

PCUPPPIPQUIIS WEIVGE OIUE DCI

FAC HBEREIC H 3
MATHEMATIK

HIGH QUALITY QUADRILATERAL

SURFACE MESHING WITHOUT

TEMPLATE RESTRICTIONS: A NEW

APPROACH BASED ON NETWORK FLOW

‘TECHNIQUES

by

MatTtTHIiAs MULLER-HANNEMANN

No. 561/1997

HIGH QUALITY QUADRILATERAL SURFACE MESHING

WITHOUT TEMPLATE RESTRICTIONS: A NEW APPROACH

BASED ON NETWORK FLOW TECHNIQUES *

MATTHIAS MULLER-HANNEMANN

Fachbereich Mathematik, Technische Universitat Berlin, Sekr. MA 6-1,

StraBe des 17. Juni 136, D 10623 Berlin, Germany,

e-mail: mhannema@math.tu-berlin.de;

URL: hitp://www.math.tu-berlin.de/“mhannema

June, 1997, revised December 1998
to appear in

International Journal of Computational Geometry & Applications

ABSTRACT

We investigate a purely combinatorial approach to the following mesh refinement

problem: Given a coarse mesh of polygons in three-dimensional space, find a decom-

position into well-shaped quadrilaterals such that the resulting mesh is conforming and

satisfies prescribed local density constraints.

We present a new approach based on network flow techniques. In particular, we show that

this problem can efficiently be solved by a reduction to a minimum cost bidirected flow

problem, if the mesh does not contain branching edges, that is, edges incident to more

than two polygons. This approach handles optimization criteria such as density, angles

and regularity. In our model we get rid of restrictions on the set of feasible solutions

imposed by templates. On the other hand, we still use advantages of general templates

with respect to mesh quality for the individual refinement of the mesh polygons.

For meshes with branchings, the problem is feasible if and only if a certain system of

linear equations over GF(2) has a solution. To enhance the mesh quality for meshes
with branchings, we introduce a two-stage approach which first decomposes the whole

mesh into components without branchings, and then uses minimum cost bidirected flows

on the components in a second phase. We report on our computational results which

indicate that this approach usually leads to a very high mesh quality.

Keywords: Quadrilateral surface meshes, non-manifold surfaces, mesh decomposition,

bidirected flows, b-matchings, mesh smoothing

1. Introduction

Mesh refinement has gained much attention in recent years because of its in-

creasing role as a bottleneck in the finite element modeling and analysis process. In

the field of computer-aided design (CAD), engineers often model their workpieces

first in form of a coarse mesh of convex polygons in three-dimensional space which

*A preliminary version of this paper appeared in the Proceedings of the Sixth International

Meshing Roundtable, Park City, Utah, 1997, pp. 293-307.

Figure 1: A small, planar artificial mesh. Figure 2: A conformal refinement.

approximates the object’s surface. However, in order to make a numerical analysis

applicable, a suitable refinement of the coarse mesh is necessary.

A large amount of research has been done in the area of mesh refinement into

triangles, see [18], [6] and [7] for surveys. In contrast, there is much less work on

quadrilaterals, although meshes which consist solely of quadrilaterals are more ap-

propriate in many applications, such as torsion problems and crash simulations [32],

[10]. This is the background of our work, and therefore, in this paper, refinement

of a mesh means decomposing each polygon into strictly convex quadrilaterals.*

The input: a coarse mesh. A polygon is a region in the plane or, more generally,

of a smooth surface in the three-dimensional space, bounded by a finite, closed

sequence of straight line (or curved) segments (the so-called edges). The endpoints

of the line segments or curves are the vertices. A polygon is simple if its edges do

not cross each other, and convex if the internal angle at each vertex is at most 7.

A vertex of a convex polygon is a corner if its internal angle is strictly less than 7.

An interval of a polygon P is a path of edges on its boundary. A segment S is an

interval between two successive corners of P.

A mesh is a set of openly disjoint, convex and simple polygons, the so-called

macro elements. The macro elements are convex, but not necessarily strictly convex.

Let M = {P,, Po,...,P,} be the set of polygons of the mesh. Two macro elements

are neighbored if they have points of the boundary in common which are not corners.

These neighborhood relationships induce an undirected graph G = (V, EF), which is

embedded on the surface approximated by the mesh. More precisely, V consists of

the vertices of the polygons. If a vertex of a polygon also belongs to the interior of

a side of another polygon, it subdivides this side. Hence, we may identify common

intervals of neighbored sides of polygons with each other, and E consists of these

intervals after identification. For an edge e; € E, let E; be the set of all those

polygons which contain e;.

A combinatorial description of a mesh consists of the graph G and the hyper-

graph H = (M,{Fi,...,Em}) with vertex set M and hyperedge set {F,..., Em}.

®The work arose from a cooperation with a CAD software company, Dr. Krause Software GmbH,

Berlin, Germany, which has developed the finite element preprocessor ISAGEN.

We will often identify a mesh with its combinatorial description.

In a conformal refinement of a mesh, any two distinct quadrilaterals which are

not completely disjoint either share exactly one whole edge, or they have a single

common vertex.

Two-phase approach. Conformal mesh refinement can be achieved in a two-phase

approach. First determine the additional mesh vertices located on the individual

edges of the input mesh. Then refine each macro element separately such that, for

the boundary of each macro element, the vertices are exactly those determined in

the first stage.

Templates. Work on conformal refinements in the literature often relies on a few

classes of templates (see [28,23] and Fig. 7). A template (sometimes also called

meshing primitive [28]) is a pattern which describes how a single polygon can be

decomposed into quadrilaterals. The most prominent template is the n xm grid. Not

every mesh allows for a conformal refinement under template restrictions (examples

are in [24,20]). We get rid of such template restrictions by using only the evenness

condition from the following well-known, but important characterization of those

polygons which can be decomposed into strictly convex quadrilaterals [31,19]:

Lemma 1 A simple polygon P admits a conformal refinement into strictly convex

quadrilaterals (without placing additional vertices on the boundary of P) if and only

if the number of vertices of P is even.

In fact, any algorithm for conformal mesh refinement has to respect this nec-

essary evenness condition either implicitly or explicitly. Observe that all standard

templates certainly do so, but they impose further, non-necessary restrictions on

the refinement.

An important feature of our approach is that we can guarantee to fulfill the

evenness condition for all polygons simultaneously (if such a solution exists). This

property of our approach is also valuable for other methods such as advancing

front [31,27] or paving [8,29]. In particular, there is no need to use a few triangular

elements as in Rees [27].

Branchings. Note that the graph G of a mesh need not be planar; for example,

a mesh approximating the surface of a torus has genus one. Even more, the ap-

proximated surface need not be a two-manifold, i. e. the corresponding mesh model

may contain branching edges, that is, edges incident to more than two polygons

(Figure 3). We call a mesh homogeneous if it does not contain branching edges.

