. In our project, we implemented Pul- 

leyblank’s description of a primal-dual algorithm for weighted b-matching [26] and 

combined it with heuristic ideas of Applegate and Cook [4], and Ball and Derigs 

[5]. A detailed description of the implementation details goes beyond the scope of 

this article. However, this effort gives several advantages: first, our implementation 

becomes independent of a commercial third party product. Second, the running 

times to solve all instances to optimality reduced significantly (see the last column 

in Table 1). Third, this variant has much lower storage requirements. 

For this algorithm the running time ranges from less than a second to 35 seconds 

of CPU time for our test set. The execution time is more than acceptable in view 

of the other far more expensive steps in a numerical analysis. 

4.2. Graph Embeddings and Mesh Smoothing 

Given the subdivision numbers on the edges of the input mesh, it is easy to create 

for each macro element the corresponding planar graph of the decomposition. It 

is also no problem just to find a preliminary geometric embedding of such a graph 

on the corresponding surface. However, it is usually hard to find an embedding 

which leads to a good mesh quality. A common approach for mesh improvement, 

namely mesh smoothing, uses local optimization to move the vertex positions while 

preserving the combinatorial embedding of the graph. 

Laplacian smoothing might be the most frequently used smoothing technique [7]. 

This method iterates over the vertex set several times, repeatedly moving each ad- 

justable vertex to the (weighted) barycenter of the vertices adjacent to it. The 

method is computationally inexpensive. However, in general, the barycenter of a 

dCPLEX is a registered trademark of CPLEX Optimization, Inc. 
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number of vertices need not lie on the surface anymore. Hence, a projection back 

onto the given surface is necessary. Even in the plane the method does not guaran- 

tee an improvement in mesh quality. Moreover, it can happen that quadrilaterals 

become inverted, i.e. non-convex, unless the algorithm performs an explicit check 

before moving a vertex. 

Freitag, Jones, and Plassmann [14] proposed an alternative to Laplacian smooth- 

ing for triangulations. They compute for each vertex a new placement that max- 

imizes the minimum angle in adjacent triangles by use of an iterative steepest- 

descent algorithm to solve this optimal placement problem. Recent theoretical 

work by Amenta, Bern, and Eppstein [2] on triangulated, plane meshes shows that 

optimization-based smoothing can be performed in linear time for a number of 

quality measures. However, it remains open to which extent these results can be 

extended to quadrilateral meshes and to curved surfaces. Moreover, in spite of its 

theoretical linear time complexity these mesh improvement procedures turn out to 

be very expensive. 

We tried to combine several quality measures simultaneously. Let 6, with 0 < 

0 < 360, be the measure of an angle in degrees. The quality of an angle ¢(@) ranges 

between 0 and 90 and is defined by 

0 if0<4<90, 
o(0) = 4180-6 if 90 <6 < 180, 

0 if @ > 180. 

The angle quality of a quadrilateral Q with interior angles a, 3, y, 6 is defined as 

aq(Q) := min{¢(a), (3), (7), 9(6) }. 

Quadrilaterals with an angle quality below the threshold of 30 are marked as dis- 

torted. 

Roughly speaking, we wanted to avoid very large and very small angles and to 

create uniform edge lengths. More precisely, our primary objective was to maximize 

the (weighted) average angle quality over all quadrilaterals. In the weighted version 

of this objective, distorted quadrilaterals are assigned a higher weight than non- 

distorted ones. Our secondary objective was to create uniform edge lengths and 

to maximize the (minimum or average) aspect ratio. These goals are combined in 

form of a weighted sum. 

In our implementation, we used the general framework of local optimization, but 

did not solve the optimization problems exactly. Instead we iterate over the vertex 

set a fixed number of times and strive only for an approximation of the optimal 

placement problem. For each adjustable vertex we first determine a search direction 

and calculate a step length which gives a proposal for a new vertex position. Then 

we check whether the new position is feasible, i.e. it preserves planarity of the graph 

and convexity of the quadrilaterals, and whether it would yield an improvement in 

local mesh quality. In the affirmative case, the new position is accepted, otherwise 

we try anew search direction or step length. Moreover, additional side constraints 

in the position check come from our secondary objective to have more or less uniform 
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angle quality 

instance AQ 

66.28 

83.04 

73.26 

72.32 

78.61 

81.85 

73.42 

76.39 
80.62 

78.01 

68.88 

82.03 

73.54 

76.34 

  

Table 2: Evaluation of the angle quality for our set of real-world instances. The 
second column gives the number of quadrilaterals (Q) in the refinement. The set 
of quadrilaterals is partitioned into seven classes of different angle quality, ordered 

from left to right with decreasing quality. The third column contains the number of 

quadrilaterals with an angle quality above 80, the forth column the corresponding 

number for quadrilaterals with a quality in the range from 70 to 80, and so on. In 

particular, the number of distorted elements is given in the third but last column. 