Coping with branchings is an issue of crucial importance, as they appear in many

practical examples. Quadrilateral surface meshing can be seen as a first step in

hexahedral volume meshing (which still is an only partially solved problem with

respect to both theory and practice). At least, it seems to be a promising approach

to start a decomposition into hexahedra from a high quality quadrilateral surface

mesh [20]. Here, we want to point out that it might be advisable to decompose

complicated solid models first into smaller, preferably convex, subdomains by in-

Figure 3: A small mesh with four branching edges.

sertion of internal polygons. This can be done either explicitly or implicitly. The

latter approach, so-called meshing by virtual decomposition, has been introduced by

White et al. [30]. In both variants, these additional polygons induce a number of

branchings. However, this fits perfectly into our approach which mainly abstracts

from geometry and essentially solves a combinatorial problem. In fact, we will in-

troduce a simple and elegant method to ensure conformity between subdomains

resulting from a branching.

Local mesh density control. The subdivision number of edge e € E, denoted by

Ze, is the number of additional vertices which are placed on edge e in a refinement.

To ensure that the refinement of a mesh is fine enough for the numerical analysis

to achieve the required accuracy, but not too fine for reasons of efficiency, the mesh

density has to be controlled. Depending on the application, it is often crucial to

have a local density control on a per edge basis (derived from an error estimation

in the numerical analysis). Hence, we usually have for each edge e € E a desired

subdivision number d,. Moreover, we use density constraints for the purpose of

density control: For an edge e € E, the subdivision number 2, is at least @. and

at most Ue: le < te < Ue (lower and upper edge capacities, (€.,Ue)-capacities, for

short).

An edge with equal upper and lower capacities is a fired edge, otherwise it is

free. A conformal mesh refinement is feasible if it respects the density constraints.

Fixed edges may appear in particular if certain parts of the mesh are refined

in advance, and other parts have to be meshed afterwards (or remeshed) in such a

way that the predetermined parts remain unchanged. Or they appear if a hybrid

approach for the meshing is used where different algorithms are used for meshing

subdomains, for example an advancing front based approach or paving in combina-

tion with a template based approach [20].

We also note that it is sometimes desired (for symmetry reasons, for example)

to enforce that certain edges (which might be geometrically far away from each

other) are subdivided by exactly the same number of subdivision points. Such an

additional restriction can easily be represented in our combinatorial model by an

identification of the corresponding single edges to a new branching edge.

Angle control. The quality of a refinement largely depends on the shape of its

quadrilaterals. In Section 2 we explain how our bidirected flow model can be used

to control the quality of interior angles already in the first stage of the refinement

process (which determines the combinatorial structure of the refinement). We use

mesh smoothing by local optimization for the final embedding phase (see Section 4).

Overview. In Section 2 we will show that the feasible conformal mesh refinement

problem without branchings can efficiently be solved by a reduction to a single

minimum cost bidirected flow problem (or, equivalently, to a weighted b-matching

problem). This bidirected flow model captures the refinement problem without

adding additional restrictions. In contrast to previous work [28,23], we get rid of

restrictions imposed by standard templates. See the seminal paper of Edmonds [13]

or the monograph by Derigs [12] for an introduction to bidirected flows and b-

matchings. Within this model, certain optimization criteria such as mesh density,

interior angles and mesh regularity can be handled.

Then, in Section 3, we show that the general refinement problem is feasible if

and only if a certain system of linear equations over G'F(2) has a solution. (GF(2)

denotes the general field of two elements.) Such systems can be solved efficiently

by using standard Gaussian elimination (and numerical stability is no problem over

GF(2)). From any solution to this system of linear equations we easily derive a

feasible conformal mesh refinement. However, there seems to be no way to incorpo-

rate mesh quality optimization directly into this approach. This is not surprising

as even optimizing the mesh density on the edges has been shown to be NP-hard

for meshes with branchings [22].

For that reason, we use mesh decomposition into homogeneous components and

combine both approaches: In a first phase, we determine the subdivision numbers

for all branching edges by solving a system of linear equations over GF'(2). After-

wards, in a second phase, we solve a minimum cost bidirected flow problem for each

homogeneous component with fixed subdivision numbers on the branching edges.

For real-world instances the number of branching edges is usually relatively small in

comparison with the number of polygons. Hence, the proposed combined approach

is likely to achieve a reasonably good overall mesh quality.

The main contribution of this paper is to elaborate in detail on the mesh quality

which can be achieved by this approach (see Section 4). For the detailed proofs of

our theoretical results we refer to [22].

2. Conformal mesh refinement without branchings

In this section we consider the first phase of the refinement process (where the

number of additional vertices are determined for each edge of the input mesh) for

the case of meshes without branchings.

We present a model which guarantees the evenness condition for all polygons of

a mesh simultaneously. It turns out that the feasible conformal mesh refinement

problem can efficiently be solved by a reduction to a bidirected flow problem.

2.1. Mesh refinement as a bidirected flow problem

Bidirected flows. Bidirected flow problems can be defined in several (equivalent)

ways (see [13,12]). We will henceforth use the following setting.

Let G= (V, E) be an undirected graph (loops and parallel edges allowed), and

for € € E let uz > lz > 0 be the upper and lower capacity of edge é. »

For each vertex 0 € V~, the set of all incident edges is partitioned into two parts,

Ai(6) and Ao(é), where A(t) may be the empty set. We define 6(A;(0)) as the

set of non-loop edges in A;(#), and y(A;,(0)) as the set of loops within A;(0), for

i = 1,2. An integer weighting x € Z” of all edges in Bisa feasible bidirected flow

if and only if

(1) €s <ae<ue for each edge é € EB (edge capacity constraints),

(2) S- te+2 S- 4 S- te —2 S- te = bs

€€6(A1(@)) €€7(A1(8)) €€6(A2(8)) €€7(A2(8))

for each vertex # € V (flow conservation constraints).

Vertices with 6; = 0 are called transshipment vertices. Note that a bidirected

flow is a proper generalization of the usual flow definition for a directed graph,

where the orientation of the edges induces the bipartition A; (0), A2(6) in a simple

way, namely into incoming and outgoing edges for each vertex 0.

Single polygons. For a single polygon P with p segments we now define a small

bidirected flow problem on a graph Gp = (Vp, Ep). See Figure 4 for examples of

polygons with three, four and five segments. Let us suppose that we are given some

nonnegative integer N; for each segment S;, such that the segment S; has to be

subdivided into N; + 1 edges in the refinement.

The vertex set Vp consists of vertices 0; and w; corresponding to each segment

S;, and of one additional vertex @, (c for central), if p is odd.

The edge set Ep = EU E*°9 U EP” consists of

e the set EZ’ which contains all pairs (0;,0;), for 1,7 = 1,...,p, including the

loops,

e the set £°°9 which contains an edge (0;, w;) for each segment S;, and

e the set BE?” which contains an edge (0;,0-) for each segment Sj, if p is odd,

and is empty otherwise.

The edges in EU E®°9 are “internal” edges of the polygon, and edges in EP2r are

used to ensure the “correct parity” of the subdivision if the polygon is initially odd.

We assign the following capacities to the edges:

e For an edge € € E*"U E°°9, we set ls := 0 and ug := +00.

e For an edge € € Epar | we set fs := 0 and ug := 1.

bThe symbol ‘~’ is used to distinguish the graph on which a flow problem is defined from the

graph associated to a mesh.

Figure 4: Examples: the bidirected flow graphs for a triangle, a quadrilateral and

a pentagon. A short solid line through a vertex is used to indicate a non-trivial

bipartition of its adjacency list into two parts.

The bipartition of the vertices is as follows: For each vertex 0;, the incident edges

are partitioned into the sets EU EP and E%°9. For each vertex w; and for 6, (if

the latter vertex exists), all incident edges are in A;(-), and A2(-) is empty.

We define b;, = 1, if pis odd, and all other vertices 6; are transshipment vertices.

Finally, let by, = N; for the given nonnegative integers N;. This completes the

definition of a bidirected flow problem for the polygon P.

Meshes without branchings. We now extend our definition of a bidirected flow

instance for a single polygon to an instance for a whole mesh. Let G = (V, E) be

the undirected graph of a mesh without branchings.

The underlying graph G = (V, E) of the bidirected flow instance is built up using

the graphs Gp = (Vp, Ep) as defined for single polygons as subgraphs. Roughly

speaking, two such subgraphs are connected by a “dual edge” if the corresponding

polygons share an edge in G.

The vertex set V is the union of

e the vertex sets Vp of all polygons P,

e all vertices among V which are non-corners of some polygon, and

e one special vertex oy. This vertex corresponds to the region “outside” the

mesh.

The edge set E contains the following edges:

e We take the union of the edges sets Ep over all polygons P, and the edge

capacities as in Gp.

e Let e € E be an edge which belongs to two polygons, say to P and Q, and

suppose that «; € Vp and wz E Vo are the vertices which correspond to the

segments of P and Q to which e belongs. For each such edge e, we introduce

a “dual” edge é = (w;,W,;), with edge capacities equal to that of e in G.

e If an edge e € E belongs only to one polygon, say to P, and w; € Vp is the

vertex which corresponds to the segment of P to which e belongs, then we

introduce a “dual” edge € = (w;, Sou), with edge capacities equal to that of e

in G.

Figure 5: The graph G = (V,E) of the bidirected flow problem for an artificial
instance. (The special vertex 6o,4 is omitted in this figure. The vertex corresponds

to the unbounded region around the mesh.)

e For each polygon P and each vertex v € VN P which is not a corner of P,

we introduce an edge é = (t;,v), where v lies on the segment of P to which

Ww, € Vp corresponds. Such an edge gets identical lower and upper capacities

(gs :=ug:= 1.

e A loop € = (Hout, Gout) With capacities fs := 0 and ug := +00.

The bipartition of the vertices is as follows: For each vertex w; € Vp, we put

exactly all edges 6 € E \ Ep incident to w; into A» (w;). For each vertex v € V, all

incident edges are in A;(v), and Aj(v) is empty. All incident edges to Gouz are in

Ai (Gout) except (Gout; Vout) Which belongs to A2(iout)-

All vertices w; € Vp which correspond to segments of P become transshipment

vertices (in contrast to the case of single polygons). For each vertex @ € V;, let bj be

equal to the number of incident edges in G. Finally, let 65,,, := 0 if ©

is even, and b := 1, otherwise.
BEV \ Gout bi

Vout

Theorem 1 [22] There exists a feasible conformal refinement for the homogeneous

mesh G if and only if the bidirected flow problem as defined above has a feasible

bidirected flow.

2.2. Optimizing the mesh quality

In the preceding section we have seen the correspondence of conformal mesh

refinements and feasible solutions of certain bidirected flow problems. We continue

with the more ambitious task to find special solutions which fulfill certain optimiza-

tion criteria instead of just feasible solutions. This leads to minimum cost bidirected

flow problems. Let G= (V,E) be the graph of a bidirected flow instance where

a cost cg is associated with every edge €. Then the minimum cost bidirected flow

| [-—> | |
ls dg Ue ls dz Ue

Figure 6: Piecewise linear convex cost functions for density control.

problem seeks for a feasible bidirected flow with minimum cost » cm cere. We will

consider three kinds of mesh quality criteria:

e control over the mesh density,

e avoidance of too small or too large angles, and

e “regularity” of the overall mesh structure.

Density control. Probably, the most natural way to get control over the density

of a mesh is to use a convex cost function for each dual edge with a minimum at

the desired density dz. As we allow only integer flows, the cost functions can be

assumed to be piecewise linear. For practical purposes, it will often suffice to use

piecewise linear functions with only few different slopes, as depicted in Figure 6.

The slopes should be chosen such that the relative change from the desired density

is taken into account, for example by choosing them inversely proportional to the

desired subdivision number. Then the objective is to minimize the weighted sum

of deviations over all edges.

This defines a minimum convex cost bidirected flow problem. The standard way

to transform such a problem to an ordinary linear minimum cost bidirected flow

problem is to replace each edge é by as many copies as there are slopes (cf. [1],

pages 551ff.). So if there are p slopes with cost coefficients ck and breakpoints at

dé, the k-th copy é* gets edge capacities [0, d! — d?~"] and a cost coefficient of cf.

(Here, we assume d? = @s and d3 = uz.)

Very recently, Mitchell [20,21] proposed to minimize the maximum weighted de-

viation from the desired subdivision numbers. Note that such a bottleneck-type

objective can be solved via a combination of our bidirected flow method with bi-

nary search on the value of the maximum deviation. Hence, Mitchell’s objective is

somewhat more expensive than ours but can still be solved with a combinatorial

approach for meshes without branchings.

For ease of exposition, we will discuss the next two optimization criteria only

for polygons with four corners.

Angle control and mesh structure. It is easy to see that, for a polygon with four

segments, we may assume that we have a feasible flow with at most four edges with a

non-zero flow within the set EB’. Furthermore, there is a conformal refinement such

that exactly x(,,4;) disjoint paths go from the interior of segment S; to the interior

of segment S;. Hence, conformal subdivisions of polygons with four segments can

be assumed to be of the form as shown in Figure 7. The first three possibilities

are the standard templates used in [23,28], whereas the last template is new and

generalizes all standard templates.

Apart from the mesh density, mesh quality criteria depend upon the shape of the

quadrilaterals. For numerical reasons in the finite element analysis, interior angles

of quadrilaterals should neither be too small nor too large. There is no generally

accepted, precise threshold, but one usually aims at generating quadrilaterals with

no angles smaller than some given a and no angles larger than some (3. (In practice,

one often uses as a rule of thumb values of a = 30° and @ = 150° [31].)
The shape of the quadrilaterals in the refinement is closely related to the choice

of the template which determines the refinement of the macro element. As a rule

of thumb, the more the polygon looks like a trapezoid, the better template (2) will

be, the more it looks like a kite, the better template (3) will be. In all other cases,

template (1) is likely to be the best.

Moreover, template (1) tends to produce a fairly regular mesh. “Regularity of

the mesh structure” is a mesh quality criterion which seemingly cannot be fully

formalized. But the heuristical rule to prefer template (1) often achieves practical

results which reflects such a goal quite satisfactorily [23].

Hence, we would like to refine as many polygons by template (1) as possible

(among those polygons which have no very small or large angle), or more generally,

we would like to maximize the number of macro elements which are refined to some

preferred template, for a given preference order for each individual polygon of our

instance. Unfortunately, such a goal is intractable.

Theorem 2 [22] Given a feasible homogeneous mesh instance, it is strongly NP-

hard to find a solution where the number of macro elements with four corners which

are refined according to the (m x n)-grid template (i.e. template (1) in Figure 7) is

maximized.