(DA) refers to the number of input angles with a bad quality. (AQ) denotes the 

average angle quality. 

edge lengths. In particular, very short edges are always rejected, even if the angle 

quality could otherwise be further improved. 

Certainly, there is a lot of freedom in fine-tuning the choice of several parameters. 

Most probably, our empirical results can still be improved by a more clever choice 

of these parameters. In Table 2 we show the results of our current implementation 

applied to our set of real-world instances. See also the histogram in Figure 9 for the 

distribution of the angle quality with respect to classes of different angle quality. 

Statistically, our refinements contain few quadrilaterals with “bad angles” (less 

than 1%). Experiments by Freitag and Ollivier-Gooch [16] showed that for linear 

finite elements on triangular meshes the number of iterations required for conver- 

gence is not significantly affected by a small number of poor-quality elements. Such 

a result seems likely to hold in some form for quadrilateral meshes, too. If so, the 

number of distorted elements in our results is not a critical issue. 

The average angle quality for all instances is 76.34. This seems to be a signifi- 

cant improvement over results obtained for free-form mesh generation (in free-form 

mesh generation, there is no prepartition of the whole meshing domain into macro 

elements). Unfortunately, we are not aware of a computational study which is di- 

rectly comparable with ours. Borouchaki, Frey and George [9] report results for 

free-form meshing where they use the same measure for the angle quality (up to 

a constant scalar), but calculate angles with respect to a metric induced by an 

isotropic field. For this measure they obtain a mean angle quality of approximately 
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100 Percentage of quadrilaterals 96 99 100     
907 84 
80- 
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60+ 
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404 
307 
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10+   angle 

> 80 > 70 > 60 > 50 > 40 > 30 >0 quality 

Figure 9: The average angle quality: for each quality class, the left columns gives 

the percentage of quadrilaterals falling into it, whereas the right columns give the 

cumulative percentage (with decreasing quality). 

61.2 (this number is already scaled up to our measure, but still cannot be used for 

a fair comparison). 

Note that certain input instances contain a significant number of macro elements 

with a bad angle quality (column (DA) in Table 2). As the geometry of the macro 

elements themselves is not subject to change in the mesh smoothing process, this 

implies that a number of quadrilaterals has to be distorted in any refinement. In 

particular, very small angles cannot be removed. On the other hand, very large 

angles can possibly be split in two acceptable smaller ones. This explains why 

the number of bad input angles (DA) can be larger than the number of distorted 

elements in the refinement (which happens for our instance (11) in Table 2). 

Our mesh smoothing technique is computationally very expensive. In fact, it 

usually consumes the major portion of the whole run time. For our examples, it 

took more than fifty percent of the overall run time. 

Fortunately, this run time bottleneck can be reduced if the smoothing is per- 

formed in parallel. The crucial observation is that our macro elements induce in a 

natural way a fast mechanism for determining independent sets of vertices that can 

be manipulated simultaneously on different processors. Freitag, Jones and Plass- 

mann [14] showed how to do this distribution on processors with graph coloring 

techniques, in general, and they reported successfully results of experiments run 

on a network of workstations. Moreover, a further speed-up can be achieved by a 

combined smoothing approach in which Laplacian smoothing is always done, but 

followed by optimization based smoothing when quality is low [15]. 
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We provide some illustrations of instances which have been refined by our algo- 

rithm (instances (7), (9), (10), (12), and (13) in Table 1). 

Appendix A: Examples 
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Figure A.1: Model of a chassis and its refinement. (Instance (7) in Tab. 1.) 

  
Figure A.2: Model of a pump and its refinement. (Instance (9) in Tab. 1.) 
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Figure A.3: Model of a bend and its refinement. (Instance (10) in Tab. 1.) 
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like workpiece (instance (12) in Tab. 1). 
Fig. A.A. The polygons have been shrunk in this 

visualization to show the hyperplanes 

inside the model which partition the 

solid tub into convex parts.   
  

      
Figure A.7: The refinement produced 

by our algorithm. 
Figure A.6: This solid model (instance 
(13) in Tab. 1) is partitioned into con- 
vex subdomains by the use of internal 

polygons (which are not visible in this 

hidden surface representation). 
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