So what can we hope for? As the mesh refinement problem only allows to insert

new vertices and edges, no sharp input angle can be erased. Hence, we can only

try to avoid the creation of new angles smaller than a. On the other hand, we can

try to enforce the splitting of an angle larger than @. Observe that, for the given

templates in Figure 7, a non-zero flow on edge (61,62) induces the splitting of the

angle 74, and a non-zero flow on the loop (#1, 61) induces the splitting of both yy

and 3-

There are two possibilities to modify our bidirected flow instance for these pur-

poses: First, we can change the edge capacities of “internal edges” E® ofa polygon:

In the pure feasibility problem all these edges have a lower capacity of zero and a

large upper bound (“plus infinity”). Hence, we can enforce to use an edge, if we

set the lower capacity to one, or we can forbid an edge completely, if we set the

10

Figure 7: Illustration of the four templates for polygons with four corners. Solid

lines are mandatory for each template (up to rotation and symmetry), whereas the

number of dashed lines may vary. The rightmost figure shows the corresponding

subgraph of the bidirected flow instance with only those edges displayed which may

have a non-zero flow value.

upper capacity to zero. The disadvantage of this approach is, that such a modifi-

cation may cause the infeasibility of the bidirected flow problem. A second (and

not so restrictive) way is to assign costs to these edges in order to make them more

attractive or unattractive.

Using these ideas we can express our preferences for the choice of the chosen

template for each polygon. So if we prefer a realization of template (1) for some

polygon, we assign high cost coefficients to all internal edges but (61,63) and (#2, 04),

which get zero cost. Or, for example, if the angle 7, should be split by an application

of template (3), we either raise the lower bound for edge (#1, #2) to one or make the

corresponding cost coefficient negative.

Hence, in summary, we can use local information about the geometry of the

unrefined polygon and so can model our preferences of the choice of an appropri-

ate template and enforce or forbid the splitting of macro element angles by these

modifications.

3. Conformal mesh refinement with branchings

A simple approach for meshes with branchings. As we know from Lemma 1,

it suffices to determine the subdivision numbers such that all polygons become even.

Then we can always complete the quadrangulation of all polygons.

For each edge e € E, let & be some fixed integer in the interval [€.,u.]. Then

define for each polygon P € M the “parity number” bp := }0.¢p(@ +1) mod 2.

For each edge e € EF, let ye be a 0/1-integer variable, but fix y. = 0, ifue—&. = 0.

Now, if we take for each polygon P an equation of the form }?.-p Ye = bp, this

defines a system of linear equations over GF'(2) which one can easily solve. Clearly,

any solution % to this system immediately makes all polygons even, if we set

Jeti. iff <ue
ves { —Je +e otherwise .

Note that the solvability of this system of equations over GF'(2) does not depend

on the choice of @.

This shows that finding subdivision numbers such that all polygons become even

is not harder than solving a system of linear equations over GF(2).

11

4P4E)
Figure 8: An input mesh with branching edges (left), the placement of additional
vertices on branching edges after solving the linear equations over GF(2) (middle),
the decomposition into five homogeneous components (right).

Note that the subsequent embedding phase can be done in linear time (linear in

the number of subdivision points) using the decomposition algorithm in [25]. The

obvious advantage of this approach is its simplicity. The disadvantage, however,

is that we cannot incorporate optimization criteria as we can in the homogeneous

case. Angle control and a preference of mesh regularity seem to be impossible by

this simple approach.

Density control can still be achieved to a certain extent, if we initially choose

as the desired subdivision number. But we will be forced to change the subdivision

number by one (but not by more than one) for all those edges which have a non-zero

entry in the solution of our system of equations. We also note that we cannot hope

to find a solution of such a system with a minimum number of non-zero entries, as

this problem is W’P-hard.

Theorem 3 [22] For a mesh with branchings and desired subdivision numbers it

is strongly NP-hard to find a feasible refinement such that the weighted sum of

deviations from the desired subdivision numbers over all edges is minimized.

A decomposition approach for meshes with branchings. For these reasons,

we introduce a mesh decomposition into homogeneous components. This allows us

to combine the different approaches for branchings and homogeneous components

into a two-phase approach: In a first phase, we determine the subdivision numbers

for all branching edges by solving a modified system of linear equations over GF'(2)

which we explain below. Afterwards, in a second phase, we solve a minimum cost

bidirected flow problem for each homogeneous component where the flow values for

all branching edges are predetermined from the first phase.

Recall from the Introduction that a combinatorial description of a mesh consists

of a graph G = (V,F) and a hypergraph H = (M,{E\,...,E£m}). Depending on

the number of polygons they belong to, the edges of G can be partitioned into

sets E!,E?, and E2°. The set E!' contains the boundary edges, i.e. edges which

belong to exactly one polygon, the set E2° contains all branching edges, and E?

all remaining edges. A non-branching path in H is a path between two polygons

P,,P, € M which contains only hyperedges of cardinality two, i.e. hyperedges

corresponding to edges in E*. Being connected by a non-branching path whose

edges are all free is an equivalence relation on the set of polygons. Its equivalence

classes are exactly the homogeneous components of the mesh decomposition.

12

Such a decomposition into homogeneous components of a mesh with branchings

can be obtained by the following procedure which “splits” all branching edges and

fixed edges: A branching edge which is incident to p polygons is replaced by p

copies, once for each polygon. The copied edges are treated as boundary edges, and

they get the same capacities as the original ones. All fixed edges in E? are replaced

in the same way by two copies, once for each incident polygon. Let G1,...,Gp

be the resulting homogeneous components, and M,,...,M, the sets of polygons

contained in these components.

Let H' = (M',{E}\,...,E},,}) be the hypergraph which we obtain from H =

(M,{Fy,..., Fm }) if we

(1) delete all hyperedges £; where e; is fixed, then afterwards

(2) contract all those hyperedges of degree two which correspond to free edges in

E?, and finally,

(3) identify all parallel hyperedges, i.e. we keep only one hyperedge for all edges

e € E which are incident to exactly the same set of polygons.

Observe that there is a one-to-one correspondence between the vertices of H’ and

the homogeneous components Gj,...,G,z of G.

We will now define a smaller system of equations over GF(2) based on H'. We

start similar as in the first approach above. Again, let %, be some fixed integer in the

interval [€.,u.], for each edge e € E, and define for each polygon P € M the parity

number bp :=)°,¢p(#- +1) mod 2. These parity numbers are aggregated to parity

numbers for each homogeneous component, by setting be; := dope m, Op mod 2, for

i=1,...,k.

For each hyperedge FE’, € H’, let yu be a0 /1-integer variable. For each homo-

geneous component G; which is not incident to a free boundary edge in G, we take

an equation of the form

> ve, = ba,
B!:|B;Gi| odd

that is, we sum over those hyperedges which are derived from a branching edge with

an odd number of incidences with the homogeneous component G;. Let us call a

homogeneous component active if it is not incident to a free boundary edge in G, and

inactive otherwise. Notice, that it might happen that some set {Ej : |Ej;G;| odd}

is empty (because of the deletion of fixed edges, for example). In that case, we

define the sum over the empty set to be zero. This defines our system of linear

equations over GF'(2).

Suppose that this system has a solution gy. For each hyperedge E} with ye, = 1,

take one corresponding branching edge e = e; (there may be a choice if E} resulted

from parallel hyperedges of a branching), and set x, := £ +1 (such that the

edge capacities remain fulfilled). For all other branching edges, set x. := %-. This

completes the first phase. In the second phase, we fix the subdivision values x, for all

branching edges and then solve the bidirected flow problems for each homogeneous

component separately. We claim that each bidirected flow problem is feasible if we

13

have a feasible solution % in the first phase. This is summarized in the following

theorem:

Theorem 4 [22] There exists a feasible conformal refinement for a mesh G with

branchings if and only if the two-phase approach as described above yields a feasible

solution.

4. Computational Experiences

In this section we report on our experiences with an implementation of the algo-

rithms presented in this paper. We have implemented our algorithm on a Sun Sparc

station under SunOS 5.1, the programming language is C++, and our front end is

ISAGEN. ° ISAGEN accepts input from a number of standard CAD formats (IGES,

VDAFS, DXF, and some others), and provides routines for an automatic conversion

of each of these formats into a macro element model consisting of quadrilaterals and

triangles. We got the latter as input for our algorithms.

The goal of this section is to investigate two main questions which immediately

arise from the proposed algorithms:

1. How well does the decomposition approach work for meshes with branchings?

2. What mesh quality can be achieved?

Having refined each macro element as a planar graph, we are faced with the

important and difficult task of finding a “nice” embedding of the refinement onto

the surface defined by the macro element. ISAGEN provides subroutines to find

an embedding only for the standard templates. In the following two subsections,

we first report on the mesh decomposition approach and then elaborate on mesh

quality.

4.1. Mesh Decomposition and Bidirected Flows

The decomposition into homogeneous components can be easily implemented

by a straightforward depth or breadth first search. Solving the system of linear

equations over G'F(2) is also simply done by Gaussian elimination (note that over

GF (2) no care has to be taken for numerical stability). The running time for this

phase is negligible.

Our implementation has been applied to a variety of problem instances from

practice, listed in Table 1. For these instances, some global mesh density has been

given. The goal was to find refinements with uniform edge lengths. The results

obtained by our decomposition approach are very appealing. Most remarkably, the

decomposition approach always yields a feasible solution if one exists. “Emergency”

templates (using triangles) are not necessary nor do we leave unrefined “holes.”

Table 1 shows the distribution of realized templates for quadrangles. However, more

expressive quantities for the mesh quality will be given in the following subsection.

The number of homogeneous components after the decomposition is given in column

SISAGEN is a trademark of Dr. Krause Software GmbH, Berlin.

14

{ macro | # bra. | des. { realized templates sec. CPU
instance elem. | edges | len. Cc T 1 2 3 4 | CPLEX | BLO

1) axle 34 0 | 30 T(o) | 6] 247 2] 2] 0 0.21 0.6
2) bowl 24 0 20 1 (0) 2 21 0 1 0 0.1 0.2

3) wing 131 0 20 1 (0) | 16 | 106 5 4 0 2.6 9.6
4) casing 237 2 10 1(0) | 26 | 167 | 25 | 14 5 225.3 20.5

5) wh-cap 377 0 10 1 (0) | 66 | 247 | 30 | 30 4 244.4 15.4
6) rack 68 0 30 1 (0) 2 64 0 2 0 0.4 0.4
7) chassis 158 38 20 5 (1) 9 | 127 6 | 16 0 45.8 10.2
8) coolsys 530 115 5 13 (6) | 31 | 375 | 40 | 74 | 1o 19.0 7.1
9) pump 161 7 10 12 (4) 7 | 141 5 7 1 3.5 2.9

10) bend 608 21 10 | 11 (10) 6 | 559 5 | 38 0 244.2 | 34.9

11) vw-p4 188 116 20 | 90 (28) | 55 93 9 | 30 1 2.5 1.8
12) tub 150 68 30 | 26 (26) 8 | 126 | 16 0 0 1.3 0.9
13) frp 171 62 4 | 19 (19) 0} 128 | 20 | 17 6 241.1 5.6

Table 1: Results of the decomposition approach for real-world instances. The third

column shows the number of branching edges, the fourth column contains the de-

sired edge length, the fifth column gives the number of triangles (T) among the

macro elements. (C) refers to the number of homogeneous components in the mesh

decomposition, the number of active components is given in brackets. Templates

(1), (2), and (3) are the standard templates, whereas template (4) is the general
template for quadrangles. The last two columns give the CPU times (in seconds)
to solve the minimum cost bidirected flow instances with CPLEX and our imple-

mentation of the blossom algorithm (BLO), respectively.

(C), the number of active components is given in brackets. The first six instances

consist of just one single component, which implies that the corresponding linear

systems of equations over GF(2) are empty. The distinction between active and

inactive homogeneous components is useful for instances (7)—(11), whereas instances

(12) and (13) stem from solid models without boundary. The latter rules out the

possibility of inactive homogeneous components.

Minimum cost bidirected flow problems are equivalent to minimum cost perfect

b-matchings and can, therefore, be solved in strongly polynomial time, as shown

by Anstee [3] and Edmonds (cf. Gerards’ survey on matching [17]). The asymp-

totic running time of strongly polynomial algorithms for these problems are domi-

nated by strongly polynomial algorithms for ordinary minimum cost flow problems.

Thus, the best strongly polynomial time bound for minimum cost bidirected flow

is O((mlog n)(m + nlogn)), where m denotes the number of edges and n the num-

ber of vertices of the underlying graph [1]. The number of edges and vertices in

the auxiliary graph of the bidirected flow model is linear in the number of original

polygons and mesh edges.

We explored two implementations for the solution of the bidirected flow prob-

lems, an approach using a general purpose integer programming solver and a purely

combinatorial implementation of the primal-dual blossom algorithm for weighted

b-matching as described by Pulleyblank [26]. As the problem remains unchanged,

the optimal solutions, i. e. the mesh quality, is certainly not affected by a change in

the algorithmic approach.

15

Using integer linear programming. Our first implementation uses the callable

library of the linear and integer programming solver CPLEX 4.0 ¢ with its Mixed

Integer Solver option (MIP). (Note that the minimum cost bidirected flow prob-

lem has the form of a pure integer programming problem.) CPLEX [11] provides a

number of algorithmic parameters which can be used to improve the performance of

the MIP solver. In our experiments we obtained the overall best solution times for

our particular class of problem instances by changing the default parameters for the

branch and bound process in two ways. First, we used the “best estimate node selec-

tion strategy,” and second, variables are selected with so-called “strong branching.”

See the CPLEX manual [11] for an informal description of these heuristics.

We set a time limit of 300 seconds to solve a minimum cost bidirected flow

instance, however, in all cases the actual solution time for a near-optimal feasible

solution was less than 25 seconds. The time to compute the optimal solution for

these problems is given in Table 1. The running time ranges from less than a second

to 244 seconds of CPU time for the instances given there.

Using weighted b—matching. Implementing matching algorithms is tedious.

Nevertheless, we decided to implement a combinatorial alternative to the general

purpose integer programming solver CPLEX. In our project, we implemented Pul-

leyblank’s description of a primal-dual algorithm for weighted b-matching [26] and

combined it with heuristic ideas of Applegate and Cook [4], and Ball and Derigs

[5]. A detailed description of the implementation details goes beyond the scope of

this article. However, this effort gives several advantages: first, our implementation

becomes independent of a commercial third party product. Second, the running

times to solve all instances to optimality reduced significantly (see the last column

in Table 1). Third, this variant has much lower storage requirements.

For this algorithm the running time ranges from less than a second to 35 seconds

of CPU time for our test set. The execution time is more than acceptable in view

of the other far more expensive steps in a numerical analysis.

4.2. Graph Embeddings and Mesh Smoothing

Given the subdivision numbers on the edges of the input mesh, it is easy to create

for each macro element the corresponding planar graph of the decomposition. It

is also no problem just to find a preliminary geometric embedding of such a graph

on the corresponding surface. However, it is usually hard to find an embedding

which leads to a good mesh quality. A common approach for mesh improvement,

namely mesh smoothing, uses local optimization to move the vertex positions while

preserving the combinatorial embedding of the graph.

Laplacian smoothing might be the most frequently used smoothing technique [7].

This method iterates over the vertex set several times, repeatedly moving each ad-

justable vertex to the (weighted) barycenter of the vertices adjacent to it. The

method is computationally inexpensive. However, in general, the barycenter of a

dCPLEX is a registered trademark of CPLEX Optimization, Inc.

16

number of vertices need not lie on the surface anymore. Hence, a projection back

onto the given surface is necessary. Even in the plane the method does not guaran-

tee an improvement in mesh quality. Moreover, it can happen that quadrilaterals

become inverted, i.e. non-convex, unless the algorithm performs an explicit check

before moving a vertex.

Freitag, Jones, and Plassmann [14] proposed an alternative to Laplacian smooth-

ing for triangulations. They compute for each vertex a new placement that max-

imizes the minimum angle in adjacent triangles by use of an iterative steepest-

descent algorithm to solve this optimal placement problem. Recent theoretical

work by Amenta, Bern, and Eppstein [2] on triangulated, plane meshes shows that

optimization-based smoothing can be performed in linear time for a number of

quality measures. However, it remains open to which extent these results can be

extended to quadrilateral meshes and to curved surfaces. Moreover, in spite of its

theoretical linear time complexity these mesh improvement procedures turn out to

be very expensive.

We tried to combine several quality measures simultaneously. Let 6, with 0 <

0 < 360, be the measure of an angle in degrees. The quality of an angle ¢(@) ranges

between 0 and 90 and is defined by

0 if0<4<90,
o(0) = 4180-6 if 90 <6 < 180,

0 if @ > 180.

The angle quality of a quadrilateral Q with interior angles a, 3, y, 6 is defined as

aq(Q) := min{¢(a), (3), (7), 9(6) }.

Quadrilaterals with an angle quality below the threshold of 30 are marked as dis-

torted.

Roughly speaking, we wanted to avoid very large and very small angles and to

create uniform edge lengths. More precisely, our primary objective was to maximize

the (weighted) average angle quality over all quadrilaterals. In the weighted version

of this objective, distorted quadrilaterals are assigned a higher weight than non-

distorted ones. Our secondary objective was to create uniform edge lengths and

to maximize the (minimum or average) aspect ratio. These goals are combined in

form of a weighted sum.

In our implementation, we used the general framework of local optimization, but

did not solve the optimization problems exactly. Instead we iterate over the vertex

set a fixed number of times and strive only for an approximation of the optimal

placement problem. For each adjustable vertex we first determine a search direction

and calculate a step length which gives a proposal for a new vertex position. Then

we check whether the new position is feasible, i.e. it preserves planarity of the graph

and convexity of the quadrilaterals, and whether it would yield an improvement in

local mesh quality. In the affirmative case, the new position is accepted, otherwise

we try anew search direction or step length. Moreover, additional side constraints

in the position check come from our secondary objective to have more or less uniform

17

angle quality

instance AQ

66.28

83.04

73.26

72.32

78.61

81.85

73.42

76.39
80.62

78.01

68.88

82.03

73.54

76.34

Table 2: Evaluation of the angle quality for our set of real-world instances. The
second column gives the number of quadrilaterals (Q) in the refinement. The set
of quadrilaterals is partitioned into seven classes of different angle quality, ordered

from left to right with decreasing quality. The third column contains the number of

quadrilaterals with an angle quality above 80, the forth column the corresponding

number for quadrilaterals with a quality in the range from 70 to 80, and so on. In

particular, the number of distorted elements is given in the third but last column.

(DA) refers to the number of input angles with a bad quality. (AQ) denotes the

average angle quality.

edge lengths. In particular, very short edges are always rejected, even if the angle

quality could otherwise be further improved.

Certainly, there is a lot of freedom in fine-tuning the choice of several parameters.

Most probably, our empirical results can still be improved by a more clever choice

of these parameters. In Table 2 we show the results of our current implementation

applied to our set of real-world instances. See also the histogram in Figure 9 for the

distribution of the angle quality with respect to classes of different angle quality.

Statistically, our refinements contain few quadrilaterals with “bad angles” (less

than 1%). Experiments by Freitag and Ollivier-Gooch [16] showed that for linear

finite elements on triangular meshes the number of iterations required for conver-

gence is not significantly affected by a small number of poor-quality elements. Such

a result seems likely to hold in some form for quadrilateral meshes, too. If so, the

number of distorted elements in our results is not a critical issue.

The average angle quality for all instances is 76.34. This seems to be a signifi-

cant improvement over results obtained for free-form mesh generation (in free-form

mesh generation, there is no prepartition of the whole meshing domain into macro

elements). Unfortunately, we are not aware of a computational study which is di-

rectly comparable with ours. Borouchaki, Frey and George [9] report results for

free-form meshing where they use the same measure for the angle quality (up to

a constant scalar), but calculate angles with respect to a metric induced by an

isotropic field. For this measure they obtain a mean angle quality of approximately

18

100 Percentage of quadrilaterals 96 99 100
907 84
80-
70-
60+
507
404
307
20+
10+ angle

> 80 > 70 > 60 > 50 > 40 > 30 >0 quality

Figure 9: The average angle quality: for each quality class, the left columns gives

the percentage of quadrilaterals falling into it, whereas the right columns give the

cumulative percentage (with decreasing quality).

61.2 (this number is already scaled up to our measure, but still cannot be used for

a fair comparison).

Note that certain input instances contain a significant number of macro elements

with a bad angle quality (column (DA) in Table 2). As the geometry of the macro

elements themselves is not subject to change in the mesh smoothing process, this

implies that a number of quadrilaterals has to be distorted in any refinement. In

particular, very small angles cannot be removed. On the other hand, very large

angles can possibly be split in two acceptable smaller ones. This explains why

the number of bad input angles (DA) can be larger than the number of distorted

elements in the refinement (which happens for our instance (11) in Table 2).

Our mesh smoothing technique is computationally very expensive. In fact, it

usually consumes the major portion of the whole run time. For our examples, it

took more than fifty percent of the overall run time.

Fortunately, this run time bottleneck can be reduced if the smoothing is per-

formed in parallel. The crucial observation is that our macro elements induce in a

natural way a fast mechanism for determining independent sets of vertices that can

be manipulated simultaneously on different processors. Freitag, Jones and Plass-

mann [14] showed how to do this distribution on processors with graph coloring

techniques, in general, and they reported successfully results of experiments run

on a network of workstations. Moreover, a further speed-up can be achieved by a

combined smoothing approach in which Laplacian smoothing is always done, but

followed by optimization based smoothing when quality is low [15].

19

Acknowledgments

The author wishes to thank R. H. Moéhring and K. Weihe for many fruitful

discussions, and G. Krause for providing us with the finite element preprocessor IS-

AGEN and instances from the automobile industry. Finally, we thank A. Schwartz

for his help in implementing our algorithm. The author was partially supported by

the special program “Efficient Algorithms for Discrete Problems and Their Appli-

cations” of the Deutsche Forschungsgemeinschaft (DFG) under grant Mo 446/2-2.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows, Prentice Hall, 1993.

N. Amenta, M. Bern, and D. Eppstein, Optimal point placement for mesh smoothing,

Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,

1997, pp. 528-537.

R. P. Anstee, A polynomial algorithm for b-matching: An alternative approach, In-

formation Processing Letters 24 (1987), 153-157.

. D. Applegate and W. Cook, Solving large-scale matching problems, Network Flows

and Matching, DIMACS Series in Discrete Mathematics and Theoretical Computer

Science (D. S. Johnson and C. C. McGeoch, eds.), vol. 12, 1993, pp. 557-576.

M. O. Ball and U. Derigs, An analysis of alternative strategies for implementing

matching algorithms, Networks 13 (1983), 517-549.

M. Bern and D. Eppstein, Mesh generation and optimal triangulation, Computing in

Euclidean Geometry, 2nd Edition (D.-Z. Du and F. Hwang, eds.), World Scientific,
Singapore, 1995, pp. 47-123.

M. Bern and P. Plassmann, Mesh generation, Handbook of Computational Geometry

(J. Sack and J. Urrutia, eds.), Elsevier Science, 1997, to appear.

T. D. Blacker and M. B. Stephenson, Paving: A new approach to automated quadri-

lateral mesh generation, Int. J. Numer. Methods in Eng. 32 (1991), 811-847.

H. Borouchaki, P. J. Frey, and P. L. George, Unstructured triangular-quadrilateral

mesh generation. Application to surface meshing, Proceedings of the 5th Interna-

tional Meshing Roundtable, Sandia National Laboratories, Albuquerque, USA, 1996,

pp. 229-242.
J. R. Brauer, ed., What every engineer should know about finite element analysis,

Marcel Decker Inc., 1993.

CPLEX Optimization Inc., Using the CPLEX callable library, version 4.0, 1995.

U. Derigs, Programming in networks and graphs, Lecture Notes in Economics and

Mathematical Systems, vol. 300, Springer-Verlag, Berlin, 1988.

J. Edmonds, An introduction to matching, Lecture notes, University of Michigan,

Ann Arbor, 1967.

L. Freitag, M. Jones, and P. Plassmann, An efficient parallel algorithm for mesh

smoothing, Proceedings of the 4th International Meshing Roundtable, Sandia Na-

tional Laboratories, Albuquerque, USA, 1995, pp. 47-58.

L. Freitag, C. Ollivier-Gooch, Tetrahedral mesh improvement using swapping and

smoothing, Int. J. Numer. Methods in Eng. 40 (1997), 3979-4002.

L. Freitag, C. Ollivier-Gooch, A cost/benefit analysis of simplicial mesh improvement

techniques as measured by solution efficiency, Technical report ANL/MSC-P722-

6598, Argonne National Laboratory, 1998.

20

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3l.

32.

. A. M. H. Gerards, Matching, (M. O. Ball et al., ed.), Handbooks in Operations
Research and Management Science, vol. 7, North-Holland, 1995, pp. 135-224.

K. Ho-Le, Finite element mesh generation methods: a review and classification,

Computer-Aided Design 20 (1988), 27-38.

B. Joe, Quadrilateral mesh generation in polygonal regions, Computer-Aided Design

27 (1995), 209-222.
S. A. Mitchell, Choosing corners of rectangles for mapped meshing, Proceedings

of the 13th Annual ACM Symposium on Computational Geometry, Nice, France,

ACM, 1997, pp. 87-93.

S. A. Mitchell, High fidelity interval assignment, Proceedings of the 6th International

Meshing Roundtable, Park City, Utah, Sandia National Laboratories, Albuquerque,

USA, 1997, pp. 33-44.

R. H. Mohring and M. Miiller-Hannemann, Complexity and modeling aspects of

mesh refinement into quadrilaterals, Proceedings of the 8th Annual International

Symposium on Algorithms and Computation, ISAAC’97, Singapore, Lecture Notes

in Computer Science 1350, Springer-Verlag, 1997, pp. 263-273, journal version to

appear in Algorithmica.

R. H. Mohring, M. Miiller-Hannemann, and K. Weihe, Mesh refinement via bidirected

flows: Modeling, complexity, and computational results, Journal of the ACM 44

(1997), 395-426.

M. Miiller-Hannemann, On the generation of finite element meshes with graph the-

oretical methods, Diploma thesis, Technische Universitat Berlin, 1994.

M. Miiller-Hannemann and K. Weihe, Minimum strictly convex quadrangulations of

convex polygons, Proceedings of the 13th Annual ACM Symposium on Computa-

tional Geometry, Nice, France, ACM, 1997, pp. 193-202.

W. R. Pulleyblank, Faces of matching polyhedra, Ph.D. thesis, Faculty of Mathe-

matics, University of Waterloo, 1973.

M. Rees, Combining quadrilateral and triangular meshing using the advancing front

approach, Proceedings of the 6th International Meshing Roundtable, Park City,

Utah, Sandia National Laboratories, Albuquerque, USA, 1997, pp. 337-348.

T. K. H. Tam and C. G. Armstrong, Finite element mesh control by integer pro-

gramming, Int. J. Numer. Methods in Eng. 36 (1993), 2581-2605.

D. R. White and P. Kinney, Redesign of the paving algorithm: Robustness enhance-

ments through element by element meshing, Proceedings of the 6th International

Meshing Roundtable, Park City, Utah, Sandia National Laboratories, Albuquerque,

USA, 1997, pp. 323-335.

D. R. White, L. Mingwu, S. E. Benzley, and G. D. Sjaardema, Automated hex-

ahedral mesh generation by virtual decomposition, Proceedings of the 4th Interna-

tional Meshing Roundtable, Sandia National Laboratories, Albuquerque, USA, 1995,

pp. 165-176.

J. Z. Zhu, O. C. Zienkiewicz, E. Hinton, and J. Wu, A new approach to the develop-

ment of automatic quadrilateral mesh generation, Int. J. Numer. Methods in Eng.

32 (1991), 849-866.

O. C. Zienkiewicz and R. L. Taylor, The finite element method, McGraw Hill, Lon-

don, 1989.

21

We provide some illustrations of instances which have been refined by our algo-

rithm (instances (7), (9), (10), (12), and (13) in Table 1).

Appendix A: Examples

</)

CODE,
i
e

D
R
G

fer. ee
Be

ie RY

LA
Ui

ig

a

;
HH K
H

RON
fj

W
E
S

if
iG

R
K
C

R
R

“
E
C
A
R

W
S

 Toor
gee

 Ty

CittF

SP
Sea yy
PAS

SS
Ah ea
aes

ose

ht

4

Soy
J ‘
Sf

OF

NS
{Fh
{i

pe

NA

6

Figure A.1: Model of a chassis and its refinement. (Instance (7) in Tab. 1.)

Figure A.2: Model of a pump and its refinement. (Instance (9) in Tab. 1.)

22

Figure A.3: Model of a bend and its refinement. (Instance (10) in Tab. 1.)

Ea
Sims

Es

:
K
O
S

«BS
o

A
K
X
M
X

ESS

ean
r

:
e
e

ae
Hl

O
X
X

APL
LP

o
g

H
M
X

L
I
E
K

X KOS
; aed

2 8
EE Figure A.4: Wire-frame model of a tub-

like workpiece (instance (12) in Tab. 1).
Fig. A.A. The polygons have been shrunk in this

visualization to show the hyperplanes

inside the model which partition the

solid tub into convex parts.

Figure A.7: The refinement produced

by our algorithm.
Figure A.6: This solid model (instance
(13) in Tab. 1) is partitioned into con-
vex subdomains by the use of internal

polygons (which are not visible in this

hidden surface representation).

23

Reports from the group

“Algorithmic Discrete Mathematics”

of the Department of Mathematics, TU Berlin

605/1998 Friedrich Eisenbrand: A Note on the Membership Problem for the Ele-

mentary Closure of a Polyhedron

596/1998 Rolf H. Méhring and Frederik Stork and Marc Uetz: Resource Con-

strained Project Scheduling with Time Windows: A Branching Scheme Based

on Dynamic Release Dates

595/1998 Rolf H. Méhring and Andreas S. Schulz and Marc Uetz: Approximation

in Stochastic Scheduling: The Power of LP-based Priority Rules

591/1998 Matthias Miiller-Hannemann and Alexander Schwartz: Implementing

Weighted b-Matching Algorithms: Towards a Flexible Software Design

590/1998 Stefan Felsner and Jens Gustedt and Michel Morvan: Interval Reduc-

tions and Extensions of Orders: Bijections to Chains in Lattices

577/1998 Martin Skutella: Semidefinite Relaxations for Parallel Machine Schedul-

ing

566/1997 Jens Gustedt: Minimum Spanning Trees for Minor-Closed Graph

Classes in Parallel

565/1997 Andreas S. Schulz, David B. Shmoys, and David P. Williamson: Ap-

proximation Algorithms

564/1997 Uta Wille: On Extending Closure Systems to Matroids

561/1997 Matthias Miiller-Hannemann: High Quality Quadrilateral Surface

Meshing Without Template Restrictions: A New Approach Based on Net-

work Flow Techniques

559/1997 Matthias Miiller-Hannemann and Karsten Weihe: Improved Approxi-

mations for Minimum Cardinality Quadrangulations of Finite Element Meshes

554/1997 Rolf H. Méhring and Matthias Miiller-Hannemann: Complexity and

Modeling Aspects of Mesh Refinement into Quadrilaterals

551/1997 Hans Bodlaender, Jens Gustedt and Jan Arne Telle: Linear-Time Reg-

ister Allocation for a Fixed Number of Registers and no Stack Variables

550/1997 Karell Bertet, Jens Gustedt and Michel Morvan: Weak-Order Exten-

sions of an Order

549/1997 Andreas S. Schulz and Martin Skutella: Random-Based Scheduling:

New Approximations and LP Lower Bounds

542/1996 Stephan Hartmann: On the NP-Completeness of Channel and Switch-

box Routing Problems

536/1996 Cynthia A. Phillips, Andreas S. Schulz, David B. Shmoys, Cliff Stein,

and Joel Wein: Improved Bounds on Relaxations of a Parallel Machine

Scheduling Problem

535/1996 Rainer Schrader, Andreas S. Schulz, and Georg Wambach: Base Poly-

topes of Series-Parallel Posets: Linear Description and Optimization

533/1996 Andreas S. Schulz and Martin Skutella: Scheduling—LPs Bear Probabil-

ities: Randomized Approximations for Min—Sum Criteria

530/1996 Ulrich H. Kortenkamp, Jtirgen Richter-Gebert, Aravamuthan

Sarangarajan, and Ginter M. Ziegler: Extremal Properties of 0/1-Polytopes

524/1996 Elias Dahlhaus, Jens Gustedt and Ross McConnell: Efficient and Prac-

tical Modular Decomposition

523/1996 Jens Gustedt and Christophe Fiorito: Memory Management for Union-

Find Algorithms

520/1996 Rolf H. Moéhkring, Matthias Miiller-Hannemann, and Karsten Weithe:

Mesh Refinement via Bidirected Flows: Modeling, Complexity, and Compu-

tational Results

519/1996 Matthias Miiller-Hannemann and Karsten Weihe: Minimum Strictly

Convex Quadrangulations of Convex Polygons

517/1996 Rolf H. Méhring, Markus W. Schdffter, and Andreas S. Schulz: Schedul-

ing Jobs with Communication Delays: Using Infeasible Solutions for Approx-

imation

516/1996 Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein:

Scheduling to Minimize Average Completion Time: Offline and On-line Ap-

proximation Algorithms

515/1996 Christophe Fiorio and Jens Gustedt: Volume Segmentation of 3-

dimensional Images

514/1996 Martin Skutella: Approximation Algorithms for the Discrete Time-Cost

Tradeoff Problem

509/1996 Soumen Chakrabarti, Cynthia A. Phillips, Andreas S. Schulz, David B.

Shmoys, Cliff Stein, and Joel Wein: Improved Scheduling Algorithms for

Minsum Criteria

508/1996 Rudolf Miller and Andreas S. Schulz: Transitive Packing

506/1996 Rolf H. Méhring and Markus W. Schdffter: A Simple Approximation

Algorithm for Scheduling Forests with Unit Processing Times and Zero-One

Communication Delays

505/1996 Rolf H. Méhring and Dorothea Wagner: Combinatorial Topics in VLSI

Design: An Annotated Bibliography

504/1996 Uta Wille: The Role of Synthetic Geometry in Representational Mea-

surement Theory

502/1996 Nina Amenta and Giinter M. Ziegler: Deformed Products and Maximal

Shadows of Polytopes

500/1996 Stephan Hartmann and Markus W. Schaffter and Andreas S. Schulz:

Switchbox Routing in VLSI Design: Closing the Complexity Gap

498/1996 Ewa Malesinska, Alessandro Panconesi: On the Hardness of Allocating

Frequencies for Hybrid Networks

496/1996 Jérg Rambau: Triangulations of Cyclic Polytopes and higher Bruhat

Orders

Reports may be requested from: S. Marcus

Fachbereich Mathematik, MA 6-1

TU Berlin

StraBe des 17. Juni 136

D-10623 Berlin — Germany

e-mail: Marcus@math.TU-Berlin.DE

Reports are available via anonymous ftp from: ftp.math.tu-berlin.de

cd pub/Preprints/combi
file Report-<number>—<year>.ps.Z

